hw/arm/smmuv3: fix eventq recording and IRQ triggerring
[qemu/kevin.git] / exec.c
blob6826c8337d550a4a86dbaf96d1ca2d55e5b4dbf1
1 /*
2 * Virtual page mapping
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
20 #include "qapi/error.h"
22 #include "qemu/cutils.h"
23 #include "cpu.h"
24 #include "exec/exec-all.h"
25 #include "exec/target_page.h"
26 #include "tcg.h"
27 #include "hw/qdev-core.h"
28 #include "hw/qdev-properties.h"
29 #if !defined(CONFIG_USER_ONLY)
30 #include "hw/boards.h"
31 #include "hw/xen/xen.h"
32 #endif
33 #include "sysemu/kvm.h"
34 #include "sysemu/sysemu.h"
35 #include "qemu/timer.h"
36 #include "qemu/config-file.h"
37 #include "qemu/error-report.h"
38 #if defined(CONFIG_USER_ONLY)
39 #include "qemu.h"
40 #else /* !CONFIG_USER_ONLY */
41 #include "hw/hw.h"
42 #include "exec/memory.h"
43 #include "exec/ioport.h"
44 #include "sysemu/dma.h"
45 #include "sysemu/numa.h"
46 #include "sysemu/hw_accel.h"
47 #include "exec/address-spaces.h"
48 #include "sysemu/xen-mapcache.h"
49 #include "trace-root.h"
51 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
52 #include <linux/falloc.h>
53 #endif
55 #endif
56 #include "qemu/rcu_queue.h"
57 #include "qemu/main-loop.h"
58 #include "translate-all.h"
59 #include "sysemu/replay.h"
61 #include "exec/memory-internal.h"
62 #include "exec/ram_addr.h"
63 #include "exec/log.h"
65 #include "migration/vmstate.h"
67 #include "qemu/range.h"
68 #ifndef _WIN32
69 #include "qemu/mmap-alloc.h"
70 #endif
72 #include "monitor/monitor.h"
74 //#define DEBUG_SUBPAGE
76 #if !defined(CONFIG_USER_ONLY)
77 /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
78 * are protected by the ramlist lock.
80 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
82 static MemoryRegion *system_memory;
83 static MemoryRegion *system_io;
85 AddressSpace address_space_io;
86 AddressSpace address_space_memory;
88 MemoryRegion io_mem_rom, io_mem_notdirty;
89 static MemoryRegion io_mem_unassigned;
90 #endif
92 #ifdef TARGET_PAGE_BITS_VARY
93 int target_page_bits;
94 bool target_page_bits_decided;
95 #endif
97 struct CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
98 /* current CPU in the current thread. It is only valid inside
99 cpu_exec() */
100 __thread CPUState *current_cpu;
101 /* 0 = Do not count executed instructions.
102 1 = Precise instruction counting.
103 2 = Adaptive rate instruction counting. */
104 int use_icount;
106 uintptr_t qemu_host_page_size;
107 intptr_t qemu_host_page_mask;
109 bool set_preferred_target_page_bits(int bits)
111 /* The target page size is the lowest common denominator for all
112 * the CPUs in the system, so we can only make it smaller, never
113 * larger. And we can't make it smaller once we've committed to
114 * a particular size.
116 #ifdef TARGET_PAGE_BITS_VARY
117 assert(bits >= TARGET_PAGE_BITS_MIN);
118 if (target_page_bits == 0 || target_page_bits > bits) {
119 if (target_page_bits_decided) {
120 return false;
122 target_page_bits = bits;
124 #endif
125 return true;
128 #if !defined(CONFIG_USER_ONLY)
130 static void finalize_target_page_bits(void)
132 #ifdef TARGET_PAGE_BITS_VARY
133 if (target_page_bits == 0) {
134 target_page_bits = TARGET_PAGE_BITS_MIN;
136 target_page_bits_decided = true;
137 #endif
140 typedef struct PhysPageEntry PhysPageEntry;
142 struct PhysPageEntry {
143 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
144 uint32_t skip : 6;
145 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
146 uint32_t ptr : 26;
149 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
151 /* Size of the L2 (and L3, etc) page tables. */
152 #define ADDR_SPACE_BITS 64
154 #define P_L2_BITS 9
155 #define P_L2_SIZE (1 << P_L2_BITS)
157 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
159 typedef PhysPageEntry Node[P_L2_SIZE];
161 typedef struct PhysPageMap {
162 struct rcu_head rcu;
164 unsigned sections_nb;
165 unsigned sections_nb_alloc;
166 unsigned nodes_nb;
167 unsigned nodes_nb_alloc;
168 Node *nodes;
169 MemoryRegionSection *sections;
170 } PhysPageMap;
172 struct AddressSpaceDispatch {
173 MemoryRegionSection *mru_section;
174 /* This is a multi-level map on the physical address space.
175 * The bottom level has pointers to MemoryRegionSections.
177 PhysPageEntry phys_map;
178 PhysPageMap map;
181 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
182 typedef struct subpage_t {
183 MemoryRegion iomem;
184 FlatView *fv;
185 hwaddr base;
186 uint16_t sub_section[];
187 } subpage_t;
189 #define PHYS_SECTION_UNASSIGNED 0
190 #define PHYS_SECTION_NOTDIRTY 1
191 #define PHYS_SECTION_ROM 2
192 #define PHYS_SECTION_WATCH 3
194 static void io_mem_init(void);
195 static void memory_map_init(void);
196 static void tcg_commit(MemoryListener *listener);
198 static MemoryRegion io_mem_watch;
201 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
202 * @cpu: the CPU whose AddressSpace this is
203 * @as: the AddressSpace itself
204 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
205 * @tcg_as_listener: listener for tracking changes to the AddressSpace
207 struct CPUAddressSpace {
208 CPUState *cpu;
209 AddressSpace *as;
210 struct AddressSpaceDispatch *memory_dispatch;
211 MemoryListener tcg_as_listener;
214 struct DirtyBitmapSnapshot {
215 ram_addr_t start;
216 ram_addr_t end;
217 unsigned long dirty[];
220 #endif
222 #if !defined(CONFIG_USER_ONLY)
224 static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
226 static unsigned alloc_hint = 16;
227 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
228 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, alloc_hint);
229 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes);
230 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
231 alloc_hint = map->nodes_nb_alloc;
235 static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
237 unsigned i;
238 uint32_t ret;
239 PhysPageEntry e;
240 PhysPageEntry *p;
242 ret = map->nodes_nb++;
243 p = map->nodes[ret];
244 assert(ret != PHYS_MAP_NODE_NIL);
245 assert(ret != map->nodes_nb_alloc);
247 e.skip = leaf ? 0 : 1;
248 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
249 for (i = 0; i < P_L2_SIZE; ++i) {
250 memcpy(&p[i], &e, sizeof(e));
252 return ret;
255 static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
256 hwaddr *index, hwaddr *nb, uint16_t leaf,
257 int level)
259 PhysPageEntry *p;
260 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
262 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
263 lp->ptr = phys_map_node_alloc(map, level == 0);
265 p = map->nodes[lp->ptr];
266 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
268 while (*nb && lp < &p[P_L2_SIZE]) {
269 if ((*index & (step - 1)) == 0 && *nb >= step) {
270 lp->skip = 0;
271 lp->ptr = leaf;
272 *index += step;
273 *nb -= step;
274 } else {
275 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
277 ++lp;
281 static void phys_page_set(AddressSpaceDispatch *d,
282 hwaddr index, hwaddr nb,
283 uint16_t leaf)
285 /* Wildly overreserve - it doesn't matter much. */
286 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
288 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
291 /* Compact a non leaf page entry. Simply detect that the entry has a single child,
292 * and update our entry so we can skip it and go directly to the destination.
294 static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
296 unsigned valid_ptr = P_L2_SIZE;
297 int valid = 0;
298 PhysPageEntry *p;
299 int i;
301 if (lp->ptr == PHYS_MAP_NODE_NIL) {
302 return;
305 p = nodes[lp->ptr];
306 for (i = 0; i < P_L2_SIZE; i++) {
307 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
308 continue;
311 valid_ptr = i;
312 valid++;
313 if (p[i].skip) {
314 phys_page_compact(&p[i], nodes);
318 /* We can only compress if there's only one child. */
319 if (valid != 1) {
320 return;
323 assert(valid_ptr < P_L2_SIZE);
325 /* Don't compress if it won't fit in the # of bits we have. */
326 if (lp->skip + p[valid_ptr].skip >= (1 << 3)) {
327 return;
330 lp->ptr = p[valid_ptr].ptr;
331 if (!p[valid_ptr].skip) {
332 /* If our only child is a leaf, make this a leaf. */
333 /* By design, we should have made this node a leaf to begin with so we
334 * should never reach here.
335 * But since it's so simple to handle this, let's do it just in case we
336 * change this rule.
338 lp->skip = 0;
339 } else {
340 lp->skip += p[valid_ptr].skip;
344 void address_space_dispatch_compact(AddressSpaceDispatch *d)
346 if (d->phys_map.skip) {
347 phys_page_compact(&d->phys_map, d->map.nodes);
351 static inline bool section_covers_addr(const MemoryRegionSection *section,
352 hwaddr addr)
354 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
355 * the section must cover the entire address space.
357 return int128_gethi(section->size) ||
358 range_covers_byte(section->offset_within_address_space,
359 int128_getlo(section->size), addr);
362 static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
364 PhysPageEntry lp = d->phys_map, *p;
365 Node *nodes = d->map.nodes;
366 MemoryRegionSection *sections = d->map.sections;
367 hwaddr index = addr >> TARGET_PAGE_BITS;
368 int i;
370 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
371 if (lp.ptr == PHYS_MAP_NODE_NIL) {
372 return &sections[PHYS_SECTION_UNASSIGNED];
374 p = nodes[lp.ptr];
375 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
378 if (section_covers_addr(&sections[lp.ptr], addr)) {
379 return &sections[lp.ptr];
380 } else {
381 return &sections[PHYS_SECTION_UNASSIGNED];
385 /* Called from RCU critical section */
386 static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
387 hwaddr addr,
388 bool resolve_subpage)
390 MemoryRegionSection *section = atomic_read(&d->mru_section);
391 subpage_t *subpage;
393 if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] ||
394 !section_covers_addr(section, addr)) {
395 section = phys_page_find(d, addr);
396 atomic_set(&d->mru_section, section);
398 if (resolve_subpage && section->mr->subpage) {
399 subpage = container_of(section->mr, subpage_t, iomem);
400 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
402 return section;
405 /* Called from RCU critical section */
406 static MemoryRegionSection *
407 address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
408 hwaddr *plen, bool resolve_subpage)
410 MemoryRegionSection *section;
411 MemoryRegion *mr;
412 Int128 diff;
414 section = address_space_lookup_region(d, addr, resolve_subpage);
415 /* Compute offset within MemoryRegionSection */
416 addr -= section->offset_within_address_space;
418 /* Compute offset within MemoryRegion */
419 *xlat = addr + section->offset_within_region;
421 mr = section->mr;
423 /* MMIO registers can be expected to perform full-width accesses based only
424 * on their address, without considering adjacent registers that could
425 * decode to completely different MemoryRegions. When such registers
426 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
427 * regions overlap wildly. For this reason we cannot clamp the accesses
428 * here.
430 * If the length is small (as is the case for address_space_ldl/stl),
431 * everything works fine. If the incoming length is large, however,
432 * the caller really has to do the clamping through memory_access_size.
434 if (memory_region_is_ram(mr)) {
435 diff = int128_sub(section->size, int128_make64(addr));
436 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
438 return section;
442 * address_space_translate_iommu - translate an address through an IOMMU
443 * memory region and then through the target address space.
445 * @iommu_mr: the IOMMU memory region that we start the translation from
446 * @addr: the address to be translated through the MMU
447 * @xlat: the translated address offset within the destination memory region.
448 * It cannot be %NULL.
449 * @plen_out: valid read/write length of the translated address. It
450 * cannot be %NULL.
451 * @page_mask_out: page mask for the translated address. This
452 * should only be meaningful for IOMMU translated
453 * addresses, since there may be huge pages that this bit
454 * would tell. It can be %NULL if we don't care about it.
455 * @is_write: whether the translation operation is for write
456 * @is_mmio: whether this can be MMIO, set true if it can
457 * @target_as: the address space targeted by the IOMMU
458 * @attrs: transaction attributes
460 * This function is called from RCU critical section. It is the common
461 * part of flatview_do_translate and address_space_translate_cached.
463 static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr,
464 hwaddr *xlat,
465 hwaddr *plen_out,
466 hwaddr *page_mask_out,
467 bool is_write,
468 bool is_mmio,
469 AddressSpace **target_as,
470 MemTxAttrs attrs)
472 MemoryRegionSection *section;
473 hwaddr page_mask = (hwaddr)-1;
475 do {
476 hwaddr addr = *xlat;
477 IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
478 int iommu_idx = 0;
479 IOMMUTLBEntry iotlb;
481 if (imrc->attrs_to_index) {
482 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
485 iotlb = imrc->translate(iommu_mr, addr, is_write ?
486 IOMMU_WO : IOMMU_RO, iommu_idx);
488 if (!(iotlb.perm & (1 << is_write))) {
489 goto unassigned;
492 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
493 | (addr & iotlb.addr_mask));
494 page_mask &= iotlb.addr_mask;
495 *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1);
496 *target_as = iotlb.target_as;
498 section = address_space_translate_internal(
499 address_space_to_dispatch(iotlb.target_as), addr, xlat,
500 plen_out, is_mmio);
502 iommu_mr = memory_region_get_iommu(section->mr);
503 } while (unlikely(iommu_mr));
505 if (page_mask_out) {
506 *page_mask_out = page_mask;
508 return *section;
510 unassigned:
511 return (MemoryRegionSection) { .mr = &io_mem_unassigned };
515 * flatview_do_translate - translate an address in FlatView
517 * @fv: the flat view that we want to translate on
518 * @addr: the address to be translated in above address space
519 * @xlat: the translated address offset within memory region. It
520 * cannot be @NULL.
521 * @plen_out: valid read/write length of the translated address. It
522 * can be @NULL when we don't care about it.
523 * @page_mask_out: page mask for the translated address. This
524 * should only be meaningful for IOMMU translated
525 * addresses, since there may be huge pages that this bit
526 * would tell. It can be @NULL if we don't care about it.
527 * @is_write: whether the translation operation is for write
528 * @is_mmio: whether this can be MMIO, set true if it can
529 * @target_as: the address space targeted by the IOMMU
530 * @attrs: memory transaction attributes
532 * This function is called from RCU critical section
534 static MemoryRegionSection flatview_do_translate(FlatView *fv,
535 hwaddr addr,
536 hwaddr *xlat,
537 hwaddr *plen_out,
538 hwaddr *page_mask_out,
539 bool is_write,
540 bool is_mmio,
541 AddressSpace **target_as,
542 MemTxAttrs attrs)
544 MemoryRegionSection *section;
545 IOMMUMemoryRegion *iommu_mr;
546 hwaddr plen = (hwaddr)(-1);
548 if (!plen_out) {
549 plen_out = &plen;
552 section = address_space_translate_internal(
553 flatview_to_dispatch(fv), addr, xlat,
554 plen_out, is_mmio);
556 iommu_mr = memory_region_get_iommu(section->mr);
557 if (unlikely(iommu_mr)) {
558 return address_space_translate_iommu(iommu_mr, xlat,
559 plen_out, page_mask_out,
560 is_write, is_mmio,
561 target_as, attrs);
563 if (page_mask_out) {
564 /* Not behind an IOMMU, use default page size. */
565 *page_mask_out = ~TARGET_PAGE_MASK;
568 return *section;
571 /* Called from RCU critical section */
572 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
573 bool is_write, MemTxAttrs attrs)
575 MemoryRegionSection section;
576 hwaddr xlat, page_mask;
579 * This can never be MMIO, and we don't really care about plen,
580 * but page mask.
582 section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat,
583 NULL, &page_mask, is_write, false, &as,
584 attrs);
586 /* Illegal translation */
587 if (section.mr == &io_mem_unassigned) {
588 goto iotlb_fail;
591 /* Convert memory region offset into address space offset */
592 xlat += section.offset_within_address_space -
593 section.offset_within_region;
595 return (IOMMUTLBEntry) {
596 .target_as = as,
597 .iova = addr & ~page_mask,
598 .translated_addr = xlat & ~page_mask,
599 .addr_mask = page_mask,
600 /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
601 .perm = IOMMU_RW,
604 iotlb_fail:
605 return (IOMMUTLBEntry) {0};
608 /* Called from RCU critical section */
609 MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat,
610 hwaddr *plen, bool is_write,
611 MemTxAttrs attrs)
613 MemoryRegion *mr;
614 MemoryRegionSection section;
615 AddressSpace *as = NULL;
617 /* This can be MMIO, so setup MMIO bit. */
618 section = flatview_do_translate(fv, addr, xlat, plen, NULL,
619 is_write, true, &as, attrs);
620 mr = section.mr;
622 if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
623 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
624 *plen = MIN(page, *plen);
627 return mr;
630 typedef struct TCGIOMMUNotifier {
631 IOMMUNotifier n;
632 MemoryRegion *mr;
633 CPUState *cpu;
634 int iommu_idx;
635 bool active;
636 } TCGIOMMUNotifier;
638 static void tcg_iommu_unmap_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb)
640 TCGIOMMUNotifier *notifier = container_of(n, TCGIOMMUNotifier, n);
642 if (!notifier->active) {
643 return;
645 tlb_flush(notifier->cpu);
646 notifier->active = false;
647 /* We leave the notifier struct on the list to avoid reallocating it later.
648 * Generally the number of IOMMUs a CPU deals with will be small.
649 * In any case we can't unregister the iommu notifier from a notify
650 * callback.
654 static void tcg_register_iommu_notifier(CPUState *cpu,
655 IOMMUMemoryRegion *iommu_mr,
656 int iommu_idx)
658 /* Make sure this CPU has an IOMMU notifier registered for this
659 * IOMMU/IOMMU index combination, so that we can flush its TLB
660 * when the IOMMU tells us the mappings we've cached have changed.
662 MemoryRegion *mr = MEMORY_REGION(iommu_mr);
663 TCGIOMMUNotifier *notifier;
664 int i;
666 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
667 notifier = &g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier, i);
668 if (notifier->mr == mr && notifier->iommu_idx == iommu_idx) {
669 break;
672 if (i == cpu->iommu_notifiers->len) {
673 /* Not found, add a new entry at the end of the array */
674 cpu->iommu_notifiers = g_array_set_size(cpu->iommu_notifiers, i + 1);
675 notifier = &g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier, i);
677 notifier->mr = mr;
678 notifier->iommu_idx = iommu_idx;
679 notifier->cpu = cpu;
680 /* Rather than trying to register interest in the specific part
681 * of the iommu's address space that we've accessed and then
682 * expand it later as subsequent accesses touch more of it, we
683 * just register interest in the whole thing, on the assumption
684 * that iommu reconfiguration will be rare.
686 iommu_notifier_init(&notifier->n,
687 tcg_iommu_unmap_notify,
688 IOMMU_NOTIFIER_UNMAP,
690 HWADDR_MAX,
691 iommu_idx);
692 memory_region_register_iommu_notifier(notifier->mr, &notifier->n);
695 if (!notifier->active) {
696 notifier->active = true;
700 static void tcg_iommu_free_notifier_list(CPUState *cpu)
702 /* Destroy the CPU's notifier list */
703 int i;
704 TCGIOMMUNotifier *notifier;
706 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
707 notifier = &g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier, i);
708 memory_region_unregister_iommu_notifier(notifier->mr, &notifier->n);
710 g_array_free(cpu->iommu_notifiers, true);
713 /* Called from RCU critical section */
714 MemoryRegionSection *
715 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
716 hwaddr *xlat, hwaddr *plen,
717 MemTxAttrs attrs, int *prot)
719 MemoryRegionSection *section;
720 IOMMUMemoryRegion *iommu_mr;
721 IOMMUMemoryRegionClass *imrc;
722 IOMMUTLBEntry iotlb;
723 int iommu_idx;
724 AddressSpaceDispatch *d = atomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch);
726 for (;;) {
727 section = address_space_translate_internal(d, addr, &addr, plen, false);
729 iommu_mr = memory_region_get_iommu(section->mr);
730 if (!iommu_mr) {
731 break;
734 imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
736 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
737 tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx);
738 /* We need all the permissions, so pass IOMMU_NONE so the IOMMU
739 * doesn't short-cut its translation table walk.
741 iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx);
742 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
743 | (addr & iotlb.addr_mask));
744 /* Update the caller's prot bits to remove permissions the IOMMU
745 * is giving us a failure response for. If we get down to no
746 * permissions left at all we can give up now.
748 if (!(iotlb.perm & IOMMU_RO)) {
749 *prot &= ~(PAGE_READ | PAGE_EXEC);
751 if (!(iotlb.perm & IOMMU_WO)) {
752 *prot &= ~PAGE_WRITE;
755 if (!*prot) {
756 goto translate_fail;
759 d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as));
762 assert(!memory_region_is_iommu(section->mr));
763 *xlat = addr;
764 return section;
766 translate_fail:
767 return &d->map.sections[PHYS_SECTION_UNASSIGNED];
769 #endif
771 #if !defined(CONFIG_USER_ONLY)
773 static int cpu_common_post_load(void *opaque, int version_id)
775 CPUState *cpu = opaque;
777 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
778 version_id is increased. */
779 cpu->interrupt_request &= ~0x01;
780 tlb_flush(cpu);
782 /* loadvm has just updated the content of RAM, bypassing the
783 * usual mechanisms that ensure we flush TBs for writes to
784 * memory we've translated code from. So we must flush all TBs,
785 * which will now be stale.
787 tb_flush(cpu);
789 return 0;
792 static int cpu_common_pre_load(void *opaque)
794 CPUState *cpu = opaque;
796 cpu->exception_index = -1;
798 return 0;
801 static bool cpu_common_exception_index_needed(void *opaque)
803 CPUState *cpu = opaque;
805 return tcg_enabled() && cpu->exception_index != -1;
808 static const VMStateDescription vmstate_cpu_common_exception_index = {
809 .name = "cpu_common/exception_index",
810 .version_id = 1,
811 .minimum_version_id = 1,
812 .needed = cpu_common_exception_index_needed,
813 .fields = (VMStateField[]) {
814 VMSTATE_INT32(exception_index, CPUState),
815 VMSTATE_END_OF_LIST()
819 static bool cpu_common_crash_occurred_needed(void *opaque)
821 CPUState *cpu = opaque;
823 return cpu->crash_occurred;
826 static const VMStateDescription vmstate_cpu_common_crash_occurred = {
827 .name = "cpu_common/crash_occurred",
828 .version_id = 1,
829 .minimum_version_id = 1,
830 .needed = cpu_common_crash_occurred_needed,
831 .fields = (VMStateField[]) {
832 VMSTATE_BOOL(crash_occurred, CPUState),
833 VMSTATE_END_OF_LIST()
837 const VMStateDescription vmstate_cpu_common = {
838 .name = "cpu_common",
839 .version_id = 1,
840 .minimum_version_id = 1,
841 .pre_load = cpu_common_pre_load,
842 .post_load = cpu_common_post_load,
843 .fields = (VMStateField[]) {
844 VMSTATE_UINT32(halted, CPUState),
845 VMSTATE_UINT32(interrupt_request, CPUState),
846 VMSTATE_END_OF_LIST()
848 .subsections = (const VMStateDescription*[]) {
849 &vmstate_cpu_common_exception_index,
850 &vmstate_cpu_common_crash_occurred,
851 NULL
855 #endif
857 CPUState *qemu_get_cpu(int index)
859 CPUState *cpu;
861 CPU_FOREACH(cpu) {
862 if (cpu->cpu_index == index) {
863 return cpu;
867 return NULL;
870 #if !defined(CONFIG_USER_ONLY)
871 void cpu_address_space_init(CPUState *cpu, int asidx,
872 const char *prefix, MemoryRegion *mr)
874 CPUAddressSpace *newas;
875 AddressSpace *as = g_new0(AddressSpace, 1);
876 char *as_name;
878 assert(mr);
879 as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index);
880 address_space_init(as, mr, as_name);
881 g_free(as_name);
883 /* Target code should have set num_ases before calling us */
884 assert(asidx < cpu->num_ases);
886 if (asidx == 0) {
887 /* address space 0 gets the convenience alias */
888 cpu->as = as;
891 /* KVM cannot currently support multiple address spaces. */
892 assert(asidx == 0 || !kvm_enabled());
894 if (!cpu->cpu_ases) {
895 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
898 newas = &cpu->cpu_ases[asidx];
899 newas->cpu = cpu;
900 newas->as = as;
901 if (tcg_enabled()) {
902 newas->tcg_as_listener.commit = tcg_commit;
903 memory_listener_register(&newas->tcg_as_listener, as);
907 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
909 /* Return the AddressSpace corresponding to the specified index */
910 return cpu->cpu_ases[asidx].as;
912 #endif
914 void cpu_exec_unrealizefn(CPUState *cpu)
916 CPUClass *cc = CPU_GET_CLASS(cpu);
918 cpu_list_remove(cpu);
920 if (cc->vmsd != NULL) {
921 vmstate_unregister(NULL, cc->vmsd, cpu);
923 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
924 vmstate_unregister(NULL, &vmstate_cpu_common, cpu);
926 #ifndef CONFIG_USER_ONLY
927 tcg_iommu_free_notifier_list(cpu);
928 #endif
931 Property cpu_common_props[] = {
932 #ifndef CONFIG_USER_ONLY
933 /* Create a memory property for softmmu CPU object,
934 * so users can wire up its memory. (This can't go in qom/cpu.c
935 * because that file is compiled only once for both user-mode
936 * and system builds.) The default if no link is set up is to use
937 * the system address space.
939 DEFINE_PROP_LINK("memory", CPUState, memory, TYPE_MEMORY_REGION,
940 MemoryRegion *),
941 #endif
942 DEFINE_PROP_END_OF_LIST(),
945 void cpu_exec_initfn(CPUState *cpu)
947 cpu->as = NULL;
948 cpu->num_ases = 0;
950 #ifndef CONFIG_USER_ONLY
951 cpu->thread_id = qemu_get_thread_id();
952 cpu->memory = system_memory;
953 object_ref(OBJECT(cpu->memory));
954 #endif
957 void cpu_exec_realizefn(CPUState *cpu, Error **errp)
959 CPUClass *cc = CPU_GET_CLASS(cpu);
960 static bool tcg_target_initialized;
962 cpu_list_add(cpu);
964 if (tcg_enabled() && !tcg_target_initialized) {
965 tcg_target_initialized = true;
966 cc->tcg_initialize();
969 #ifndef CONFIG_USER_ONLY
970 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
971 vmstate_register(NULL, cpu->cpu_index, &vmstate_cpu_common, cpu);
973 if (cc->vmsd != NULL) {
974 vmstate_register(NULL, cpu->cpu_index, cc->vmsd, cpu);
977 cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier));
978 #endif
981 const char *parse_cpu_model(const char *cpu_model)
983 ObjectClass *oc;
984 CPUClass *cc;
985 gchar **model_pieces;
986 const char *cpu_type;
988 model_pieces = g_strsplit(cpu_model, ",", 2);
990 oc = cpu_class_by_name(CPU_RESOLVING_TYPE, model_pieces[0]);
991 if (oc == NULL) {
992 error_report("unable to find CPU model '%s'", model_pieces[0]);
993 g_strfreev(model_pieces);
994 exit(EXIT_FAILURE);
997 cpu_type = object_class_get_name(oc);
998 cc = CPU_CLASS(oc);
999 cc->parse_features(cpu_type, model_pieces[1], &error_fatal);
1000 g_strfreev(model_pieces);
1001 return cpu_type;
1004 #if defined(CONFIG_USER_ONLY)
1005 void tb_invalidate_phys_addr(target_ulong addr)
1007 mmap_lock();
1008 tb_invalidate_phys_page_range(addr, addr + 1, 0);
1009 mmap_unlock();
1012 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
1014 tb_invalidate_phys_addr(pc);
1016 #else
1017 void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr, MemTxAttrs attrs)
1019 ram_addr_t ram_addr;
1020 MemoryRegion *mr;
1021 hwaddr l = 1;
1023 if (!tcg_enabled()) {
1024 return;
1027 rcu_read_lock();
1028 mr = address_space_translate(as, addr, &addr, &l, false, attrs);
1029 if (!(memory_region_is_ram(mr)
1030 || memory_region_is_romd(mr))) {
1031 rcu_read_unlock();
1032 return;
1034 ram_addr = memory_region_get_ram_addr(mr) + addr;
1035 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1036 rcu_read_unlock();
1039 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
1041 MemTxAttrs attrs;
1042 hwaddr phys = cpu_get_phys_page_attrs_debug(cpu, pc, &attrs);
1043 int asidx = cpu_asidx_from_attrs(cpu, attrs);
1044 if (phys != -1) {
1045 /* Locks grabbed by tb_invalidate_phys_addr */
1046 tb_invalidate_phys_addr(cpu->cpu_ases[asidx].as,
1047 phys | (pc & ~TARGET_PAGE_MASK), attrs);
1050 #endif
1052 #if defined(CONFIG_USER_ONLY)
1053 void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
1058 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
1059 int flags)
1061 return -ENOSYS;
1064 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
1068 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
1069 int flags, CPUWatchpoint **watchpoint)
1071 return -ENOSYS;
1073 #else
1074 /* Add a watchpoint. */
1075 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
1076 int flags, CPUWatchpoint **watchpoint)
1078 CPUWatchpoint *wp;
1080 /* forbid ranges which are empty or run off the end of the address space */
1081 if (len == 0 || (addr + len - 1) < addr) {
1082 error_report("tried to set invalid watchpoint at %"
1083 VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
1084 return -EINVAL;
1086 wp = g_malloc(sizeof(*wp));
1088 wp->vaddr = addr;
1089 wp->len = len;
1090 wp->flags = flags;
1092 /* keep all GDB-injected watchpoints in front */
1093 if (flags & BP_GDB) {
1094 QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
1095 } else {
1096 QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
1099 tlb_flush_page(cpu, addr);
1101 if (watchpoint)
1102 *watchpoint = wp;
1103 return 0;
1106 /* Remove a specific watchpoint. */
1107 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
1108 int flags)
1110 CPUWatchpoint *wp;
1112 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
1113 if (addr == wp->vaddr && len == wp->len
1114 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
1115 cpu_watchpoint_remove_by_ref(cpu, wp);
1116 return 0;
1119 return -ENOENT;
1122 /* Remove a specific watchpoint by reference. */
1123 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
1125 QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
1127 tlb_flush_page(cpu, watchpoint->vaddr);
1129 g_free(watchpoint);
1132 /* Remove all matching watchpoints. */
1133 void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
1135 CPUWatchpoint *wp, *next;
1137 QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
1138 if (wp->flags & mask) {
1139 cpu_watchpoint_remove_by_ref(cpu, wp);
1144 /* Return true if this watchpoint address matches the specified
1145 * access (ie the address range covered by the watchpoint overlaps
1146 * partially or completely with the address range covered by the
1147 * access).
1149 static inline bool cpu_watchpoint_address_matches(CPUWatchpoint *wp,
1150 vaddr addr,
1151 vaddr len)
1153 /* We know the lengths are non-zero, but a little caution is
1154 * required to avoid errors in the case where the range ends
1155 * exactly at the top of the address space and so addr + len
1156 * wraps round to zero.
1158 vaddr wpend = wp->vaddr + wp->len - 1;
1159 vaddr addrend = addr + len - 1;
1161 return !(addr > wpend || wp->vaddr > addrend);
1164 #endif
1166 /* Add a breakpoint. */
1167 int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
1168 CPUBreakpoint **breakpoint)
1170 CPUBreakpoint *bp;
1172 bp = g_malloc(sizeof(*bp));
1174 bp->pc = pc;
1175 bp->flags = flags;
1177 /* keep all GDB-injected breakpoints in front */
1178 if (flags & BP_GDB) {
1179 QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
1180 } else {
1181 QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
1184 breakpoint_invalidate(cpu, pc);
1186 if (breakpoint) {
1187 *breakpoint = bp;
1189 return 0;
1192 /* Remove a specific breakpoint. */
1193 int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
1195 CPUBreakpoint *bp;
1197 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
1198 if (bp->pc == pc && bp->flags == flags) {
1199 cpu_breakpoint_remove_by_ref(cpu, bp);
1200 return 0;
1203 return -ENOENT;
1206 /* Remove a specific breakpoint by reference. */
1207 void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint)
1209 QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry);
1211 breakpoint_invalidate(cpu, breakpoint->pc);
1213 g_free(breakpoint);
1216 /* Remove all matching breakpoints. */
1217 void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
1219 CPUBreakpoint *bp, *next;
1221 QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
1222 if (bp->flags & mask) {
1223 cpu_breakpoint_remove_by_ref(cpu, bp);
1228 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1229 CPU loop after each instruction */
1230 void cpu_single_step(CPUState *cpu, int enabled)
1232 if (cpu->singlestep_enabled != enabled) {
1233 cpu->singlestep_enabled = enabled;
1234 if (kvm_enabled()) {
1235 kvm_update_guest_debug(cpu, 0);
1236 } else {
1237 /* must flush all the translated code to avoid inconsistencies */
1238 /* XXX: only flush what is necessary */
1239 tb_flush(cpu);
1244 void cpu_abort(CPUState *cpu, const char *fmt, ...)
1246 va_list ap;
1247 va_list ap2;
1249 va_start(ap, fmt);
1250 va_copy(ap2, ap);
1251 fprintf(stderr, "qemu: fatal: ");
1252 vfprintf(stderr, fmt, ap);
1253 fprintf(stderr, "\n");
1254 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP);
1255 if (qemu_log_separate()) {
1256 qemu_log_lock();
1257 qemu_log("qemu: fatal: ");
1258 qemu_log_vprintf(fmt, ap2);
1259 qemu_log("\n");
1260 log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
1261 qemu_log_flush();
1262 qemu_log_unlock();
1263 qemu_log_close();
1265 va_end(ap2);
1266 va_end(ap);
1267 replay_finish();
1268 #if defined(CONFIG_USER_ONLY)
1270 struct sigaction act;
1271 sigfillset(&act.sa_mask);
1272 act.sa_handler = SIG_DFL;
1273 act.sa_flags = 0;
1274 sigaction(SIGABRT, &act, NULL);
1276 #endif
1277 abort();
1280 #if !defined(CONFIG_USER_ONLY)
1281 /* Called from RCU critical section */
1282 static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
1284 RAMBlock *block;
1286 block = atomic_rcu_read(&ram_list.mru_block);
1287 if (block && addr - block->offset < block->max_length) {
1288 return block;
1290 RAMBLOCK_FOREACH(block) {
1291 if (addr - block->offset < block->max_length) {
1292 goto found;
1296 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1297 abort();
1299 found:
1300 /* It is safe to write mru_block outside the iothread lock. This
1301 * is what happens:
1303 * mru_block = xxx
1304 * rcu_read_unlock()
1305 * xxx removed from list
1306 * rcu_read_lock()
1307 * read mru_block
1308 * mru_block = NULL;
1309 * call_rcu(reclaim_ramblock, xxx);
1310 * rcu_read_unlock()
1312 * atomic_rcu_set is not needed here. The block was already published
1313 * when it was placed into the list. Here we're just making an extra
1314 * copy of the pointer.
1316 ram_list.mru_block = block;
1317 return block;
1320 static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
1322 CPUState *cpu;
1323 ram_addr_t start1;
1324 RAMBlock *block;
1325 ram_addr_t end;
1327 assert(tcg_enabled());
1328 end = TARGET_PAGE_ALIGN(start + length);
1329 start &= TARGET_PAGE_MASK;
1331 rcu_read_lock();
1332 block = qemu_get_ram_block(start);
1333 assert(block == qemu_get_ram_block(end - 1));
1334 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
1335 CPU_FOREACH(cpu) {
1336 tlb_reset_dirty(cpu, start1, length);
1338 rcu_read_unlock();
1341 /* Note: start and end must be within the same ram block. */
1342 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
1343 ram_addr_t length,
1344 unsigned client)
1346 DirtyMemoryBlocks *blocks;
1347 unsigned long end, page;
1348 bool dirty = false;
1350 if (length == 0) {
1351 return false;
1354 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
1355 page = start >> TARGET_PAGE_BITS;
1357 rcu_read_lock();
1359 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1361 while (page < end) {
1362 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1363 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1364 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1366 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
1367 offset, num);
1368 page += num;
1371 rcu_read_unlock();
1373 if (dirty && tcg_enabled()) {
1374 tlb_reset_dirty_range_all(start, length);
1377 return dirty;
1380 DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
1381 (ram_addr_t start, ram_addr_t length, unsigned client)
1383 DirtyMemoryBlocks *blocks;
1384 unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
1385 ram_addr_t first = QEMU_ALIGN_DOWN(start, align);
1386 ram_addr_t last = QEMU_ALIGN_UP(start + length, align);
1387 DirtyBitmapSnapshot *snap;
1388 unsigned long page, end, dest;
1390 snap = g_malloc0(sizeof(*snap) +
1391 ((last - first) >> (TARGET_PAGE_BITS + 3)));
1392 snap->start = first;
1393 snap->end = last;
1395 page = first >> TARGET_PAGE_BITS;
1396 end = last >> TARGET_PAGE_BITS;
1397 dest = 0;
1399 rcu_read_lock();
1401 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1403 while (page < end) {
1404 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1405 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1406 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1408 assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL)));
1409 assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL)));
1410 offset >>= BITS_PER_LEVEL;
1412 bitmap_copy_and_clear_atomic(snap->dirty + dest,
1413 blocks->blocks[idx] + offset,
1414 num);
1415 page += num;
1416 dest += num >> BITS_PER_LEVEL;
1419 rcu_read_unlock();
1421 if (tcg_enabled()) {
1422 tlb_reset_dirty_range_all(start, length);
1425 return snap;
1428 bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
1429 ram_addr_t start,
1430 ram_addr_t length)
1432 unsigned long page, end;
1434 assert(start >= snap->start);
1435 assert(start + length <= snap->end);
1437 end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
1438 page = (start - snap->start) >> TARGET_PAGE_BITS;
1440 while (page < end) {
1441 if (test_bit(page, snap->dirty)) {
1442 return true;
1444 page++;
1446 return false;
1449 /* Called from RCU critical section */
1450 hwaddr memory_region_section_get_iotlb(CPUState *cpu,
1451 MemoryRegionSection *section,
1452 target_ulong vaddr,
1453 hwaddr paddr, hwaddr xlat,
1454 int prot,
1455 target_ulong *address)
1457 hwaddr iotlb;
1458 CPUWatchpoint *wp;
1460 if (memory_region_is_ram(section->mr)) {
1461 /* Normal RAM. */
1462 iotlb = memory_region_get_ram_addr(section->mr) + xlat;
1463 if (!section->readonly) {
1464 iotlb |= PHYS_SECTION_NOTDIRTY;
1465 } else {
1466 iotlb |= PHYS_SECTION_ROM;
1468 } else {
1469 AddressSpaceDispatch *d;
1471 d = flatview_to_dispatch(section->fv);
1472 iotlb = section - d->map.sections;
1473 iotlb += xlat;
1476 /* Make accesses to pages with watchpoints go via the
1477 watchpoint trap routines. */
1478 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
1479 if (cpu_watchpoint_address_matches(wp, vaddr, TARGET_PAGE_SIZE)) {
1480 /* Avoid trapping reads of pages with a write breakpoint. */
1481 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
1482 iotlb = PHYS_SECTION_WATCH + paddr;
1483 *address |= TLB_MMIO;
1484 break;
1489 return iotlb;
1491 #endif /* defined(CONFIG_USER_ONLY) */
1493 #if !defined(CONFIG_USER_ONLY)
1495 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
1496 uint16_t section);
1497 static subpage_t *subpage_init(FlatView *fv, hwaddr base);
1499 static void *(*phys_mem_alloc)(size_t size, uint64_t *align, bool shared) =
1500 qemu_anon_ram_alloc;
1503 * Set a custom physical guest memory alloator.
1504 * Accelerators with unusual needs may need this. Hopefully, we can
1505 * get rid of it eventually.
1507 void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align, bool shared))
1509 phys_mem_alloc = alloc;
1512 static uint16_t phys_section_add(PhysPageMap *map,
1513 MemoryRegionSection *section)
1515 /* The physical section number is ORed with a page-aligned
1516 * pointer to produce the iotlb entries. Thus it should
1517 * never overflow into the page-aligned value.
1519 assert(map->sections_nb < TARGET_PAGE_SIZE);
1521 if (map->sections_nb == map->sections_nb_alloc) {
1522 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1523 map->sections = g_renew(MemoryRegionSection, map->sections,
1524 map->sections_nb_alloc);
1526 map->sections[map->sections_nb] = *section;
1527 memory_region_ref(section->mr);
1528 return map->sections_nb++;
1531 static void phys_section_destroy(MemoryRegion *mr)
1533 bool have_sub_page = mr->subpage;
1535 memory_region_unref(mr);
1537 if (have_sub_page) {
1538 subpage_t *subpage = container_of(mr, subpage_t, iomem);
1539 object_unref(OBJECT(&subpage->iomem));
1540 g_free(subpage);
1544 static void phys_sections_free(PhysPageMap *map)
1546 while (map->sections_nb > 0) {
1547 MemoryRegionSection *section = &map->sections[--map->sections_nb];
1548 phys_section_destroy(section->mr);
1550 g_free(map->sections);
1551 g_free(map->nodes);
1554 static void register_subpage(FlatView *fv, MemoryRegionSection *section)
1556 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1557 subpage_t *subpage;
1558 hwaddr base = section->offset_within_address_space
1559 & TARGET_PAGE_MASK;
1560 MemoryRegionSection *existing = phys_page_find(d, base);
1561 MemoryRegionSection subsection = {
1562 .offset_within_address_space = base,
1563 .size = int128_make64(TARGET_PAGE_SIZE),
1565 hwaddr start, end;
1567 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
1569 if (!(existing->mr->subpage)) {
1570 subpage = subpage_init(fv, base);
1571 subsection.fv = fv;
1572 subsection.mr = &subpage->iomem;
1573 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
1574 phys_section_add(&d->map, &subsection));
1575 } else {
1576 subpage = container_of(existing->mr, subpage_t, iomem);
1578 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
1579 end = start + int128_get64(section->size) - 1;
1580 subpage_register(subpage, start, end,
1581 phys_section_add(&d->map, section));
1585 static void register_multipage(FlatView *fv,
1586 MemoryRegionSection *section)
1588 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1589 hwaddr start_addr = section->offset_within_address_space;
1590 uint16_t section_index = phys_section_add(&d->map, section);
1591 uint64_t num_pages = int128_get64(int128_rshift(section->size,
1592 TARGET_PAGE_BITS));
1594 assert(num_pages);
1595 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
1598 void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section)
1600 MemoryRegionSection now = *section, remain = *section;
1601 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
1603 if (now.offset_within_address_space & ~TARGET_PAGE_MASK) {
1604 uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space)
1605 - now.offset_within_address_space;
1607 now.size = int128_min(int128_make64(left), now.size);
1608 register_subpage(fv, &now);
1609 } else {
1610 now.size = int128_zero();
1612 while (int128_ne(remain.size, now.size)) {
1613 remain.size = int128_sub(remain.size, now.size);
1614 remain.offset_within_address_space += int128_get64(now.size);
1615 remain.offset_within_region += int128_get64(now.size);
1616 now = remain;
1617 if (int128_lt(remain.size, page_size)) {
1618 register_subpage(fv, &now);
1619 } else if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
1620 now.size = page_size;
1621 register_subpage(fv, &now);
1622 } else {
1623 now.size = int128_and(now.size, int128_neg(page_size));
1624 register_multipage(fv, &now);
1629 void qemu_flush_coalesced_mmio_buffer(void)
1631 if (kvm_enabled())
1632 kvm_flush_coalesced_mmio_buffer();
1635 void qemu_mutex_lock_ramlist(void)
1637 qemu_mutex_lock(&ram_list.mutex);
1640 void qemu_mutex_unlock_ramlist(void)
1642 qemu_mutex_unlock(&ram_list.mutex);
1645 void ram_block_dump(Monitor *mon)
1647 RAMBlock *block;
1648 char *psize;
1650 rcu_read_lock();
1651 monitor_printf(mon, "%24s %8s %18s %18s %18s\n",
1652 "Block Name", "PSize", "Offset", "Used", "Total");
1653 RAMBLOCK_FOREACH(block) {
1654 psize = size_to_str(block->page_size);
1655 monitor_printf(mon, "%24s %8s 0x%016" PRIx64 " 0x%016" PRIx64
1656 " 0x%016" PRIx64 "\n", block->idstr, psize,
1657 (uint64_t)block->offset,
1658 (uint64_t)block->used_length,
1659 (uint64_t)block->max_length);
1660 g_free(psize);
1662 rcu_read_unlock();
1665 #ifdef __linux__
1667 * FIXME TOCTTOU: this iterates over memory backends' mem-path, which
1668 * may or may not name the same files / on the same filesystem now as
1669 * when we actually open and map them. Iterate over the file
1670 * descriptors instead, and use qemu_fd_getpagesize().
1672 static int find_max_supported_pagesize(Object *obj, void *opaque)
1674 long *hpsize_min = opaque;
1676 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1677 long hpsize = host_memory_backend_pagesize(MEMORY_BACKEND(obj));
1679 if (hpsize < *hpsize_min) {
1680 *hpsize_min = hpsize;
1684 return 0;
1687 long qemu_getrampagesize(void)
1689 long hpsize = LONG_MAX;
1690 long mainrampagesize;
1691 Object *memdev_root;
1693 mainrampagesize = qemu_mempath_getpagesize(mem_path);
1695 /* it's possible we have memory-backend objects with
1696 * hugepage-backed RAM. these may get mapped into system
1697 * address space via -numa parameters or memory hotplug
1698 * hooks. we want to take these into account, but we
1699 * also want to make sure these supported hugepage
1700 * sizes are applicable across the entire range of memory
1701 * we may boot from, so we take the min across all
1702 * backends, and assume normal pages in cases where a
1703 * backend isn't backed by hugepages.
1705 memdev_root = object_resolve_path("/objects", NULL);
1706 if (memdev_root) {
1707 object_child_foreach(memdev_root, find_max_supported_pagesize, &hpsize);
1709 if (hpsize == LONG_MAX) {
1710 /* No additional memory regions found ==> Report main RAM page size */
1711 return mainrampagesize;
1714 /* If NUMA is disabled or the NUMA nodes are not backed with a
1715 * memory-backend, then there is at least one node using "normal" RAM,
1716 * so if its page size is smaller we have got to report that size instead.
1718 if (hpsize > mainrampagesize &&
1719 (nb_numa_nodes == 0 || numa_info[0].node_memdev == NULL)) {
1720 static bool warned;
1721 if (!warned) {
1722 error_report("Huge page support disabled (n/a for main memory).");
1723 warned = true;
1725 return mainrampagesize;
1728 return hpsize;
1730 #else
1731 long qemu_getrampagesize(void)
1733 return getpagesize();
1735 #endif
1737 #ifdef __linux__
1738 static int64_t get_file_size(int fd)
1740 int64_t size = lseek(fd, 0, SEEK_END);
1741 if (size < 0) {
1742 return -errno;
1744 return size;
1747 static int file_ram_open(const char *path,
1748 const char *region_name,
1749 bool *created,
1750 Error **errp)
1752 char *filename;
1753 char *sanitized_name;
1754 char *c;
1755 int fd = -1;
1757 *created = false;
1758 for (;;) {
1759 fd = open(path, O_RDWR);
1760 if (fd >= 0) {
1761 /* @path names an existing file, use it */
1762 break;
1764 if (errno == ENOENT) {
1765 /* @path names a file that doesn't exist, create it */
1766 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1767 if (fd >= 0) {
1768 *created = true;
1769 break;
1771 } else if (errno == EISDIR) {
1772 /* @path names a directory, create a file there */
1773 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1774 sanitized_name = g_strdup(region_name);
1775 for (c = sanitized_name; *c != '\0'; c++) {
1776 if (*c == '/') {
1777 *c = '_';
1781 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1782 sanitized_name);
1783 g_free(sanitized_name);
1785 fd = mkstemp(filename);
1786 if (fd >= 0) {
1787 unlink(filename);
1788 g_free(filename);
1789 break;
1791 g_free(filename);
1793 if (errno != EEXIST && errno != EINTR) {
1794 error_setg_errno(errp, errno,
1795 "can't open backing store %s for guest RAM",
1796 path);
1797 return -1;
1800 * Try again on EINTR and EEXIST. The latter happens when
1801 * something else creates the file between our two open().
1805 return fd;
1808 static void *file_ram_alloc(RAMBlock *block,
1809 ram_addr_t memory,
1810 int fd,
1811 bool truncate,
1812 Error **errp)
1814 void *area;
1816 block->page_size = qemu_fd_getpagesize(fd);
1817 if (block->mr->align % block->page_size) {
1818 error_setg(errp, "alignment 0x%" PRIx64
1819 " must be multiples of page size 0x%zx",
1820 block->mr->align, block->page_size);
1821 return NULL;
1822 } else if (block->mr->align && !is_power_of_2(block->mr->align)) {
1823 error_setg(errp, "alignment 0x%" PRIx64
1824 " must be a power of two", block->mr->align);
1825 return NULL;
1827 block->mr->align = MAX(block->page_size, block->mr->align);
1828 #if defined(__s390x__)
1829 if (kvm_enabled()) {
1830 block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
1832 #endif
1834 if (memory < block->page_size) {
1835 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
1836 "or larger than page size 0x%zx",
1837 memory, block->page_size);
1838 return NULL;
1841 memory = ROUND_UP(memory, block->page_size);
1844 * ftruncate is not supported by hugetlbfs in older
1845 * hosts, so don't bother bailing out on errors.
1846 * If anything goes wrong with it under other filesystems,
1847 * mmap will fail.
1849 * Do not truncate the non-empty backend file to avoid corrupting
1850 * the existing data in the file. Disabling shrinking is not
1851 * enough. For example, the current vNVDIMM implementation stores
1852 * the guest NVDIMM labels at the end of the backend file. If the
1853 * backend file is later extended, QEMU will not be able to find
1854 * those labels. Therefore, extending the non-empty backend file
1855 * is disabled as well.
1857 if (truncate && ftruncate(fd, memory)) {
1858 perror("ftruncate");
1861 area = qemu_ram_mmap(fd, memory, block->mr->align,
1862 block->flags & RAM_SHARED);
1863 if (area == MAP_FAILED) {
1864 error_setg_errno(errp, errno,
1865 "unable to map backing store for guest RAM");
1866 return NULL;
1869 if (mem_prealloc) {
1870 os_mem_prealloc(fd, area, memory, smp_cpus, errp);
1871 if (errp && *errp) {
1872 qemu_ram_munmap(area, memory);
1873 return NULL;
1877 block->fd = fd;
1878 return area;
1880 #endif
1882 /* Allocate space within the ram_addr_t space that governs the
1883 * dirty bitmaps.
1884 * Called with the ramlist lock held.
1886 static ram_addr_t find_ram_offset(ram_addr_t size)
1888 RAMBlock *block, *next_block;
1889 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
1891 assert(size != 0); /* it would hand out same offset multiple times */
1893 if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
1894 return 0;
1897 RAMBLOCK_FOREACH(block) {
1898 ram_addr_t candidate, next = RAM_ADDR_MAX;
1900 /* Align blocks to start on a 'long' in the bitmap
1901 * which makes the bitmap sync'ing take the fast path.
1903 candidate = block->offset + block->max_length;
1904 candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS);
1906 /* Search for the closest following block
1907 * and find the gap.
1909 RAMBLOCK_FOREACH(next_block) {
1910 if (next_block->offset >= candidate) {
1911 next = MIN(next, next_block->offset);
1915 /* If it fits remember our place and remember the size
1916 * of gap, but keep going so that we might find a smaller
1917 * gap to fill so avoiding fragmentation.
1919 if (next - candidate >= size && next - candidate < mingap) {
1920 offset = candidate;
1921 mingap = next - candidate;
1924 trace_find_ram_offset_loop(size, candidate, offset, next, mingap);
1927 if (offset == RAM_ADDR_MAX) {
1928 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1929 (uint64_t)size);
1930 abort();
1933 trace_find_ram_offset(size, offset);
1935 return offset;
1938 static unsigned long last_ram_page(void)
1940 RAMBlock *block;
1941 ram_addr_t last = 0;
1943 rcu_read_lock();
1944 RAMBLOCK_FOREACH(block) {
1945 last = MAX(last, block->offset + block->max_length);
1947 rcu_read_unlock();
1948 return last >> TARGET_PAGE_BITS;
1951 static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1953 int ret;
1955 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1956 if (!machine_dump_guest_core(current_machine)) {
1957 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1958 if (ret) {
1959 perror("qemu_madvise");
1960 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1961 "but dump_guest_core=off specified\n");
1966 const char *qemu_ram_get_idstr(RAMBlock *rb)
1968 return rb->idstr;
1971 bool qemu_ram_is_shared(RAMBlock *rb)
1973 return rb->flags & RAM_SHARED;
1976 /* Note: Only set at the start of postcopy */
1977 bool qemu_ram_is_uf_zeroable(RAMBlock *rb)
1979 return rb->flags & RAM_UF_ZEROPAGE;
1982 void qemu_ram_set_uf_zeroable(RAMBlock *rb)
1984 rb->flags |= RAM_UF_ZEROPAGE;
1987 bool qemu_ram_is_migratable(RAMBlock *rb)
1989 return rb->flags & RAM_MIGRATABLE;
1992 void qemu_ram_set_migratable(RAMBlock *rb)
1994 rb->flags |= RAM_MIGRATABLE;
1997 void qemu_ram_unset_migratable(RAMBlock *rb)
1999 rb->flags &= ~RAM_MIGRATABLE;
2002 /* Called with iothread lock held. */
2003 void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
2005 RAMBlock *block;
2007 assert(new_block);
2008 assert(!new_block->idstr[0]);
2010 if (dev) {
2011 char *id = qdev_get_dev_path(dev);
2012 if (id) {
2013 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
2014 g_free(id);
2017 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
2019 rcu_read_lock();
2020 RAMBLOCK_FOREACH(block) {
2021 if (block != new_block &&
2022 !strcmp(block->idstr, new_block->idstr)) {
2023 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
2024 new_block->idstr);
2025 abort();
2028 rcu_read_unlock();
2031 /* Called with iothread lock held. */
2032 void qemu_ram_unset_idstr(RAMBlock *block)
2034 /* FIXME: arch_init.c assumes that this is not called throughout
2035 * migration. Ignore the problem since hot-unplug during migration
2036 * does not work anyway.
2038 if (block) {
2039 memset(block->idstr, 0, sizeof(block->idstr));
2043 size_t qemu_ram_pagesize(RAMBlock *rb)
2045 return rb->page_size;
2048 /* Returns the largest size of page in use */
2049 size_t qemu_ram_pagesize_largest(void)
2051 RAMBlock *block;
2052 size_t largest = 0;
2054 RAMBLOCK_FOREACH(block) {
2055 largest = MAX(largest, qemu_ram_pagesize(block));
2058 return largest;
2061 static int memory_try_enable_merging(void *addr, size_t len)
2063 if (!machine_mem_merge(current_machine)) {
2064 /* disabled by the user */
2065 return 0;
2068 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
2071 /* Only legal before guest might have detected the memory size: e.g. on
2072 * incoming migration, or right after reset.
2074 * As memory core doesn't know how is memory accessed, it is up to
2075 * resize callback to update device state and/or add assertions to detect
2076 * misuse, if necessary.
2078 int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
2080 assert(block);
2082 newsize = HOST_PAGE_ALIGN(newsize);
2084 if (block->used_length == newsize) {
2085 return 0;
2088 if (!(block->flags & RAM_RESIZEABLE)) {
2089 error_setg_errno(errp, EINVAL,
2090 "Length mismatch: %s: 0x" RAM_ADDR_FMT
2091 " in != 0x" RAM_ADDR_FMT, block->idstr,
2092 newsize, block->used_length);
2093 return -EINVAL;
2096 if (block->max_length < newsize) {
2097 error_setg_errno(errp, EINVAL,
2098 "Length too large: %s: 0x" RAM_ADDR_FMT
2099 " > 0x" RAM_ADDR_FMT, block->idstr,
2100 newsize, block->max_length);
2101 return -EINVAL;
2104 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
2105 block->used_length = newsize;
2106 cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
2107 DIRTY_CLIENTS_ALL);
2108 memory_region_set_size(block->mr, newsize);
2109 if (block->resized) {
2110 block->resized(block->idstr, newsize, block->host);
2112 return 0;
2115 /* Called with ram_list.mutex held */
2116 static void dirty_memory_extend(ram_addr_t old_ram_size,
2117 ram_addr_t new_ram_size)
2119 ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
2120 DIRTY_MEMORY_BLOCK_SIZE);
2121 ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
2122 DIRTY_MEMORY_BLOCK_SIZE);
2123 int i;
2125 /* Only need to extend if block count increased */
2126 if (new_num_blocks <= old_num_blocks) {
2127 return;
2130 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
2131 DirtyMemoryBlocks *old_blocks;
2132 DirtyMemoryBlocks *new_blocks;
2133 int j;
2135 old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]);
2136 new_blocks = g_malloc(sizeof(*new_blocks) +
2137 sizeof(new_blocks->blocks[0]) * new_num_blocks);
2139 if (old_num_blocks) {
2140 memcpy(new_blocks->blocks, old_blocks->blocks,
2141 old_num_blocks * sizeof(old_blocks->blocks[0]));
2144 for (j = old_num_blocks; j < new_num_blocks; j++) {
2145 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
2148 atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
2150 if (old_blocks) {
2151 g_free_rcu(old_blocks, rcu);
2156 static void ram_block_add(RAMBlock *new_block, Error **errp, bool shared)
2158 RAMBlock *block;
2159 RAMBlock *last_block = NULL;
2160 ram_addr_t old_ram_size, new_ram_size;
2161 Error *err = NULL;
2163 old_ram_size = last_ram_page();
2165 qemu_mutex_lock_ramlist();
2166 new_block->offset = find_ram_offset(new_block->max_length);
2168 if (!new_block->host) {
2169 if (xen_enabled()) {
2170 xen_ram_alloc(new_block->offset, new_block->max_length,
2171 new_block->mr, &err);
2172 if (err) {
2173 error_propagate(errp, err);
2174 qemu_mutex_unlock_ramlist();
2175 return;
2177 } else {
2178 new_block->host = phys_mem_alloc(new_block->max_length,
2179 &new_block->mr->align, shared);
2180 if (!new_block->host) {
2181 error_setg_errno(errp, errno,
2182 "cannot set up guest memory '%s'",
2183 memory_region_name(new_block->mr));
2184 qemu_mutex_unlock_ramlist();
2185 return;
2187 memory_try_enable_merging(new_block->host, new_block->max_length);
2191 new_ram_size = MAX(old_ram_size,
2192 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
2193 if (new_ram_size > old_ram_size) {
2194 dirty_memory_extend(old_ram_size, new_ram_size);
2196 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
2197 * QLIST (which has an RCU-friendly variant) does not have insertion at
2198 * tail, so save the last element in last_block.
2200 RAMBLOCK_FOREACH(block) {
2201 last_block = block;
2202 if (block->max_length < new_block->max_length) {
2203 break;
2206 if (block) {
2207 QLIST_INSERT_BEFORE_RCU(block, new_block, next);
2208 } else if (last_block) {
2209 QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
2210 } else { /* list is empty */
2211 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
2213 ram_list.mru_block = NULL;
2215 /* Write list before version */
2216 smp_wmb();
2217 ram_list.version++;
2218 qemu_mutex_unlock_ramlist();
2220 cpu_physical_memory_set_dirty_range(new_block->offset,
2221 new_block->used_length,
2222 DIRTY_CLIENTS_ALL);
2224 if (new_block->host) {
2225 qemu_ram_setup_dump(new_block->host, new_block->max_length);
2226 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
2227 /* MADV_DONTFORK is also needed by KVM in absence of synchronous MMU */
2228 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK);
2229 ram_block_notify_add(new_block->host, new_block->max_length);
2233 #ifdef __linux__
2234 RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
2235 uint32_t ram_flags, int fd,
2236 Error **errp)
2238 RAMBlock *new_block;
2239 Error *local_err = NULL;
2240 int64_t file_size;
2242 /* Just support these ram flags by now. */
2243 assert((ram_flags & ~(RAM_SHARED | RAM_PMEM)) == 0);
2245 if (xen_enabled()) {
2246 error_setg(errp, "-mem-path not supported with Xen");
2247 return NULL;
2250 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2251 error_setg(errp,
2252 "host lacks kvm mmu notifiers, -mem-path unsupported");
2253 return NULL;
2256 if (phys_mem_alloc != qemu_anon_ram_alloc) {
2258 * file_ram_alloc() needs to allocate just like
2259 * phys_mem_alloc, but we haven't bothered to provide
2260 * a hook there.
2262 error_setg(errp,
2263 "-mem-path not supported with this accelerator");
2264 return NULL;
2267 size = HOST_PAGE_ALIGN(size);
2268 file_size = get_file_size(fd);
2269 if (file_size > 0 && file_size < size) {
2270 error_setg(errp, "backing store %s size 0x%" PRIx64
2271 " does not match 'size' option 0x" RAM_ADDR_FMT,
2272 mem_path, file_size, size);
2273 return NULL;
2276 new_block = g_malloc0(sizeof(*new_block));
2277 new_block->mr = mr;
2278 new_block->used_length = size;
2279 new_block->max_length = size;
2280 new_block->flags = ram_flags;
2281 new_block->host = file_ram_alloc(new_block, size, fd, !file_size, errp);
2282 if (!new_block->host) {
2283 g_free(new_block);
2284 return NULL;
2287 ram_block_add(new_block, &local_err, ram_flags & RAM_SHARED);
2288 if (local_err) {
2289 g_free(new_block);
2290 error_propagate(errp, local_err);
2291 return NULL;
2293 return new_block;
2298 RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
2299 uint32_t ram_flags, const char *mem_path,
2300 Error **errp)
2302 int fd;
2303 bool created;
2304 RAMBlock *block;
2306 fd = file_ram_open(mem_path, memory_region_name(mr), &created, errp);
2307 if (fd < 0) {
2308 return NULL;
2311 block = qemu_ram_alloc_from_fd(size, mr, ram_flags, fd, errp);
2312 if (!block) {
2313 if (created) {
2314 unlink(mem_path);
2316 close(fd);
2317 return NULL;
2320 return block;
2322 #endif
2324 static
2325 RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
2326 void (*resized)(const char*,
2327 uint64_t length,
2328 void *host),
2329 void *host, bool resizeable, bool share,
2330 MemoryRegion *mr, Error **errp)
2332 RAMBlock *new_block;
2333 Error *local_err = NULL;
2335 size = HOST_PAGE_ALIGN(size);
2336 max_size = HOST_PAGE_ALIGN(max_size);
2337 new_block = g_malloc0(sizeof(*new_block));
2338 new_block->mr = mr;
2339 new_block->resized = resized;
2340 new_block->used_length = size;
2341 new_block->max_length = max_size;
2342 assert(max_size >= size);
2343 new_block->fd = -1;
2344 new_block->page_size = getpagesize();
2345 new_block->host = host;
2346 if (host) {
2347 new_block->flags |= RAM_PREALLOC;
2349 if (resizeable) {
2350 new_block->flags |= RAM_RESIZEABLE;
2352 ram_block_add(new_block, &local_err, share);
2353 if (local_err) {
2354 g_free(new_block);
2355 error_propagate(errp, local_err);
2356 return NULL;
2358 return new_block;
2361 RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
2362 MemoryRegion *mr, Error **errp)
2364 return qemu_ram_alloc_internal(size, size, NULL, host, false,
2365 false, mr, errp);
2368 RAMBlock *qemu_ram_alloc(ram_addr_t size, bool share,
2369 MemoryRegion *mr, Error **errp)
2371 return qemu_ram_alloc_internal(size, size, NULL, NULL, false,
2372 share, mr, errp);
2375 RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
2376 void (*resized)(const char*,
2377 uint64_t length,
2378 void *host),
2379 MemoryRegion *mr, Error **errp)
2381 return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true,
2382 false, mr, errp);
2385 static void reclaim_ramblock(RAMBlock *block)
2387 if (block->flags & RAM_PREALLOC) {
2389 } else if (xen_enabled()) {
2390 xen_invalidate_map_cache_entry(block->host);
2391 #ifndef _WIN32
2392 } else if (block->fd >= 0) {
2393 qemu_ram_munmap(block->host, block->max_length);
2394 close(block->fd);
2395 #endif
2396 } else {
2397 qemu_anon_ram_free(block->host, block->max_length);
2399 g_free(block);
2402 void qemu_ram_free(RAMBlock *block)
2404 if (!block) {
2405 return;
2408 if (block->host) {
2409 ram_block_notify_remove(block->host, block->max_length);
2412 qemu_mutex_lock_ramlist();
2413 QLIST_REMOVE_RCU(block, next);
2414 ram_list.mru_block = NULL;
2415 /* Write list before version */
2416 smp_wmb();
2417 ram_list.version++;
2418 call_rcu(block, reclaim_ramblock, rcu);
2419 qemu_mutex_unlock_ramlist();
2422 #ifndef _WIN32
2423 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2425 RAMBlock *block;
2426 ram_addr_t offset;
2427 int flags;
2428 void *area, *vaddr;
2430 RAMBLOCK_FOREACH(block) {
2431 offset = addr - block->offset;
2432 if (offset < block->max_length) {
2433 vaddr = ramblock_ptr(block, offset);
2434 if (block->flags & RAM_PREALLOC) {
2436 } else if (xen_enabled()) {
2437 abort();
2438 } else {
2439 flags = MAP_FIXED;
2440 if (block->fd >= 0) {
2441 flags |= (block->flags & RAM_SHARED ?
2442 MAP_SHARED : MAP_PRIVATE);
2443 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2444 flags, block->fd, offset);
2445 } else {
2447 * Remap needs to match alloc. Accelerators that
2448 * set phys_mem_alloc never remap. If they did,
2449 * we'd need a remap hook here.
2451 assert(phys_mem_alloc == qemu_anon_ram_alloc);
2453 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
2454 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2455 flags, -1, 0);
2457 if (area != vaddr) {
2458 error_report("Could not remap addr: "
2459 RAM_ADDR_FMT "@" RAM_ADDR_FMT "",
2460 length, addr);
2461 exit(1);
2463 memory_try_enable_merging(vaddr, length);
2464 qemu_ram_setup_dump(vaddr, length);
2469 #endif /* !_WIN32 */
2471 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2472 * This should not be used for general purpose DMA. Use address_space_map
2473 * or address_space_rw instead. For local memory (e.g. video ram) that the
2474 * device owns, use memory_region_get_ram_ptr.
2476 * Called within RCU critical section.
2478 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
2480 RAMBlock *block = ram_block;
2482 if (block == NULL) {
2483 block = qemu_get_ram_block(addr);
2484 addr -= block->offset;
2487 if (xen_enabled() && block->host == NULL) {
2488 /* We need to check if the requested address is in the RAM
2489 * because we don't want to map the entire memory in QEMU.
2490 * In that case just map until the end of the page.
2492 if (block->offset == 0) {
2493 return xen_map_cache(addr, 0, 0, false);
2496 block->host = xen_map_cache(block->offset, block->max_length, 1, false);
2498 return ramblock_ptr(block, addr);
2501 /* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
2502 * but takes a size argument.
2504 * Called within RCU critical section.
2506 static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
2507 hwaddr *size, bool lock)
2509 RAMBlock *block = ram_block;
2510 if (*size == 0) {
2511 return NULL;
2514 if (block == NULL) {
2515 block = qemu_get_ram_block(addr);
2516 addr -= block->offset;
2518 *size = MIN(*size, block->max_length - addr);
2520 if (xen_enabled() && block->host == NULL) {
2521 /* We need to check if the requested address is in the RAM
2522 * because we don't want to map the entire memory in QEMU.
2523 * In that case just map the requested area.
2525 if (block->offset == 0) {
2526 return xen_map_cache(addr, *size, lock, lock);
2529 block->host = xen_map_cache(block->offset, block->max_length, 1, lock);
2532 return ramblock_ptr(block, addr);
2535 /* Return the offset of a hostpointer within a ramblock */
2536 ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host)
2538 ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host;
2539 assert((uintptr_t)host >= (uintptr_t)rb->host);
2540 assert(res < rb->max_length);
2542 return res;
2546 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
2547 * in that RAMBlock.
2549 * ptr: Host pointer to look up
2550 * round_offset: If true round the result offset down to a page boundary
2551 * *ram_addr: set to result ram_addr
2552 * *offset: set to result offset within the RAMBlock
2554 * Returns: RAMBlock (or NULL if not found)
2556 * By the time this function returns, the returned pointer is not protected
2557 * by RCU anymore. If the caller is not within an RCU critical section and
2558 * does not hold the iothread lock, it must have other means of protecting the
2559 * pointer, such as a reference to the region that includes the incoming
2560 * ram_addr_t.
2562 RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
2563 ram_addr_t *offset)
2565 RAMBlock *block;
2566 uint8_t *host = ptr;
2568 if (xen_enabled()) {
2569 ram_addr_t ram_addr;
2570 rcu_read_lock();
2571 ram_addr = xen_ram_addr_from_mapcache(ptr);
2572 block = qemu_get_ram_block(ram_addr);
2573 if (block) {
2574 *offset = ram_addr - block->offset;
2576 rcu_read_unlock();
2577 return block;
2580 rcu_read_lock();
2581 block = atomic_rcu_read(&ram_list.mru_block);
2582 if (block && block->host && host - block->host < block->max_length) {
2583 goto found;
2586 RAMBLOCK_FOREACH(block) {
2587 /* This case append when the block is not mapped. */
2588 if (block->host == NULL) {
2589 continue;
2591 if (host - block->host < block->max_length) {
2592 goto found;
2596 rcu_read_unlock();
2597 return NULL;
2599 found:
2600 *offset = (host - block->host);
2601 if (round_offset) {
2602 *offset &= TARGET_PAGE_MASK;
2604 rcu_read_unlock();
2605 return block;
2609 * Finds the named RAMBlock
2611 * name: The name of RAMBlock to find
2613 * Returns: RAMBlock (or NULL if not found)
2615 RAMBlock *qemu_ram_block_by_name(const char *name)
2617 RAMBlock *block;
2619 RAMBLOCK_FOREACH(block) {
2620 if (!strcmp(name, block->idstr)) {
2621 return block;
2625 return NULL;
2628 /* Some of the softmmu routines need to translate from a host pointer
2629 (typically a TLB entry) back to a ram offset. */
2630 ram_addr_t qemu_ram_addr_from_host(void *ptr)
2632 RAMBlock *block;
2633 ram_addr_t offset;
2635 block = qemu_ram_block_from_host(ptr, false, &offset);
2636 if (!block) {
2637 return RAM_ADDR_INVALID;
2640 return block->offset + offset;
2643 /* Called within RCU critical section. */
2644 void memory_notdirty_write_prepare(NotDirtyInfo *ndi,
2645 CPUState *cpu,
2646 vaddr mem_vaddr,
2647 ram_addr_t ram_addr,
2648 unsigned size)
2650 ndi->cpu = cpu;
2651 ndi->ram_addr = ram_addr;
2652 ndi->mem_vaddr = mem_vaddr;
2653 ndi->size = size;
2654 ndi->pages = NULL;
2656 assert(tcg_enabled());
2657 if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
2658 ndi->pages = page_collection_lock(ram_addr, ram_addr + size);
2659 tb_invalidate_phys_page_fast(ndi->pages, ram_addr, size);
2663 /* Called within RCU critical section. */
2664 void memory_notdirty_write_complete(NotDirtyInfo *ndi)
2666 if (ndi->pages) {
2667 assert(tcg_enabled());
2668 page_collection_unlock(ndi->pages);
2669 ndi->pages = NULL;
2672 /* Set both VGA and migration bits for simplicity and to remove
2673 * the notdirty callback faster.
2675 cpu_physical_memory_set_dirty_range(ndi->ram_addr, ndi->size,
2676 DIRTY_CLIENTS_NOCODE);
2677 /* we remove the notdirty callback only if the code has been
2678 flushed */
2679 if (!cpu_physical_memory_is_clean(ndi->ram_addr)) {
2680 tlb_set_dirty(ndi->cpu, ndi->mem_vaddr);
2684 /* Called within RCU critical section. */
2685 static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
2686 uint64_t val, unsigned size)
2688 NotDirtyInfo ndi;
2690 memory_notdirty_write_prepare(&ndi, current_cpu, current_cpu->mem_io_vaddr,
2691 ram_addr, size);
2693 stn_p(qemu_map_ram_ptr(NULL, ram_addr), size, val);
2694 memory_notdirty_write_complete(&ndi);
2697 static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
2698 unsigned size, bool is_write,
2699 MemTxAttrs attrs)
2701 return is_write;
2704 static const MemoryRegionOps notdirty_mem_ops = {
2705 .write = notdirty_mem_write,
2706 .valid.accepts = notdirty_mem_accepts,
2707 .endianness = DEVICE_NATIVE_ENDIAN,
2708 .valid = {
2709 .min_access_size = 1,
2710 .max_access_size = 8,
2711 .unaligned = false,
2713 .impl = {
2714 .min_access_size = 1,
2715 .max_access_size = 8,
2716 .unaligned = false,
2720 /* Generate a debug exception if a watchpoint has been hit. */
2721 static void check_watchpoint(int offset, int len, MemTxAttrs attrs, int flags)
2723 CPUState *cpu = current_cpu;
2724 CPUClass *cc = CPU_GET_CLASS(cpu);
2725 target_ulong vaddr;
2726 CPUWatchpoint *wp;
2728 assert(tcg_enabled());
2729 if (cpu->watchpoint_hit) {
2730 /* We re-entered the check after replacing the TB. Now raise
2731 * the debug interrupt so that is will trigger after the
2732 * current instruction. */
2733 cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
2734 return;
2736 vaddr = (cpu->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
2737 vaddr = cc->adjust_watchpoint_address(cpu, vaddr, len);
2738 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
2739 if (cpu_watchpoint_address_matches(wp, vaddr, len)
2740 && (wp->flags & flags)) {
2741 if (flags == BP_MEM_READ) {
2742 wp->flags |= BP_WATCHPOINT_HIT_READ;
2743 } else {
2744 wp->flags |= BP_WATCHPOINT_HIT_WRITE;
2746 wp->hitaddr = vaddr;
2747 wp->hitattrs = attrs;
2748 if (!cpu->watchpoint_hit) {
2749 if (wp->flags & BP_CPU &&
2750 !cc->debug_check_watchpoint(cpu, wp)) {
2751 wp->flags &= ~BP_WATCHPOINT_HIT;
2752 continue;
2754 cpu->watchpoint_hit = wp;
2756 mmap_lock();
2757 tb_check_watchpoint(cpu);
2758 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2759 cpu->exception_index = EXCP_DEBUG;
2760 mmap_unlock();
2761 cpu_loop_exit(cpu);
2762 } else {
2763 /* Force execution of one insn next time. */
2764 cpu->cflags_next_tb = 1 | curr_cflags();
2765 mmap_unlock();
2766 cpu_loop_exit_noexc(cpu);
2769 } else {
2770 wp->flags &= ~BP_WATCHPOINT_HIT;
2775 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2776 so these check for a hit then pass through to the normal out-of-line
2777 phys routines. */
2778 static MemTxResult watch_mem_read(void *opaque, hwaddr addr, uint64_t *pdata,
2779 unsigned size, MemTxAttrs attrs)
2781 MemTxResult res;
2782 uint64_t data;
2783 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2784 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
2786 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_READ);
2787 switch (size) {
2788 case 1:
2789 data = address_space_ldub(as, addr, attrs, &res);
2790 break;
2791 case 2:
2792 data = address_space_lduw(as, addr, attrs, &res);
2793 break;
2794 case 4:
2795 data = address_space_ldl(as, addr, attrs, &res);
2796 break;
2797 case 8:
2798 data = address_space_ldq(as, addr, attrs, &res);
2799 break;
2800 default: abort();
2802 *pdata = data;
2803 return res;
2806 static MemTxResult watch_mem_write(void *opaque, hwaddr addr,
2807 uint64_t val, unsigned size,
2808 MemTxAttrs attrs)
2810 MemTxResult res;
2811 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2812 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
2814 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_WRITE);
2815 switch (size) {
2816 case 1:
2817 address_space_stb(as, addr, val, attrs, &res);
2818 break;
2819 case 2:
2820 address_space_stw(as, addr, val, attrs, &res);
2821 break;
2822 case 4:
2823 address_space_stl(as, addr, val, attrs, &res);
2824 break;
2825 case 8:
2826 address_space_stq(as, addr, val, attrs, &res);
2827 break;
2828 default: abort();
2830 return res;
2833 static const MemoryRegionOps watch_mem_ops = {
2834 .read_with_attrs = watch_mem_read,
2835 .write_with_attrs = watch_mem_write,
2836 .endianness = DEVICE_NATIVE_ENDIAN,
2837 .valid = {
2838 .min_access_size = 1,
2839 .max_access_size = 8,
2840 .unaligned = false,
2842 .impl = {
2843 .min_access_size = 1,
2844 .max_access_size = 8,
2845 .unaligned = false,
2849 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
2850 MemTxAttrs attrs, uint8_t *buf, int len);
2851 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2852 const uint8_t *buf, int len);
2853 static bool flatview_access_valid(FlatView *fv, hwaddr addr, int len,
2854 bool is_write, MemTxAttrs attrs);
2856 static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2857 unsigned len, MemTxAttrs attrs)
2859 subpage_t *subpage = opaque;
2860 uint8_t buf[8];
2861 MemTxResult res;
2863 #if defined(DEBUG_SUBPAGE)
2864 printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
2865 subpage, len, addr);
2866 #endif
2867 res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len);
2868 if (res) {
2869 return res;
2871 *data = ldn_p(buf, len);
2872 return MEMTX_OK;
2875 static MemTxResult subpage_write(void *opaque, hwaddr addr,
2876 uint64_t value, unsigned len, MemTxAttrs attrs)
2878 subpage_t *subpage = opaque;
2879 uint8_t buf[8];
2881 #if defined(DEBUG_SUBPAGE)
2882 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
2883 " value %"PRIx64"\n",
2884 __func__, subpage, len, addr, value);
2885 #endif
2886 stn_p(buf, len, value);
2887 return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len);
2890 static bool subpage_accepts(void *opaque, hwaddr addr,
2891 unsigned len, bool is_write,
2892 MemTxAttrs attrs)
2894 subpage_t *subpage = opaque;
2895 #if defined(DEBUG_SUBPAGE)
2896 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
2897 __func__, subpage, is_write ? 'w' : 'r', len, addr);
2898 #endif
2900 return flatview_access_valid(subpage->fv, addr + subpage->base,
2901 len, is_write, attrs);
2904 static const MemoryRegionOps subpage_ops = {
2905 .read_with_attrs = subpage_read,
2906 .write_with_attrs = subpage_write,
2907 .impl.min_access_size = 1,
2908 .impl.max_access_size = 8,
2909 .valid.min_access_size = 1,
2910 .valid.max_access_size = 8,
2911 .valid.accepts = subpage_accepts,
2912 .endianness = DEVICE_NATIVE_ENDIAN,
2915 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2916 uint16_t section)
2918 int idx, eidx;
2920 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2921 return -1;
2922 idx = SUBPAGE_IDX(start);
2923 eidx = SUBPAGE_IDX(end);
2924 #if defined(DEBUG_SUBPAGE)
2925 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2926 __func__, mmio, start, end, idx, eidx, section);
2927 #endif
2928 for (; idx <= eidx; idx++) {
2929 mmio->sub_section[idx] = section;
2932 return 0;
2935 static subpage_t *subpage_init(FlatView *fv, hwaddr base)
2937 subpage_t *mmio;
2939 mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
2940 mmio->fv = fv;
2941 mmio->base = base;
2942 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
2943 NULL, TARGET_PAGE_SIZE);
2944 mmio->iomem.subpage = true;
2945 #if defined(DEBUG_SUBPAGE)
2946 printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
2947 mmio, base, TARGET_PAGE_SIZE);
2948 #endif
2949 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED);
2951 return mmio;
2954 static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr)
2956 assert(fv);
2957 MemoryRegionSection section = {
2958 .fv = fv,
2959 .mr = mr,
2960 .offset_within_address_space = 0,
2961 .offset_within_region = 0,
2962 .size = int128_2_64(),
2965 return phys_section_add(map, &section);
2968 static void readonly_mem_write(void *opaque, hwaddr addr,
2969 uint64_t val, unsigned size)
2971 /* Ignore any write to ROM. */
2974 static bool readonly_mem_accepts(void *opaque, hwaddr addr,
2975 unsigned size, bool is_write,
2976 MemTxAttrs attrs)
2978 return is_write;
2981 /* This will only be used for writes, because reads are special cased
2982 * to directly access the underlying host ram.
2984 static const MemoryRegionOps readonly_mem_ops = {
2985 .write = readonly_mem_write,
2986 .valid.accepts = readonly_mem_accepts,
2987 .endianness = DEVICE_NATIVE_ENDIAN,
2988 .valid = {
2989 .min_access_size = 1,
2990 .max_access_size = 8,
2991 .unaligned = false,
2993 .impl = {
2994 .min_access_size = 1,
2995 .max_access_size = 8,
2996 .unaligned = false,
3000 MemoryRegionSection *iotlb_to_section(CPUState *cpu,
3001 hwaddr index, MemTxAttrs attrs)
3003 int asidx = cpu_asidx_from_attrs(cpu, attrs);
3004 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
3005 AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch);
3006 MemoryRegionSection *sections = d->map.sections;
3008 return &sections[index & ~TARGET_PAGE_MASK];
3011 static void io_mem_init(void)
3013 memory_region_init_io(&io_mem_rom, NULL, &readonly_mem_ops,
3014 NULL, NULL, UINT64_MAX);
3015 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
3016 NULL, UINT64_MAX);
3018 /* io_mem_notdirty calls tb_invalidate_phys_page_fast,
3019 * which can be called without the iothread mutex.
3021 memory_region_init_io(&io_mem_notdirty, NULL, &notdirty_mem_ops, NULL,
3022 NULL, UINT64_MAX);
3023 memory_region_clear_global_locking(&io_mem_notdirty);
3025 memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
3026 NULL, UINT64_MAX);
3029 AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv)
3031 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
3032 uint16_t n;
3034 n = dummy_section(&d->map, fv, &io_mem_unassigned);
3035 assert(n == PHYS_SECTION_UNASSIGNED);
3036 n = dummy_section(&d->map, fv, &io_mem_notdirty);
3037 assert(n == PHYS_SECTION_NOTDIRTY);
3038 n = dummy_section(&d->map, fv, &io_mem_rom);
3039 assert(n == PHYS_SECTION_ROM);
3040 n = dummy_section(&d->map, fv, &io_mem_watch);
3041 assert(n == PHYS_SECTION_WATCH);
3043 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
3045 return d;
3048 void address_space_dispatch_free(AddressSpaceDispatch *d)
3050 phys_sections_free(&d->map);
3051 g_free(d);
3054 static void tcg_commit(MemoryListener *listener)
3056 CPUAddressSpace *cpuas;
3057 AddressSpaceDispatch *d;
3059 assert(tcg_enabled());
3060 /* since each CPU stores ram addresses in its TLB cache, we must
3061 reset the modified entries */
3062 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
3063 cpu_reloading_memory_map();
3064 /* The CPU and TLB are protected by the iothread lock.
3065 * We reload the dispatch pointer now because cpu_reloading_memory_map()
3066 * may have split the RCU critical section.
3068 d = address_space_to_dispatch(cpuas->as);
3069 atomic_rcu_set(&cpuas->memory_dispatch, d);
3070 tlb_flush(cpuas->cpu);
3073 static void memory_map_init(void)
3075 system_memory = g_malloc(sizeof(*system_memory));
3077 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
3078 address_space_init(&address_space_memory, system_memory, "memory");
3080 system_io = g_malloc(sizeof(*system_io));
3081 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
3082 65536);
3083 address_space_init(&address_space_io, system_io, "I/O");
3086 MemoryRegion *get_system_memory(void)
3088 return system_memory;
3091 MemoryRegion *get_system_io(void)
3093 return system_io;
3096 #endif /* !defined(CONFIG_USER_ONLY) */
3098 /* physical memory access (slow version, mainly for debug) */
3099 #if defined(CONFIG_USER_ONLY)
3100 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
3101 uint8_t *buf, int len, int is_write)
3103 int l, flags;
3104 target_ulong page;
3105 void * p;
3107 while (len > 0) {
3108 page = addr & TARGET_PAGE_MASK;
3109 l = (page + TARGET_PAGE_SIZE) - addr;
3110 if (l > len)
3111 l = len;
3112 flags = page_get_flags(page);
3113 if (!(flags & PAGE_VALID))
3114 return -1;
3115 if (is_write) {
3116 if (!(flags & PAGE_WRITE))
3117 return -1;
3118 /* XXX: this code should not depend on lock_user */
3119 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
3120 return -1;
3121 memcpy(p, buf, l);
3122 unlock_user(p, addr, l);
3123 } else {
3124 if (!(flags & PAGE_READ))
3125 return -1;
3126 /* XXX: this code should not depend on lock_user */
3127 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
3128 return -1;
3129 memcpy(buf, p, l);
3130 unlock_user(p, addr, 0);
3132 len -= l;
3133 buf += l;
3134 addr += l;
3136 return 0;
3139 #else
3141 static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
3142 hwaddr length)
3144 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
3145 addr += memory_region_get_ram_addr(mr);
3147 /* No early return if dirty_log_mask is or becomes 0, because
3148 * cpu_physical_memory_set_dirty_range will still call
3149 * xen_modified_memory.
3151 if (dirty_log_mask) {
3152 dirty_log_mask =
3153 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
3155 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
3156 assert(tcg_enabled());
3157 tb_invalidate_phys_range(addr, addr + length);
3158 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
3160 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
3163 static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
3165 unsigned access_size_max = mr->ops->valid.max_access_size;
3167 /* Regions are assumed to support 1-4 byte accesses unless
3168 otherwise specified. */
3169 if (access_size_max == 0) {
3170 access_size_max = 4;
3173 /* Bound the maximum access by the alignment of the address. */
3174 if (!mr->ops->impl.unaligned) {
3175 unsigned align_size_max = addr & -addr;
3176 if (align_size_max != 0 && align_size_max < access_size_max) {
3177 access_size_max = align_size_max;
3181 /* Don't attempt accesses larger than the maximum. */
3182 if (l > access_size_max) {
3183 l = access_size_max;
3185 l = pow2floor(l);
3187 return l;
3190 static bool prepare_mmio_access(MemoryRegion *mr)
3192 bool unlocked = !qemu_mutex_iothread_locked();
3193 bool release_lock = false;
3195 if (unlocked && mr->global_locking) {
3196 qemu_mutex_lock_iothread();
3197 unlocked = false;
3198 release_lock = true;
3200 if (mr->flush_coalesced_mmio) {
3201 if (unlocked) {
3202 qemu_mutex_lock_iothread();
3204 qemu_flush_coalesced_mmio_buffer();
3205 if (unlocked) {
3206 qemu_mutex_unlock_iothread();
3210 return release_lock;
3213 /* Called within RCU critical section. */
3214 static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr,
3215 MemTxAttrs attrs,
3216 const uint8_t *buf,
3217 int len, hwaddr addr1,
3218 hwaddr l, MemoryRegion *mr)
3220 uint8_t *ptr;
3221 uint64_t val;
3222 MemTxResult result = MEMTX_OK;
3223 bool release_lock = false;
3225 for (;;) {
3226 if (!memory_access_is_direct(mr, true)) {
3227 release_lock |= prepare_mmio_access(mr);
3228 l = memory_access_size(mr, l, addr1);
3229 /* XXX: could force current_cpu to NULL to avoid
3230 potential bugs */
3231 val = ldn_p(buf, l);
3232 result |= memory_region_dispatch_write(mr, addr1, val, l, attrs);
3233 } else {
3234 /* RAM case */
3235 ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
3236 memcpy(ptr, buf, l);
3237 invalidate_and_set_dirty(mr, addr1, l);
3240 if (release_lock) {
3241 qemu_mutex_unlock_iothread();
3242 release_lock = false;
3245 len -= l;
3246 buf += l;
3247 addr += l;
3249 if (!len) {
3250 break;
3253 l = len;
3254 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
3257 return result;
3260 /* Called from RCU critical section. */
3261 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
3262 const uint8_t *buf, int len)
3264 hwaddr l;
3265 hwaddr addr1;
3266 MemoryRegion *mr;
3267 MemTxResult result = MEMTX_OK;
3269 l = len;
3270 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
3271 result = flatview_write_continue(fv, addr, attrs, buf, len,
3272 addr1, l, mr);
3274 return result;
3277 /* Called within RCU critical section. */
3278 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
3279 MemTxAttrs attrs, uint8_t *buf,
3280 int len, hwaddr addr1, hwaddr l,
3281 MemoryRegion *mr)
3283 uint8_t *ptr;
3284 uint64_t val;
3285 MemTxResult result = MEMTX_OK;
3286 bool release_lock = false;
3288 for (;;) {
3289 if (!memory_access_is_direct(mr, false)) {
3290 /* I/O case */
3291 release_lock |= prepare_mmio_access(mr);
3292 l = memory_access_size(mr, l, addr1);
3293 result |= memory_region_dispatch_read(mr, addr1, &val, l, attrs);
3294 stn_p(buf, l, val);
3295 } else {
3296 /* RAM case */
3297 ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
3298 memcpy(buf, ptr, l);
3301 if (release_lock) {
3302 qemu_mutex_unlock_iothread();
3303 release_lock = false;
3306 len -= l;
3307 buf += l;
3308 addr += l;
3310 if (!len) {
3311 break;
3314 l = len;
3315 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
3318 return result;
3321 /* Called from RCU critical section. */
3322 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
3323 MemTxAttrs attrs, uint8_t *buf, int len)
3325 hwaddr l;
3326 hwaddr addr1;
3327 MemoryRegion *mr;
3329 l = len;
3330 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
3331 return flatview_read_continue(fv, addr, attrs, buf, len,
3332 addr1, l, mr);
3335 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
3336 MemTxAttrs attrs, uint8_t *buf, int len)
3338 MemTxResult result = MEMTX_OK;
3339 FlatView *fv;
3341 if (len > 0) {
3342 rcu_read_lock();
3343 fv = address_space_to_flatview(as);
3344 result = flatview_read(fv, addr, attrs, buf, len);
3345 rcu_read_unlock();
3348 return result;
3351 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
3352 MemTxAttrs attrs,
3353 const uint8_t *buf, int len)
3355 MemTxResult result = MEMTX_OK;
3356 FlatView *fv;
3358 if (len > 0) {
3359 rcu_read_lock();
3360 fv = address_space_to_flatview(as);
3361 result = flatview_write(fv, addr, attrs, buf, len);
3362 rcu_read_unlock();
3365 return result;
3368 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
3369 uint8_t *buf, int len, bool is_write)
3371 if (is_write) {
3372 return address_space_write(as, addr, attrs, buf, len);
3373 } else {
3374 return address_space_read_full(as, addr, attrs, buf, len);
3378 void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
3379 int len, int is_write)
3381 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
3382 buf, len, is_write);
3385 enum write_rom_type {
3386 WRITE_DATA,
3387 FLUSH_CACHE,
3390 static inline void cpu_physical_memory_write_rom_internal(AddressSpace *as,
3391 hwaddr addr, const uint8_t *buf, int len, enum write_rom_type type)
3393 hwaddr l;
3394 uint8_t *ptr;
3395 hwaddr addr1;
3396 MemoryRegion *mr;
3398 rcu_read_lock();
3399 while (len > 0) {
3400 l = len;
3401 mr = address_space_translate(as, addr, &addr1, &l, true,
3402 MEMTXATTRS_UNSPECIFIED);
3404 if (!(memory_region_is_ram(mr) ||
3405 memory_region_is_romd(mr))) {
3406 l = memory_access_size(mr, l, addr1);
3407 } else {
3408 /* ROM/RAM case */
3409 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
3410 switch (type) {
3411 case WRITE_DATA:
3412 memcpy(ptr, buf, l);
3413 invalidate_and_set_dirty(mr, addr1, l);
3414 break;
3415 case FLUSH_CACHE:
3416 flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l);
3417 break;
3420 len -= l;
3421 buf += l;
3422 addr += l;
3424 rcu_read_unlock();
3427 /* used for ROM loading : can write in RAM and ROM */
3428 void cpu_physical_memory_write_rom(AddressSpace *as, hwaddr addr,
3429 const uint8_t *buf, int len)
3431 cpu_physical_memory_write_rom_internal(as, addr, buf, len, WRITE_DATA);
3434 void cpu_flush_icache_range(hwaddr start, int len)
3437 * This function should do the same thing as an icache flush that was
3438 * triggered from within the guest. For TCG we are always cache coherent,
3439 * so there is no need to flush anything. For KVM / Xen we need to flush
3440 * the host's instruction cache at least.
3442 if (tcg_enabled()) {
3443 return;
3446 cpu_physical_memory_write_rom_internal(&address_space_memory,
3447 start, NULL, len, FLUSH_CACHE);
3450 typedef struct {
3451 MemoryRegion *mr;
3452 void *buffer;
3453 hwaddr addr;
3454 hwaddr len;
3455 bool in_use;
3456 } BounceBuffer;
3458 static BounceBuffer bounce;
3460 typedef struct MapClient {
3461 QEMUBH *bh;
3462 QLIST_ENTRY(MapClient) link;
3463 } MapClient;
3465 QemuMutex map_client_list_lock;
3466 static QLIST_HEAD(map_client_list, MapClient) map_client_list
3467 = QLIST_HEAD_INITIALIZER(map_client_list);
3469 static void cpu_unregister_map_client_do(MapClient *client)
3471 QLIST_REMOVE(client, link);
3472 g_free(client);
3475 static void cpu_notify_map_clients_locked(void)
3477 MapClient *client;
3479 while (!QLIST_EMPTY(&map_client_list)) {
3480 client = QLIST_FIRST(&map_client_list);
3481 qemu_bh_schedule(client->bh);
3482 cpu_unregister_map_client_do(client);
3486 void cpu_register_map_client(QEMUBH *bh)
3488 MapClient *client = g_malloc(sizeof(*client));
3490 qemu_mutex_lock(&map_client_list_lock);
3491 client->bh = bh;
3492 QLIST_INSERT_HEAD(&map_client_list, client, link);
3493 if (!atomic_read(&bounce.in_use)) {
3494 cpu_notify_map_clients_locked();
3496 qemu_mutex_unlock(&map_client_list_lock);
3499 void cpu_exec_init_all(void)
3501 qemu_mutex_init(&ram_list.mutex);
3502 /* The data structures we set up here depend on knowing the page size,
3503 * so no more changes can be made after this point.
3504 * In an ideal world, nothing we did before we had finished the
3505 * machine setup would care about the target page size, and we could
3506 * do this much later, rather than requiring board models to state
3507 * up front what their requirements are.
3509 finalize_target_page_bits();
3510 io_mem_init();
3511 memory_map_init();
3512 qemu_mutex_init(&map_client_list_lock);
3515 void cpu_unregister_map_client(QEMUBH *bh)
3517 MapClient *client;
3519 qemu_mutex_lock(&map_client_list_lock);
3520 QLIST_FOREACH(client, &map_client_list, link) {
3521 if (client->bh == bh) {
3522 cpu_unregister_map_client_do(client);
3523 break;
3526 qemu_mutex_unlock(&map_client_list_lock);
3529 static void cpu_notify_map_clients(void)
3531 qemu_mutex_lock(&map_client_list_lock);
3532 cpu_notify_map_clients_locked();
3533 qemu_mutex_unlock(&map_client_list_lock);
3536 static bool flatview_access_valid(FlatView *fv, hwaddr addr, int len,
3537 bool is_write, MemTxAttrs attrs)
3539 MemoryRegion *mr;
3540 hwaddr l, xlat;
3542 while (len > 0) {
3543 l = len;
3544 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3545 if (!memory_access_is_direct(mr, is_write)) {
3546 l = memory_access_size(mr, l, addr);
3547 if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) {
3548 return false;
3552 len -= l;
3553 addr += l;
3555 return true;
3558 bool address_space_access_valid(AddressSpace *as, hwaddr addr,
3559 int len, bool is_write,
3560 MemTxAttrs attrs)
3562 FlatView *fv;
3563 bool result;
3565 rcu_read_lock();
3566 fv = address_space_to_flatview(as);
3567 result = flatview_access_valid(fv, addr, len, is_write, attrs);
3568 rcu_read_unlock();
3569 return result;
3572 static hwaddr
3573 flatview_extend_translation(FlatView *fv, hwaddr addr,
3574 hwaddr target_len,
3575 MemoryRegion *mr, hwaddr base, hwaddr len,
3576 bool is_write, MemTxAttrs attrs)
3578 hwaddr done = 0;
3579 hwaddr xlat;
3580 MemoryRegion *this_mr;
3582 for (;;) {
3583 target_len -= len;
3584 addr += len;
3585 done += len;
3586 if (target_len == 0) {
3587 return done;
3590 len = target_len;
3591 this_mr = flatview_translate(fv, addr, &xlat,
3592 &len, is_write, attrs);
3593 if (this_mr != mr || xlat != base + done) {
3594 return done;
3599 /* Map a physical memory region into a host virtual address.
3600 * May map a subset of the requested range, given by and returned in *plen.
3601 * May return NULL if resources needed to perform the mapping are exhausted.
3602 * Use only for reads OR writes - not for read-modify-write operations.
3603 * Use cpu_register_map_client() to know when retrying the map operation is
3604 * likely to succeed.
3606 void *address_space_map(AddressSpace *as,
3607 hwaddr addr,
3608 hwaddr *plen,
3609 bool is_write,
3610 MemTxAttrs attrs)
3612 hwaddr len = *plen;
3613 hwaddr l, xlat;
3614 MemoryRegion *mr;
3615 void *ptr;
3616 FlatView *fv;
3618 if (len == 0) {
3619 return NULL;
3622 l = len;
3623 rcu_read_lock();
3624 fv = address_space_to_flatview(as);
3625 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3627 if (!memory_access_is_direct(mr, is_write)) {
3628 if (atomic_xchg(&bounce.in_use, true)) {
3629 rcu_read_unlock();
3630 return NULL;
3632 /* Avoid unbounded allocations */
3633 l = MIN(l, TARGET_PAGE_SIZE);
3634 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
3635 bounce.addr = addr;
3636 bounce.len = l;
3638 memory_region_ref(mr);
3639 bounce.mr = mr;
3640 if (!is_write) {
3641 flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED,
3642 bounce.buffer, l);
3645 rcu_read_unlock();
3646 *plen = l;
3647 return bounce.buffer;
3651 memory_region_ref(mr);
3652 *plen = flatview_extend_translation(fv, addr, len, mr, xlat,
3653 l, is_write, attrs);
3654 ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen, true);
3655 rcu_read_unlock();
3657 return ptr;
3660 /* Unmaps a memory region previously mapped by address_space_map().
3661 * Will also mark the memory as dirty if is_write == 1. access_len gives
3662 * the amount of memory that was actually read or written by the caller.
3664 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3665 int is_write, hwaddr access_len)
3667 if (buffer != bounce.buffer) {
3668 MemoryRegion *mr;
3669 ram_addr_t addr1;
3671 mr = memory_region_from_host(buffer, &addr1);
3672 assert(mr != NULL);
3673 if (is_write) {
3674 invalidate_and_set_dirty(mr, addr1, access_len);
3676 if (xen_enabled()) {
3677 xen_invalidate_map_cache_entry(buffer);
3679 memory_region_unref(mr);
3680 return;
3682 if (is_write) {
3683 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
3684 bounce.buffer, access_len);
3686 qemu_vfree(bounce.buffer);
3687 bounce.buffer = NULL;
3688 memory_region_unref(bounce.mr);
3689 atomic_mb_set(&bounce.in_use, false);
3690 cpu_notify_map_clients();
3693 void *cpu_physical_memory_map(hwaddr addr,
3694 hwaddr *plen,
3695 int is_write)
3697 return address_space_map(&address_space_memory, addr, plen, is_write,
3698 MEMTXATTRS_UNSPECIFIED);
3701 void cpu_physical_memory_unmap(void *buffer, hwaddr len,
3702 int is_write, hwaddr access_len)
3704 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3707 #define ARG1_DECL AddressSpace *as
3708 #define ARG1 as
3709 #define SUFFIX
3710 #define TRANSLATE(...) address_space_translate(as, __VA_ARGS__)
3711 #define RCU_READ_LOCK(...) rcu_read_lock()
3712 #define RCU_READ_UNLOCK(...) rcu_read_unlock()
3713 #include "memory_ldst.inc.c"
3715 int64_t address_space_cache_init(MemoryRegionCache *cache,
3716 AddressSpace *as,
3717 hwaddr addr,
3718 hwaddr len,
3719 bool is_write)
3721 AddressSpaceDispatch *d;
3722 hwaddr l;
3723 MemoryRegion *mr;
3725 assert(len > 0);
3727 l = len;
3728 cache->fv = address_space_get_flatview(as);
3729 d = flatview_to_dispatch(cache->fv);
3730 cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true);
3732 mr = cache->mrs.mr;
3733 memory_region_ref(mr);
3734 if (memory_access_is_direct(mr, is_write)) {
3735 /* We don't care about the memory attributes here as we're only
3736 * doing this if we found actual RAM, which behaves the same
3737 * regardless of attributes; so UNSPECIFIED is fine.
3739 l = flatview_extend_translation(cache->fv, addr, len, mr,
3740 cache->xlat, l, is_write,
3741 MEMTXATTRS_UNSPECIFIED);
3742 cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true);
3743 } else {
3744 cache->ptr = NULL;
3747 cache->len = l;
3748 cache->is_write = is_write;
3749 return l;
3752 void address_space_cache_invalidate(MemoryRegionCache *cache,
3753 hwaddr addr,
3754 hwaddr access_len)
3756 assert(cache->is_write);
3757 if (likely(cache->ptr)) {
3758 invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len);
3762 void address_space_cache_destroy(MemoryRegionCache *cache)
3764 if (!cache->mrs.mr) {
3765 return;
3768 if (xen_enabled()) {
3769 xen_invalidate_map_cache_entry(cache->ptr);
3771 memory_region_unref(cache->mrs.mr);
3772 flatview_unref(cache->fv);
3773 cache->mrs.mr = NULL;
3774 cache->fv = NULL;
3777 /* Called from RCU critical section. This function has the same
3778 * semantics as address_space_translate, but it only works on a
3779 * predefined range of a MemoryRegion that was mapped with
3780 * address_space_cache_init.
3782 static inline MemoryRegion *address_space_translate_cached(
3783 MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat,
3784 hwaddr *plen, bool is_write, MemTxAttrs attrs)
3786 MemoryRegionSection section;
3787 MemoryRegion *mr;
3788 IOMMUMemoryRegion *iommu_mr;
3789 AddressSpace *target_as;
3791 assert(!cache->ptr);
3792 *xlat = addr + cache->xlat;
3794 mr = cache->mrs.mr;
3795 iommu_mr = memory_region_get_iommu(mr);
3796 if (!iommu_mr) {
3797 /* MMIO region. */
3798 return mr;
3801 section = address_space_translate_iommu(iommu_mr, xlat, plen,
3802 NULL, is_write, true,
3803 &target_as, attrs);
3804 return section.mr;
3807 /* Called from RCU critical section. address_space_read_cached uses this
3808 * out of line function when the target is an MMIO or IOMMU region.
3810 void
3811 address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3812 void *buf, int len)
3814 hwaddr addr1, l;
3815 MemoryRegion *mr;
3817 l = len;
3818 mr = address_space_translate_cached(cache, addr, &addr1, &l, false,
3819 MEMTXATTRS_UNSPECIFIED);
3820 flatview_read_continue(cache->fv,
3821 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3822 addr1, l, mr);
3825 /* Called from RCU critical section. address_space_write_cached uses this
3826 * out of line function when the target is an MMIO or IOMMU region.
3828 void
3829 address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3830 const void *buf, int len)
3832 hwaddr addr1, l;
3833 MemoryRegion *mr;
3835 l = len;
3836 mr = address_space_translate_cached(cache, addr, &addr1, &l, true,
3837 MEMTXATTRS_UNSPECIFIED);
3838 flatview_write_continue(cache->fv,
3839 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3840 addr1, l, mr);
3843 #define ARG1_DECL MemoryRegionCache *cache
3844 #define ARG1 cache
3845 #define SUFFIX _cached_slow
3846 #define TRANSLATE(...) address_space_translate_cached(cache, __VA_ARGS__)
3847 #define RCU_READ_LOCK() ((void)0)
3848 #define RCU_READ_UNLOCK() ((void)0)
3849 #include "memory_ldst.inc.c"
3851 /* virtual memory access for debug (includes writing to ROM) */
3852 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
3853 uint8_t *buf, int len, int is_write)
3855 int l;
3856 hwaddr phys_addr;
3857 target_ulong page;
3859 cpu_synchronize_state(cpu);
3860 while (len > 0) {
3861 int asidx;
3862 MemTxAttrs attrs;
3864 page = addr & TARGET_PAGE_MASK;
3865 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3866 asidx = cpu_asidx_from_attrs(cpu, attrs);
3867 /* if no physical page mapped, return an error */
3868 if (phys_addr == -1)
3869 return -1;
3870 l = (page + TARGET_PAGE_SIZE) - addr;
3871 if (l > len)
3872 l = len;
3873 phys_addr += (addr & ~TARGET_PAGE_MASK);
3874 if (is_write) {
3875 cpu_physical_memory_write_rom(cpu->cpu_ases[asidx].as,
3876 phys_addr, buf, l);
3877 } else {
3878 address_space_rw(cpu->cpu_ases[asidx].as, phys_addr,
3879 MEMTXATTRS_UNSPECIFIED,
3880 buf, l, 0);
3882 len -= l;
3883 buf += l;
3884 addr += l;
3886 return 0;
3890 * Allows code that needs to deal with migration bitmaps etc to still be built
3891 * target independent.
3893 size_t qemu_target_page_size(void)
3895 return TARGET_PAGE_SIZE;
3898 int qemu_target_page_bits(void)
3900 return TARGET_PAGE_BITS;
3903 int qemu_target_page_bits_min(void)
3905 return TARGET_PAGE_BITS_MIN;
3907 #endif
3910 * A helper function for the _utterly broken_ virtio device model to find out if
3911 * it's running on a big endian machine. Don't do this at home kids!
3913 bool target_words_bigendian(void);
3914 bool target_words_bigendian(void)
3916 #if defined(TARGET_WORDS_BIGENDIAN)
3917 return true;
3918 #else
3919 return false;
3920 #endif
3923 #ifndef CONFIG_USER_ONLY
3924 bool cpu_physical_memory_is_io(hwaddr phys_addr)
3926 MemoryRegion*mr;
3927 hwaddr l = 1;
3928 bool res;
3930 rcu_read_lock();
3931 mr = address_space_translate(&address_space_memory,
3932 phys_addr, &phys_addr, &l, false,
3933 MEMTXATTRS_UNSPECIFIED);
3935 res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
3936 rcu_read_unlock();
3937 return res;
3940 int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
3942 RAMBlock *block;
3943 int ret = 0;
3945 rcu_read_lock();
3946 RAMBLOCK_FOREACH(block) {
3947 ret = func(block->idstr, block->host, block->offset,
3948 block->used_length, opaque);
3949 if (ret) {
3950 break;
3953 rcu_read_unlock();
3954 return ret;
3957 int qemu_ram_foreach_migratable_block(RAMBlockIterFunc func, void *opaque)
3959 RAMBlock *block;
3960 int ret = 0;
3962 rcu_read_lock();
3963 RAMBLOCK_FOREACH(block) {
3964 if (!qemu_ram_is_migratable(block)) {
3965 continue;
3967 ret = func(block->idstr, block->host, block->offset,
3968 block->used_length, opaque);
3969 if (ret) {
3970 break;
3973 rcu_read_unlock();
3974 return ret;
3978 * Unmap pages of memory from start to start+length such that
3979 * they a) read as 0, b) Trigger whatever fault mechanism
3980 * the OS provides for postcopy.
3981 * The pages must be unmapped by the end of the function.
3982 * Returns: 0 on success, none-0 on failure
3985 int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
3987 int ret = -1;
3989 uint8_t *host_startaddr = rb->host + start;
3991 if ((uintptr_t)host_startaddr & (rb->page_size - 1)) {
3992 error_report("ram_block_discard_range: Unaligned start address: %p",
3993 host_startaddr);
3994 goto err;
3997 if ((start + length) <= rb->used_length) {
3998 bool need_madvise, need_fallocate;
3999 uint8_t *host_endaddr = host_startaddr + length;
4000 if ((uintptr_t)host_endaddr & (rb->page_size - 1)) {
4001 error_report("ram_block_discard_range: Unaligned end address: %p",
4002 host_endaddr);
4003 goto err;
4006 errno = ENOTSUP; /* If we are missing MADVISE etc */
4008 /* The logic here is messy;
4009 * madvise DONTNEED fails for hugepages
4010 * fallocate works on hugepages and shmem
4012 need_madvise = (rb->page_size == qemu_host_page_size);
4013 need_fallocate = rb->fd != -1;
4014 if (need_fallocate) {
4015 /* For a file, this causes the area of the file to be zero'd
4016 * if read, and for hugetlbfs also causes it to be unmapped
4017 * so a userfault will trigger.
4019 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
4020 ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
4021 start, length);
4022 if (ret) {
4023 ret = -errno;
4024 error_report("ram_block_discard_range: Failed to fallocate "
4025 "%s:%" PRIx64 " +%zx (%d)",
4026 rb->idstr, start, length, ret);
4027 goto err;
4029 #else
4030 ret = -ENOSYS;
4031 error_report("ram_block_discard_range: fallocate not available/file"
4032 "%s:%" PRIx64 " +%zx (%d)",
4033 rb->idstr, start, length, ret);
4034 goto err;
4035 #endif
4037 if (need_madvise) {
4038 /* For normal RAM this causes it to be unmapped,
4039 * for shared memory it causes the local mapping to disappear
4040 * and to fall back on the file contents (which we just
4041 * fallocate'd away).
4043 #if defined(CONFIG_MADVISE)
4044 ret = madvise(host_startaddr, length, MADV_DONTNEED);
4045 if (ret) {
4046 ret = -errno;
4047 error_report("ram_block_discard_range: Failed to discard range "
4048 "%s:%" PRIx64 " +%zx (%d)",
4049 rb->idstr, start, length, ret);
4050 goto err;
4052 #else
4053 ret = -ENOSYS;
4054 error_report("ram_block_discard_range: MADVISE not available"
4055 "%s:%" PRIx64 " +%zx (%d)",
4056 rb->idstr, start, length, ret);
4057 goto err;
4058 #endif
4060 trace_ram_block_discard_range(rb->idstr, host_startaddr, length,
4061 need_madvise, need_fallocate, ret);
4062 } else {
4063 error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
4064 "/%zx/" RAM_ADDR_FMT")",
4065 rb->idstr, start, length, rb->used_length);
4068 err:
4069 return ret;
4072 bool ramblock_is_pmem(RAMBlock *rb)
4074 return rb->flags & RAM_PMEM;
4077 #endif
4079 void page_size_init(void)
4081 /* NOTE: we can always suppose that qemu_host_page_size >=
4082 TARGET_PAGE_SIZE */
4083 if (qemu_host_page_size == 0) {
4084 qemu_host_page_size = qemu_real_host_page_size;
4086 if (qemu_host_page_size < TARGET_PAGE_SIZE) {
4087 qemu_host_page_size = TARGET_PAGE_SIZE;
4089 qemu_host_page_mask = -(intptr_t)qemu_host_page_size;
4092 #if !defined(CONFIG_USER_ONLY)
4094 static void mtree_print_phys_entries(fprintf_function mon, void *f,
4095 int start, int end, int skip, int ptr)
4097 if (start == end - 1) {
4098 mon(f, "\t%3d ", start);
4099 } else {
4100 mon(f, "\t%3d..%-3d ", start, end - 1);
4102 mon(f, " skip=%d ", skip);
4103 if (ptr == PHYS_MAP_NODE_NIL) {
4104 mon(f, " ptr=NIL");
4105 } else if (!skip) {
4106 mon(f, " ptr=#%d", ptr);
4107 } else {
4108 mon(f, " ptr=[%d]", ptr);
4110 mon(f, "\n");
4113 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
4114 int128_sub((size), int128_one())) : 0)
4116 void mtree_print_dispatch(fprintf_function mon, void *f,
4117 AddressSpaceDispatch *d, MemoryRegion *root)
4119 int i;
4121 mon(f, " Dispatch\n");
4122 mon(f, " Physical sections\n");
4124 for (i = 0; i < d->map.sections_nb; ++i) {
4125 MemoryRegionSection *s = d->map.sections + i;
4126 const char *names[] = { " [unassigned]", " [not dirty]",
4127 " [ROM]", " [watch]" };
4129 mon(f, " #%d @" TARGET_FMT_plx ".." TARGET_FMT_plx " %s%s%s%s%s",
4131 s->offset_within_address_space,
4132 s->offset_within_address_space + MR_SIZE(s->mr->size),
4133 s->mr->name ? s->mr->name : "(noname)",
4134 i < ARRAY_SIZE(names) ? names[i] : "",
4135 s->mr == root ? " [ROOT]" : "",
4136 s == d->mru_section ? " [MRU]" : "",
4137 s->mr->is_iommu ? " [iommu]" : "");
4139 if (s->mr->alias) {
4140 mon(f, " alias=%s", s->mr->alias->name ?
4141 s->mr->alias->name : "noname");
4143 mon(f, "\n");
4146 mon(f, " Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
4147 P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip);
4148 for (i = 0; i < d->map.nodes_nb; ++i) {
4149 int j, jprev;
4150 PhysPageEntry prev;
4151 Node *n = d->map.nodes + i;
4153 mon(f, " [%d]\n", i);
4155 for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) {
4156 PhysPageEntry *pe = *n + j;
4158 if (pe->ptr == prev.ptr && pe->skip == prev.skip) {
4159 continue;
4162 mtree_print_phys_entries(mon, f, jprev, j, prev.skip, prev.ptr);
4164 jprev = j;
4165 prev = *pe;
4168 if (jprev != ARRAY_SIZE(*n)) {
4169 mtree_print_phys_entries(mon, f, jprev, j, prev.skip, prev.ptr);
4174 #endif