2 * ARM Generic Interrupt Controller v3
4 * Copyright (c) 2016 Linaro Limited
5 * Written by Peter Maydell
7 * This code is licensed under the GPL, version 2 or (at your option)
11 /* This file contains the code for the system register interface
12 * portions of the GICv3.
15 #include "qemu/osdep.h"
16 #include "qemu/bitops.h"
17 #include "qemu/main-loop.h"
19 #include "gicv3_internal.h"
22 void gicv3_set_gicv3state(CPUState
*cpu
, GICv3CPUState
*s
)
24 ARMCPU
*arm_cpu
= ARM_CPU(cpu
);
25 CPUARMState
*env
= &arm_cpu
->env
;
27 env
->gicv3state
= (void *)s
;
30 static GICv3CPUState
*icc_cs_from_env(CPUARMState
*env
)
32 /* Given the CPU, find the right GICv3CPUState struct.
33 * Since we registered the CPU interface with the EL change hook as
34 * the opaque pointer, we can just directly get from the CPU to it.
36 return arm_get_el_change_hook_opaque(arm_env_get_cpu(env
));
39 static bool gicv3_use_ns_bank(CPUARMState
*env
)
41 /* Return true if we should use the NonSecure bank for a banked GIC
42 * CPU interface register. Note that this differs from the
43 * access_secure_reg() function because GICv3 banked registers are
44 * banked even for AArch64, unlike the other CPU system registers.
46 return !arm_is_secure_below_el3(env
);
49 /* The minimum BPR for the virtual interface is a configurable property */
50 static inline int icv_min_vbpr(GICv3CPUState
*cs
)
52 return 7 - cs
->vprebits
;
55 /* Simple accessor functions for LR fields */
56 static uint32_t ich_lr_vintid(uint64_t lr
)
58 return extract64(lr
, ICH_LR_EL2_VINTID_SHIFT
, ICH_LR_EL2_VINTID_LENGTH
);
61 static uint32_t ich_lr_pintid(uint64_t lr
)
63 return extract64(lr
, ICH_LR_EL2_PINTID_SHIFT
, ICH_LR_EL2_PINTID_LENGTH
);
66 static uint32_t ich_lr_prio(uint64_t lr
)
68 return extract64(lr
, ICH_LR_EL2_PRIORITY_SHIFT
, ICH_LR_EL2_PRIORITY_LENGTH
);
71 static int ich_lr_state(uint64_t lr
)
73 return extract64(lr
, ICH_LR_EL2_STATE_SHIFT
, ICH_LR_EL2_STATE_LENGTH
);
76 static bool icv_access(CPUARMState
*env
, int hcr_flags
)
78 /* Return true if this ICC_ register access should really be
79 * directed to an ICV_ access. hcr_flags is a mask of
80 * HCR_EL2 bits to check: we treat this as an ICV_ access
81 * if we are in NS EL1 and at least one of the specified
82 * HCR_EL2 bits is set.
84 * ICV registers fall into four categories:
85 * * access if NS EL1 and HCR_EL2.FMO == 1:
86 * all ICV regs with '0' in their name
87 * * access if NS EL1 and HCR_EL2.IMO == 1:
88 * all ICV regs with '1' in their name
89 * * access if NS EL1 and either IMO or FMO == 1:
92 return (env
->cp15
.hcr_el2
& hcr_flags
) && arm_current_el(env
) == 1
93 && !arm_is_secure_below_el3(env
);
96 static int read_vbpr(GICv3CPUState
*cs
, int grp
)
98 /* Read VBPR value out of the VMCR field (caller must handle
99 * VCBPR effects if required)
101 if (grp
== GICV3_G0
) {
102 return extract64(cs
->ich_vmcr_el2
, ICH_VMCR_EL2_VBPR0_SHIFT
,
103 ICH_VMCR_EL2_VBPR0_LENGTH
);
105 return extract64(cs
->ich_vmcr_el2
, ICH_VMCR_EL2_VBPR1_SHIFT
,
106 ICH_VMCR_EL2_VBPR1_LENGTH
);
110 static void write_vbpr(GICv3CPUState
*cs
, int grp
, int value
)
112 /* Write new VBPR1 value, handling the "writing a value less than
113 * the minimum sets it to the minimum" semantics.
115 int min
= icv_min_vbpr(cs
);
117 if (grp
!= GICV3_G0
) {
121 value
= MAX(value
, min
);
123 if (grp
== GICV3_G0
) {
124 cs
->ich_vmcr_el2
= deposit64(cs
->ich_vmcr_el2
, ICH_VMCR_EL2_VBPR0_SHIFT
,
125 ICH_VMCR_EL2_VBPR0_LENGTH
, value
);
127 cs
->ich_vmcr_el2
= deposit64(cs
->ich_vmcr_el2
, ICH_VMCR_EL2_VBPR1_SHIFT
,
128 ICH_VMCR_EL2_VBPR1_LENGTH
, value
);
132 static uint32_t icv_fullprio_mask(GICv3CPUState
*cs
)
134 /* Return a mask word which clears the unimplemented priority bits
135 * from a priority value for a virtual interrupt. (Not to be confused
136 * with the group priority, whose mask depends on the value of VBPR
137 * for the interrupt group.)
139 return ~0U << (8 - cs
->vpribits
);
142 static int ich_highest_active_virt_prio(GICv3CPUState
*cs
)
144 /* Calculate the current running priority based on the set bits
145 * in the ICH Active Priority Registers.
148 int aprmax
= 1 << (cs
->vprebits
- 5);
150 assert(aprmax
<= ARRAY_SIZE(cs
->ich_apr
[0]));
152 for (i
= 0; i
< aprmax
; i
++) {
153 uint32_t apr
= cs
->ich_apr
[GICV3_G0
][i
] |
154 cs
->ich_apr
[GICV3_G1NS
][i
];
159 return (i
* 32 + ctz32(apr
)) << (icv_min_vbpr(cs
) + 1);
161 /* No current active interrupts: return idle priority */
165 static int hppvi_index(GICv3CPUState
*cs
)
167 /* Return the list register index of the highest priority pending
168 * virtual interrupt, as per the HighestPriorityVirtualInterrupt
169 * pseudocode. If no pending virtual interrupts, return -1.
173 /* Note that a list register entry with a priority of 0xff will
174 * never be reported by this function; this is the architecturally
179 if (!(cs
->ich_vmcr_el2
& (ICH_VMCR_EL2_VENG0
| ICH_VMCR_EL2_VENG1
))) {
180 /* Both groups disabled, definitely nothing to do */
184 for (i
= 0; i
< cs
->num_list_regs
; i
++) {
185 uint64_t lr
= cs
->ich_lr_el2
[i
];
188 if (ich_lr_state(lr
) != ICH_LR_EL2_STATE_PENDING
) {
193 /* Ignore interrupts if relevant group enable not set */
194 if (lr
& ICH_LR_EL2_GROUP
) {
195 if (!(cs
->ich_vmcr_el2
& ICH_VMCR_EL2_VENG1
)) {
199 if (!(cs
->ich_vmcr_el2
& ICH_VMCR_EL2_VENG0
)) {
204 thisprio
= ich_lr_prio(lr
);
206 if (thisprio
< prio
) {
215 static uint32_t icv_gprio_mask(GICv3CPUState
*cs
, int group
)
217 /* Return a mask word which clears the subpriority bits from
218 * a priority value for a virtual interrupt in the specified group.
219 * This depends on the VBPR value:
220 * a BPR of 0 means the group priority bits are [7:1];
221 * a BPR of 1 means they are [7:2], and so on down to
222 * a BPR of 7 meaning no group priority bits at all.
223 * Which BPR to use depends on the group of the interrupt and
224 * the current ICH_VMCR_EL2.VCBPR settings.
226 if (group
== GICV3_G1NS
&& cs
->ich_vmcr_el2
& ICH_VMCR_EL2_VCBPR
) {
230 return ~0U << (read_vbpr(cs
, group
) + 1);
233 static bool icv_hppi_can_preempt(GICv3CPUState
*cs
, uint64_t lr
)
235 /* Return true if we can signal this virtual interrupt defined by
236 * the given list register value; see the pseudocode functions
237 * CanSignalVirtualInterrupt and CanSignalVirtualInt.
238 * Compare also icc_hppi_can_preempt() which is the non-virtual
239 * equivalent of these checks.
242 uint32_t mask
, prio
, rprio
, vpmr
;
244 if (!(cs
->ich_hcr_el2
& ICH_HCR_EL2_EN
)) {
245 /* Virtual interface disabled */
249 /* We don't need to check that this LR is in Pending state because
250 * that has already been done in hppvi_index().
253 prio
= ich_lr_prio(lr
);
254 vpmr
= extract64(cs
->ich_vmcr_el2
, ICH_VMCR_EL2_VPMR_SHIFT
,
255 ICH_VMCR_EL2_VPMR_LENGTH
);
258 /* Priority mask masks this interrupt */
262 rprio
= ich_highest_active_virt_prio(cs
);
264 /* No running interrupt so we can preempt */
268 grp
= (lr
& ICH_LR_EL2_GROUP
) ? GICV3_G1NS
: GICV3_G0
;
270 mask
= icv_gprio_mask(cs
, grp
);
272 /* We only preempt a running interrupt if the pending interrupt's
273 * group priority is sufficient (the subpriorities are not considered).
275 if ((prio
& mask
) < (rprio
& mask
)) {
282 static uint32_t eoi_maintenance_interrupt_state(GICv3CPUState
*cs
,
285 /* Return a set of bits indicating the EOI maintenance interrupt status
286 * for each list register. The EOI maintenance interrupt status is
287 * 1 if LR.State == 0 && LR.HW == 0 && LR.EOI == 1
288 * (see the GICv3 spec for the ICH_EISR_EL2 register).
289 * If misr is not NULL then we should also collect the information
290 * about the MISR.EOI, MISR.NP and MISR.U bits.
294 bool seenpending
= false;
297 for (i
= 0; i
< cs
->num_list_regs
; i
++) {
298 uint64_t lr
= cs
->ich_lr_el2
[i
];
300 if ((lr
& (ICH_LR_EL2_STATE_MASK
| ICH_LR_EL2_HW
| ICH_LR_EL2_EOI
))
304 if ((lr
& ICH_LR_EL2_STATE_MASK
)) {
307 if (ich_lr_state(lr
) == ICH_LR_EL2_STATE_PENDING
) {
313 if (validcount
< 2 && (cs
->ich_hcr_el2
& ICH_HCR_EL2_UIE
)) {
314 *misr
|= ICH_MISR_EL2_U
;
316 if (!seenpending
&& (cs
->ich_hcr_el2
& ICH_HCR_EL2_NPIE
)) {
317 *misr
|= ICH_MISR_EL2_NP
;
320 *misr
|= ICH_MISR_EL2_EOI
;
326 static uint32_t maintenance_interrupt_state(GICv3CPUState
*cs
)
328 /* Return a set of bits indicating the maintenance interrupt status
329 * (as seen in the ICH_MISR_EL2 register).
333 /* Scan list registers and fill in the U, NP and EOI bits */
334 eoi_maintenance_interrupt_state(cs
, &value
);
336 if (cs
->ich_hcr_el2
& (ICH_HCR_EL2_LRENPIE
| ICH_HCR_EL2_EOICOUNT_MASK
)) {
337 value
|= ICH_MISR_EL2_LRENP
;
340 if ((cs
->ich_hcr_el2
& ICH_HCR_EL2_VGRP0EIE
) &&
341 (cs
->ich_vmcr_el2
& ICH_VMCR_EL2_VENG0
)) {
342 value
|= ICH_MISR_EL2_VGRP0E
;
345 if ((cs
->ich_hcr_el2
& ICH_HCR_EL2_VGRP0DIE
) &&
346 !(cs
->ich_vmcr_el2
& ICH_VMCR_EL2_VENG1
)) {
347 value
|= ICH_MISR_EL2_VGRP0D
;
349 if ((cs
->ich_hcr_el2
& ICH_HCR_EL2_VGRP1EIE
) &&
350 (cs
->ich_vmcr_el2
& ICH_VMCR_EL2_VENG1
)) {
351 value
|= ICH_MISR_EL2_VGRP1E
;
354 if ((cs
->ich_hcr_el2
& ICH_HCR_EL2_VGRP1DIE
) &&
355 !(cs
->ich_vmcr_el2
& ICH_VMCR_EL2_VENG1
)) {
356 value
|= ICH_MISR_EL2_VGRP1D
;
362 static void gicv3_cpuif_virt_update(GICv3CPUState
*cs
)
364 /* Tell the CPU about any pending virtual interrupts or
365 * maintenance interrupts, following a change to the state
366 * of the CPU interface relevant to virtual interrupts.
368 * CAUTION: this function will call qemu_set_irq() on the
369 * CPU maintenance IRQ line, which is typically wired up
370 * to the GIC as a per-CPU interrupt. This means that it
371 * will recursively call back into the GIC code via
372 * gicv3_redist_set_irq() and thus into the CPU interface code's
373 * gicv3_cpuif_update(). It is therefore important that this
374 * function is only called as the final action of a CPU interface
375 * register write implementation, after all the GIC state
376 * fields have been updated. gicv3_cpuif_update() also must
377 * not cause this function to be called, but that happens
378 * naturally as a result of there being no architectural
379 * linkage between the physical and virtual GIC logic.
386 idx
= hppvi_index(cs
);
387 trace_gicv3_cpuif_virt_update(gicv3_redist_affid(cs
), idx
);
389 uint64_t lr
= cs
->ich_lr_el2
[idx
];
391 if (icv_hppi_can_preempt(cs
, lr
)) {
392 /* Virtual interrupts are simple: G0 are always FIQ, and G1 IRQ */
393 if (lr
& ICH_LR_EL2_GROUP
) {
401 if (cs
->ich_hcr_el2
& ICH_HCR_EL2_EN
) {
402 maintlevel
= maintenance_interrupt_state(cs
);
405 trace_gicv3_cpuif_virt_set_irqs(gicv3_redist_affid(cs
), fiqlevel
,
406 irqlevel
, maintlevel
);
408 qemu_set_irq(cs
->parent_vfiq
, fiqlevel
);
409 qemu_set_irq(cs
->parent_virq
, irqlevel
);
410 qemu_set_irq(cs
->maintenance_irq
, maintlevel
);
413 static uint64_t icv_ap_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
415 GICv3CPUState
*cs
= icc_cs_from_env(env
);
416 int regno
= ri
->opc2
& 3;
417 int grp
= ri
->crm
& 1 ? GICV3_G0
: GICV3_G1NS
;
418 uint64_t value
= cs
->ich_apr
[grp
][regno
];
420 trace_gicv3_icv_ap_read(ri
->crm
& 1, regno
, gicv3_redist_affid(cs
), value
);
424 static void icv_ap_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
427 GICv3CPUState
*cs
= icc_cs_from_env(env
);
428 int regno
= ri
->opc2
& 3;
429 int grp
= ri
->crm
& 1 ? GICV3_G0
: GICV3_G1NS
;
431 trace_gicv3_icv_ap_write(ri
->crm
& 1, regno
, gicv3_redist_affid(cs
), value
);
433 cs
->ich_apr
[grp
][regno
] = value
& 0xFFFFFFFFU
;
435 gicv3_cpuif_virt_update(cs
);
439 static uint64_t icv_bpr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
441 GICv3CPUState
*cs
= icc_cs_from_env(env
);
442 int grp
= (ri
->crm
== 8) ? GICV3_G0
: GICV3_G1NS
;
446 if (grp
== GICV3_G1NS
&& (cs
->ich_vmcr_el2
& ICH_VMCR_EL2_VCBPR
)) {
447 /* reads return bpr0 + 1 saturated to 7, writes ignored */
452 bpr
= read_vbpr(cs
, grp
);
459 trace_gicv3_icv_bpr_read(ri
->crm
== 8 ? 0 : 1, gicv3_redist_affid(cs
), bpr
);
464 static void icv_bpr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
467 GICv3CPUState
*cs
= icc_cs_from_env(env
);
468 int grp
= (ri
->crm
== 8) ? GICV3_G0
: GICV3_G1NS
;
470 trace_gicv3_icv_bpr_write(ri
->crm
== 8 ? 0 : 1,
471 gicv3_redist_affid(cs
), value
);
473 if (grp
== GICV3_G1NS
&& (cs
->ich_vmcr_el2
& ICH_VMCR_EL2_VCBPR
)) {
474 /* reads return bpr0 + 1 saturated to 7, writes ignored */
478 write_vbpr(cs
, grp
, value
);
480 gicv3_cpuif_virt_update(cs
);
483 static uint64_t icv_pmr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
485 GICv3CPUState
*cs
= icc_cs_from_env(env
);
488 value
= extract64(cs
->ich_vmcr_el2
, ICH_VMCR_EL2_VPMR_SHIFT
,
489 ICH_VMCR_EL2_VPMR_LENGTH
);
491 trace_gicv3_icv_pmr_read(gicv3_redist_affid(cs
), value
);
495 static void icv_pmr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
498 GICv3CPUState
*cs
= icc_cs_from_env(env
);
500 trace_gicv3_icv_pmr_write(gicv3_redist_affid(cs
), value
);
502 value
&= icv_fullprio_mask(cs
);
504 cs
->ich_vmcr_el2
= deposit64(cs
->ich_vmcr_el2
, ICH_VMCR_EL2_VPMR_SHIFT
,
505 ICH_VMCR_EL2_VPMR_LENGTH
, value
);
507 gicv3_cpuif_virt_update(cs
);
510 static uint64_t icv_igrpen_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
512 GICv3CPUState
*cs
= icc_cs_from_env(env
);
516 enbit
= ri
->opc2
& 1 ? ICH_VMCR_EL2_VENG1_SHIFT
: ICH_VMCR_EL2_VENG0_SHIFT
;
517 value
= extract64(cs
->ich_vmcr_el2
, enbit
, 1);
519 trace_gicv3_icv_igrpen_read(ri
->opc2
& 1 ? 1 : 0,
520 gicv3_redist_affid(cs
), value
);
524 static void icv_igrpen_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
527 GICv3CPUState
*cs
= icc_cs_from_env(env
);
530 trace_gicv3_icv_igrpen_write(ri
->opc2
& 1 ? 1 : 0,
531 gicv3_redist_affid(cs
), value
);
533 enbit
= ri
->opc2
& 1 ? ICH_VMCR_EL2_VENG1_SHIFT
: ICH_VMCR_EL2_VENG0_SHIFT
;
535 cs
->ich_vmcr_el2
= deposit64(cs
->ich_vmcr_el2
, enbit
, 1, value
);
536 gicv3_cpuif_virt_update(cs
);
539 static uint64_t icv_ctlr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
541 GICv3CPUState
*cs
= icc_cs_from_env(env
);
544 /* Note that the fixed fields here (A3V, SEIS, IDbits, PRIbits)
545 * should match the ones reported in ich_vtr_read().
547 value
= ICC_CTLR_EL1_A3V
| (1 << ICC_CTLR_EL1_IDBITS_SHIFT
) |
548 (7 << ICC_CTLR_EL1_PRIBITS_SHIFT
);
550 if (cs
->ich_vmcr_el2
& ICH_VMCR_EL2_VEOIM
) {
551 value
|= ICC_CTLR_EL1_EOIMODE
;
554 if (cs
->ich_vmcr_el2
& ICH_VMCR_EL2_VCBPR
) {
555 value
|= ICC_CTLR_EL1_CBPR
;
558 trace_gicv3_icv_ctlr_read(gicv3_redist_affid(cs
), value
);
562 static void icv_ctlr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
565 GICv3CPUState
*cs
= icc_cs_from_env(env
);
567 trace_gicv3_icv_ctlr_write(gicv3_redist_affid(cs
), value
);
569 cs
->ich_vmcr_el2
= deposit64(cs
->ich_vmcr_el2
, ICH_VMCR_EL2_VCBPR_SHIFT
,
570 1, value
& ICC_CTLR_EL1_CBPR
? 1 : 0);
571 cs
->ich_vmcr_el2
= deposit64(cs
->ich_vmcr_el2
, ICH_VMCR_EL2_VEOIM_SHIFT
,
572 1, value
& ICC_CTLR_EL1_EOIMODE
? 1 : 0);
574 gicv3_cpuif_virt_update(cs
);
577 static uint64_t icv_rpr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
579 GICv3CPUState
*cs
= icc_cs_from_env(env
);
580 int prio
= ich_highest_active_virt_prio(cs
);
582 trace_gicv3_icv_rpr_read(gicv3_redist_affid(cs
), prio
);
586 static uint64_t icv_hppir_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
588 GICv3CPUState
*cs
= icc_cs_from_env(env
);
589 int grp
= ri
->crm
== 8 ? GICV3_G0
: GICV3_G1NS
;
590 int idx
= hppvi_index(cs
);
591 uint64_t value
= INTID_SPURIOUS
;
594 uint64_t lr
= cs
->ich_lr_el2
[idx
];
595 int thisgrp
= (lr
& ICH_LR_EL2_GROUP
) ? GICV3_G1NS
: GICV3_G0
;
597 if (grp
== thisgrp
) {
598 value
= ich_lr_vintid(lr
);
602 trace_gicv3_icv_hppir_read(grp
, gicv3_redist_affid(cs
), value
);
606 static void icv_activate_irq(GICv3CPUState
*cs
, int idx
, int grp
)
608 /* Activate the interrupt in the specified list register
609 * by moving it from Pending to Active state, and update the
610 * Active Priority Registers.
612 uint32_t mask
= icv_gprio_mask(cs
, grp
);
613 int prio
= ich_lr_prio(cs
->ich_lr_el2
[idx
]) & mask
;
614 int aprbit
= prio
>> (8 - cs
->vprebits
);
615 int regno
= aprbit
/ 32;
616 int regbit
= aprbit
% 32;
618 cs
->ich_lr_el2
[idx
] &= ~ICH_LR_EL2_STATE_PENDING_BIT
;
619 cs
->ich_lr_el2
[idx
] |= ICH_LR_EL2_STATE_ACTIVE_BIT
;
620 cs
->ich_apr
[grp
][regno
] |= (1 << regbit
);
623 static uint64_t icv_iar_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
625 GICv3CPUState
*cs
= icc_cs_from_env(env
);
626 int grp
= ri
->crm
== 8 ? GICV3_G0
: GICV3_G1NS
;
627 int idx
= hppvi_index(cs
);
628 uint64_t intid
= INTID_SPURIOUS
;
631 uint64_t lr
= cs
->ich_lr_el2
[idx
];
632 int thisgrp
= (lr
& ICH_LR_EL2_GROUP
) ? GICV3_G1NS
: GICV3_G0
;
634 if (thisgrp
== grp
&& icv_hppi_can_preempt(cs
, lr
)) {
635 intid
= ich_lr_vintid(lr
);
636 if (intid
< INTID_SECURE
) {
637 icv_activate_irq(cs
, idx
, grp
);
639 /* Interrupt goes from Pending to Invalid */
640 cs
->ich_lr_el2
[idx
] &= ~ICH_LR_EL2_STATE_PENDING_BIT
;
641 /* We will now return the (bogus) ID from the list register,
642 * as per the pseudocode.
648 trace_gicv3_icv_iar_read(ri
->crm
== 8 ? 0 : 1,
649 gicv3_redist_affid(cs
), intid
);
653 static int icc_highest_active_prio(GICv3CPUState
*cs
)
655 /* Calculate the current running priority based on the set bits
656 * in the Active Priority Registers.
660 for (i
= 0; i
< ARRAY_SIZE(cs
->icc_apr
[0]); i
++) {
661 uint32_t apr
= cs
->icc_apr
[GICV3_G0
][i
] |
662 cs
->icc_apr
[GICV3_G1
][i
] | cs
->icc_apr
[GICV3_G1NS
][i
];
667 return (i
* 32 + ctz32(apr
)) << (GIC_MIN_BPR
+ 1);
669 /* No current active interrupts: return idle priority */
673 static uint32_t icc_gprio_mask(GICv3CPUState
*cs
, int group
)
675 /* Return a mask word which clears the subpriority bits from
676 * a priority value for an interrupt in the specified group.
677 * This depends on the BPR value:
678 * a BPR of 0 means the group priority bits are [7:1];
679 * a BPR of 1 means they are [7:2], and so on down to
680 * a BPR of 7 meaning no group priority bits at all.
681 * Which BPR to use depends on the group of the interrupt and
682 * the current ICC_CTLR.CBPR settings.
684 if ((group
== GICV3_G1
&& cs
->icc_ctlr_el1
[GICV3_S
] & ICC_CTLR_EL1_CBPR
) ||
685 (group
== GICV3_G1NS
&&
686 cs
->icc_ctlr_el1
[GICV3_NS
] & ICC_CTLR_EL1_CBPR
)) {
690 return ~0U << ((cs
->icc_bpr
[group
] & 7) + 1);
693 static bool icc_no_enabled_hppi(GICv3CPUState
*cs
)
695 /* Return true if there is no pending interrupt, or the
696 * highest priority pending interrupt is in a group which has been
697 * disabled at the CPU interface by the ICC_IGRPEN* register enable bits.
699 return cs
->hppi
.prio
== 0xff || (cs
->icc_igrpen
[cs
->hppi
.grp
] == 0);
702 static bool icc_hppi_can_preempt(GICv3CPUState
*cs
)
704 /* Return true if we have a pending interrupt of sufficient
705 * priority to preempt.
710 if (icc_no_enabled_hppi(cs
)) {
714 if (cs
->hppi
.prio
>= cs
->icc_pmr_el1
) {
715 /* Priority mask masks this interrupt */
719 rprio
= icc_highest_active_prio(cs
);
721 /* No currently running interrupt so we can preempt */
725 mask
= icc_gprio_mask(cs
, cs
->hppi
.grp
);
727 /* We only preempt a running interrupt if the pending interrupt's
728 * group priority is sufficient (the subpriorities are not considered).
730 if ((cs
->hppi
.prio
& mask
) < (rprio
& mask
)) {
737 void gicv3_cpuif_update(GICv3CPUState
*cs
)
739 /* Tell the CPU about its highest priority pending interrupt */
742 ARMCPU
*cpu
= ARM_CPU(cs
->cpu
);
743 CPUARMState
*env
= &cpu
->env
;
745 g_assert(qemu_mutex_iothread_locked());
747 trace_gicv3_cpuif_update(gicv3_redist_affid(cs
), cs
->hppi
.irq
,
748 cs
->hppi
.grp
, cs
->hppi
.prio
);
750 if (cs
->hppi
.grp
== GICV3_G1
&& !arm_feature(env
, ARM_FEATURE_EL3
)) {
751 /* If a Security-enabled GIC sends a G1S interrupt to a
752 * Security-disabled CPU, we must treat it as if it were G0.
754 cs
->hppi
.grp
= GICV3_G0
;
757 if (icc_hppi_can_preempt(cs
)) {
758 /* We have an interrupt: should we signal it as IRQ or FIQ?
759 * This is described in the GICv3 spec section 4.6.2.
763 switch (cs
->hppi
.grp
) {
768 isfiq
= (!arm_is_secure(env
) ||
769 (arm_current_el(env
) == 3 && arm_el_is_aa64(env
, 3)));
772 isfiq
= arm_is_secure(env
);
775 g_assert_not_reached();
785 trace_gicv3_cpuif_set_irqs(gicv3_redist_affid(cs
), fiqlevel
, irqlevel
);
787 qemu_set_irq(cs
->parent_fiq
, fiqlevel
);
788 qemu_set_irq(cs
->parent_irq
, irqlevel
);
791 static uint64_t icc_pmr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
793 GICv3CPUState
*cs
= icc_cs_from_env(env
);
794 uint32_t value
= cs
->icc_pmr_el1
;
796 if (icv_access(env
, HCR_FMO
| HCR_IMO
)) {
797 return icv_pmr_read(env
, ri
);
800 if (arm_feature(env
, ARM_FEATURE_EL3
) && !arm_is_secure(env
) &&
801 (env
->cp15
.scr_el3
& SCR_FIQ
)) {
802 /* NS access and Group 0 is inaccessible to NS: return the
803 * NS view of the current priority
806 /* Secure priorities not visible to NS */
808 } else if (value
!= 0xff) {
809 value
= (value
<< 1) & 0xff;
813 trace_gicv3_icc_pmr_read(gicv3_redist_affid(cs
), value
);
818 static void icc_pmr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
821 GICv3CPUState
*cs
= icc_cs_from_env(env
);
823 if (icv_access(env
, HCR_FMO
| HCR_IMO
)) {
824 return icv_pmr_write(env
, ri
, value
);
827 trace_gicv3_icc_pmr_write(gicv3_redist_affid(cs
), value
);
831 if (arm_feature(env
, ARM_FEATURE_EL3
) && !arm_is_secure(env
) &&
832 (env
->cp15
.scr_el3
& SCR_FIQ
)) {
833 /* NS access and Group 0 is inaccessible to NS: return the
834 * NS view of the current priority
836 if (!(cs
->icc_pmr_el1
& 0x80)) {
837 /* Current PMR in the secure range, don't allow NS to change it */
840 value
= (value
>> 1) & 0x80;
842 cs
->icc_pmr_el1
= value
;
843 gicv3_cpuif_update(cs
);
846 static void icc_activate_irq(GICv3CPUState
*cs
, int irq
)
848 /* Move the interrupt from the Pending state to Active, and update
849 * the Active Priority Registers
851 uint32_t mask
= icc_gprio_mask(cs
, cs
->hppi
.grp
);
852 int prio
= cs
->hppi
.prio
& mask
;
853 int aprbit
= prio
>> 1;
854 int regno
= aprbit
/ 32;
855 int regbit
= aprbit
% 32;
857 cs
->icc_apr
[cs
->hppi
.grp
][regno
] |= (1 << regbit
);
859 if (irq
< GIC_INTERNAL
) {
860 cs
->gicr_iactiver0
= deposit32(cs
->gicr_iactiver0
, irq
, 1, 1);
861 cs
->gicr_ipendr0
= deposit32(cs
->gicr_ipendr0
, irq
, 1, 0);
862 gicv3_redist_update(cs
);
864 gicv3_gicd_active_set(cs
->gic
, irq
);
865 gicv3_gicd_pending_clear(cs
->gic
, irq
);
866 gicv3_update(cs
->gic
, irq
, 1);
870 static uint64_t icc_hppir0_value(GICv3CPUState
*cs
, CPUARMState
*env
)
872 /* Return the highest priority pending interrupt register value
877 if (cs
->hppi
.prio
== 0xff) {
878 return INTID_SPURIOUS
;
881 /* Check whether we can return the interrupt or if we should return
882 * a special identifier, as per the CheckGroup0ForSpecialIdentifiers
883 * pseudocode. (We can simplify a little because for us ICC_SRE_EL1.RM
886 irq_is_secure
= (!(cs
->gic
->gicd_ctlr
& GICD_CTLR_DS
) &&
887 (cs
->hppi
.grp
!= GICV3_G1NS
));
889 if (cs
->hppi
.grp
!= GICV3_G0
&& !arm_is_el3_or_mon(env
)) {
890 return INTID_SPURIOUS
;
892 if (irq_is_secure
&& !arm_is_secure(env
)) {
893 /* Secure interrupts not visible to Nonsecure */
894 return INTID_SPURIOUS
;
897 if (cs
->hppi
.grp
!= GICV3_G0
) {
898 /* Indicate to EL3 that there's a Group 1 interrupt for the other
901 return irq_is_secure
? INTID_SECURE
: INTID_NONSECURE
;
907 static uint64_t icc_hppir1_value(GICv3CPUState
*cs
, CPUARMState
*env
)
909 /* Return the highest priority pending interrupt register value
914 if (cs
->hppi
.prio
== 0xff) {
915 return INTID_SPURIOUS
;
918 /* Check whether we can return the interrupt or if we should return
919 * a special identifier, as per the CheckGroup1ForSpecialIdentifiers
920 * pseudocode. (We can simplify a little because for us ICC_SRE_EL1.RM
923 irq_is_secure
= (!(cs
->gic
->gicd_ctlr
& GICD_CTLR_DS
) &&
924 (cs
->hppi
.grp
!= GICV3_G1NS
));
926 if (cs
->hppi
.grp
== GICV3_G0
) {
927 /* Group 0 interrupts not visible via HPPIR1 */
928 return INTID_SPURIOUS
;
931 if (!arm_is_secure(env
)) {
932 /* Secure interrupts not visible in Non-secure */
933 return INTID_SPURIOUS
;
935 } else if (!arm_is_el3_or_mon(env
) && arm_is_secure(env
)) {
936 /* Group 1 non-secure interrupts not visible in Secure EL1 */
937 return INTID_SPURIOUS
;
943 static uint64_t icc_iar0_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
945 GICv3CPUState
*cs
= icc_cs_from_env(env
);
948 if (icv_access(env
, HCR_FMO
)) {
949 return icv_iar_read(env
, ri
);
952 if (!icc_hppi_can_preempt(cs
)) {
953 intid
= INTID_SPURIOUS
;
955 intid
= icc_hppir0_value(cs
, env
);
958 if (!(intid
>= INTID_SECURE
&& intid
<= INTID_SPURIOUS
)) {
959 icc_activate_irq(cs
, intid
);
962 trace_gicv3_icc_iar0_read(gicv3_redist_affid(cs
), intid
);
966 static uint64_t icc_iar1_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
968 GICv3CPUState
*cs
= icc_cs_from_env(env
);
971 if (icv_access(env
, HCR_IMO
)) {
972 return icv_iar_read(env
, ri
);
975 if (!icc_hppi_can_preempt(cs
)) {
976 intid
= INTID_SPURIOUS
;
978 intid
= icc_hppir1_value(cs
, env
);
981 if (!(intid
>= INTID_SECURE
&& intid
<= INTID_SPURIOUS
)) {
982 icc_activate_irq(cs
, intid
);
985 trace_gicv3_icc_iar1_read(gicv3_redist_affid(cs
), intid
);
989 static void icc_drop_prio(GICv3CPUState
*cs
, int grp
)
991 /* Drop the priority of the currently active interrupt in
992 * the specified group.
994 * Note that we can guarantee (because of the requirement to nest
995 * ICC_IAR reads [which activate an interrupt and raise priority]
996 * with ICC_EOIR writes [which drop the priority for the interrupt])
997 * that the interrupt we're being called for is the highest priority
998 * active interrupt, meaning that it has the lowest set bit in the
1001 * If the guest does not honour the ordering constraints then the
1002 * behaviour of the GIC is UNPREDICTABLE, which for us means that
1003 * the values of the APR registers might become incorrect and the
1004 * running priority will be wrong, so interrupts that should preempt
1005 * might not do so, and interrupts that should not preempt might do so.
1009 for (i
= 0; i
< ARRAY_SIZE(cs
->icc_apr
[grp
]); i
++) {
1010 uint64_t *papr
= &cs
->icc_apr
[grp
][i
];
1015 /* Clear the lowest set bit */
1020 /* running priority change means we need an update for this cpu i/f */
1021 gicv3_cpuif_update(cs
);
1024 static bool icc_eoi_split(CPUARMState
*env
, GICv3CPUState
*cs
)
1026 /* Return true if we should split priority drop and interrupt
1027 * deactivation, ie whether the relevant EOIMode bit is set.
1029 if (arm_is_el3_or_mon(env
)) {
1030 return cs
->icc_ctlr_el3
& ICC_CTLR_EL3_EOIMODE_EL3
;
1032 if (arm_is_secure_below_el3(env
)) {
1033 return cs
->icc_ctlr_el1
[GICV3_S
] & ICC_CTLR_EL1_EOIMODE
;
1035 return cs
->icc_ctlr_el1
[GICV3_NS
] & ICC_CTLR_EL1_EOIMODE
;
1039 static int icc_highest_active_group(GICv3CPUState
*cs
)
1041 /* Return the group with the highest priority active interrupt.
1042 * We can do this by just comparing the APRs to see which one
1043 * has the lowest set bit.
1044 * (If more than one group is active at the same priority then
1045 * we're in UNPREDICTABLE territory.)
1049 for (i
= 0; i
< ARRAY_SIZE(cs
->icc_apr
[0]); i
++) {
1050 int g0ctz
= ctz32(cs
->icc_apr
[GICV3_G0
][i
]);
1051 int g1ctz
= ctz32(cs
->icc_apr
[GICV3_G1
][i
]);
1052 int g1nsctz
= ctz32(cs
->icc_apr
[GICV3_G1NS
][i
]);
1054 if (g1nsctz
< g0ctz
&& g1nsctz
< g1ctz
) {
1057 if (g1ctz
< g0ctz
) {
1064 /* No set active bits? UNPREDICTABLE; return -1 so the caller
1065 * ignores the spurious EOI attempt.
1070 static void icc_deactivate_irq(GICv3CPUState
*cs
, int irq
)
1072 if (irq
< GIC_INTERNAL
) {
1073 cs
->gicr_iactiver0
= deposit32(cs
->gicr_iactiver0
, irq
, 1, 0);
1074 gicv3_redist_update(cs
);
1076 gicv3_gicd_active_clear(cs
->gic
, irq
);
1077 gicv3_update(cs
->gic
, irq
, 1);
1081 static bool icv_eoi_split(CPUARMState
*env
, GICv3CPUState
*cs
)
1083 /* Return true if we should split priority drop and interrupt
1084 * deactivation, ie whether the virtual EOIMode bit is set.
1086 return cs
->ich_vmcr_el2
& ICH_VMCR_EL2_VEOIM
;
1089 static int icv_find_active(GICv3CPUState
*cs
, int irq
)
1091 /* Given an interrupt number for an active interrupt, return the index
1092 * of the corresponding list register, or -1 if there is no match.
1093 * Corresponds to FindActiveVirtualInterrupt pseudocode.
1097 for (i
= 0; i
< cs
->num_list_regs
; i
++) {
1098 uint64_t lr
= cs
->ich_lr_el2
[i
];
1100 if ((lr
& ICH_LR_EL2_STATE_ACTIVE_BIT
) && ich_lr_vintid(lr
) == irq
) {
1108 static void icv_deactivate_irq(GICv3CPUState
*cs
, int idx
)
1110 /* Deactivate the interrupt in the specified list register index */
1111 uint64_t lr
= cs
->ich_lr_el2
[idx
];
1113 if (lr
& ICH_LR_EL2_HW
) {
1114 /* Deactivate the associated physical interrupt */
1115 int pirq
= ich_lr_pintid(lr
);
1117 if (pirq
< INTID_SECURE
) {
1118 icc_deactivate_irq(cs
, pirq
);
1122 /* Clear the 'active' part of the state, so ActivePending->Pending
1123 * and Active->Invalid.
1125 lr
&= ~ICH_LR_EL2_STATE_ACTIVE_BIT
;
1126 cs
->ich_lr_el2
[idx
] = lr
;
1129 static void icv_increment_eoicount(GICv3CPUState
*cs
)
1131 /* Increment the EOICOUNT field in ICH_HCR_EL2 */
1132 int eoicount
= extract64(cs
->ich_hcr_el2
, ICH_HCR_EL2_EOICOUNT_SHIFT
,
1133 ICH_HCR_EL2_EOICOUNT_LENGTH
);
1135 cs
->ich_hcr_el2
= deposit64(cs
->ich_hcr_el2
, ICH_HCR_EL2_EOICOUNT_SHIFT
,
1136 ICH_HCR_EL2_EOICOUNT_LENGTH
, eoicount
+ 1);
1139 static int icv_drop_prio(GICv3CPUState
*cs
)
1141 /* Drop the priority of the currently active virtual interrupt
1142 * (favouring group 0 if there is a set active bit at
1143 * the same priority for both group 0 and group 1).
1144 * Return the priority value for the bit we just cleared,
1145 * or 0xff if no bits were set in the AP registers at all.
1146 * Note that though the ich_apr[] are uint64_t only the low
1147 * 32 bits are actually relevant.
1150 int aprmax
= 1 << (cs
->vprebits
- 5);
1152 assert(aprmax
<= ARRAY_SIZE(cs
->ich_apr
[0]));
1154 for (i
= 0; i
< aprmax
; i
++) {
1155 uint64_t *papr0
= &cs
->ich_apr
[GICV3_G0
][i
];
1156 uint64_t *papr1
= &cs
->ich_apr
[GICV3_G1NS
][i
];
1157 int apr0count
, apr1count
;
1159 if (!*papr0
&& !*papr1
) {
1163 /* We can't just use the bit-twiddling hack icc_drop_prio() does
1164 * because we need to return the bit number we cleared so
1165 * it can be compared against the list register's priority field.
1167 apr0count
= ctz32(*papr0
);
1168 apr1count
= ctz32(*papr1
);
1170 if (apr0count
<= apr1count
) {
1171 *papr0
&= *papr0
- 1;
1172 return (apr0count
+ i
* 32) << (icv_min_vbpr(cs
) + 1);
1174 *papr1
&= *papr1
- 1;
1175 return (apr1count
+ i
* 32) << (icv_min_vbpr(cs
) + 1);
1181 static void icv_dir_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1184 /* Deactivate interrupt */
1185 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1187 int irq
= value
& 0xffffff;
1189 trace_gicv3_icv_dir_write(gicv3_redist_affid(cs
), value
);
1191 if (irq
>= cs
->gic
->num_irq
) {
1192 /* Also catches special interrupt numbers and LPIs */
1196 if (!icv_eoi_split(env
, cs
)) {
1200 idx
= icv_find_active(cs
, irq
);
1203 /* No list register matching this, so increment the EOI count
1204 * (might trigger a maintenance interrupt)
1206 icv_increment_eoicount(cs
);
1208 icv_deactivate_irq(cs
, idx
);
1211 gicv3_cpuif_virt_update(cs
);
1214 static void icv_eoir_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1217 /* End of Interrupt */
1218 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1219 int irq
= value
& 0xffffff;
1220 int grp
= ri
->crm
== 8 ? GICV3_G0
: GICV3_G1NS
;
1223 trace_gicv3_icv_eoir_write(ri
->crm
== 8 ? 0 : 1,
1224 gicv3_redist_affid(cs
), value
);
1226 if (irq
>= cs
->gic
->num_irq
) {
1227 /* Also catches special interrupt numbers and LPIs */
1231 /* We implement the IMPDEF choice of "drop priority before doing
1232 * error checks" (because that lets us avoid scanning the AP
1235 dropprio
= icv_drop_prio(cs
);
1236 if (dropprio
== 0xff) {
1237 /* No active interrupt. It is CONSTRAINED UNPREDICTABLE
1238 * whether the list registers are checked in this
1239 * situation; we choose not to.
1244 idx
= icv_find_active(cs
, irq
);
1247 /* No valid list register corresponding to EOI ID */
1248 icv_increment_eoicount(cs
);
1250 uint64_t lr
= cs
->ich_lr_el2
[idx
];
1251 int thisgrp
= (lr
& ICH_LR_EL2_GROUP
) ? GICV3_G1NS
: GICV3_G0
;
1252 int lr_gprio
= ich_lr_prio(lr
) & icv_gprio_mask(cs
, grp
);
1254 if (thisgrp
== grp
&& lr_gprio
== dropprio
) {
1255 if (!icv_eoi_split(env
, cs
)) {
1256 /* Priority drop and deactivate not split: deactivate irq now */
1257 icv_deactivate_irq(cs
, idx
);
1262 gicv3_cpuif_virt_update(cs
);
1265 static void icc_eoir_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1268 /* End of Interrupt */
1269 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1270 int irq
= value
& 0xffffff;
1273 if (icv_access(env
, ri
->crm
== 8 ? HCR_FMO
: HCR_IMO
)) {
1274 icv_eoir_write(env
, ri
, value
);
1278 trace_gicv3_icc_eoir_write(ri
->crm
== 8 ? 0 : 1,
1279 gicv3_redist_affid(cs
), value
);
1286 if (arm_is_secure(env
)) {
1293 if (irq
>= cs
->gic
->num_irq
) {
1294 /* This handles two cases:
1295 * 1. If software writes the ID of a spurious interrupt [ie 1020-1023]
1296 * to the GICC_EOIR, the GIC ignores that write.
1297 * 2. If software writes the number of a non-existent interrupt
1298 * this must be a subcase of "value written does not match the last
1299 * valid interrupt value read from the Interrupt Acknowledge
1300 * register" and so this is UNPREDICTABLE. We choose to ignore it.
1305 if (icc_highest_active_group(cs
) != grp
) {
1309 icc_drop_prio(cs
, grp
);
1311 if (!icc_eoi_split(env
, cs
)) {
1312 /* Priority drop and deactivate not split: deactivate irq now */
1313 icc_deactivate_irq(cs
, irq
);
1317 static uint64_t icc_hppir0_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1319 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1322 if (icv_access(env
, HCR_FMO
)) {
1323 return icv_hppir_read(env
, ri
);
1326 value
= icc_hppir0_value(cs
, env
);
1327 trace_gicv3_icc_hppir0_read(gicv3_redist_affid(cs
), value
);
1331 static uint64_t icc_hppir1_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1333 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1336 if (icv_access(env
, HCR_IMO
)) {
1337 return icv_hppir_read(env
, ri
);
1340 value
= icc_hppir1_value(cs
, env
);
1341 trace_gicv3_icc_hppir1_read(gicv3_redist_affid(cs
), value
);
1345 static uint64_t icc_bpr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1347 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1348 int grp
= (ri
->crm
== 8) ? GICV3_G0
: GICV3_G1
;
1349 bool satinc
= false;
1352 if (icv_access(env
, grp
== GICV3_G0
? HCR_FMO
: HCR_IMO
)) {
1353 return icv_bpr_read(env
, ri
);
1356 if (grp
== GICV3_G1
&& gicv3_use_ns_bank(env
)) {
1360 if (grp
== GICV3_G1
&& !arm_is_el3_or_mon(env
) &&
1361 (cs
->icc_ctlr_el1
[GICV3_S
] & ICC_CTLR_EL1_CBPR
)) {
1362 /* CBPR_EL1S means secure EL1 or AArch32 EL3 !Mon BPR1 accesses
1368 if (grp
== GICV3_G1NS
&& arm_current_el(env
) < 3 &&
1369 (cs
->icc_ctlr_el1
[GICV3_NS
] & ICC_CTLR_EL1_CBPR
)) {
1370 /* reads return bpr0 + 1 sat to 7, writes ignored */
1375 bpr
= cs
->icc_bpr
[grp
];
1381 trace_gicv3_icc_bpr_read(ri
->crm
== 8 ? 0 : 1, gicv3_redist_affid(cs
), bpr
);
1386 static void icc_bpr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1389 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1390 int grp
= (ri
->crm
== 8) ? GICV3_G0
: GICV3_G1
;
1392 if (icv_access(env
, grp
== GICV3_G0
? HCR_FMO
: HCR_IMO
)) {
1393 icv_bpr_write(env
, ri
, value
);
1397 trace_gicv3_icc_bpr_write(ri
->crm
== 8 ? 0 : 1,
1398 gicv3_redist_affid(cs
), value
);
1400 if (grp
== GICV3_G1
&& gicv3_use_ns_bank(env
)) {
1404 if (grp
== GICV3_G1
&& !arm_is_el3_or_mon(env
) &&
1405 (cs
->icc_ctlr_el1
[GICV3_S
] & ICC_CTLR_EL1_CBPR
)) {
1406 /* CBPR_EL1S means secure EL1 or AArch32 EL3 !Mon BPR1 accesses
1412 if (grp
== GICV3_G1NS
&& arm_current_el(env
) < 3 &&
1413 (cs
->icc_ctlr_el1
[GICV3_NS
] & ICC_CTLR_EL1_CBPR
)) {
1414 /* reads return bpr0 + 1 sat to 7, writes ignored */
1418 cs
->icc_bpr
[grp
] = value
& 7;
1419 gicv3_cpuif_update(cs
);
1422 static uint64_t icc_ap_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1424 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1427 int regno
= ri
->opc2
& 3;
1428 int grp
= ri
->crm
& 1 ? GICV3_G0
: GICV3_G1
;
1430 if (icv_access(env
, grp
== GICV3_G0
? HCR_FMO
: HCR_IMO
)) {
1431 return icv_ap_read(env
, ri
);
1434 if (grp
== GICV3_G1
&& gicv3_use_ns_bank(env
)) {
1438 value
= cs
->icc_apr
[grp
][regno
];
1440 trace_gicv3_icc_ap_read(ri
->crm
& 1, regno
, gicv3_redist_affid(cs
), value
);
1444 static void icc_ap_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1447 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1449 int regno
= ri
->opc2
& 3;
1450 int grp
= ri
->crm
& 1 ? GICV3_G0
: GICV3_G1
;
1452 if (icv_access(env
, grp
== GICV3_G0
? HCR_FMO
: HCR_IMO
)) {
1453 icv_ap_write(env
, ri
, value
);
1457 trace_gicv3_icc_ap_write(ri
->crm
& 1, regno
, gicv3_redist_affid(cs
), value
);
1459 if (grp
== GICV3_G1
&& gicv3_use_ns_bank(env
)) {
1463 /* It's not possible to claim that a Non-secure interrupt is active
1464 * at a priority outside the Non-secure range (128..255), since this
1465 * would otherwise allow malicious NS code to block delivery of S interrupts
1466 * by writing a bad value to these registers.
1468 if (grp
== GICV3_G1NS
&& regno
< 2 && arm_feature(env
, ARM_FEATURE_EL3
)) {
1472 cs
->icc_apr
[grp
][regno
] = value
& 0xFFFFFFFFU
;
1473 gicv3_cpuif_update(cs
);
1476 static void icc_dir_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1479 /* Deactivate interrupt */
1480 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1481 int irq
= value
& 0xffffff;
1482 bool irq_is_secure
, single_sec_state
, irq_is_grp0
;
1483 bool route_fiq_to_el3
, route_irq_to_el3
, route_fiq_to_el2
, route_irq_to_el2
;
1485 if (icv_access(env
, HCR_FMO
| HCR_IMO
)) {
1486 icv_dir_write(env
, ri
, value
);
1490 trace_gicv3_icc_dir_write(gicv3_redist_affid(cs
), value
);
1492 if (irq
>= cs
->gic
->num_irq
) {
1493 /* Also catches special interrupt numbers and LPIs */
1497 if (!icc_eoi_split(env
, cs
)) {
1501 int grp
= gicv3_irq_group(cs
->gic
, cs
, irq
);
1503 single_sec_state
= cs
->gic
->gicd_ctlr
& GICD_CTLR_DS
;
1504 irq_is_secure
= !single_sec_state
&& (grp
!= GICV3_G1NS
);
1505 irq_is_grp0
= grp
== GICV3_G0
;
1507 /* Check whether we're allowed to deactivate this interrupt based
1508 * on its group and the current CPU state.
1509 * These checks are laid out to correspond to the spec's pseudocode.
1511 route_fiq_to_el3
= env
->cp15
.scr_el3
& SCR_FIQ
;
1512 route_irq_to_el3
= env
->cp15
.scr_el3
& SCR_IRQ
;
1513 /* No need to include !IsSecure in route_*_to_el2 as it's only
1514 * tested in cases where we know !IsSecure is true.
1516 route_fiq_to_el2
= env
->cp15
.hcr_el2
& HCR_FMO
;
1517 route_irq_to_el2
= env
->cp15
.hcr_el2
& HCR_FMO
;
1519 switch (arm_current_el(env
)) {
1523 if (single_sec_state
&& irq_is_grp0
&& !route_fiq_to_el3
) {
1526 if (!irq_is_secure
&& !irq_is_grp0
&& !route_irq_to_el3
) {
1531 if (!arm_is_secure_below_el3(env
)) {
1532 if (single_sec_state
&& irq_is_grp0
&&
1533 !route_fiq_to_el3
&& !route_fiq_to_el2
) {
1536 if (!irq_is_secure
&& !irq_is_grp0
&&
1537 !route_irq_to_el3
&& !route_irq_to_el2
) {
1541 if (irq_is_grp0
&& !route_fiq_to_el3
) {
1545 (!irq_is_secure
|| !single_sec_state
) &&
1546 !route_irq_to_el3
) {
1552 g_assert_not_reached();
1555 icc_deactivate_irq(cs
, irq
);
1558 static uint64_t icc_rpr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1560 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1563 if (icv_access(env
, HCR_FMO
| HCR_IMO
)) {
1564 return icv_rpr_read(env
, ri
);
1567 prio
= icc_highest_active_prio(cs
);
1569 if (arm_feature(env
, ARM_FEATURE_EL3
) &&
1570 !arm_is_secure(env
) && (env
->cp15
.scr_el3
& SCR_FIQ
)) {
1571 /* NS GIC access and Group 0 is inaccessible to NS */
1573 /* NS mustn't see priorities in the Secure half of the range */
1575 } else if (prio
!= 0xff) {
1576 /* Non-idle priority: show the Non-secure view of it */
1577 prio
= (prio
<< 1) & 0xff;
1581 trace_gicv3_icc_rpr_read(gicv3_redist_affid(cs
), prio
);
1585 static void icc_generate_sgi(CPUARMState
*env
, GICv3CPUState
*cs
,
1586 uint64_t value
, int grp
, bool ns
)
1588 GICv3State
*s
= cs
->gic
;
1590 /* Extract Aff3/Aff2/Aff1 and shift into the bottom 24 bits */
1591 uint64_t aff
= extract64(value
, 48, 8) << 16 |
1592 extract64(value
, 32, 8) << 8 |
1593 extract64(value
, 16, 8);
1594 uint32_t targetlist
= extract64(value
, 0, 16);
1595 uint32_t irq
= extract64(value
, 24, 4);
1596 bool irm
= extract64(value
, 40, 1);
1599 if (grp
== GICV3_G1
&& s
->gicd_ctlr
& GICD_CTLR_DS
) {
1600 /* If GICD_CTLR.DS == 1, the Distributor treats Secure Group 1
1601 * interrupts as Group 0 interrupts and must send Secure Group 0
1602 * interrupts to the target CPUs.
1607 trace_gicv3_icc_generate_sgi(gicv3_redist_affid(cs
), irq
, irm
,
1610 for (i
= 0; i
< s
->num_cpu
; i
++) {
1611 GICv3CPUState
*ocs
= &s
->cpu
[i
];
1614 /* IRM == 1 : route to all CPUs except self */
1619 /* IRM == 0 : route to Aff3.Aff2.Aff1.n for all n in [0..15]
1620 * where the corresponding bit is set in targetlist
1624 if (ocs
->gicr_typer
>> 40 != aff
) {
1627 aff0
= extract64(ocs
->gicr_typer
, 32, 8);
1628 if (aff0
> 15 || extract32(targetlist
, aff0
, 1) == 0) {
1633 /* The redistributor will check against its own GICR_NSACR as needed */
1634 gicv3_redist_send_sgi(ocs
, grp
, irq
, ns
);
1638 static void icc_sgi0r_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1641 /* Generate Secure Group 0 SGI. */
1642 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1643 bool ns
= !arm_is_secure(env
);
1645 icc_generate_sgi(env
, cs
, value
, GICV3_G0
, ns
);
1648 static void icc_sgi1r_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1651 /* Generate Group 1 SGI for the current Security state */
1652 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1654 bool ns
= !arm_is_secure(env
);
1656 grp
= ns
? GICV3_G1NS
: GICV3_G1
;
1657 icc_generate_sgi(env
, cs
, value
, grp
, ns
);
1660 static void icc_asgi1r_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1663 /* Generate Group 1 SGI for the Security state that is not
1666 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1668 bool ns
= !arm_is_secure(env
);
1670 grp
= ns
? GICV3_G1
: GICV3_G1NS
;
1671 icc_generate_sgi(env
, cs
, value
, grp
, ns
);
1674 static uint64_t icc_igrpen_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1676 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1677 int grp
= ri
->opc2
& 1 ? GICV3_G1
: GICV3_G0
;
1680 if (icv_access(env
, grp
== GICV3_G0
? HCR_FMO
: HCR_IMO
)) {
1681 return icv_igrpen_read(env
, ri
);
1684 if (grp
== GICV3_G1
&& gicv3_use_ns_bank(env
)) {
1688 value
= cs
->icc_igrpen
[grp
];
1689 trace_gicv3_icc_igrpen_read(ri
->opc2
& 1 ? 1 : 0,
1690 gicv3_redist_affid(cs
), value
);
1694 static void icc_igrpen_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1697 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1698 int grp
= ri
->opc2
& 1 ? GICV3_G1
: GICV3_G0
;
1700 if (icv_access(env
, grp
== GICV3_G0
? HCR_FMO
: HCR_IMO
)) {
1701 icv_igrpen_write(env
, ri
, value
);
1705 trace_gicv3_icc_igrpen_write(ri
->opc2
& 1 ? 1 : 0,
1706 gicv3_redist_affid(cs
), value
);
1708 if (grp
== GICV3_G1
&& gicv3_use_ns_bank(env
)) {
1712 cs
->icc_igrpen
[grp
] = value
& ICC_IGRPEN_ENABLE
;
1713 gicv3_cpuif_update(cs
);
1716 static uint64_t icc_igrpen1_el3_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1718 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1721 /* IGRPEN1_EL3 bits 0 and 1 are r/w aliases into IGRPEN1_EL1 NS and S */
1722 value
= cs
->icc_igrpen
[GICV3_G1NS
] | (cs
->icc_igrpen
[GICV3_G1
] << 1);
1723 trace_gicv3_icc_igrpen1_el3_read(gicv3_redist_affid(cs
), value
);
1727 static void icc_igrpen1_el3_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1730 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1732 trace_gicv3_icc_igrpen1_el3_write(gicv3_redist_affid(cs
), value
);
1734 /* IGRPEN1_EL3 bits 0 and 1 are r/w aliases into IGRPEN1_EL1 NS and S */
1735 cs
->icc_igrpen
[GICV3_G1NS
] = extract32(value
, 0, 1);
1736 cs
->icc_igrpen
[GICV3_G1
] = extract32(value
, 1, 1);
1737 gicv3_cpuif_update(cs
);
1740 static uint64_t icc_ctlr_el1_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1742 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1743 int bank
= gicv3_use_ns_bank(env
) ? GICV3_NS
: GICV3_S
;
1746 if (icv_access(env
, HCR_FMO
| HCR_IMO
)) {
1747 return icv_ctlr_read(env
, ri
);
1750 value
= cs
->icc_ctlr_el1
[bank
];
1751 trace_gicv3_icc_ctlr_read(gicv3_redist_affid(cs
), value
);
1755 static void icc_ctlr_el1_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1758 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1759 int bank
= gicv3_use_ns_bank(env
) ? GICV3_NS
: GICV3_S
;
1762 if (icv_access(env
, HCR_FMO
| HCR_IMO
)) {
1763 icv_ctlr_write(env
, ri
, value
);
1767 trace_gicv3_icc_ctlr_write(gicv3_redist_affid(cs
), value
);
1769 /* Only CBPR and EOIMODE can be RW;
1770 * for us PMHE is RAZ/WI (we don't implement 1-of-N interrupts or
1771 * the asseciated priority-based routing of them);
1772 * if EL3 is implemented and GICD_CTLR.DS == 0, then PMHE and CBPR are RO.
1774 if (arm_feature(env
, ARM_FEATURE_EL3
) &&
1775 ((cs
->gic
->gicd_ctlr
& GICD_CTLR_DS
) == 0)) {
1776 mask
= ICC_CTLR_EL1_EOIMODE
;
1778 mask
= ICC_CTLR_EL1_CBPR
| ICC_CTLR_EL1_EOIMODE
;
1781 cs
->icc_ctlr_el1
[bank
] &= ~mask
;
1782 cs
->icc_ctlr_el1
[bank
] |= (value
& mask
);
1783 gicv3_cpuif_update(cs
);
1787 static uint64_t icc_ctlr_el3_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1789 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1792 value
= cs
->icc_ctlr_el3
;
1793 if (cs
->icc_ctlr_el1
[GICV3_NS
] & ICC_CTLR_EL1_EOIMODE
) {
1794 value
|= ICC_CTLR_EL3_EOIMODE_EL1NS
;
1796 if (cs
->icc_ctlr_el1
[GICV3_NS
] & ICC_CTLR_EL1_CBPR
) {
1797 value
|= ICC_CTLR_EL3_CBPR_EL1NS
;
1799 if (cs
->icc_ctlr_el1
[GICV3_NS
] & ICC_CTLR_EL1_EOIMODE
) {
1800 value
|= ICC_CTLR_EL3_EOIMODE_EL1S
;
1802 if (cs
->icc_ctlr_el1
[GICV3_NS
] & ICC_CTLR_EL1_CBPR
) {
1803 value
|= ICC_CTLR_EL3_CBPR_EL1S
;
1806 trace_gicv3_icc_ctlr_el3_read(gicv3_redist_affid(cs
), value
);
1810 static void icc_ctlr_el3_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1813 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1816 trace_gicv3_icc_ctlr_el3_write(gicv3_redist_affid(cs
), value
);
1818 /* *_EL1NS and *_EL1S bits are aliases into the ICC_CTLR_EL1 bits. */
1819 cs
->icc_ctlr_el1
[GICV3_NS
] &= (ICC_CTLR_EL1_CBPR
| ICC_CTLR_EL1_EOIMODE
);
1820 if (value
& ICC_CTLR_EL3_EOIMODE_EL1NS
) {
1821 cs
->icc_ctlr_el1
[GICV3_NS
] |= ICC_CTLR_EL1_EOIMODE
;
1823 if (value
& ICC_CTLR_EL3_CBPR_EL1NS
) {
1824 cs
->icc_ctlr_el1
[GICV3_NS
] |= ICC_CTLR_EL1_CBPR
;
1827 cs
->icc_ctlr_el1
[GICV3_S
] &= (ICC_CTLR_EL1_CBPR
| ICC_CTLR_EL1_EOIMODE
);
1828 if (value
& ICC_CTLR_EL3_EOIMODE_EL1S
) {
1829 cs
->icc_ctlr_el1
[GICV3_S
] |= ICC_CTLR_EL1_EOIMODE
;
1831 if (value
& ICC_CTLR_EL3_CBPR_EL1S
) {
1832 cs
->icc_ctlr_el1
[GICV3_S
] |= ICC_CTLR_EL1_CBPR
;
1835 /* The only bit stored in icc_ctlr_el3 which is writeable is EOIMODE_EL3: */
1836 mask
= ICC_CTLR_EL3_EOIMODE_EL3
;
1838 cs
->icc_ctlr_el3
&= ~mask
;
1839 cs
->icc_ctlr_el3
|= (value
& mask
);
1840 gicv3_cpuif_update(cs
);
1843 static CPAccessResult
gicv3_irqfiq_access(CPUARMState
*env
,
1844 const ARMCPRegInfo
*ri
, bool isread
)
1846 CPAccessResult r
= CP_ACCESS_OK
;
1847 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1848 int el
= arm_current_el(env
);
1850 if ((cs
->ich_hcr_el2
& ICH_HCR_EL2_TC
) &&
1851 el
== 1 && !arm_is_secure_below_el3(env
)) {
1852 /* Takes priority over a possible EL3 trap */
1853 return CP_ACCESS_TRAP_EL2
;
1856 if ((env
->cp15
.scr_el3
& (SCR_FIQ
| SCR_IRQ
)) == (SCR_FIQ
| SCR_IRQ
)) {
1859 if (arm_is_secure_below_el3(env
) ||
1860 ((env
->cp15
.hcr_el2
& (HCR_IMO
| HCR_FMO
)) == 0)) {
1861 r
= CP_ACCESS_TRAP_EL3
;
1865 r
= CP_ACCESS_TRAP_EL3
;
1868 if (!is_a64(env
) && !arm_is_el3_or_mon(env
)) {
1869 r
= CP_ACCESS_TRAP_EL3
;
1873 g_assert_not_reached();
1877 if (r
== CP_ACCESS_TRAP_EL3
&& !arm_el_is_aa64(env
, 3)) {
1883 static CPAccessResult
gicv3_dir_access(CPUARMState
*env
,
1884 const ARMCPRegInfo
*ri
, bool isread
)
1886 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1888 if ((cs
->ich_hcr_el2
& ICH_HCR_EL2_TDIR
) &&
1889 arm_current_el(env
) == 1 && !arm_is_secure_below_el3(env
)) {
1890 /* Takes priority over a possible EL3 trap */
1891 return CP_ACCESS_TRAP_EL2
;
1894 return gicv3_irqfiq_access(env
, ri
, isread
);
1897 static CPAccessResult
gicv3_sgi_access(CPUARMState
*env
,
1898 const ARMCPRegInfo
*ri
, bool isread
)
1900 if ((env
->cp15
.hcr_el2
& (HCR_IMO
| HCR_FMO
)) &&
1901 arm_current_el(env
) == 1 && !arm_is_secure_below_el3(env
)) {
1902 /* Takes priority over a possible EL3 trap */
1903 return CP_ACCESS_TRAP_EL2
;
1906 return gicv3_irqfiq_access(env
, ri
, isread
);
1909 static CPAccessResult
gicv3_fiq_access(CPUARMState
*env
,
1910 const ARMCPRegInfo
*ri
, bool isread
)
1912 CPAccessResult r
= CP_ACCESS_OK
;
1913 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1914 int el
= arm_current_el(env
);
1916 if ((cs
->ich_hcr_el2
& ICH_HCR_EL2_TALL0
) &&
1917 el
== 1 && !arm_is_secure_below_el3(env
)) {
1918 /* Takes priority over a possible EL3 trap */
1919 return CP_ACCESS_TRAP_EL2
;
1922 if (env
->cp15
.scr_el3
& SCR_FIQ
) {
1925 if (arm_is_secure_below_el3(env
) ||
1926 ((env
->cp15
.hcr_el2
& HCR_FMO
) == 0)) {
1927 r
= CP_ACCESS_TRAP_EL3
;
1931 r
= CP_ACCESS_TRAP_EL3
;
1934 if (!is_a64(env
) && !arm_is_el3_or_mon(env
)) {
1935 r
= CP_ACCESS_TRAP_EL3
;
1939 g_assert_not_reached();
1943 if (r
== CP_ACCESS_TRAP_EL3
&& !arm_el_is_aa64(env
, 3)) {
1949 static CPAccessResult
gicv3_irq_access(CPUARMState
*env
,
1950 const ARMCPRegInfo
*ri
, bool isread
)
1952 CPAccessResult r
= CP_ACCESS_OK
;
1953 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1954 int el
= arm_current_el(env
);
1956 if ((cs
->ich_hcr_el2
& ICH_HCR_EL2_TALL1
) &&
1957 el
== 1 && !arm_is_secure_below_el3(env
)) {
1958 /* Takes priority over a possible EL3 trap */
1959 return CP_ACCESS_TRAP_EL2
;
1962 if (env
->cp15
.scr_el3
& SCR_IRQ
) {
1965 if (arm_is_secure_below_el3(env
) ||
1966 ((env
->cp15
.hcr_el2
& HCR_IMO
) == 0)) {
1967 r
= CP_ACCESS_TRAP_EL3
;
1971 r
= CP_ACCESS_TRAP_EL3
;
1974 if (!is_a64(env
) && !arm_is_el3_or_mon(env
)) {
1975 r
= CP_ACCESS_TRAP_EL3
;
1979 g_assert_not_reached();
1983 if (r
== CP_ACCESS_TRAP_EL3
&& !arm_el_is_aa64(env
, 3)) {
1989 static void icc_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1991 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1993 cs
->icc_ctlr_el1
[GICV3_S
] = ICC_CTLR_EL1_A3V
|
1994 (1 << ICC_CTLR_EL1_IDBITS_SHIFT
) |
1995 (7 << ICC_CTLR_EL1_PRIBITS_SHIFT
);
1996 cs
->icc_ctlr_el1
[GICV3_NS
] = ICC_CTLR_EL1_A3V
|
1997 (1 << ICC_CTLR_EL1_IDBITS_SHIFT
) |
1998 (7 << ICC_CTLR_EL1_PRIBITS_SHIFT
);
1999 cs
->icc_pmr_el1
= 0;
2000 cs
->icc_bpr
[GICV3_G0
] = GIC_MIN_BPR
;
2001 cs
->icc_bpr
[GICV3_G1
] = GIC_MIN_BPR
;
2002 if (arm_feature(env
, ARM_FEATURE_EL3
)) {
2003 cs
->icc_bpr
[GICV3_G1NS
] = GIC_MIN_BPR_NS
;
2005 cs
->icc_bpr
[GICV3_G1NS
] = GIC_MIN_BPR
;
2007 memset(cs
->icc_apr
, 0, sizeof(cs
->icc_apr
));
2008 memset(cs
->icc_igrpen
, 0, sizeof(cs
->icc_igrpen
));
2009 cs
->icc_ctlr_el3
= ICC_CTLR_EL3_NDS
| ICC_CTLR_EL3_A3V
|
2010 (1 << ICC_CTLR_EL3_IDBITS_SHIFT
) |
2011 (7 << ICC_CTLR_EL3_PRIBITS_SHIFT
);
2013 memset(cs
->ich_apr
, 0, sizeof(cs
->ich_apr
));
2014 cs
->ich_hcr_el2
= 0;
2015 memset(cs
->ich_lr_el2
, 0, sizeof(cs
->ich_lr_el2
));
2016 cs
->ich_vmcr_el2
= ICH_VMCR_EL2_VFIQEN
|
2017 (icv_min_vbpr(cs
) << ICH_VMCR_EL2_VBPR1_SHIFT
) |
2018 (icv_min_vbpr(cs
) << ICH_VMCR_EL2_VBPR0_SHIFT
);
2021 static const ARMCPRegInfo gicv3_cpuif_reginfo
[] = {
2022 { .name
= "ICC_PMR_EL1", .state
= ARM_CP_STATE_BOTH
,
2023 .opc0
= 3, .opc1
= 0, .crn
= 4, .crm
= 6, .opc2
= 0,
2024 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2025 .access
= PL1_RW
, .accessfn
= gicv3_irqfiq_access
,
2026 .readfn
= icc_pmr_read
,
2027 .writefn
= icc_pmr_write
,
2028 /* We hang the whole cpu interface reset routine off here
2029 * rather than parcelling it out into one little function
2032 .resetfn
= icc_reset
,
2034 { .name
= "ICC_IAR0_EL1", .state
= ARM_CP_STATE_BOTH
,
2035 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 8, .opc2
= 0,
2036 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2037 .access
= PL1_R
, .accessfn
= gicv3_fiq_access
,
2038 .readfn
= icc_iar0_read
,
2040 { .name
= "ICC_EOIR0_EL1", .state
= ARM_CP_STATE_BOTH
,
2041 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 8, .opc2
= 1,
2042 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2043 .access
= PL1_W
, .accessfn
= gicv3_fiq_access
,
2044 .writefn
= icc_eoir_write
,
2046 { .name
= "ICC_HPPIR0_EL1", .state
= ARM_CP_STATE_BOTH
,
2047 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 8, .opc2
= 2,
2048 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2049 .access
= PL1_R
, .accessfn
= gicv3_fiq_access
,
2050 .readfn
= icc_hppir0_read
,
2052 { .name
= "ICC_BPR0_EL1", .state
= ARM_CP_STATE_BOTH
,
2053 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 8, .opc2
= 3,
2054 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2055 .access
= PL1_RW
, .accessfn
= gicv3_fiq_access
,
2056 .readfn
= icc_bpr_read
,
2057 .writefn
= icc_bpr_write
,
2059 { .name
= "ICC_AP0R0_EL1", .state
= ARM_CP_STATE_BOTH
,
2060 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 8, .opc2
= 4,
2061 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2062 .access
= PL1_RW
, .accessfn
= gicv3_fiq_access
,
2063 .readfn
= icc_ap_read
,
2064 .writefn
= icc_ap_write
,
2066 { .name
= "ICC_AP0R1_EL1", .state
= ARM_CP_STATE_BOTH
,
2067 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 8, .opc2
= 5,
2068 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2069 .access
= PL1_RW
, .accessfn
= gicv3_fiq_access
,
2070 .readfn
= icc_ap_read
,
2071 .writefn
= icc_ap_write
,
2073 { .name
= "ICC_AP0R2_EL1", .state
= ARM_CP_STATE_BOTH
,
2074 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 8, .opc2
= 6,
2075 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2076 .access
= PL1_RW
, .accessfn
= gicv3_fiq_access
,
2077 .readfn
= icc_ap_read
,
2078 .writefn
= icc_ap_write
,
2080 { .name
= "ICC_AP0R3_EL1", .state
= ARM_CP_STATE_BOTH
,
2081 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 8, .opc2
= 7,
2082 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2083 .access
= PL1_RW
, .accessfn
= gicv3_fiq_access
,
2084 .readfn
= icc_ap_read
,
2085 .writefn
= icc_ap_write
,
2087 /* All the ICC_AP1R*_EL1 registers are banked */
2088 { .name
= "ICC_AP1R0_EL1", .state
= ARM_CP_STATE_BOTH
,
2089 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 9, .opc2
= 0,
2090 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2091 .access
= PL1_RW
, .accessfn
= gicv3_irq_access
,
2092 .readfn
= icc_ap_read
,
2093 .writefn
= icc_ap_write
,
2095 { .name
= "ICC_AP1R1_EL1", .state
= ARM_CP_STATE_BOTH
,
2096 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 9, .opc2
= 1,
2097 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2098 .access
= PL1_RW
, .accessfn
= gicv3_irq_access
,
2099 .readfn
= icc_ap_read
,
2100 .writefn
= icc_ap_write
,
2102 { .name
= "ICC_AP1R2_EL1", .state
= ARM_CP_STATE_BOTH
,
2103 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 9, .opc2
= 2,
2104 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2105 .access
= PL1_RW
, .accessfn
= gicv3_irq_access
,
2106 .readfn
= icc_ap_read
,
2107 .writefn
= icc_ap_write
,
2109 { .name
= "ICC_AP1R3_EL1", .state
= ARM_CP_STATE_BOTH
,
2110 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 9, .opc2
= 3,
2111 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2112 .access
= PL1_RW
, .accessfn
= gicv3_irq_access
,
2113 .readfn
= icc_ap_read
,
2114 .writefn
= icc_ap_write
,
2116 { .name
= "ICC_DIR_EL1", .state
= ARM_CP_STATE_BOTH
,
2117 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 11, .opc2
= 1,
2118 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2119 .access
= PL1_W
, .accessfn
= gicv3_dir_access
,
2120 .writefn
= icc_dir_write
,
2122 { .name
= "ICC_RPR_EL1", .state
= ARM_CP_STATE_BOTH
,
2123 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 11, .opc2
= 3,
2124 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2125 .access
= PL1_R
, .accessfn
= gicv3_irqfiq_access
,
2126 .readfn
= icc_rpr_read
,
2128 { .name
= "ICC_SGI1R_EL1", .state
= ARM_CP_STATE_AA64
,
2129 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 11, .opc2
= 5,
2130 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2131 .access
= PL1_W
, .accessfn
= gicv3_sgi_access
,
2132 .writefn
= icc_sgi1r_write
,
2134 { .name
= "ICC_SGI1R",
2135 .cp
= 15, .opc1
= 0, .crm
= 12,
2136 .type
= ARM_CP_64BIT
| ARM_CP_IO
| ARM_CP_NO_RAW
,
2137 .access
= PL1_W
, .accessfn
= gicv3_sgi_access
,
2138 .writefn
= icc_sgi1r_write
,
2140 { .name
= "ICC_ASGI1R_EL1", .state
= ARM_CP_STATE_AA64
,
2141 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 11, .opc2
= 6,
2142 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2143 .access
= PL1_W
, .accessfn
= gicv3_sgi_access
,
2144 .writefn
= icc_asgi1r_write
,
2146 { .name
= "ICC_ASGI1R",
2147 .cp
= 15, .opc1
= 1, .crm
= 12,
2148 .type
= ARM_CP_64BIT
| ARM_CP_IO
| ARM_CP_NO_RAW
,
2149 .access
= PL1_W
, .accessfn
= gicv3_sgi_access
,
2150 .writefn
= icc_asgi1r_write
,
2152 { .name
= "ICC_SGI0R_EL1", .state
= ARM_CP_STATE_AA64
,
2153 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 11, .opc2
= 7,
2154 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2155 .access
= PL1_W
, .accessfn
= gicv3_sgi_access
,
2156 .writefn
= icc_sgi0r_write
,
2158 { .name
= "ICC_SGI0R",
2159 .cp
= 15, .opc1
= 2, .crm
= 12,
2160 .type
= ARM_CP_64BIT
| ARM_CP_IO
| ARM_CP_NO_RAW
,
2161 .access
= PL1_W
, .accessfn
= gicv3_sgi_access
,
2162 .writefn
= icc_sgi0r_write
,
2164 { .name
= "ICC_IAR1_EL1", .state
= ARM_CP_STATE_BOTH
,
2165 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 12, .opc2
= 0,
2166 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2167 .access
= PL1_R
, .accessfn
= gicv3_irq_access
,
2168 .readfn
= icc_iar1_read
,
2170 { .name
= "ICC_EOIR1_EL1", .state
= ARM_CP_STATE_BOTH
,
2171 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 12, .opc2
= 1,
2172 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2173 .access
= PL1_W
, .accessfn
= gicv3_irq_access
,
2174 .writefn
= icc_eoir_write
,
2176 { .name
= "ICC_HPPIR1_EL1", .state
= ARM_CP_STATE_BOTH
,
2177 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 12, .opc2
= 2,
2178 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2179 .access
= PL1_R
, .accessfn
= gicv3_irq_access
,
2180 .readfn
= icc_hppir1_read
,
2182 /* This register is banked */
2183 { .name
= "ICC_BPR1_EL1", .state
= ARM_CP_STATE_BOTH
,
2184 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 12, .opc2
= 3,
2185 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2186 .access
= PL1_RW
, .accessfn
= gicv3_irq_access
,
2187 .readfn
= icc_bpr_read
,
2188 .writefn
= icc_bpr_write
,
2190 /* This register is banked */
2191 { .name
= "ICC_CTLR_EL1", .state
= ARM_CP_STATE_BOTH
,
2192 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 12, .opc2
= 4,
2193 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2194 .access
= PL1_RW
, .accessfn
= gicv3_irqfiq_access
,
2195 .readfn
= icc_ctlr_el1_read
,
2196 .writefn
= icc_ctlr_el1_write
,
2198 { .name
= "ICC_SRE_EL1", .state
= ARM_CP_STATE_BOTH
,
2199 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 12, .opc2
= 5,
2200 .type
= ARM_CP_NO_RAW
| ARM_CP_CONST
,
2202 /* We don't support IRQ/FIQ bypass and system registers are
2203 * always enabled, so all our bits are RAZ/WI or RAO/WI.
2204 * This register is banked but since it's constant we don't
2205 * need to do anything special.
2209 { .name
= "ICC_IGRPEN0_EL1", .state
= ARM_CP_STATE_BOTH
,
2210 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 12, .opc2
= 6,
2211 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2212 .access
= PL1_RW
, .accessfn
= gicv3_fiq_access
,
2213 .readfn
= icc_igrpen_read
,
2214 .writefn
= icc_igrpen_write
,
2216 /* This register is banked */
2217 { .name
= "ICC_IGRPEN1_EL1", .state
= ARM_CP_STATE_BOTH
,
2218 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 12, .opc2
= 7,
2219 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2220 .access
= PL1_RW
, .accessfn
= gicv3_irq_access
,
2221 .readfn
= icc_igrpen_read
,
2222 .writefn
= icc_igrpen_write
,
2224 { .name
= "ICC_SRE_EL2", .state
= ARM_CP_STATE_BOTH
,
2225 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 9, .opc2
= 5,
2226 .type
= ARM_CP_NO_RAW
| ARM_CP_CONST
,
2228 /* We don't support IRQ/FIQ bypass and system registers are
2229 * always enabled, so all our bits are RAZ/WI or RAO/WI.
2233 { .name
= "ICC_CTLR_EL3", .state
= ARM_CP_STATE_BOTH
,
2234 .opc0
= 3, .opc1
= 6, .crn
= 12, .crm
= 12, .opc2
= 4,
2235 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2237 .readfn
= icc_ctlr_el3_read
,
2238 .writefn
= icc_ctlr_el3_write
,
2240 { .name
= "ICC_SRE_EL3", .state
= ARM_CP_STATE_BOTH
,
2241 .opc0
= 3, .opc1
= 6, .crn
= 12, .crm
= 12, .opc2
= 5,
2242 .type
= ARM_CP_NO_RAW
| ARM_CP_CONST
,
2244 /* We don't support IRQ/FIQ bypass and system registers are
2245 * always enabled, so all our bits are RAZ/WI or RAO/WI.
2249 { .name
= "ICC_IGRPEN1_EL3", .state
= ARM_CP_STATE_BOTH
,
2250 .opc0
= 3, .opc1
= 6, .crn
= 12, .crm
= 12, .opc2
= 7,
2251 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2253 .readfn
= icc_igrpen1_el3_read
,
2254 .writefn
= icc_igrpen1_el3_write
,
2259 static uint64_t ich_ap_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2261 GICv3CPUState
*cs
= icc_cs_from_env(env
);
2262 int regno
= ri
->opc2
& 3;
2263 int grp
= ri
->crm
& 1 ? GICV3_G0
: GICV3_G1NS
;
2266 value
= cs
->ich_apr
[grp
][regno
];
2267 trace_gicv3_ich_ap_read(ri
->crm
& 1, regno
, gicv3_redist_affid(cs
), value
);
2271 static void ich_ap_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2274 GICv3CPUState
*cs
= icc_cs_from_env(env
);
2275 int regno
= ri
->opc2
& 3;
2276 int grp
= ri
->crm
& 1 ? GICV3_G0
: GICV3_G1NS
;
2278 trace_gicv3_ich_ap_write(ri
->crm
& 1, regno
, gicv3_redist_affid(cs
), value
);
2280 cs
->ich_apr
[grp
][regno
] = value
& 0xFFFFFFFFU
;
2281 gicv3_cpuif_virt_update(cs
);
2284 static uint64_t ich_hcr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2286 GICv3CPUState
*cs
= icc_cs_from_env(env
);
2287 uint64_t value
= cs
->ich_hcr_el2
;
2289 trace_gicv3_ich_hcr_read(gicv3_redist_affid(cs
), value
);
2293 static void ich_hcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2296 GICv3CPUState
*cs
= icc_cs_from_env(env
);
2298 trace_gicv3_ich_hcr_write(gicv3_redist_affid(cs
), value
);
2300 value
&= ICH_HCR_EL2_EN
| ICH_HCR_EL2_UIE
| ICH_HCR_EL2_LRENPIE
|
2301 ICH_HCR_EL2_NPIE
| ICH_HCR_EL2_VGRP0EIE
| ICH_HCR_EL2_VGRP0DIE
|
2302 ICH_HCR_EL2_VGRP1EIE
| ICH_HCR_EL2_VGRP1DIE
| ICH_HCR_EL2_TC
|
2303 ICH_HCR_EL2_TALL0
| ICH_HCR_EL2_TALL1
| ICH_HCR_EL2_TSEI
|
2304 ICH_HCR_EL2_TDIR
| ICH_HCR_EL2_EOICOUNT_MASK
;
2306 cs
->ich_hcr_el2
= value
;
2307 gicv3_cpuif_virt_update(cs
);
2310 static uint64_t ich_vmcr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2312 GICv3CPUState
*cs
= icc_cs_from_env(env
);
2313 uint64_t value
= cs
->ich_vmcr_el2
;
2315 trace_gicv3_ich_vmcr_read(gicv3_redist_affid(cs
), value
);
2319 static void ich_vmcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2322 GICv3CPUState
*cs
= icc_cs_from_env(env
);
2324 trace_gicv3_ich_vmcr_write(gicv3_redist_affid(cs
), value
);
2326 value
&= ICH_VMCR_EL2_VENG0
| ICH_VMCR_EL2_VENG1
| ICH_VMCR_EL2_VCBPR
|
2327 ICH_VMCR_EL2_VEOIM
| ICH_VMCR_EL2_VBPR1_MASK
|
2328 ICH_VMCR_EL2_VBPR0_MASK
| ICH_VMCR_EL2_VPMR_MASK
;
2329 value
|= ICH_VMCR_EL2_VFIQEN
;
2331 cs
->ich_vmcr_el2
= value
;
2332 /* Enforce "writing BPRs to less than minimum sets them to the minimum"
2333 * by reading and writing back the fields.
2335 write_vbpr(cs
, GICV3_G1
, read_vbpr(cs
, GICV3_G0
));
2336 write_vbpr(cs
, GICV3_G1
, read_vbpr(cs
, GICV3_G1
));
2338 gicv3_cpuif_virt_update(cs
);
2341 static uint64_t ich_lr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2343 GICv3CPUState
*cs
= icc_cs_from_env(env
);
2344 int regno
= ri
->opc2
| ((ri
->crm
& 1) << 3);
2347 /* This read function handles all of:
2348 * 64-bit reads of the whole LR
2349 * 32-bit reads of the low half of the LR
2350 * 32-bit reads of the high half of the LR
2352 if (ri
->state
== ARM_CP_STATE_AA32
) {
2353 if (ri
->crm
>= 14) {
2354 value
= extract64(cs
->ich_lr_el2
[regno
], 32, 32);
2355 trace_gicv3_ich_lrc_read(regno
, gicv3_redist_affid(cs
), value
);
2357 value
= extract64(cs
->ich_lr_el2
[regno
], 0, 32);
2358 trace_gicv3_ich_lr32_read(regno
, gicv3_redist_affid(cs
), value
);
2361 value
= cs
->ich_lr_el2
[regno
];
2362 trace_gicv3_ich_lr_read(regno
, gicv3_redist_affid(cs
), value
);
2368 static void ich_lr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2371 GICv3CPUState
*cs
= icc_cs_from_env(env
);
2372 int regno
= ri
->opc2
| ((ri
->crm
& 1) << 3);
2374 /* This write function handles all of:
2375 * 64-bit writes to the whole LR
2376 * 32-bit writes to the low half of the LR
2377 * 32-bit writes to the high half of the LR
2379 if (ri
->state
== ARM_CP_STATE_AA32
) {
2380 if (ri
->crm
>= 14) {
2381 trace_gicv3_ich_lrc_write(regno
, gicv3_redist_affid(cs
), value
);
2382 value
= deposit64(cs
->ich_lr_el2
[regno
], 32, 32, value
);
2384 trace_gicv3_ich_lr32_write(regno
, gicv3_redist_affid(cs
), value
);
2385 value
= deposit64(cs
->ich_lr_el2
[regno
], 0, 32, value
);
2388 trace_gicv3_ich_lr_write(regno
, gicv3_redist_affid(cs
), value
);
2391 /* Enforce RES0 bits in priority field */
2392 if (cs
->vpribits
< 8) {
2393 value
= deposit64(value
, ICH_LR_EL2_PRIORITY_SHIFT
,
2394 8 - cs
->vpribits
, 0);
2397 cs
->ich_lr_el2
[regno
] = value
;
2398 gicv3_cpuif_virt_update(cs
);
2401 static uint64_t ich_vtr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2403 GICv3CPUState
*cs
= icc_cs_from_env(env
);
2406 value
= ((cs
->num_list_regs
- 1) << ICH_VTR_EL2_LISTREGS_SHIFT
)
2407 | ICH_VTR_EL2_TDS
| ICH_VTR_EL2_NV4
| ICH_VTR_EL2_A3V
2408 | (1 << ICH_VTR_EL2_IDBITS_SHIFT
)
2409 | ((cs
->vprebits
- 1) << ICH_VTR_EL2_PREBITS_SHIFT
)
2410 | ((cs
->vpribits
- 1) << ICH_VTR_EL2_PRIBITS_SHIFT
);
2412 trace_gicv3_ich_vtr_read(gicv3_redist_affid(cs
), value
);
2416 static uint64_t ich_misr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2418 GICv3CPUState
*cs
= icc_cs_from_env(env
);
2419 uint64_t value
= maintenance_interrupt_state(cs
);
2421 trace_gicv3_ich_misr_read(gicv3_redist_affid(cs
), value
);
2425 static uint64_t ich_eisr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2427 GICv3CPUState
*cs
= icc_cs_from_env(env
);
2428 uint64_t value
= eoi_maintenance_interrupt_state(cs
, NULL
);
2430 trace_gicv3_ich_eisr_read(gicv3_redist_affid(cs
), value
);
2434 static uint64_t ich_elrsr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2436 GICv3CPUState
*cs
= icc_cs_from_env(env
);
2440 for (i
= 0; i
< cs
->num_list_regs
; i
++) {
2441 uint64_t lr
= cs
->ich_lr_el2
[i
];
2443 if ((lr
& ICH_LR_EL2_STATE_MASK
) == 0 &&
2444 ((lr
& ICH_LR_EL2_HW
) != 0 || (lr
& ICH_LR_EL2_EOI
) == 0)) {
2449 trace_gicv3_ich_elrsr_read(gicv3_redist_affid(cs
), value
);
2453 static const ARMCPRegInfo gicv3_cpuif_hcr_reginfo
[] = {
2454 { .name
= "ICH_AP0R0_EL2", .state
= ARM_CP_STATE_BOTH
,
2455 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 8, .opc2
= 0,
2456 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2458 .readfn
= ich_ap_read
,
2459 .writefn
= ich_ap_write
,
2461 { .name
= "ICH_AP1R0_EL2", .state
= ARM_CP_STATE_BOTH
,
2462 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 9, .opc2
= 0,
2463 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2465 .readfn
= ich_ap_read
,
2466 .writefn
= ich_ap_write
,
2468 { .name
= "ICH_HCR_EL2", .state
= ARM_CP_STATE_BOTH
,
2469 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 11, .opc2
= 0,
2470 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2472 .readfn
= ich_hcr_read
,
2473 .writefn
= ich_hcr_write
,
2475 { .name
= "ICH_VTR_EL2", .state
= ARM_CP_STATE_BOTH
,
2476 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 11, .opc2
= 1,
2477 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2479 .readfn
= ich_vtr_read
,
2481 { .name
= "ICH_MISR_EL2", .state
= ARM_CP_STATE_BOTH
,
2482 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 11, .opc2
= 2,
2483 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2485 .readfn
= ich_misr_read
,
2487 { .name
= "ICH_EISR_EL2", .state
= ARM_CP_STATE_BOTH
,
2488 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 11, .opc2
= 3,
2489 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2491 .readfn
= ich_eisr_read
,
2493 { .name
= "ICH_ELRSR_EL2", .state
= ARM_CP_STATE_BOTH
,
2494 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 11, .opc2
= 5,
2495 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2497 .readfn
= ich_elrsr_read
,
2499 { .name
= "ICH_VMCR_EL2", .state
= ARM_CP_STATE_BOTH
,
2500 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 11, .opc2
= 7,
2501 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2503 .readfn
= ich_vmcr_read
,
2504 .writefn
= ich_vmcr_write
,
2509 static const ARMCPRegInfo gicv3_cpuif_ich_apxr1_reginfo
[] = {
2510 { .name
= "ICH_AP0R1_EL2", .state
= ARM_CP_STATE_BOTH
,
2511 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 8, .opc2
= 1,
2512 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2514 .readfn
= ich_ap_read
,
2515 .writefn
= ich_ap_write
,
2517 { .name
= "ICH_AP1R1_EL2", .state
= ARM_CP_STATE_BOTH
,
2518 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 9, .opc2
= 1,
2519 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2521 .readfn
= ich_ap_read
,
2522 .writefn
= ich_ap_write
,
2527 static const ARMCPRegInfo gicv3_cpuif_ich_apxr23_reginfo
[] = {
2528 { .name
= "ICH_AP0R2_EL2", .state
= ARM_CP_STATE_BOTH
,
2529 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 8, .opc2
= 2,
2530 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2532 .readfn
= ich_ap_read
,
2533 .writefn
= ich_ap_write
,
2535 { .name
= "ICH_AP0R3_EL2", .state
= ARM_CP_STATE_BOTH
,
2536 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 8, .opc2
= 3,
2537 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2539 .readfn
= ich_ap_read
,
2540 .writefn
= ich_ap_write
,
2542 { .name
= "ICH_AP1R2_EL2", .state
= ARM_CP_STATE_BOTH
,
2543 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 9, .opc2
= 2,
2544 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2546 .readfn
= ich_ap_read
,
2547 .writefn
= ich_ap_write
,
2549 { .name
= "ICH_AP1R3_EL2", .state
= ARM_CP_STATE_BOTH
,
2550 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 9, .opc2
= 3,
2551 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2553 .readfn
= ich_ap_read
,
2554 .writefn
= ich_ap_write
,
2559 static void gicv3_cpuif_el_change_hook(ARMCPU
*cpu
, void *opaque
)
2561 GICv3CPUState
*cs
= opaque
;
2563 gicv3_cpuif_update(cs
);
2566 void gicv3_init_cpuif(GICv3State
*s
)
2568 /* Called from the GICv3 realize function; register our system
2569 * registers with the CPU
2573 for (i
= 0; i
< s
->num_cpu
; i
++) {
2574 ARMCPU
*cpu
= ARM_CPU(qemu_get_cpu(i
));
2575 GICv3CPUState
*cs
= &s
->cpu
[i
];
2577 /* Note that we can't just use the GICv3CPUState as an opaque pointer
2578 * in define_arm_cp_regs_with_opaque(), because when we're called back
2579 * it might be with code translated by CPU 0 but run by CPU 1, in
2580 * which case we'd get the wrong value.
2581 * So instead we define the regs with no ri->opaque info, and
2582 * get back to the GICv3CPUState from the ARMCPU by reading back
2583 * the opaque pointer from the el_change_hook, which we're going
2584 * to need to register anyway.
2586 define_arm_cp_regs(cpu
, gicv3_cpuif_reginfo
);
2587 if (arm_feature(&cpu
->env
, ARM_FEATURE_EL2
)
2588 && cpu
->gic_num_lrs
) {
2591 cs
->maintenance_irq
= cpu
->gicv3_maintenance_interrupt
;
2593 cs
->num_list_regs
= cpu
->gic_num_lrs
;
2594 cs
->vpribits
= cpu
->gic_vpribits
;
2595 cs
->vprebits
= cpu
->gic_vprebits
;
2597 /* Check against architectural constraints: getting these
2598 * wrong would be a bug in the CPU code defining these,
2599 * and the implementation relies on them holding.
2601 g_assert(cs
->vprebits
<= cs
->vpribits
);
2602 g_assert(cs
->vprebits
>= 5 && cs
->vprebits
<= 7);
2603 g_assert(cs
->vpribits
>= 5 && cs
->vpribits
<= 8);
2605 define_arm_cp_regs(cpu
, gicv3_cpuif_hcr_reginfo
);
2607 for (j
= 0; j
< cs
->num_list_regs
; j
++) {
2608 /* Note that the AArch64 LRs are 64-bit; the AArch32 LRs
2609 * are split into two cp15 regs, LR (the low part, with the
2610 * same encoding as the AArch64 LR) and LRC (the high part).
2612 ARMCPRegInfo lr_regset
[] = {
2613 { .name
= "ICH_LRn_EL2", .state
= ARM_CP_STATE_BOTH
,
2614 .opc0
= 3, .opc1
= 4, .crn
= 12,
2615 .crm
= 12 + (j
>> 3), .opc2
= j
& 7,
2616 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2618 .readfn
= ich_lr_read
,
2619 .writefn
= ich_lr_write
,
2621 { .name
= "ICH_LRCn_EL2", .state
= ARM_CP_STATE_AA32
,
2622 .cp
= 15, .opc1
= 4, .crn
= 12,
2623 .crm
= 14 + (j
>> 3), .opc2
= j
& 7,
2624 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2626 .readfn
= ich_lr_read
,
2627 .writefn
= ich_lr_write
,
2631 define_arm_cp_regs(cpu
, lr_regset
);
2633 if (cs
->vprebits
>= 6) {
2634 define_arm_cp_regs(cpu
, gicv3_cpuif_ich_apxr1_reginfo
);
2636 if (cs
->vprebits
== 7) {
2637 define_arm_cp_regs(cpu
, gicv3_cpuif_ich_apxr23_reginfo
);
2640 arm_register_el_change_hook(cpu
, gicv3_cpuif_el_change_hook
, cs
);