hw/pcie: Introduce a base class for PCI Express Root Ports
[qemu/kevin.git] / hw / arm / boot.c
blobff621e4b6a4bc53f33028dac86b12fa66cd47bf4
1 /*
2 * ARM kernel loader.
4 * Copyright (c) 2006-2007 CodeSourcery.
5 * Written by Paul Brook
7 * This code is licensed under the GPL.
8 */
10 #include "qemu/osdep.h"
11 #include "qapi/error.h"
12 #include <libfdt.h>
13 #include "hw/hw.h"
14 #include "hw/arm/arm.h"
15 #include "hw/arm/linux-boot-if.h"
16 #include "sysemu/kvm.h"
17 #include "sysemu/sysemu.h"
18 #include "sysemu/numa.h"
19 #include "hw/boards.h"
20 #include "hw/loader.h"
21 #include "elf.h"
22 #include "sysemu/device_tree.h"
23 #include "qemu/config-file.h"
24 #include "exec/address-spaces.h"
26 /* Kernel boot protocol is specified in the kernel docs
27 * Documentation/arm/Booting and Documentation/arm64/booting.txt
28 * They have different preferred image load offsets from system RAM base.
30 #define KERNEL_ARGS_ADDR 0x100
31 #define KERNEL_LOAD_ADDR 0x00010000
32 #define KERNEL64_LOAD_ADDR 0x00080000
34 typedef enum {
35 FIXUP_NONE = 0, /* do nothing */
36 FIXUP_TERMINATOR, /* end of insns */
37 FIXUP_BOARDID, /* overwrite with board ID number */
38 FIXUP_BOARD_SETUP, /* overwrite with board specific setup code address */
39 FIXUP_ARGPTR, /* overwrite with pointer to kernel args */
40 FIXUP_ENTRYPOINT, /* overwrite with kernel entry point */
41 FIXUP_GIC_CPU_IF, /* overwrite with GIC CPU interface address */
42 FIXUP_BOOTREG, /* overwrite with boot register address */
43 FIXUP_DSB, /* overwrite with correct DSB insn for cpu */
44 FIXUP_MAX,
45 } FixupType;
47 typedef struct ARMInsnFixup {
48 uint32_t insn;
49 FixupType fixup;
50 } ARMInsnFixup;
52 static const ARMInsnFixup bootloader_aarch64[] = {
53 { 0x580000c0 }, /* ldr x0, arg ; Load the lower 32-bits of DTB */
54 { 0xaa1f03e1 }, /* mov x1, xzr */
55 { 0xaa1f03e2 }, /* mov x2, xzr */
56 { 0xaa1f03e3 }, /* mov x3, xzr */
57 { 0x58000084 }, /* ldr x4, entry ; Load the lower 32-bits of kernel entry */
58 { 0xd61f0080 }, /* br x4 ; Jump to the kernel entry point */
59 { 0, FIXUP_ARGPTR }, /* arg: .word @DTB Lower 32-bits */
60 { 0 }, /* .word @DTB Higher 32-bits */
61 { 0, FIXUP_ENTRYPOINT }, /* entry: .word @Kernel Entry Lower 32-bits */
62 { 0 }, /* .word @Kernel Entry Higher 32-bits */
63 { 0, FIXUP_TERMINATOR }
66 /* A very small bootloader: call the board-setup code (if needed),
67 * set r0-r2, then jump to the kernel.
68 * If we're not calling boot setup code then we don't copy across
69 * the first BOOTLOADER_NO_BOARD_SETUP_OFFSET insns in this array.
72 static const ARMInsnFixup bootloader[] = {
73 { 0xe28fe004 }, /* add lr, pc, #4 */
74 { 0xe51ff004 }, /* ldr pc, [pc, #-4] */
75 { 0, FIXUP_BOARD_SETUP },
76 #define BOOTLOADER_NO_BOARD_SETUP_OFFSET 3
77 { 0xe3a00000 }, /* mov r0, #0 */
78 { 0xe59f1004 }, /* ldr r1, [pc, #4] */
79 { 0xe59f2004 }, /* ldr r2, [pc, #4] */
80 { 0xe59ff004 }, /* ldr pc, [pc, #4] */
81 { 0, FIXUP_BOARDID },
82 { 0, FIXUP_ARGPTR },
83 { 0, FIXUP_ENTRYPOINT },
84 { 0, FIXUP_TERMINATOR }
87 /* Handling for secondary CPU boot in a multicore system.
88 * Unlike the uniprocessor/primary CPU boot, this is platform
89 * dependent. The default code here is based on the secondary
90 * CPU boot protocol used on realview/vexpress boards, with
91 * some parameterisation to increase its flexibility.
92 * QEMU platform models for which this code is not appropriate
93 * should override write_secondary_boot and secondary_cpu_reset_hook
94 * instead.
96 * This code enables the interrupt controllers for the secondary
97 * CPUs and then puts all the secondary CPUs into a loop waiting
98 * for an interprocessor interrupt and polling a configurable
99 * location for the kernel secondary CPU entry point.
101 #define DSB_INSN 0xf57ff04f
102 #define CP15_DSB_INSN 0xee070f9a /* mcr cp15, 0, r0, c7, c10, 4 */
104 static const ARMInsnFixup smpboot[] = {
105 { 0xe59f2028 }, /* ldr r2, gic_cpu_if */
106 { 0xe59f0028 }, /* ldr r0, bootreg_addr */
107 { 0xe3a01001 }, /* mov r1, #1 */
108 { 0xe5821000 }, /* str r1, [r2] - set GICC_CTLR.Enable */
109 { 0xe3a010ff }, /* mov r1, #0xff */
110 { 0xe5821004 }, /* str r1, [r2, 4] - set GIC_PMR.Priority to 0xff */
111 { 0, FIXUP_DSB }, /* dsb */
112 { 0xe320f003 }, /* wfi */
113 { 0xe5901000 }, /* ldr r1, [r0] */
114 { 0xe1110001 }, /* tst r1, r1 */
115 { 0x0afffffb }, /* beq <wfi> */
116 { 0xe12fff11 }, /* bx r1 */
117 { 0, FIXUP_GIC_CPU_IF }, /* gic_cpu_if: .word 0x.... */
118 { 0, FIXUP_BOOTREG }, /* bootreg_addr: .word 0x.... */
119 { 0, FIXUP_TERMINATOR }
122 static void write_bootloader(const char *name, hwaddr addr,
123 const ARMInsnFixup *insns, uint32_t *fixupcontext)
125 /* Fix up the specified bootloader fragment and write it into
126 * guest memory using rom_add_blob_fixed(). fixupcontext is
127 * an array giving the values to write in for the fixup types
128 * which write a value into the code array.
130 int i, len;
131 uint32_t *code;
133 len = 0;
134 while (insns[len].fixup != FIXUP_TERMINATOR) {
135 len++;
138 code = g_new0(uint32_t, len);
140 for (i = 0; i < len; i++) {
141 uint32_t insn = insns[i].insn;
142 FixupType fixup = insns[i].fixup;
144 switch (fixup) {
145 case FIXUP_NONE:
146 break;
147 case FIXUP_BOARDID:
148 case FIXUP_BOARD_SETUP:
149 case FIXUP_ARGPTR:
150 case FIXUP_ENTRYPOINT:
151 case FIXUP_GIC_CPU_IF:
152 case FIXUP_BOOTREG:
153 case FIXUP_DSB:
154 insn = fixupcontext[fixup];
155 break;
156 default:
157 abort();
159 code[i] = tswap32(insn);
162 rom_add_blob_fixed(name, code, len * sizeof(uint32_t), addr);
164 g_free(code);
167 static void default_write_secondary(ARMCPU *cpu,
168 const struct arm_boot_info *info)
170 uint32_t fixupcontext[FIXUP_MAX];
172 fixupcontext[FIXUP_GIC_CPU_IF] = info->gic_cpu_if_addr;
173 fixupcontext[FIXUP_BOOTREG] = info->smp_bootreg_addr;
174 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
175 fixupcontext[FIXUP_DSB] = DSB_INSN;
176 } else {
177 fixupcontext[FIXUP_DSB] = CP15_DSB_INSN;
180 write_bootloader("smpboot", info->smp_loader_start,
181 smpboot, fixupcontext);
184 void arm_write_secure_board_setup_dummy_smc(ARMCPU *cpu,
185 const struct arm_boot_info *info,
186 hwaddr mvbar_addr)
188 int n;
189 uint32_t mvbar_blob[] = {
190 /* mvbar_addr: secure monitor vectors
191 * Default unimplemented and unused vectors to spin. Makes it
192 * easier to debug (as opposed to the CPU running away).
194 0xeafffffe, /* (spin) */
195 0xeafffffe, /* (spin) */
196 0xe1b0f00e, /* movs pc, lr ;SMC exception return */
197 0xeafffffe, /* (spin) */
198 0xeafffffe, /* (spin) */
199 0xeafffffe, /* (spin) */
200 0xeafffffe, /* (spin) */
201 0xeafffffe, /* (spin) */
203 uint32_t board_setup_blob[] = {
204 /* board setup addr */
205 0xe3a00e00 + (mvbar_addr >> 4), /* mov r0, #mvbar_addr */
206 0xee0c0f30, /* mcr p15, 0, r0, c12, c0, 1 ;set MVBAR */
207 0xee110f11, /* mrc p15, 0, r0, c1 , c1, 0 ;read SCR */
208 0xe3800031, /* orr r0, #0x31 ;enable AW, FW, NS */
209 0xee010f11, /* mcr p15, 0, r0, c1, c1, 0 ;write SCR */
210 0xe1a0100e, /* mov r1, lr ;save LR across SMC */
211 0xe1600070, /* smc #0 ;call monitor to flush SCR */
212 0xe1a0f001, /* mov pc, r1 ;return */
215 /* check that mvbar_addr is correctly aligned and relocatable (using MOV) */
216 assert((mvbar_addr & 0x1f) == 0 && (mvbar_addr >> 4) < 0x100);
218 /* check that these blobs don't overlap */
219 assert((mvbar_addr + sizeof(mvbar_blob) <= info->board_setup_addr)
220 || (info->board_setup_addr + sizeof(board_setup_blob) <= mvbar_addr));
222 for (n = 0; n < ARRAY_SIZE(mvbar_blob); n++) {
223 mvbar_blob[n] = tswap32(mvbar_blob[n]);
225 rom_add_blob_fixed("board-setup-mvbar", mvbar_blob, sizeof(mvbar_blob),
226 mvbar_addr);
228 for (n = 0; n < ARRAY_SIZE(board_setup_blob); n++) {
229 board_setup_blob[n] = tswap32(board_setup_blob[n]);
231 rom_add_blob_fixed("board-setup", board_setup_blob,
232 sizeof(board_setup_blob), info->board_setup_addr);
235 static void default_reset_secondary(ARMCPU *cpu,
236 const struct arm_boot_info *info)
238 CPUState *cs = CPU(cpu);
240 address_space_stl_notdirty(&address_space_memory, info->smp_bootreg_addr,
241 0, MEMTXATTRS_UNSPECIFIED, NULL);
242 cpu_set_pc(cs, info->smp_loader_start);
245 static inline bool have_dtb(const struct arm_boot_info *info)
247 return info->dtb_filename || info->get_dtb;
250 #define WRITE_WORD(p, value) do { \
251 address_space_stl_notdirty(&address_space_memory, p, value, \
252 MEMTXATTRS_UNSPECIFIED, NULL); \
253 p += 4; \
254 } while (0)
256 static void set_kernel_args(const struct arm_boot_info *info)
258 int initrd_size = info->initrd_size;
259 hwaddr base = info->loader_start;
260 hwaddr p;
262 p = base + KERNEL_ARGS_ADDR;
263 /* ATAG_CORE */
264 WRITE_WORD(p, 5);
265 WRITE_WORD(p, 0x54410001);
266 WRITE_WORD(p, 1);
267 WRITE_WORD(p, 0x1000);
268 WRITE_WORD(p, 0);
269 /* ATAG_MEM */
270 /* TODO: handle multiple chips on one ATAG list */
271 WRITE_WORD(p, 4);
272 WRITE_WORD(p, 0x54410002);
273 WRITE_WORD(p, info->ram_size);
274 WRITE_WORD(p, info->loader_start);
275 if (initrd_size) {
276 /* ATAG_INITRD2 */
277 WRITE_WORD(p, 4);
278 WRITE_WORD(p, 0x54420005);
279 WRITE_WORD(p, info->initrd_start);
280 WRITE_WORD(p, initrd_size);
282 if (info->kernel_cmdline && *info->kernel_cmdline) {
283 /* ATAG_CMDLINE */
284 int cmdline_size;
286 cmdline_size = strlen(info->kernel_cmdline);
287 cpu_physical_memory_write(p + 8, info->kernel_cmdline,
288 cmdline_size + 1);
289 cmdline_size = (cmdline_size >> 2) + 1;
290 WRITE_WORD(p, cmdline_size + 2);
291 WRITE_WORD(p, 0x54410009);
292 p += cmdline_size * 4;
294 if (info->atag_board) {
295 /* ATAG_BOARD */
296 int atag_board_len;
297 uint8_t atag_board_buf[0x1000];
299 atag_board_len = (info->atag_board(info, atag_board_buf) + 3) & ~3;
300 WRITE_WORD(p, (atag_board_len + 8) >> 2);
301 WRITE_WORD(p, 0x414f4d50);
302 cpu_physical_memory_write(p, atag_board_buf, atag_board_len);
303 p += atag_board_len;
305 /* ATAG_END */
306 WRITE_WORD(p, 0);
307 WRITE_WORD(p, 0);
310 static void set_kernel_args_old(const struct arm_boot_info *info)
312 hwaddr p;
313 const char *s;
314 int initrd_size = info->initrd_size;
315 hwaddr base = info->loader_start;
317 /* see linux/include/asm-arm/setup.h */
318 p = base + KERNEL_ARGS_ADDR;
319 /* page_size */
320 WRITE_WORD(p, 4096);
321 /* nr_pages */
322 WRITE_WORD(p, info->ram_size / 4096);
323 /* ramdisk_size */
324 WRITE_WORD(p, 0);
325 #define FLAG_READONLY 1
326 #define FLAG_RDLOAD 4
327 #define FLAG_RDPROMPT 8
328 /* flags */
329 WRITE_WORD(p, FLAG_READONLY | FLAG_RDLOAD | FLAG_RDPROMPT);
330 /* rootdev */
331 WRITE_WORD(p, (31 << 8) | 0); /* /dev/mtdblock0 */
332 /* video_num_cols */
333 WRITE_WORD(p, 0);
334 /* video_num_rows */
335 WRITE_WORD(p, 0);
336 /* video_x */
337 WRITE_WORD(p, 0);
338 /* video_y */
339 WRITE_WORD(p, 0);
340 /* memc_control_reg */
341 WRITE_WORD(p, 0);
342 /* unsigned char sounddefault */
343 /* unsigned char adfsdrives */
344 /* unsigned char bytes_per_char_h */
345 /* unsigned char bytes_per_char_v */
346 WRITE_WORD(p, 0);
347 /* pages_in_bank[4] */
348 WRITE_WORD(p, 0);
349 WRITE_WORD(p, 0);
350 WRITE_WORD(p, 0);
351 WRITE_WORD(p, 0);
352 /* pages_in_vram */
353 WRITE_WORD(p, 0);
354 /* initrd_start */
355 if (initrd_size) {
356 WRITE_WORD(p, info->initrd_start);
357 } else {
358 WRITE_WORD(p, 0);
360 /* initrd_size */
361 WRITE_WORD(p, initrd_size);
362 /* rd_start */
363 WRITE_WORD(p, 0);
364 /* system_rev */
365 WRITE_WORD(p, 0);
366 /* system_serial_low */
367 WRITE_WORD(p, 0);
368 /* system_serial_high */
369 WRITE_WORD(p, 0);
370 /* mem_fclk_21285 */
371 WRITE_WORD(p, 0);
372 /* zero unused fields */
373 while (p < base + KERNEL_ARGS_ADDR + 256 + 1024) {
374 WRITE_WORD(p, 0);
376 s = info->kernel_cmdline;
377 if (s) {
378 cpu_physical_memory_write(p, s, strlen(s) + 1);
379 } else {
380 WRITE_WORD(p, 0);
385 * load_dtb() - load a device tree binary image into memory
386 * @addr: the address to load the image at
387 * @binfo: struct describing the boot environment
388 * @addr_limit: upper limit of the available memory area at @addr
390 * Load a device tree supplied by the machine or by the user with the
391 * '-dtb' command line option, and put it at offset @addr in target
392 * memory.
394 * If @addr_limit contains a meaningful value (i.e., it is strictly greater
395 * than @addr), the device tree is only loaded if its size does not exceed
396 * the limit.
398 * Returns: the size of the device tree image on success,
399 * 0 if the image size exceeds the limit,
400 * -1 on errors.
402 * Note: Must not be called unless have_dtb(binfo) is true.
404 static int load_dtb(hwaddr addr, const struct arm_boot_info *binfo,
405 hwaddr addr_limit)
407 void *fdt = NULL;
408 int size, rc;
409 uint32_t acells, scells;
410 char *nodename;
411 unsigned int i;
412 hwaddr mem_base, mem_len;
414 if (binfo->dtb_filename) {
415 char *filename;
416 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, binfo->dtb_filename);
417 if (!filename) {
418 fprintf(stderr, "Couldn't open dtb file %s\n", binfo->dtb_filename);
419 goto fail;
422 fdt = load_device_tree(filename, &size);
423 if (!fdt) {
424 fprintf(stderr, "Couldn't open dtb file %s\n", filename);
425 g_free(filename);
426 goto fail;
428 g_free(filename);
429 } else {
430 fdt = binfo->get_dtb(binfo, &size);
431 if (!fdt) {
432 fprintf(stderr, "Board was unable to create a dtb blob\n");
433 goto fail;
437 if (addr_limit > addr && size > (addr_limit - addr)) {
438 /* Installing the device tree blob at addr would exceed addr_limit.
439 * Whether this constitutes failure is up to the caller to decide,
440 * so just return 0 as size, i.e., no error.
442 g_free(fdt);
443 return 0;
446 acells = qemu_fdt_getprop_cell(fdt, "/", "#address-cells",
447 NULL, &error_fatal);
448 scells = qemu_fdt_getprop_cell(fdt, "/", "#size-cells",
449 NULL, &error_fatal);
450 if (acells == 0 || scells == 0) {
451 fprintf(stderr, "dtb file invalid (#address-cells or #size-cells 0)\n");
452 goto fail;
455 if (scells < 2 && binfo->ram_size >= (1ULL << 32)) {
456 /* This is user error so deserves a friendlier error message
457 * than the failure of setprop_sized_cells would provide
459 fprintf(stderr, "qemu: dtb file not compatible with "
460 "RAM size > 4GB\n");
461 goto fail;
464 if (nb_numa_nodes > 0) {
466 * Turn the /memory node created before into a NOP node, then create
467 * /memory@addr nodes for all numa nodes respectively.
469 qemu_fdt_nop_node(fdt, "/memory");
470 mem_base = binfo->loader_start;
471 for (i = 0; i < nb_numa_nodes; i++) {
472 mem_len = numa_info[i].node_mem;
473 nodename = g_strdup_printf("/memory@%" PRIx64, mem_base);
474 qemu_fdt_add_subnode(fdt, nodename);
475 qemu_fdt_setprop_string(fdt, nodename, "device_type", "memory");
476 rc = qemu_fdt_setprop_sized_cells(fdt, nodename, "reg",
477 acells, mem_base,
478 scells, mem_len);
479 if (rc < 0) {
480 fprintf(stderr, "couldn't set %s/reg for node %d\n", nodename,
482 goto fail;
485 qemu_fdt_setprop_cell(fdt, nodename, "numa-node-id", i);
486 mem_base += mem_len;
487 g_free(nodename);
489 } else {
490 Error *err = NULL;
492 rc = fdt_path_offset(fdt, "/memory");
493 if (rc < 0) {
494 qemu_fdt_add_subnode(fdt, "/memory");
497 if (!qemu_fdt_getprop(fdt, "/memory", "device_type", NULL, &err)) {
498 qemu_fdt_setprop_string(fdt, "/memory", "device_type", "memory");
501 rc = qemu_fdt_setprop_sized_cells(fdt, "/memory", "reg",
502 acells, binfo->loader_start,
503 scells, binfo->ram_size);
504 if (rc < 0) {
505 fprintf(stderr, "couldn't set /memory/reg\n");
506 goto fail;
510 rc = fdt_path_offset(fdt, "/chosen");
511 if (rc < 0) {
512 qemu_fdt_add_subnode(fdt, "/chosen");
515 if (binfo->kernel_cmdline && *binfo->kernel_cmdline) {
516 rc = qemu_fdt_setprop_string(fdt, "/chosen", "bootargs",
517 binfo->kernel_cmdline);
518 if (rc < 0) {
519 fprintf(stderr, "couldn't set /chosen/bootargs\n");
520 goto fail;
524 if (binfo->initrd_size) {
525 rc = qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-start",
526 binfo->initrd_start);
527 if (rc < 0) {
528 fprintf(stderr, "couldn't set /chosen/linux,initrd-start\n");
529 goto fail;
532 rc = qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-end",
533 binfo->initrd_start + binfo->initrd_size);
534 if (rc < 0) {
535 fprintf(stderr, "couldn't set /chosen/linux,initrd-end\n");
536 goto fail;
540 if (binfo->modify_dtb) {
541 binfo->modify_dtb(binfo, fdt);
544 qemu_fdt_dumpdtb(fdt, size);
546 /* Put the DTB into the memory map as a ROM image: this will ensure
547 * the DTB is copied again upon reset, even if addr points into RAM.
549 rom_add_blob_fixed("dtb", fdt, size, addr);
551 g_free(fdt);
553 return size;
555 fail:
556 g_free(fdt);
557 return -1;
560 static void do_cpu_reset(void *opaque)
562 ARMCPU *cpu = opaque;
563 CPUState *cs = CPU(cpu);
564 CPUARMState *env = &cpu->env;
565 const struct arm_boot_info *info = env->boot_info;
567 cpu_reset(cs);
568 if (info) {
569 if (!info->is_linux) {
570 int i;
571 /* Jump to the entry point. */
572 uint64_t entry = info->entry;
574 switch (info->endianness) {
575 case ARM_ENDIANNESS_LE:
576 env->cp15.sctlr_el[1] &= ~SCTLR_E0E;
577 for (i = 1; i < 4; ++i) {
578 env->cp15.sctlr_el[i] &= ~SCTLR_EE;
580 env->uncached_cpsr &= ~CPSR_E;
581 break;
582 case ARM_ENDIANNESS_BE8:
583 env->cp15.sctlr_el[1] |= SCTLR_E0E;
584 for (i = 1; i < 4; ++i) {
585 env->cp15.sctlr_el[i] |= SCTLR_EE;
587 env->uncached_cpsr |= CPSR_E;
588 break;
589 case ARM_ENDIANNESS_BE32:
590 env->cp15.sctlr_el[1] |= SCTLR_B;
591 break;
592 case ARM_ENDIANNESS_UNKNOWN:
593 break; /* Board's decision */
594 default:
595 g_assert_not_reached();
598 if (!env->aarch64) {
599 env->thumb = info->entry & 1;
600 entry &= 0xfffffffe;
602 cpu_set_pc(cs, entry);
603 } else {
604 /* If we are booting Linux then we need to check whether we are
605 * booting into secure or non-secure state and adjust the state
606 * accordingly. Out of reset, ARM is defined to be in secure state
607 * (SCR.NS = 0), we change that here if non-secure boot has been
608 * requested.
610 if (arm_feature(env, ARM_FEATURE_EL3)) {
611 /* AArch64 is defined to come out of reset into EL3 if enabled.
612 * If we are booting Linux then we need to adjust our EL as
613 * Linux expects us to be in EL2 or EL1. AArch32 resets into
614 * SVC, which Linux expects, so no privilege/exception level to
615 * adjust.
617 if (env->aarch64) {
618 env->cp15.scr_el3 |= SCR_RW;
619 if (arm_feature(env, ARM_FEATURE_EL2)) {
620 env->cp15.hcr_el2 |= HCR_RW;
621 env->pstate = PSTATE_MODE_EL2h;
622 } else {
623 env->pstate = PSTATE_MODE_EL1h;
627 /* Set to non-secure if not a secure boot */
628 if (!info->secure_boot &&
629 (cs != first_cpu || !info->secure_board_setup)) {
630 /* Linux expects non-secure state */
631 env->cp15.scr_el3 |= SCR_NS;
635 if (cs == first_cpu) {
636 cpu_set_pc(cs, info->loader_start);
638 if (!have_dtb(info)) {
639 if (old_param) {
640 set_kernel_args_old(info);
641 } else {
642 set_kernel_args(info);
645 } else {
646 info->secondary_cpu_reset_hook(cpu, info);
653 * load_image_to_fw_cfg() - Load an image file into an fw_cfg entry identified
654 * by key.
655 * @fw_cfg: The firmware config instance to store the data in.
656 * @size_key: The firmware config key to store the size of the loaded
657 * data under, with fw_cfg_add_i32().
658 * @data_key: The firmware config key to store the loaded data under,
659 * with fw_cfg_add_bytes().
660 * @image_name: The name of the image file to load. If it is NULL, the
661 * function returns without doing anything.
662 * @try_decompress: Whether the image should be decompressed (gunzipped) before
663 * adding it to fw_cfg. If decompression fails, the image is
664 * loaded as-is.
666 * In case of failure, the function prints an error message to stderr and the
667 * process exits with status 1.
669 static void load_image_to_fw_cfg(FWCfgState *fw_cfg, uint16_t size_key,
670 uint16_t data_key, const char *image_name,
671 bool try_decompress)
673 size_t size = -1;
674 uint8_t *data;
676 if (image_name == NULL) {
677 return;
680 if (try_decompress) {
681 size = load_image_gzipped_buffer(image_name,
682 LOAD_IMAGE_MAX_GUNZIP_BYTES, &data);
685 if (size == (size_t)-1) {
686 gchar *contents;
687 gsize length;
689 if (!g_file_get_contents(image_name, &contents, &length, NULL)) {
690 fprintf(stderr, "failed to load \"%s\"\n", image_name);
691 exit(1);
693 size = length;
694 data = (uint8_t *)contents;
697 fw_cfg_add_i32(fw_cfg, size_key, size);
698 fw_cfg_add_bytes(fw_cfg, data_key, data, size);
701 static int do_arm_linux_init(Object *obj, void *opaque)
703 if (object_dynamic_cast(obj, TYPE_ARM_LINUX_BOOT_IF)) {
704 ARMLinuxBootIf *albif = ARM_LINUX_BOOT_IF(obj);
705 ARMLinuxBootIfClass *albifc = ARM_LINUX_BOOT_IF_GET_CLASS(obj);
706 struct arm_boot_info *info = opaque;
708 if (albifc->arm_linux_init) {
709 albifc->arm_linux_init(albif, info->secure_boot);
712 return 0;
715 static uint64_t arm_load_elf(struct arm_boot_info *info, uint64_t *pentry,
716 uint64_t *lowaddr, uint64_t *highaddr,
717 int elf_machine)
719 bool elf_is64;
720 union {
721 Elf32_Ehdr h32;
722 Elf64_Ehdr h64;
723 } elf_header;
724 int data_swab = 0;
725 bool big_endian;
726 uint64_t ret = -1;
727 Error *err = NULL;
730 load_elf_hdr(info->kernel_filename, &elf_header, &elf_is64, &err);
731 if (err) {
732 return ret;
735 if (elf_is64) {
736 big_endian = elf_header.h64.e_ident[EI_DATA] == ELFDATA2MSB;
737 info->endianness = big_endian ? ARM_ENDIANNESS_BE8
738 : ARM_ENDIANNESS_LE;
739 } else {
740 big_endian = elf_header.h32.e_ident[EI_DATA] == ELFDATA2MSB;
741 if (big_endian) {
742 if (bswap32(elf_header.h32.e_flags) & EF_ARM_BE8) {
743 info->endianness = ARM_ENDIANNESS_BE8;
744 } else {
745 info->endianness = ARM_ENDIANNESS_BE32;
746 /* In BE32, the CPU has a different view of the per-byte
747 * address map than the rest of the system. BE32 ELF files
748 * are organised such that they can be programmed through
749 * the CPU's per-word byte-reversed view of the world. QEMU
750 * however loads ELF files independently of the CPU. So
751 * tell the ELF loader to byte reverse the data for us.
753 data_swab = 2;
755 } else {
756 info->endianness = ARM_ENDIANNESS_LE;
760 ret = load_elf(info->kernel_filename, NULL, NULL,
761 pentry, lowaddr, highaddr, big_endian, elf_machine,
762 1, data_swab);
763 if (ret <= 0) {
764 /* The header loaded but the image didn't */
765 exit(1);
768 return ret;
771 static void arm_load_kernel_notify(Notifier *notifier, void *data)
773 CPUState *cs;
774 int kernel_size;
775 int initrd_size;
776 int is_linux = 0;
777 uint64_t elf_entry, elf_low_addr, elf_high_addr;
778 int elf_machine;
779 hwaddr entry, kernel_load_offset;
780 static const ARMInsnFixup *primary_loader;
781 ArmLoadKernelNotifier *n = DO_UPCAST(ArmLoadKernelNotifier,
782 notifier, notifier);
783 ARMCPU *cpu = n->cpu;
784 struct arm_boot_info *info =
785 container_of(n, struct arm_boot_info, load_kernel_notifier);
787 /* The board code is not supposed to set secure_board_setup unless
788 * running its code in secure mode is actually possible, and KVM
789 * doesn't support secure.
791 assert(!(info->secure_board_setup && kvm_enabled()));
793 info->dtb_filename = qemu_opt_get(qemu_get_machine_opts(), "dtb");
795 /* Load the kernel. */
796 if (!info->kernel_filename || info->firmware_loaded) {
798 if (have_dtb(info)) {
799 /* If we have a device tree blob, but no kernel to supply it to (or
800 * the kernel is supposed to be loaded by the bootloader), copy the
801 * DTB to the base of RAM for the bootloader to pick up.
803 if (load_dtb(info->loader_start, info, 0) < 0) {
804 exit(1);
808 if (info->kernel_filename) {
809 FWCfgState *fw_cfg;
810 bool try_decompressing_kernel;
812 fw_cfg = fw_cfg_find();
813 try_decompressing_kernel = arm_feature(&cpu->env,
814 ARM_FEATURE_AARCH64);
816 /* Expose the kernel, the command line, and the initrd in fw_cfg.
817 * We don't process them here at all, it's all left to the
818 * firmware.
820 load_image_to_fw_cfg(fw_cfg,
821 FW_CFG_KERNEL_SIZE, FW_CFG_KERNEL_DATA,
822 info->kernel_filename,
823 try_decompressing_kernel);
824 load_image_to_fw_cfg(fw_cfg,
825 FW_CFG_INITRD_SIZE, FW_CFG_INITRD_DATA,
826 info->initrd_filename, false);
828 if (info->kernel_cmdline) {
829 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
830 strlen(info->kernel_cmdline) + 1);
831 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA,
832 info->kernel_cmdline);
836 /* We will start from address 0 (typically a boot ROM image) in the
837 * same way as hardware.
839 return;
842 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
843 primary_loader = bootloader_aarch64;
844 kernel_load_offset = KERNEL64_LOAD_ADDR;
845 elf_machine = EM_AARCH64;
846 } else {
847 primary_loader = bootloader;
848 if (!info->write_board_setup) {
849 primary_loader += BOOTLOADER_NO_BOARD_SETUP_OFFSET;
851 kernel_load_offset = KERNEL_LOAD_ADDR;
852 elf_machine = EM_ARM;
855 if (!info->secondary_cpu_reset_hook) {
856 info->secondary_cpu_reset_hook = default_reset_secondary;
858 if (!info->write_secondary_boot) {
859 info->write_secondary_boot = default_write_secondary;
862 if (info->nb_cpus == 0)
863 info->nb_cpus = 1;
865 /* We want to put the initrd far enough into RAM that when the
866 * kernel is uncompressed it will not clobber the initrd. However
867 * on boards without much RAM we must ensure that we still leave
868 * enough room for a decent sized initrd, and on boards with large
869 * amounts of RAM we must avoid the initrd being so far up in RAM
870 * that it is outside lowmem and inaccessible to the kernel.
871 * So for boards with less than 256MB of RAM we put the initrd
872 * halfway into RAM, and for boards with 256MB of RAM or more we put
873 * the initrd at 128MB.
875 info->initrd_start = info->loader_start +
876 MIN(info->ram_size / 2, 128 * 1024 * 1024);
878 /* Assume that raw images are linux kernels, and ELF images are not. */
879 kernel_size = arm_load_elf(info, &elf_entry, &elf_low_addr,
880 &elf_high_addr, elf_machine);
881 if (kernel_size > 0 && have_dtb(info)) {
882 /* If there is still some room left at the base of RAM, try and put
883 * the DTB there like we do for images loaded with -bios or -pflash.
885 if (elf_low_addr > info->loader_start
886 || elf_high_addr < info->loader_start) {
887 /* Pass elf_low_addr as address limit to load_dtb if it may be
888 * pointing into RAM, otherwise pass '0' (no limit)
890 if (elf_low_addr < info->loader_start) {
891 elf_low_addr = 0;
893 if (load_dtb(info->loader_start, info, elf_low_addr) < 0) {
894 exit(1);
898 entry = elf_entry;
899 if (kernel_size < 0) {
900 kernel_size = load_uimage(info->kernel_filename, &entry, NULL,
901 &is_linux, NULL, NULL);
903 /* On aarch64, it's the bootloader's job to uncompress the kernel. */
904 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) && kernel_size < 0) {
905 entry = info->loader_start + kernel_load_offset;
906 kernel_size = load_image_gzipped(info->kernel_filename, entry,
907 info->ram_size - kernel_load_offset);
908 is_linux = 1;
910 if (kernel_size < 0) {
911 entry = info->loader_start + kernel_load_offset;
912 kernel_size = load_image_targphys(info->kernel_filename, entry,
913 info->ram_size - kernel_load_offset);
914 is_linux = 1;
916 if (kernel_size < 0) {
917 fprintf(stderr, "qemu: could not load kernel '%s'\n",
918 info->kernel_filename);
919 exit(1);
921 info->entry = entry;
922 if (is_linux) {
923 uint32_t fixupcontext[FIXUP_MAX];
925 if (info->initrd_filename) {
926 initrd_size = load_ramdisk(info->initrd_filename,
927 info->initrd_start,
928 info->ram_size -
929 info->initrd_start);
930 if (initrd_size < 0) {
931 initrd_size = load_image_targphys(info->initrd_filename,
932 info->initrd_start,
933 info->ram_size -
934 info->initrd_start);
936 if (initrd_size < 0) {
937 fprintf(stderr, "qemu: could not load initrd '%s'\n",
938 info->initrd_filename);
939 exit(1);
941 } else {
942 initrd_size = 0;
944 info->initrd_size = initrd_size;
946 fixupcontext[FIXUP_BOARDID] = info->board_id;
947 fixupcontext[FIXUP_BOARD_SETUP] = info->board_setup_addr;
949 /* for device tree boot, we pass the DTB directly in r2. Otherwise
950 * we point to the kernel args.
952 if (have_dtb(info)) {
953 hwaddr align;
954 hwaddr dtb_start;
956 if (elf_machine == EM_AARCH64) {
958 * Some AArch64 kernels on early bootup map the fdt region as
960 * [ ALIGN_DOWN(fdt, 2MB) ... ALIGN_DOWN(fdt, 2MB) + 2MB ]
962 * Let's play safe and prealign it to 2MB to give us some space.
964 align = 2 * 1024 * 1024;
965 } else {
967 * Some 32bit kernels will trash anything in the 4K page the
968 * initrd ends in, so make sure the DTB isn't caught up in that.
970 align = 4096;
973 /* Place the DTB after the initrd in memory with alignment. */
974 dtb_start = QEMU_ALIGN_UP(info->initrd_start + initrd_size, align);
975 if (load_dtb(dtb_start, info, 0) < 0) {
976 exit(1);
978 fixupcontext[FIXUP_ARGPTR] = dtb_start;
979 } else {
980 fixupcontext[FIXUP_ARGPTR] = info->loader_start + KERNEL_ARGS_ADDR;
981 if (info->ram_size >= (1ULL << 32)) {
982 fprintf(stderr, "qemu: RAM size must be less than 4GB to boot"
983 " Linux kernel using ATAGS (try passing a device tree"
984 " using -dtb)\n");
985 exit(1);
988 fixupcontext[FIXUP_ENTRYPOINT] = entry;
990 write_bootloader("bootloader", info->loader_start,
991 primary_loader, fixupcontext);
993 if (info->nb_cpus > 1) {
994 info->write_secondary_boot(cpu, info);
996 if (info->write_board_setup) {
997 info->write_board_setup(cpu, info);
1000 /* Notify devices which need to fake up firmware initialization
1001 * that we're doing a direct kernel boot.
1003 object_child_foreach_recursive(object_get_root(),
1004 do_arm_linux_init, info);
1006 info->is_linux = is_linux;
1008 for (cs = CPU(cpu); cs; cs = CPU_NEXT(cs)) {
1009 ARM_CPU(cs)->env.boot_info = info;
1013 void arm_load_kernel(ARMCPU *cpu, struct arm_boot_info *info)
1015 CPUState *cs;
1017 info->load_kernel_notifier.cpu = cpu;
1018 info->load_kernel_notifier.notifier.notify = arm_load_kernel_notify;
1019 qemu_add_machine_init_done_notifier(&info->load_kernel_notifier.notifier);
1021 /* CPU objects (unlike devices) are not automatically reset on system
1022 * reset, so we must always register a handler to do so. If we're
1023 * actually loading a kernel, the handler is also responsible for
1024 * arranging that we start it correctly.
1026 for (cs = CPU(cpu); cs; cs = CPU_NEXT(cs)) {
1027 qemu_register_reset(do_cpu_reset, ARM_CPU(cs));
1031 static const TypeInfo arm_linux_boot_if_info = {
1032 .name = TYPE_ARM_LINUX_BOOT_IF,
1033 .parent = TYPE_INTERFACE,
1034 .class_size = sizeof(ARMLinuxBootIfClass),
1037 static void arm_linux_boot_register_types(void)
1039 type_register_static(&arm_linux_boot_if_info);
1042 type_init(arm_linux_boot_register_types)