kvm: Reallocate dirty_bmap when we change a slot
[qemu/kevin.git] / accel / kvm / kvm-all.c
blob7b9f92d51ca7d598c6a9160f7494dabd7d67c834
1 /*
2 * QEMU KVM support
4 * Copyright IBM, Corp. 2008
5 * Red Hat, Inc. 2008
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include "qemu/osdep.h"
17 #include <sys/ioctl.h>
19 #include <linux/kvm.h>
21 #include "qemu/atomic.h"
22 #include "qemu/option.h"
23 #include "qemu/config-file.h"
24 #include "qemu/error-report.h"
25 #include "qapi/error.h"
26 #include "hw/pci/msi.h"
27 #include "hw/pci/msix.h"
28 #include "hw/s390x/adapter.h"
29 #include "exec/gdbstub.h"
30 #include "sysemu/kvm_int.h"
31 #include "sysemu/runstate.h"
32 #include "sysemu/cpus.h"
33 #include "sysemu/sysemu.h"
34 #include "qemu/bswap.h"
35 #include "exec/memory.h"
36 #include "exec/ram_addr.h"
37 #include "exec/address-spaces.h"
38 #include "qemu/event_notifier.h"
39 #include "qemu/main-loop.h"
40 #include "trace.h"
41 #include "hw/irq.h"
42 #include "sysemu/sev.h"
43 #include "sysemu/balloon.h"
45 #include "hw/boards.h"
47 /* This check must be after config-host.h is included */
48 #ifdef CONFIG_EVENTFD
49 #include <sys/eventfd.h>
50 #endif
52 /* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We
53 * need to use the real host PAGE_SIZE, as that's what KVM will use.
55 #define PAGE_SIZE qemu_real_host_page_size
57 //#define DEBUG_KVM
59 #ifdef DEBUG_KVM
60 #define DPRINTF(fmt, ...) \
61 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
62 #else
63 #define DPRINTF(fmt, ...) \
64 do { } while (0)
65 #endif
67 #define KVM_MSI_HASHTAB_SIZE 256
69 struct KVMParkedVcpu {
70 unsigned long vcpu_id;
71 int kvm_fd;
72 QLIST_ENTRY(KVMParkedVcpu) node;
75 struct KVMState
77 AccelState parent_obj;
79 int nr_slots;
80 int fd;
81 int vmfd;
82 int coalesced_mmio;
83 int coalesced_pio;
84 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
85 bool coalesced_flush_in_progress;
86 int vcpu_events;
87 int robust_singlestep;
88 int debugregs;
89 #ifdef KVM_CAP_SET_GUEST_DEBUG
90 QTAILQ_HEAD(, kvm_sw_breakpoint) kvm_sw_breakpoints;
91 #endif
92 int max_nested_state_len;
93 int many_ioeventfds;
94 int intx_set_mask;
95 bool sync_mmu;
96 bool manual_dirty_log_protect;
97 /* The man page (and posix) say ioctl numbers are signed int, but
98 * they're not. Linux, glibc and *BSD all treat ioctl numbers as
99 * unsigned, and treating them as signed here can break things */
100 unsigned irq_set_ioctl;
101 unsigned int sigmask_len;
102 GHashTable *gsimap;
103 #ifdef KVM_CAP_IRQ_ROUTING
104 struct kvm_irq_routing *irq_routes;
105 int nr_allocated_irq_routes;
106 unsigned long *used_gsi_bitmap;
107 unsigned int gsi_count;
108 QTAILQ_HEAD(, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE];
109 #endif
110 KVMMemoryListener memory_listener;
111 QLIST_HEAD(, KVMParkedVcpu) kvm_parked_vcpus;
113 /* memory encryption */
114 void *memcrypt_handle;
115 int (*memcrypt_encrypt_data)(void *handle, uint8_t *ptr, uint64_t len);
117 /* For "info mtree -f" to tell if an MR is registered in KVM */
118 int nr_as;
119 struct KVMAs {
120 KVMMemoryListener *ml;
121 AddressSpace *as;
122 } *as;
125 KVMState *kvm_state;
126 bool kvm_kernel_irqchip;
127 bool kvm_split_irqchip;
128 bool kvm_async_interrupts_allowed;
129 bool kvm_halt_in_kernel_allowed;
130 bool kvm_eventfds_allowed;
131 bool kvm_irqfds_allowed;
132 bool kvm_resamplefds_allowed;
133 bool kvm_msi_via_irqfd_allowed;
134 bool kvm_gsi_routing_allowed;
135 bool kvm_gsi_direct_mapping;
136 bool kvm_allowed;
137 bool kvm_readonly_mem_allowed;
138 bool kvm_vm_attributes_allowed;
139 bool kvm_direct_msi_allowed;
140 bool kvm_ioeventfd_any_length_allowed;
141 bool kvm_msi_use_devid;
142 static bool kvm_immediate_exit;
143 static hwaddr kvm_max_slot_size = ~0;
145 static const KVMCapabilityInfo kvm_required_capabilites[] = {
146 KVM_CAP_INFO(USER_MEMORY),
147 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
148 KVM_CAP_INFO(JOIN_MEMORY_REGIONS_WORKS),
149 KVM_CAP_LAST_INFO
152 static NotifierList kvm_irqchip_change_notifiers =
153 NOTIFIER_LIST_INITIALIZER(kvm_irqchip_change_notifiers);
155 #define kvm_slots_lock(kml) qemu_mutex_lock(&(kml)->slots_lock)
156 #define kvm_slots_unlock(kml) qemu_mutex_unlock(&(kml)->slots_lock)
158 int kvm_get_max_memslots(void)
160 KVMState *s = KVM_STATE(current_machine->accelerator);
162 return s->nr_slots;
165 bool kvm_memcrypt_enabled(void)
167 if (kvm_state && kvm_state->memcrypt_handle) {
168 return true;
171 return false;
174 int kvm_memcrypt_encrypt_data(uint8_t *ptr, uint64_t len)
176 if (kvm_state->memcrypt_handle &&
177 kvm_state->memcrypt_encrypt_data) {
178 return kvm_state->memcrypt_encrypt_data(kvm_state->memcrypt_handle,
179 ptr, len);
182 return 1;
185 /* Called with KVMMemoryListener.slots_lock held */
186 static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml)
188 KVMState *s = kvm_state;
189 int i;
191 for (i = 0; i < s->nr_slots; i++) {
192 if (kml->slots[i].memory_size == 0) {
193 return &kml->slots[i];
197 return NULL;
200 bool kvm_has_free_slot(MachineState *ms)
202 KVMState *s = KVM_STATE(ms->accelerator);
203 bool result;
204 KVMMemoryListener *kml = &s->memory_listener;
206 kvm_slots_lock(kml);
207 result = !!kvm_get_free_slot(kml);
208 kvm_slots_unlock(kml);
210 return result;
213 /* Called with KVMMemoryListener.slots_lock held */
214 static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml)
216 KVMSlot *slot = kvm_get_free_slot(kml);
218 if (slot) {
219 return slot;
222 fprintf(stderr, "%s: no free slot available\n", __func__);
223 abort();
226 static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml,
227 hwaddr start_addr,
228 hwaddr size)
230 KVMState *s = kvm_state;
231 int i;
233 for (i = 0; i < s->nr_slots; i++) {
234 KVMSlot *mem = &kml->slots[i];
236 if (start_addr == mem->start_addr && size == mem->memory_size) {
237 return mem;
241 return NULL;
245 * Calculate and align the start address and the size of the section.
246 * Return the size. If the size is 0, the aligned section is empty.
248 static hwaddr kvm_align_section(MemoryRegionSection *section,
249 hwaddr *start)
251 hwaddr size = int128_get64(section->size);
252 hwaddr delta, aligned;
254 /* kvm works in page size chunks, but the function may be called
255 with sub-page size and unaligned start address. Pad the start
256 address to next and truncate size to previous page boundary. */
257 aligned = ROUND_UP(section->offset_within_address_space,
258 qemu_real_host_page_size);
259 delta = aligned - section->offset_within_address_space;
260 *start = aligned;
261 if (delta > size) {
262 return 0;
265 return (size - delta) & qemu_real_host_page_mask;
268 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
269 hwaddr *phys_addr)
271 KVMMemoryListener *kml = &s->memory_listener;
272 int i, ret = 0;
274 kvm_slots_lock(kml);
275 for (i = 0; i < s->nr_slots; i++) {
276 KVMSlot *mem = &kml->slots[i];
278 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
279 *phys_addr = mem->start_addr + (ram - mem->ram);
280 ret = 1;
281 break;
284 kvm_slots_unlock(kml);
286 return ret;
289 static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot, bool new)
291 KVMState *s = kvm_state;
292 struct kvm_userspace_memory_region mem;
293 int ret;
295 mem.slot = slot->slot | (kml->as_id << 16);
296 mem.guest_phys_addr = slot->start_addr;
297 mem.userspace_addr = (unsigned long)slot->ram;
298 mem.flags = slot->flags;
300 if (slot->memory_size && !new && (mem.flags ^ slot->old_flags) & KVM_MEM_READONLY) {
301 /* Set the slot size to 0 before setting the slot to the desired
302 * value. This is needed based on KVM commit 75d61fbc. */
303 mem.memory_size = 0;
304 kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
306 mem.memory_size = slot->memory_size;
307 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
308 slot->old_flags = mem.flags;
309 trace_kvm_set_user_memory(mem.slot, mem.flags, mem.guest_phys_addr,
310 mem.memory_size, mem.userspace_addr, ret);
311 return ret;
314 int kvm_destroy_vcpu(CPUState *cpu)
316 KVMState *s = kvm_state;
317 long mmap_size;
318 struct KVMParkedVcpu *vcpu = NULL;
319 int ret = 0;
321 DPRINTF("kvm_destroy_vcpu\n");
323 ret = kvm_arch_destroy_vcpu(cpu);
324 if (ret < 0) {
325 goto err;
328 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
329 if (mmap_size < 0) {
330 ret = mmap_size;
331 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
332 goto err;
335 ret = munmap(cpu->kvm_run, mmap_size);
336 if (ret < 0) {
337 goto err;
340 vcpu = g_malloc0(sizeof(*vcpu));
341 vcpu->vcpu_id = kvm_arch_vcpu_id(cpu);
342 vcpu->kvm_fd = cpu->kvm_fd;
343 QLIST_INSERT_HEAD(&kvm_state->kvm_parked_vcpus, vcpu, node);
344 err:
345 return ret;
348 static int kvm_get_vcpu(KVMState *s, unsigned long vcpu_id)
350 struct KVMParkedVcpu *cpu;
352 QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) {
353 if (cpu->vcpu_id == vcpu_id) {
354 int kvm_fd;
356 QLIST_REMOVE(cpu, node);
357 kvm_fd = cpu->kvm_fd;
358 g_free(cpu);
359 return kvm_fd;
363 return kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)vcpu_id);
366 int kvm_init_vcpu(CPUState *cpu)
368 KVMState *s = kvm_state;
369 long mmap_size;
370 int ret;
372 DPRINTF("kvm_init_vcpu\n");
374 ret = kvm_get_vcpu(s, kvm_arch_vcpu_id(cpu));
375 if (ret < 0) {
376 DPRINTF("kvm_create_vcpu failed\n");
377 goto err;
380 cpu->kvm_fd = ret;
381 cpu->kvm_state = s;
382 cpu->vcpu_dirty = true;
384 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
385 if (mmap_size < 0) {
386 ret = mmap_size;
387 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
388 goto err;
391 cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
392 cpu->kvm_fd, 0);
393 if (cpu->kvm_run == MAP_FAILED) {
394 ret = -errno;
395 DPRINTF("mmap'ing vcpu state failed\n");
396 goto err;
399 if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
400 s->coalesced_mmio_ring =
401 (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE;
404 ret = kvm_arch_init_vcpu(cpu);
405 err:
406 return ret;
410 * dirty pages logging control
413 static int kvm_mem_flags(MemoryRegion *mr)
415 bool readonly = mr->readonly || memory_region_is_romd(mr);
416 int flags = 0;
418 if (memory_region_get_dirty_log_mask(mr) != 0) {
419 flags |= KVM_MEM_LOG_DIRTY_PAGES;
421 if (readonly && kvm_readonly_mem_allowed) {
422 flags |= KVM_MEM_READONLY;
424 return flags;
427 /* Called with KVMMemoryListener.slots_lock held */
428 static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem,
429 MemoryRegion *mr)
431 mem->flags = kvm_mem_flags(mr);
433 /* If nothing changed effectively, no need to issue ioctl */
434 if (mem->flags == mem->old_flags) {
435 return 0;
438 return kvm_set_user_memory_region(kml, mem, false);
441 static int kvm_section_update_flags(KVMMemoryListener *kml,
442 MemoryRegionSection *section)
444 hwaddr start_addr, size, slot_size;
445 KVMSlot *mem;
446 int ret = 0;
448 size = kvm_align_section(section, &start_addr);
449 if (!size) {
450 return 0;
453 kvm_slots_lock(kml);
455 while (size && !ret) {
456 slot_size = MIN(kvm_max_slot_size, size);
457 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
458 if (!mem) {
459 /* We don't have a slot if we want to trap every access. */
460 goto out;
463 ret = kvm_slot_update_flags(kml, mem, section->mr);
464 start_addr += slot_size;
465 size -= slot_size;
468 out:
469 kvm_slots_unlock(kml);
470 return ret;
473 static void kvm_log_start(MemoryListener *listener,
474 MemoryRegionSection *section,
475 int old, int new)
477 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
478 int r;
480 if (old != 0) {
481 return;
484 r = kvm_section_update_flags(kml, section);
485 if (r < 0) {
486 abort();
490 static void kvm_log_stop(MemoryListener *listener,
491 MemoryRegionSection *section,
492 int old, int new)
494 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
495 int r;
497 if (new != 0) {
498 return;
501 r = kvm_section_update_flags(kml, section);
502 if (r < 0) {
503 abort();
507 /* get kvm's dirty pages bitmap and update qemu's */
508 static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section,
509 unsigned long *bitmap)
511 ram_addr_t start = section->offset_within_region +
512 memory_region_get_ram_addr(section->mr);
513 ram_addr_t pages = int128_get64(section->size) / qemu_real_host_page_size;
515 cpu_physical_memory_set_dirty_lebitmap(bitmap, start, pages);
516 return 0;
519 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
521 /* Allocate the dirty bitmap for a slot */
522 static void kvm_memslot_init_dirty_bitmap(KVMSlot *mem)
525 * XXX bad kernel interface alert
526 * For dirty bitmap, kernel allocates array of size aligned to
527 * bits-per-long. But for case when the kernel is 64bits and
528 * the userspace is 32bits, userspace can't align to the same
529 * bits-per-long, since sizeof(long) is different between kernel
530 * and user space. This way, userspace will provide buffer which
531 * may be 4 bytes less than the kernel will use, resulting in
532 * userspace memory corruption (which is not detectable by valgrind
533 * too, in most cases).
534 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
535 * a hope that sizeof(long) won't become >8 any time soon.
537 hwaddr bitmap_size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS),
538 /*HOST_LONG_BITS*/ 64) / 8;
539 mem->dirty_bmap = g_malloc0(bitmap_size);
543 * kvm_physical_sync_dirty_bitmap - Sync dirty bitmap from kernel space
545 * This function will first try to fetch dirty bitmap from the kernel,
546 * and then updates qemu's dirty bitmap.
548 * NOTE: caller must be with kml->slots_lock held.
550 * @kml: the KVM memory listener object
551 * @section: the memory section to sync the dirty bitmap with
553 static int kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml,
554 MemoryRegionSection *section)
556 KVMState *s = kvm_state;
557 struct kvm_dirty_log d = {};
558 KVMSlot *mem;
559 hwaddr start_addr, size;
560 hwaddr slot_size, slot_offset = 0;
561 int ret = 0;
563 size = kvm_align_section(section, &start_addr);
564 while (size) {
565 MemoryRegionSection subsection = *section;
567 slot_size = MIN(kvm_max_slot_size, size);
568 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
569 if (!mem) {
570 /* We don't have a slot if we want to trap every access. */
571 goto out;
574 if (!mem->dirty_bmap) {
575 /* Allocate on the first log_sync, once and for all */
576 kvm_memslot_init_dirty_bitmap(mem);
579 d.dirty_bitmap = mem->dirty_bmap;
580 d.slot = mem->slot | (kml->as_id << 16);
581 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
582 DPRINTF("ioctl failed %d\n", errno);
583 ret = -1;
584 goto out;
587 subsection.offset_within_region += slot_offset;
588 subsection.size = int128_make64(slot_size);
589 kvm_get_dirty_pages_log_range(&subsection, d.dirty_bitmap);
591 slot_offset += slot_size;
592 start_addr += slot_size;
593 size -= slot_size;
595 out:
596 return ret;
599 /* Alignment requirement for KVM_CLEAR_DIRTY_LOG - 64 pages */
600 #define KVM_CLEAR_LOG_SHIFT 6
601 #define KVM_CLEAR_LOG_ALIGN (qemu_real_host_page_size << KVM_CLEAR_LOG_SHIFT)
602 #define KVM_CLEAR_LOG_MASK (-KVM_CLEAR_LOG_ALIGN)
604 static int kvm_log_clear_one_slot(KVMSlot *mem, int as_id, uint64_t start,
605 uint64_t size)
607 KVMState *s = kvm_state;
608 uint64_t end, bmap_start, start_delta, bmap_npages;
609 struct kvm_clear_dirty_log d;
610 unsigned long *bmap_clear = NULL, psize = qemu_real_host_page_size;
611 int ret;
614 * We need to extend either the start or the size or both to
615 * satisfy the KVM interface requirement. Firstly, do the start
616 * page alignment on 64 host pages
618 bmap_start = start & KVM_CLEAR_LOG_MASK;
619 start_delta = start - bmap_start;
620 bmap_start /= psize;
623 * The kernel interface has restriction on the size too, that either:
625 * (1) the size is 64 host pages aligned (just like the start), or
626 * (2) the size fills up until the end of the KVM memslot.
628 bmap_npages = DIV_ROUND_UP(size + start_delta, KVM_CLEAR_LOG_ALIGN)
629 << KVM_CLEAR_LOG_SHIFT;
630 end = mem->memory_size / psize;
631 if (bmap_npages > end - bmap_start) {
632 bmap_npages = end - bmap_start;
634 start_delta /= psize;
637 * Prepare the bitmap to clear dirty bits. Here we must guarantee
638 * that we won't clear any unknown dirty bits otherwise we might
639 * accidentally clear some set bits which are not yet synced from
640 * the kernel into QEMU's bitmap, then we'll lose track of the
641 * guest modifications upon those pages (which can directly lead
642 * to guest data loss or panic after migration).
644 * Layout of the KVMSlot.dirty_bmap:
646 * |<-------- bmap_npages -----------..>|
647 * [1]
648 * start_delta size
649 * |----------------|-------------|------------------|------------|
650 * ^ ^ ^ ^
651 * | | | |
652 * start bmap_start (start) end
653 * of memslot of memslot
655 * [1] bmap_npages can be aligned to either 64 pages or the end of slot
658 assert(bmap_start % BITS_PER_LONG == 0);
659 /* We should never do log_clear before log_sync */
660 assert(mem->dirty_bmap);
661 if (start_delta) {
662 /* Slow path - we need to manipulate a temp bitmap */
663 bmap_clear = bitmap_new(bmap_npages);
664 bitmap_copy_with_src_offset(bmap_clear, mem->dirty_bmap,
665 bmap_start, start_delta + size / psize);
667 * We need to fill the holes at start because that was not
668 * specified by the caller and we extended the bitmap only for
669 * 64 pages alignment
671 bitmap_clear(bmap_clear, 0, start_delta);
672 d.dirty_bitmap = bmap_clear;
673 } else {
674 /* Fast path - start address aligns well with BITS_PER_LONG */
675 d.dirty_bitmap = mem->dirty_bmap + BIT_WORD(bmap_start);
678 d.first_page = bmap_start;
679 /* It should never overflow. If it happens, say something */
680 assert(bmap_npages <= UINT32_MAX);
681 d.num_pages = bmap_npages;
682 d.slot = mem->slot | (as_id << 16);
684 if (kvm_vm_ioctl(s, KVM_CLEAR_DIRTY_LOG, &d) == -1) {
685 ret = -errno;
686 error_report("%s: KVM_CLEAR_DIRTY_LOG failed, slot=%d, "
687 "start=0x%"PRIx64", size=0x%"PRIx32", errno=%d",
688 __func__, d.slot, (uint64_t)d.first_page,
689 (uint32_t)d.num_pages, ret);
690 } else {
691 ret = 0;
692 trace_kvm_clear_dirty_log(d.slot, d.first_page, d.num_pages);
696 * After we have updated the remote dirty bitmap, we update the
697 * cached bitmap as well for the memslot, then if another user
698 * clears the same region we know we shouldn't clear it again on
699 * the remote otherwise it's data loss as well.
701 bitmap_clear(mem->dirty_bmap, bmap_start + start_delta,
702 size / psize);
703 /* This handles the NULL case well */
704 g_free(bmap_clear);
705 return ret;
710 * kvm_physical_log_clear - Clear the kernel's dirty bitmap for range
712 * NOTE: this will be a no-op if we haven't enabled manual dirty log
713 * protection in the host kernel because in that case this operation
714 * will be done within log_sync().
716 * @kml: the kvm memory listener
717 * @section: the memory range to clear dirty bitmap
719 static int kvm_physical_log_clear(KVMMemoryListener *kml,
720 MemoryRegionSection *section)
722 KVMState *s = kvm_state;
723 uint64_t start, size, offset, count;
724 KVMSlot *mem;
725 int ret = 0, i;
727 if (!s->manual_dirty_log_protect) {
728 /* No need to do explicit clear */
729 return ret;
732 start = section->offset_within_address_space;
733 size = int128_get64(section->size);
735 if (!size) {
736 /* Nothing more we can do... */
737 return ret;
740 kvm_slots_lock(kml);
742 for (i = 0; i < s->nr_slots; i++) {
743 mem = &kml->slots[i];
744 /* Discard slots that are empty or do not overlap the section */
745 if (!mem->memory_size ||
746 mem->start_addr > start + size - 1 ||
747 start > mem->start_addr + mem->memory_size - 1) {
748 continue;
751 if (start >= mem->start_addr) {
752 /* The slot starts before section or is aligned to it. */
753 offset = start - mem->start_addr;
754 count = MIN(mem->memory_size - offset, size);
755 } else {
756 /* The slot starts after section. */
757 offset = 0;
758 count = MIN(mem->memory_size, size - (mem->start_addr - start));
760 ret = kvm_log_clear_one_slot(mem, kml->as_id, offset, count);
761 if (ret < 0) {
762 break;
766 kvm_slots_unlock(kml);
768 return ret;
771 static void kvm_coalesce_mmio_region(MemoryListener *listener,
772 MemoryRegionSection *secion,
773 hwaddr start, hwaddr size)
775 KVMState *s = kvm_state;
777 if (s->coalesced_mmio) {
778 struct kvm_coalesced_mmio_zone zone;
780 zone.addr = start;
781 zone.size = size;
782 zone.pad = 0;
784 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
788 static void kvm_uncoalesce_mmio_region(MemoryListener *listener,
789 MemoryRegionSection *secion,
790 hwaddr start, hwaddr size)
792 KVMState *s = kvm_state;
794 if (s->coalesced_mmio) {
795 struct kvm_coalesced_mmio_zone zone;
797 zone.addr = start;
798 zone.size = size;
799 zone.pad = 0;
801 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
805 static void kvm_coalesce_pio_add(MemoryListener *listener,
806 MemoryRegionSection *section,
807 hwaddr start, hwaddr size)
809 KVMState *s = kvm_state;
811 if (s->coalesced_pio) {
812 struct kvm_coalesced_mmio_zone zone;
814 zone.addr = start;
815 zone.size = size;
816 zone.pio = 1;
818 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
822 static void kvm_coalesce_pio_del(MemoryListener *listener,
823 MemoryRegionSection *section,
824 hwaddr start, hwaddr size)
826 KVMState *s = kvm_state;
828 if (s->coalesced_pio) {
829 struct kvm_coalesced_mmio_zone zone;
831 zone.addr = start;
832 zone.size = size;
833 zone.pio = 1;
835 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
839 static MemoryListener kvm_coalesced_pio_listener = {
840 .coalesced_io_add = kvm_coalesce_pio_add,
841 .coalesced_io_del = kvm_coalesce_pio_del,
844 int kvm_check_extension(KVMState *s, unsigned int extension)
846 int ret;
848 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
849 if (ret < 0) {
850 ret = 0;
853 return ret;
856 int kvm_vm_check_extension(KVMState *s, unsigned int extension)
858 int ret;
860 ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension);
861 if (ret < 0) {
862 /* VM wide version not implemented, use global one instead */
863 ret = kvm_check_extension(s, extension);
866 return ret;
869 static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size)
871 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
872 /* The kernel expects ioeventfd values in HOST_WORDS_BIGENDIAN
873 * endianness, but the memory core hands them in target endianness.
874 * For example, PPC is always treated as big-endian even if running
875 * on KVM and on PPC64LE. Correct here.
877 switch (size) {
878 case 2:
879 val = bswap16(val);
880 break;
881 case 4:
882 val = bswap32(val);
883 break;
885 #endif
886 return val;
889 static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val,
890 bool assign, uint32_t size, bool datamatch)
892 int ret;
893 struct kvm_ioeventfd iofd = {
894 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
895 .addr = addr,
896 .len = size,
897 .flags = 0,
898 .fd = fd,
901 trace_kvm_set_ioeventfd_mmio(fd, (uint64_t)addr, val, assign, size,
902 datamatch);
903 if (!kvm_enabled()) {
904 return -ENOSYS;
907 if (datamatch) {
908 iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
910 if (!assign) {
911 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
914 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
916 if (ret < 0) {
917 return -errno;
920 return 0;
923 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val,
924 bool assign, uint32_t size, bool datamatch)
926 struct kvm_ioeventfd kick = {
927 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
928 .addr = addr,
929 .flags = KVM_IOEVENTFD_FLAG_PIO,
930 .len = size,
931 .fd = fd,
933 int r;
934 trace_kvm_set_ioeventfd_pio(fd, addr, val, assign, size, datamatch);
935 if (!kvm_enabled()) {
936 return -ENOSYS;
938 if (datamatch) {
939 kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
941 if (!assign) {
942 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
944 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
945 if (r < 0) {
946 return r;
948 return 0;
952 static int kvm_check_many_ioeventfds(void)
954 /* Userspace can use ioeventfd for io notification. This requires a host
955 * that supports eventfd(2) and an I/O thread; since eventfd does not
956 * support SIGIO it cannot interrupt the vcpu.
958 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
959 * can avoid creating too many ioeventfds.
961 #if defined(CONFIG_EVENTFD)
962 int ioeventfds[7];
963 int i, ret = 0;
964 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
965 ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
966 if (ioeventfds[i] < 0) {
967 break;
969 ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true);
970 if (ret < 0) {
971 close(ioeventfds[i]);
972 break;
976 /* Decide whether many devices are supported or not */
977 ret = i == ARRAY_SIZE(ioeventfds);
979 while (i-- > 0) {
980 kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true);
981 close(ioeventfds[i]);
983 return ret;
984 #else
985 return 0;
986 #endif
989 static const KVMCapabilityInfo *
990 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
992 while (list->name) {
993 if (!kvm_check_extension(s, list->value)) {
994 return list;
996 list++;
998 return NULL;
1001 void kvm_set_max_memslot_size(hwaddr max_slot_size)
1003 g_assert(
1004 ROUND_UP(max_slot_size, qemu_real_host_page_size) == max_slot_size
1006 kvm_max_slot_size = max_slot_size;
1009 static void kvm_set_phys_mem(KVMMemoryListener *kml,
1010 MemoryRegionSection *section, bool add)
1012 KVMSlot *mem;
1013 int err;
1014 MemoryRegion *mr = section->mr;
1015 bool writeable = !mr->readonly && !mr->rom_device;
1016 hwaddr start_addr, size, slot_size;
1017 void *ram;
1019 if (!memory_region_is_ram(mr)) {
1020 if (writeable || !kvm_readonly_mem_allowed) {
1021 return;
1022 } else if (!mr->romd_mode) {
1023 /* If the memory device is not in romd_mode, then we actually want
1024 * to remove the kvm memory slot so all accesses will trap. */
1025 add = false;
1029 size = kvm_align_section(section, &start_addr);
1030 if (!size) {
1031 return;
1034 /* use aligned delta to align the ram address */
1035 ram = memory_region_get_ram_ptr(mr) + section->offset_within_region +
1036 (start_addr - section->offset_within_address_space);
1038 kvm_slots_lock(kml);
1040 if (!add) {
1041 do {
1042 slot_size = MIN(kvm_max_slot_size, size);
1043 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
1044 if (!mem) {
1045 goto out;
1047 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1048 kvm_physical_sync_dirty_bitmap(kml, section);
1051 /* unregister the slot */
1052 g_free(mem->dirty_bmap);
1053 mem->dirty_bmap = NULL;
1054 mem->memory_size = 0;
1055 mem->flags = 0;
1056 err = kvm_set_user_memory_region(kml, mem, false);
1057 if (err) {
1058 fprintf(stderr, "%s: error unregistering slot: %s\n",
1059 __func__, strerror(-err));
1060 abort();
1062 start_addr += slot_size;
1063 size -= slot_size;
1064 } while (size);
1065 goto out;
1068 /* register the new slot */
1069 do {
1070 slot_size = MIN(kvm_max_slot_size, size);
1071 mem = kvm_alloc_slot(kml);
1072 mem->memory_size = slot_size;
1073 mem->start_addr = start_addr;
1074 mem->ram = ram;
1075 mem->flags = kvm_mem_flags(mr);
1077 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1079 * Reallocate the bmap; it means it doesn't disappear in
1080 * middle of a migrate.
1082 kvm_memslot_init_dirty_bitmap(mem);
1084 err = kvm_set_user_memory_region(kml, mem, true);
1085 if (err) {
1086 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
1087 strerror(-err));
1088 abort();
1090 start_addr += slot_size;
1091 ram += slot_size;
1092 size -= slot_size;
1093 } while (size);
1095 out:
1096 kvm_slots_unlock(kml);
1099 static void kvm_region_add(MemoryListener *listener,
1100 MemoryRegionSection *section)
1102 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1104 memory_region_ref(section->mr);
1105 kvm_set_phys_mem(kml, section, true);
1108 static void kvm_region_del(MemoryListener *listener,
1109 MemoryRegionSection *section)
1111 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1113 kvm_set_phys_mem(kml, section, false);
1114 memory_region_unref(section->mr);
1117 static void kvm_log_sync(MemoryListener *listener,
1118 MemoryRegionSection *section)
1120 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1121 int r;
1123 kvm_slots_lock(kml);
1124 r = kvm_physical_sync_dirty_bitmap(kml, section);
1125 kvm_slots_unlock(kml);
1126 if (r < 0) {
1127 abort();
1131 static void kvm_log_clear(MemoryListener *listener,
1132 MemoryRegionSection *section)
1134 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1135 int r;
1137 r = kvm_physical_log_clear(kml, section);
1138 if (r < 0) {
1139 error_report_once("%s: kvm log clear failed: mr=%s "
1140 "offset=%"HWADDR_PRIx" size=%"PRIx64, __func__,
1141 section->mr->name, section->offset_within_region,
1142 int128_get64(section->size));
1143 abort();
1147 static void kvm_mem_ioeventfd_add(MemoryListener *listener,
1148 MemoryRegionSection *section,
1149 bool match_data, uint64_t data,
1150 EventNotifier *e)
1152 int fd = event_notifier_get_fd(e);
1153 int r;
1155 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
1156 data, true, int128_get64(section->size),
1157 match_data);
1158 if (r < 0) {
1159 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n",
1160 __func__, strerror(-r), -r);
1161 abort();
1165 static void kvm_mem_ioeventfd_del(MemoryListener *listener,
1166 MemoryRegionSection *section,
1167 bool match_data, uint64_t data,
1168 EventNotifier *e)
1170 int fd = event_notifier_get_fd(e);
1171 int r;
1173 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
1174 data, false, int128_get64(section->size),
1175 match_data);
1176 if (r < 0) {
1177 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n",
1178 __func__, strerror(-r), -r);
1179 abort();
1183 static void kvm_io_ioeventfd_add(MemoryListener *listener,
1184 MemoryRegionSection *section,
1185 bool match_data, uint64_t data,
1186 EventNotifier *e)
1188 int fd = event_notifier_get_fd(e);
1189 int r;
1191 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
1192 data, true, int128_get64(section->size),
1193 match_data);
1194 if (r < 0) {
1195 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n",
1196 __func__, strerror(-r), -r);
1197 abort();
1201 static void kvm_io_ioeventfd_del(MemoryListener *listener,
1202 MemoryRegionSection *section,
1203 bool match_data, uint64_t data,
1204 EventNotifier *e)
1207 int fd = event_notifier_get_fd(e);
1208 int r;
1210 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
1211 data, false, int128_get64(section->size),
1212 match_data);
1213 if (r < 0) {
1214 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n",
1215 __func__, strerror(-r), -r);
1216 abort();
1220 void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml,
1221 AddressSpace *as, int as_id)
1223 int i;
1225 qemu_mutex_init(&kml->slots_lock);
1226 kml->slots = g_malloc0(s->nr_slots * sizeof(KVMSlot));
1227 kml->as_id = as_id;
1229 for (i = 0; i < s->nr_slots; i++) {
1230 kml->slots[i].slot = i;
1233 kml->listener.region_add = kvm_region_add;
1234 kml->listener.region_del = kvm_region_del;
1235 kml->listener.log_start = kvm_log_start;
1236 kml->listener.log_stop = kvm_log_stop;
1237 kml->listener.log_sync = kvm_log_sync;
1238 kml->listener.log_clear = kvm_log_clear;
1239 kml->listener.priority = 10;
1241 memory_listener_register(&kml->listener, as);
1243 for (i = 0; i < s->nr_as; ++i) {
1244 if (!s->as[i].as) {
1245 s->as[i].as = as;
1246 s->as[i].ml = kml;
1247 break;
1252 static MemoryListener kvm_io_listener = {
1253 .eventfd_add = kvm_io_ioeventfd_add,
1254 .eventfd_del = kvm_io_ioeventfd_del,
1255 .priority = 10,
1258 int kvm_set_irq(KVMState *s, int irq, int level)
1260 struct kvm_irq_level event;
1261 int ret;
1263 assert(kvm_async_interrupts_enabled());
1265 event.level = level;
1266 event.irq = irq;
1267 ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event);
1268 if (ret < 0) {
1269 perror("kvm_set_irq");
1270 abort();
1273 return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
1276 #ifdef KVM_CAP_IRQ_ROUTING
1277 typedef struct KVMMSIRoute {
1278 struct kvm_irq_routing_entry kroute;
1279 QTAILQ_ENTRY(KVMMSIRoute) entry;
1280 } KVMMSIRoute;
1282 static void set_gsi(KVMState *s, unsigned int gsi)
1284 set_bit(gsi, s->used_gsi_bitmap);
1287 static void clear_gsi(KVMState *s, unsigned int gsi)
1289 clear_bit(gsi, s->used_gsi_bitmap);
1292 void kvm_init_irq_routing(KVMState *s)
1294 int gsi_count, i;
1296 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1;
1297 if (gsi_count > 0) {
1298 /* Round up so we can search ints using ffs */
1299 s->used_gsi_bitmap = bitmap_new(gsi_count);
1300 s->gsi_count = gsi_count;
1303 s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
1304 s->nr_allocated_irq_routes = 0;
1306 if (!kvm_direct_msi_allowed) {
1307 for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) {
1308 QTAILQ_INIT(&s->msi_hashtab[i]);
1312 kvm_arch_init_irq_routing(s);
1315 void kvm_irqchip_commit_routes(KVMState *s)
1317 int ret;
1319 if (kvm_gsi_direct_mapping()) {
1320 return;
1323 if (!kvm_gsi_routing_enabled()) {
1324 return;
1327 s->irq_routes->flags = 0;
1328 trace_kvm_irqchip_commit_routes();
1329 ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
1330 assert(ret == 0);
1333 static void kvm_add_routing_entry(KVMState *s,
1334 struct kvm_irq_routing_entry *entry)
1336 struct kvm_irq_routing_entry *new;
1337 int n, size;
1339 if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
1340 n = s->nr_allocated_irq_routes * 2;
1341 if (n < 64) {
1342 n = 64;
1344 size = sizeof(struct kvm_irq_routing);
1345 size += n * sizeof(*new);
1346 s->irq_routes = g_realloc(s->irq_routes, size);
1347 s->nr_allocated_irq_routes = n;
1349 n = s->irq_routes->nr++;
1350 new = &s->irq_routes->entries[n];
1352 *new = *entry;
1354 set_gsi(s, entry->gsi);
1357 static int kvm_update_routing_entry(KVMState *s,
1358 struct kvm_irq_routing_entry *new_entry)
1360 struct kvm_irq_routing_entry *entry;
1361 int n;
1363 for (n = 0; n < s->irq_routes->nr; n++) {
1364 entry = &s->irq_routes->entries[n];
1365 if (entry->gsi != new_entry->gsi) {
1366 continue;
1369 if(!memcmp(entry, new_entry, sizeof *entry)) {
1370 return 0;
1373 *entry = *new_entry;
1375 return 0;
1378 return -ESRCH;
1381 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin)
1383 struct kvm_irq_routing_entry e = {};
1385 assert(pin < s->gsi_count);
1387 e.gsi = irq;
1388 e.type = KVM_IRQ_ROUTING_IRQCHIP;
1389 e.flags = 0;
1390 e.u.irqchip.irqchip = irqchip;
1391 e.u.irqchip.pin = pin;
1392 kvm_add_routing_entry(s, &e);
1395 void kvm_irqchip_release_virq(KVMState *s, int virq)
1397 struct kvm_irq_routing_entry *e;
1398 int i;
1400 if (kvm_gsi_direct_mapping()) {
1401 return;
1404 for (i = 0; i < s->irq_routes->nr; i++) {
1405 e = &s->irq_routes->entries[i];
1406 if (e->gsi == virq) {
1407 s->irq_routes->nr--;
1408 *e = s->irq_routes->entries[s->irq_routes->nr];
1411 clear_gsi(s, virq);
1412 kvm_arch_release_virq_post(virq);
1413 trace_kvm_irqchip_release_virq(virq);
1416 void kvm_irqchip_add_change_notifier(Notifier *n)
1418 notifier_list_add(&kvm_irqchip_change_notifiers, n);
1421 void kvm_irqchip_remove_change_notifier(Notifier *n)
1423 notifier_remove(n);
1426 void kvm_irqchip_change_notify(void)
1428 notifier_list_notify(&kvm_irqchip_change_notifiers, NULL);
1431 static unsigned int kvm_hash_msi(uint32_t data)
1433 /* This is optimized for IA32 MSI layout. However, no other arch shall
1434 * repeat the mistake of not providing a direct MSI injection API. */
1435 return data & 0xff;
1438 static void kvm_flush_dynamic_msi_routes(KVMState *s)
1440 KVMMSIRoute *route, *next;
1441 unsigned int hash;
1443 for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) {
1444 QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) {
1445 kvm_irqchip_release_virq(s, route->kroute.gsi);
1446 QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry);
1447 g_free(route);
1452 static int kvm_irqchip_get_virq(KVMState *s)
1454 int next_virq;
1457 * PIC and IOAPIC share the first 16 GSI numbers, thus the available
1458 * GSI numbers are more than the number of IRQ route. Allocating a GSI
1459 * number can succeed even though a new route entry cannot be added.
1460 * When this happens, flush dynamic MSI entries to free IRQ route entries.
1462 if (!kvm_direct_msi_allowed && s->irq_routes->nr == s->gsi_count) {
1463 kvm_flush_dynamic_msi_routes(s);
1466 /* Return the lowest unused GSI in the bitmap */
1467 next_virq = find_first_zero_bit(s->used_gsi_bitmap, s->gsi_count);
1468 if (next_virq >= s->gsi_count) {
1469 return -ENOSPC;
1470 } else {
1471 return next_virq;
1475 static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg)
1477 unsigned int hash = kvm_hash_msi(msg.data);
1478 KVMMSIRoute *route;
1480 QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) {
1481 if (route->kroute.u.msi.address_lo == (uint32_t)msg.address &&
1482 route->kroute.u.msi.address_hi == (msg.address >> 32) &&
1483 route->kroute.u.msi.data == le32_to_cpu(msg.data)) {
1484 return route;
1487 return NULL;
1490 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1492 struct kvm_msi msi;
1493 KVMMSIRoute *route;
1495 if (kvm_direct_msi_allowed) {
1496 msi.address_lo = (uint32_t)msg.address;
1497 msi.address_hi = msg.address >> 32;
1498 msi.data = le32_to_cpu(msg.data);
1499 msi.flags = 0;
1500 memset(msi.pad, 0, sizeof(msi.pad));
1502 return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi);
1505 route = kvm_lookup_msi_route(s, msg);
1506 if (!route) {
1507 int virq;
1509 virq = kvm_irqchip_get_virq(s);
1510 if (virq < 0) {
1511 return virq;
1514 route = g_malloc0(sizeof(KVMMSIRoute));
1515 route->kroute.gsi = virq;
1516 route->kroute.type = KVM_IRQ_ROUTING_MSI;
1517 route->kroute.flags = 0;
1518 route->kroute.u.msi.address_lo = (uint32_t)msg.address;
1519 route->kroute.u.msi.address_hi = msg.address >> 32;
1520 route->kroute.u.msi.data = le32_to_cpu(msg.data);
1522 kvm_add_routing_entry(s, &route->kroute);
1523 kvm_irqchip_commit_routes(s);
1525 QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route,
1526 entry);
1529 assert(route->kroute.type == KVM_IRQ_ROUTING_MSI);
1531 return kvm_set_irq(s, route->kroute.gsi, 1);
1534 int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev)
1536 struct kvm_irq_routing_entry kroute = {};
1537 int virq;
1538 MSIMessage msg = {0, 0};
1540 if (pci_available && dev) {
1541 msg = pci_get_msi_message(dev, vector);
1544 if (kvm_gsi_direct_mapping()) {
1545 return kvm_arch_msi_data_to_gsi(msg.data);
1548 if (!kvm_gsi_routing_enabled()) {
1549 return -ENOSYS;
1552 virq = kvm_irqchip_get_virq(s);
1553 if (virq < 0) {
1554 return virq;
1557 kroute.gsi = virq;
1558 kroute.type = KVM_IRQ_ROUTING_MSI;
1559 kroute.flags = 0;
1560 kroute.u.msi.address_lo = (uint32_t)msg.address;
1561 kroute.u.msi.address_hi = msg.address >> 32;
1562 kroute.u.msi.data = le32_to_cpu(msg.data);
1563 if (pci_available && kvm_msi_devid_required()) {
1564 kroute.flags = KVM_MSI_VALID_DEVID;
1565 kroute.u.msi.devid = pci_requester_id(dev);
1567 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
1568 kvm_irqchip_release_virq(s, virq);
1569 return -EINVAL;
1572 trace_kvm_irqchip_add_msi_route(dev ? dev->name : (char *)"N/A",
1573 vector, virq);
1575 kvm_add_routing_entry(s, &kroute);
1576 kvm_arch_add_msi_route_post(&kroute, vector, dev);
1577 kvm_irqchip_commit_routes(s);
1579 return virq;
1582 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg,
1583 PCIDevice *dev)
1585 struct kvm_irq_routing_entry kroute = {};
1587 if (kvm_gsi_direct_mapping()) {
1588 return 0;
1591 if (!kvm_irqchip_in_kernel()) {
1592 return -ENOSYS;
1595 kroute.gsi = virq;
1596 kroute.type = KVM_IRQ_ROUTING_MSI;
1597 kroute.flags = 0;
1598 kroute.u.msi.address_lo = (uint32_t)msg.address;
1599 kroute.u.msi.address_hi = msg.address >> 32;
1600 kroute.u.msi.data = le32_to_cpu(msg.data);
1601 if (pci_available && kvm_msi_devid_required()) {
1602 kroute.flags = KVM_MSI_VALID_DEVID;
1603 kroute.u.msi.devid = pci_requester_id(dev);
1605 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
1606 return -EINVAL;
1609 trace_kvm_irqchip_update_msi_route(virq);
1611 return kvm_update_routing_entry(s, &kroute);
1614 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int rfd, int virq,
1615 bool assign)
1617 struct kvm_irqfd irqfd = {
1618 .fd = fd,
1619 .gsi = virq,
1620 .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
1623 if (rfd != -1) {
1624 irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE;
1625 irqfd.resamplefd = rfd;
1628 if (!kvm_irqfds_enabled()) {
1629 return -ENOSYS;
1632 return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd);
1635 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
1637 struct kvm_irq_routing_entry kroute = {};
1638 int virq;
1640 if (!kvm_gsi_routing_enabled()) {
1641 return -ENOSYS;
1644 virq = kvm_irqchip_get_virq(s);
1645 if (virq < 0) {
1646 return virq;
1649 kroute.gsi = virq;
1650 kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER;
1651 kroute.flags = 0;
1652 kroute.u.adapter.summary_addr = adapter->summary_addr;
1653 kroute.u.adapter.ind_addr = adapter->ind_addr;
1654 kroute.u.adapter.summary_offset = adapter->summary_offset;
1655 kroute.u.adapter.ind_offset = adapter->ind_offset;
1656 kroute.u.adapter.adapter_id = adapter->adapter_id;
1658 kvm_add_routing_entry(s, &kroute);
1660 return virq;
1663 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint)
1665 struct kvm_irq_routing_entry kroute = {};
1666 int virq;
1668 if (!kvm_gsi_routing_enabled()) {
1669 return -ENOSYS;
1671 if (!kvm_check_extension(s, KVM_CAP_HYPERV_SYNIC)) {
1672 return -ENOSYS;
1674 virq = kvm_irqchip_get_virq(s);
1675 if (virq < 0) {
1676 return virq;
1679 kroute.gsi = virq;
1680 kroute.type = KVM_IRQ_ROUTING_HV_SINT;
1681 kroute.flags = 0;
1682 kroute.u.hv_sint.vcpu = vcpu;
1683 kroute.u.hv_sint.sint = sint;
1685 kvm_add_routing_entry(s, &kroute);
1686 kvm_irqchip_commit_routes(s);
1688 return virq;
1691 #else /* !KVM_CAP_IRQ_ROUTING */
1693 void kvm_init_irq_routing(KVMState *s)
1697 void kvm_irqchip_release_virq(KVMState *s, int virq)
1701 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1703 abort();
1706 int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev)
1708 return -ENOSYS;
1711 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
1713 return -ENOSYS;
1716 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint)
1718 return -ENOSYS;
1721 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign)
1723 abort();
1726 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
1728 return -ENOSYS;
1730 #endif /* !KVM_CAP_IRQ_ROUTING */
1732 int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
1733 EventNotifier *rn, int virq)
1735 return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n),
1736 rn ? event_notifier_get_fd(rn) : -1, virq, true);
1739 int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
1740 int virq)
1742 return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), -1, virq,
1743 false);
1746 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n,
1747 EventNotifier *rn, qemu_irq irq)
1749 gpointer key, gsi;
1750 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
1752 if (!found) {
1753 return -ENXIO;
1755 return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi));
1758 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n,
1759 qemu_irq irq)
1761 gpointer key, gsi;
1762 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
1764 if (!found) {
1765 return -ENXIO;
1767 return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi));
1770 void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi)
1772 g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi));
1775 static void kvm_irqchip_create(MachineState *machine, KVMState *s)
1777 int ret;
1779 if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) {
1781 } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) {
1782 ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0);
1783 if (ret < 0) {
1784 fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret));
1785 exit(1);
1787 } else {
1788 return;
1791 /* First probe and see if there's a arch-specific hook to create the
1792 * in-kernel irqchip for us */
1793 ret = kvm_arch_irqchip_create(machine, s);
1794 if (ret == 0) {
1795 if (machine_kernel_irqchip_split(machine)) {
1796 perror("Split IRQ chip mode not supported.");
1797 exit(1);
1798 } else {
1799 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
1802 if (ret < 0) {
1803 fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret));
1804 exit(1);
1807 kvm_kernel_irqchip = true;
1808 /* If we have an in-kernel IRQ chip then we must have asynchronous
1809 * interrupt delivery (though the reverse is not necessarily true)
1811 kvm_async_interrupts_allowed = true;
1812 kvm_halt_in_kernel_allowed = true;
1814 kvm_init_irq_routing(s);
1816 s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal);
1819 /* Find number of supported CPUs using the recommended
1820 * procedure from the kernel API documentation to cope with
1821 * older kernels that may be missing capabilities.
1823 static int kvm_recommended_vcpus(KVMState *s)
1825 int ret = kvm_vm_check_extension(s, KVM_CAP_NR_VCPUS);
1826 return (ret) ? ret : 4;
1829 static int kvm_max_vcpus(KVMState *s)
1831 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS);
1832 return (ret) ? ret : kvm_recommended_vcpus(s);
1835 static int kvm_max_vcpu_id(KVMState *s)
1837 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPU_ID);
1838 return (ret) ? ret : kvm_max_vcpus(s);
1841 bool kvm_vcpu_id_is_valid(int vcpu_id)
1843 KVMState *s = KVM_STATE(current_machine->accelerator);
1844 return vcpu_id >= 0 && vcpu_id < kvm_max_vcpu_id(s);
1847 static int kvm_init(MachineState *ms)
1849 MachineClass *mc = MACHINE_GET_CLASS(ms);
1850 static const char upgrade_note[] =
1851 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
1852 "(see http://sourceforge.net/projects/kvm).\n";
1853 struct {
1854 const char *name;
1855 int num;
1856 } num_cpus[] = {
1857 { "SMP", ms->smp.cpus },
1858 { "hotpluggable", ms->smp.max_cpus },
1859 { NULL, }
1860 }, *nc = num_cpus;
1861 int soft_vcpus_limit, hard_vcpus_limit;
1862 KVMState *s;
1863 const KVMCapabilityInfo *missing_cap;
1864 int ret;
1865 int type = 0;
1866 const char *kvm_type;
1868 s = KVM_STATE(ms->accelerator);
1871 * On systems where the kernel can support different base page
1872 * sizes, host page size may be different from TARGET_PAGE_SIZE,
1873 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum
1874 * page size for the system though.
1876 assert(TARGET_PAGE_SIZE <= qemu_real_host_page_size);
1878 s->sigmask_len = 8;
1880 #ifdef KVM_CAP_SET_GUEST_DEBUG
1881 QTAILQ_INIT(&s->kvm_sw_breakpoints);
1882 #endif
1883 QLIST_INIT(&s->kvm_parked_vcpus);
1884 s->vmfd = -1;
1885 s->fd = qemu_open("/dev/kvm", O_RDWR);
1886 if (s->fd == -1) {
1887 fprintf(stderr, "Could not access KVM kernel module: %m\n");
1888 ret = -errno;
1889 goto err;
1892 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
1893 if (ret < KVM_API_VERSION) {
1894 if (ret >= 0) {
1895 ret = -EINVAL;
1897 fprintf(stderr, "kvm version too old\n");
1898 goto err;
1901 if (ret > KVM_API_VERSION) {
1902 ret = -EINVAL;
1903 fprintf(stderr, "kvm version not supported\n");
1904 goto err;
1907 kvm_immediate_exit = kvm_check_extension(s, KVM_CAP_IMMEDIATE_EXIT);
1908 s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS);
1910 /* If unspecified, use the default value */
1911 if (!s->nr_slots) {
1912 s->nr_slots = 32;
1915 s->nr_as = kvm_check_extension(s, KVM_CAP_MULTI_ADDRESS_SPACE);
1916 if (s->nr_as <= 1) {
1917 s->nr_as = 1;
1919 s->as = g_new0(struct KVMAs, s->nr_as);
1921 kvm_type = qemu_opt_get(qemu_get_machine_opts(), "kvm-type");
1922 if (mc->kvm_type) {
1923 type = mc->kvm_type(ms, kvm_type);
1924 } else if (kvm_type) {
1925 ret = -EINVAL;
1926 fprintf(stderr, "Invalid argument kvm-type=%s\n", kvm_type);
1927 goto err;
1930 do {
1931 ret = kvm_ioctl(s, KVM_CREATE_VM, type);
1932 } while (ret == -EINTR);
1934 if (ret < 0) {
1935 fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret,
1936 strerror(-ret));
1938 #ifdef TARGET_S390X
1939 if (ret == -EINVAL) {
1940 fprintf(stderr,
1941 "Host kernel setup problem detected. Please verify:\n");
1942 fprintf(stderr, "- for kernels supporting the switch_amode or"
1943 " user_mode parameters, whether\n");
1944 fprintf(stderr,
1945 " user space is running in primary address space\n");
1946 fprintf(stderr,
1947 "- for kernels supporting the vm.allocate_pgste sysctl, "
1948 "whether it is enabled\n");
1950 #endif
1951 goto err;
1954 s->vmfd = ret;
1956 /* check the vcpu limits */
1957 soft_vcpus_limit = kvm_recommended_vcpus(s);
1958 hard_vcpus_limit = kvm_max_vcpus(s);
1960 while (nc->name) {
1961 if (nc->num > soft_vcpus_limit) {
1962 warn_report("Number of %s cpus requested (%d) exceeds "
1963 "the recommended cpus supported by KVM (%d)",
1964 nc->name, nc->num, soft_vcpus_limit);
1966 if (nc->num > hard_vcpus_limit) {
1967 fprintf(stderr, "Number of %s cpus requested (%d) exceeds "
1968 "the maximum cpus supported by KVM (%d)\n",
1969 nc->name, nc->num, hard_vcpus_limit);
1970 exit(1);
1973 nc++;
1976 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
1977 if (!missing_cap) {
1978 missing_cap =
1979 kvm_check_extension_list(s, kvm_arch_required_capabilities);
1981 if (missing_cap) {
1982 ret = -EINVAL;
1983 fprintf(stderr, "kvm does not support %s\n%s",
1984 missing_cap->name, upgrade_note);
1985 goto err;
1988 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
1989 s->coalesced_pio = s->coalesced_mmio &&
1990 kvm_check_extension(s, KVM_CAP_COALESCED_PIO);
1992 s->manual_dirty_log_protect =
1993 kvm_check_extension(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2);
1994 if (s->manual_dirty_log_protect) {
1995 ret = kvm_vm_enable_cap(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2, 0, 1);
1996 if (ret) {
1997 warn_report("Trying to enable KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 "
1998 "but failed. Falling back to the legacy mode. ");
1999 s->manual_dirty_log_protect = false;
2003 #ifdef KVM_CAP_VCPU_EVENTS
2004 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
2005 #endif
2007 s->robust_singlestep =
2008 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
2010 #ifdef KVM_CAP_DEBUGREGS
2011 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
2012 #endif
2014 s->max_nested_state_len = kvm_check_extension(s, KVM_CAP_NESTED_STATE);
2016 #ifdef KVM_CAP_IRQ_ROUTING
2017 kvm_direct_msi_allowed = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0);
2018 #endif
2020 s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3);
2022 s->irq_set_ioctl = KVM_IRQ_LINE;
2023 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
2024 s->irq_set_ioctl = KVM_IRQ_LINE_STATUS;
2027 kvm_readonly_mem_allowed =
2028 (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0);
2030 kvm_eventfds_allowed =
2031 (kvm_check_extension(s, KVM_CAP_IOEVENTFD) > 0);
2033 kvm_irqfds_allowed =
2034 (kvm_check_extension(s, KVM_CAP_IRQFD) > 0);
2036 kvm_resamplefds_allowed =
2037 (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0);
2039 kvm_vm_attributes_allowed =
2040 (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0);
2042 kvm_ioeventfd_any_length_allowed =
2043 (kvm_check_extension(s, KVM_CAP_IOEVENTFD_ANY_LENGTH) > 0);
2045 kvm_state = s;
2048 * if memory encryption object is specified then initialize the memory
2049 * encryption context.
2051 if (ms->memory_encryption) {
2052 kvm_state->memcrypt_handle = sev_guest_init(ms->memory_encryption);
2053 if (!kvm_state->memcrypt_handle) {
2054 ret = -1;
2055 goto err;
2058 kvm_state->memcrypt_encrypt_data = sev_encrypt_data;
2061 ret = kvm_arch_init(ms, s);
2062 if (ret < 0) {
2063 goto err;
2066 if (machine_kernel_irqchip_allowed(ms)) {
2067 kvm_irqchip_create(ms, s);
2070 if (kvm_eventfds_allowed) {
2071 s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add;
2072 s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del;
2074 s->memory_listener.listener.coalesced_io_add = kvm_coalesce_mmio_region;
2075 s->memory_listener.listener.coalesced_io_del = kvm_uncoalesce_mmio_region;
2077 kvm_memory_listener_register(s, &s->memory_listener,
2078 &address_space_memory, 0);
2079 memory_listener_register(&kvm_io_listener,
2080 &address_space_io);
2081 memory_listener_register(&kvm_coalesced_pio_listener,
2082 &address_space_io);
2084 s->many_ioeventfds = kvm_check_many_ioeventfds();
2086 s->sync_mmu = !!kvm_vm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
2087 if (!s->sync_mmu) {
2088 qemu_balloon_inhibit(true);
2091 return 0;
2093 err:
2094 assert(ret < 0);
2095 if (s->vmfd >= 0) {
2096 close(s->vmfd);
2098 if (s->fd != -1) {
2099 close(s->fd);
2101 g_free(s->memory_listener.slots);
2103 return ret;
2106 void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len)
2108 s->sigmask_len = sigmask_len;
2111 static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction,
2112 int size, uint32_t count)
2114 int i;
2115 uint8_t *ptr = data;
2117 for (i = 0; i < count; i++) {
2118 address_space_rw(&address_space_io, port, attrs,
2119 ptr, size,
2120 direction == KVM_EXIT_IO_OUT);
2121 ptr += size;
2125 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run)
2127 fprintf(stderr, "KVM internal error. Suberror: %d\n",
2128 run->internal.suberror);
2130 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
2131 int i;
2133 for (i = 0; i < run->internal.ndata; ++i) {
2134 fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
2135 i, (uint64_t)run->internal.data[i]);
2138 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
2139 fprintf(stderr, "emulation failure\n");
2140 if (!kvm_arch_stop_on_emulation_error(cpu)) {
2141 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
2142 return EXCP_INTERRUPT;
2145 /* FIXME: Should trigger a qmp message to let management know
2146 * something went wrong.
2148 return -1;
2151 void kvm_flush_coalesced_mmio_buffer(void)
2153 KVMState *s = kvm_state;
2155 if (s->coalesced_flush_in_progress) {
2156 return;
2159 s->coalesced_flush_in_progress = true;
2161 if (s->coalesced_mmio_ring) {
2162 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
2163 while (ring->first != ring->last) {
2164 struct kvm_coalesced_mmio *ent;
2166 ent = &ring->coalesced_mmio[ring->first];
2168 if (ent->pio == 1) {
2169 address_space_rw(&address_space_io, ent->phys_addr,
2170 MEMTXATTRS_UNSPECIFIED, ent->data,
2171 ent->len, true);
2172 } else {
2173 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
2175 smp_wmb();
2176 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
2180 s->coalesced_flush_in_progress = false;
2183 static void do_kvm_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg)
2185 if (!cpu->vcpu_dirty) {
2186 kvm_arch_get_registers(cpu);
2187 cpu->vcpu_dirty = true;
2191 void kvm_cpu_synchronize_state(CPUState *cpu)
2193 if (!cpu->vcpu_dirty) {
2194 run_on_cpu(cpu, do_kvm_cpu_synchronize_state, RUN_ON_CPU_NULL);
2198 static void do_kvm_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg)
2200 kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE);
2201 cpu->vcpu_dirty = false;
2204 void kvm_cpu_synchronize_post_reset(CPUState *cpu)
2206 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, RUN_ON_CPU_NULL);
2209 static void do_kvm_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg)
2211 kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE);
2212 cpu->vcpu_dirty = false;
2215 void kvm_cpu_synchronize_post_init(CPUState *cpu)
2217 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, RUN_ON_CPU_NULL);
2220 static void do_kvm_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg)
2222 cpu->vcpu_dirty = true;
2225 void kvm_cpu_synchronize_pre_loadvm(CPUState *cpu)
2227 run_on_cpu(cpu, do_kvm_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL);
2230 #ifdef KVM_HAVE_MCE_INJECTION
2231 static __thread void *pending_sigbus_addr;
2232 static __thread int pending_sigbus_code;
2233 static __thread bool have_sigbus_pending;
2234 #endif
2236 static void kvm_cpu_kick(CPUState *cpu)
2238 atomic_set(&cpu->kvm_run->immediate_exit, 1);
2241 static void kvm_cpu_kick_self(void)
2243 if (kvm_immediate_exit) {
2244 kvm_cpu_kick(current_cpu);
2245 } else {
2246 qemu_cpu_kick_self();
2250 static void kvm_eat_signals(CPUState *cpu)
2252 struct timespec ts = { 0, 0 };
2253 siginfo_t siginfo;
2254 sigset_t waitset;
2255 sigset_t chkset;
2256 int r;
2258 if (kvm_immediate_exit) {
2259 atomic_set(&cpu->kvm_run->immediate_exit, 0);
2260 /* Write kvm_run->immediate_exit before the cpu->exit_request
2261 * write in kvm_cpu_exec.
2263 smp_wmb();
2264 return;
2267 sigemptyset(&waitset);
2268 sigaddset(&waitset, SIG_IPI);
2270 do {
2271 r = sigtimedwait(&waitset, &siginfo, &ts);
2272 if (r == -1 && !(errno == EAGAIN || errno == EINTR)) {
2273 perror("sigtimedwait");
2274 exit(1);
2277 r = sigpending(&chkset);
2278 if (r == -1) {
2279 perror("sigpending");
2280 exit(1);
2282 } while (sigismember(&chkset, SIG_IPI));
2285 int kvm_cpu_exec(CPUState *cpu)
2287 struct kvm_run *run = cpu->kvm_run;
2288 int ret, run_ret;
2290 DPRINTF("kvm_cpu_exec()\n");
2292 if (kvm_arch_process_async_events(cpu)) {
2293 atomic_set(&cpu->exit_request, 0);
2294 return EXCP_HLT;
2297 qemu_mutex_unlock_iothread();
2298 cpu_exec_start(cpu);
2300 do {
2301 MemTxAttrs attrs;
2303 if (cpu->vcpu_dirty) {
2304 kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE);
2305 cpu->vcpu_dirty = false;
2308 kvm_arch_pre_run(cpu, run);
2309 if (atomic_read(&cpu->exit_request)) {
2310 DPRINTF("interrupt exit requested\n");
2312 * KVM requires us to reenter the kernel after IO exits to complete
2313 * instruction emulation. This self-signal will ensure that we
2314 * leave ASAP again.
2316 kvm_cpu_kick_self();
2319 /* Read cpu->exit_request before KVM_RUN reads run->immediate_exit.
2320 * Matching barrier in kvm_eat_signals.
2322 smp_rmb();
2324 run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0);
2326 attrs = kvm_arch_post_run(cpu, run);
2328 #ifdef KVM_HAVE_MCE_INJECTION
2329 if (unlikely(have_sigbus_pending)) {
2330 qemu_mutex_lock_iothread();
2331 kvm_arch_on_sigbus_vcpu(cpu, pending_sigbus_code,
2332 pending_sigbus_addr);
2333 have_sigbus_pending = false;
2334 qemu_mutex_unlock_iothread();
2336 #endif
2338 if (run_ret < 0) {
2339 if (run_ret == -EINTR || run_ret == -EAGAIN) {
2340 DPRINTF("io window exit\n");
2341 kvm_eat_signals(cpu);
2342 ret = EXCP_INTERRUPT;
2343 break;
2345 fprintf(stderr, "error: kvm run failed %s\n",
2346 strerror(-run_ret));
2347 #ifdef TARGET_PPC
2348 if (run_ret == -EBUSY) {
2349 fprintf(stderr,
2350 "This is probably because your SMT is enabled.\n"
2351 "VCPU can only run on primary threads with all "
2352 "secondary threads offline.\n");
2354 #endif
2355 ret = -1;
2356 break;
2359 trace_kvm_run_exit(cpu->cpu_index, run->exit_reason);
2360 switch (run->exit_reason) {
2361 case KVM_EXIT_IO:
2362 DPRINTF("handle_io\n");
2363 /* Called outside BQL */
2364 kvm_handle_io(run->io.port, attrs,
2365 (uint8_t *)run + run->io.data_offset,
2366 run->io.direction,
2367 run->io.size,
2368 run->io.count);
2369 ret = 0;
2370 break;
2371 case KVM_EXIT_MMIO:
2372 DPRINTF("handle_mmio\n");
2373 /* Called outside BQL */
2374 address_space_rw(&address_space_memory,
2375 run->mmio.phys_addr, attrs,
2376 run->mmio.data,
2377 run->mmio.len,
2378 run->mmio.is_write);
2379 ret = 0;
2380 break;
2381 case KVM_EXIT_IRQ_WINDOW_OPEN:
2382 DPRINTF("irq_window_open\n");
2383 ret = EXCP_INTERRUPT;
2384 break;
2385 case KVM_EXIT_SHUTDOWN:
2386 DPRINTF("shutdown\n");
2387 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
2388 ret = EXCP_INTERRUPT;
2389 break;
2390 case KVM_EXIT_UNKNOWN:
2391 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
2392 (uint64_t)run->hw.hardware_exit_reason);
2393 ret = -1;
2394 break;
2395 case KVM_EXIT_INTERNAL_ERROR:
2396 ret = kvm_handle_internal_error(cpu, run);
2397 break;
2398 case KVM_EXIT_SYSTEM_EVENT:
2399 switch (run->system_event.type) {
2400 case KVM_SYSTEM_EVENT_SHUTDOWN:
2401 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
2402 ret = EXCP_INTERRUPT;
2403 break;
2404 case KVM_SYSTEM_EVENT_RESET:
2405 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
2406 ret = EXCP_INTERRUPT;
2407 break;
2408 case KVM_SYSTEM_EVENT_CRASH:
2409 kvm_cpu_synchronize_state(cpu);
2410 qemu_mutex_lock_iothread();
2411 qemu_system_guest_panicked(cpu_get_crash_info(cpu));
2412 qemu_mutex_unlock_iothread();
2413 ret = 0;
2414 break;
2415 default:
2416 DPRINTF("kvm_arch_handle_exit\n");
2417 ret = kvm_arch_handle_exit(cpu, run);
2418 break;
2420 break;
2421 default:
2422 DPRINTF("kvm_arch_handle_exit\n");
2423 ret = kvm_arch_handle_exit(cpu, run);
2424 break;
2426 } while (ret == 0);
2428 cpu_exec_end(cpu);
2429 qemu_mutex_lock_iothread();
2431 if (ret < 0) {
2432 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
2433 vm_stop(RUN_STATE_INTERNAL_ERROR);
2436 atomic_set(&cpu->exit_request, 0);
2437 return ret;
2440 int kvm_ioctl(KVMState *s, int type, ...)
2442 int ret;
2443 void *arg;
2444 va_list ap;
2446 va_start(ap, type);
2447 arg = va_arg(ap, void *);
2448 va_end(ap);
2450 trace_kvm_ioctl(type, arg);
2451 ret = ioctl(s->fd, type, arg);
2452 if (ret == -1) {
2453 ret = -errno;
2455 return ret;
2458 int kvm_vm_ioctl(KVMState *s, int type, ...)
2460 int ret;
2461 void *arg;
2462 va_list ap;
2464 va_start(ap, type);
2465 arg = va_arg(ap, void *);
2466 va_end(ap);
2468 trace_kvm_vm_ioctl(type, arg);
2469 ret = ioctl(s->vmfd, type, arg);
2470 if (ret == -1) {
2471 ret = -errno;
2473 return ret;
2476 int kvm_vcpu_ioctl(CPUState *cpu, int type, ...)
2478 int ret;
2479 void *arg;
2480 va_list ap;
2482 va_start(ap, type);
2483 arg = va_arg(ap, void *);
2484 va_end(ap);
2486 trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg);
2487 ret = ioctl(cpu->kvm_fd, type, arg);
2488 if (ret == -1) {
2489 ret = -errno;
2491 return ret;
2494 int kvm_device_ioctl(int fd, int type, ...)
2496 int ret;
2497 void *arg;
2498 va_list ap;
2500 va_start(ap, type);
2501 arg = va_arg(ap, void *);
2502 va_end(ap);
2504 trace_kvm_device_ioctl(fd, type, arg);
2505 ret = ioctl(fd, type, arg);
2506 if (ret == -1) {
2507 ret = -errno;
2509 return ret;
2512 int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr)
2514 int ret;
2515 struct kvm_device_attr attribute = {
2516 .group = group,
2517 .attr = attr,
2520 if (!kvm_vm_attributes_allowed) {
2521 return 0;
2524 ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute);
2525 /* kvm returns 0 on success for HAS_DEVICE_ATTR */
2526 return ret ? 0 : 1;
2529 int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr)
2531 struct kvm_device_attr attribute = {
2532 .group = group,
2533 .attr = attr,
2534 .flags = 0,
2537 return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1;
2540 int kvm_device_access(int fd, int group, uint64_t attr,
2541 void *val, bool write, Error **errp)
2543 struct kvm_device_attr kvmattr;
2544 int err;
2546 kvmattr.flags = 0;
2547 kvmattr.group = group;
2548 kvmattr.attr = attr;
2549 kvmattr.addr = (uintptr_t)val;
2551 err = kvm_device_ioctl(fd,
2552 write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR,
2553 &kvmattr);
2554 if (err < 0) {
2555 error_setg_errno(errp, -err,
2556 "KVM_%s_DEVICE_ATTR failed: Group %d "
2557 "attr 0x%016" PRIx64,
2558 write ? "SET" : "GET", group, attr);
2560 return err;
2563 bool kvm_has_sync_mmu(void)
2565 return kvm_state->sync_mmu;
2568 int kvm_has_vcpu_events(void)
2570 return kvm_state->vcpu_events;
2573 int kvm_has_robust_singlestep(void)
2575 return kvm_state->robust_singlestep;
2578 int kvm_has_debugregs(void)
2580 return kvm_state->debugregs;
2583 int kvm_max_nested_state_length(void)
2585 return kvm_state->max_nested_state_len;
2588 int kvm_has_many_ioeventfds(void)
2590 if (!kvm_enabled()) {
2591 return 0;
2593 return kvm_state->many_ioeventfds;
2596 int kvm_has_gsi_routing(void)
2598 #ifdef KVM_CAP_IRQ_ROUTING
2599 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
2600 #else
2601 return false;
2602 #endif
2605 int kvm_has_intx_set_mask(void)
2607 return kvm_state->intx_set_mask;
2610 bool kvm_arm_supports_user_irq(void)
2612 return kvm_check_extension(kvm_state, KVM_CAP_ARM_USER_IRQ);
2615 #ifdef KVM_CAP_SET_GUEST_DEBUG
2616 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu,
2617 target_ulong pc)
2619 struct kvm_sw_breakpoint *bp;
2621 QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) {
2622 if (bp->pc == pc) {
2623 return bp;
2626 return NULL;
2629 int kvm_sw_breakpoints_active(CPUState *cpu)
2631 return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints);
2634 struct kvm_set_guest_debug_data {
2635 struct kvm_guest_debug dbg;
2636 int err;
2639 static void kvm_invoke_set_guest_debug(CPUState *cpu, run_on_cpu_data data)
2641 struct kvm_set_guest_debug_data *dbg_data =
2642 (struct kvm_set_guest_debug_data *) data.host_ptr;
2644 dbg_data->err = kvm_vcpu_ioctl(cpu, KVM_SET_GUEST_DEBUG,
2645 &dbg_data->dbg);
2648 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
2650 struct kvm_set_guest_debug_data data;
2652 data.dbg.control = reinject_trap;
2654 if (cpu->singlestep_enabled) {
2655 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
2657 kvm_arch_update_guest_debug(cpu, &data.dbg);
2659 run_on_cpu(cpu, kvm_invoke_set_guest_debug,
2660 RUN_ON_CPU_HOST_PTR(&data));
2661 return data.err;
2664 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
2665 target_ulong len, int type)
2667 struct kvm_sw_breakpoint *bp;
2668 int err;
2670 if (type == GDB_BREAKPOINT_SW) {
2671 bp = kvm_find_sw_breakpoint(cpu, addr);
2672 if (bp) {
2673 bp->use_count++;
2674 return 0;
2677 bp = g_malloc(sizeof(struct kvm_sw_breakpoint));
2678 bp->pc = addr;
2679 bp->use_count = 1;
2680 err = kvm_arch_insert_sw_breakpoint(cpu, bp);
2681 if (err) {
2682 g_free(bp);
2683 return err;
2686 QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
2687 } else {
2688 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
2689 if (err) {
2690 return err;
2694 CPU_FOREACH(cpu) {
2695 err = kvm_update_guest_debug(cpu, 0);
2696 if (err) {
2697 return err;
2700 return 0;
2703 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
2704 target_ulong len, int type)
2706 struct kvm_sw_breakpoint *bp;
2707 int err;
2709 if (type == GDB_BREAKPOINT_SW) {
2710 bp = kvm_find_sw_breakpoint(cpu, addr);
2711 if (!bp) {
2712 return -ENOENT;
2715 if (bp->use_count > 1) {
2716 bp->use_count--;
2717 return 0;
2720 err = kvm_arch_remove_sw_breakpoint(cpu, bp);
2721 if (err) {
2722 return err;
2725 QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
2726 g_free(bp);
2727 } else {
2728 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
2729 if (err) {
2730 return err;
2734 CPU_FOREACH(cpu) {
2735 err = kvm_update_guest_debug(cpu, 0);
2736 if (err) {
2737 return err;
2740 return 0;
2743 void kvm_remove_all_breakpoints(CPUState *cpu)
2745 struct kvm_sw_breakpoint *bp, *next;
2746 KVMState *s = cpu->kvm_state;
2747 CPUState *tmpcpu;
2749 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
2750 if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) {
2751 /* Try harder to find a CPU that currently sees the breakpoint. */
2752 CPU_FOREACH(tmpcpu) {
2753 if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) {
2754 break;
2758 QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry);
2759 g_free(bp);
2761 kvm_arch_remove_all_hw_breakpoints();
2763 CPU_FOREACH(cpu) {
2764 kvm_update_guest_debug(cpu, 0);
2768 #else /* !KVM_CAP_SET_GUEST_DEBUG */
2770 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
2772 return -EINVAL;
2775 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
2776 target_ulong len, int type)
2778 return -EINVAL;
2781 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
2782 target_ulong len, int type)
2784 return -EINVAL;
2787 void kvm_remove_all_breakpoints(CPUState *cpu)
2790 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
2792 static int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset)
2794 KVMState *s = kvm_state;
2795 struct kvm_signal_mask *sigmask;
2796 int r;
2798 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
2800 sigmask->len = s->sigmask_len;
2801 memcpy(sigmask->sigset, sigset, sizeof(*sigset));
2802 r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask);
2803 g_free(sigmask);
2805 return r;
2808 static void kvm_ipi_signal(int sig)
2810 if (current_cpu) {
2811 assert(kvm_immediate_exit);
2812 kvm_cpu_kick(current_cpu);
2816 void kvm_init_cpu_signals(CPUState *cpu)
2818 int r;
2819 sigset_t set;
2820 struct sigaction sigact;
2822 memset(&sigact, 0, sizeof(sigact));
2823 sigact.sa_handler = kvm_ipi_signal;
2824 sigaction(SIG_IPI, &sigact, NULL);
2826 pthread_sigmask(SIG_BLOCK, NULL, &set);
2827 #if defined KVM_HAVE_MCE_INJECTION
2828 sigdelset(&set, SIGBUS);
2829 pthread_sigmask(SIG_SETMASK, &set, NULL);
2830 #endif
2831 sigdelset(&set, SIG_IPI);
2832 if (kvm_immediate_exit) {
2833 r = pthread_sigmask(SIG_SETMASK, &set, NULL);
2834 } else {
2835 r = kvm_set_signal_mask(cpu, &set);
2837 if (r) {
2838 fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r));
2839 exit(1);
2843 /* Called asynchronously in VCPU thread. */
2844 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr)
2846 #ifdef KVM_HAVE_MCE_INJECTION
2847 if (have_sigbus_pending) {
2848 return 1;
2850 have_sigbus_pending = true;
2851 pending_sigbus_addr = addr;
2852 pending_sigbus_code = code;
2853 atomic_set(&cpu->exit_request, 1);
2854 return 0;
2855 #else
2856 return 1;
2857 #endif
2860 /* Called synchronously (via signalfd) in main thread. */
2861 int kvm_on_sigbus(int code, void *addr)
2863 #ifdef KVM_HAVE_MCE_INJECTION
2864 /* Action required MCE kills the process if SIGBUS is blocked. Because
2865 * that's what happens in the I/O thread, where we handle MCE via signalfd,
2866 * we can only get action optional here.
2868 assert(code != BUS_MCEERR_AR);
2869 kvm_arch_on_sigbus_vcpu(first_cpu, code, addr);
2870 return 0;
2871 #else
2872 return 1;
2873 #endif
2876 int kvm_create_device(KVMState *s, uint64_t type, bool test)
2878 int ret;
2879 struct kvm_create_device create_dev;
2881 create_dev.type = type;
2882 create_dev.fd = -1;
2883 create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0;
2885 if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) {
2886 return -ENOTSUP;
2889 ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev);
2890 if (ret) {
2891 return ret;
2894 return test ? 0 : create_dev.fd;
2897 bool kvm_device_supported(int vmfd, uint64_t type)
2899 struct kvm_create_device create_dev = {
2900 .type = type,
2901 .fd = -1,
2902 .flags = KVM_CREATE_DEVICE_TEST,
2905 if (ioctl(vmfd, KVM_CHECK_EXTENSION, KVM_CAP_DEVICE_CTRL) <= 0) {
2906 return false;
2909 return (ioctl(vmfd, KVM_CREATE_DEVICE, &create_dev) >= 0);
2912 int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source)
2914 struct kvm_one_reg reg;
2915 int r;
2917 reg.id = id;
2918 reg.addr = (uintptr_t) source;
2919 r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
2920 if (r) {
2921 trace_kvm_failed_reg_set(id, strerror(-r));
2923 return r;
2926 int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target)
2928 struct kvm_one_reg reg;
2929 int r;
2931 reg.id = id;
2932 reg.addr = (uintptr_t) target;
2933 r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
2934 if (r) {
2935 trace_kvm_failed_reg_get(id, strerror(-r));
2937 return r;
2940 static bool kvm_accel_has_memory(MachineState *ms, AddressSpace *as,
2941 hwaddr start_addr, hwaddr size)
2943 KVMState *kvm = KVM_STATE(ms->accelerator);
2944 int i;
2946 for (i = 0; i < kvm->nr_as; ++i) {
2947 if (kvm->as[i].as == as && kvm->as[i].ml) {
2948 size = MIN(kvm_max_slot_size, size);
2949 return NULL != kvm_lookup_matching_slot(kvm->as[i].ml,
2950 start_addr, size);
2954 return false;
2957 static void kvm_accel_class_init(ObjectClass *oc, void *data)
2959 AccelClass *ac = ACCEL_CLASS(oc);
2960 ac->name = "KVM";
2961 ac->init_machine = kvm_init;
2962 ac->has_memory = kvm_accel_has_memory;
2963 ac->allowed = &kvm_allowed;
2966 static const TypeInfo kvm_accel_type = {
2967 .name = TYPE_KVM_ACCEL,
2968 .parent = TYPE_ACCEL,
2969 .class_init = kvm_accel_class_init,
2970 .instance_size = sizeof(KVMState),
2973 static void kvm_type_init(void)
2975 type_register_static(&kvm_accel_type);
2978 type_init(kvm_type_init);