memory: Open code FlatView rendering
[qemu/kevin.git] / exec.c
blob1626d254bb43c91e22f1f74fd0b6dec356e86739
1 /*
2 * Virtual page mapping
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
20 #include "qapi/error.h"
21 #ifndef _WIN32
22 #endif
24 #include "qemu/cutils.h"
25 #include "cpu.h"
26 #include "exec/exec-all.h"
27 #include "exec/target_page.h"
28 #include "tcg.h"
29 #include "hw/qdev-core.h"
30 #include "hw/qdev-properties.h"
31 #if !defined(CONFIG_USER_ONLY)
32 #include "hw/boards.h"
33 #include "hw/xen/xen.h"
34 #endif
35 #include "sysemu/kvm.h"
36 #include "sysemu/sysemu.h"
37 #include "qemu/timer.h"
38 #include "qemu/config-file.h"
39 #include "qemu/error-report.h"
40 #if defined(CONFIG_USER_ONLY)
41 #include "qemu.h"
42 #else /* !CONFIG_USER_ONLY */
43 #include "hw/hw.h"
44 #include "exec/memory.h"
45 #include "exec/ioport.h"
46 #include "sysemu/dma.h"
47 #include "sysemu/numa.h"
48 #include "sysemu/hw_accel.h"
49 #include "exec/address-spaces.h"
50 #include "sysemu/xen-mapcache.h"
51 #include "trace-root.h"
53 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
54 #include <fcntl.h>
55 #include <linux/falloc.h>
56 #endif
58 #endif
59 #include "qemu/rcu_queue.h"
60 #include "qemu/main-loop.h"
61 #include "translate-all.h"
62 #include "sysemu/replay.h"
64 #include "exec/memory-internal.h"
65 #include "exec/ram_addr.h"
66 #include "exec/log.h"
68 #include "migration/vmstate.h"
70 #include "qemu/range.h"
71 #ifndef _WIN32
72 #include "qemu/mmap-alloc.h"
73 #endif
75 #include "monitor/monitor.h"
77 //#define DEBUG_SUBPAGE
79 #if !defined(CONFIG_USER_ONLY)
80 /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
81 * are protected by the ramlist lock.
83 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
85 static MemoryRegion *system_memory;
86 static MemoryRegion *system_io;
88 AddressSpace address_space_io;
89 AddressSpace address_space_memory;
91 MemoryRegion io_mem_rom, io_mem_notdirty;
92 static MemoryRegion io_mem_unassigned;
94 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
95 #define RAM_PREALLOC (1 << 0)
97 /* RAM is mmap-ed with MAP_SHARED */
98 #define RAM_SHARED (1 << 1)
100 /* Only a portion of RAM (used_length) is actually used, and migrated.
101 * This used_length size can change across reboots.
103 #define RAM_RESIZEABLE (1 << 2)
105 #endif
107 #ifdef TARGET_PAGE_BITS_VARY
108 int target_page_bits;
109 bool target_page_bits_decided;
110 #endif
112 struct CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
113 /* current CPU in the current thread. It is only valid inside
114 cpu_exec() */
115 __thread CPUState *current_cpu;
116 /* 0 = Do not count executed instructions.
117 1 = Precise instruction counting.
118 2 = Adaptive rate instruction counting. */
119 int use_icount;
121 uintptr_t qemu_host_page_size;
122 intptr_t qemu_host_page_mask;
123 uintptr_t qemu_real_host_page_size;
124 intptr_t qemu_real_host_page_mask;
126 bool set_preferred_target_page_bits(int bits)
128 /* The target page size is the lowest common denominator for all
129 * the CPUs in the system, so we can only make it smaller, never
130 * larger. And we can't make it smaller once we've committed to
131 * a particular size.
133 #ifdef TARGET_PAGE_BITS_VARY
134 assert(bits >= TARGET_PAGE_BITS_MIN);
135 if (target_page_bits == 0 || target_page_bits > bits) {
136 if (target_page_bits_decided) {
137 return false;
139 target_page_bits = bits;
141 #endif
142 return true;
145 #if !defined(CONFIG_USER_ONLY)
147 static void finalize_target_page_bits(void)
149 #ifdef TARGET_PAGE_BITS_VARY
150 if (target_page_bits == 0) {
151 target_page_bits = TARGET_PAGE_BITS_MIN;
153 target_page_bits_decided = true;
154 #endif
157 typedef struct PhysPageEntry PhysPageEntry;
159 struct PhysPageEntry {
160 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
161 uint32_t skip : 6;
162 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
163 uint32_t ptr : 26;
166 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
168 /* Size of the L2 (and L3, etc) page tables. */
169 #define ADDR_SPACE_BITS 64
171 #define P_L2_BITS 9
172 #define P_L2_SIZE (1 << P_L2_BITS)
174 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
176 typedef PhysPageEntry Node[P_L2_SIZE];
178 typedef struct PhysPageMap {
179 struct rcu_head rcu;
181 unsigned sections_nb;
182 unsigned sections_nb_alloc;
183 unsigned nodes_nb;
184 unsigned nodes_nb_alloc;
185 Node *nodes;
186 MemoryRegionSection *sections;
187 } PhysPageMap;
189 struct AddressSpaceDispatch {
190 struct rcu_head rcu;
192 MemoryRegionSection *mru_section;
193 /* This is a multi-level map on the physical address space.
194 * The bottom level has pointers to MemoryRegionSections.
196 PhysPageEntry phys_map;
197 PhysPageMap map;
198 AddressSpace *as;
201 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
202 typedef struct subpage_t {
203 MemoryRegion iomem;
204 AddressSpace *as;
205 hwaddr base;
206 uint16_t sub_section[];
207 } subpage_t;
209 #define PHYS_SECTION_UNASSIGNED 0
210 #define PHYS_SECTION_NOTDIRTY 1
211 #define PHYS_SECTION_ROM 2
212 #define PHYS_SECTION_WATCH 3
214 static void io_mem_init(void);
215 static void memory_map_init(void);
216 static void tcg_commit(MemoryListener *listener);
218 static MemoryRegion io_mem_watch;
221 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
222 * @cpu: the CPU whose AddressSpace this is
223 * @as: the AddressSpace itself
224 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
225 * @tcg_as_listener: listener for tracking changes to the AddressSpace
227 struct CPUAddressSpace {
228 CPUState *cpu;
229 AddressSpace *as;
230 struct AddressSpaceDispatch *memory_dispatch;
231 MemoryListener tcg_as_listener;
234 struct DirtyBitmapSnapshot {
235 ram_addr_t start;
236 ram_addr_t end;
237 unsigned long dirty[];
240 #endif
242 #if !defined(CONFIG_USER_ONLY)
244 static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
246 static unsigned alloc_hint = 16;
247 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
248 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, alloc_hint);
249 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes);
250 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
251 alloc_hint = map->nodes_nb_alloc;
255 static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
257 unsigned i;
258 uint32_t ret;
259 PhysPageEntry e;
260 PhysPageEntry *p;
262 ret = map->nodes_nb++;
263 p = map->nodes[ret];
264 assert(ret != PHYS_MAP_NODE_NIL);
265 assert(ret != map->nodes_nb_alloc);
267 e.skip = leaf ? 0 : 1;
268 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
269 for (i = 0; i < P_L2_SIZE; ++i) {
270 memcpy(&p[i], &e, sizeof(e));
272 return ret;
275 static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
276 hwaddr *index, hwaddr *nb, uint16_t leaf,
277 int level)
279 PhysPageEntry *p;
280 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
282 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
283 lp->ptr = phys_map_node_alloc(map, level == 0);
285 p = map->nodes[lp->ptr];
286 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
288 while (*nb && lp < &p[P_L2_SIZE]) {
289 if ((*index & (step - 1)) == 0 && *nb >= step) {
290 lp->skip = 0;
291 lp->ptr = leaf;
292 *index += step;
293 *nb -= step;
294 } else {
295 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
297 ++lp;
301 static void phys_page_set(AddressSpaceDispatch *d,
302 hwaddr index, hwaddr nb,
303 uint16_t leaf)
305 /* Wildly overreserve - it doesn't matter much. */
306 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
308 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
311 /* Compact a non leaf page entry. Simply detect that the entry has a single child,
312 * and update our entry so we can skip it and go directly to the destination.
314 static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
316 unsigned valid_ptr = P_L2_SIZE;
317 int valid = 0;
318 PhysPageEntry *p;
319 int i;
321 if (lp->ptr == PHYS_MAP_NODE_NIL) {
322 return;
325 p = nodes[lp->ptr];
326 for (i = 0; i < P_L2_SIZE; i++) {
327 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
328 continue;
331 valid_ptr = i;
332 valid++;
333 if (p[i].skip) {
334 phys_page_compact(&p[i], nodes);
338 /* We can only compress if there's only one child. */
339 if (valid != 1) {
340 return;
343 assert(valid_ptr < P_L2_SIZE);
345 /* Don't compress if it won't fit in the # of bits we have. */
346 if (lp->skip + p[valid_ptr].skip >= (1 << 3)) {
347 return;
350 lp->ptr = p[valid_ptr].ptr;
351 if (!p[valid_ptr].skip) {
352 /* If our only child is a leaf, make this a leaf. */
353 /* By design, we should have made this node a leaf to begin with so we
354 * should never reach here.
355 * But since it's so simple to handle this, let's do it just in case we
356 * change this rule.
358 lp->skip = 0;
359 } else {
360 lp->skip += p[valid_ptr].skip;
364 static void phys_page_compact_all(AddressSpaceDispatch *d, int nodes_nb)
366 if (d->phys_map.skip) {
367 phys_page_compact(&d->phys_map, d->map.nodes);
371 static inline bool section_covers_addr(const MemoryRegionSection *section,
372 hwaddr addr)
374 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
375 * the section must cover the entire address space.
377 return int128_gethi(section->size) ||
378 range_covers_byte(section->offset_within_address_space,
379 int128_getlo(section->size), addr);
382 static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
384 PhysPageEntry lp = d->phys_map, *p;
385 Node *nodes = d->map.nodes;
386 MemoryRegionSection *sections = d->map.sections;
387 hwaddr index = addr >> TARGET_PAGE_BITS;
388 int i;
390 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
391 if (lp.ptr == PHYS_MAP_NODE_NIL) {
392 return &sections[PHYS_SECTION_UNASSIGNED];
394 p = nodes[lp.ptr];
395 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
398 if (section_covers_addr(&sections[lp.ptr], addr)) {
399 return &sections[lp.ptr];
400 } else {
401 return &sections[PHYS_SECTION_UNASSIGNED];
405 bool memory_region_is_unassigned(MemoryRegion *mr)
407 return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device
408 && mr != &io_mem_watch;
411 /* Called from RCU critical section */
412 static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
413 hwaddr addr,
414 bool resolve_subpage)
416 MemoryRegionSection *section = atomic_read(&d->mru_section);
417 subpage_t *subpage;
418 bool update;
420 if (section && section != &d->map.sections[PHYS_SECTION_UNASSIGNED] &&
421 section_covers_addr(section, addr)) {
422 update = false;
423 } else {
424 section = phys_page_find(d, addr);
425 update = true;
427 if (resolve_subpage && section->mr->subpage) {
428 subpage = container_of(section->mr, subpage_t, iomem);
429 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
431 if (update) {
432 atomic_set(&d->mru_section, section);
434 return section;
437 /* Called from RCU critical section */
438 static MemoryRegionSection *
439 address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
440 hwaddr *plen, bool resolve_subpage)
442 MemoryRegionSection *section;
443 MemoryRegion *mr;
444 Int128 diff;
446 section = address_space_lookup_region(d, addr, resolve_subpage);
447 /* Compute offset within MemoryRegionSection */
448 addr -= section->offset_within_address_space;
450 /* Compute offset within MemoryRegion */
451 *xlat = addr + section->offset_within_region;
453 mr = section->mr;
455 /* MMIO registers can be expected to perform full-width accesses based only
456 * on their address, without considering adjacent registers that could
457 * decode to completely different MemoryRegions. When such registers
458 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
459 * regions overlap wildly. For this reason we cannot clamp the accesses
460 * here.
462 * If the length is small (as is the case for address_space_ldl/stl),
463 * everything works fine. If the incoming length is large, however,
464 * the caller really has to do the clamping through memory_access_size.
466 if (memory_region_is_ram(mr)) {
467 diff = int128_sub(section->size, int128_make64(addr));
468 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
470 return section;
473 /* Called from RCU critical section */
474 static MemoryRegionSection address_space_do_translate(AddressSpace *as,
475 hwaddr addr,
476 hwaddr *xlat,
477 hwaddr *plen,
478 bool is_write,
479 bool is_mmio,
480 AddressSpace **target_as)
482 IOMMUTLBEntry iotlb;
483 MemoryRegionSection *section;
484 IOMMUMemoryRegion *iommu_mr;
485 IOMMUMemoryRegionClass *imrc;
487 for (;;) {
488 AddressSpaceDispatch *d = atomic_rcu_read(&as->dispatch);
489 section = address_space_translate_internal(d, addr, &addr, plen, is_mmio);
491 iommu_mr = memory_region_get_iommu(section->mr);
492 if (!iommu_mr) {
493 break;
495 imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
497 iotlb = imrc->translate(iommu_mr, addr, is_write ?
498 IOMMU_WO : IOMMU_RO);
499 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
500 | (addr & iotlb.addr_mask));
501 *plen = MIN(*plen, (addr | iotlb.addr_mask) - addr + 1);
502 if (!(iotlb.perm & (1 << is_write))) {
503 goto translate_fail;
506 as = iotlb.target_as;
507 *target_as = iotlb.target_as;
510 *xlat = addr;
512 return *section;
514 translate_fail:
515 return (MemoryRegionSection) { .mr = &io_mem_unassigned };
518 /* Called from RCU critical section */
519 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
520 bool is_write)
522 MemoryRegionSection section;
523 hwaddr xlat, plen;
525 /* Try to get maximum page mask during translation. */
526 plen = (hwaddr)-1;
528 /* This can never be MMIO. */
529 section = address_space_do_translate(as, addr, &xlat, &plen,
530 is_write, false, &as);
532 /* Illegal translation */
533 if (section.mr == &io_mem_unassigned) {
534 goto iotlb_fail;
537 /* Convert memory region offset into address space offset */
538 xlat += section.offset_within_address_space -
539 section.offset_within_region;
541 if (plen == (hwaddr)-1) {
543 * We use default page size here. Logically it only happens
544 * for identity mappings.
546 plen = TARGET_PAGE_SIZE;
549 /* Convert to address mask */
550 plen -= 1;
552 return (IOMMUTLBEntry) {
553 .target_as = as,
554 .iova = addr & ~plen,
555 .translated_addr = xlat & ~plen,
556 .addr_mask = plen,
557 /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
558 .perm = IOMMU_RW,
561 iotlb_fail:
562 return (IOMMUTLBEntry) {0};
565 /* Called from RCU critical section */
566 MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr,
567 hwaddr *xlat, hwaddr *plen,
568 bool is_write)
570 MemoryRegion *mr;
571 MemoryRegionSection section;
573 /* This can be MMIO, so setup MMIO bit. */
574 section = address_space_do_translate(as, addr, xlat, plen, is_write, true,
575 &as);
576 mr = section.mr;
578 if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
579 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
580 *plen = MIN(page, *plen);
583 return mr;
586 /* Called from RCU critical section */
587 MemoryRegionSection *
588 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
589 hwaddr *xlat, hwaddr *plen)
591 MemoryRegionSection *section;
592 AddressSpaceDispatch *d = atomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch);
594 section = address_space_translate_internal(d, addr, xlat, plen, false);
596 assert(!memory_region_is_iommu(section->mr));
597 return section;
599 #endif
601 #if !defined(CONFIG_USER_ONLY)
603 static int cpu_common_post_load(void *opaque, int version_id)
605 CPUState *cpu = opaque;
607 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
608 version_id is increased. */
609 cpu->interrupt_request &= ~0x01;
610 tlb_flush(cpu);
612 return 0;
615 static int cpu_common_pre_load(void *opaque)
617 CPUState *cpu = opaque;
619 cpu->exception_index = -1;
621 return 0;
624 static bool cpu_common_exception_index_needed(void *opaque)
626 CPUState *cpu = opaque;
628 return tcg_enabled() && cpu->exception_index != -1;
631 static const VMStateDescription vmstate_cpu_common_exception_index = {
632 .name = "cpu_common/exception_index",
633 .version_id = 1,
634 .minimum_version_id = 1,
635 .needed = cpu_common_exception_index_needed,
636 .fields = (VMStateField[]) {
637 VMSTATE_INT32(exception_index, CPUState),
638 VMSTATE_END_OF_LIST()
642 static bool cpu_common_crash_occurred_needed(void *opaque)
644 CPUState *cpu = opaque;
646 return cpu->crash_occurred;
649 static const VMStateDescription vmstate_cpu_common_crash_occurred = {
650 .name = "cpu_common/crash_occurred",
651 .version_id = 1,
652 .minimum_version_id = 1,
653 .needed = cpu_common_crash_occurred_needed,
654 .fields = (VMStateField[]) {
655 VMSTATE_BOOL(crash_occurred, CPUState),
656 VMSTATE_END_OF_LIST()
660 const VMStateDescription vmstate_cpu_common = {
661 .name = "cpu_common",
662 .version_id = 1,
663 .minimum_version_id = 1,
664 .pre_load = cpu_common_pre_load,
665 .post_load = cpu_common_post_load,
666 .fields = (VMStateField[]) {
667 VMSTATE_UINT32(halted, CPUState),
668 VMSTATE_UINT32(interrupt_request, CPUState),
669 VMSTATE_END_OF_LIST()
671 .subsections = (const VMStateDescription*[]) {
672 &vmstate_cpu_common_exception_index,
673 &vmstate_cpu_common_crash_occurred,
674 NULL
678 #endif
680 CPUState *qemu_get_cpu(int index)
682 CPUState *cpu;
684 CPU_FOREACH(cpu) {
685 if (cpu->cpu_index == index) {
686 return cpu;
690 return NULL;
693 #if !defined(CONFIG_USER_ONLY)
694 void cpu_address_space_init(CPUState *cpu, AddressSpace *as, int asidx)
696 CPUAddressSpace *newas;
698 /* Target code should have set num_ases before calling us */
699 assert(asidx < cpu->num_ases);
701 if (asidx == 0) {
702 /* address space 0 gets the convenience alias */
703 cpu->as = as;
706 /* KVM cannot currently support multiple address spaces. */
707 assert(asidx == 0 || !kvm_enabled());
709 if (!cpu->cpu_ases) {
710 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
713 newas = &cpu->cpu_ases[asidx];
714 newas->cpu = cpu;
715 newas->as = as;
716 if (tcg_enabled()) {
717 newas->tcg_as_listener.commit = tcg_commit;
718 memory_listener_register(&newas->tcg_as_listener, as);
722 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
724 /* Return the AddressSpace corresponding to the specified index */
725 return cpu->cpu_ases[asidx].as;
727 #endif
729 void cpu_exec_unrealizefn(CPUState *cpu)
731 CPUClass *cc = CPU_GET_CLASS(cpu);
733 cpu_list_remove(cpu);
735 if (cc->vmsd != NULL) {
736 vmstate_unregister(NULL, cc->vmsd, cpu);
738 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
739 vmstate_unregister(NULL, &vmstate_cpu_common, cpu);
743 Property cpu_common_props[] = {
744 #ifndef CONFIG_USER_ONLY
745 /* Create a memory property for softmmu CPU object,
746 * so users can wire up its memory. (This can't go in qom/cpu.c
747 * because that file is compiled only once for both user-mode
748 * and system builds.) The default if no link is set up is to use
749 * the system address space.
751 DEFINE_PROP_LINK("memory", CPUState, memory, TYPE_MEMORY_REGION,
752 MemoryRegion *),
753 #endif
754 DEFINE_PROP_END_OF_LIST(),
757 void cpu_exec_initfn(CPUState *cpu)
759 cpu->as = NULL;
760 cpu->num_ases = 0;
762 #ifndef CONFIG_USER_ONLY
763 cpu->thread_id = qemu_get_thread_id();
764 cpu->memory = system_memory;
765 object_ref(OBJECT(cpu->memory));
766 #endif
769 void cpu_exec_realizefn(CPUState *cpu, Error **errp)
771 CPUClass *cc ATTRIBUTE_UNUSED = CPU_GET_CLASS(cpu);
773 cpu_list_add(cpu);
775 #ifndef CONFIG_USER_ONLY
776 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
777 vmstate_register(NULL, cpu->cpu_index, &vmstate_cpu_common, cpu);
779 if (cc->vmsd != NULL) {
780 vmstate_register(NULL, cpu->cpu_index, cc->vmsd, cpu);
782 #endif
785 #if defined(CONFIG_USER_ONLY)
786 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
788 mmap_lock();
789 tb_lock();
790 tb_invalidate_phys_page_range(pc, pc + 1, 0);
791 tb_unlock();
792 mmap_unlock();
794 #else
795 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
797 MemTxAttrs attrs;
798 hwaddr phys = cpu_get_phys_page_attrs_debug(cpu, pc, &attrs);
799 int asidx = cpu_asidx_from_attrs(cpu, attrs);
800 if (phys != -1) {
801 /* Locks grabbed by tb_invalidate_phys_addr */
802 tb_invalidate_phys_addr(cpu->cpu_ases[asidx].as,
803 phys | (pc & ~TARGET_PAGE_MASK));
806 #endif
808 #if defined(CONFIG_USER_ONLY)
809 void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
814 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
815 int flags)
817 return -ENOSYS;
820 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
824 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
825 int flags, CPUWatchpoint **watchpoint)
827 return -ENOSYS;
829 #else
830 /* Add a watchpoint. */
831 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
832 int flags, CPUWatchpoint **watchpoint)
834 CPUWatchpoint *wp;
836 /* forbid ranges which are empty or run off the end of the address space */
837 if (len == 0 || (addr + len - 1) < addr) {
838 error_report("tried to set invalid watchpoint at %"
839 VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
840 return -EINVAL;
842 wp = g_malloc(sizeof(*wp));
844 wp->vaddr = addr;
845 wp->len = len;
846 wp->flags = flags;
848 /* keep all GDB-injected watchpoints in front */
849 if (flags & BP_GDB) {
850 QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
851 } else {
852 QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
855 tlb_flush_page(cpu, addr);
857 if (watchpoint)
858 *watchpoint = wp;
859 return 0;
862 /* Remove a specific watchpoint. */
863 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
864 int flags)
866 CPUWatchpoint *wp;
868 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
869 if (addr == wp->vaddr && len == wp->len
870 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
871 cpu_watchpoint_remove_by_ref(cpu, wp);
872 return 0;
875 return -ENOENT;
878 /* Remove a specific watchpoint by reference. */
879 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
881 QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
883 tlb_flush_page(cpu, watchpoint->vaddr);
885 g_free(watchpoint);
888 /* Remove all matching watchpoints. */
889 void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
891 CPUWatchpoint *wp, *next;
893 QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
894 if (wp->flags & mask) {
895 cpu_watchpoint_remove_by_ref(cpu, wp);
900 /* Return true if this watchpoint address matches the specified
901 * access (ie the address range covered by the watchpoint overlaps
902 * partially or completely with the address range covered by the
903 * access).
905 static inline bool cpu_watchpoint_address_matches(CPUWatchpoint *wp,
906 vaddr addr,
907 vaddr len)
909 /* We know the lengths are non-zero, but a little caution is
910 * required to avoid errors in the case where the range ends
911 * exactly at the top of the address space and so addr + len
912 * wraps round to zero.
914 vaddr wpend = wp->vaddr + wp->len - 1;
915 vaddr addrend = addr + len - 1;
917 return !(addr > wpend || wp->vaddr > addrend);
920 #endif
922 /* Add a breakpoint. */
923 int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
924 CPUBreakpoint **breakpoint)
926 CPUBreakpoint *bp;
928 bp = g_malloc(sizeof(*bp));
930 bp->pc = pc;
931 bp->flags = flags;
933 /* keep all GDB-injected breakpoints in front */
934 if (flags & BP_GDB) {
935 QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
936 } else {
937 QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
940 breakpoint_invalidate(cpu, pc);
942 if (breakpoint) {
943 *breakpoint = bp;
945 return 0;
948 /* Remove a specific breakpoint. */
949 int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
951 CPUBreakpoint *bp;
953 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
954 if (bp->pc == pc && bp->flags == flags) {
955 cpu_breakpoint_remove_by_ref(cpu, bp);
956 return 0;
959 return -ENOENT;
962 /* Remove a specific breakpoint by reference. */
963 void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint)
965 QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry);
967 breakpoint_invalidate(cpu, breakpoint->pc);
969 g_free(breakpoint);
972 /* Remove all matching breakpoints. */
973 void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
975 CPUBreakpoint *bp, *next;
977 QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
978 if (bp->flags & mask) {
979 cpu_breakpoint_remove_by_ref(cpu, bp);
984 /* enable or disable single step mode. EXCP_DEBUG is returned by the
985 CPU loop after each instruction */
986 void cpu_single_step(CPUState *cpu, int enabled)
988 if (cpu->singlestep_enabled != enabled) {
989 cpu->singlestep_enabled = enabled;
990 if (kvm_enabled()) {
991 kvm_update_guest_debug(cpu, 0);
992 } else {
993 /* must flush all the translated code to avoid inconsistencies */
994 /* XXX: only flush what is necessary */
995 tb_flush(cpu);
1000 void cpu_abort(CPUState *cpu, const char *fmt, ...)
1002 va_list ap;
1003 va_list ap2;
1005 va_start(ap, fmt);
1006 va_copy(ap2, ap);
1007 fprintf(stderr, "qemu: fatal: ");
1008 vfprintf(stderr, fmt, ap);
1009 fprintf(stderr, "\n");
1010 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP);
1011 if (qemu_log_separate()) {
1012 qemu_log_lock();
1013 qemu_log("qemu: fatal: ");
1014 qemu_log_vprintf(fmt, ap2);
1015 qemu_log("\n");
1016 log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
1017 qemu_log_flush();
1018 qemu_log_unlock();
1019 qemu_log_close();
1021 va_end(ap2);
1022 va_end(ap);
1023 replay_finish();
1024 #if defined(CONFIG_USER_ONLY)
1026 struct sigaction act;
1027 sigfillset(&act.sa_mask);
1028 act.sa_handler = SIG_DFL;
1029 sigaction(SIGABRT, &act, NULL);
1031 #endif
1032 abort();
1035 #if !defined(CONFIG_USER_ONLY)
1036 /* Called from RCU critical section */
1037 static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
1039 RAMBlock *block;
1041 block = atomic_rcu_read(&ram_list.mru_block);
1042 if (block && addr - block->offset < block->max_length) {
1043 return block;
1045 RAMBLOCK_FOREACH(block) {
1046 if (addr - block->offset < block->max_length) {
1047 goto found;
1051 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1052 abort();
1054 found:
1055 /* It is safe to write mru_block outside the iothread lock. This
1056 * is what happens:
1058 * mru_block = xxx
1059 * rcu_read_unlock()
1060 * xxx removed from list
1061 * rcu_read_lock()
1062 * read mru_block
1063 * mru_block = NULL;
1064 * call_rcu(reclaim_ramblock, xxx);
1065 * rcu_read_unlock()
1067 * atomic_rcu_set is not needed here. The block was already published
1068 * when it was placed into the list. Here we're just making an extra
1069 * copy of the pointer.
1071 ram_list.mru_block = block;
1072 return block;
1075 static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
1077 CPUState *cpu;
1078 ram_addr_t start1;
1079 RAMBlock *block;
1080 ram_addr_t end;
1082 end = TARGET_PAGE_ALIGN(start + length);
1083 start &= TARGET_PAGE_MASK;
1085 rcu_read_lock();
1086 block = qemu_get_ram_block(start);
1087 assert(block == qemu_get_ram_block(end - 1));
1088 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
1089 CPU_FOREACH(cpu) {
1090 tlb_reset_dirty(cpu, start1, length);
1092 rcu_read_unlock();
1095 /* Note: start and end must be within the same ram block. */
1096 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
1097 ram_addr_t length,
1098 unsigned client)
1100 DirtyMemoryBlocks *blocks;
1101 unsigned long end, page;
1102 bool dirty = false;
1104 if (length == 0) {
1105 return false;
1108 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
1109 page = start >> TARGET_PAGE_BITS;
1111 rcu_read_lock();
1113 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1115 while (page < end) {
1116 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1117 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1118 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1120 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
1121 offset, num);
1122 page += num;
1125 rcu_read_unlock();
1127 if (dirty && tcg_enabled()) {
1128 tlb_reset_dirty_range_all(start, length);
1131 return dirty;
1134 DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
1135 (ram_addr_t start, ram_addr_t length, unsigned client)
1137 DirtyMemoryBlocks *blocks;
1138 unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
1139 ram_addr_t first = QEMU_ALIGN_DOWN(start, align);
1140 ram_addr_t last = QEMU_ALIGN_UP(start + length, align);
1141 DirtyBitmapSnapshot *snap;
1142 unsigned long page, end, dest;
1144 snap = g_malloc0(sizeof(*snap) +
1145 ((last - first) >> (TARGET_PAGE_BITS + 3)));
1146 snap->start = first;
1147 snap->end = last;
1149 page = first >> TARGET_PAGE_BITS;
1150 end = last >> TARGET_PAGE_BITS;
1151 dest = 0;
1153 rcu_read_lock();
1155 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1157 while (page < end) {
1158 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1159 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1160 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1162 assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL)));
1163 assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL)));
1164 offset >>= BITS_PER_LEVEL;
1166 bitmap_copy_and_clear_atomic(snap->dirty + dest,
1167 blocks->blocks[idx] + offset,
1168 num);
1169 page += num;
1170 dest += num >> BITS_PER_LEVEL;
1173 rcu_read_unlock();
1175 if (tcg_enabled()) {
1176 tlb_reset_dirty_range_all(start, length);
1179 return snap;
1182 bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
1183 ram_addr_t start,
1184 ram_addr_t length)
1186 unsigned long page, end;
1188 assert(start >= snap->start);
1189 assert(start + length <= snap->end);
1191 end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
1192 page = (start - snap->start) >> TARGET_PAGE_BITS;
1194 while (page < end) {
1195 if (test_bit(page, snap->dirty)) {
1196 return true;
1198 page++;
1200 return false;
1203 /* Called from RCU critical section */
1204 hwaddr memory_region_section_get_iotlb(CPUState *cpu,
1205 MemoryRegionSection *section,
1206 target_ulong vaddr,
1207 hwaddr paddr, hwaddr xlat,
1208 int prot,
1209 target_ulong *address)
1211 hwaddr iotlb;
1212 CPUWatchpoint *wp;
1214 if (memory_region_is_ram(section->mr)) {
1215 /* Normal RAM. */
1216 iotlb = memory_region_get_ram_addr(section->mr) + xlat;
1217 if (!section->readonly) {
1218 iotlb |= PHYS_SECTION_NOTDIRTY;
1219 } else {
1220 iotlb |= PHYS_SECTION_ROM;
1222 } else {
1223 AddressSpaceDispatch *d;
1225 d = atomic_rcu_read(&section->address_space->dispatch);
1226 iotlb = section - d->map.sections;
1227 iotlb += xlat;
1230 /* Make accesses to pages with watchpoints go via the
1231 watchpoint trap routines. */
1232 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
1233 if (cpu_watchpoint_address_matches(wp, vaddr, TARGET_PAGE_SIZE)) {
1234 /* Avoid trapping reads of pages with a write breakpoint. */
1235 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
1236 iotlb = PHYS_SECTION_WATCH + paddr;
1237 *address |= TLB_MMIO;
1238 break;
1243 return iotlb;
1245 #endif /* defined(CONFIG_USER_ONLY) */
1247 #if !defined(CONFIG_USER_ONLY)
1249 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
1250 uint16_t section);
1251 static subpage_t *subpage_init(AddressSpace *as, hwaddr base);
1253 static void *(*phys_mem_alloc)(size_t size, uint64_t *align) =
1254 qemu_anon_ram_alloc;
1257 * Set a custom physical guest memory alloator.
1258 * Accelerators with unusual needs may need this. Hopefully, we can
1259 * get rid of it eventually.
1261 void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align))
1263 phys_mem_alloc = alloc;
1266 static uint16_t phys_section_add(PhysPageMap *map,
1267 MemoryRegionSection *section)
1269 /* The physical section number is ORed with a page-aligned
1270 * pointer to produce the iotlb entries. Thus it should
1271 * never overflow into the page-aligned value.
1273 assert(map->sections_nb < TARGET_PAGE_SIZE);
1275 if (map->sections_nb == map->sections_nb_alloc) {
1276 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1277 map->sections = g_renew(MemoryRegionSection, map->sections,
1278 map->sections_nb_alloc);
1280 map->sections[map->sections_nb] = *section;
1281 memory_region_ref(section->mr);
1282 return map->sections_nb++;
1285 static void phys_section_destroy(MemoryRegion *mr)
1287 bool have_sub_page = mr->subpage;
1289 memory_region_unref(mr);
1291 if (have_sub_page) {
1292 subpage_t *subpage = container_of(mr, subpage_t, iomem);
1293 object_unref(OBJECT(&subpage->iomem));
1294 g_free(subpage);
1298 static void phys_sections_free(PhysPageMap *map)
1300 while (map->sections_nb > 0) {
1301 MemoryRegionSection *section = &map->sections[--map->sections_nb];
1302 phys_section_destroy(section->mr);
1304 g_free(map->sections);
1305 g_free(map->nodes);
1308 static void register_subpage(AddressSpaceDispatch *d, MemoryRegionSection *section)
1310 subpage_t *subpage;
1311 hwaddr base = section->offset_within_address_space
1312 & TARGET_PAGE_MASK;
1313 MemoryRegionSection *existing = phys_page_find(d, base);
1314 MemoryRegionSection subsection = {
1315 .offset_within_address_space = base,
1316 .size = int128_make64(TARGET_PAGE_SIZE),
1318 hwaddr start, end;
1320 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
1322 if (!(existing->mr->subpage)) {
1323 subpage = subpage_init(d->as, base);
1324 subsection.address_space = d->as;
1325 subsection.mr = &subpage->iomem;
1326 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
1327 phys_section_add(&d->map, &subsection));
1328 } else {
1329 subpage = container_of(existing->mr, subpage_t, iomem);
1331 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
1332 end = start + int128_get64(section->size) - 1;
1333 subpage_register(subpage, start, end,
1334 phys_section_add(&d->map, section));
1338 static void register_multipage(AddressSpaceDispatch *d,
1339 MemoryRegionSection *section)
1341 hwaddr start_addr = section->offset_within_address_space;
1342 uint16_t section_index = phys_section_add(&d->map, section);
1343 uint64_t num_pages = int128_get64(int128_rshift(section->size,
1344 TARGET_PAGE_BITS));
1346 assert(num_pages);
1347 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
1350 void mem_add(AddressSpace *as, MemoryRegionSection *section)
1352 AddressSpaceDispatch *d = as->next_dispatch;
1353 MemoryRegionSection now = *section, remain = *section;
1354 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
1356 if (now.offset_within_address_space & ~TARGET_PAGE_MASK) {
1357 uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space)
1358 - now.offset_within_address_space;
1360 now.size = int128_min(int128_make64(left), now.size);
1361 register_subpage(d, &now);
1362 } else {
1363 now.size = int128_zero();
1365 while (int128_ne(remain.size, now.size)) {
1366 remain.size = int128_sub(remain.size, now.size);
1367 remain.offset_within_address_space += int128_get64(now.size);
1368 remain.offset_within_region += int128_get64(now.size);
1369 now = remain;
1370 if (int128_lt(remain.size, page_size)) {
1371 register_subpage(d, &now);
1372 } else if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
1373 now.size = page_size;
1374 register_subpage(d, &now);
1375 } else {
1376 now.size = int128_and(now.size, int128_neg(page_size));
1377 register_multipage(d, &now);
1382 void qemu_flush_coalesced_mmio_buffer(void)
1384 if (kvm_enabled())
1385 kvm_flush_coalesced_mmio_buffer();
1388 void qemu_mutex_lock_ramlist(void)
1390 qemu_mutex_lock(&ram_list.mutex);
1393 void qemu_mutex_unlock_ramlist(void)
1395 qemu_mutex_unlock(&ram_list.mutex);
1398 void ram_block_dump(Monitor *mon)
1400 RAMBlock *block;
1401 char *psize;
1403 rcu_read_lock();
1404 monitor_printf(mon, "%24s %8s %18s %18s %18s\n",
1405 "Block Name", "PSize", "Offset", "Used", "Total");
1406 RAMBLOCK_FOREACH(block) {
1407 psize = size_to_str(block->page_size);
1408 monitor_printf(mon, "%24s %8s 0x%016" PRIx64 " 0x%016" PRIx64
1409 " 0x%016" PRIx64 "\n", block->idstr, psize,
1410 (uint64_t)block->offset,
1411 (uint64_t)block->used_length,
1412 (uint64_t)block->max_length);
1413 g_free(psize);
1415 rcu_read_unlock();
1418 #ifdef __linux__
1420 * FIXME TOCTTOU: this iterates over memory backends' mem-path, which
1421 * may or may not name the same files / on the same filesystem now as
1422 * when we actually open and map them. Iterate over the file
1423 * descriptors instead, and use qemu_fd_getpagesize().
1425 static int find_max_supported_pagesize(Object *obj, void *opaque)
1427 char *mem_path;
1428 long *hpsize_min = opaque;
1430 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1431 mem_path = object_property_get_str(obj, "mem-path", NULL);
1432 if (mem_path) {
1433 long hpsize = qemu_mempath_getpagesize(mem_path);
1434 if (hpsize < *hpsize_min) {
1435 *hpsize_min = hpsize;
1437 } else {
1438 *hpsize_min = getpagesize();
1442 return 0;
1445 long qemu_getrampagesize(void)
1447 long hpsize = LONG_MAX;
1448 long mainrampagesize;
1449 Object *memdev_root;
1451 if (mem_path) {
1452 mainrampagesize = qemu_mempath_getpagesize(mem_path);
1453 } else {
1454 mainrampagesize = getpagesize();
1457 /* it's possible we have memory-backend objects with
1458 * hugepage-backed RAM. these may get mapped into system
1459 * address space via -numa parameters or memory hotplug
1460 * hooks. we want to take these into account, but we
1461 * also want to make sure these supported hugepage
1462 * sizes are applicable across the entire range of memory
1463 * we may boot from, so we take the min across all
1464 * backends, and assume normal pages in cases where a
1465 * backend isn't backed by hugepages.
1467 memdev_root = object_resolve_path("/objects", NULL);
1468 if (memdev_root) {
1469 object_child_foreach(memdev_root, find_max_supported_pagesize, &hpsize);
1471 if (hpsize == LONG_MAX) {
1472 /* No additional memory regions found ==> Report main RAM page size */
1473 return mainrampagesize;
1476 /* If NUMA is disabled or the NUMA nodes are not backed with a
1477 * memory-backend, then there is at least one node using "normal" RAM,
1478 * so if its page size is smaller we have got to report that size instead.
1480 if (hpsize > mainrampagesize &&
1481 (nb_numa_nodes == 0 || numa_info[0].node_memdev == NULL)) {
1482 static bool warned;
1483 if (!warned) {
1484 error_report("Huge page support disabled (n/a for main memory).");
1485 warned = true;
1487 return mainrampagesize;
1490 return hpsize;
1492 #else
1493 long qemu_getrampagesize(void)
1495 return getpagesize();
1497 #endif
1499 #ifdef __linux__
1500 static int64_t get_file_size(int fd)
1502 int64_t size = lseek(fd, 0, SEEK_END);
1503 if (size < 0) {
1504 return -errno;
1506 return size;
1509 static int file_ram_open(const char *path,
1510 const char *region_name,
1511 bool *created,
1512 Error **errp)
1514 char *filename;
1515 char *sanitized_name;
1516 char *c;
1517 int fd = -1;
1519 *created = false;
1520 for (;;) {
1521 fd = open(path, O_RDWR);
1522 if (fd >= 0) {
1523 /* @path names an existing file, use it */
1524 break;
1526 if (errno == ENOENT) {
1527 /* @path names a file that doesn't exist, create it */
1528 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1529 if (fd >= 0) {
1530 *created = true;
1531 break;
1533 } else if (errno == EISDIR) {
1534 /* @path names a directory, create a file there */
1535 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1536 sanitized_name = g_strdup(region_name);
1537 for (c = sanitized_name; *c != '\0'; c++) {
1538 if (*c == '/') {
1539 *c = '_';
1543 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1544 sanitized_name);
1545 g_free(sanitized_name);
1547 fd = mkstemp(filename);
1548 if (fd >= 0) {
1549 unlink(filename);
1550 g_free(filename);
1551 break;
1553 g_free(filename);
1555 if (errno != EEXIST && errno != EINTR) {
1556 error_setg_errno(errp, errno,
1557 "can't open backing store %s for guest RAM",
1558 path);
1559 return -1;
1562 * Try again on EINTR and EEXIST. The latter happens when
1563 * something else creates the file between our two open().
1567 return fd;
1570 static void *file_ram_alloc(RAMBlock *block,
1571 ram_addr_t memory,
1572 int fd,
1573 bool truncate,
1574 Error **errp)
1576 void *area;
1578 block->page_size = qemu_fd_getpagesize(fd);
1579 block->mr->align = block->page_size;
1580 #if defined(__s390x__)
1581 if (kvm_enabled()) {
1582 block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
1584 #endif
1586 if (memory < block->page_size) {
1587 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
1588 "or larger than page size 0x%zx",
1589 memory, block->page_size);
1590 return NULL;
1593 memory = ROUND_UP(memory, block->page_size);
1596 * ftruncate is not supported by hugetlbfs in older
1597 * hosts, so don't bother bailing out on errors.
1598 * If anything goes wrong with it under other filesystems,
1599 * mmap will fail.
1601 * Do not truncate the non-empty backend file to avoid corrupting
1602 * the existing data in the file. Disabling shrinking is not
1603 * enough. For example, the current vNVDIMM implementation stores
1604 * the guest NVDIMM labels at the end of the backend file. If the
1605 * backend file is later extended, QEMU will not be able to find
1606 * those labels. Therefore, extending the non-empty backend file
1607 * is disabled as well.
1609 if (truncate && ftruncate(fd, memory)) {
1610 perror("ftruncate");
1613 area = qemu_ram_mmap(fd, memory, block->mr->align,
1614 block->flags & RAM_SHARED);
1615 if (area == MAP_FAILED) {
1616 error_setg_errno(errp, errno,
1617 "unable to map backing store for guest RAM");
1618 return NULL;
1621 if (mem_prealloc) {
1622 os_mem_prealloc(fd, area, memory, smp_cpus, errp);
1623 if (errp && *errp) {
1624 qemu_ram_munmap(area, memory);
1625 return NULL;
1629 block->fd = fd;
1630 return area;
1632 #endif
1634 /* Called with the ramlist lock held. */
1635 static ram_addr_t find_ram_offset(ram_addr_t size)
1637 RAMBlock *block, *next_block;
1638 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
1640 assert(size != 0); /* it would hand out same offset multiple times */
1642 if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
1643 return 0;
1646 RAMBLOCK_FOREACH(block) {
1647 ram_addr_t end, next = RAM_ADDR_MAX;
1649 end = block->offset + block->max_length;
1651 RAMBLOCK_FOREACH(next_block) {
1652 if (next_block->offset >= end) {
1653 next = MIN(next, next_block->offset);
1656 if (next - end >= size && next - end < mingap) {
1657 offset = end;
1658 mingap = next - end;
1662 if (offset == RAM_ADDR_MAX) {
1663 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1664 (uint64_t)size);
1665 abort();
1668 return offset;
1671 unsigned long last_ram_page(void)
1673 RAMBlock *block;
1674 ram_addr_t last = 0;
1676 rcu_read_lock();
1677 RAMBLOCK_FOREACH(block) {
1678 last = MAX(last, block->offset + block->max_length);
1680 rcu_read_unlock();
1681 return last >> TARGET_PAGE_BITS;
1684 static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1686 int ret;
1688 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1689 if (!machine_dump_guest_core(current_machine)) {
1690 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1691 if (ret) {
1692 perror("qemu_madvise");
1693 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1694 "but dump_guest_core=off specified\n");
1699 const char *qemu_ram_get_idstr(RAMBlock *rb)
1701 return rb->idstr;
1704 bool qemu_ram_is_shared(RAMBlock *rb)
1706 return rb->flags & RAM_SHARED;
1709 /* Called with iothread lock held. */
1710 void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
1712 RAMBlock *block;
1714 assert(new_block);
1715 assert(!new_block->idstr[0]);
1717 if (dev) {
1718 char *id = qdev_get_dev_path(dev);
1719 if (id) {
1720 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
1721 g_free(id);
1724 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1726 rcu_read_lock();
1727 RAMBLOCK_FOREACH(block) {
1728 if (block != new_block &&
1729 !strcmp(block->idstr, new_block->idstr)) {
1730 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1731 new_block->idstr);
1732 abort();
1735 rcu_read_unlock();
1738 /* Called with iothread lock held. */
1739 void qemu_ram_unset_idstr(RAMBlock *block)
1741 /* FIXME: arch_init.c assumes that this is not called throughout
1742 * migration. Ignore the problem since hot-unplug during migration
1743 * does not work anyway.
1745 if (block) {
1746 memset(block->idstr, 0, sizeof(block->idstr));
1750 size_t qemu_ram_pagesize(RAMBlock *rb)
1752 return rb->page_size;
1755 /* Returns the largest size of page in use */
1756 size_t qemu_ram_pagesize_largest(void)
1758 RAMBlock *block;
1759 size_t largest = 0;
1761 RAMBLOCK_FOREACH(block) {
1762 largest = MAX(largest, qemu_ram_pagesize(block));
1765 return largest;
1768 static int memory_try_enable_merging(void *addr, size_t len)
1770 if (!machine_mem_merge(current_machine)) {
1771 /* disabled by the user */
1772 return 0;
1775 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1778 /* Only legal before guest might have detected the memory size: e.g. on
1779 * incoming migration, or right after reset.
1781 * As memory core doesn't know how is memory accessed, it is up to
1782 * resize callback to update device state and/or add assertions to detect
1783 * misuse, if necessary.
1785 int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
1787 assert(block);
1789 newsize = HOST_PAGE_ALIGN(newsize);
1791 if (block->used_length == newsize) {
1792 return 0;
1795 if (!(block->flags & RAM_RESIZEABLE)) {
1796 error_setg_errno(errp, EINVAL,
1797 "Length mismatch: %s: 0x" RAM_ADDR_FMT
1798 " in != 0x" RAM_ADDR_FMT, block->idstr,
1799 newsize, block->used_length);
1800 return -EINVAL;
1803 if (block->max_length < newsize) {
1804 error_setg_errno(errp, EINVAL,
1805 "Length too large: %s: 0x" RAM_ADDR_FMT
1806 " > 0x" RAM_ADDR_FMT, block->idstr,
1807 newsize, block->max_length);
1808 return -EINVAL;
1811 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
1812 block->used_length = newsize;
1813 cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
1814 DIRTY_CLIENTS_ALL);
1815 memory_region_set_size(block->mr, newsize);
1816 if (block->resized) {
1817 block->resized(block->idstr, newsize, block->host);
1819 return 0;
1822 /* Called with ram_list.mutex held */
1823 static void dirty_memory_extend(ram_addr_t old_ram_size,
1824 ram_addr_t new_ram_size)
1826 ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
1827 DIRTY_MEMORY_BLOCK_SIZE);
1828 ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
1829 DIRTY_MEMORY_BLOCK_SIZE);
1830 int i;
1832 /* Only need to extend if block count increased */
1833 if (new_num_blocks <= old_num_blocks) {
1834 return;
1837 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
1838 DirtyMemoryBlocks *old_blocks;
1839 DirtyMemoryBlocks *new_blocks;
1840 int j;
1842 old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]);
1843 new_blocks = g_malloc(sizeof(*new_blocks) +
1844 sizeof(new_blocks->blocks[0]) * new_num_blocks);
1846 if (old_num_blocks) {
1847 memcpy(new_blocks->blocks, old_blocks->blocks,
1848 old_num_blocks * sizeof(old_blocks->blocks[0]));
1851 for (j = old_num_blocks; j < new_num_blocks; j++) {
1852 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
1855 atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
1857 if (old_blocks) {
1858 g_free_rcu(old_blocks, rcu);
1863 static void ram_block_add(RAMBlock *new_block, Error **errp)
1865 RAMBlock *block;
1866 RAMBlock *last_block = NULL;
1867 ram_addr_t old_ram_size, new_ram_size;
1868 Error *err = NULL;
1870 old_ram_size = last_ram_page();
1872 qemu_mutex_lock_ramlist();
1873 new_block->offset = find_ram_offset(new_block->max_length);
1875 if (!new_block->host) {
1876 if (xen_enabled()) {
1877 xen_ram_alloc(new_block->offset, new_block->max_length,
1878 new_block->mr, &err);
1879 if (err) {
1880 error_propagate(errp, err);
1881 qemu_mutex_unlock_ramlist();
1882 return;
1884 } else {
1885 new_block->host = phys_mem_alloc(new_block->max_length,
1886 &new_block->mr->align);
1887 if (!new_block->host) {
1888 error_setg_errno(errp, errno,
1889 "cannot set up guest memory '%s'",
1890 memory_region_name(new_block->mr));
1891 qemu_mutex_unlock_ramlist();
1892 return;
1894 memory_try_enable_merging(new_block->host, new_block->max_length);
1898 new_ram_size = MAX(old_ram_size,
1899 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
1900 if (new_ram_size > old_ram_size) {
1901 dirty_memory_extend(old_ram_size, new_ram_size);
1903 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
1904 * QLIST (which has an RCU-friendly variant) does not have insertion at
1905 * tail, so save the last element in last_block.
1907 RAMBLOCK_FOREACH(block) {
1908 last_block = block;
1909 if (block->max_length < new_block->max_length) {
1910 break;
1913 if (block) {
1914 QLIST_INSERT_BEFORE_RCU(block, new_block, next);
1915 } else if (last_block) {
1916 QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
1917 } else { /* list is empty */
1918 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
1920 ram_list.mru_block = NULL;
1922 /* Write list before version */
1923 smp_wmb();
1924 ram_list.version++;
1925 qemu_mutex_unlock_ramlist();
1927 cpu_physical_memory_set_dirty_range(new_block->offset,
1928 new_block->used_length,
1929 DIRTY_CLIENTS_ALL);
1931 if (new_block->host) {
1932 qemu_ram_setup_dump(new_block->host, new_block->max_length);
1933 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
1934 /* MADV_DONTFORK is also needed by KVM in absence of synchronous MMU */
1935 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK);
1936 ram_block_notify_add(new_block->host, new_block->max_length);
1940 #ifdef __linux__
1941 RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
1942 bool share, int fd,
1943 Error **errp)
1945 RAMBlock *new_block;
1946 Error *local_err = NULL;
1947 int64_t file_size;
1949 if (xen_enabled()) {
1950 error_setg(errp, "-mem-path not supported with Xen");
1951 return NULL;
1954 if (kvm_enabled() && !kvm_has_sync_mmu()) {
1955 error_setg(errp,
1956 "host lacks kvm mmu notifiers, -mem-path unsupported");
1957 return NULL;
1960 if (phys_mem_alloc != qemu_anon_ram_alloc) {
1962 * file_ram_alloc() needs to allocate just like
1963 * phys_mem_alloc, but we haven't bothered to provide
1964 * a hook there.
1966 error_setg(errp,
1967 "-mem-path not supported with this accelerator");
1968 return NULL;
1971 size = HOST_PAGE_ALIGN(size);
1972 file_size = get_file_size(fd);
1973 if (file_size > 0 && file_size < size) {
1974 error_setg(errp, "backing store %s size 0x%" PRIx64
1975 " does not match 'size' option 0x" RAM_ADDR_FMT,
1976 mem_path, file_size, size);
1977 return NULL;
1980 new_block = g_malloc0(sizeof(*new_block));
1981 new_block->mr = mr;
1982 new_block->used_length = size;
1983 new_block->max_length = size;
1984 new_block->flags = share ? RAM_SHARED : 0;
1985 new_block->host = file_ram_alloc(new_block, size, fd, !file_size, errp);
1986 if (!new_block->host) {
1987 g_free(new_block);
1988 return NULL;
1991 ram_block_add(new_block, &local_err);
1992 if (local_err) {
1993 g_free(new_block);
1994 error_propagate(errp, local_err);
1995 return NULL;
1997 return new_block;
2002 RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
2003 bool share, const char *mem_path,
2004 Error **errp)
2006 int fd;
2007 bool created;
2008 RAMBlock *block;
2010 fd = file_ram_open(mem_path, memory_region_name(mr), &created, errp);
2011 if (fd < 0) {
2012 return NULL;
2015 block = qemu_ram_alloc_from_fd(size, mr, share, fd, errp);
2016 if (!block) {
2017 if (created) {
2018 unlink(mem_path);
2020 close(fd);
2021 return NULL;
2024 return block;
2026 #endif
2028 static
2029 RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
2030 void (*resized)(const char*,
2031 uint64_t length,
2032 void *host),
2033 void *host, bool resizeable,
2034 MemoryRegion *mr, Error **errp)
2036 RAMBlock *new_block;
2037 Error *local_err = NULL;
2039 size = HOST_PAGE_ALIGN(size);
2040 max_size = HOST_PAGE_ALIGN(max_size);
2041 new_block = g_malloc0(sizeof(*new_block));
2042 new_block->mr = mr;
2043 new_block->resized = resized;
2044 new_block->used_length = size;
2045 new_block->max_length = max_size;
2046 assert(max_size >= size);
2047 new_block->fd = -1;
2048 new_block->page_size = getpagesize();
2049 new_block->host = host;
2050 if (host) {
2051 new_block->flags |= RAM_PREALLOC;
2053 if (resizeable) {
2054 new_block->flags |= RAM_RESIZEABLE;
2056 ram_block_add(new_block, &local_err);
2057 if (local_err) {
2058 g_free(new_block);
2059 error_propagate(errp, local_err);
2060 return NULL;
2062 return new_block;
2065 RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
2066 MemoryRegion *mr, Error **errp)
2068 return qemu_ram_alloc_internal(size, size, NULL, host, false, mr, errp);
2071 RAMBlock *qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr, Error **errp)
2073 return qemu_ram_alloc_internal(size, size, NULL, NULL, false, mr, errp);
2076 RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
2077 void (*resized)(const char*,
2078 uint64_t length,
2079 void *host),
2080 MemoryRegion *mr, Error **errp)
2082 return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true, mr, errp);
2085 static void reclaim_ramblock(RAMBlock *block)
2087 if (block->flags & RAM_PREALLOC) {
2089 } else if (xen_enabled()) {
2090 xen_invalidate_map_cache_entry(block->host);
2091 #ifndef _WIN32
2092 } else if (block->fd >= 0) {
2093 qemu_ram_munmap(block->host, block->max_length);
2094 close(block->fd);
2095 #endif
2096 } else {
2097 qemu_anon_ram_free(block->host, block->max_length);
2099 g_free(block);
2102 void qemu_ram_free(RAMBlock *block)
2104 if (!block) {
2105 return;
2108 if (block->host) {
2109 ram_block_notify_remove(block->host, block->max_length);
2112 qemu_mutex_lock_ramlist();
2113 QLIST_REMOVE_RCU(block, next);
2114 ram_list.mru_block = NULL;
2115 /* Write list before version */
2116 smp_wmb();
2117 ram_list.version++;
2118 call_rcu(block, reclaim_ramblock, rcu);
2119 qemu_mutex_unlock_ramlist();
2122 #ifndef _WIN32
2123 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2125 RAMBlock *block;
2126 ram_addr_t offset;
2127 int flags;
2128 void *area, *vaddr;
2130 RAMBLOCK_FOREACH(block) {
2131 offset = addr - block->offset;
2132 if (offset < block->max_length) {
2133 vaddr = ramblock_ptr(block, offset);
2134 if (block->flags & RAM_PREALLOC) {
2136 } else if (xen_enabled()) {
2137 abort();
2138 } else {
2139 flags = MAP_FIXED;
2140 if (block->fd >= 0) {
2141 flags |= (block->flags & RAM_SHARED ?
2142 MAP_SHARED : MAP_PRIVATE);
2143 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2144 flags, block->fd, offset);
2145 } else {
2147 * Remap needs to match alloc. Accelerators that
2148 * set phys_mem_alloc never remap. If they did,
2149 * we'd need a remap hook here.
2151 assert(phys_mem_alloc == qemu_anon_ram_alloc);
2153 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
2154 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2155 flags, -1, 0);
2157 if (area != vaddr) {
2158 fprintf(stderr, "Could not remap addr: "
2159 RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n",
2160 length, addr);
2161 exit(1);
2163 memory_try_enable_merging(vaddr, length);
2164 qemu_ram_setup_dump(vaddr, length);
2169 #endif /* !_WIN32 */
2171 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2172 * This should not be used for general purpose DMA. Use address_space_map
2173 * or address_space_rw instead. For local memory (e.g. video ram) that the
2174 * device owns, use memory_region_get_ram_ptr.
2176 * Called within RCU critical section.
2178 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
2180 RAMBlock *block = ram_block;
2182 if (block == NULL) {
2183 block = qemu_get_ram_block(addr);
2184 addr -= block->offset;
2187 if (xen_enabled() && block->host == NULL) {
2188 /* We need to check if the requested address is in the RAM
2189 * because we don't want to map the entire memory in QEMU.
2190 * In that case just map until the end of the page.
2192 if (block->offset == 0) {
2193 return xen_map_cache(addr, 0, 0, false);
2196 block->host = xen_map_cache(block->offset, block->max_length, 1, false);
2198 return ramblock_ptr(block, addr);
2201 /* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
2202 * but takes a size argument.
2204 * Called within RCU critical section.
2206 static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
2207 hwaddr *size, bool lock)
2209 RAMBlock *block = ram_block;
2210 if (*size == 0) {
2211 return NULL;
2214 if (block == NULL) {
2215 block = qemu_get_ram_block(addr);
2216 addr -= block->offset;
2218 *size = MIN(*size, block->max_length - addr);
2220 if (xen_enabled() && block->host == NULL) {
2221 /* We need to check if the requested address is in the RAM
2222 * because we don't want to map the entire memory in QEMU.
2223 * In that case just map the requested area.
2225 if (block->offset == 0) {
2226 return xen_map_cache(addr, *size, lock, lock);
2229 block->host = xen_map_cache(block->offset, block->max_length, 1, lock);
2232 return ramblock_ptr(block, addr);
2236 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
2237 * in that RAMBlock.
2239 * ptr: Host pointer to look up
2240 * round_offset: If true round the result offset down to a page boundary
2241 * *ram_addr: set to result ram_addr
2242 * *offset: set to result offset within the RAMBlock
2244 * Returns: RAMBlock (or NULL if not found)
2246 * By the time this function returns, the returned pointer is not protected
2247 * by RCU anymore. If the caller is not within an RCU critical section and
2248 * does not hold the iothread lock, it must have other means of protecting the
2249 * pointer, such as a reference to the region that includes the incoming
2250 * ram_addr_t.
2252 RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
2253 ram_addr_t *offset)
2255 RAMBlock *block;
2256 uint8_t *host = ptr;
2258 if (xen_enabled()) {
2259 ram_addr_t ram_addr;
2260 rcu_read_lock();
2261 ram_addr = xen_ram_addr_from_mapcache(ptr);
2262 block = qemu_get_ram_block(ram_addr);
2263 if (block) {
2264 *offset = ram_addr - block->offset;
2266 rcu_read_unlock();
2267 return block;
2270 rcu_read_lock();
2271 block = atomic_rcu_read(&ram_list.mru_block);
2272 if (block && block->host && host - block->host < block->max_length) {
2273 goto found;
2276 RAMBLOCK_FOREACH(block) {
2277 /* This case append when the block is not mapped. */
2278 if (block->host == NULL) {
2279 continue;
2281 if (host - block->host < block->max_length) {
2282 goto found;
2286 rcu_read_unlock();
2287 return NULL;
2289 found:
2290 *offset = (host - block->host);
2291 if (round_offset) {
2292 *offset &= TARGET_PAGE_MASK;
2294 rcu_read_unlock();
2295 return block;
2299 * Finds the named RAMBlock
2301 * name: The name of RAMBlock to find
2303 * Returns: RAMBlock (or NULL if not found)
2305 RAMBlock *qemu_ram_block_by_name(const char *name)
2307 RAMBlock *block;
2309 RAMBLOCK_FOREACH(block) {
2310 if (!strcmp(name, block->idstr)) {
2311 return block;
2315 return NULL;
2318 /* Some of the softmmu routines need to translate from a host pointer
2319 (typically a TLB entry) back to a ram offset. */
2320 ram_addr_t qemu_ram_addr_from_host(void *ptr)
2322 RAMBlock *block;
2323 ram_addr_t offset;
2325 block = qemu_ram_block_from_host(ptr, false, &offset);
2326 if (!block) {
2327 return RAM_ADDR_INVALID;
2330 return block->offset + offset;
2333 /* Called within RCU critical section. */
2334 static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
2335 uint64_t val, unsigned size)
2337 bool locked = false;
2339 assert(tcg_enabled());
2340 if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
2341 locked = true;
2342 tb_lock();
2343 tb_invalidate_phys_page_fast(ram_addr, size);
2345 switch (size) {
2346 case 1:
2347 stb_p(qemu_map_ram_ptr(NULL, ram_addr), val);
2348 break;
2349 case 2:
2350 stw_p(qemu_map_ram_ptr(NULL, ram_addr), val);
2351 break;
2352 case 4:
2353 stl_p(qemu_map_ram_ptr(NULL, ram_addr), val);
2354 break;
2355 default:
2356 abort();
2359 if (locked) {
2360 tb_unlock();
2363 /* Set both VGA and migration bits for simplicity and to remove
2364 * the notdirty callback faster.
2366 cpu_physical_memory_set_dirty_range(ram_addr, size,
2367 DIRTY_CLIENTS_NOCODE);
2368 /* we remove the notdirty callback only if the code has been
2369 flushed */
2370 if (!cpu_physical_memory_is_clean(ram_addr)) {
2371 tlb_set_dirty(current_cpu, current_cpu->mem_io_vaddr);
2375 static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
2376 unsigned size, bool is_write)
2378 return is_write;
2381 static const MemoryRegionOps notdirty_mem_ops = {
2382 .write = notdirty_mem_write,
2383 .valid.accepts = notdirty_mem_accepts,
2384 .endianness = DEVICE_NATIVE_ENDIAN,
2387 /* Generate a debug exception if a watchpoint has been hit. */
2388 static void check_watchpoint(int offset, int len, MemTxAttrs attrs, int flags)
2390 CPUState *cpu = current_cpu;
2391 CPUClass *cc = CPU_GET_CLASS(cpu);
2392 CPUArchState *env = cpu->env_ptr;
2393 target_ulong pc, cs_base;
2394 target_ulong vaddr;
2395 CPUWatchpoint *wp;
2396 uint32_t cpu_flags;
2398 assert(tcg_enabled());
2399 if (cpu->watchpoint_hit) {
2400 /* We re-entered the check after replacing the TB. Now raise
2401 * the debug interrupt so that is will trigger after the
2402 * current instruction. */
2403 cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
2404 return;
2406 vaddr = (cpu->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
2407 vaddr = cc->adjust_watchpoint_address(cpu, vaddr, len);
2408 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
2409 if (cpu_watchpoint_address_matches(wp, vaddr, len)
2410 && (wp->flags & flags)) {
2411 if (flags == BP_MEM_READ) {
2412 wp->flags |= BP_WATCHPOINT_HIT_READ;
2413 } else {
2414 wp->flags |= BP_WATCHPOINT_HIT_WRITE;
2416 wp->hitaddr = vaddr;
2417 wp->hitattrs = attrs;
2418 if (!cpu->watchpoint_hit) {
2419 if (wp->flags & BP_CPU &&
2420 !cc->debug_check_watchpoint(cpu, wp)) {
2421 wp->flags &= ~BP_WATCHPOINT_HIT;
2422 continue;
2424 cpu->watchpoint_hit = wp;
2426 /* Both tb_lock and iothread_mutex will be reset when
2427 * cpu_loop_exit or cpu_loop_exit_noexc longjmp
2428 * back into the cpu_exec main loop.
2430 tb_lock();
2431 tb_check_watchpoint(cpu);
2432 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2433 cpu->exception_index = EXCP_DEBUG;
2434 cpu_loop_exit(cpu);
2435 } else {
2436 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
2437 tb_gen_code(cpu, pc, cs_base, cpu_flags, 1);
2438 cpu_loop_exit_noexc(cpu);
2441 } else {
2442 wp->flags &= ~BP_WATCHPOINT_HIT;
2447 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2448 so these check for a hit then pass through to the normal out-of-line
2449 phys routines. */
2450 static MemTxResult watch_mem_read(void *opaque, hwaddr addr, uint64_t *pdata,
2451 unsigned size, MemTxAttrs attrs)
2453 MemTxResult res;
2454 uint64_t data;
2455 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2456 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
2458 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_READ);
2459 switch (size) {
2460 case 1:
2461 data = address_space_ldub(as, addr, attrs, &res);
2462 break;
2463 case 2:
2464 data = address_space_lduw(as, addr, attrs, &res);
2465 break;
2466 case 4:
2467 data = address_space_ldl(as, addr, attrs, &res);
2468 break;
2469 default: abort();
2471 *pdata = data;
2472 return res;
2475 static MemTxResult watch_mem_write(void *opaque, hwaddr addr,
2476 uint64_t val, unsigned size,
2477 MemTxAttrs attrs)
2479 MemTxResult res;
2480 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2481 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
2483 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_WRITE);
2484 switch (size) {
2485 case 1:
2486 address_space_stb(as, addr, val, attrs, &res);
2487 break;
2488 case 2:
2489 address_space_stw(as, addr, val, attrs, &res);
2490 break;
2491 case 4:
2492 address_space_stl(as, addr, val, attrs, &res);
2493 break;
2494 default: abort();
2496 return res;
2499 static const MemoryRegionOps watch_mem_ops = {
2500 .read_with_attrs = watch_mem_read,
2501 .write_with_attrs = watch_mem_write,
2502 .endianness = DEVICE_NATIVE_ENDIAN,
2505 static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2506 unsigned len, MemTxAttrs attrs)
2508 subpage_t *subpage = opaque;
2509 uint8_t buf[8];
2510 MemTxResult res;
2512 #if defined(DEBUG_SUBPAGE)
2513 printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
2514 subpage, len, addr);
2515 #endif
2516 res = address_space_read(subpage->as, addr + subpage->base,
2517 attrs, buf, len);
2518 if (res) {
2519 return res;
2521 switch (len) {
2522 case 1:
2523 *data = ldub_p(buf);
2524 return MEMTX_OK;
2525 case 2:
2526 *data = lduw_p(buf);
2527 return MEMTX_OK;
2528 case 4:
2529 *data = ldl_p(buf);
2530 return MEMTX_OK;
2531 case 8:
2532 *data = ldq_p(buf);
2533 return MEMTX_OK;
2534 default:
2535 abort();
2539 static MemTxResult subpage_write(void *opaque, hwaddr addr,
2540 uint64_t value, unsigned len, MemTxAttrs attrs)
2542 subpage_t *subpage = opaque;
2543 uint8_t buf[8];
2545 #if defined(DEBUG_SUBPAGE)
2546 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
2547 " value %"PRIx64"\n",
2548 __func__, subpage, len, addr, value);
2549 #endif
2550 switch (len) {
2551 case 1:
2552 stb_p(buf, value);
2553 break;
2554 case 2:
2555 stw_p(buf, value);
2556 break;
2557 case 4:
2558 stl_p(buf, value);
2559 break;
2560 case 8:
2561 stq_p(buf, value);
2562 break;
2563 default:
2564 abort();
2566 return address_space_write(subpage->as, addr + subpage->base,
2567 attrs, buf, len);
2570 static bool subpage_accepts(void *opaque, hwaddr addr,
2571 unsigned len, bool is_write)
2573 subpage_t *subpage = opaque;
2574 #if defined(DEBUG_SUBPAGE)
2575 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
2576 __func__, subpage, is_write ? 'w' : 'r', len, addr);
2577 #endif
2579 return address_space_access_valid(subpage->as, addr + subpage->base,
2580 len, is_write);
2583 static const MemoryRegionOps subpage_ops = {
2584 .read_with_attrs = subpage_read,
2585 .write_with_attrs = subpage_write,
2586 .impl.min_access_size = 1,
2587 .impl.max_access_size = 8,
2588 .valid.min_access_size = 1,
2589 .valid.max_access_size = 8,
2590 .valid.accepts = subpage_accepts,
2591 .endianness = DEVICE_NATIVE_ENDIAN,
2594 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2595 uint16_t section)
2597 int idx, eidx;
2599 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2600 return -1;
2601 idx = SUBPAGE_IDX(start);
2602 eidx = SUBPAGE_IDX(end);
2603 #if defined(DEBUG_SUBPAGE)
2604 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2605 __func__, mmio, start, end, idx, eidx, section);
2606 #endif
2607 for (; idx <= eidx; idx++) {
2608 mmio->sub_section[idx] = section;
2611 return 0;
2614 static subpage_t *subpage_init(AddressSpace *as, hwaddr base)
2616 subpage_t *mmio;
2618 mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
2619 mmio->as = as;
2620 mmio->base = base;
2621 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
2622 NULL, TARGET_PAGE_SIZE);
2623 mmio->iomem.subpage = true;
2624 #if defined(DEBUG_SUBPAGE)
2625 printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
2626 mmio, base, TARGET_PAGE_SIZE);
2627 #endif
2628 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED);
2630 return mmio;
2633 static uint16_t dummy_section(PhysPageMap *map, AddressSpace *as,
2634 MemoryRegion *mr)
2636 assert(as);
2637 MemoryRegionSection section = {
2638 .address_space = as,
2639 .mr = mr,
2640 .offset_within_address_space = 0,
2641 .offset_within_region = 0,
2642 .size = int128_2_64(),
2645 return phys_section_add(map, &section);
2648 MemoryRegion *iotlb_to_region(CPUState *cpu, hwaddr index, MemTxAttrs attrs)
2650 int asidx = cpu_asidx_from_attrs(cpu, attrs);
2651 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
2652 AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch);
2653 MemoryRegionSection *sections = d->map.sections;
2655 return sections[index & ~TARGET_PAGE_MASK].mr;
2658 static void io_mem_init(void)
2660 memory_region_init_io(&io_mem_rom, NULL, &unassigned_mem_ops, NULL, NULL, UINT64_MAX);
2661 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
2662 NULL, UINT64_MAX);
2664 /* io_mem_notdirty calls tb_invalidate_phys_page_fast,
2665 * which can be called without the iothread mutex.
2667 memory_region_init_io(&io_mem_notdirty, NULL, &notdirty_mem_ops, NULL,
2668 NULL, UINT64_MAX);
2669 memory_region_clear_global_locking(&io_mem_notdirty);
2671 memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
2672 NULL, UINT64_MAX);
2675 void mem_begin(AddressSpace *as)
2677 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
2678 uint16_t n;
2680 n = dummy_section(&d->map, as, &io_mem_unassigned);
2681 assert(n == PHYS_SECTION_UNASSIGNED);
2682 n = dummy_section(&d->map, as, &io_mem_notdirty);
2683 assert(n == PHYS_SECTION_NOTDIRTY);
2684 n = dummy_section(&d->map, as, &io_mem_rom);
2685 assert(n == PHYS_SECTION_ROM);
2686 n = dummy_section(&d->map, as, &io_mem_watch);
2687 assert(n == PHYS_SECTION_WATCH);
2689 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
2690 d->as = as;
2691 as->next_dispatch = d;
2694 static void address_space_dispatch_free(AddressSpaceDispatch *d)
2696 phys_sections_free(&d->map);
2697 g_free(d);
2700 void mem_commit(AddressSpace *as)
2702 AddressSpaceDispatch *cur = as->dispatch;
2703 AddressSpaceDispatch *next = as->next_dispatch;
2705 phys_page_compact_all(next, next->map.nodes_nb);
2707 atomic_rcu_set(&as->dispatch, next);
2708 if (cur) {
2709 call_rcu(cur, address_space_dispatch_free, rcu);
2713 static void tcg_commit(MemoryListener *listener)
2715 CPUAddressSpace *cpuas;
2716 AddressSpaceDispatch *d;
2718 /* since each CPU stores ram addresses in its TLB cache, we must
2719 reset the modified entries */
2720 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2721 cpu_reloading_memory_map();
2722 /* The CPU and TLB are protected by the iothread lock.
2723 * We reload the dispatch pointer now because cpu_reloading_memory_map()
2724 * may have split the RCU critical section.
2726 d = atomic_rcu_read(&cpuas->as->dispatch);
2727 atomic_rcu_set(&cpuas->memory_dispatch, d);
2728 tlb_flush(cpuas->cpu);
2731 void address_space_destroy_dispatch(AddressSpace *as)
2733 AddressSpaceDispatch *d = as->dispatch;
2735 atomic_rcu_set(&as->dispatch, NULL);
2736 if (d) {
2737 call_rcu(d, address_space_dispatch_free, rcu);
2741 static void memory_map_init(void)
2743 system_memory = g_malloc(sizeof(*system_memory));
2745 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
2746 address_space_init(&address_space_memory, system_memory, "memory");
2748 system_io = g_malloc(sizeof(*system_io));
2749 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
2750 65536);
2751 address_space_init(&address_space_io, system_io, "I/O");
2754 MemoryRegion *get_system_memory(void)
2756 return system_memory;
2759 MemoryRegion *get_system_io(void)
2761 return system_io;
2764 #endif /* !defined(CONFIG_USER_ONLY) */
2766 /* physical memory access (slow version, mainly for debug) */
2767 #if defined(CONFIG_USER_ONLY)
2768 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
2769 uint8_t *buf, int len, int is_write)
2771 int l, flags;
2772 target_ulong page;
2773 void * p;
2775 while (len > 0) {
2776 page = addr & TARGET_PAGE_MASK;
2777 l = (page + TARGET_PAGE_SIZE) - addr;
2778 if (l > len)
2779 l = len;
2780 flags = page_get_flags(page);
2781 if (!(flags & PAGE_VALID))
2782 return -1;
2783 if (is_write) {
2784 if (!(flags & PAGE_WRITE))
2785 return -1;
2786 /* XXX: this code should not depend on lock_user */
2787 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
2788 return -1;
2789 memcpy(p, buf, l);
2790 unlock_user(p, addr, l);
2791 } else {
2792 if (!(flags & PAGE_READ))
2793 return -1;
2794 /* XXX: this code should not depend on lock_user */
2795 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
2796 return -1;
2797 memcpy(buf, p, l);
2798 unlock_user(p, addr, 0);
2800 len -= l;
2801 buf += l;
2802 addr += l;
2804 return 0;
2807 #else
2809 static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
2810 hwaddr length)
2812 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
2813 addr += memory_region_get_ram_addr(mr);
2815 /* No early return if dirty_log_mask is or becomes 0, because
2816 * cpu_physical_memory_set_dirty_range will still call
2817 * xen_modified_memory.
2819 if (dirty_log_mask) {
2820 dirty_log_mask =
2821 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
2823 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
2824 assert(tcg_enabled());
2825 tb_lock();
2826 tb_invalidate_phys_range(addr, addr + length);
2827 tb_unlock();
2828 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
2830 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
2833 static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
2835 unsigned access_size_max = mr->ops->valid.max_access_size;
2837 /* Regions are assumed to support 1-4 byte accesses unless
2838 otherwise specified. */
2839 if (access_size_max == 0) {
2840 access_size_max = 4;
2843 /* Bound the maximum access by the alignment of the address. */
2844 if (!mr->ops->impl.unaligned) {
2845 unsigned align_size_max = addr & -addr;
2846 if (align_size_max != 0 && align_size_max < access_size_max) {
2847 access_size_max = align_size_max;
2851 /* Don't attempt accesses larger than the maximum. */
2852 if (l > access_size_max) {
2853 l = access_size_max;
2855 l = pow2floor(l);
2857 return l;
2860 static bool prepare_mmio_access(MemoryRegion *mr)
2862 bool unlocked = !qemu_mutex_iothread_locked();
2863 bool release_lock = false;
2865 if (unlocked && mr->global_locking) {
2866 qemu_mutex_lock_iothread();
2867 unlocked = false;
2868 release_lock = true;
2870 if (mr->flush_coalesced_mmio) {
2871 if (unlocked) {
2872 qemu_mutex_lock_iothread();
2874 qemu_flush_coalesced_mmio_buffer();
2875 if (unlocked) {
2876 qemu_mutex_unlock_iothread();
2880 return release_lock;
2883 /* Called within RCU critical section. */
2884 static MemTxResult address_space_write_continue(AddressSpace *as, hwaddr addr,
2885 MemTxAttrs attrs,
2886 const uint8_t *buf,
2887 int len, hwaddr addr1,
2888 hwaddr l, MemoryRegion *mr)
2890 uint8_t *ptr;
2891 uint64_t val;
2892 MemTxResult result = MEMTX_OK;
2893 bool release_lock = false;
2895 for (;;) {
2896 if (!memory_access_is_direct(mr, true)) {
2897 release_lock |= prepare_mmio_access(mr);
2898 l = memory_access_size(mr, l, addr1);
2899 /* XXX: could force current_cpu to NULL to avoid
2900 potential bugs */
2901 switch (l) {
2902 case 8:
2903 /* 64 bit write access */
2904 val = ldq_p(buf);
2905 result |= memory_region_dispatch_write(mr, addr1, val, 8,
2906 attrs);
2907 break;
2908 case 4:
2909 /* 32 bit write access */
2910 val = (uint32_t)ldl_p(buf);
2911 result |= memory_region_dispatch_write(mr, addr1, val, 4,
2912 attrs);
2913 break;
2914 case 2:
2915 /* 16 bit write access */
2916 val = lduw_p(buf);
2917 result |= memory_region_dispatch_write(mr, addr1, val, 2,
2918 attrs);
2919 break;
2920 case 1:
2921 /* 8 bit write access */
2922 val = ldub_p(buf);
2923 result |= memory_region_dispatch_write(mr, addr1, val, 1,
2924 attrs);
2925 break;
2926 default:
2927 abort();
2929 } else {
2930 /* RAM case */
2931 ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
2932 memcpy(ptr, buf, l);
2933 invalidate_and_set_dirty(mr, addr1, l);
2936 if (release_lock) {
2937 qemu_mutex_unlock_iothread();
2938 release_lock = false;
2941 len -= l;
2942 buf += l;
2943 addr += l;
2945 if (!len) {
2946 break;
2949 l = len;
2950 mr = address_space_translate(as, addr, &addr1, &l, true);
2953 return result;
2956 MemTxResult address_space_write(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
2957 const uint8_t *buf, int len)
2959 hwaddr l;
2960 hwaddr addr1;
2961 MemoryRegion *mr;
2962 MemTxResult result = MEMTX_OK;
2964 if (len > 0) {
2965 rcu_read_lock();
2966 l = len;
2967 mr = address_space_translate(as, addr, &addr1, &l, true);
2968 result = address_space_write_continue(as, addr, attrs, buf, len,
2969 addr1, l, mr);
2970 rcu_read_unlock();
2973 return result;
2976 /* Called within RCU critical section. */
2977 MemTxResult address_space_read_continue(AddressSpace *as, hwaddr addr,
2978 MemTxAttrs attrs, uint8_t *buf,
2979 int len, hwaddr addr1, hwaddr l,
2980 MemoryRegion *mr)
2982 uint8_t *ptr;
2983 uint64_t val;
2984 MemTxResult result = MEMTX_OK;
2985 bool release_lock = false;
2987 for (;;) {
2988 if (!memory_access_is_direct(mr, false)) {
2989 /* I/O case */
2990 release_lock |= prepare_mmio_access(mr);
2991 l = memory_access_size(mr, l, addr1);
2992 switch (l) {
2993 case 8:
2994 /* 64 bit read access */
2995 result |= memory_region_dispatch_read(mr, addr1, &val, 8,
2996 attrs);
2997 stq_p(buf, val);
2998 break;
2999 case 4:
3000 /* 32 bit read access */
3001 result |= memory_region_dispatch_read(mr, addr1, &val, 4,
3002 attrs);
3003 stl_p(buf, val);
3004 break;
3005 case 2:
3006 /* 16 bit read access */
3007 result |= memory_region_dispatch_read(mr, addr1, &val, 2,
3008 attrs);
3009 stw_p(buf, val);
3010 break;
3011 case 1:
3012 /* 8 bit read access */
3013 result |= memory_region_dispatch_read(mr, addr1, &val, 1,
3014 attrs);
3015 stb_p(buf, val);
3016 break;
3017 default:
3018 abort();
3020 } else {
3021 /* RAM case */
3022 ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
3023 memcpy(buf, ptr, l);
3026 if (release_lock) {
3027 qemu_mutex_unlock_iothread();
3028 release_lock = false;
3031 len -= l;
3032 buf += l;
3033 addr += l;
3035 if (!len) {
3036 break;
3039 l = len;
3040 mr = address_space_translate(as, addr, &addr1, &l, false);
3043 return result;
3046 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
3047 MemTxAttrs attrs, uint8_t *buf, int len)
3049 hwaddr l;
3050 hwaddr addr1;
3051 MemoryRegion *mr;
3052 MemTxResult result = MEMTX_OK;
3054 if (len > 0) {
3055 rcu_read_lock();
3056 l = len;
3057 mr = address_space_translate(as, addr, &addr1, &l, false);
3058 result = address_space_read_continue(as, addr, attrs, buf, len,
3059 addr1, l, mr);
3060 rcu_read_unlock();
3063 return result;
3066 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
3067 uint8_t *buf, int len, bool is_write)
3069 if (is_write) {
3070 return address_space_write(as, addr, attrs, (uint8_t *)buf, len);
3071 } else {
3072 return address_space_read(as, addr, attrs, (uint8_t *)buf, len);
3076 void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
3077 int len, int is_write)
3079 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
3080 buf, len, is_write);
3083 enum write_rom_type {
3084 WRITE_DATA,
3085 FLUSH_CACHE,
3088 static inline void cpu_physical_memory_write_rom_internal(AddressSpace *as,
3089 hwaddr addr, const uint8_t *buf, int len, enum write_rom_type type)
3091 hwaddr l;
3092 uint8_t *ptr;
3093 hwaddr addr1;
3094 MemoryRegion *mr;
3096 rcu_read_lock();
3097 while (len > 0) {
3098 l = len;
3099 mr = address_space_translate(as, addr, &addr1, &l, true);
3101 if (!(memory_region_is_ram(mr) ||
3102 memory_region_is_romd(mr))) {
3103 l = memory_access_size(mr, l, addr1);
3104 } else {
3105 /* ROM/RAM case */
3106 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
3107 switch (type) {
3108 case WRITE_DATA:
3109 memcpy(ptr, buf, l);
3110 invalidate_and_set_dirty(mr, addr1, l);
3111 break;
3112 case FLUSH_CACHE:
3113 flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l);
3114 break;
3117 len -= l;
3118 buf += l;
3119 addr += l;
3121 rcu_read_unlock();
3124 /* used for ROM loading : can write in RAM and ROM */
3125 void cpu_physical_memory_write_rom(AddressSpace *as, hwaddr addr,
3126 const uint8_t *buf, int len)
3128 cpu_physical_memory_write_rom_internal(as, addr, buf, len, WRITE_DATA);
3131 void cpu_flush_icache_range(hwaddr start, int len)
3134 * This function should do the same thing as an icache flush that was
3135 * triggered from within the guest. For TCG we are always cache coherent,
3136 * so there is no need to flush anything. For KVM / Xen we need to flush
3137 * the host's instruction cache at least.
3139 if (tcg_enabled()) {
3140 return;
3143 cpu_physical_memory_write_rom_internal(&address_space_memory,
3144 start, NULL, len, FLUSH_CACHE);
3147 typedef struct {
3148 MemoryRegion *mr;
3149 void *buffer;
3150 hwaddr addr;
3151 hwaddr len;
3152 bool in_use;
3153 } BounceBuffer;
3155 static BounceBuffer bounce;
3157 typedef struct MapClient {
3158 QEMUBH *bh;
3159 QLIST_ENTRY(MapClient) link;
3160 } MapClient;
3162 QemuMutex map_client_list_lock;
3163 static QLIST_HEAD(map_client_list, MapClient) map_client_list
3164 = QLIST_HEAD_INITIALIZER(map_client_list);
3166 static void cpu_unregister_map_client_do(MapClient *client)
3168 QLIST_REMOVE(client, link);
3169 g_free(client);
3172 static void cpu_notify_map_clients_locked(void)
3174 MapClient *client;
3176 while (!QLIST_EMPTY(&map_client_list)) {
3177 client = QLIST_FIRST(&map_client_list);
3178 qemu_bh_schedule(client->bh);
3179 cpu_unregister_map_client_do(client);
3183 void cpu_register_map_client(QEMUBH *bh)
3185 MapClient *client = g_malloc(sizeof(*client));
3187 qemu_mutex_lock(&map_client_list_lock);
3188 client->bh = bh;
3189 QLIST_INSERT_HEAD(&map_client_list, client, link);
3190 if (!atomic_read(&bounce.in_use)) {
3191 cpu_notify_map_clients_locked();
3193 qemu_mutex_unlock(&map_client_list_lock);
3196 void cpu_exec_init_all(void)
3198 qemu_mutex_init(&ram_list.mutex);
3199 /* The data structures we set up here depend on knowing the page size,
3200 * so no more changes can be made after this point.
3201 * In an ideal world, nothing we did before we had finished the
3202 * machine setup would care about the target page size, and we could
3203 * do this much later, rather than requiring board models to state
3204 * up front what their requirements are.
3206 finalize_target_page_bits();
3207 io_mem_init();
3208 memory_map_init();
3209 qemu_mutex_init(&map_client_list_lock);
3212 void cpu_unregister_map_client(QEMUBH *bh)
3214 MapClient *client;
3216 qemu_mutex_lock(&map_client_list_lock);
3217 QLIST_FOREACH(client, &map_client_list, link) {
3218 if (client->bh == bh) {
3219 cpu_unregister_map_client_do(client);
3220 break;
3223 qemu_mutex_unlock(&map_client_list_lock);
3226 static void cpu_notify_map_clients(void)
3228 qemu_mutex_lock(&map_client_list_lock);
3229 cpu_notify_map_clients_locked();
3230 qemu_mutex_unlock(&map_client_list_lock);
3233 bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write)
3235 MemoryRegion *mr;
3236 hwaddr l, xlat;
3238 rcu_read_lock();
3239 while (len > 0) {
3240 l = len;
3241 mr = address_space_translate(as, addr, &xlat, &l, is_write);
3242 if (!memory_access_is_direct(mr, is_write)) {
3243 l = memory_access_size(mr, l, addr);
3244 if (!memory_region_access_valid(mr, xlat, l, is_write)) {
3245 rcu_read_unlock();
3246 return false;
3250 len -= l;
3251 addr += l;
3253 rcu_read_unlock();
3254 return true;
3257 static hwaddr
3258 address_space_extend_translation(AddressSpace *as, hwaddr addr, hwaddr target_len,
3259 MemoryRegion *mr, hwaddr base, hwaddr len,
3260 bool is_write)
3262 hwaddr done = 0;
3263 hwaddr xlat;
3264 MemoryRegion *this_mr;
3266 for (;;) {
3267 target_len -= len;
3268 addr += len;
3269 done += len;
3270 if (target_len == 0) {
3271 return done;
3274 len = target_len;
3275 this_mr = address_space_translate(as, addr, &xlat, &len, is_write);
3276 if (this_mr != mr || xlat != base + done) {
3277 return done;
3282 /* Map a physical memory region into a host virtual address.
3283 * May map a subset of the requested range, given by and returned in *plen.
3284 * May return NULL if resources needed to perform the mapping are exhausted.
3285 * Use only for reads OR writes - not for read-modify-write operations.
3286 * Use cpu_register_map_client() to know when retrying the map operation is
3287 * likely to succeed.
3289 void *address_space_map(AddressSpace *as,
3290 hwaddr addr,
3291 hwaddr *plen,
3292 bool is_write)
3294 hwaddr len = *plen;
3295 hwaddr l, xlat;
3296 MemoryRegion *mr;
3297 void *ptr;
3299 if (len == 0) {
3300 return NULL;
3303 l = len;
3304 rcu_read_lock();
3305 mr = address_space_translate(as, addr, &xlat, &l, is_write);
3307 if (!memory_access_is_direct(mr, is_write)) {
3308 if (atomic_xchg(&bounce.in_use, true)) {
3309 rcu_read_unlock();
3310 return NULL;
3312 /* Avoid unbounded allocations */
3313 l = MIN(l, TARGET_PAGE_SIZE);
3314 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
3315 bounce.addr = addr;
3316 bounce.len = l;
3318 memory_region_ref(mr);
3319 bounce.mr = mr;
3320 if (!is_write) {
3321 address_space_read(as, addr, MEMTXATTRS_UNSPECIFIED,
3322 bounce.buffer, l);
3325 rcu_read_unlock();
3326 *plen = l;
3327 return bounce.buffer;
3331 memory_region_ref(mr);
3332 *plen = address_space_extend_translation(as, addr, len, mr, xlat, l, is_write);
3333 ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen, true);
3334 rcu_read_unlock();
3336 return ptr;
3339 /* Unmaps a memory region previously mapped by address_space_map().
3340 * Will also mark the memory as dirty if is_write == 1. access_len gives
3341 * the amount of memory that was actually read or written by the caller.
3343 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3344 int is_write, hwaddr access_len)
3346 if (buffer != bounce.buffer) {
3347 MemoryRegion *mr;
3348 ram_addr_t addr1;
3350 mr = memory_region_from_host(buffer, &addr1);
3351 assert(mr != NULL);
3352 if (is_write) {
3353 invalidate_and_set_dirty(mr, addr1, access_len);
3355 if (xen_enabled()) {
3356 xen_invalidate_map_cache_entry(buffer);
3358 memory_region_unref(mr);
3359 return;
3361 if (is_write) {
3362 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
3363 bounce.buffer, access_len);
3365 qemu_vfree(bounce.buffer);
3366 bounce.buffer = NULL;
3367 memory_region_unref(bounce.mr);
3368 atomic_mb_set(&bounce.in_use, false);
3369 cpu_notify_map_clients();
3372 void *cpu_physical_memory_map(hwaddr addr,
3373 hwaddr *plen,
3374 int is_write)
3376 return address_space_map(&address_space_memory, addr, plen, is_write);
3379 void cpu_physical_memory_unmap(void *buffer, hwaddr len,
3380 int is_write, hwaddr access_len)
3382 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3385 #define ARG1_DECL AddressSpace *as
3386 #define ARG1 as
3387 #define SUFFIX
3388 #define TRANSLATE(...) address_space_translate(as, __VA_ARGS__)
3389 #define IS_DIRECT(mr, is_write) memory_access_is_direct(mr, is_write)
3390 #define MAP_RAM(mr, ofs) qemu_map_ram_ptr((mr)->ram_block, ofs)
3391 #define INVALIDATE(mr, ofs, len) invalidate_and_set_dirty(mr, ofs, len)
3392 #define RCU_READ_LOCK(...) rcu_read_lock()
3393 #define RCU_READ_UNLOCK(...) rcu_read_unlock()
3394 #include "memory_ldst.inc.c"
3396 int64_t address_space_cache_init(MemoryRegionCache *cache,
3397 AddressSpace *as,
3398 hwaddr addr,
3399 hwaddr len,
3400 bool is_write)
3402 cache->len = len;
3403 cache->as = as;
3404 cache->xlat = addr;
3405 return len;
3408 void address_space_cache_invalidate(MemoryRegionCache *cache,
3409 hwaddr addr,
3410 hwaddr access_len)
3414 void address_space_cache_destroy(MemoryRegionCache *cache)
3416 cache->as = NULL;
3419 #define ARG1_DECL MemoryRegionCache *cache
3420 #define ARG1 cache
3421 #define SUFFIX _cached
3422 #define TRANSLATE(addr, ...) \
3423 address_space_translate(cache->as, cache->xlat + (addr), __VA_ARGS__)
3424 #define IS_DIRECT(mr, is_write) true
3425 #define MAP_RAM(mr, ofs) qemu_map_ram_ptr((mr)->ram_block, ofs)
3426 #define INVALIDATE(mr, ofs, len) invalidate_and_set_dirty(mr, ofs, len)
3427 #define RCU_READ_LOCK() rcu_read_lock()
3428 #define RCU_READ_UNLOCK() rcu_read_unlock()
3429 #include "memory_ldst.inc.c"
3431 /* virtual memory access for debug (includes writing to ROM) */
3432 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
3433 uint8_t *buf, int len, int is_write)
3435 int l;
3436 hwaddr phys_addr;
3437 target_ulong page;
3439 cpu_synchronize_state(cpu);
3440 while (len > 0) {
3441 int asidx;
3442 MemTxAttrs attrs;
3444 page = addr & TARGET_PAGE_MASK;
3445 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3446 asidx = cpu_asidx_from_attrs(cpu, attrs);
3447 /* if no physical page mapped, return an error */
3448 if (phys_addr == -1)
3449 return -1;
3450 l = (page + TARGET_PAGE_SIZE) - addr;
3451 if (l > len)
3452 l = len;
3453 phys_addr += (addr & ~TARGET_PAGE_MASK);
3454 if (is_write) {
3455 cpu_physical_memory_write_rom(cpu->cpu_ases[asidx].as,
3456 phys_addr, buf, l);
3457 } else {
3458 address_space_rw(cpu->cpu_ases[asidx].as, phys_addr,
3459 MEMTXATTRS_UNSPECIFIED,
3460 buf, l, 0);
3462 len -= l;
3463 buf += l;
3464 addr += l;
3466 return 0;
3470 * Allows code that needs to deal with migration bitmaps etc to still be built
3471 * target independent.
3473 size_t qemu_target_page_size(void)
3475 return TARGET_PAGE_SIZE;
3478 int qemu_target_page_bits(void)
3480 return TARGET_PAGE_BITS;
3483 int qemu_target_page_bits_min(void)
3485 return TARGET_PAGE_BITS_MIN;
3487 #endif
3490 * A helper function for the _utterly broken_ virtio device model to find out if
3491 * it's running on a big endian machine. Don't do this at home kids!
3493 bool target_words_bigendian(void);
3494 bool target_words_bigendian(void)
3496 #if defined(TARGET_WORDS_BIGENDIAN)
3497 return true;
3498 #else
3499 return false;
3500 #endif
3503 #ifndef CONFIG_USER_ONLY
3504 bool cpu_physical_memory_is_io(hwaddr phys_addr)
3506 MemoryRegion*mr;
3507 hwaddr l = 1;
3508 bool res;
3510 rcu_read_lock();
3511 mr = address_space_translate(&address_space_memory,
3512 phys_addr, &phys_addr, &l, false);
3514 res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
3515 rcu_read_unlock();
3516 return res;
3519 int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
3521 RAMBlock *block;
3522 int ret = 0;
3524 rcu_read_lock();
3525 RAMBLOCK_FOREACH(block) {
3526 ret = func(block->idstr, block->host, block->offset,
3527 block->used_length, opaque);
3528 if (ret) {
3529 break;
3532 rcu_read_unlock();
3533 return ret;
3537 * Unmap pages of memory from start to start+length such that
3538 * they a) read as 0, b) Trigger whatever fault mechanism
3539 * the OS provides for postcopy.
3540 * The pages must be unmapped by the end of the function.
3541 * Returns: 0 on success, none-0 on failure
3544 int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
3546 int ret = -1;
3548 uint8_t *host_startaddr = rb->host + start;
3550 if ((uintptr_t)host_startaddr & (rb->page_size - 1)) {
3551 error_report("ram_block_discard_range: Unaligned start address: %p",
3552 host_startaddr);
3553 goto err;
3556 if ((start + length) <= rb->used_length) {
3557 uint8_t *host_endaddr = host_startaddr + length;
3558 if ((uintptr_t)host_endaddr & (rb->page_size - 1)) {
3559 error_report("ram_block_discard_range: Unaligned end address: %p",
3560 host_endaddr);
3561 goto err;
3564 errno = ENOTSUP; /* If we are missing MADVISE etc */
3566 if (rb->page_size == qemu_host_page_size) {
3567 #if defined(CONFIG_MADVISE)
3568 /* Note: We need the madvise MADV_DONTNEED behaviour of definitely
3569 * freeing the page.
3571 ret = madvise(host_startaddr, length, MADV_DONTNEED);
3572 #endif
3573 } else {
3574 /* Huge page case - unfortunately it can't do DONTNEED, but
3575 * it can do the equivalent by FALLOC_FL_PUNCH_HOLE in the
3576 * huge page file.
3578 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
3579 ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
3580 start, length);
3581 #endif
3583 if (ret) {
3584 ret = -errno;
3585 error_report("ram_block_discard_range: Failed to discard range "
3586 "%s:%" PRIx64 " +%zx (%d)",
3587 rb->idstr, start, length, ret);
3589 } else {
3590 error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
3591 "/%zx/" RAM_ADDR_FMT")",
3592 rb->idstr, start, length, rb->used_length);
3595 err:
3596 return ret;
3599 #endif
3601 void page_size_init(void)
3603 /* NOTE: we can always suppose that qemu_host_page_size >=
3604 TARGET_PAGE_SIZE */
3605 qemu_real_host_page_size = getpagesize();
3606 qemu_real_host_page_mask = -(intptr_t)qemu_real_host_page_size;
3607 if (qemu_host_page_size == 0) {
3608 qemu_host_page_size = qemu_real_host_page_size;
3610 if (qemu_host_page_size < TARGET_PAGE_SIZE) {
3611 qemu_host_page_size = TARGET_PAGE_SIZE;
3613 qemu_host_page_mask = -(intptr_t)qemu_host_page_size;