1 /* This is the Linux kernel elf-loading code, ported into user space */
2 #include "qemu/osdep.h"
5 #include <sys/resource.h>
9 #include "disas/disas.h"
10 #include "qemu/path.h"
11 #include "qemu/queue.h"
12 #include "qemu/guest-random.h"
13 #include "qemu/units.h"
14 #include "qemu/selfmap.h"
26 #define ELF_OSABI ELFOSABI_SYSV
28 /* from personality.h */
31 * Flags for bug emulation.
33 * These occupy the top three bytes.
36 ADDR_NO_RANDOMIZE
= 0x0040000, /* disable randomization of VA space */
37 FDPIC_FUNCPTRS
= 0x0080000, /* userspace function ptrs point to
38 descriptors (signal handling) */
39 MMAP_PAGE_ZERO
= 0x0100000,
40 ADDR_COMPAT_LAYOUT
= 0x0200000,
41 READ_IMPLIES_EXEC
= 0x0400000,
42 ADDR_LIMIT_32BIT
= 0x0800000,
43 SHORT_INODE
= 0x1000000,
44 WHOLE_SECONDS
= 0x2000000,
45 STICKY_TIMEOUTS
= 0x4000000,
46 ADDR_LIMIT_3GB
= 0x8000000,
52 * These go in the low byte. Avoid using the top bit, it will
53 * conflict with error returns.
57 PER_LINUX_32BIT
= 0x0000 | ADDR_LIMIT_32BIT
,
58 PER_LINUX_FDPIC
= 0x0000 | FDPIC_FUNCPTRS
,
59 PER_SVR4
= 0x0001 | STICKY_TIMEOUTS
| MMAP_PAGE_ZERO
,
60 PER_SVR3
= 0x0002 | STICKY_TIMEOUTS
| SHORT_INODE
,
61 PER_SCOSVR3
= 0x0003 | STICKY_TIMEOUTS
| WHOLE_SECONDS
| SHORT_INODE
,
62 PER_OSR5
= 0x0003 | STICKY_TIMEOUTS
| WHOLE_SECONDS
,
63 PER_WYSEV386
= 0x0004 | STICKY_TIMEOUTS
| SHORT_INODE
,
64 PER_ISCR4
= 0x0005 | STICKY_TIMEOUTS
,
66 PER_SUNOS
= 0x0006 | STICKY_TIMEOUTS
,
67 PER_XENIX
= 0x0007 | STICKY_TIMEOUTS
| SHORT_INODE
,
69 PER_LINUX32_3GB
= 0x0008 | ADDR_LIMIT_3GB
,
70 PER_IRIX32
= 0x0009 | STICKY_TIMEOUTS
,/* IRIX5 32-bit */
71 PER_IRIXN32
= 0x000a | STICKY_TIMEOUTS
,/* IRIX6 new 32-bit */
72 PER_IRIX64
= 0x000b | STICKY_TIMEOUTS
,/* IRIX6 64-bit */
74 PER_SOLARIS
= 0x000d | STICKY_TIMEOUTS
,
75 PER_UW7
= 0x000e | STICKY_TIMEOUTS
| MMAP_PAGE_ZERO
,
76 PER_OSF4
= 0x000f, /* OSF/1 v4 */
82 * Return the base personality without flags.
84 #define personality(pers) (pers & PER_MASK)
86 int info_is_fdpic(struct image_info
*info
)
88 return info
->personality
== PER_LINUX_FDPIC
;
91 /* this flag is uneffective under linux too, should be deleted */
93 #define MAP_DENYWRITE 0
96 /* should probably go in elf.h */
101 #ifdef TARGET_WORDS_BIGENDIAN
102 #define ELF_DATA ELFDATA2MSB
104 #define ELF_DATA ELFDATA2LSB
107 #ifdef TARGET_ABI_MIPSN32
108 typedef abi_ullong target_elf_greg_t
;
109 #define tswapreg(ptr) tswap64(ptr)
111 typedef abi_ulong target_elf_greg_t
;
112 #define tswapreg(ptr) tswapal(ptr)
116 typedef abi_ushort target_uid_t
;
117 typedef abi_ushort target_gid_t
;
119 typedef abi_uint target_uid_t
;
120 typedef abi_uint target_gid_t
;
122 typedef abi_int target_pid_t
;
126 #define ELF_PLATFORM get_elf_platform()
128 static const char *get_elf_platform(void)
130 static char elf_platform
[] = "i386";
131 int family
= object_property_get_int(OBJECT(thread_cpu
), "family", NULL
);
135 elf_platform
[1] = '0' + family
;
139 #define ELF_HWCAP get_elf_hwcap()
141 static uint32_t get_elf_hwcap(void)
143 X86CPU
*cpu
= X86_CPU(thread_cpu
);
145 return cpu
->env
.features
[FEAT_1_EDX
];
149 #define ELF_START_MMAP 0x2aaaaab000ULL
151 #define ELF_CLASS ELFCLASS64
152 #define ELF_ARCH EM_X86_64
154 static inline void init_thread(struct target_pt_regs
*regs
, struct image_info
*infop
)
157 regs
->rsp
= infop
->start_stack
;
158 regs
->rip
= infop
->entry
;
162 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
165 * Note that ELF_NREG should be 29 as there should be place for
166 * TRAPNO and ERR "registers" as well but linux doesn't dump
169 * See linux kernel: arch/x86/include/asm/elf.h
171 static void elf_core_copy_regs(target_elf_gregset_t
*regs
, const CPUX86State
*env
)
173 (*regs
)[0] = env
->regs
[15];
174 (*regs
)[1] = env
->regs
[14];
175 (*regs
)[2] = env
->regs
[13];
176 (*regs
)[3] = env
->regs
[12];
177 (*regs
)[4] = env
->regs
[R_EBP
];
178 (*regs
)[5] = env
->regs
[R_EBX
];
179 (*regs
)[6] = env
->regs
[11];
180 (*regs
)[7] = env
->regs
[10];
181 (*regs
)[8] = env
->regs
[9];
182 (*regs
)[9] = env
->regs
[8];
183 (*regs
)[10] = env
->regs
[R_EAX
];
184 (*regs
)[11] = env
->regs
[R_ECX
];
185 (*regs
)[12] = env
->regs
[R_EDX
];
186 (*regs
)[13] = env
->regs
[R_ESI
];
187 (*regs
)[14] = env
->regs
[R_EDI
];
188 (*regs
)[15] = env
->regs
[R_EAX
]; /* XXX */
189 (*regs
)[16] = env
->eip
;
190 (*regs
)[17] = env
->segs
[R_CS
].selector
& 0xffff;
191 (*regs
)[18] = env
->eflags
;
192 (*regs
)[19] = env
->regs
[R_ESP
];
193 (*regs
)[20] = env
->segs
[R_SS
].selector
& 0xffff;
194 (*regs
)[21] = env
->segs
[R_FS
].selector
& 0xffff;
195 (*regs
)[22] = env
->segs
[R_GS
].selector
& 0xffff;
196 (*regs
)[23] = env
->segs
[R_DS
].selector
& 0xffff;
197 (*regs
)[24] = env
->segs
[R_ES
].selector
& 0xffff;
198 (*regs
)[25] = env
->segs
[R_FS
].selector
& 0xffff;
199 (*regs
)[26] = env
->segs
[R_GS
].selector
& 0xffff;
204 #define ELF_START_MMAP 0x80000000
207 * This is used to ensure we don't load something for the wrong architecture.
209 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
212 * These are used to set parameters in the core dumps.
214 #define ELF_CLASS ELFCLASS32
215 #define ELF_ARCH EM_386
217 static inline void init_thread(struct target_pt_regs
*regs
,
218 struct image_info
*infop
)
220 regs
->esp
= infop
->start_stack
;
221 regs
->eip
= infop
->entry
;
223 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
224 starts %edx contains a pointer to a function which might be
225 registered using `atexit'. This provides a mean for the
226 dynamic linker to call DT_FINI functions for shared libraries
227 that have been loaded before the code runs.
229 A value of 0 tells we have no such handler. */
234 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
237 * Note that ELF_NREG should be 19 as there should be place for
238 * TRAPNO and ERR "registers" as well but linux doesn't dump
241 * See linux kernel: arch/x86/include/asm/elf.h
243 static void elf_core_copy_regs(target_elf_gregset_t
*regs
, const CPUX86State
*env
)
245 (*regs
)[0] = env
->regs
[R_EBX
];
246 (*regs
)[1] = env
->regs
[R_ECX
];
247 (*regs
)[2] = env
->regs
[R_EDX
];
248 (*regs
)[3] = env
->regs
[R_ESI
];
249 (*regs
)[4] = env
->regs
[R_EDI
];
250 (*regs
)[5] = env
->regs
[R_EBP
];
251 (*regs
)[6] = env
->regs
[R_EAX
];
252 (*regs
)[7] = env
->segs
[R_DS
].selector
& 0xffff;
253 (*regs
)[8] = env
->segs
[R_ES
].selector
& 0xffff;
254 (*regs
)[9] = env
->segs
[R_FS
].selector
& 0xffff;
255 (*regs
)[10] = env
->segs
[R_GS
].selector
& 0xffff;
256 (*regs
)[11] = env
->regs
[R_EAX
]; /* XXX */
257 (*regs
)[12] = env
->eip
;
258 (*regs
)[13] = env
->segs
[R_CS
].selector
& 0xffff;
259 (*regs
)[14] = env
->eflags
;
260 (*regs
)[15] = env
->regs
[R_ESP
];
261 (*regs
)[16] = env
->segs
[R_SS
].selector
& 0xffff;
265 #define USE_ELF_CORE_DUMP
266 #define ELF_EXEC_PAGESIZE 4096
272 #ifndef TARGET_AARCH64
273 /* 32 bit ARM definitions */
275 #define ELF_START_MMAP 0x80000000
277 #define ELF_ARCH EM_ARM
278 #define ELF_CLASS ELFCLASS32
280 static inline void init_thread(struct target_pt_regs
*regs
,
281 struct image_info
*infop
)
283 abi_long stack
= infop
->start_stack
;
284 memset(regs
, 0, sizeof(*regs
));
286 regs
->uregs
[16] = ARM_CPU_MODE_USR
;
287 if (infop
->entry
& 1) {
288 regs
->uregs
[16] |= CPSR_T
;
290 regs
->uregs
[15] = infop
->entry
& 0xfffffffe;
291 regs
->uregs
[13] = infop
->start_stack
;
292 /* FIXME - what to for failure of get_user()? */
293 get_user_ual(regs
->uregs
[2], stack
+ 8); /* envp */
294 get_user_ual(regs
->uregs
[1], stack
+ 4); /* envp */
295 /* XXX: it seems that r0 is zeroed after ! */
297 /* For uClinux PIC binaries. */
298 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
299 regs
->uregs
[10] = infop
->start_data
;
301 /* Support ARM FDPIC. */
302 if (info_is_fdpic(infop
)) {
303 /* As described in the ABI document, r7 points to the loadmap info
304 * prepared by the kernel. If an interpreter is needed, r8 points
305 * to the interpreter loadmap and r9 points to the interpreter
306 * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and
307 * r9 points to the main program PT_DYNAMIC info.
309 regs
->uregs
[7] = infop
->loadmap_addr
;
310 if (infop
->interpreter_loadmap_addr
) {
311 /* Executable is dynamically loaded. */
312 regs
->uregs
[8] = infop
->interpreter_loadmap_addr
;
313 regs
->uregs
[9] = infop
->interpreter_pt_dynamic_addr
;
316 regs
->uregs
[9] = infop
->pt_dynamic_addr
;
322 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
324 static void elf_core_copy_regs(target_elf_gregset_t
*regs
, const CPUARMState
*env
)
326 (*regs
)[0] = tswapreg(env
->regs
[0]);
327 (*regs
)[1] = tswapreg(env
->regs
[1]);
328 (*regs
)[2] = tswapreg(env
->regs
[2]);
329 (*regs
)[3] = tswapreg(env
->regs
[3]);
330 (*regs
)[4] = tswapreg(env
->regs
[4]);
331 (*regs
)[5] = tswapreg(env
->regs
[5]);
332 (*regs
)[6] = tswapreg(env
->regs
[6]);
333 (*regs
)[7] = tswapreg(env
->regs
[7]);
334 (*regs
)[8] = tswapreg(env
->regs
[8]);
335 (*regs
)[9] = tswapreg(env
->regs
[9]);
336 (*regs
)[10] = tswapreg(env
->regs
[10]);
337 (*regs
)[11] = tswapreg(env
->regs
[11]);
338 (*regs
)[12] = tswapreg(env
->regs
[12]);
339 (*regs
)[13] = tswapreg(env
->regs
[13]);
340 (*regs
)[14] = tswapreg(env
->regs
[14]);
341 (*regs
)[15] = tswapreg(env
->regs
[15]);
343 (*regs
)[16] = tswapreg(cpsr_read((CPUARMState
*)env
));
344 (*regs
)[17] = tswapreg(env
->regs
[0]); /* XXX */
347 #define USE_ELF_CORE_DUMP
348 #define ELF_EXEC_PAGESIZE 4096
352 ARM_HWCAP_ARM_SWP
= 1 << 0,
353 ARM_HWCAP_ARM_HALF
= 1 << 1,
354 ARM_HWCAP_ARM_THUMB
= 1 << 2,
355 ARM_HWCAP_ARM_26BIT
= 1 << 3,
356 ARM_HWCAP_ARM_FAST_MULT
= 1 << 4,
357 ARM_HWCAP_ARM_FPA
= 1 << 5,
358 ARM_HWCAP_ARM_VFP
= 1 << 6,
359 ARM_HWCAP_ARM_EDSP
= 1 << 7,
360 ARM_HWCAP_ARM_JAVA
= 1 << 8,
361 ARM_HWCAP_ARM_IWMMXT
= 1 << 9,
362 ARM_HWCAP_ARM_CRUNCH
= 1 << 10,
363 ARM_HWCAP_ARM_THUMBEE
= 1 << 11,
364 ARM_HWCAP_ARM_NEON
= 1 << 12,
365 ARM_HWCAP_ARM_VFPv3
= 1 << 13,
366 ARM_HWCAP_ARM_VFPv3D16
= 1 << 14,
367 ARM_HWCAP_ARM_TLS
= 1 << 15,
368 ARM_HWCAP_ARM_VFPv4
= 1 << 16,
369 ARM_HWCAP_ARM_IDIVA
= 1 << 17,
370 ARM_HWCAP_ARM_IDIVT
= 1 << 18,
371 ARM_HWCAP_ARM_VFPD32
= 1 << 19,
372 ARM_HWCAP_ARM_LPAE
= 1 << 20,
373 ARM_HWCAP_ARM_EVTSTRM
= 1 << 21,
377 ARM_HWCAP2_ARM_AES
= 1 << 0,
378 ARM_HWCAP2_ARM_PMULL
= 1 << 1,
379 ARM_HWCAP2_ARM_SHA1
= 1 << 2,
380 ARM_HWCAP2_ARM_SHA2
= 1 << 3,
381 ARM_HWCAP2_ARM_CRC32
= 1 << 4,
384 /* The commpage only exists for 32 bit kernels */
386 #define ARM_COMMPAGE (intptr_t)0xffff0f00u
388 static bool init_guest_commpage(void)
390 void *want
= g2h(ARM_COMMPAGE
& -qemu_host_page_size
);
391 void *addr
= mmap(want
, qemu_host_page_size
, PROT_READ
| PROT_WRITE
,
392 MAP_ANONYMOUS
| MAP_PRIVATE
| MAP_FIXED
, -1, 0);
394 if (addr
== MAP_FAILED
) {
395 perror("Allocating guest commpage");
402 /* Set kernel helper versions; rest of page is 0. */
403 __put_user(5, (uint32_t *)g2h(0xffff0ffcu
));
405 if (mprotect(addr
, qemu_host_page_size
, PROT_READ
)) {
406 perror("Protecting guest commpage");
412 #define ELF_HWCAP get_elf_hwcap()
413 #define ELF_HWCAP2 get_elf_hwcap2()
415 static uint32_t get_elf_hwcap(void)
417 ARMCPU
*cpu
= ARM_CPU(thread_cpu
);
420 hwcaps
|= ARM_HWCAP_ARM_SWP
;
421 hwcaps
|= ARM_HWCAP_ARM_HALF
;
422 hwcaps
|= ARM_HWCAP_ARM_THUMB
;
423 hwcaps
|= ARM_HWCAP_ARM_FAST_MULT
;
425 /* probe for the extra features */
426 #define GET_FEATURE(feat, hwcap) \
427 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
429 #define GET_FEATURE_ID(feat, hwcap) \
430 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
432 /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
433 GET_FEATURE(ARM_FEATURE_V5
, ARM_HWCAP_ARM_EDSP
);
434 GET_FEATURE(ARM_FEATURE_IWMMXT
, ARM_HWCAP_ARM_IWMMXT
);
435 GET_FEATURE(ARM_FEATURE_THUMB2EE
, ARM_HWCAP_ARM_THUMBEE
);
436 GET_FEATURE(ARM_FEATURE_NEON
, ARM_HWCAP_ARM_NEON
);
437 GET_FEATURE(ARM_FEATURE_V6K
, ARM_HWCAP_ARM_TLS
);
438 GET_FEATURE(ARM_FEATURE_LPAE
, ARM_HWCAP_ARM_LPAE
);
439 GET_FEATURE_ID(aa32_arm_div
, ARM_HWCAP_ARM_IDIVA
);
440 GET_FEATURE_ID(aa32_thumb_div
, ARM_HWCAP_ARM_IDIVT
);
441 GET_FEATURE_ID(aa32_vfp
, ARM_HWCAP_ARM_VFP
);
443 if (cpu_isar_feature(aa32_fpsp_v3
, cpu
) ||
444 cpu_isar_feature(aa32_fpdp_v3
, cpu
)) {
445 hwcaps
|= ARM_HWCAP_ARM_VFPv3
;
446 if (cpu_isar_feature(aa32_simd_r32
, cpu
)) {
447 hwcaps
|= ARM_HWCAP_ARM_VFPD32
;
449 hwcaps
|= ARM_HWCAP_ARM_VFPv3D16
;
452 GET_FEATURE_ID(aa32_simdfmac
, ARM_HWCAP_ARM_VFPv4
);
457 static uint32_t get_elf_hwcap2(void)
459 ARMCPU
*cpu
= ARM_CPU(thread_cpu
);
462 GET_FEATURE_ID(aa32_aes
, ARM_HWCAP2_ARM_AES
);
463 GET_FEATURE_ID(aa32_pmull
, ARM_HWCAP2_ARM_PMULL
);
464 GET_FEATURE_ID(aa32_sha1
, ARM_HWCAP2_ARM_SHA1
);
465 GET_FEATURE_ID(aa32_sha2
, ARM_HWCAP2_ARM_SHA2
);
466 GET_FEATURE_ID(aa32_crc32
, ARM_HWCAP2_ARM_CRC32
);
471 #undef GET_FEATURE_ID
473 #define ELF_PLATFORM get_elf_platform()
475 static const char *get_elf_platform(void)
477 CPUARMState
*env
= thread_cpu
->env_ptr
;
479 #ifdef TARGET_WORDS_BIGENDIAN
485 if (arm_feature(env
, ARM_FEATURE_V8
)) {
487 } else if (arm_feature(env
, ARM_FEATURE_V7
)) {
488 if (arm_feature(env
, ARM_FEATURE_M
)) {
493 } else if (arm_feature(env
, ARM_FEATURE_V6
)) {
495 } else if (arm_feature(env
, ARM_FEATURE_V5
)) {
505 /* 64 bit ARM definitions */
506 #define ELF_START_MMAP 0x80000000
508 #define ELF_ARCH EM_AARCH64
509 #define ELF_CLASS ELFCLASS64
510 #ifdef TARGET_WORDS_BIGENDIAN
511 # define ELF_PLATFORM "aarch64_be"
513 # define ELF_PLATFORM "aarch64"
516 static inline void init_thread(struct target_pt_regs
*regs
,
517 struct image_info
*infop
)
519 abi_long stack
= infop
->start_stack
;
520 memset(regs
, 0, sizeof(*regs
));
522 regs
->pc
= infop
->entry
& ~0x3ULL
;
527 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
529 static void elf_core_copy_regs(target_elf_gregset_t
*regs
,
530 const CPUARMState
*env
)
534 for (i
= 0; i
< 32; i
++) {
535 (*regs
)[i
] = tswapreg(env
->xregs
[i
]);
537 (*regs
)[32] = tswapreg(env
->pc
);
538 (*regs
)[33] = tswapreg(pstate_read((CPUARMState
*)env
));
541 #define USE_ELF_CORE_DUMP
542 #define ELF_EXEC_PAGESIZE 4096
545 ARM_HWCAP_A64_FP
= 1 << 0,
546 ARM_HWCAP_A64_ASIMD
= 1 << 1,
547 ARM_HWCAP_A64_EVTSTRM
= 1 << 2,
548 ARM_HWCAP_A64_AES
= 1 << 3,
549 ARM_HWCAP_A64_PMULL
= 1 << 4,
550 ARM_HWCAP_A64_SHA1
= 1 << 5,
551 ARM_HWCAP_A64_SHA2
= 1 << 6,
552 ARM_HWCAP_A64_CRC32
= 1 << 7,
553 ARM_HWCAP_A64_ATOMICS
= 1 << 8,
554 ARM_HWCAP_A64_FPHP
= 1 << 9,
555 ARM_HWCAP_A64_ASIMDHP
= 1 << 10,
556 ARM_HWCAP_A64_CPUID
= 1 << 11,
557 ARM_HWCAP_A64_ASIMDRDM
= 1 << 12,
558 ARM_HWCAP_A64_JSCVT
= 1 << 13,
559 ARM_HWCAP_A64_FCMA
= 1 << 14,
560 ARM_HWCAP_A64_LRCPC
= 1 << 15,
561 ARM_HWCAP_A64_DCPOP
= 1 << 16,
562 ARM_HWCAP_A64_SHA3
= 1 << 17,
563 ARM_HWCAP_A64_SM3
= 1 << 18,
564 ARM_HWCAP_A64_SM4
= 1 << 19,
565 ARM_HWCAP_A64_ASIMDDP
= 1 << 20,
566 ARM_HWCAP_A64_SHA512
= 1 << 21,
567 ARM_HWCAP_A64_SVE
= 1 << 22,
568 ARM_HWCAP_A64_ASIMDFHM
= 1 << 23,
569 ARM_HWCAP_A64_DIT
= 1 << 24,
570 ARM_HWCAP_A64_USCAT
= 1 << 25,
571 ARM_HWCAP_A64_ILRCPC
= 1 << 26,
572 ARM_HWCAP_A64_FLAGM
= 1 << 27,
573 ARM_HWCAP_A64_SSBS
= 1 << 28,
574 ARM_HWCAP_A64_SB
= 1 << 29,
575 ARM_HWCAP_A64_PACA
= 1 << 30,
576 ARM_HWCAP_A64_PACG
= 1UL << 31,
578 ARM_HWCAP2_A64_DCPODP
= 1 << 0,
579 ARM_HWCAP2_A64_SVE2
= 1 << 1,
580 ARM_HWCAP2_A64_SVEAES
= 1 << 2,
581 ARM_HWCAP2_A64_SVEPMULL
= 1 << 3,
582 ARM_HWCAP2_A64_SVEBITPERM
= 1 << 4,
583 ARM_HWCAP2_A64_SVESHA3
= 1 << 5,
584 ARM_HWCAP2_A64_SVESM4
= 1 << 6,
585 ARM_HWCAP2_A64_FLAGM2
= 1 << 7,
586 ARM_HWCAP2_A64_FRINT
= 1 << 8,
589 #define ELF_HWCAP get_elf_hwcap()
590 #define ELF_HWCAP2 get_elf_hwcap2()
592 #define GET_FEATURE_ID(feat, hwcap) \
593 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
595 static uint32_t get_elf_hwcap(void)
597 ARMCPU
*cpu
= ARM_CPU(thread_cpu
);
600 hwcaps
|= ARM_HWCAP_A64_FP
;
601 hwcaps
|= ARM_HWCAP_A64_ASIMD
;
602 hwcaps
|= ARM_HWCAP_A64_CPUID
;
604 /* probe for the extra features */
606 GET_FEATURE_ID(aa64_aes
, ARM_HWCAP_A64_AES
);
607 GET_FEATURE_ID(aa64_pmull
, ARM_HWCAP_A64_PMULL
);
608 GET_FEATURE_ID(aa64_sha1
, ARM_HWCAP_A64_SHA1
);
609 GET_FEATURE_ID(aa64_sha256
, ARM_HWCAP_A64_SHA2
);
610 GET_FEATURE_ID(aa64_sha512
, ARM_HWCAP_A64_SHA512
);
611 GET_FEATURE_ID(aa64_crc32
, ARM_HWCAP_A64_CRC32
);
612 GET_FEATURE_ID(aa64_sha3
, ARM_HWCAP_A64_SHA3
);
613 GET_FEATURE_ID(aa64_sm3
, ARM_HWCAP_A64_SM3
);
614 GET_FEATURE_ID(aa64_sm4
, ARM_HWCAP_A64_SM4
);
615 GET_FEATURE_ID(aa64_fp16
, ARM_HWCAP_A64_FPHP
| ARM_HWCAP_A64_ASIMDHP
);
616 GET_FEATURE_ID(aa64_atomics
, ARM_HWCAP_A64_ATOMICS
);
617 GET_FEATURE_ID(aa64_rdm
, ARM_HWCAP_A64_ASIMDRDM
);
618 GET_FEATURE_ID(aa64_dp
, ARM_HWCAP_A64_ASIMDDP
);
619 GET_FEATURE_ID(aa64_fcma
, ARM_HWCAP_A64_FCMA
);
620 GET_FEATURE_ID(aa64_sve
, ARM_HWCAP_A64_SVE
);
621 GET_FEATURE_ID(aa64_pauth
, ARM_HWCAP_A64_PACA
| ARM_HWCAP_A64_PACG
);
622 GET_FEATURE_ID(aa64_fhm
, ARM_HWCAP_A64_ASIMDFHM
);
623 GET_FEATURE_ID(aa64_jscvt
, ARM_HWCAP_A64_JSCVT
);
624 GET_FEATURE_ID(aa64_sb
, ARM_HWCAP_A64_SB
);
625 GET_FEATURE_ID(aa64_condm_4
, ARM_HWCAP_A64_FLAGM
);
626 GET_FEATURE_ID(aa64_dcpop
, ARM_HWCAP_A64_DCPOP
);
627 GET_FEATURE_ID(aa64_rcpc_8_3
, ARM_HWCAP_A64_LRCPC
);
628 GET_FEATURE_ID(aa64_rcpc_8_4
, ARM_HWCAP_A64_ILRCPC
);
633 static uint32_t get_elf_hwcap2(void)
635 ARMCPU
*cpu
= ARM_CPU(thread_cpu
);
638 GET_FEATURE_ID(aa64_dcpodp
, ARM_HWCAP2_A64_DCPODP
);
639 GET_FEATURE_ID(aa64_condm_5
, ARM_HWCAP2_A64_FLAGM2
);
640 GET_FEATURE_ID(aa64_frint
, ARM_HWCAP2_A64_FRINT
);
645 #undef GET_FEATURE_ID
647 #endif /* not TARGET_AARCH64 */
648 #endif /* TARGET_ARM */
651 #ifdef TARGET_SPARC64
653 #define ELF_START_MMAP 0x80000000
654 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
655 | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
657 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
659 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
662 #define ELF_CLASS ELFCLASS64
663 #define ELF_ARCH EM_SPARCV9
665 #define STACK_BIAS 2047
667 static inline void init_thread(struct target_pt_regs
*regs
,
668 struct image_info
*infop
)
673 regs
->pc
= infop
->entry
;
674 regs
->npc
= regs
->pc
+ 4;
677 regs
->u_regs
[14] = infop
->start_stack
- 16 * 4;
679 if (personality(infop
->personality
) == PER_LINUX32
)
680 regs
->u_regs
[14] = infop
->start_stack
- 16 * 4;
682 regs
->u_regs
[14] = infop
->start_stack
- 16 * 8 - STACK_BIAS
;
687 #define ELF_START_MMAP 0x80000000
688 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
689 | HWCAP_SPARC_MULDIV)
691 #define ELF_CLASS ELFCLASS32
692 #define ELF_ARCH EM_SPARC
694 static inline void init_thread(struct target_pt_regs
*regs
,
695 struct image_info
*infop
)
698 regs
->pc
= infop
->entry
;
699 regs
->npc
= regs
->pc
+ 4;
701 regs
->u_regs
[14] = infop
->start_stack
- 16 * 4;
709 #define ELF_MACHINE PPC_ELF_MACHINE
710 #define ELF_START_MMAP 0x80000000
712 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
714 #define elf_check_arch(x) ( (x) == EM_PPC64 )
716 #define ELF_CLASS ELFCLASS64
720 #define ELF_CLASS ELFCLASS32
724 #define ELF_ARCH EM_PPC
726 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
727 See arch/powerpc/include/asm/cputable.h. */
729 QEMU_PPC_FEATURE_32
= 0x80000000,
730 QEMU_PPC_FEATURE_64
= 0x40000000,
731 QEMU_PPC_FEATURE_601_INSTR
= 0x20000000,
732 QEMU_PPC_FEATURE_HAS_ALTIVEC
= 0x10000000,
733 QEMU_PPC_FEATURE_HAS_FPU
= 0x08000000,
734 QEMU_PPC_FEATURE_HAS_MMU
= 0x04000000,
735 QEMU_PPC_FEATURE_HAS_4xxMAC
= 0x02000000,
736 QEMU_PPC_FEATURE_UNIFIED_CACHE
= 0x01000000,
737 QEMU_PPC_FEATURE_HAS_SPE
= 0x00800000,
738 QEMU_PPC_FEATURE_HAS_EFP_SINGLE
= 0x00400000,
739 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE
= 0x00200000,
740 QEMU_PPC_FEATURE_NO_TB
= 0x00100000,
741 QEMU_PPC_FEATURE_POWER4
= 0x00080000,
742 QEMU_PPC_FEATURE_POWER5
= 0x00040000,
743 QEMU_PPC_FEATURE_POWER5_PLUS
= 0x00020000,
744 QEMU_PPC_FEATURE_CELL
= 0x00010000,
745 QEMU_PPC_FEATURE_BOOKE
= 0x00008000,
746 QEMU_PPC_FEATURE_SMT
= 0x00004000,
747 QEMU_PPC_FEATURE_ICACHE_SNOOP
= 0x00002000,
748 QEMU_PPC_FEATURE_ARCH_2_05
= 0x00001000,
749 QEMU_PPC_FEATURE_PA6T
= 0x00000800,
750 QEMU_PPC_FEATURE_HAS_DFP
= 0x00000400,
751 QEMU_PPC_FEATURE_POWER6_EXT
= 0x00000200,
752 QEMU_PPC_FEATURE_ARCH_2_06
= 0x00000100,
753 QEMU_PPC_FEATURE_HAS_VSX
= 0x00000080,
754 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT
= 0x00000040,
756 QEMU_PPC_FEATURE_TRUE_LE
= 0x00000002,
757 QEMU_PPC_FEATURE_PPC_LE
= 0x00000001,
759 /* Feature definitions in AT_HWCAP2. */
760 QEMU_PPC_FEATURE2_ARCH_2_07
= 0x80000000, /* ISA 2.07 */
761 QEMU_PPC_FEATURE2_HAS_HTM
= 0x40000000, /* Hardware Transactional Memory */
762 QEMU_PPC_FEATURE2_HAS_DSCR
= 0x20000000, /* Data Stream Control Register */
763 QEMU_PPC_FEATURE2_HAS_EBB
= 0x10000000, /* Event Base Branching */
764 QEMU_PPC_FEATURE2_HAS_ISEL
= 0x08000000, /* Integer Select */
765 QEMU_PPC_FEATURE2_HAS_TAR
= 0x04000000, /* Target Address Register */
766 QEMU_PPC_FEATURE2_VEC_CRYPTO
= 0x02000000,
767 QEMU_PPC_FEATURE2_HTM_NOSC
= 0x01000000,
768 QEMU_PPC_FEATURE2_ARCH_3_00
= 0x00800000, /* ISA 3.00 */
769 QEMU_PPC_FEATURE2_HAS_IEEE128
= 0x00400000, /* VSX IEEE Bin Float 128-bit */
770 QEMU_PPC_FEATURE2_DARN
= 0x00200000, /* darn random number insn */
771 QEMU_PPC_FEATURE2_SCV
= 0x00100000, /* scv syscall */
772 QEMU_PPC_FEATURE2_HTM_NO_SUSPEND
= 0x00080000, /* TM w/o suspended state */
775 #define ELF_HWCAP get_elf_hwcap()
777 static uint32_t get_elf_hwcap(void)
779 PowerPCCPU
*cpu
= POWERPC_CPU(thread_cpu
);
780 uint32_t features
= 0;
782 /* We don't have to be terribly complete here; the high points are
783 Altivec/FP/SPE support. Anything else is just a bonus. */
784 #define GET_FEATURE(flag, feature) \
785 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
786 #define GET_FEATURE2(flags, feature) \
788 if ((cpu->env.insns_flags2 & flags) == flags) { \
789 features |= feature; \
792 GET_FEATURE(PPC_64B
, QEMU_PPC_FEATURE_64
);
793 GET_FEATURE(PPC_FLOAT
, QEMU_PPC_FEATURE_HAS_FPU
);
794 GET_FEATURE(PPC_ALTIVEC
, QEMU_PPC_FEATURE_HAS_ALTIVEC
);
795 GET_FEATURE(PPC_SPE
, QEMU_PPC_FEATURE_HAS_SPE
);
796 GET_FEATURE(PPC_SPE_SINGLE
, QEMU_PPC_FEATURE_HAS_EFP_SINGLE
);
797 GET_FEATURE(PPC_SPE_DOUBLE
, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE
);
798 GET_FEATURE(PPC_BOOKE
, QEMU_PPC_FEATURE_BOOKE
);
799 GET_FEATURE(PPC_405_MAC
, QEMU_PPC_FEATURE_HAS_4xxMAC
);
800 GET_FEATURE2(PPC2_DFP
, QEMU_PPC_FEATURE_HAS_DFP
);
801 GET_FEATURE2(PPC2_VSX
, QEMU_PPC_FEATURE_HAS_VSX
);
802 GET_FEATURE2((PPC2_PERM_ISA206
| PPC2_DIVE_ISA206
| PPC2_ATOMIC_ISA206
|
803 PPC2_FP_CVT_ISA206
| PPC2_FP_TST_ISA206
),
804 QEMU_PPC_FEATURE_ARCH_2_06
);
811 #define ELF_HWCAP2 get_elf_hwcap2()
813 static uint32_t get_elf_hwcap2(void)
815 PowerPCCPU
*cpu
= POWERPC_CPU(thread_cpu
);
816 uint32_t features
= 0;
818 #define GET_FEATURE(flag, feature) \
819 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
820 #define GET_FEATURE2(flag, feature) \
821 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
823 GET_FEATURE(PPC_ISEL
, QEMU_PPC_FEATURE2_HAS_ISEL
);
824 GET_FEATURE2(PPC2_BCTAR_ISA207
, QEMU_PPC_FEATURE2_HAS_TAR
);
825 GET_FEATURE2((PPC2_BCTAR_ISA207
| PPC2_LSQ_ISA207
| PPC2_ALTIVEC_207
|
826 PPC2_ISA207S
), QEMU_PPC_FEATURE2_ARCH_2_07
|
827 QEMU_PPC_FEATURE2_VEC_CRYPTO
);
828 GET_FEATURE2(PPC2_ISA300
, QEMU_PPC_FEATURE2_ARCH_3_00
|
829 QEMU_PPC_FEATURE2_DARN
);
838 * The requirements here are:
839 * - keep the final alignment of sp (sp & 0xf)
840 * - make sure the 32-bit value at the first 16 byte aligned position of
841 * AUXV is greater than 16 for glibc compatibility.
842 * AT_IGNOREPPC is used for that.
843 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
844 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
846 #define DLINFO_ARCH_ITEMS 5
847 #define ARCH_DLINFO \
849 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); \
851 * Handle glibc compatibility: these magic entries must \
852 * be at the lowest addresses in the final auxv. \
854 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
855 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
856 NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
857 NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
858 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \
861 static inline void init_thread(struct target_pt_regs
*_regs
, struct image_info
*infop
)
863 _regs
->gpr
[1] = infop
->start_stack
;
864 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
865 if (get_ppc64_abi(infop
) < 2) {
867 get_user_u64(val
, infop
->entry
+ 8);
868 _regs
->gpr
[2] = val
+ infop
->load_bias
;
869 get_user_u64(val
, infop
->entry
);
870 infop
->entry
= val
+ infop
->load_bias
;
872 _regs
->gpr
[12] = infop
->entry
; /* r12 set to global entry address */
875 _regs
->nip
= infop
->entry
;
878 /* See linux kernel: arch/powerpc/include/asm/elf.h. */
880 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
882 static void elf_core_copy_regs(target_elf_gregset_t
*regs
, const CPUPPCState
*env
)
885 target_ulong ccr
= 0;
887 for (i
= 0; i
< ARRAY_SIZE(env
->gpr
); i
++) {
888 (*regs
)[i
] = tswapreg(env
->gpr
[i
]);
891 (*regs
)[32] = tswapreg(env
->nip
);
892 (*regs
)[33] = tswapreg(env
->msr
);
893 (*regs
)[35] = tswapreg(env
->ctr
);
894 (*regs
)[36] = tswapreg(env
->lr
);
895 (*regs
)[37] = tswapreg(env
->xer
);
897 for (i
= 0; i
< ARRAY_SIZE(env
->crf
); i
++) {
898 ccr
|= env
->crf
[i
] << (32 - ((i
+ 1) * 4));
900 (*regs
)[38] = tswapreg(ccr
);
903 #define USE_ELF_CORE_DUMP
904 #define ELF_EXEC_PAGESIZE 4096
910 #define ELF_START_MMAP 0x80000000
913 #define ELF_CLASS ELFCLASS64
915 #define ELF_CLASS ELFCLASS32
917 #define ELF_ARCH EM_MIPS
919 #define elf_check_arch(x) ((x) == EM_MIPS || (x) == EM_NANOMIPS)
921 #ifdef TARGET_ABI_MIPSN32
922 #define elf_check_abi(x) ((x) & EF_MIPS_ABI2)
924 #define elf_check_abi(x) (!((x) & EF_MIPS_ABI2))
927 static inline void init_thread(struct target_pt_regs
*regs
,
928 struct image_info
*infop
)
930 regs
->cp0_status
= 2 << CP0St_KSU
;
931 regs
->cp0_epc
= infop
->entry
;
932 regs
->regs
[29] = infop
->start_stack
;
935 /* See linux kernel: arch/mips/include/asm/elf.h. */
937 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
939 /* See linux kernel: arch/mips/include/asm/reg.h. */
946 TARGET_EF_R26
= TARGET_EF_R0
+ 26,
947 TARGET_EF_R27
= TARGET_EF_R0
+ 27,
948 TARGET_EF_LO
= TARGET_EF_R0
+ 32,
949 TARGET_EF_HI
= TARGET_EF_R0
+ 33,
950 TARGET_EF_CP0_EPC
= TARGET_EF_R0
+ 34,
951 TARGET_EF_CP0_BADVADDR
= TARGET_EF_R0
+ 35,
952 TARGET_EF_CP0_STATUS
= TARGET_EF_R0
+ 36,
953 TARGET_EF_CP0_CAUSE
= TARGET_EF_R0
+ 37
956 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
957 static void elf_core_copy_regs(target_elf_gregset_t
*regs
, const CPUMIPSState
*env
)
961 for (i
= 0; i
< TARGET_EF_R0
; i
++) {
964 (*regs
)[TARGET_EF_R0
] = 0;
966 for (i
= 1; i
< ARRAY_SIZE(env
->active_tc
.gpr
); i
++) {
967 (*regs
)[TARGET_EF_R0
+ i
] = tswapreg(env
->active_tc
.gpr
[i
]);
970 (*regs
)[TARGET_EF_R26
] = 0;
971 (*regs
)[TARGET_EF_R27
] = 0;
972 (*regs
)[TARGET_EF_LO
] = tswapreg(env
->active_tc
.LO
[0]);
973 (*regs
)[TARGET_EF_HI
] = tswapreg(env
->active_tc
.HI
[0]);
974 (*regs
)[TARGET_EF_CP0_EPC
] = tswapreg(env
->active_tc
.PC
);
975 (*regs
)[TARGET_EF_CP0_BADVADDR
] = tswapreg(env
->CP0_BadVAddr
);
976 (*regs
)[TARGET_EF_CP0_STATUS
] = tswapreg(env
->CP0_Status
);
977 (*regs
)[TARGET_EF_CP0_CAUSE
] = tswapreg(env
->CP0_Cause
);
980 #define USE_ELF_CORE_DUMP
981 #define ELF_EXEC_PAGESIZE 4096
983 /* See arch/mips/include/uapi/asm/hwcap.h. */
985 HWCAP_MIPS_R6
= (1 << 0),
986 HWCAP_MIPS_MSA
= (1 << 1),
989 #define ELF_HWCAP get_elf_hwcap()
991 static uint32_t get_elf_hwcap(void)
993 MIPSCPU
*cpu
= MIPS_CPU(thread_cpu
);
996 #define GET_FEATURE(flag, hwcap) \
997 do { if (cpu->env.insn_flags & (flag)) { hwcaps |= hwcap; } } while (0)
999 GET_FEATURE(ISA_MIPS32R6
| ISA_MIPS64R6
, HWCAP_MIPS_R6
);
1000 GET_FEATURE(ASE_MSA
, HWCAP_MIPS_MSA
);
1007 #endif /* TARGET_MIPS */
1009 #ifdef TARGET_MICROBLAZE
1011 #define ELF_START_MMAP 0x80000000
1013 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
1015 #define ELF_CLASS ELFCLASS32
1016 #define ELF_ARCH EM_MICROBLAZE
1018 static inline void init_thread(struct target_pt_regs
*regs
,
1019 struct image_info
*infop
)
1021 regs
->pc
= infop
->entry
;
1022 regs
->r1
= infop
->start_stack
;
1026 #define ELF_EXEC_PAGESIZE 4096
1028 #define USE_ELF_CORE_DUMP
1030 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
1032 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
1033 static void elf_core_copy_regs(target_elf_gregset_t
*regs
, const CPUMBState
*env
)
1037 for (i
= 0; i
< 32; i
++) {
1038 (*regs
)[pos
++] = tswapreg(env
->regs
[i
]);
1041 (*regs
)[pos
++] = tswapreg(env
->pc
);
1042 (*regs
)[pos
++] = tswapreg(mb_cpu_read_msr(env
));
1044 (*regs
)[pos
++] = tswapreg(env
->ear
);
1046 (*regs
)[pos
++] = tswapreg(env
->esr
);
1049 #endif /* TARGET_MICROBLAZE */
1053 #define ELF_START_MMAP 0x80000000
1055 #define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2)
1057 #define ELF_CLASS ELFCLASS32
1058 #define ELF_ARCH EM_ALTERA_NIOS2
1060 static void init_thread(struct target_pt_regs
*regs
, struct image_info
*infop
)
1062 regs
->ea
= infop
->entry
;
1063 regs
->sp
= infop
->start_stack
;
1064 regs
->estatus
= 0x3;
1067 #define ELF_EXEC_PAGESIZE 4096
1069 #define USE_ELF_CORE_DUMP
1071 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
1073 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
1074 static void elf_core_copy_regs(target_elf_gregset_t
*regs
,
1075 const CPUNios2State
*env
)
1080 for (i
= 1; i
< 8; i
++) /* r0-r7 */
1081 (*regs
)[i
] = tswapreg(env
->regs
[i
+ 7]);
1083 for (i
= 8; i
< 16; i
++) /* r8-r15 */
1084 (*regs
)[i
] = tswapreg(env
->regs
[i
- 8]);
1086 for (i
= 16; i
< 24; i
++) /* r16-r23 */
1087 (*regs
)[i
] = tswapreg(env
->regs
[i
+ 7]);
1088 (*regs
)[24] = -1; /* R_ET */
1089 (*regs
)[25] = -1; /* R_BT */
1090 (*regs
)[26] = tswapreg(env
->regs
[R_GP
]);
1091 (*regs
)[27] = tswapreg(env
->regs
[R_SP
]);
1092 (*regs
)[28] = tswapreg(env
->regs
[R_FP
]);
1093 (*regs
)[29] = tswapreg(env
->regs
[R_EA
]);
1094 (*regs
)[30] = -1; /* R_SSTATUS */
1095 (*regs
)[31] = tswapreg(env
->regs
[R_RA
]);
1097 (*regs
)[32] = tswapreg(env
->regs
[R_PC
]);
1099 (*regs
)[33] = -1; /* R_STATUS */
1100 (*regs
)[34] = tswapreg(env
->regs
[CR_ESTATUS
]);
1102 for (i
= 35; i
< 49; i
++) /* ... */
1106 #endif /* TARGET_NIOS2 */
1108 #ifdef TARGET_OPENRISC
1110 #define ELF_START_MMAP 0x08000000
1112 #define ELF_ARCH EM_OPENRISC
1113 #define ELF_CLASS ELFCLASS32
1114 #define ELF_DATA ELFDATA2MSB
1116 static inline void init_thread(struct target_pt_regs
*regs
,
1117 struct image_info
*infop
)
1119 regs
->pc
= infop
->entry
;
1120 regs
->gpr
[1] = infop
->start_stack
;
1123 #define USE_ELF_CORE_DUMP
1124 #define ELF_EXEC_PAGESIZE 8192
1126 /* See linux kernel arch/openrisc/include/asm/elf.h. */
1127 #define ELF_NREG 34 /* gprs and pc, sr */
1128 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
1130 static void elf_core_copy_regs(target_elf_gregset_t
*regs
,
1131 const CPUOpenRISCState
*env
)
1135 for (i
= 0; i
< 32; i
++) {
1136 (*regs
)[i
] = tswapreg(cpu_get_gpr(env
, i
));
1138 (*regs
)[32] = tswapreg(env
->pc
);
1139 (*regs
)[33] = tswapreg(cpu_get_sr(env
));
1142 #define ELF_PLATFORM NULL
1144 #endif /* TARGET_OPENRISC */
1148 #define ELF_START_MMAP 0x80000000
1150 #define ELF_CLASS ELFCLASS32
1151 #define ELF_ARCH EM_SH
1153 static inline void init_thread(struct target_pt_regs
*regs
,
1154 struct image_info
*infop
)
1156 /* Check other registers XXXXX */
1157 regs
->pc
= infop
->entry
;
1158 regs
->regs
[15] = infop
->start_stack
;
1161 /* See linux kernel: arch/sh/include/asm/elf.h. */
1163 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
1165 /* See linux kernel: arch/sh/include/asm/ptrace.h. */
1170 TARGET_REG_GBR
= 19,
1171 TARGET_REG_MACH
= 20,
1172 TARGET_REG_MACL
= 21,
1173 TARGET_REG_SYSCALL
= 22
1176 static inline void elf_core_copy_regs(target_elf_gregset_t
*regs
,
1177 const CPUSH4State
*env
)
1181 for (i
= 0; i
< 16; i
++) {
1182 (*regs
)[i
] = tswapreg(env
->gregs
[i
]);
1185 (*regs
)[TARGET_REG_PC
] = tswapreg(env
->pc
);
1186 (*regs
)[TARGET_REG_PR
] = tswapreg(env
->pr
);
1187 (*regs
)[TARGET_REG_SR
] = tswapreg(env
->sr
);
1188 (*regs
)[TARGET_REG_GBR
] = tswapreg(env
->gbr
);
1189 (*regs
)[TARGET_REG_MACH
] = tswapreg(env
->mach
);
1190 (*regs
)[TARGET_REG_MACL
] = tswapreg(env
->macl
);
1191 (*regs
)[TARGET_REG_SYSCALL
] = 0; /* FIXME */
1194 #define USE_ELF_CORE_DUMP
1195 #define ELF_EXEC_PAGESIZE 4096
1198 SH_CPU_HAS_FPU
= 0x0001, /* Hardware FPU support */
1199 SH_CPU_HAS_P2_FLUSH_BUG
= 0x0002, /* Need to flush the cache in P2 area */
1200 SH_CPU_HAS_MMU_PAGE_ASSOC
= 0x0004, /* SH3: TLB way selection bit support */
1201 SH_CPU_HAS_DSP
= 0x0008, /* SH-DSP: DSP support */
1202 SH_CPU_HAS_PERF_COUNTER
= 0x0010, /* Hardware performance counters */
1203 SH_CPU_HAS_PTEA
= 0x0020, /* PTEA register */
1204 SH_CPU_HAS_LLSC
= 0x0040, /* movli.l/movco.l */
1205 SH_CPU_HAS_L2_CACHE
= 0x0080, /* Secondary cache / URAM */
1206 SH_CPU_HAS_OP32
= 0x0100, /* 32-bit instruction support */
1207 SH_CPU_HAS_PTEAEX
= 0x0200, /* PTE ASID Extension support */
1210 #define ELF_HWCAP get_elf_hwcap()
1212 static uint32_t get_elf_hwcap(void)
1214 SuperHCPU
*cpu
= SUPERH_CPU(thread_cpu
);
1217 hwcap
|= SH_CPU_HAS_FPU
;
1219 if (cpu
->env
.features
& SH_FEATURE_SH4A
) {
1220 hwcap
|= SH_CPU_HAS_LLSC
;
1230 #define ELF_START_MMAP 0x80000000
1232 #define ELF_CLASS ELFCLASS32
1233 #define ELF_ARCH EM_CRIS
1235 static inline void init_thread(struct target_pt_regs
*regs
,
1236 struct image_info
*infop
)
1238 regs
->erp
= infop
->entry
;
1241 #define ELF_EXEC_PAGESIZE 8192
1247 #define ELF_START_MMAP 0x80000000
1249 #define ELF_CLASS ELFCLASS32
1250 #define ELF_ARCH EM_68K
1252 /* ??? Does this need to do anything?
1253 #define ELF_PLAT_INIT(_r) */
1255 static inline void init_thread(struct target_pt_regs
*regs
,
1256 struct image_info
*infop
)
1258 regs
->usp
= infop
->start_stack
;
1260 regs
->pc
= infop
->entry
;
1263 /* See linux kernel: arch/m68k/include/asm/elf.h. */
1265 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
1267 static void elf_core_copy_regs(target_elf_gregset_t
*regs
, const CPUM68KState
*env
)
1269 (*regs
)[0] = tswapreg(env
->dregs
[1]);
1270 (*regs
)[1] = tswapreg(env
->dregs
[2]);
1271 (*regs
)[2] = tswapreg(env
->dregs
[3]);
1272 (*regs
)[3] = tswapreg(env
->dregs
[4]);
1273 (*regs
)[4] = tswapreg(env
->dregs
[5]);
1274 (*regs
)[5] = tswapreg(env
->dregs
[6]);
1275 (*regs
)[6] = tswapreg(env
->dregs
[7]);
1276 (*regs
)[7] = tswapreg(env
->aregs
[0]);
1277 (*regs
)[8] = tswapreg(env
->aregs
[1]);
1278 (*regs
)[9] = tswapreg(env
->aregs
[2]);
1279 (*regs
)[10] = tswapreg(env
->aregs
[3]);
1280 (*regs
)[11] = tswapreg(env
->aregs
[4]);
1281 (*regs
)[12] = tswapreg(env
->aregs
[5]);
1282 (*regs
)[13] = tswapreg(env
->aregs
[6]);
1283 (*regs
)[14] = tswapreg(env
->dregs
[0]);
1284 (*regs
)[15] = tswapreg(env
->aregs
[7]);
1285 (*regs
)[16] = tswapreg(env
->dregs
[0]); /* FIXME: orig_d0 */
1286 (*regs
)[17] = tswapreg(env
->sr
);
1287 (*regs
)[18] = tswapreg(env
->pc
);
1288 (*regs
)[19] = 0; /* FIXME: regs->format | regs->vector */
1291 #define USE_ELF_CORE_DUMP
1292 #define ELF_EXEC_PAGESIZE 8192
1298 #define ELF_START_MMAP (0x30000000000ULL)
1300 #define ELF_CLASS ELFCLASS64
1301 #define ELF_ARCH EM_ALPHA
1303 static inline void init_thread(struct target_pt_regs
*regs
,
1304 struct image_info
*infop
)
1306 regs
->pc
= infop
->entry
;
1308 regs
->usp
= infop
->start_stack
;
1311 #define ELF_EXEC_PAGESIZE 8192
1313 #endif /* TARGET_ALPHA */
1317 #define ELF_START_MMAP (0x20000000000ULL)
1319 #define ELF_CLASS ELFCLASS64
1320 #define ELF_DATA ELFDATA2MSB
1321 #define ELF_ARCH EM_S390
1325 #define ELF_HWCAP get_elf_hwcap()
1327 #define GET_FEATURE(_feat, _hwcap) \
1328 do { if (s390_has_feat(_feat)) { hwcap |= _hwcap; } } while (0)
1330 static uint32_t get_elf_hwcap(void)
1333 * Let's assume we always have esan3 and zarch.
1334 * 31-bit processes can use 64-bit registers (high gprs).
1336 uint32_t hwcap
= HWCAP_S390_ESAN3
| HWCAP_S390_ZARCH
| HWCAP_S390_HIGH_GPRS
;
1338 GET_FEATURE(S390_FEAT_STFLE
, HWCAP_S390_STFLE
);
1339 GET_FEATURE(S390_FEAT_MSA
, HWCAP_S390_MSA
);
1340 GET_FEATURE(S390_FEAT_LONG_DISPLACEMENT
, HWCAP_S390_LDISP
);
1341 GET_FEATURE(S390_FEAT_EXTENDED_IMMEDIATE
, HWCAP_S390_EIMM
);
1342 if (s390_has_feat(S390_FEAT_EXTENDED_TRANSLATION_3
) &&
1343 s390_has_feat(S390_FEAT_ETF3_ENH
)) {
1344 hwcap
|= HWCAP_S390_ETF3EH
;
1346 GET_FEATURE(S390_FEAT_VECTOR
, HWCAP_S390_VXRS
);
1351 static inline void init_thread(struct target_pt_regs
*regs
, struct image_info
*infop
)
1353 regs
->psw
.addr
= infop
->entry
;
1354 regs
->psw
.mask
= PSW_MASK_64
| PSW_MASK_32
;
1355 regs
->gprs
[15] = infop
->start_stack
;
1358 #endif /* TARGET_S390X */
1360 #ifdef TARGET_TILEGX
1362 /* 42 bits real used address, a half for user mode */
1363 #define ELF_START_MMAP (0x00000020000000000ULL)
1365 #define elf_check_arch(x) ((x) == EM_TILEGX)
1367 #define ELF_CLASS ELFCLASS64
1368 #define ELF_DATA ELFDATA2LSB
1369 #define ELF_ARCH EM_TILEGX
1371 static inline void init_thread(struct target_pt_regs
*regs
,
1372 struct image_info
*infop
)
1374 regs
->pc
= infop
->entry
;
1375 regs
->sp
= infop
->start_stack
;
1379 #define ELF_EXEC_PAGESIZE 65536 /* TILE-Gx page size is 64KB */
1381 #endif /* TARGET_TILEGX */
1385 #define ELF_START_MMAP 0x80000000
1386 #define ELF_ARCH EM_RISCV
1388 #ifdef TARGET_RISCV32
1389 #define ELF_CLASS ELFCLASS32
1391 #define ELF_CLASS ELFCLASS64
1394 static inline void init_thread(struct target_pt_regs
*regs
,
1395 struct image_info
*infop
)
1397 regs
->sepc
= infop
->entry
;
1398 regs
->sp
= infop
->start_stack
;
1401 #define ELF_EXEC_PAGESIZE 4096
1403 #endif /* TARGET_RISCV */
1407 #define ELF_START_MMAP 0x80000000
1408 #define ELF_CLASS ELFCLASS32
1409 #define ELF_ARCH EM_PARISC
1410 #define ELF_PLATFORM "PARISC"
1411 #define STACK_GROWS_DOWN 0
1412 #define STACK_ALIGNMENT 64
1414 static inline void init_thread(struct target_pt_regs
*regs
,
1415 struct image_info
*infop
)
1417 regs
->iaoq
[0] = infop
->entry
;
1418 regs
->iaoq
[1] = infop
->entry
+ 4;
1420 regs
->gr
[24] = infop
->arg_start
;
1421 regs
->gr
[25] = (infop
->arg_end
- infop
->arg_start
) / sizeof(abi_ulong
);
1422 /* The top-of-stack contains a linkage buffer. */
1423 regs
->gr
[30] = infop
->start_stack
+ 64;
1424 regs
->gr
[31] = infop
->entry
;
1427 #endif /* TARGET_HPPA */
1429 #ifdef TARGET_XTENSA
1431 #define ELF_START_MMAP 0x20000000
1433 #define ELF_CLASS ELFCLASS32
1434 #define ELF_ARCH EM_XTENSA
1436 static inline void init_thread(struct target_pt_regs
*regs
,
1437 struct image_info
*infop
)
1439 regs
->windowbase
= 0;
1440 regs
->windowstart
= 1;
1441 regs
->areg
[1] = infop
->start_stack
;
1442 regs
->pc
= infop
->entry
;
1445 /* See linux kernel: arch/xtensa/include/asm/elf.h. */
1446 #define ELF_NREG 128
1447 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
1456 TARGET_REG_WINDOWSTART
,
1457 TARGET_REG_WINDOWBASE
,
1458 TARGET_REG_THREADPTR
,
1459 TARGET_REG_AR0
= 64,
1462 static void elf_core_copy_regs(target_elf_gregset_t
*regs
,
1463 const CPUXtensaState
*env
)
1467 (*regs
)[TARGET_REG_PC
] = tswapreg(env
->pc
);
1468 (*regs
)[TARGET_REG_PS
] = tswapreg(env
->sregs
[PS
] & ~PS_EXCM
);
1469 (*regs
)[TARGET_REG_LBEG
] = tswapreg(env
->sregs
[LBEG
]);
1470 (*regs
)[TARGET_REG_LEND
] = tswapreg(env
->sregs
[LEND
]);
1471 (*regs
)[TARGET_REG_LCOUNT
] = tswapreg(env
->sregs
[LCOUNT
]);
1472 (*regs
)[TARGET_REG_SAR
] = tswapreg(env
->sregs
[SAR
]);
1473 (*regs
)[TARGET_REG_WINDOWSTART
] = tswapreg(env
->sregs
[WINDOW_START
]);
1474 (*regs
)[TARGET_REG_WINDOWBASE
] = tswapreg(env
->sregs
[WINDOW_BASE
]);
1475 (*regs
)[TARGET_REG_THREADPTR
] = tswapreg(env
->uregs
[THREADPTR
]);
1476 xtensa_sync_phys_from_window((CPUXtensaState
*)env
);
1477 for (i
= 0; i
< env
->config
->nareg
; ++i
) {
1478 (*regs
)[TARGET_REG_AR0
+ i
] = tswapreg(env
->phys_regs
[i
]);
1482 #define USE_ELF_CORE_DUMP
1483 #define ELF_EXEC_PAGESIZE 4096
1485 #endif /* TARGET_XTENSA */
1487 #ifndef ELF_PLATFORM
1488 #define ELF_PLATFORM (NULL)
1492 #define ELF_MACHINE ELF_ARCH
1495 #ifndef elf_check_arch
1496 #define elf_check_arch(x) ((x) == ELF_ARCH)
1499 #ifndef elf_check_abi
1500 #define elf_check_abi(x) (1)
1507 #ifndef STACK_GROWS_DOWN
1508 #define STACK_GROWS_DOWN 1
1511 #ifndef STACK_ALIGNMENT
1512 #define STACK_ALIGNMENT 16
1517 #define ELF_CLASS ELFCLASS32
1519 #define bswaptls(ptr) bswap32s(ptr)
1526 unsigned int a_info
; /* Use macros N_MAGIC, etc for access */
1527 unsigned int a_text
; /* length of text, in bytes */
1528 unsigned int a_data
; /* length of data, in bytes */
1529 unsigned int a_bss
; /* length of uninitialized data area, in bytes */
1530 unsigned int a_syms
; /* length of symbol table data in file, in bytes */
1531 unsigned int a_entry
; /* start address */
1532 unsigned int a_trsize
; /* length of relocation info for text, in bytes */
1533 unsigned int a_drsize
; /* length of relocation info for data, in bytes */
1537 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
1543 /* Necessary parameters */
1544 #define TARGET_ELF_EXEC_PAGESIZE \
1545 (((eppnt->p_align & ~qemu_host_page_mask) != 0) ? \
1546 TARGET_PAGE_SIZE : MAX(qemu_host_page_size, TARGET_PAGE_SIZE))
1547 #define TARGET_ELF_PAGELENGTH(_v) ROUND_UP((_v), TARGET_ELF_EXEC_PAGESIZE)
1548 #define TARGET_ELF_PAGESTART(_v) ((_v) & \
1549 ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1))
1550 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
1552 #define DLINFO_ITEMS 16
1554 static inline void memcpy_fromfs(void * to
, const void * from
, unsigned long n
)
1556 memcpy(to
, from
, n
);
1560 static void bswap_ehdr(struct elfhdr
*ehdr
)
1562 bswap16s(&ehdr
->e_type
); /* Object file type */
1563 bswap16s(&ehdr
->e_machine
); /* Architecture */
1564 bswap32s(&ehdr
->e_version
); /* Object file version */
1565 bswaptls(&ehdr
->e_entry
); /* Entry point virtual address */
1566 bswaptls(&ehdr
->e_phoff
); /* Program header table file offset */
1567 bswaptls(&ehdr
->e_shoff
); /* Section header table file offset */
1568 bswap32s(&ehdr
->e_flags
); /* Processor-specific flags */
1569 bswap16s(&ehdr
->e_ehsize
); /* ELF header size in bytes */
1570 bswap16s(&ehdr
->e_phentsize
); /* Program header table entry size */
1571 bswap16s(&ehdr
->e_phnum
); /* Program header table entry count */
1572 bswap16s(&ehdr
->e_shentsize
); /* Section header table entry size */
1573 bswap16s(&ehdr
->e_shnum
); /* Section header table entry count */
1574 bswap16s(&ehdr
->e_shstrndx
); /* Section header string table index */
1577 static void bswap_phdr(struct elf_phdr
*phdr
, int phnum
)
1580 for (i
= 0; i
< phnum
; ++i
, ++phdr
) {
1581 bswap32s(&phdr
->p_type
); /* Segment type */
1582 bswap32s(&phdr
->p_flags
); /* Segment flags */
1583 bswaptls(&phdr
->p_offset
); /* Segment file offset */
1584 bswaptls(&phdr
->p_vaddr
); /* Segment virtual address */
1585 bswaptls(&phdr
->p_paddr
); /* Segment physical address */
1586 bswaptls(&phdr
->p_filesz
); /* Segment size in file */
1587 bswaptls(&phdr
->p_memsz
); /* Segment size in memory */
1588 bswaptls(&phdr
->p_align
); /* Segment alignment */
1592 static void bswap_shdr(struct elf_shdr
*shdr
, int shnum
)
1595 for (i
= 0; i
< shnum
; ++i
, ++shdr
) {
1596 bswap32s(&shdr
->sh_name
);
1597 bswap32s(&shdr
->sh_type
);
1598 bswaptls(&shdr
->sh_flags
);
1599 bswaptls(&shdr
->sh_addr
);
1600 bswaptls(&shdr
->sh_offset
);
1601 bswaptls(&shdr
->sh_size
);
1602 bswap32s(&shdr
->sh_link
);
1603 bswap32s(&shdr
->sh_info
);
1604 bswaptls(&shdr
->sh_addralign
);
1605 bswaptls(&shdr
->sh_entsize
);
1609 static void bswap_sym(struct elf_sym
*sym
)
1611 bswap32s(&sym
->st_name
);
1612 bswaptls(&sym
->st_value
);
1613 bswaptls(&sym
->st_size
);
1614 bswap16s(&sym
->st_shndx
);
1618 static void bswap_mips_abiflags(Mips_elf_abiflags_v0
*abiflags
)
1620 bswap16s(&abiflags
->version
);
1621 bswap32s(&abiflags
->ases
);
1622 bswap32s(&abiflags
->isa_ext
);
1623 bswap32s(&abiflags
->flags1
);
1624 bswap32s(&abiflags
->flags2
);
1628 static inline void bswap_ehdr(struct elfhdr
*ehdr
) { }
1629 static inline void bswap_phdr(struct elf_phdr
*phdr
, int phnum
) { }
1630 static inline void bswap_shdr(struct elf_shdr
*shdr
, int shnum
) { }
1631 static inline void bswap_sym(struct elf_sym
*sym
) { }
1633 static inline void bswap_mips_abiflags(Mips_elf_abiflags_v0
*abiflags
) { }
1637 #ifdef USE_ELF_CORE_DUMP
1638 static int elf_core_dump(int, const CPUArchState
*);
1639 #endif /* USE_ELF_CORE_DUMP */
1640 static void load_symbols(struct elfhdr
*hdr
, int fd
, abi_ulong load_bias
);
1642 /* Verify the portions of EHDR within E_IDENT for the target.
1643 This can be performed before bswapping the entire header. */
1644 static bool elf_check_ident(struct elfhdr
*ehdr
)
1646 return (ehdr
->e_ident
[EI_MAG0
] == ELFMAG0
1647 && ehdr
->e_ident
[EI_MAG1
] == ELFMAG1
1648 && ehdr
->e_ident
[EI_MAG2
] == ELFMAG2
1649 && ehdr
->e_ident
[EI_MAG3
] == ELFMAG3
1650 && ehdr
->e_ident
[EI_CLASS
] == ELF_CLASS
1651 && ehdr
->e_ident
[EI_DATA
] == ELF_DATA
1652 && ehdr
->e_ident
[EI_VERSION
] == EV_CURRENT
);
1655 /* Verify the portions of EHDR outside of E_IDENT for the target.
1656 This has to wait until after bswapping the header. */
1657 static bool elf_check_ehdr(struct elfhdr
*ehdr
)
1659 return (elf_check_arch(ehdr
->e_machine
)
1660 && elf_check_abi(ehdr
->e_flags
)
1661 && ehdr
->e_ehsize
== sizeof(struct elfhdr
)
1662 && ehdr
->e_phentsize
== sizeof(struct elf_phdr
)
1663 && (ehdr
->e_type
== ET_EXEC
|| ehdr
->e_type
== ET_DYN
));
1667 * 'copy_elf_strings()' copies argument/envelope strings from user
1668 * memory to free pages in kernel mem. These are in a format ready
1669 * to be put directly into the top of new user memory.
1672 static abi_ulong
copy_elf_strings(int argc
, char **argv
, char *scratch
,
1673 abi_ulong p
, abi_ulong stack_limit
)
1680 return 0; /* bullet-proofing */
1683 if (STACK_GROWS_DOWN
) {
1684 int offset
= ((p
- 1) % TARGET_PAGE_SIZE
) + 1;
1685 for (i
= argc
- 1; i
>= 0; --i
) {
1688 fprintf(stderr
, "VFS: argc is wrong");
1691 len
= strlen(tmp
) + 1;
1694 if (len
> (p
- stack_limit
)) {
1698 int bytes_to_copy
= (len
> offset
) ? offset
: len
;
1699 tmp
-= bytes_to_copy
;
1701 offset
-= bytes_to_copy
;
1702 len
-= bytes_to_copy
;
1704 memcpy_fromfs(scratch
+ offset
, tmp
, bytes_to_copy
);
1707 memcpy_to_target(p
, scratch
, top
- p
);
1709 offset
= TARGET_PAGE_SIZE
;
1714 memcpy_to_target(p
, scratch
+ offset
, top
- p
);
1717 int remaining
= TARGET_PAGE_SIZE
- (p
% TARGET_PAGE_SIZE
);
1718 for (i
= 0; i
< argc
; ++i
) {
1721 fprintf(stderr
, "VFS: argc is wrong");
1724 len
= strlen(tmp
) + 1;
1725 if (len
> (stack_limit
- p
)) {
1729 int bytes_to_copy
= (len
> remaining
) ? remaining
: len
;
1731 memcpy_fromfs(scratch
+ (p
- top
), tmp
, bytes_to_copy
);
1733 tmp
+= bytes_to_copy
;
1734 remaining
-= bytes_to_copy
;
1736 len
-= bytes_to_copy
;
1738 if (remaining
== 0) {
1739 memcpy_to_target(top
, scratch
, p
- top
);
1741 remaining
= TARGET_PAGE_SIZE
;
1746 memcpy_to_target(top
, scratch
, p
- top
);
1753 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
1754 * argument/environment space. Newer kernels (>2.6.33) allow more,
1755 * dependent on stack size, but guarantee at least 32 pages for
1756 * backwards compatibility.
1758 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
1760 static abi_ulong
setup_arg_pages(struct linux_binprm
*bprm
,
1761 struct image_info
*info
)
1763 abi_ulong size
, error
, guard
;
1765 size
= guest_stack_size
;
1766 if (size
< STACK_LOWER_LIMIT
) {
1767 size
= STACK_LOWER_LIMIT
;
1769 guard
= TARGET_PAGE_SIZE
;
1770 if (guard
< qemu_real_host_page_size
) {
1771 guard
= qemu_real_host_page_size
;
1774 error
= target_mmap(0, size
+ guard
, PROT_READ
| PROT_WRITE
,
1775 MAP_PRIVATE
| MAP_ANONYMOUS
, -1, 0);
1777 perror("mmap stack");
1781 /* We reserve one extra page at the top of the stack as guard. */
1782 if (STACK_GROWS_DOWN
) {
1783 target_mprotect(error
, guard
, PROT_NONE
);
1784 info
->stack_limit
= error
+ guard
;
1785 return info
->stack_limit
+ size
- sizeof(void *);
1787 target_mprotect(error
+ size
, guard
, PROT_NONE
);
1788 info
->stack_limit
= error
+ size
;
1793 /* Map and zero the bss. We need to explicitly zero any fractional pages
1794 after the data section (i.e. bss). */
1795 static void zero_bss(abi_ulong elf_bss
, abi_ulong last_bss
, int prot
)
1797 uintptr_t host_start
, host_map_start
, host_end
;
1799 last_bss
= TARGET_PAGE_ALIGN(last_bss
);
1801 /* ??? There is confusion between qemu_real_host_page_size and
1802 qemu_host_page_size here and elsewhere in target_mmap, which
1803 may lead to the end of the data section mapping from the file
1804 not being mapped. At least there was an explicit test and
1805 comment for that here, suggesting that "the file size must
1806 be known". The comment probably pre-dates the introduction
1807 of the fstat system call in target_mmap which does in fact
1808 find out the size. What isn't clear is if the workaround
1809 here is still actually needed. For now, continue with it,
1810 but merge it with the "normal" mmap that would allocate the bss. */
1812 host_start
= (uintptr_t) g2h(elf_bss
);
1813 host_end
= (uintptr_t) g2h(last_bss
);
1814 host_map_start
= REAL_HOST_PAGE_ALIGN(host_start
);
1816 if (host_map_start
< host_end
) {
1817 void *p
= mmap((void *)host_map_start
, host_end
- host_map_start
,
1818 prot
, MAP_FIXED
| MAP_PRIVATE
| MAP_ANONYMOUS
, -1, 0);
1819 if (p
== MAP_FAILED
) {
1820 perror("cannot mmap brk");
1825 /* Ensure that the bss page(s) are valid */
1826 if ((page_get_flags(last_bss
-1) & prot
) != prot
) {
1827 page_set_flags(elf_bss
& TARGET_PAGE_MASK
, last_bss
, prot
| PAGE_VALID
);
1830 if (host_start
< host_map_start
) {
1831 memset((void *)host_start
, 0, host_map_start
- host_start
);
1836 static int elf_is_fdpic(struct elfhdr
*exec
)
1838 return exec
->e_ident
[EI_OSABI
] == ELFOSABI_ARM_FDPIC
;
1841 /* Default implementation, always false. */
1842 static int elf_is_fdpic(struct elfhdr
*exec
)
1848 static abi_ulong
loader_build_fdpic_loadmap(struct image_info
*info
, abi_ulong sp
)
1851 struct elf32_fdpic_loadseg
*loadsegs
= info
->loadsegs
;
1853 /* elf32_fdpic_loadseg */
1857 put_user_u32(loadsegs
[n
].addr
, sp
+0);
1858 put_user_u32(loadsegs
[n
].p_vaddr
, sp
+4);
1859 put_user_u32(loadsegs
[n
].p_memsz
, sp
+8);
1862 /* elf32_fdpic_loadmap */
1864 put_user_u16(0, sp
+0); /* version */
1865 put_user_u16(info
->nsegs
, sp
+2); /* nsegs */
1867 info
->personality
= PER_LINUX_FDPIC
;
1868 info
->loadmap_addr
= sp
;
1873 static abi_ulong
create_elf_tables(abi_ulong p
, int argc
, int envc
,
1874 struct elfhdr
*exec
,
1875 struct image_info
*info
,
1876 struct image_info
*interp_info
)
1879 abi_ulong u_argc
, u_argv
, u_envp
, u_auxv
;
1882 abi_ulong u_rand_bytes
;
1883 uint8_t k_rand_bytes
[16];
1884 abi_ulong u_platform
;
1885 const char *k_platform
;
1886 const int n
= sizeof(elf_addr_t
);
1890 /* Needs to be before we load the env/argc/... */
1891 if (elf_is_fdpic(exec
)) {
1892 /* Need 4 byte alignment for these structs */
1894 sp
= loader_build_fdpic_loadmap(info
, sp
);
1895 info
->other_info
= interp_info
;
1897 interp_info
->other_info
= info
;
1898 sp
= loader_build_fdpic_loadmap(interp_info
, sp
);
1899 info
->interpreter_loadmap_addr
= interp_info
->loadmap_addr
;
1900 info
->interpreter_pt_dynamic_addr
= interp_info
->pt_dynamic_addr
;
1902 info
->interpreter_loadmap_addr
= 0;
1903 info
->interpreter_pt_dynamic_addr
= 0;
1908 k_platform
= ELF_PLATFORM
;
1910 size_t len
= strlen(k_platform
) + 1;
1911 if (STACK_GROWS_DOWN
) {
1912 sp
-= (len
+ n
- 1) & ~(n
- 1);
1914 /* FIXME - check return value of memcpy_to_target() for failure */
1915 memcpy_to_target(sp
, k_platform
, len
);
1917 memcpy_to_target(sp
, k_platform
, len
);
1923 /* Provide 16 byte alignment for the PRNG, and basic alignment for
1924 * the argv and envp pointers.
1926 if (STACK_GROWS_DOWN
) {
1927 sp
= QEMU_ALIGN_DOWN(sp
, 16);
1929 sp
= QEMU_ALIGN_UP(sp
, 16);
1933 * Generate 16 random bytes for userspace PRNG seeding.
1935 qemu_guest_getrandom_nofail(k_rand_bytes
, sizeof(k_rand_bytes
));
1936 if (STACK_GROWS_DOWN
) {
1939 /* FIXME - check return value of memcpy_to_target() for failure */
1940 memcpy_to_target(sp
, k_rand_bytes
, 16);
1942 memcpy_to_target(sp
, k_rand_bytes
, 16);
1947 size
= (DLINFO_ITEMS
+ 1) * 2;
1950 #ifdef DLINFO_ARCH_ITEMS
1951 size
+= DLINFO_ARCH_ITEMS
* 2;
1956 info
->auxv_len
= size
* n
;
1958 size
+= envc
+ argc
+ 2;
1959 size
+= 1; /* argc itself */
1962 /* Allocate space and finalize stack alignment for entry now. */
1963 if (STACK_GROWS_DOWN
) {
1964 u_argc
= QEMU_ALIGN_DOWN(sp
- size
, STACK_ALIGNMENT
);
1968 sp
= QEMU_ALIGN_UP(sp
+ size
, STACK_ALIGNMENT
);
1971 u_argv
= u_argc
+ n
;
1972 u_envp
= u_argv
+ (argc
+ 1) * n
;
1973 u_auxv
= u_envp
+ (envc
+ 1) * n
;
1974 info
->saved_auxv
= u_auxv
;
1975 info
->arg_start
= u_argv
;
1976 info
->arg_end
= u_argv
+ argc
* n
;
1978 /* This is correct because Linux defines
1979 * elf_addr_t as Elf32_Off / Elf64_Off
1981 #define NEW_AUX_ENT(id, val) do { \
1982 put_user_ual(id, u_auxv); u_auxv += n; \
1983 put_user_ual(val, u_auxv); u_auxv += n; \
1988 * ARCH_DLINFO must come first so platform specific code can enforce
1989 * special alignment requirements on the AUXV if necessary (eg. PPC).
1993 /* There must be exactly DLINFO_ITEMS entries here, or the assert
1994 * on info->auxv_len will trigger.
1996 NEW_AUX_ENT(AT_PHDR
, (abi_ulong
)(info
->load_addr
+ exec
->e_phoff
));
1997 NEW_AUX_ENT(AT_PHENT
, (abi_ulong
)(sizeof (struct elf_phdr
)));
1998 NEW_AUX_ENT(AT_PHNUM
, (abi_ulong
)(exec
->e_phnum
));
1999 if ((info
->alignment
& ~qemu_host_page_mask
) != 0) {
2000 /* Target doesn't support host page size alignment */
2001 NEW_AUX_ENT(AT_PAGESZ
, (abi_ulong
)(TARGET_PAGE_SIZE
));
2003 NEW_AUX_ENT(AT_PAGESZ
, (abi_ulong
)(MAX(TARGET_PAGE_SIZE
,
2004 qemu_host_page_size
)));
2006 NEW_AUX_ENT(AT_BASE
, (abi_ulong
)(interp_info
? interp_info
->load_addr
: 0));
2007 NEW_AUX_ENT(AT_FLAGS
, (abi_ulong
)0);
2008 NEW_AUX_ENT(AT_ENTRY
, info
->entry
);
2009 NEW_AUX_ENT(AT_UID
, (abi_ulong
) getuid());
2010 NEW_AUX_ENT(AT_EUID
, (abi_ulong
) geteuid());
2011 NEW_AUX_ENT(AT_GID
, (abi_ulong
) getgid());
2012 NEW_AUX_ENT(AT_EGID
, (abi_ulong
) getegid());
2013 NEW_AUX_ENT(AT_HWCAP
, (abi_ulong
) ELF_HWCAP
);
2014 NEW_AUX_ENT(AT_CLKTCK
, (abi_ulong
) sysconf(_SC_CLK_TCK
));
2015 NEW_AUX_ENT(AT_RANDOM
, (abi_ulong
) u_rand_bytes
);
2016 NEW_AUX_ENT(AT_SECURE
, (abi_ulong
) qemu_getauxval(AT_SECURE
));
2017 NEW_AUX_ENT(AT_EXECFN
, info
->file_string
);
2020 NEW_AUX_ENT(AT_HWCAP2
, (abi_ulong
) ELF_HWCAP2
);
2024 NEW_AUX_ENT(AT_PLATFORM
, u_platform
);
2026 NEW_AUX_ENT (AT_NULL
, 0);
2029 /* Check that our initial calculation of the auxv length matches how much
2030 * we actually put into it.
2032 assert(info
->auxv_len
== u_auxv
- info
->saved_auxv
);
2034 put_user_ual(argc
, u_argc
);
2036 p
= info
->arg_strings
;
2037 for (i
= 0; i
< argc
; ++i
) {
2038 put_user_ual(p
, u_argv
);
2040 p
+= target_strlen(p
) + 1;
2042 put_user_ual(0, u_argv
);
2044 p
= info
->env_strings
;
2045 for (i
= 0; i
< envc
; ++i
) {
2046 put_user_ual(p
, u_envp
);
2048 p
+= target_strlen(p
) + 1;
2050 put_user_ual(0, u_envp
);
2055 #ifndef ARM_COMMPAGE
2056 #define ARM_COMMPAGE 0
2057 #define init_guest_commpage() true
2060 static void pgb_fail_in_use(const char *image_name
)
2062 error_report("%s: requires virtual address space that is in use "
2063 "(omit the -B option or choose a different value)",
2068 static void pgb_have_guest_base(const char *image_name
, abi_ulong guest_loaddr
,
2069 abi_ulong guest_hiaddr
, long align
)
2071 const int flags
= MAP_ANONYMOUS
| MAP_PRIVATE
| MAP_NORESERVE
;
2074 if (!QEMU_IS_ALIGNED(guest_base
, align
)) {
2075 fprintf(stderr
, "Requested guest base 0x%lx does not satisfy "
2076 "host minimum alignment (0x%lx)\n",
2081 /* Sanity check the guest binary. */
2083 if (guest_hiaddr
> reserved_va
) {
2084 error_report("%s: requires more than reserved virtual "
2085 "address space (0x%" PRIx64
" > 0x%lx)",
2086 image_name
, (uint64_t)guest_hiaddr
, reserved_va
);
2090 #if HOST_LONG_BITS < TARGET_ABI_BITS
2091 if ((guest_hiaddr
- guest_base
) > ~(uintptr_t)0) {
2092 error_report("%s: requires more virtual address space "
2093 "than the host can provide (0x%" PRIx64
")",
2094 image_name
, (uint64_t)guest_hiaddr
- guest_base
);
2101 * Expand the allocation to the entire reserved_va.
2102 * Exclude the mmap_min_addr hole.
2105 guest_loaddr
= (guest_base
>= mmap_min_addr
? 0
2106 : mmap_min_addr
- guest_base
);
2107 guest_hiaddr
= reserved_va
;
2110 /* Reserve the address space for the binary, or reserved_va. */
2111 test
= g2h(guest_loaddr
);
2112 addr
= mmap(test
, guest_hiaddr
- guest_loaddr
, PROT_NONE
, flags
, -1, 0);
2114 pgb_fail_in_use(image_name
);
2119 * pgd_find_hole_fallback: potential mmap address
2120 * @guest_size: size of available space
2121 * @brk: location of break
2122 * @align: memory alignment
2124 * This is a fallback method for finding a hole in the host address
2125 * space if we don't have the benefit of being able to access
2126 * /proc/self/map. It can potentially take a very long time as we can
2127 * only dumbly iterate up the host address space seeing if the
2128 * allocation would work.
2130 static uintptr_t pgd_find_hole_fallback(uintptr_t guest_size
, uintptr_t brk
,
2131 long align
, uintptr_t offset
)
2135 /* Start (aligned) at the bottom and work our way up */
2136 base
= ROUND_UP(mmap_min_addr
, align
);
2139 uintptr_t align_start
, end
;
2140 align_start
= ROUND_UP(base
, align
);
2141 end
= align_start
+ guest_size
+ offset
;
2143 /* if brk is anywhere in the range give ourselves some room to grow. */
2144 if (align_start
<= brk
&& brk
< end
) {
2145 base
= brk
+ (16 * MiB
);
2147 } else if (align_start
+ guest_size
< align_start
) {
2148 /* we have run out of space */
2151 int flags
= MAP_ANONYMOUS
| MAP_PRIVATE
| MAP_NORESERVE
|
2152 MAP_FIXED_NOREPLACE
;
2153 void * mmap_start
= mmap((void *) align_start
, guest_size
,
2154 PROT_NONE
, flags
, -1, 0);
2155 if (mmap_start
!= MAP_FAILED
) {
2156 munmap((void *) align_start
, guest_size
);
2157 if (MAP_FIXED_NOREPLACE
|| mmap_start
== (void *) align_start
) {
2158 return (uintptr_t) mmap_start
+ offset
;
2161 base
+= qemu_host_page_size
;
2166 /* Return value for guest_base, or -1 if no hole found. */
2167 static uintptr_t pgb_find_hole(uintptr_t guest_loaddr
, uintptr_t guest_size
,
2168 long align
, uintptr_t offset
)
2170 GSList
*maps
, *iter
;
2171 uintptr_t this_start
, this_end
, next_start
, brk
;
2174 assert(QEMU_IS_ALIGNED(guest_loaddr
, align
));
2176 maps
= read_self_maps();
2178 /* Read brk after we've read the maps, which will malloc. */
2179 brk
= (uintptr_t)sbrk(0);
2182 return pgd_find_hole_fallback(guest_size
, brk
, align
, offset
);
2185 /* The first hole is before the first map entry. */
2186 this_start
= mmap_min_addr
;
2188 for (iter
= maps
; iter
;
2189 this_start
= next_start
, iter
= g_slist_next(iter
)) {
2190 uintptr_t align_start
, hole_size
;
2192 this_end
= ((MapInfo
*)iter
->data
)->start
;
2193 next_start
= ((MapInfo
*)iter
->data
)->end
;
2194 align_start
= ROUND_UP(this_start
+ offset
, align
);
2196 /* Skip holes that are too small. */
2197 if (align_start
>= this_end
) {
2200 hole_size
= this_end
- align_start
;
2201 if (hole_size
< guest_size
) {
2205 /* If this hole contains brk, give ourselves some room to grow. */
2206 if (this_start
<= brk
&& brk
< this_end
) {
2207 hole_size
-= guest_size
;
2208 if (sizeof(uintptr_t) == 8 && hole_size
>= 1 * GiB
) {
2209 align_start
+= 1 * GiB
;
2210 } else if (hole_size
>= 16 * MiB
) {
2211 align_start
+= 16 * MiB
;
2213 align_start
= (this_end
- guest_size
) & -align
;
2214 if (align_start
< this_start
) {
2220 /* Record the lowest successful match. */
2222 ret
= align_start
- guest_loaddr
;
2224 /* If this hole contains the identity map, select it. */
2225 if (align_start
<= guest_loaddr
&&
2226 guest_loaddr
+ guest_size
<= this_end
) {
2229 /* If this hole ends above the identity map, stop looking. */
2230 if (this_end
>= guest_loaddr
) {
2234 free_self_maps(maps
);
2239 static void pgb_static(const char *image_name
, abi_ulong orig_loaddr
,
2240 abi_ulong orig_hiaddr
, long align
)
2242 uintptr_t loaddr
= orig_loaddr
;
2243 uintptr_t hiaddr
= orig_hiaddr
;
2244 uintptr_t offset
= 0;
2247 if (hiaddr
!= orig_hiaddr
) {
2248 error_report("%s: requires virtual address space that the "
2249 "host cannot provide (0x%" PRIx64
")",
2250 image_name
, (uint64_t)orig_hiaddr
);
2257 * Extend the allocation to include the commpage.
2258 * For a 64-bit host, this is just 4GiB; for a 32-bit host we
2259 * need to ensure there is space bellow the guest_base so we
2260 * can map the commpage in the place needed when the address
2261 * arithmetic wraps around.
2263 if (sizeof(uintptr_t) == 8 || loaddr
>= 0x80000000u
) {
2264 hiaddr
= (uintptr_t) 4 << 30;
2266 offset
= -(ARM_COMMPAGE
& -align
);
2270 addr
= pgb_find_hole(loaddr
, hiaddr
- loaddr
, align
, offset
);
2273 * If ARM_COMMPAGE, there *might* be a non-consecutive allocation
2274 * that can satisfy both. But as the normal arm32 link base address
2275 * is ~32k, and we extend down to include the commpage, making the
2276 * overhead only ~96k, this is unlikely.
2278 error_report("%s: Unable to allocate %#zx bytes of "
2279 "virtual address space", image_name
,
2280 (size_t)(hiaddr
- loaddr
));
2287 static void pgb_dynamic(const char *image_name
, long align
)
2290 * The executable is dynamic and does not require a fixed address.
2291 * All we need is a commpage that satisfies align.
2292 * If we do not need a commpage, leave guest_base == 0.
2295 uintptr_t addr
, commpage
;
2297 /* 64-bit hosts should have used reserved_va. */
2298 assert(sizeof(uintptr_t) == 4);
2301 * By putting the commpage at the first hole, that puts guest_base
2302 * just above that, and maximises the positive guest addresses.
2304 commpage
= ARM_COMMPAGE
& -align
;
2305 addr
= pgb_find_hole(commpage
, -commpage
, align
, 0);
2311 static void pgb_reserved_va(const char *image_name
, abi_ulong guest_loaddr
,
2312 abi_ulong guest_hiaddr
, long align
)
2314 int flags
= MAP_ANONYMOUS
| MAP_PRIVATE
| MAP_NORESERVE
;
2317 if (guest_hiaddr
> reserved_va
) {
2318 error_report("%s: requires more than reserved virtual "
2319 "address space (0x%" PRIx64
" > 0x%lx)",
2320 image_name
, (uint64_t)guest_hiaddr
, reserved_va
);
2324 /* Widen the "image" to the entire reserved address space. */
2325 pgb_static(image_name
, 0, reserved_va
, align
);
2327 /* osdep.h defines this as 0 if it's missing */
2328 flags
|= MAP_FIXED_NOREPLACE
;
2330 /* Reserve the memory on the host. */
2331 assert(guest_base
!= 0);
2333 addr
= mmap(test
, reserved_va
, PROT_NONE
, flags
, -1, 0);
2334 if (addr
== MAP_FAILED
|| addr
!= test
) {
2335 error_report("Unable to reserve 0x%lx bytes of virtual address "
2336 "space at %p (%s) for use as guest address space (check your"
2337 "virtual memory ulimit setting, min_mmap_addr or reserve less "
2338 "using -R option)", reserved_va
, test
, strerror(errno
));
2343 void probe_guest_base(const char *image_name
, abi_ulong guest_loaddr
,
2344 abi_ulong guest_hiaddr
)
2346 /* In order to use host shmat, we must be able to honor SHMLBA. */
2347 uintptr_t align
= MAX(SHMLBA
, qemu_host_page_size
);
2349 if (have_guest_base
) {
2350 pgb_have_guest_base(image_name
, guest_loaddr
, guest_hiaddr
, align
);
2351 } else if (reserved_va
) {
2352 pgb_reserved_va(image_name
, guest_loaddr
, guest_hiaddr
, align
);
2353 } else if (guest_loaddr
) {
2354 pgb_static(image_name
, guest_loaddr
, guest_hiaddr
, align
);
2356 pgb_dynamic(image_name
, align
);
2359 /* Reserve and initialize the commpage. */
2360 if (!init_guest_commpage()) {
2362 * With have_guest_base, the user has selected the address and
2363 * we are trying to work with that. Otherwise, we have selected
2364 * free space and init_guest_commpage must succeeded.
2366 assert(have_guest_base
);
2367 pgb_fail_in_use(image_name
);
2370 assert(QEMU_IS_ALIGNED(guest_base
, align
));
2371 qemu_log_mask(CPU_LOG_PAGE
, "Locating guest address space "
2372 "@ 0x%" PRIx64
"\n", (uint64_t)guest_base
);
2375 /* Load an ELF image into the address space.
2377 IMAGE_NAME is the filename of the image, to use in error messages.
2378 IMAGE_FD is the open file descriptor for the image.
2380 BPRM_BUF is a copy of the beginning of the file; this of course
2381 contains the elf file header at offset 0. It is assumed that this
2382 buffer is sufficiently aligned to present no problems to the host
2383 in accessing data at aligned offsets within the buffer.
2385 On return: INFO values will be filled in, as necessary or available. */
2387 static void load_elf_image(const char *image_name
, int image_fd
,
2388 struct image_info
*info
, char **pinterp_name
,
2389 char bprm_buf
[BPRM_BUF_SIZE
])
2391 struct elfhdr
*ehdr
= (struct elfhdr
*)bprm_buf
;
2392 struct elf_phdr
*phdr
;
2393 abi_ulong load_addr
, load_bias
, loaddr
, hiaddr
, error
;
2397 /* First of all, some simple consistency checks */
2398 errmsg
= "Invalid ELF image for this architecture";
2399 if (!elf_check_ident(ehdr
)) {
2403 if (!elf_check_ehdr(ehdr
)) {
2407 i
= ehdr
->e_phnum
* sizeof(struct elf_phdr
);
2408 if (ehdr
->e_phoff
+ i
<= BPRM_BUF_SIZE
) {
2409 phdr
= (struct elf_phdr
*)(bprm_buf
+ ehdr
->e_phoff
);
2411 phdr
= (struct elf_phdr
*) alloca(i
);
2412 retval
= pread(image_fd
, phdr
, i
, ehdr
->e_phoff
);
2417 bswap_phdr(phdr
, ehdr
->e_phnum
);
2420 info
->pt_dynamic_addr
= 0;
2424 /* Find the maximum size of the image and allocate an appropriate
2425 amount of memory to handle that. */
2426 loaddr
= -1, hiaddr
= 0;
2427 info
->alignment
= 0;
2428 for (i
= 0; i
< ehdr
->e_phnum
; ++i
) {
2429 if (phdr
[i
].p_type
== PT_LOAD
) {
2430 abi_ulong a
= phdr
[i
].p_vaddr
- phdr
[i
].p_offset
;
2434 a
= phdr
[i
].p_vaddr
+ phdr
[i
].p_memsz
;
2439 info
->alignment
|= phdr
[i
].p_align
;
2443 if (pinterp_name
!= NULL
) {
2445 * This is the main executable.
2447 * Reserve extra space for brk.
2448 * We hold on to this space while placing the interpreter
2449 * and the stack, lest they be placed immediately after
2450 * the data segment and block allocation from the brk.
2452 * 16MB is chosen as "large enough" without being so large
2453 * as to allow the result to not fit with a 32-bit guest on
2456 info
->reserve_brk
= 16 * MiB
;
2457 hiaddr
+= info
->reserve_brk
;
2459 if (ehdr
->e_type
== ET_EXEC
) {
2461 * Make sure that the low address does not conflict with
2462 * MMAP_MIN_ADDR or the QEMU application itself.
2464 probe_guest_base(image_name
, loaddr
, hiaddr
);
2467 * The binary is dynamic, but we still need to
2468 * select guest_base. In this case we pass a size.
2470 probe_guest_base(image_name
, 0, hiaddr
- loaddr
);
2475 * Reserve address space for all of this.
2477 * In the case of ET_EXEC, we supply MAP_FIXED so that we get
2478 * exactly the address range that is required.
2480 * Otherwise this is ET_DYN, and we are searching for a location
2481 * that can hold the memory space required. If the image is
2482 * pre-linked, LOADDR will be non-zero, and the kernel should
2483 * honor that address if it happens to be free.
2485 * In both cases, we will overwrite pages in this range with mappings
2486 * from the executable.
2488 load_addr
= target_mmap(loaddr
, hiaddr
- loaddr
, PROT_NONE
,
2489 MAP_PRIVATE
| MAP_ANON
| MAP_NORESERVE
|
2490 (ehdr
->e_type
== ET_EXEC
? MAP_FIXED
: 0),
2492 if (load_addr
== -1) {
2495 load_bias
= load_addr
- loaddr
;
2497 if (elf_is_fdpic(ehdr
)) {
2498 struct elf32_fdpic_loadseg
*loadsegs
= info
->loadsegs
=
2499 g_malloc(sizeof(*loadsegs
) * info
->nsegs
);
2501 for (i
= 0; i
< ehdr
->e_phnum
; ++i
) {
2502 switch (phdr
[i
].p_type
) {
2504 info
->pt_dynamic_addr
= phdr
[i
].p_vaddr
+ load_bias
;
2507 loadsegs
->addr
= phdr
[i
].p_vaddr
+ load_bias
;
2508 loadsegs
->p_vaddr
= phdr
[i
].p_vaddr
;
2509 loadsegs
->p_memsz
= phdr
[i
].p_memsz
;
2516 info
->load_bias
= load_bias
;
2517 info
->code_offset
= load_bias
;
2518 info
->data_offset
= load_bias
;
2519 info
->load_addr
= load_addr
;
2520 info
->entry
= ehdr
->e_entry
+ load_bias
;
2521 info
->start_code
= -1;
2523 info
->start_data
= -1;
2526 info
->elf_flags
= ehdr
->e_flags
;
2528 for (i
= 0; i
< ehdr
->e_phnum
; i
++) {
2529 struct elf_phdr
*eppnt
= phdr
+ i
;
2530 if (eppnt
->p_type
== PT_LOAD
) {
2531 abi_ulong vaddr
, vaddr_po
, vaddr_ps
, vaddr_ef
, vaddr_em
, vaddr_len
;
2534 if (eppnt
->p_flags
& PF_R
) elf_prot
= PROT_READ
;
2535 if (eppnt
->p_flags
& PF_W
) elf_prot
|= PROT_WRITE
;
2536 if (eppnt
->p_flags
& PF_X
) elf_prot
|= PROT_EXEC
;
2538 vaddr
= load_bias
+ eppnt
->p_vaddr
;
2539 vaddr_po
= TARGET_ELF_PAGEOFFSET(vaddr
);
2540 vaddr_ps
= TARGET_ELF_PAGESTART(vaddr
);
2541 vaddr_len
= TARGET_ELF_PAGELENGTH(eppnt
->p_filesz
+ vaddr_po
);
2544 * Some segments may be completely empty without any backing file
2545 * segment, in that case just let zero_bss allocate an empty buffer
2548 if (eppnt
->p_filesz
!= 0) {
2549 error
= target_mmap(vaddr_ps
, vaddr_len
, elf_prot
,
2550 MAP_PRIVATE
| MAP_FIXED
,
2551 image_fd
, eppnt
->p_offset
- vaddr_po
);
2558 vaddr_ef
= vaddr
+ eppnt
->p_filesz
;
2559 vaddr_em
= vaddr
+ eppnt
->p_memsz
;
2561 /* If the load segment requests extra zeros (e.g. bss), map it. */
2562 if (vaddr_ef
< vaddr_em
) {
2563 zero_bss(vaddr_ef
, vaddr_em
, elf_prot
);
2566 /* Find the full program boundaries. */
2567 if (elf_prot
& PROT_EXEC
) {
2568 if (vaddr
< info
->start_code
) {
2569 info
->start_code
= vaddr
;
2571 if (vaddr_ef
> info
->end_code
) {
2572 info
->end_code
= vaddr_ef
;
2575 if (elf_prot
& PROT_WRITE
) {
2576 if (vaddr
< info
->start_data
) {
2577 info
->start_data
= vaddr
;
2579 if (vaddr_ef
> info
->end_data
) {
2580 info
->end_data
= vaddr_ef
;
2583 if (vaddr_em
> info
->brk
) {
2584 info
->brk
= vaddr_em
;
2586 } else if (eppnt
->p_type
== PT_INTERP
&& pinterp_name
) {
2589 if (*pinterp_name
) {
2590 errmsg
= "Multiple PT_INTERP entries";
2593 interp_name
= malloc(eppnt
->p_filesz
);
2598 if (eppnt
->p_offset
+ eppnt
->p_filesz
<= BPRM_BUF_SIZE
) {
2599 memcpy(interp_name
, bprm_buf
+ eppnt
->p_offset
,
2602 retval
= pread(image_fd
, interp_name
, eppnt
->p_filesz
,
2604 if (retval
!= eppnt
->p_filesz
) {
2608 if (interp_name
[eppnt
->p_filesz
- 1] != 0) {
2609 errmsg
= "Invalid PT_INTERP entry";
2612 *pinterp_name
= interp_name
;
2614 } else if (eppnt
->p_type
== PT_MIPS_ABIFLAGS
) {
2615 Mips_elf_abiflags_v0 abiflags
;
2616 if (eppnt
->p_filesz
< sizeof(Mips_elf_abiflags_v0
)) {
2617 errmsg
= "Invalid PT_MIPS_ABIFLAGS entry";
2620 if (eppnt
->p_offset
+ eppnt
->p_filesz
<= BPRM_BUF_SIZE
) {
2621 memcpy(&abiflags
, bprm_buf
+ eppnt
->p_offset
,
2622 sizeof(Mips_elf_abiflags_v0
));
2624 retval
= pread(image_fd
, &abiflags
, sizeof(Mips_elf_abiflags_v0
),
2626 if (retval
!= sizeof(Mips_elf_abiflags_v0
)) {
2630 bswap_mips_abiflags(&abiflags
);
2631 info
->fp_abi
= abiflags
.fp_abi
;
2636 if (info
->end_data
== 0) {
2637 info
->start_data
= info
->end_code
;
2638 info
->end_data
= info
->end_code
;
2641 if (qemu_log_enabled()) {
2642 load_symbols(ehdr
, image_fd
, load_bias
);
2652 errmsg
= "Incomplete read of file header";
2656 errmsg
= strerror(errno
);
2658 fprintf(stderr
, "%s: %s\n", image_name
, errmsg
);
2662 static void load_elf_interp(const char *filename
, struct image_info
*info
,
2663 char bprm_buf
[BPRM_BUF_SIZE
])
2667 fd
= open(path(filename
), O_RDONLY
);
2672 retval
= read(fd
, bprm_buf
, BPRM_BUF_SIZE
);
2676 if (retval
< BPRM_BUF_SIZE
) {
2677 memset(bprm_buf
+ retval
, 0, BPRM_BUF_SIZE
- retval
);
2680 load_elf_image(filename
, fd
, info
, NULL
, bprm_buf
);
2684 fprintf(stderr
, "%s: %s\n", filename
, strerror(errno
));
2688 static int symfind(const void *s0
, const void *s1
)
2690 target_ulong addr
= *(target_ulong
*)s0
;
2691 struct elf_sym
*sym
= (struct elf_sym
*)s1
;
2693 if (addr
< sym
->st_value
) {
2695 } else if (addr
>= sym
->st_value
+ sym
->st_size
) {
2701 static const char *lookup_symbolxx(struct syminfo
*s
, target_ulong orig_addr
)
2703 #if ELF_CLASS == ELFCLASS32
2704 struct elf_sym
*syms
= s
->disas_symtab
.elf32
;
2706 struct elf_sym
*syms
= s
->disas_symtab
.elf64
;
2710 struct elf_sym
*sym
;
2712 sym
= bsearch(&orig_addr
, syms
, s
->disas_num_syms
, sizeof(*syms
), symfind
);
2714 return s
->disas_strtab
+ sym
->st_name
;
2720 /* FIXME: This should use elf_ops.h */
2721 static int symcmp(const void *s0
, const void *s1
)
2723 struct elf_sym
*sym0
= (struct elf_sym
*)s0
;
2724 struct elf_sym
*sym1
= (struct elf_sym
*)s1
;
2725 return (sym0
->st_value
< sym1
->st_value
)
2727 : ((sym0
->st_value
> sym1
->st_value
) ? 1 : 0);
2730 /* Best attempt to load symbols from this ELF object. */
2731 static void load_symbols(struct elfhdr
*hdr
, int fd
, abi_ulong load_bias
)
2733 int i
, shnum
, nsyms
, sym_idx
= 0, str_idx
= 0;
2735 struct elf_shdr
*shdr
;
2736 char *strings
= NULL
;
2737 struct syminfo
*s
= NULL
;
2738 struct elf_sym
*new_syms
, *syms
= NULL
;
2740 shnum
= hdr
->e_shnum
;
2741 i
= shnum
* sizeof(struct elf_shdr
);
2742 shdr
= (struct elf_shdr
*)alloca(i
);
2743 if (pread(fd
, shdr
, i
, hdr
->e_shoff
) != i
) {
2747 bswap_shdr(shdr
, shnum
);
2748 for (i
= 0; i
< shnum
; ++i
) {
2749 if (shdr
[i
].sh_type
== SHT_SYMTAB
) {
2751 str_idx
= shdr
[i
].sh_link
;
2756 /* There will be no symbol table if the file was stripped. */
2760 /* Now know where the strtab and symtab are. Snarf them. */
2761 s
= g_try_new(struct syminfo
, 1);
2766 segsz
= shdr
[str_idx
].sh_size
;
2767 s
->disas_strtab
= strings
= g_try_malloc(segsz
);
2769 pread(fd
, strings
, segsz
, shdr
[str_idx
].sh_offset
) != segsz
) {
2773 segsz
= shdr
[sym_idx
].sh_size
;
2774 syms
= g_try_malloc(segsz
);
2775 if (!syms
|| pread(fd
, syms
, segsz
, shdr
[sym_idx
].sh_offset
) != segsz
) {
2779 if (segsz
/ sizeof(struct elf_sym
) > INT_MAX
) {
2780 /* Implausibly large symbol table: give up rather than ploughing
2781 * on with the number of symbols calculation overflowing
2785 nsyms
= segsz
/ sizeof(struct elf_sym
);
2786 for (i
= 0; i
< nsyms
; ) {
2787 bswap_sym(syms
+ i
);
2788 /* Throw away entries which we do not need. */
2789 if (syms
[i
].st_shndx
== SHN_UNDEF
2790 || syms
[i
].st_shndx
>= SHN_LORESERVE
2791 || ELF_ST_TYPE(syms
[i
].st_info
) != STT_FUNC
) {
2793 syms
[i
] = syms
[nsyms
];
2796 #if defined(TARGET_ARM) || defined (TARGET_MIPS)
2797 /* The bottom address bit marks a Thumb or MIPS16 symbol. */
2798 syms
[i
].st_value
&= ~(target_ulong
)1;
2800 syms
[i
].st_value
+= load_bias
;
2805 /* No "useful" symbol. */
2810 /* Attempt to free the storage associated with the local symbols
2811 that we threw away. Whether or not this has any effect on the
2812 memory allocation depends on the malloc implementation and how
2813 many symbols we managed to discard. */
2814 new_syms
= g_try_renew(struct elf_sym
, syms
, nsyms
);
2815 if (new_syms
== NULL
) {
2820 qsort(syms
, nsyms
, sizeof(*syms
), symcmp
);
2822 s
->disas_num_syms
= nsyms
;
2823 #if ELF_CLASS == ELFCLASS32
2824 s
->disas_symtab
.elf32
= syms
;
2826 s
->disas_symtab
.elf64
= syms
;
2828 s
->lookup_symbol
= lookup_symbolxx
;
2840 uint32_t get_elf_eflags(int fd
)
2846 /* Read ELF header */
2847 offset
= lseek(fd
, 0, SEEK_SET
);
2848 if (offset
== (off_t
) -1) {
2851 ret
= read(fd
, &ehdr
, sizeof(ehdr
));
2852 if (ret
< sizeof(ehdr
)) {
2855 offset
= lseek(fd
, offset
, SEEK_SET
);
2856 if (offset
== (off_t
) -1) {
2860 /* Check ELF signature */
2861 if (!elf_check_ident(&ehdr
)) {
2867 if (!elf_check_ehdr(&ehdr
)) {
2871 /* return architecture id */
2872 return ehdr
.e_flags
;
2875 int load_elf_binary(struct linux_binprm
*bprm
, struct image_info
*info
)
2877 struct image_info interp_info
;
2878 struct elfhdr elf_ex
;
2879 char *elf_interpreter
= NULL
;
2882 memset(&interp_info
, 0, sizeof(interp_info
));
2884 interp_info
.fp_abi
= MIPS_ABI_FP_UNKNOWN
;
2887 info
->start_mmap
= (abi_ulong
)ELF_START_MMAP
;
2889 load_elf_image(bprm
->filename
, bprm
->fd
, info
,
2890 &elf_interpreter
, bprm
->buf
);
2892 /* ??? We need a copy of the elf header for passing to create_elf_tables.
2893 If we do nothing, we'll have overwritten this when we re-use bprm->buf
2894 when we load the interpreter. */
2895 elf_ex
= *(struct elfhdr
*)bprm
->buf
;
2897 /* Do this so that we can load the interpreter, if need be. We will
2898 change some of these later */
2899 bprm
->p
= setup_arg_pages(bprm
, info
);
2901 scratch
= g_new0(char, TARGET_PAGE_SIZE
);
2902 if (STACK_GROWS_DOWN
) {
2903 bprm
->p
= copy_elf_strings(1, &bprm
->filename
, scratch
,
2904 bprm
->p
, info
->stack_limit
);
2905 info
->file_string
= bprm
->p
;
2906 bprm
->p
= copy_elf_strings(bprm
->envc
, bprm
->envp
, scratch
,
2907 bprm
->p
, info
->stack_limit
);
2908 info
->env_strings
= bprm
->p
;
2909 bprm
->p
= copy_elf_strings(bprm
->argc
, bprm
->argv
, scratch
,
2910 bprm
->p
, info
->stack_limit
);
2911 info
->arg_strings
= bprm
->p
;
2913 info
->arg_strings
= bprm
->p
;
2914 bprm
->p
= copy_elf_strings(bprm
->argc
, bprm
->argv
, scratch
,
2915 bprm
->p
, info
->stack_limit
);
2916 info
->env_strings
= bprm
->p
;
2917 bprm
->p
= copy_elf_strings(bprm
->envc
, bprm
->envp
, scratch
,
2918 bprm
->p
, info
->stack_limit
);
2919 info
->file_string
= bprm
->p
;
2920 bprm
->p
= copy_elf_strings(1, &bprm
->filename
, scratch
,
2921 bprm
->p
, info
->stack_limit
);
2927 fprintf(stderr
, "%s: %s\n", bprm
->filename
, strerror(E2BIG
));
2931 if (elf_interpreter
) {
2932 load_elf_interp(elf_interpreter
, &interp_info
, bprm
->buf
);
2934 /* If the program interpreter is one of these two, then assume
2935 an iBCS2 image. Otherwise assume a native linux image. */
2937 if (strcmp(elf_interpreter
, "/usr/lib/libc.so.1") == 0
2938 || strcmp(elf_interpreter
, "/usr/lib/ld.so.1") == 0) {
2939 info
->personality
= PER_SVR4
;
2941 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
2942 and some applications "depend" upon this behavior. Since
2943 we do not have the power to recompile these, we emulate
2944 the SVr4 behavior. Sigh. */
2945 target_mmap(0, qemu_host_page_size
, PROT_READ
| PROT_EXEC
,
2946 MAP_FIXED
| MAP_PRIVATE
| MAP_ANONYMOUS
, -1, 0);
2949 info
->interp_fp_abi
= interp_info
.fp_abi
;
2953 bprm
->p
= create_elf_tables(bprm
->p
, bprm
->argc
, bprm
->envc
, &elf_ex
,
2954 info
, (elf_interpreter
? &interp_info
: NULL
));
2955 info
->start_stack
= bprm
->p
;
2957 /* If we have an interpreter, set that as the program's entry point.
2958 Copy the load_bias as well, to help PPC64 interpret the entry
2959 point as a function descriptor. Do this after creating elf tables
2960 so that we copy the original program entry point into the AUXV. */
2961 if (elf_interpreter
) {
2962 info
->load_bias
= interp_info
.load_bias
;
2963 info
->entry
= interp_info
.entry
;
2964 free(elf_interpreter
);
2967 #ifdef USE_ELF_CORE_DUMP
2968 bprm
->core_dump
= &elf_core_dump
;
2972 * If we reserved extra space for brk, release it now.
2973 * The implementation of do_brk in syscalls.c expects to be able
2974 * to mmap pages in this space.
2976 if (info
->reserve_brk
) {
2977 abi_ulong start_brk
= HOST_PAGE_ALIGN(info
->brk
);
2978 abi_ulong end_brk
= HOST_PAGE_ALIGN(info
->brk
+ info
->reserve_brk
);
2979 target_munmap(start_brk
, end_brk
- start_brk
);
2985 #ifdef USE_ELF_CORE_DUMP
2987 * Definitions to generate Intel SVR4-like core files.
2988 * These mostly have the same names as the SVR4 types with "target_elf_"
2989 * tacked on the front to prevent clashes with linux definitions,
2990 * and the typedef forms have been avoided. This is mostly like
2991 * the SVR4 structure, but more Linuxy, with things that Linux does
2992 * not support and which gdb doesn't really use excluded.
2994 * Fields we don't dump (their contents is zero) in linux-user qemu
2995 * are marked with XXX.
2997 * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
2999 * Porting ELF coredump for target is (quite) simple process. First you
3000 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
3001 * the target resides):
3003 * #define USE_ELF_CORE_DUMP
3005 * Next you define type of register set used for dumping. ELF specification
3006 * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
3008 * typedef <target_regtype> target_elf_greg_t;
3009 * #define ELF_NREG <number of registers>
3010 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
3012 * Last step is to implement target specific function that copies registers
3013 * from given cpu into just specified register set. Prototype is:
3015 * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
3016 * const CPUArchState *env);
3019 * regs - copy register values into here (allocated and zeroed by caller)
3020 * env - copy registers from here
3022 * Example for ARM target is provided in this file.
3025 /* An ELF note in memory */
3029 size_t namesz_rounded
;
3032 size_t datasz_rounded
;
3037 struct target_elf_siginfo
{
3038 abi_int si_signo
; /* signal number */
3039 abi_int si_code
; /* extra code */
3040 abi_int si_errno
; /* errno */
3043 struct target_elf_prstatus
{
3044 struct target_elf_siginfo pr_info
; /* Info associated with signal */
3045 abi_short pr_cursig
; /* Current signal */
3046 abi_ulong pr_sigpend
; /* XXX */
3047 abi_ulong pr_sighold
; /* XXX */
3048 target_pid_t pr_pid
;
3049 target_pid_t pr_ppid
;
3050 target_pid_t pr_pgrp
;
3051 target_pid_t pr_sid
;
3052 struct target_timeval pr_utime
; /* XXX User time */
3053 struct target_timeval pr_stime
; /* XXX System time */
3054 struct target_timeval pr_cutime
; /* XXX Cumulative user time */
3055 struct target_timeval pr_cstime
; /* XXX Cumulative system time */
3056 target_elf_gregset_t pr_reg
; /* GP registers */
3057 abi_int pr_fpvalid
; /* XXX */
3060 #define ELF_PRARGSZ (80) /* Number of chars for args */
3062 struct target_elf_prpsinfo
{
3063 char pr_state
; /* numeric process state */
3064 char pr_sname
; /* char for pr_state */
3065 char pr_zomb
; /* zombie */
3066 char pr_nice
; /* nice val */
3067 abi_ulong pr_flag
; /* flags */
3068 target_uid_t pr_uid
;
3069 target_gid_t pr_gid
;
3070 target_pid_t pr_pid
, pr_ppid
, pr_pgrp
, pr_sid
;
3072 char pr_fname
[16] QEMU_NONSTRING
; /* filename of executable */
3073 char pr_psargs
[ELF_PRARGSZ
]; /* initial part of arg list */
3076 /* Here is the structure in which status of each thread is captured. */
3077 struct elf_thread_status
{
3078 QTAILQ_ENTRY(elf_thread_status
) ets_link
;
3079 struct target_elf_prstatus prstatus
; /* NT_PRSTATUS */
3081 elf_fpregset_t fpu
; /* NT_PRFPREG */
3082 struct task_struct
*thread
;
3083 elf_fpxregset_t xfpu
; /* ELF_CORE_XFPREG_TYPE */
3085 struct memelfnote notes
[1];
3089 struct elf_note_info
{
3090 struct memelfnote
*notes
;
3091 struct target_elf_prstatus
*prstatus
; /* NT_PRSTATUS */
3092 struct target_elf_prpsinfo
*psinfo
; /* NT_PRPSINFO */
3094 QTAILQ_HEAD(, elf_thread_status
) thread_list
;
3097 * Current version of ELF coredump doesn't support
3098 * dumping fp regs etc.
3100 elf_fpregset_t
*fpu
;
3101 elf_fpxregset_t
*xfpu
;
3102 int thread_status_size
;
3108 struct vm_area_struct
{
3109 target_ulong vma_start
; /* start vaddr of memory region */
3110 target_ulong vma_end
; /* end vaddr of memory region */
3111 abi_ulong vma_flags
; /* protection etc. flags for the region */
3112 QTAILQ_ENTRY(vm_area_struct
) vma_link
;
3116 QTAILQ_HEAD(, vm_area_struct
) mm_mmap
;
3117 int mm_count
; /* number of mappings */
3120 static struct mm_struct
*vma_init(void);
3121 static void vma_delete(struct mm_struct
*);
3122 static int vma_add_mapping(struct mm_struct
*, target_ulong
,
3123 target_ulong
, abi_ulong
);
3124 static int vma_get_mapping_count(const struct mm_struct
*);
3125 static struct vm_area_struct
*vma_first(const struct mm_struct
*);
3126 static struct vm_area_struct
*vma_next(struct vm_area_struct
*);
3127 static abi_ulong
vma_dump_size(const struct vm_area_struct
*);
3128 static int vma_walker(void *priv
, target_ulong start
, target_ulong end
,
3129 unsigned long flags
);
3131 static void fill_elf_header(struct elfhdr
*, int, uint16_t, uint32_t);
3132 static void fill_note(struct memelfnote
*, const char *, int,
3133 unsigned int, void *);
3134 static void fill_prstatus(struct target_elf_prstatus
*, const TaskState
*, int);
3135 static int fill_psinfo(struct target_elf_prpsinfo
*, const TaskState
*);
3136 static void fill_auxv_note(struct memelfnote
*, const TaskState
*);
3137 static void fill_elf_note_phdr(struct elf_phdr
*, int, off_t
);
3138 static size_t note_size(const struct memelfnote
*);
3139 static void free_note_info(struct elf_note_info
*);
3140 static int fill_note_info(struct elf_note_info
*, long, const CPUArchState
*);
3141 static void fill_thread_info(struct elf_note_info
*, const CPUArchState
*);
3142 static int core_dump_filename(const TaskState
*, char *, size_t);
3144 static int dump_write(int, const void *, size_t);
3145 static int write_note(struct memelfnote
*, int);
3146 static int write_note_info(struct elf_note_info
*, int);
3149 static void bswap_prstatus(struct target_elf_prstatus
*prstatus
)
3151 prstatus
->pr_info
.si_signo
= tswap32(prstatus
->pr_info
.si_signo
);
3152 prstatus
->pr_info
.si_code
= tswap32(prstatus
->pr_info
.si_code
);
3153 prstatus
->pr_info
.si_errno
= tswap32(prstatus
->pr_info
.si_errno
);
3154 prstatus
->pr_cursig
= tswap16(prstatus
->pr_cursig
);
3155 prstatus
->pr_sigpend
= tswapal(prstatus
->pr_sigpend
);
3156 prstatus
->pr_sighold
= tswapal(prstatus
->pr_sighold
);
3157 prstatus
->pr_pid
= tswap32(prstatus
->pr_pid
);
3158 prstatus
->pr_ppid
= tswap32(prstatus
->pr_ppid
);
3159 prstatus
->pr_pgrp
= tswap32(prstatus
->pr_pgrp
);
3160 prstatus
->pr_sid
= tswap32(prstatus
->pr_sid
);
3161 /* cpu times are not filled, so we skip them */
3162 /* regs should be in correct format already */
3163 prstatus
->pr_fpvalid
= tswap32(prstatus
->pr_fpvalid
);
3166 static void bswap_psinfo(struct target_elf_prpsinfo
*psinfo
)
3168 psinfo
->pr_flag
= tswapal(psinfo
->pr_flag
);
3169 psinfo
->pr_uid
= tswap16(psinfo
->pr_uid
);
3170 psinfo
->pr_gid
= tswap16(psinfo
->pr_gid
);
3171 psinfo
->pr_pid
= tswap32(psinfo
->pr_pid
);
3172 psinfo
->pr_ppid
= tswap32(psinfo
->pr_ppid
);
3173 psinfo
->pr_pgrp
= tswap32(psinfo
->pr_pgrp
);
3174 psinfo
->pr_sid
= tswap32(psinfo
->pr_sid
);
3177 static void bswap_note(struct elf_note
*en
)
3179 bswap32s(&en
->n_namesz
);
3180 bswap32s(&en
->n_descsz
);
3181 bswap32s(&en
->n_type
);
3184 static inline void bswap_prstatus(struct target_elf_prstatus
*p
) { }
3185 static inline void bswap_psinfo(struct target_elf_prpsinfo
*p
) {}
3186 static inline void bswap_note(struct elf_note
*en
) { }
3187 #endif /* BSWAP_NEEDED */
3190 * Minimal support for linux memory regions. These are needed
3191 * when we are finding out what memory exactly belongs to
3192 * emulated process. No locks needed here, as long as
3193 * thread that received the signal is stopped.
3196 static struct mm_struct
*vma_init(void)
3198 struct mm_struct
*mm
;
3200 if ((mm
= g_malloc(sizeof (*mm
))) == NULL
)
3204 QTAILQ_INIT(&mm
->mm_mmap
);
3209 static void vma_delete(struct mm_struct
*mm
)
3211 struct vm_area_struct
*vma
;
3213 while ((vma
= vma_first(mm
)) != NULL
) {
3214 QTAILQ_REMOVE(&mm
->mm_mmap
, vma
, vma_link
);
3220 static int vma_add_mapping(struct mm_struct
*mm
, target_ulong start
,
3221 target_ulong end
, abi_ulong flags
)
3223 struct vm_area_struct
*vma
;
3225 if ((vma
= g_malloc0(sizeof (*vma
))) == NULL
)
3228 vma
->vma_start
= start
;
3230 vma
->vma_flags
= flags
;
3232 QTAILQ_INSERT_TAIL(&mm
->mm_mmap
, vma
, vma_link
);
3238 static struct vm_area_struct
*vma_first(const struct mm_struct
*mm
)
3240 return (QTAILQ_FIRST(&mm
->mm_mmap
));
3243 static struct vm_area_struct
*vma_next(struct vm_area_struct
*vma
)
3245 return (QTAILQ_NEXT(vma
, vma_link
));
3248 static int vma_get_mapping_count(const struct mm_struct
*mm
)
3250 return (mm
->mm_count
);
3254 * Calculate file (dump) size of given memory region.
3256 static abi_ulong
vma_dump_size(const struct vm_area_struct
*vma
)
3258 /* if we cannot even read the first page, skip it */
3259 if (!access_ok(VERIFY_READ
, vma
->vma_start
, TARGET_PAGE_SIZE
))
3263 * Usually we don't dump executable pages as they contain
3264 * non-writable code that debugger can read directly from
3265 * target library etc. However, thread stacks are marked
3266 * also executable so we read in first page of given region
3267 * and check whether it contains elf header. If there is
3268 * no elf header, we dump it.
3270 if (vma
->vma_flags
& PROT_EXEC
) {
3271 char page
[TARGET_PAGE_SIZE
];
3273 copy_from_user(page
, vma
->vma_start
, sizeof (page
));
3274 if ((page
[EI_MAG0
] == ELFMAG0
) &&
3275 (page
[EI_MAG1
] == ELFMAG1
) &&
3276 (page
[EI_MAG2
] == ELFMAG2
) &&
3277 (page
[EI_MAG3
] == ELFMAG3
)) {
3279 * Mappings are possibly from ELF binary. Don't dump
3286 return (vma
->vma_end
- vma
->vma_start
);
3289 static int vma_walker(void *priv
, target_ulong start
, target_ulong end
,
3290 unsigned long flags
)
3292 struct mm_struct
*mm
= (struct mm_struct
*)priv
;
3294 vma_add_mapping(mm
, start
, end
, flags
);
3298 static void fill_note(struct memelfnote
*note
, const char *name
, int type
,
3299 unsigned int sz
, void *data
)
3301 unsigned int namesz
;
3303 namesz
= strlen(name
) + 1;
3305 note
->namesz
= namesz
;
3306 note
->namesz_rounded
= roundup(namesz
, sizeof (int32_t));
3309 note
->datasz_rounded
= roundup(sz
, sizeof (int32_t));
3314 * We calculate rounded up note size here as specified by
3317 note
->notesz
= sizeof (struct elf_note
) +
3318 note
->namesz_rounded
+ note
->datasz_rounded
;
3321 static void fill_elf_header(struct elfhdr
*elf
, int segs
, uint16_t machine
,
3324 (void) memset(elf
, 0, sizeof(*elf
));
3326 (void) memcpy(elf
->e_ident
, ELFMAG
, SELFMAG
);
3327 elf
->e_ident
[EI_CLASS
] = ELF_CLASS
;
3328 elf
->e_ident
[EI_DATA
] = ELF_DATA
;
3329 elf
->e_ident
[EI_VERSION
] = EV_CURRENT
;
3330 elf
->e_ident
[EI_OSABI
] = ELF_OSABI
;
3332 elf
->e_type
= ET_CORE
;
3333 elf
->e_machine
= machine
;
3334 elf
->e_version
= EV_CURRENT
;
3335 elf
->e_phoff
= sizeof(struct elfhdr
);
3336 elf
->e_flags
= flags
;
3337 elf
->e_ehsize
= sizeof(struct elfhdr
);
3338 elf
->e_phentsize
= sizeof(struct elf_phdr
);
3339 elf
->e_phnum
= segs
;
3344 static void fill_elf_note_phdr(struct elf_phdr
*phdr
, int sz
, off_t offset
)
3346 phdr
->p_type
= PT_NOTE
;
3347 phdr
->p_offset
= offset
;
3350 phdr
->p_filesz
= sz
;
3355 bswap_phdr(phdr
, 1);
3358 static size_t note_size(const struct memelfnote
*note
)
3360 return (note
->notesz
);
3363 static void fill_prstatus(struct target_elf_prstatus
*prstatus
,
3364 const TaskState
*ts
, int signr
)
3366 (void) memset(prstatus
, 0, sizeof (*prstatus
));
3367 prstatus
->pr_info
.si_signo
= prstatus
->pr_cursig
= signr
;
3368 prstatus
->pr_pid
= ts
->ts_tid
;
3369 prstatus
->pr_ppid
= getppid();
3370 prstatus
->pr_pgrp
= getpgrp();
3371 prstatus
->pr_sid
= getsid(0);
3373 bswap_prstatus(prstatus
);
3376 static int fill_psinfo(struct target_elf_prpsinfo
*psinfo
, const TaskState
*ts
)
3378 char *base_filename
;
3379 unsigned int i
, len
;
3381 (void) memset(psinfo
, 0, sizeof (*psinfo
));
3383 len
= ts
->info
->arg_end
- ts
->info
->arg_start
;
3384 if (len
>= ELF_PRARGSZ
)
3385 len
= ELF_PRARGSZ
- 1;
3386 if (copy_from_user(&psinfo
->pr_psargs
, ts
->info
->arg_start
, len
))
3388 for (i
= 0; i
< len
; i
++)
3389 if (psinfo
->pr_psargs
[i
] == 0)
3390 psinfo
->pr_psargs
[i
] = ' ';
3391 psinfo
->pr_psargs
[len
] = 0;
3393 psinfo
->pr_pid
= getpid();
3394 psinfo
->pr_ppid
= getppid();
3395 psinfo
->pr_pgrp
= getpgrp();
3396 psinfo
->pr_sid
= getsid(0);
3397 psinfo
->pr_uid
= getuid();
3398 psinfo
->pr_gid
= getgid();
3400 base_filename
= g_path_get_basename(ts
->bprm
->filename
);
3402 * Using strncpy here is fine: at max-length,
3403 * this field is not NUL-terminated.
3405 (void) strncpy(psinfo
->pr_fname
, base_filename
,
3406 sizeof(psinfo
->pr_fname
));
3408 g_free(base_filename
);
3409 bswap_psinfo(psinfo
);
3413 static void fill_auxv_note(struct memelfnote
*note
, const TaskState
*ts
)
3415 elf_addr_t auxv
= (elf_addr_t
)ts
->info
->saved_auxv
;
3416 elf_addr_t orig_auxv
= auxv
;
3418 int len
= ts
->info
->auxv_len
;
3421 * Auxiliary vector is stored in target process stack. It contains
3422 * {type, value} pairs that we need to dump into note. This is not
3423 * strictly necessary but we do it here for sake of completeness.
3426 /* read in whole auxv vector and copy it to memelfnote */
3427 ptr
= lock_user(VERIFY_READ
, orig_auxv
, len
, 0);
3429 fill_note(note
, "CORE", NT_AUXV
, len
, ptr
);
3430 unlock_user(ptr
, auxv
, len
);
3435 * Constructs name of coredump file. We have following convention
3437 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
3439 * Returns 0 in case of success, -1 otherwise (errno is set).
3441 static int core_dump_filename(const TaskState
*ts
, char *buf
,
3445 char *base_filename
= NULL
;
3449 assert(bufsize
>= PATH_MAX
);
3451 if (gettimeofday(&tv
, NULL
) < 0) {
3452 (void) fprintf(stderr
, "unable to get current timestamp: %s",
3457 base_filename
= g_path_get_basename(ts
->bprm
->filename
);
3458 (void) strftime(timestamp
, sizeof (timestamp
), "%Y%m%d-%H%M%S",
3459 localtime_r(&tv
.tv_sec
, &tm
));
3460 (void) snprintf(buf
, bufsize
, "qemu_%s_%s_%d.core",
3461 base_filename
, timestamp
, (int)getpid());
3462 g_free(base_filename
);
3467 static int dump_write(int fd
, const void *ptr
, size_t size
)
3469 const char *bufp
= (const char *)ptr
;
3470 ssize_t bytes_written
, bytes_left
;
3471 struct rlimit dumpsize
;
3475 getrlimit(RLIMIT_CORE
, &dumpsize
);
3476 if ((pos
= lseek(fd
, 0, SEEK_CUR
))==-1) {
3477 if (errno
== ESPIPE
) { /* not a seekable stream */
3483 if (dumpsize
.rlim_cur
<= pos
) {
3485 } else if (dumpsize
.rlim_cur
== RLIM_INFINITY
) {
3488 size_t limit_left
=dumpsize
.rlim_cur
- pos
;
3489 bytes_left
= limit_left
>= size
? size
: limit_left
;
3494 * In normal conditions, single write(2) should do but
3495 * in case of socket etc. this mechanism is more portable.
3498 bytes_written
= write(fd
, bufp
, bytes_left
);
3499 if (bytes_written
< 0) {
3503 } else if (bytes_written
== 0) { /* eof */
3506 bufp
+= bytes_written
;
3507 bytes_left
-= bytes_written
;
3508 } while (bytes_left
> 0);
3513 static int write_note(struct memelfnote
*men
, int fd
)
3517 en
.n_namesz
= men
->namesz
;
3518 en
.n_type
= men
->type
;
3519 en
.n_descsz
= men
->datasz
;
3523 if (dump_write(fd
, &en
, sizeof(en
)) != 0)
3525 if (dump_write(fd
, men
->name
, men
->namesz_rounded
) != 0)
3527 if (dump_write(fd
, men
->data
, men
->datasz_rounded
) != 0)
3533 static void fill_thread_info(struct elf_note_info
*info
, const CPUArchState
*env
)
3535 CPUState
*cpu
= env_cpu((CPUArchState
*)env
);
3536 TaskState
*ts
= (TaskState
*)cpu
->opaque
;
3537 struct elf_thread_status
*ets
;
3539 ets
= g_malloc0(sizeof (*ets
));
3540 ets
->num_notes
= 1; /* only prstatus is dumped */
3541 fill_prstatus(&ets
->prstatus
, ts
, 0);
3542 elf_core_copy_regs(&ets
->prstatus
.pr_reg
, env
);
3543 fill_note(&ets
->notes
[0], "CORE", NT_PRSTATUS
, sizeof (ets
->prstatus
),
3546 QTAILQ_INSERT_TAIL(&info
->thread_list
, ets
, ets_link
);
3548 info
->notes_size
+= note_size(&ets
->notes
[0]);
3551 static void init_note_info(struct elf_note_info
*info
)
3553 /* Initialize the elf_note_info structure so that it is at
3554 * least safe to call free_note_info() on it. Must be
3555 * called before calling fill_note_info().
3557 memset(info
, 0, sizeof (*info
));
3558 QTAILQ_INIT(&info
->thread_list
);
3561 static int fill_note_info(struct elf_note_info
*info
,
3562 long signr
, const CPUArchState
*env
)
3565 CPUState
*cpu
= env_cpu((CPUArchState
*)env
);
3566 TaskState
*ts
= (TaskState
*)cpu
->opaque
;
3569 info
->notes
= g_new0(struct memelfnote
, NUMNOTES
);
3570 if (info
->notes
== NULL
)
3572 info
->prstatus
= g_malloc0(sizeof (*info
->prstatus
));
3573 if (info
->prstatus
== NULL
)
3575 info
->psinfo
= g_malloc0(sizeof (*info
->psinfo
));
3576 if (info
->prstatus
== NULL
)
3580 * First fill in status (and registers) of current thread
3581 * including process info & aux vector.
3583 fill_prstatus(info
->prstatus
, ts
, signr
);
3584 elf_core_copy_regs(&info
->prstatus
->pr_reg
, env
);
3585 fill_note(&info
->notes
[0], "CORE", NT_PRSTATUS
,
3586 sizeof (*info
->prstatus
), info
->prstatus
);
3587 fill_psinfo(info
->psinfo
, ts
);
3588 fill_note(&info
->notes
[1], "CORE", NT_PRPSINFO
,
3589 sizeof (*info
->psinfo
), info
->psinfo
);
3590 fill_auxv_note(&info
->notes
[2], ts
);
3593 info
->notes_size
= 0;
3594 for (i
= 0; i
< info
->numnote
; i
++)
3595 info
->notes_size
+= note_size(&info
->notes
[i
]);
3597 /* read and fill status of all threads */
3600 if (cpu
== thread_cpu
) {
3603 fill_thread_info(info
, (CPUArchState
*)cpu
->env_ptr
);
3610 static void free_note_info(struct elf_note_info
*info
)
3612 struct elf_thread_status
*ets
;
3614 while (!QTAILQ_EMPTY(&info
->thread_list
)) {
3615 ets
= QTAILQ_FIRST(&info
->thread_list
);
3616 QTAILQ_REMOVE(&info
->thread_list
, ets
, ets_link
);
3620 g_free(info
->prstatus
);
3621 g_free(info
->psinfo
);
3622 g_free(info
->notes
);
3625 static int write_note_info(struct elf_note_info
*info
, int fd
)
3627 struct elf_thread_status
*ets
;
3630 /* write prstatus, psinfo and auxv for current thread */
3631 for (i
= 0; i
< info
->numnote
; i
++)
3632 if ((error
= write_note(&info
->notes
[i
], fd
)) != 0)
3635 /* write prstatus for each thread */
3636 QTAILQ_FOREACH(ets
, &info
->thread_list
, ets_link
) {
3637 if ((error
= write_note(&ets
->notes
[0], fd
)) != 0)
3645 * Write out ELF coredump.
3647 * See documentation of ELF object file format in:
3648 * http://www.caldera.com/developers/devspecs/gabi41.pdf
3650 * Coredump format in linux is following:
3652 * 0 +----------------------+ \
3653 * | ELF header | ET_CORE |
3654 * +----------------------+ |
3655 * | ELF program headers | |--- headers
3656 * | - NOTE section | |
3657 * | - PT_LOAD sections | |
3658 * +----------------------+ /
3663 * +----------------------+ <-- aligned to target page
3664 * | Process memory dump |
3669 * +----------------------+
3671 * NT_PRSTATUS -> struct elf_prstatus (per thread)
3672 * NT_PRSINFO -> struct elf_prpsinfo
3673 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
3675 * Format follows System V format as close as possible. Current
3676 * version limitations are as follows:
3677 * - no floating point registers are dumped
3679 * Function returns 0 in case of success, negative errno otherwise.
3681 * TODO: make this work also during runtime: it should be
3682 * possible to force coredump from running process and then
3683 * continue processing. For example qemu could set up SIGUSR2
3684 * handler (provided that target process haven't registered
3685 * handler for that) that does the dump when signal is received.
3687 static int elf_core_dump(int signr
, const CPUArchState
*env
)
3689 const CPUState
*cpu
= env_cpu((CPUArchState
*)env
);
3690 const TaskState
*ts
= (const TaskState
*)cpu
->opaque
;
3691 struct vm_area_struct
*vma
= NULL
;
3692 char corefile
[PATH_MAX
];
3693 struct elf_note_info info
;
3695 struct elf_phdr phdr
;
3696 struct rlimit dumpsize
;
3697 struct mm_struct
*mm
= NULL
;
3698 off_t offset
= 0, data_offset
= 0;
3702 init_note_info(&info
);
3705 getrlimit(RLIMIT_CORE
, &dumpsize
);
3706 if (dumpsize
.rlim_cur
== 0)
3709 if (core_dump_filename(ts
, corefile
, sizeof (corefile
)) < 0)
3712 if ((fd
= open(corefile
, O_WRONLY
| O_CREAT
,
3713 S_IRUSR
|S_IWUSR
|S_IRGRP
|S_IROTH
)) < 0)
3717 * Walk through target process memory mappings and
3718 * set up structure containing this information. After
3719 * this point vma_xxx functions can be used.
3721 if ((mm
= vma_init()) == NULL
)
3724 walk_memory_regions(mm
, vma_walker
);
3725 segs
= vma_get_mapping_count(mm
);
3728 * Construct valid coredump ELF header. We also
3729 * add one more segment for notes.
3731 fill_elf_header(&elf
, segs
+ 1, ELF_MACHINE
, 0);
3732 if (dump_write(fd
, &elf
, sizeof (elf
)) != 0)
3735 /* fill in the in-memory version of notes */
3736 if (fill_note_info(&info
, signr
, env
) < 0)
3739 offset
+= sizeof (elf
); /* elf header */
3740 offset
+= (segs
+ 1) * sizeof (struct elf_phdr
); /* program headers */
3742 /* write out notes program header */
3743 fill_elf_note_phdr(&phdr
, info
.notes_size
, offset
);
3745 offset
+= info
.notes_size
;
3746 if (dump_write(fd
, &phdr
, sizeof (phdr
)) != 0)
3750 * ELF specification wants data to start at page boundary so
3753 data_offset
= offset
= roundup(offset
, ELF_EXEC_PAGESIZE
);
3756 * Write program headers for memory regions mapped in
3757 * the target process.
3759 for (vma
= vma_first(mm
); vma
!= NULL
; vma
= vma_next(vma
)) {
3760 (void) memset(&phdr
, 0, sizeof (phdr
));
3762 phdr
.p_type
= PT_LOAD
;
3763 phdr
.p_offset
= offset
;
3764 phdr
.p_vaddr
= vma
->vma_start
;
3766 phdr
.p_filesz
= vma_dump_size(vma
);
3767 offset
+= phdr
.p_filesz
;
3768 phdr
.p_memsz
= vma
->vma_end
- vma
->vma_start
;
3769 phdr
.p_flags
= vma
->vma_flags
& PROT_READ
? PF_R
: 0;
3770 if (vma
->vma_flags
& PROT_WRITE
)
3771 phdr
.p_flags
|= PF_W
;
3772 if (vma
->vma_flags
& PROT_EXEC
)
3773 phdr
.p_flags
|= PF_X
;
3774 phdr
.p_align
= ELF_EXEC_PAGESIZE
;
3776 bswap_phdr(&phdr
, 1);
3777 if (dump_write(fd
, &phdr
, sizeof(phdr
)) != 0) {
3783 * Next we write notes just after program headers. No
3784 * alignment needed here.
3786 if (write_note_info(&info
, fd
) < 0)
3789 /* align data to page boundary */
3790 if (lseek(fd
, data_offset
, SEEK_SET
) != data_offset
)
3794 * Finally we can dump process memory into corefile as well.
3796 for (vma
= vma_first(mm
); vma
!= NULL
; vma
= vma_next(vma
)) {
3800 end
= vma
->vma_start
+ vma_dump_size(vma
);
3802 for (addr
= vma
->vma_start
; addr
< end
;
3803 addr
+= TARGET_PAGE_SIZE
) {
3804 char page
[TARGET_PAGE_SIZE
];
3808 * Read in page from target process memory and
3809 * write it to coredump file.
3811 error
= copy_from_user(page
, addr
, sizeof (page
));
3813 (void) fprintf(stderr
, "unable to dump " TARGET_ABI_FMT_lx
"\n",
3818 if (dump_write(fd
, page
, TARGET_PAGE_SIZE
) < 0)
3824 free_note_info(&info
);
3833 #endif /* USE_ELF_CORE_DUMP */
3835 void do_init_thread(struct target_pt_regs
*regs
, struct image_info
*infop
)
3837 init_thread(regs
, infop
);