4 * Copyright (c) 2003-2008 Fabrice Bellard
5 * Copyright (c) 2011-2015 Red Hat Inc
8 * Juan Quintela <quintela@redhat.com>
10 * Permission is hereby granted, free of charge, to any person obtaining a copy
11 * of this software and associated documentation files (the "Software"), to deal
12 * in the Software without restriction, including without limitation the rights
13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
14 * copies of the Software, and to permit persons to whom the Software is
15 * furnished to do so, subject to the following conditions:
17 * The above copyright notice and this permission notice shall be included in
18 * all copies or substantial portions of the Software.
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
29 #include "qemu/osdep.h"
30 #include "qemu/cutils.h"
31 #include "qemu/bitops.h"
32 #include "qemu/bitmap.h"
33 #include "qemu/madvise.h"
34 #include "qemu/main-loop.h"
36 #include "ram-compress.h"
38 #include "migration.h"
39 #include "migration-stats.h"
40 #include "migration/register.h"
41 #include "migration/misc.h"
42 #include "qemu-file.h"
43 #include "postcopy-ram.h"
44 #include "page_cache.h"
45 #include "qemu/error-report.h"
46 #include "qapi/error.h"
47 #include "qapi/qapi-types-migration.h"
48 #include "qapi/qapi-events-migration.h"
49 #include "qapi/qapi-commands-migration.h"
50 #include "qapi/qmp/qerror.h"
52 #include "exec/ram_addr.h"
53 #include "exec/target_page.h"
54 #include "qemu/rcu_queue.h"
55 #include "migration/colo.h"
57 #include "sysemu/cpu-throttle.h"
61 #include "sysemu/runstate.h"
63 #include "sysemu/dirtylimit.h"
64 #include "sysemu/kvm.h"
66 #include "hw/boards.h" /* for machine_dump_guest_core() */
68 #if defined(__linux__)
69 #include "qemu/userfaultfd.h"
70 #endif /* defined(__linux__) */
72 /***********************************************************/
73 /* ram save/restore */
76 * RAM_SAVE_FLAG_ZERO used to be named RAM_SAVE_FLAG_COMPRESS, it
77 * worked for pages that were filled with the same char. We switched
78 * it to only search for the zero value. And to avoid confusion with
79 * RAM_SAVE_FLAG_COMPRESS_PAGE just rename it.
82 * RAM_SAVE_FLAG_FULL was obsoleted in 2009, it can be reused now
84 #define RAM_SAVE_FLAG_FULL 0x01
85 #define RAM_SAVE_FLAG_ZERO 0x02
86 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
87 #define RAM_SAVE_FLAG_PAGE 0x08
88 #define RAM_SAVE_FLAG_EOS 0x10
89 #define RAM_SAVE_FLAG_CONTINUE 0x20
90 #define RAM_SAVE_FLAG_XBZRLE 0x40
91 /* 0x80 is reserved in qemu-file.h for RAM_SAVE_FLAG_HOOK */
92 #define RAM_SAVE_FLAG_COMPRESS_PAGE 0x100
93 #define RAM_SAVE_FLAG_MULTIFD_FLUSH 0x200
94 /* We can't use any flag that is bigger than 0x200 */
96 XBZRLECacheStats xbzrle_counters
;
98 /* used by the search for pages to send */
99 struct PageSearchStatus
{
100 /* The migration channel used for a specific host page */
101 QEMUFile
*pss_channel
;
102 /* Last block from where we have sent data */
103 RAMBlock
*last_sent_block
;
104 /* Current block being searched */
106 /* Current page to search from */
108 /* Set once we wrap around */
110 /* Whether we're sending a host page */
111 bool host_page_sending
;
112 /* The start/end of current host page. Invalid if host_page_sending==false */
113 unsigned long host_page_start
;
114 unsigned long host_page_end
;
116 typedef struct PageSearchStatus PageSearchStatus
;
118 /* struct contains XBZRLE cache and a static page
119 used by the compression */
121 /* buffer used for XBZRLE encoding */
122 uint8_t *encoded_buf
;
123 /* buffer for storing page content */
124 uint8_t *current_buf
;
125 /* Cache for XBZRLE, Protected by lock. */
128 /* it will store a page full of zeros */
129 uint8_t *zero_target_page
;
130 /* buffer used for XBZRLE decoding */
131 uint8_t *decoded_buf
;
134 static void XBZRLE_cache_lock(void)
136 if (migrate_xbzrle()) {
137 qemu_mutex_lock(&XBZRLE
.lock
);
141 static void XBZRLE_cache_unlock(void)
143 if (migrate_xbzrle()) {
144 qemu_mutex_unlock(&XBZRLE
.lock
);
149 * xbzrle_cache_resize: resize the xbzrle cache
151 * This function is called from migrate_params_apply in main
152 * thread, possibly while a migration is in progress. A running
153 * migration may be using the cache and might finish during this call,
154 * hence changes to the cache are protected by XBZRLE.lock().
156 * Returns 0 for success or -1 for error
158 * @new_size: new cache size
159 * @errp: set *errp if the check failed, with reason
161 int xbzrle_cache_resize(uint64_t new_size
, Error
**errp
)
163 PageCache
*new_cache
;
166 /* Check for truncation */
167 if (new_size
!= (size_t)new_size
) {
168 error_setg(errp
, QERR_INVALID_PARAMETER_VALUE
, "cache size",
169 "exceeding address space");
173 if (new_size
== migrate_xbzrle_cache_size()) {
180 if (XBZRLE
.cache
!= NULL
) {
181 new_cache
= cache_init(new_size
, TARGET_PAGE_SIZE
, errp
);
187 cache_fini(XBZRLE
.cache
);
188 XBZRLE
.cache
= new_cache
;
191 XBZRLE_cache_unlock();
195 static bool postcopy_preempt_active(void)
197 return migrate_postcopy_preempt() && migration_in_postcopy();
200 bool migrate_ram_is_ignored(RAMBlock
*block
)
202 return !qemu_ram_is_migratable(block
) ||
203 (migrate_ignore_shared() && qemu_ram_is_shared(block
)
204 && qemu_ram_is_named_file(block
));
207 #undef RAMBLOCK_FOREACH
209 int foreach_not_ignored_block(RAMBlockIterFunc func
, void *opaque
)
214 RCU_READ_LOCK_GUARD();
216 RAMBLOCK_FOREACH_NOT_IGNORED(block
) {
217 ret
= func(block
, opaque
);
225 static void ramblock_recv_map_init(void)
229 RAMBLOCK_FOREACH_NOT_IGNORED(rb
) {
230 assert(!rb
->receivedmap
);
231 rb
->receivedmap
= bitmap_new(rb
->max_length
>> qemu_target_page_bits());
235 int ramblock_recv_bitmap_test(RAMBlock
*rb
, void *host_addr
)
237 return test_bit(ramblock_recv_bitmap_offset(host_addr
, rb
),
241 bool ramblock_recv_bitmap_test_byte_offset(RAMBlock
*rb
, uint64_t byte_offset
)
243 return test_bit(byte_offset
>> TARGET_PAGE_BITS
, rb
->receivedmap
);
246 void ramblock_recv_bitmap_set(RAMBlock
*rb
, void *host_addr
)
248 set_bit_atomic(ramblock_recv_bitmap_offset(host_addr
, rb
), rb
->receivedmap
);
251 void ramblock_recv_bitmap_set_range(RAMBlock
*rb
, void *host_addr
,
254 bitmap_set_atomic(rb
->receivedmap
,
255 ramblock_recv_bitmap_offset(host_addr
, rb
),
259 #define RAMBLOCK_RECV_BITMAP_ENDING (0x0123456789abcdefULL)
262 * Format: bitmap_size (8 bytes) + whole_bitmap (N bytes).
264 * Returns >0 if success with sent bytes, or <0 if error.
266 int64_t ramblock_recv_bitmap_send(QEMUFile
*file
,
267 const char *block_name
)
269 RAMBlock
*block
= qemu_ram_block_by_name(block_name
);
270 unsigned long *le_bitmap
, nbits
;
274 error_report("%s: invalid block name: %s", __func__
, block_name
);
278 nbits
= block
->postcopy_length
>> TARGET_PAGE_BITS
;
281 * Make sure the tmp bitmap buffer is big enough, e.g., on 32bit
282 * machines we may need 4 more bytes for padding (see below
283 * comment). So extend it a bit before hand.
285 le_bitmap
= bitmap_new(nbits
+ BITS_PER_LONG
);
288 * Always use little endian when sending the bitmap. This is
289 * required that when source and destination VMs are not using the
290 * same endianness. (Note: big endian won't work.)
292 bitmap_to_le(le_bitmap
, block
->receivedmap
, nbits
);
294 /* Size of the bitmap, in bytes */
295 size
= DIV_ROUND_UP(nbits
, 8);
298 * size is always aligned to 8 bytes for 64bit machines, but it
299 * may not be true for 32bit machines. We need this padding to
300 * make sure the migration can survive even between 32bit and
303 size
= ROUND_UP(size
, 8);
305 qemu_put_be64(file
, size
);
306 qemu_put_buffer(file
, (const uint8_t *)le_bitmap
, size
);
308 * Mark as an end, in case the middle part is screwed up due to
309 * some "mysterious" reason.
311 qemu_put_be64(file
, RAMBLOCK_RECV_BITMAP_ENDING
);
316 if (qemu_file_get_error(file
)) {
317 return qemu_file_get_error(file
);
320 return size
+ sizeof(size
);
324 * An outstanding page request, on the source, having been received
327 struct RAMSrcPageRequest
{
332 QSIMPLEQ_ENTRY(RAMSrcPageRequest
) next_req
;
335 /* State of RAM for migration */
338 * PageSearchStatus structures for the channels when send pages.
339 * Protected by the bitmap_mutex.
341 PageSearchStatus pss
[RAM_CHANNEL_MAX
];
342 /* UFFD file descriptor, used in 'write-tracking' migration */
344 /* total ram size in bytes */
345 uint64_t ram_bytes_total
;
346 /* Last block that we have visited searching for dirty pages */
347 RAMBlock
*last_seen_block
;
348 /* Last dirty target page we have sent */
349 ram_addr_t last_page
;
350 /* last ram version we have seen */
351 uint32_t last_version
;
352 /* How many times we have dirty too many pages */
353 int dirty_rate_high_cnt
;
354 /* these variables are used for bitmap sync */
355 /* last time we did a full bitmap_sync */
356 int64_t time_last_bitmap_sync
;
357 /* bytes transferred at start_time */
358 uint64_t bytes_xfer_prev
;
359 /* number of dirty pages since start_time */
360 uint64_t num_dirty_pages_period
;
361 /* xbzrle misses since the beginning of the period */
362 uint64_t xbzrle_cache_miss_prev
;
363 /* Amount of xbzrle pages since the beginning of the period */
364 uint64_t xbzrle_pages_prev
;
365 /* Amount of xbzrle encoded bytes since the beginning of the period */
366 uint64_t xbzrle_bytes_prev
;
367 /* Are we really using XBZRLE (e.g., after the first round). */
369 /* Are we on the last stage of migration */
371 /* compression statistics since the beginning of the period */
372 /* amount of count that no free thread to compress data */
373 uint64_t compress_thread_busy_prev
;
374 /* amount bytes after compression */
375 uint64_t compressed_size_prev
;
376 /* amount of compressed pages */
377 uint64_t compress_pages_prev
;
379 /* total handled target pages at the beginning of period */
380 uint64_t target_page_count_prev
;
381 /* total handled target pages since start */
382 uint64_t target_page_count
;
383 /* number of dirty bits in the bitmap */
384 uint64_t migration_dirty_pages
;
387 * - dirty/clear bitmap
388 * - migration_dirty_pages
391 QemuMutex bitmap_mutex
;
392 /* The RAMBlock used in the last src_page_requests */
393 RAMBlock
*last_req_rb
;
394 /* Queue of outstanding page requests from the destination */
395 QemuMutex src_page_req_mutex
;
396 QSIMPLEQ_HEAD(, RAMSrcPageRequest
) src_page_requests
;
398 typedef struct RAMState RAMState
;
400 static RAMState
*ram_state
;
402 static NotifierWithReturnList precopy_notifier_list
;
404 /* Whether postcopy has queued requests? */
405 static bool postcopy_has_request(RAMState
*rs
)
407 return !QSIMPLEQ_EMPTY_ATOMIC(&rs
->src_page_requests
);
410 void precopy_infrastructure_init(void)
412 notifier_with_return_list_init(&precopy_notifier_list
);
415 void precopy_add_notifier(NotifierWithReturn
*n
)
417 notifier_with_return_list_add(&precopy_notifier_list
, n
);
420 void precopy_remove_notifier(NotifierWithReturn
*n
)
422 notifier_with_return_remove(n
);
425 int precopy_notify(PrecopyNotifyReason reason
, Error
**errp
)
427 PrecopyNotifyData pnd
;
431 return notifier_with_return_list_notify(&precopy_notifier_list
, &pnd
);
434 uint64_t ram_bytes_remaining(void)
436 return ram_state
? (ram_state
->migration_dirty_pages
* TARGET_PAGE_SIZE
) :
440 void ram_transferred_add(uint64_t bytes
)
442 if (runstate_is_running()) {
443 stat64_add(&mig_stats
.precopy_bytes
, bytes
);
444 } else if (migration_in_postcopy()) {
445 stat64_add(&mig_stats
.postcopy_bytes
, bytes
);
447 stat64_add(&mig_stats
.downtime_bytes
, bytes
);
449 stat64_add(&mig_stats
.transferred
, bytes
);
452 struct MigrationOps
{
453 int (*ram_save_target_page
)(RAMState
*rs
, PageSearchStatus
*pss
);
455 typedef struct MigrationOps MigrationOps
;
457 MigrationOps
*migration_ops
;
459 static int ram_save_host_page_urgent(PageSearchStatus
*pss
);
461 /* NOTE: page is the PFN not real ram_addr_t. */
462 static void pss_init(PageSearchStatus
*pss
, RAMBlock
*rb
, ram_addr_t page
)
466 pss
->complete_round
= false;
470 * Check whether two PSSs are actively sending the same page. Return true
471 * if it is, false otherwise.
473 static bool pss_overlap(PageSearchStatus
*pss1
, PageSearchStatus
*pss2
)
475 return pss1
->host_page_sending
&& pss2
->host_page_sending
&&
476 (pss1
->host_page_start
== pss2
->host_page_start
);
480 * save_page_header: write page header to wire
482 * If this is the 1st block, it also writes the block identification
484 * Returns the number of bytes written
486 * @pss: current PSS channel status
487 * @block: block that contains the page we want to send
488 * @offset: offset inside the block for the page
489 * in the lower bits, it contains flags
491 static size_t save_page_header(PageSearchStatus
*pss
, QEMUFile
*f
,
492 RAMBlock
*block
, ram_addr_t offset
)
495 bool same_block
= (block
== pss
->last_sent_block
);
498 offset
|= RAM_SAVE_FLAG_CONTINUE
;
500 qemu_put_be64(f
, offset
);
504 len
= strlen(block
->idstr
);
505 qemu_put_byte(f
, len
);
506 qemu_put_buffer(f
, (uint8_t *)block
->idstr
, len
);
508 pss
->last_sent_block
= block
;
514 * mig_throttle_guest_down: throttle down the guest
516 * Reduce amount of guest cpu execution to hopefully slow down memory
517 * writes. If guest dirty memory rate is reduced below the rate at
518 * which we can transfer pages to the destination then we should be
519 * able to complete migration. Some workloads dirty memory way too
520 * fast and will not effectively converge, even with auto-converge.
522 static void mig_throttle_guest_down(uint64_t bytes_dirty_period
,
523 uint64_t bytes_dirty_threshold
)
525 uint64_t pct_initial
= migrate_cpu_throttle_initial();
526 uint64_t pct_increment
= migrate_cpu_throttle_increment();
527 bool pct_tailslow
= migrate_cpu_throttle_tailslow();
528 int pct_max
= migrate_max_cpu_throttle();
530 uint64_t throttle_now
= cpu_throttle_get_percentage();
531 uint64_t cpu_now
, cpu_ideal
, throttle_inc
;
533 /* We have not started throttling yet. Let's start it. */
534 if (!cpu_throttle_active()) {
535 cpu_throttle_set(pct_initial
);
537 /* Throttling already on, just increase the rate */
539 throttle_inc
= pct_increment
;
541 /* Compute the ideal CPU percentage used by Guest, which may
542 * make the dirty rate match the dirty rate threshold. */
543 cpu_now
= 100 - throttle_now
;
544 cpu_ideal
= cpu_now
* (bytes_dirty_threshold
* 1.0 /
546 throttle_inc
= MIN(cpu_now
- cpu_ideal
, pct_increment
);
548 cpu_throttle_set(MIN(throttle_now
+ throttle_inc
, pct_max
));
552 void mig_throttle_counter_reset(void)
554 RAMState
*rs
= ram_state
;
556 rs
->time_last_bitmap_sync
= qemu_clock_get_ms(QEMU_CLOCK_REALTIME
);
557 rs
->num_dirty_pages_period
= 0;
558 rs
->bytes_xfer_prev
= stat64_get(&mig_stats
.transferred
);
562 * xbzrle_cache_zero_page: insert a zero page in the XBZRLE cache
564 * @rs: current RAM state
565 * @current_addr: address for the zero page
567 * Update the xbzrle cache to reflect a page that's been sent as all 0.
568 * The important thing is that a stale (not-yet-0'd) page be replaced
570 * As a bonus, if the page wasn't in the cache it gets added so that
571 * when a small write is made into the 0'd page it gets XBZRLE sent.
573 static void xbzrle_cache_zero_page(RAMState
*rs
, ram_addr_t current_addr
)
575 /* We don't care if this fails to allocate a new cache page
576 * as long as it updated an old one */
577 cache_insert(XBZRLE
.cache
, current_addr
, XBZRLE
.zero_target_page
,
578 stat64_get(&mig_stats
.dirty_sync_count
));
581 #define ENCODING_FLAG_XBZRLE 0x1
584 * save_xbzrle_page: compress and send current page
586 * Returns: 1 means that we wrote the page
587 * 0 means that page is identical to the one already sent
588 * -1 means that xbzrle would be longer than normal
590 * @rs: current RAM state
591 * @pss: current PSS channel
592 * @current_data: pointer to the address of the page contents
593 * @current_addr: addr of the page
594 * @block: block that contains the page we want to send
595 * @offset: offset inside the block for the page
597 static int save_xbzrle_page(RAMState
*rs
, PageSearchStatus
*pss
,
598 uint8_t **current_data
, ram_addr_t current_addr
,
599 RAMBlock
*block
, ram_addr_t offset
)
601 int encoded_len
= 0, bytes_xbzrle
;
602 uint8_t *prev_cached_page
;
603 QEMUFile
*file
= pss
->pss_channel
;
604 uint64_t generation
= stat64_get(&mig_stats
.dirty_sync_count
);
606 if (!cache_is_cached(XBZRLE
.cache
, current_addr
, generation
)) {
607 xbzrle_counters
.cache_miss
++;
608 if (!rs
->last_stage
) {
609 if (cache_insert(XBZRLE
.cache
, current_addr
, *current_data
,
613 /* update *current_data when the page has been
614 inserted into cache */
615 *current_data
= get_cached_data(XBZRLE
.cache
, current_addr
);
622 * Reaching here means the page has hit the xbzrle cache, no matter what
623 * encoding result it is (normal encoding, overflow or skipping the page),
624 * count the page as encoded. This is used to calculate the encoding rate.
626 * Example: 2 pages (8KB) being encoded, first page encoding generates 2KB,
627 * 2nd page turns out to be skipped (i.e. no new bytes written to the
628 * page), the overall encoding rate will be 8KB / 2KB = 4, which has the
629 * skipped page included. In this way, the encoding rate can tell if the
630 * guest page is good for xbzrle encoding.
632 xbzrle_counters
.pages
++;
633 prev_cached_page
= get_cached_data(XBZRLE
.cache
, current_addr
);
635 /* save current buffer into memory */
636 memcpy(XBZRLE
.current_buf
, *current_data
, TARGET_PAGE_SIZE
);
638 /* XBZRLE encoding (if there is no overflow) */
639 encoded_len
= xbzrle_encode_buffer(prev_cached_page
, XBZRLE
.current_buf
,
640 TARGET_PAGE_SIZE
, XBZRLE
.encoded_buf
,
644 * Update the cache contents, so that it corresponds to the data
645 * sent, in all cases except where we skip the page.
647 if (!rs
->last_stage
&& encoded_len
!= 0) {
648 memcpy(prev_cached_page
, XBZRLE
.current_buf
, TARGET_PAGE_SIZE
);
650 * In the case where we couldn't compress, ensure that the caller
651 * sends the data from the cache, since the guest might have
652 * changed the RAM since we copied it.
654 *current_data
= prev_cached_page
;
657 if (encoded_len
== 0) {
658 trace_save_xbzrle_page_skipping();
660 } else if (encoded_len
== -1) {
661 trace_save_xbzrle_page_overflow();
662 xbzrle_counters
.overflow
++;
663 xbzrle_counters
.bytes
+= TARGET_PAGE_SIZE
;
667 /* Send XBZRLE based compressed page */
668 bytes_xbzrle
= save_page_header(pss
, pss
->pss_channel
, block
,
669 offset
| RAM_SAVE_FLAG_XBZRLE
);
670 qemu_put_byte(file
, ENCODING_FLAG_XBZRLE
);
671 qemu_put_be16(file
, encoded_len
);
672 qemu_put_buffer(file
, XBZRLE
.encoded_buf
, encoded_len
);
673 bytes_xbzrle
+= encoded_len
+ 1 + 2;
675 * Like compressed_size (please see update_compress_thread_counts),
676 * the xbzrle encoded bytes don't count the 8 byte header with
677 * RAM_SAVE_FLAG_CONTINUE.
679 xbzrle_counters
.bytes
+= bytes_xbzrle
- 8;
680 ram_transferred_add(bytes_xbzrle
);
686 * pss_find_next_dirty: find the next dirty page of current ramblock
688 * This function updates pss->page to point to the next dirty page index
689 * within the ramblock to migrate, or the end of ramblock when nothing
690 * found. Note that when pss->host_page_sending==true it means we're
691 * during sending a host page, so we won't look for dirty page that is
692 * outside the host page boundary.
694 * @pss: the current page search status
696 static void pss_find_next_dirty(PageSearchStatus
*pss
)
698 RAMBlock
*rb
= pss
->block
;
699 unsigned long size
= rb
->used_length
>> TARGET_PAGE_BITS
;
700 unsigned long *bitmap
= rb
->bmap
;
702 if (migrate_ram_is_ignored(rb
)) {
703 /* Points directly to the end, so we know no dirty page */
709 * If during sending a host page, only look for dirty pages within the
710 * current host page being send.
712 if (pss
->host_page_sending
) {
713 assert(pss
->host_page_end
);
714 size
= MIN(size
, pss
->host_page_end
);
717 pss
->page
= find_next_bit(bitmap
, size
, pss
->page
);
720 static void migration_clear_memory_region_dirty_bitmap(RAMBlock
*rb
,
726 if (!rb
->clear_bmap
|| !clear_bmap_test_and_clear(rb
, page
)) {
730 shift
= rb
->clear_bmap_shift
;
732 * CLEAR_BITMAP_SHIFT_MIN should always guarantee this... this
733 * can make things easier sometimes since then start address
734 * of the small chunk will always be 64 pages aligned so the
735 * bitmap will always be aligned to unsigned long. We should
736 * even be able to remove this restriction but I'm simply
741 size
= 1ULL << (TARGET_PAGE_BITS
+ shift
);
742 start
= QEMU_ALIGN_DOWN((ram_addr_t
)page
<< TARGET_PAGE_BITS
, size
);
743 trace_migration_bitmap_clear_dirty(rb
->idstr
, start
, size
, page
);
744 memory_region_clear_dirty_bitmap(rb
->mr
, start
, size
);
748 migration_clear_memory_region_dirty_bitmap_range(RAMBlock
*rb
,
750 unsigned long npages
)
752 unsigned long i
, chunk_pages
= 1UL << rb
->clear_bmap_shift
;
753 unsigned long chunk_start
= QEMU_ALIGN_DOWN(start
, chunk_pages
);
754 unsigned long chunk_end
= QEMU_ALIGN_UP(start
+ npages
, chunk_pages
);
757 * Clear pages from start to start + npages - 1, so the end boundary is
760 for (i
= chunk_start
; i
< chunk_end
; i
+= chunk_pages
) {
761 migration_clear_memory_region_dirty_bitmap(rb
, i
);
766 * colo_bitmap_find_diry:find contiguous dirty pages from start
768 * Returns the page offset within memory region of the start of the contiguout
771 * @rs: current RAM state
772 * @rb: RAMBlock where to search for dirty pages
773 * @start: page where we start the search
774 * @num: the number of contiguous dirty pages
777 unsigned long colo_bitmap_find_dirty(RAMState
*rs
, RAMBlock
*rb
,
778 unsigned long start
, unsigned long *num
)
780 unsigned long size
= rb
->used_length
>> TARGET_PAGE_BITS
;
781 unsigned long *bitmap
= rb
->bmap
;
782 unsigned long first
, next
;
786 if (migrate_ram_is_ignored(rb
)) {
790 first
= find_next_bit(bitmap
, size
, start
);
794 next
= find_next_zero_bit(bitmap
, size
, first
+ 1);
795 assert(next
>= first
);
800 static inline bool migration_bitmap_clear_dirty(RAMState
*rs
,
807 * Clear dirty bitmap if needed. This _must_ be called before we
808 * send any of the page in the chunk because we need to make sure
809 * we can capture further page content changes when we sync dirty
810 * log the next time. So as long as we are going to send any of
811 * the page in the chunk we clear the remote dirty bitmap for all.
812 * Clearing it earlier won't be a problem, but too late will.
814 migration_clear_memory_region_dirty_bitmap(rb
, page
);
816 ret
= test_and_clear_bit(page
, rb
->bmap
);
818 rs
->migration_dirty_pages
--;
824 static void dirty_bitmap_clear_section(MemoryRegionSection
*section
,
827 const hwaddr offset
= section
->offset_within_region
;
828 const hwaddr size
= int128_get64(section
->size
);
829 const unsigned long start
= offset
>> TARGET_PAGE_BITS
;
830 const unsigned long npages
= size
>> TARGET_PAGE_BITS
;
831 RAMBlock
*rb
= section
->mr
->ram_block
;
832 uint64_t *cleared_bits
= opaque
;
835 * We don't grab ram_state->bitmap_mutex because we expect to run
836 * only when starting migration or during postcopy recovery where
837 * we don't have concurrent access.
839 if (!migration_in_postcopy() && !migrate_background_snapshot()) {
840 migration_clear_memory_region_dirty_bitmap_range(rb
, start
, npages
);
842 *cleared_bits
+= bitmap_count_one_with_offset(rb
->bmap
, start
, npages
);
843 bitmap_clear(rb
->bmap
, start
, npages
);
847 * Exclude all dirty pages from migration that fall into a discarded range as
848 * managed by a RamDiscardManager responsible for the mapped memory region of
849 * the RAMBlock. Clear the corresponding bits in the dirty bitmaps.
851 * Discarded pages ("logically unplugged") have undefined content and must
852 * not get migrated, because even reading these pages for migration might
853 * result in undesired behavior.
855 * Returns the number of cleared bits in the RAMBlock dirty bitmap.
857 * Note: The result is only stable while migrating (precopy/postcopy).
859 static uint64_t ramblock_dirty_bitmap_clear_discarded_pages(RAMBlock
*rb
)
861 uint64_t cleared_bits
= 0;
863 if (rb
->mr
&& rb
->bmap
&& memory_region_has_ram_discard_manager(rb
->mr
)) {
864 RamDiscardManager
*rdm
= memory_region_get_ram_discard_manager(rb
->mr
);
865 MemoryRegionSection section
= {
867 .offset_within_region
= 0,
868 .size
= int128_make64(qemu_ram_get_used_length(rb
)),
871 ram_discard_manager_replay_discarded(rdm
, §ion
,
872 dirty_bitmap_clear_section
,
879 * Check if a host-page aligned page falls into a discarded range as managed by
880 * a RamDiscardManager responsible for the mapped memory region of the RAMBlock.
882 * Note: The result is only stable while migrating (precopy/postcopy).
884 bool ramblock_page_is_discarded(RAMBlock
*rb
, ram_addr_t start
)
886 if (rb
->mr
&& memory_region_has_ram_discard_manager(rb
->mr
)) {
887 RamDiscardManager
*rdm
= memory_region_get_ram_discard_manager(rb
->mr
);
888 MemoryRegionSection section
= {
890 .offset_within_region
= start
,
891 .size
= int128_make64(qemu_ram_pagesize(rb
)),
894 return !ram_discard_manager_is_populated(rdm
, §ion
);
899 /* Called with RCU critical section */
900 static void ramblock_sync_dirty_bitmap(RAMState
*rs
, RAMBlock
*rb
)
902 uint64_t new_dirty_pages
=
903 cpu_physical_memory_sync_dirty_bitmap(rb
, 0, rb
->used_length
);
905 rs
->migration_dirty_pages
+= new_dirty_pages
;
906 rs
->num_dirty_pages_period
+= new_dirty_pages
;
910 * ram_pagesize_summary: calculate all the pagesizes of a VM
912 * Returns a summary bitmap of the page sizes of all RAMBlocks
914 * For VMs with just normal pages this is equivalent to the host page
915 * size. If it's got some huge pages then it's the OR of all the
916 * different page sizes.
918 uint64_t ram_pagesize_summary(void)
921 uint64_t summary
= 0;
923 RAMBLOCK_FOREACH_NOT_IGNORED(block
) {
924 summary
|= block
->page_size
;
930 uint64_t ram_get_total_transferred_pages(void)
932 return stat64_get(&mig_stats
.normal_pages
) +
933 stat64_get(&mig_stats
.zero_pages
) +
934 compression_counters
.pages
+ xbzrle_counters
.pages
;
937 static void migration_update_rates(RAMState
*rs
, int64_t end_time
)
939 uint64_t page_count
= rs
->target_page_count
- rs
->target_page_count_prev
;
940 double compressed_size
;
942 /* calculate period counters */
943 stat64_set(&mig_stats
.dirty_pages_rate
,
944 rs
->num_dirty_pages_period
* 1000 /
945 (end_time
- rs
->time_last_bitmap_sync
));
951 if (migrate_xbzrle()) {
952 double encoded_size
, unencoded_size
;
954 xbzrle_counters
.cache_miss_rate
= (double)(xbzrle_counters
.cache_miss
-
955 rs
->xbzrle_cache_miss_prev
) / page_count
;
956 rs
->xbzrle_cache_miss_prev
= xbzrle_counters
.cache_miss
;
957 unencoded_size
= (xbzrle_counters
.pages
- rs
->xbzrle_pages_prev
) *
959 encoded_size
= xbzrle_counters
.bytes
- rs
->xbzrle_bytes_prev
;
960 if (xbzrle_counters
.pages
== rs
->xbzrle_pages_prev
|| !encoded_size
) {
961 xbzrle_counters
.encoding_rate
= 0;
963 xbzrle_counters
.encoding_rate
= unencoded_size
/ encoded_size
;
965 rs
->xbzrle_pages_prev
= xbzrle_counters
.pages
;
966 rs
->xbzrle_bytes_prev
= xbzrle_counters
.bytes
;
969 if (migrate_compress()) {
970 compression_counters
.busy_rate
= (double)(compression_counters
.busy
-
971 rs
->compress_thread_busy_prev
) / page_count
;
972 rs
->compress_thread_busy_prev
= compression_counters
.busy
;
974 compressed_size
= compression_counters
.compressed_size
-
975 rs
->compressed_size_prev
;
976 if (compressed_size
) {
977 double uncompressed_size
= (compression_counters
.pages
-
978 rs
->compress_pages_prev
) * TARGET_PAGE_SIZE
;
980 /* Compression-Ratio = Uncompressed-size / Compressed-size */
981 compression_counters
.compression_rate
=
982 uncompressed_size
/ compressed_size
;
984 rs
->compress_pages_prev
= compression_counters
.pages
;
985 rs
->compressed_size_prev
= compression_counters
.compressed_size
;
991 * Enable dirty-limit to throttle down the guest
993 static void migration_dirty_limit_guest(void)
996 * dirty page rate quota for all vCPUs fetched from
997 * migration parameter 'vcpu_dirty_limit'
999 static int64_t quota_dirtyrate
;
1000 MigrationState
*s
= migrate_get_current();
1003 * If dirty limit already enabled and migration parameter
1004 * vcpu-dirty-limit untouched.
1006 if (dirtylimit_in_service() &&
1007 quota_dirtyrate
== s
->parameters
.vcpu_dirty_limit
) {
1011 quota_dirtyrate
= s
->parameters
.vcpu_dirty_limit
;
1014 * Set all vCPU a quota dirtyrate, note that the second
1015 * parameter will be ignored if setting all vCPU for the vm
1017 qmp_set_vcpu_dirty_limit(false, -1, quota_dirtyrate
, NULL
);
1018 trace_migration_dirty_limit_guest(quota_dirtyrate
);
1021 static void migration_trigger_throttle(RAMState
*rs
)
1023 uint64_t threshold
= migrate_throttle_trigger_threshold();
1024 uint64_t bytes_xfer_period
=
1025 stat64_get(&mig_stats
.transferred
) - rs
->bytes_xfer_prev
;
1026 uint64_t bytes_dirty_period
= rs
->num_dirty_pages_period
* TARGET_PAGE_SIZE
;
1027 uint64_t bytes_dirty_threshold
= bytes_xfer_period
* threshold
/ 100;
1029 /* During block migration the auto-converge logic incorrectly detects
1030 * that ram migration makes no progress. Avoid this by disabling the
1031 * throttling logic during the bulk phase of block migration. */
1032 if (blk_mig_bulk_active()) {
1037 * The following detection logic can be refined later. For now:
1038 * Check to see if the ratio between dirtied bytes and the approx.
1039 * amount of bytes that just got transferred since the last time
1040 * we were in this routine reaches the threshold. If that happens
1041 * twice, start or increase throttling.
1043 if ((bytes_dirty_period
> bytes_dirty_threshold
) &&
1044 (++rs
->dirty_rate_high_cnt
>= 2)) {
1045 rs
->dirty_rate_high_cnt
= 0;
1046 if (migrate_auto_converge()) {
1047 trace_migration_throttle();
1048 mig_throttle_guest_down(bytes_dirty_period
,
1049 bytes_dirty_threshold
);
1050 } else if (migrate_dirty_limit()) {
1051 migration_dirty_limit_guest();
1056 static void migration_bitmap_sync(RAMState
*rs
, bool last_stage
)
1061 stat64_add(&mig_stats
.dirty_sync_count
, 1);
1063 if (!rs
->time_last_bitmap_sync
) {
1064 rs
->time_last_bitmap_sync
= qemu_clock_get_ms(QEMU_CLOCK_REALTIME
);
1067 trace_migration_bitmap_sync_start();
1068 memory_global_dirty_log_sync(last_stage
);
1070 qemu_mutex_lock(&rs
->bitmap_mutex
);
1071 WITH_RCU_READ_LOCK_GUARD() {
1072 RAMBLOCK_FOREACH_NOT_IGNORED(block
) {
1073 ramblock_sync_dirty_bitmap(rs
, block
);
1075 stat64_set(&mig_stats
.dirty_bytes_last_sync
, ram_bytes_remaining());
1077 qemu_mutex_unlock(&rs
->bitmap_mutex
);
1079 memory_global_after_dirty_log_sync();
1080 trace_migration_bitmap_sync_end(rs
->num_dirty_pages_period
);
1082 end_time
= qemu_clock_get_ms(QEMU_CLOCK_REALTIME
);
1084 /* more than 1 second = 1000 millisecons */
1085 if (end_time
> rs
->time_last_bitmap_sync
+ 1000) {
1086 migration_trigger_throttle(rs
);
1088 migration_update_rates(rs
, end_time
);
1090 rs
->target_page_count_prev
= rs
->target_page_count
;
1092 /* reset period counters */
1093 rs
->time_last_bitmap_sync
= end_time
;
1094 rs
->num_dirty_pages_period
= 0;
1095 rs
->bytes_xfer_prev
= stat64_get(&mig_stats
.transferred
);
1097 if (migrate_events()) {
1098 uint64_t generation
= stat64_get(&mig_stats
.dirty_sync_count
);
1099 qapi_event_send_migration_pass(generation
);
1103 static void migration_bitmap_sync_precopy(RAMState
*rs
, bool last_stage
)
1105 Error
*local_err
= NULL
;
1108 * The current notifier usage is just an optimization to migration, so we
1109 * don't stop the normal migration process in the error case.
1111 if (precopy_notify(PRECOPY_NOTIFY_BEFORE_BITMAP_SYNC
, &local_err
)) {
1112 error_report_err(local_err
);
1116 migration_bitmap_sync(rs
, last_stage
);
1118 if (precopy_notify(PRECOPY_NOTIFY_AFTER_BITMAP_SYNC
, &local_err
)) {
1119 error_report_err(local_err
);
1123 void ram_release_page(const char *rbname
, uint64_t offset
)
1125 if (!migrate_release_ram() || !migration_in_postcopy()) {
1129 ram_discard_range(rbname
, offset
, TARGET_PAGE_SIZE
);
1133 * save_zero_page_to_file: send the zero page to the file
1135 * Returns the size of data written to the file, 0 means the page is not
1138 * @pss: current PSS channel
1139 * @block: block that contains the page we want to send
1140 * @offset: offset inside the block for the page
1142 static int save_zero_page_to_file(PageSearchStatus
*pss
, QEMUFile
*file
,
1143 RAMBlock
*block
, ram_addr_t offset
)
1145 uint8_t *p
= block
->host
+ offset
;
1148 if (buffer_is_zero(p
, TARGET_PAGE_SIZE
)) {
1149 len
+= save_page_header(pss
, file
, block
, offset
| RAM_SAVE_FLAG_ZERO
);
1150 qemu_put_byte(file
, 0);
1152 ram_release_page(block
->idstr
, offset
);
1158 * save_zero_page: send the zero page to the stream
1160 * Returns the number of pages written.
1162 * @pss: current PSS channel
1163 * @block: block that contains the page we want to send
1164 * @offset: offset inside the block for the page
1166 static int save_zero_page(PageSearchStatus
*pss
, QEMUFile
*f
, RAMBlock
*block
,
1169 int len
= save_zero_page_to_file(pss
, f
, block
, offset
);
1172 stat64_add(&mig_stats
.zero_pages
, 1);
1173 ram_transferred_add(len
);
1180 * @pages: the number of pages written by the control path,
1182 * > 0 - number of pages written
1184 * Return true if the pages has been saved, otherwise false is returned.
1186 static bool control_save_page(PageSearchStatus
*pss
, RAMBlock
*block
,
1187 ram_addr_t offset
, int *pages
)
1189 uint64_t bytes_xmit
= 0;
1193 ret
= ram_control_save_page(pss
->pss_channel
, block
->offset
, offset
,
1194 TARGET_PAGE_SIZE
, &bytes_xmit
);
1195 if (ret
== RAM_SAVE_CONTROL_NOT_SUPP
) {
1200 ram_transferred_add(bytes_xmit
);
1204 if (ret
== RAM_SAVE_CONTROL_DELAYED
) {
1208 if (bytes_xmit
> 0) {
1209 stat64_add(&mig_stats
.normal_pages
, 1);
1210 } else if (bytes_xmit
== 0) {
1211 stat64_add(&mig_stats
.zero_pages
, 1);
1218 * directly send the page to the stream
1220 * Returns the number of pages written.
1222 * @pss: current PSS channel
1223 * @block: block that contains the page we want to send
1224 * @offset: offset inside the block for the page
1225 * @buf: the page to be sent
1226 * @async: send to page asyncly
1228 static int save_normal_page(PageSearchStatus
*pss
, RAMBlock
*block
,
1229 ram_addr_t offset
, uint8_t *buf
, bool async
)
1231 QEMUFile
*file
= pss
->pss_channel
;
1233 ram_transferred_add(save_page_header(pss
, pss
->pss_channel
, block
,
1234 offset
| RAM_SAVE_FLAG_PAGE
));
1236 qemu_put_buffer_async(file
, buf
, TARGET_PAGE_SIZE
,
1237 migrate_release_ram() &&
1238 migration_in_postcopy());
1240 qemu_put_buffer(file
, buf
, TARGET_PAGE_SIZE
);
1242 ram_transferred_add(TARGET_PAGE_SIZE
);
1243 stat64_add(&mig_stats
.normal_pages
, 1);
1248 * ram_save_page: send the given page to the stream
1250 * Returns the number of pages written.
1252 * >=0 - Number of pages written - this might legally be 0
1253 * if xbzrle noticed the page was the same.
1255 * @rs: current RAM state
1256 * @block: block that contains the page we want to send
1257 * @offset: offset inside the block for the page
1259 static int ram_save_page(RAMState
*rs
, PageSearchStatus
*pss
)
1263 bool send_async
= true;
1264 RAMBlock
*block
= pss
->block
;
1265 ram_addr_t offset
= ((ram_addr_t
)pss
->page
) << TARGET_PAGE_BITS
;
1266 ram_addr_t current_addr
= block
->offset
+ offset
;
1268 p
= block
->host
+ offset
;
1269 trace_ram_save_page(block
->idstr
, (uint64_t)offset
, p
);
1271 XBZRLE_cache_lock();
1272 if (rs
->xbzrle_started
&& !migration_in_postcopy()) {
1273 pages
= save_xbzrle_page(rs
, pss
, &p
, current_addr
,
1275 if (!rs
->last_stage
) {
1276 /* Can't send this cached data async, since the cache page
1277 * might get updated before it gets to the wire
1283 /* XBZRLE overflow or normal page */
1285 pages
= save_normal_page(pss
, block
, offset
, p
, send_async
);
1288 XBZRLE_cache_unlock();
1293 static int ram_save_multifd_page(QEMUFile
*file
, RAMBlock
*block
,
1296 if (multifd_queue_page(file
, block
, offset
) < 0) {
1299 stat64_add(&mig_stats
.normal_pages
, 1);
1305 update_compress_thread_counts(const CompressParam
*param
, int bytes_xmit
)
1307 ram_transferred_add(bytes_xmit
);
1309 if (param
->result
== RES_ZEROPAGE
) {
1310 stat64_add(&mig_stats
.zero_pages
, 1);
1314 /* 8 means a header with RAM_SAVE_FLAG_CONTINUE. */
1315 compression_counters
.compressed_size
+= bytes_xmit
- 8;
1316 compression_counters
.pages
++;
1319 static bool save_page_use_compression(RAMState
*rs
);
1321 static int send_queued_data(CompressParam
*param
)
1323 PageSearchStatus
*pss
= &ram_state
->pss
[RAM_CHANNEL_PRECOPY
];
1324 MigrationState
*ms
= migrate_get_current();
1325 QEMUFile
*file
= ms
->to_dst_file
;
1328 RAMBlock
*block
= param
->block
;
1329 ram_addr_t offset
= param
->offset
;
1331 if (param
->result
== RES_NONE
) {
1335 assert(block
== pss
->last_sent_block
);
1337 if (param
->result
== RES_ZEROPAGE
) {
1338 assert(qemu_file_buffer_empty(param
->file
));
1339 len
+= save_page_header(pss
, file
, block
, offset
| RAM_SAVE_FLAG_ZERO
);
1340 qemu_put_byte(file
, 0);
1342 ram_release_page(block
->idstr
, offset
);
1343 } else if (param
->result
== RES_COMPRESS
) {
1344 assert(!qemu_file_buffer_empty(param
->file
));
1345 len
+= save_page_header(pss
, file
, block
,
1346 offset
| RAM_SAVE_FLAG_COMPRESS_PAGE
);
1347 len
+= qemu_put_qemu_file(file
, param
->file
);
1352 update_compress_thread_counts(param
, len
);
1357 static void ram_flush_compressed_data(RAMState
*rs
)
1359 if (!save_page_use_compression(rs
)) {
1363 flush_compressed_data(send_queued_data
);
1366 #define PAGE_ALL_CLEAN 0
1367 #define PAGE_TRY_AGAIN 1
1368 #define PAGE_DIRTY_FOUND 2
1370 * find_dirty_block: find the next dirty page and update any state
1371 * associated with the search process.
1374 * <0: An error happened
1375 * PAGE_ALL_CLEAN: no dirty page found, give up
1376 * PAGE_TRY_AGAIN: no dirty page found, retry for next block
1377 * PAGE_DIRTY_FOUND: dirty page found
1379 * @rs: current RAM state
1380 * @pss: data about the state of the current dirty page scan
1381 * @again: set to false if the search has scanned the whole of RAM
1383 static int find_dirty_block(RAMState
*rs
, PageSearchStatus
*pss
)
1385 /* Update pss->page for the next dirty bit in ramblock */
1386 pss_find_next_dirty(pss
);
1388 if (pss
->complete_round
&& pss
->block
== rs
->last_seen_block
&&
1389 pss
->page
>= rs
->last_page
) {
1391 * We've been once around the RAM and haven't found anything.
1394 return PAGE_ALL_CLEAN
;
1396 if (!offset_in_ramblock(pss
->block
,
1397 ((ram_addr_t
)pss
->page
) << TARGET_PAGE_BITS
)) {
1398 /* Didn't find anything in this RAM Block */
1400 pss
->block
= QLIST_NEXT_RCU(pss
->block
, next
);
1402 if (!migrate_multifd_flush_after_each_section()) {
1403 QEMUFile
*f
= rs
->pss
[RAM_CHANNEL_PRECOPY
].pss_channel
;
1404 int ret
= multifd_send_sync_main(f
);
1408 qemu_put_be64(f
, RAM_SAVE_FLAG_MULTIFD_FLUSH
);
1412 * If memory migration starts over, we will meet a dirtied page
1413 * which may still exists in compression threads's ring, so we
1414 * should flush the compressed data to make sure the new page
1415 * is not overwritten by the old one in the destination.
1417 * Also If xbzrle is on, stop using the data compression at this
1418 * point. In theory, xbzrle can do better than compression.
1420 ram_flush_compressed_data(rs
);
1422 /* Hit the end of the list */
1423 pss
->block
= QLIST_FIRST_RCU(&ram_list
.blocks
);
1424 /* Flag that we've looped */
1425 pss
->complete_round
= true;
1426 /* After the first round, enable XBZRLE. */
1427 if (migrate_xbzrle()) {
1428 rs
->xbzrle_started
= true;
1431 /* Didn't find anything this time, but try again on the new block */
1432 return PAGE_TRY_AGAIN
;
1434 /* We've found something */
1435 return PAGE_DIRTY_FOUND
;
1440 * unqueue_page: gets a page of the queue
1442 * Helper for 'get_queued_page' - gets a page off the queue
1444 * Returns the block of the page (or NULL if none available)
1446 * @rs: current RAM state
1447 * @offset: used to return the offset within the RAMBlock
1449 static RAMBlock
*unqueue_page(RAMState
*rs
, ram_addr_t
*offset
)
1451 struct RAMSrcPageRequest
*entry
;
1452 RAMBlock
*block
= NULL
;
1454 if (!postcopy_has_request(rs
)) {
1458 QEMU_LOCK_GUARD(&rs
->src_page_req_mutex
);
1461 * This should _never_ change even after we take the lock, because no one
1462 * should be taking anything off the request list other than us.
1464 assert(postcopy_has_request(rs
));
1466 entry
= QSIMPLEQ_FIRST(&rs
->src_page_requests
);
1468 *offset
= entry
->offset
;
1470 if (entry
->len
> TARGET_PAGE_SIZE
) {
1471 entry
->len
-= TARGET_PAGE_SIZE
;
1472 entry
->offset
+= TARGET_PAGE_SIZE
;
1474 memory_region_unref(block
->mr
);
1475 QSIMPLEQ_REMOVE_HEAD(&rs
->src_page_requests
, next_req
);
1477 migration_consume_urgent_request();
1483 #if defined(__linux__)
1485 * poll_fault_page: try to get next UFFD write fault page and, if pending fault
1486 * is found, return RAM block pointer and page offset
1488 * Returns pointer to the RAMBlock containing faulting page,
1489 * NULL if no write faults are pending
1491 * @rs: current RAM state
1492 * @offset: page offset from the beginning of the block
1494 static RAMBlock
*poll_fault_page(RAMState
*rs
, ram_addr_t
*offset
)
1496 struct uffd_msg uffd_msg
;
1501 if (!migrate_background_snapshot()) {
1505 res
= uffd_read_events(rs
->uffdio_fd
, &uffd_msg
, 1);
1510 page_address
= (void *)(uintptr_t) uffd_msg
.arg
.pagefault
.address
;
1511 block
= qemu_ram_block_from_host(page_address
, false, offset
);
1512 assert(block
&& (block
->flags
& RAM_UF_WRITEPROTECT
) != 0);
1517 * ram_save_release_protection: release UFFD write protection after
1518 * a range of pages has been saved
1520 * @rs: current RAM state
1521 * @pss: page-search-status structure
1522 * @start_page: index of the first page in the range relative to pss->block
1524 * Returns 0 on success, negative value in case of an error
1526 static int ram_save_release_protection(RAMState
*rs
, PageSearchStatus
*pss
,
1527 unsigned long start_page
)
1531 /* Check if page is from UFFD-managed region. */
1532 if (pss
->block
->flags
& RAM_UF_WRITEPROTECT
) {
1533 void *page_address
= pss
->block
->host
+ (start_page
<< TARGET_PAGE_BITS
);
1534 uint64_t run_length
= (pss
->page
- start_page
) << TARGET_PAGE_BITS
;
1536 /* Flush async buffers before un-protect. */
1537 qemu_fflush(pss
->pss_channel
);
1538 /* Un-protect memory range. */
1539 res
= uffd_change_protection(rs
->uffdio_fd
, page_address
, run_length
,
1546 /* ram_write_tracking_available: check if kernel supports required UFFD features
1548 * Returns true if supports, false otherwise
1550 bool ram_write_tracking_available(void)
1552 uint64_t uffd_features
;
1555 res
= uffd_query_features(&uffd_features
);
1557 (uffd_features
& UFFD_FEATURE_PAGEFAULT_FLAG_WP
) != 0);
1560 /* ram_write_tracking_compatible: check if guest configuration is
1561 * compatible with 'write-tracking'
1563 * Returns true if compatible, false otherwise
1565 bool ram_write_tracking_compatible(void)
1567 const uint64_t uffd_ioctls_mask
= BIT(_UFFDIO_WRITEPROTECT
);
1572 /* Open UFFD file descriptor */
1573 uffd_fd
= uffd_create_fd(UFFD_FEATURE_PAGEFAULT_FLAG_WP
, false);
1578 RCU_READ_LOCK_GUARD();
1580 RAMBLOCK_FOREACH_NOT_IGNORED(block
) {
1581 uint64_t uffd_ioctls
;
1583 /* Nothing to do with read-only and MMIO-writable regions */
1584 if (block
->mr
->readonly
|| block
->mr
->rom_device
) {
1587 /* Try to register block memory via UFFD-IO to track writes */
1588 if (uffd_register_memory(uffd_fd
, block
->host
, block
->max_length
,
1589 UFFDIO_REGISTER_MODE_WP
, &uffd_ioctls
)) {
1592 if ((uffd_ioctls
& uffd_ioctls_mask
) != uffd_ioctls_mask
) {
1599 uffd_close_fd(uffd_fd
);
1603 static inline void populate_read_range(RAMBlock
*block
, ram_addr_t offset
,
1606 const ram_addr_t end
= offset
+ size
;
1609 * We read one byte of each page; this will preallocate page tables if
1610 * required and populate the shared zeropage on MAP_PRIVATE anonymous memory
1611 * where no page was populated yet. This might require adaption when
1612 * supporting other mappings, like shmem.
1614 for (; offset
< end
; offset
+= block
->page_size
) {
1615 char tmp
= *((char *)block
->host
+ offset
);
1617 /* Don't optimize the read out */
1618 asm volatile("" : "+r" (tmp
));
1622 static inline int populate_read_section(MemoryRegionSection
*section
,
1625 const hwaddr size
= int128_get64(section
->size
);
1626 hwaddr offset
= section
->offset_within_region
;
1627 RAMBlock
*block
= section
->mr
->ram_block
;
1629 populate_read_range(block
, offset
, size
);
1634 * ram_block_populate_read: preallocate page tables and populate pages in the
1635 * RAM block by reading a byte of each page.
1637 * Since it's solely used for userfault_fd WP feature, here we just
1638 * hardcode page size to qemu_real_host_page_size.
1640 * @block: RAM block to populate
1642 static void ram_block_populate_read(RAMBlock
*rb
)
1645 * Skip populating all pages that fall into a discarded range as managed by
1646 * a RamDiscardManager responsible for the mapped memory region of the
1647 * RAMBlock. Such discarded ("logically unplugged") parts of a RAMBlock
1648 * must not get populated automatically. We don't have to track
1649 * modifications via userfaultfd WP reliably, because these pages will
1650 * not be part of the migration stream either way -- see
1651 * ramblock_dirty_bitmap_exclude_discarded_pages().
1653 * Note: The result is only stable while migrating (precopy/postcopy).
1655 if (rb
->mr
&& memory_region_has_ram_discard_manager(rb
->mr
)) {
1656 RamDiscardManager
*rdm
= memory_region_get_ram_discard_manager(rb
->mr
);
1657 MemoryRegionSection section
= {
1659 .offset_within_region
= 0,
1660 .size
= rb
->mr
->size
,
1663 ram_discard_manager_replay_populated(rdm
, §ion
,
1664 populate_read_section
, NULL
);
1666 populate_read_range(rb
, 0, rb
->used_length
);
1671 * ram_write_tracking_prepare: prepare for UFFD-WP memory tracking
1673 void ram_write_tracking_prepare(void)
1677 RCU_READ_LOCK_GUARD();
1679 RAMBLOCK_FOREACH_NOT_IGNORED(block
) {
1680 /* Nothing to do with read-only and MMIO-writable regions */
1681 if (block
->mr
->readonly
|| block
->mr
->rom_device
) {
1686 * Populate pages of the RAM block before enabling userfault_fd
1689 * This stage is required since ioctl(UFFDIO_WRITEPROTECT) with
1690 * UFFDIO_WRITEPROTECT_MODE_WP mode setting would silently skip
1691 * pages with pte_none() entries in page table.
1693 ram_block_populate_read(block
);
1697 static inline int uffd_protect_section(MemoryRegionSection
*section
,
1700 const hwaddr size
= int128_get64(section
->size
);
1701 const hwaddr offset
= section
->offset_within_region
;
1702 RAMBlock
*rb
= section
->mr
->ram_block
;
1703 int uffd_fd
= (uintptr_t)opaque
;
1705 return uffd_change_protection(uffd_fd
, rb
->host
+ offset
, size
, true,
1709 static int ram_block_uffd_protect(RAMBlock
*rb
, int uffd_fd
)
1711 assert(rb
->flags
& RAM_UF_WRITEPROTECT
);
1713 /* See ram_block_populate_read() */
1714 if (rb
->mr
&& memory_region_has_ram_discard_manager(rb
->mr
)) {
1715 RamDiscardManager
*rdm
= memory_region_get_ram_discard_manager(rb
->mr
);
1716 MemoryRegionSection section
= {
1718 .offset_within_region
= 0,
1719 .size
= rb
->mr
->size
,
1722 return ram_discard_manager_replay_populated(rdm
, §ion
,
1723 uffd_protect_section
,
1724 (void *)(uintptr_t)uffd_fd
);
1726 return uffd_change_protection(uffd_fd
, rb
->host
,
1727 rb
->used_length
, true, false);
1731 * ram_write_tracking_start: start UFFD-WP memory tracking
1733 * Returns 0 for success or negative value in case of error
1735 int ram_write_tracking_start(void)
1738 RAMState
*rs
= ram_state
;
1741 /* Open UFFD file descriptor */
1742 uffd_fd
= uffd_create_fd(UFFD_FEATURE_PAGEFAULT_FLAG_WP
, true);
1746 rs
->uffdio_fd
= uffd_fd
;
1748 RCU_READ_LOCK_GUARD();
1750 RAMBLOCK_FOREACH_NOT_IGNORED(block
) {
1751 /* Nothing to do with read-only and MMIO-writable regions */
1752 if (block
->mr
->readonly
|| block
->mr
->rom_device
) {
1756 /* Register block memory with UFFD to track writes */
1757 if (uffd_register_memory(rs
->uffdio_fd
, block
->host
,
1758 block
->max_length
, UFFDIO_REGISTER_MODE_WP
, NULL
)) {
1761 block
->flags
|= RAM_UF_WRITEPROTECT
;
1762 memory_region_ref(block
->mr
);
1764 /* Apply UFFD write protection to the block memory range */
1765 if (ram_block_uffd_protect(block
, uffd_fd
)) {
1769 trace_ram_write_tracking_ramblock_start(block
->idstr
, block
->page_size
,
1770 block
->host
, block
->max_length
);
1776 error_report("ram_write_tracking_start() failed: restoring initial memory state");
1778 RAMBLOCK_FOREACH_NOT_IGNORED(block
) {
1779 if ((block
->flags
& RAM_UF_WRITEPROTECT
) == 0) {
1782 uffd_unregister_memory(rs
->uffdio_fd
, block
->host
, block
->max_length
);
1783 /* Cleanup flags and remove reference */
1784 block
->flags
&= ~RAM_UF_WRITEPROTECT
;
1785 memory_region_unref(block
->mr
);
1788 uffd_close_fd(uffd_fd
);
1794 * ram_write_tracking_stop: stop UFFD-WP memory tracking and remove protection
1796 void ram_write_tracking_stop(void)
1798 RAMState
*rs
= ram_state
;
1801 RCU_READ_LOCK_GUARD();
1803 RAMBLOCK_FOREACH_NOT_IGNORED(block
) {
1804 if ((block
->flags
& RAM_UF_WRITEPROTECT
) == 0) {
1807 uffd_unregister_memory(rs
->uffdio_fd
, block
->host
, block
->max_length
);
1809 trace_ram_write_tracking_ramblock_stop(block
->idstr
, block
->page_size
,
1810 block
->host
, block
->max_length
);
1812 /* Cleanup flags and remove reference */
1813 block
->flags
&= ~RAM_UF_WRITEPROTECT
;
1814 memory_region_unref(block
->mr
);
1817 /* Finally close UFFD file descriptor */
1818 uffd_close_fd(rs
->uffdio_fd
);
1823 /* No target OS support, stubs just fail or ignore */
1825 static RAMBlock
*poll_fault_page(RAMState
*rs
, ram_addr_t
*offset
)
1833 static int ram_save_release_protection(RAMState
*rs
, PageSearchStatus
*pss
,
1834 unsigned long start_page
)
1843 bool ram_write_tracking_available(void)
1848 bool ram_write_tracking_compatible(void)
1854 int ram_write_tracking_start(void)
1860 void ram_write_tracking_stop(void)
1864 #endif /* defined(__linux__) */
1867 * get_queued_page: unqueue a page from the postcopy requests
1869 * Skips pages that are already sent (!dirty)
1871 * Returns true if a queued page is found
1873 * @rs: current RAM state
1874 * @pss: data about the state of the current dirty page scan
1876 static bool get_queued_page(RAMState
*rs
, PageSearchStatus
*pss
)
1883 block
= unqueue_page(rs
, &offset
);
1885 * We're sending this page, and since it's postcopy nothing else
1886 * will dirty it, and we must make sure it doesn't get sent again
1887 * even if this queue request was received after the background
1888 * search already sent it.
1893 page
= offset
>> TARGET_PAGE_BITS
;
1894 dirty
= test_bit(page
, block
->bmap
);
1896 trace_get_queued_page_not_dirty(block
->idstr
, (uint64_t)offset
,
1899 trace_get_queued_page(block
->idstr
, (uint64_t)offset
, page
);
1903 } while (block
&& !dirty
);
1907 * Poll write faults too if background snapshot is enabled; that's
1908 * when we have vcpus got blocked by the write protected pages.
1910 block
= poll_fault_page(rs
, &offset
);
1915 * We want the background search to continue from the queued page
1916 * since the guest is likely to want other pages near to the page
1917 * it just requested.
1920 pss
->page
= offset
>> TARGET_PAGE_BITS
;
1923 * This unqueued page would break the "one round" check, even is
1926 pss
->complete_round
= false;
1933 * migration_page_queue_free: drop any remaining pages in the ram
1936 * It should be empty at the end anyway, but in error cases there may
1937 * be some left. in case that there is any page left, we drop it.
1940 static void migration_page_queue_free(RAMState
*rs
)
1942 struct RAMSrcPageRequest
*mspr
, *next_mspr
;
1943 /* This queue generally should be empty - but in the case of a failed
1944 * migration might have some droppings in.
1946 RCU_READ_LOCK_GUARD();
1947 QSIMPLEQ_FOREACH_SAFE(mspr
, &rs
->src_page_requests
, next_req
, next_mspr
) {
1948 memory_region_unref(mspr
->rb
->mr
);
1949 QSIMPLEQ_REMOVE_HEAD(&rs
->src_page_requests
, next_req
);
1955 * ram_save_queue_pages: queue the page for transmission
1957 * A request from postcopy destination for example.
1959 * Returns zero on success or negative on error
1961 * @rbname: Name of the RAMBLock of the request. NULL means the
1962 * same that last one.
1963 * @start: starting address from the start of the RAMBlock
1964 * @len: length (in bytes) to send
1966 int ram_save_queue_pages(const char *rbname
, ram_addr_t start
, ram_addr_t len
)
1969 RAMState
*rs
= ram_state
;
1971 stat64_add(&mig_stats
.postcopy_requests
, 1);
1972 RCU_READ_LOCK_GUARD();
1975 /* Reuse last RAMBlock */
1976 ramblock
= rs
->last_req_rb
;
1980 * Shouldn't happen, we can't reuse the last RAMBlock if
1981 * it's the 1st request.
1983 error_report("ram_save_queue_pages no previous block");
1987 ramblock
= qemu_ram_block_by_name(rbname
);
1990 /* We shouldn't be asked for a non-existent RAMBlock */
1991 error_report("ram_save_queue_pages no block '%s'", rbname
);
1994 rs
->last_req_rb
= ramblock
;
1996 trace_ram_save_queue_pages(ramblock
->idstr
, start
, len
);
1997 if (!offset_in_ramblock(ramblock
, start
+ len
- 1)) {
1998 error_report("%s request overrun start=" RAM_ADDR_FMT
" len="
1999 RAM_ADDR_FMT
" blocklen=" RAM_ADDR_FMT
,
2000 __func__
, start
, len
, ramblock
->used_length
);
2005 * When with postcopy preempt, we send back the page directly in the
2008 if (postcopy_preempt_active()) {
2009 ram_addr_t page_start
= start
>> TARGET_PAGE_BITS
;
2010 size_t page_size
= qemu_ram_pagesize(ramblock
);
2011 PageSearchStatus
*pss
= &ram_state
->pss
[RAM_CHANNEL_POSTCOPY
];
2014 qemu_mutex_lock(&rs
->bitmap_mutex
);
2016 pss_init(pss
, ramblock
, page_start
);
2018 * Always use the preempt channel, and make sure it's there. It's
2019 * safe to access without lock, because when rp-thread is running
2020 * we should be the only one who operates on the qemufile
2022 pss
->pss_channel
= migrate_get_current()->postcopy_qemufile_src
;
2023 assert(pss
->pss_channel
);
2026 * It must be either one or multiple of host page size. Just
2027 * assert; if something wrong we're mostly split brain anyway.
2029 assert(len
% page_size
== 0);
2031 if (ram_save_host_page_urgent(pss
)) {
2032 error_report("%s: ram_save_host_page_urgent() failed: "
2033 "ramblock=%s, start_addr=0x"RAM_ADDR_FMT
,
2034 __func__
, ramblock
->idstr
, start
);
2039 * NOTE: after ram_save_host_page_urgent() succeeded, pss->page
2040 * will automatically be moved and point to the next host page
2041 * we're going to send, so no need to update here.
2043 * Normally QEMU never sends >1 host page in requests, so
2044 * logically we don't even need that as the loop should only
2045 * run once, but just to be consistent.
2049 qemu_mutex_unlock(&rs
->bitmap_mutex
);
2054 struct RAMSrcPageRequest
*new_entry
=
2055 g_new0(struct RAMSrcPageRequest
, 1);
2056 new_entry
->rb
= ramblock
;
2057 new_entry
->offset
= start
;
2058 new_entry
->len
= len
;
2060 memory_region_ref(ramblock
->mr
);
2061 qemu_mutex_lock(&rs
->src_page_req_mutex
);
2062 QSIMPLEQ_INSERT_TAIL(&rs
->src_page_requests
, new_entry
, next_req
);
2063 migration_make_urgent_request();
2064 qemu_mutex_unlock(&rs
->src_page_req_mutex
);
2069 static bool save_page_use_compression(RAMState
*rs
)
2071 if (!migrate_compress()) {
2076 * If xbzrle is enabled (e.g., after first round of migration), stop
2077 * using the data compression. In theory, xbzrle can do better than
2080 if (rs
->xbzrle_started
) {
2088 * try to compress the page before posting it out, return true if the page
2089 * has been properly handled by compression, otherwise needs other
2090 * paths to handle it
2092 static bool save_compress_page(RAMState
*rs
, PageSearchStatus
*pss
,
2093 RAMBlock
*block
, ram_addr_t offset
)
2095 if (!save_page_use_compression(rs
)) {
2100 * When starting the process of a new block, the first page of
2101 * the block should be sent out before other pages in the same
2102 * block, and all the pages in last block should have been sent
2103 * out, keeping this order is important, because the 'cont' flag
2104 * is used to avoid resending the block name.
2106 * We post the fist page as normal page as compression will take
2107 * much CPU resource.
2109 if (block
!= pss
->last_sent_block
) {
2110 ram_flush_compressed_data(rs
);
2114 if (compress_page_with_multi_thread(block
, offset
, send_queued_data
) > 0) {
2118 compression_counters
.busy
++;
2123 * ram_save_target_page_legacy: save one target page
2125 * Returns the number of pages written
2127 * @rs: current RAM state
2128 * @pss: data about the page we want to send
2130 static int ram_save_target_page_legacy(RAMState
*rs
, PageSearchStatus
*pss
)
2132 RAMBlock
*block
= pss
->block
;
2133 ram_addr_t offset
= ((ram_addr_t
)pss
->page
) << TARGET_PAGE_BITS
;
2136 if (control_save_page(pss
, block
, offset
, &res
)) {
2140 if (save_compress_page(rs
, pss
, block
, offset
)) {
2144 res
= save_zero_page(pss
, pss
->pss_channel
, block
, offset
);
2146 /* Must let xbzrle know, otherwise a previous (now 0'd) cached
2147 * page would be stale
2149 if (rs
->xbzrle_started
) {
2150 XBZRLE_cache_lock();
2151 xbzrle_cache_zero_page(rs
, block
->offset
+ offset
);
2152 XBZRLE_cache_unlock();
2158 * Do not use multifd in postcopy as one whole host page should be
2159 * placed. Meanwhile postcopy requires atomic update of pages, so even
2160 * if host page size == guest page size the dest guest during run may
2161 * still see partially copied pages which is data corruption.
2163 if (migrate_multifd() && !migration_in_postcopy()) {
2164 return ram_save_multifd_page(pss
->pss_channel
, block
, offset
);
2167 return ram_save_page(rs
, pss
);
2170 /* Should be called before sending a host page */
2171 static void pss_host_page_prepare(PageSearchStatus
*pss
)
2173 /* How many guest pages are there in one host page? */
2174 size_t guest_pfns
= qemu_ram_pagesize(pss
->block
) >> TARGET_PAGE_BITS
;
2176 pss
->host_page_sending
= true;
2177 if (guest_pfns
<= 1) {
2179 * This covers both when guest psize == host psize, or when guest
2180 * has larger psize than the host (guest_pfns==0).
2182 * For the latter, we always send one whole guest page per
2183 * iteration of the host page (example: an Alpha VM on x86 host
2184 * will have guest psize 8K while host psize 4K).
2186 pss
->host_page_start
= pss
->page
;
2187 pss
->host_page_end
= pss
->page
+ 1;
2190 * The host page spans over multiple guest pages, we send them
2191 * within the same host page iteration.
2193 pss
->host_page_start
= ROUND_DOWN(pss
->page
, guest_pfns
);
2194 pss
->host_page_end
= ROUND_UP(pss
->page
+ 1, guest_pfns
);
2199 * Whether the page pointed by PSS is within the host page being sent.
2200 * Must be called after a previous pss_host_page_prepare().
2202 static bool pss_within_range(PageSearchStatus
*pss
)
2204 ram_addr_t ram_addr
;
2206 assert(pss
->host_page_sending
);
2208 /* Over host-page boundary? */
2209 if (pss
->page
>= pss
->host_page_end
) {
2213 ram_addr
= ((ram_addr_t
)pss
->page
) << TARGET_PAGE_BITS
;
2215 return offset_in_ramblock(pss
->block
, ram_addr
);
2218 static void pss_host_page_finish(PageSearchStatus
*pss
)
2220 pss
->host_page_sending
= false;
2221 /* This is not needed, but just to reset it */
2222 pss
->host_page_start
= pss
->host_page_end
= 0;
2226 * Send an urgent host page specified by `pss'. Need to be called with
2227 * bitmap_mutex held.
2229 * Returns 0 if save host page succeeded, false otherwise.
2231 static int ram_save_host_page_urgent(PageSearchStatus
*pss
)
2233 bool page_dirty
, sent
= false;
2234 RAMState
*rs
= ram_state
;
2237 trace_postcopy_preempt_send_host_page(pss
->block
->idstr
, pss
->page
);
2238 pss_host_page_prepare(pss
);
2241 * If precopy is sending the same page, let it be done in precopy, or
2242 * we could send the same page in two channels and none of them will
2243 * receive the whole page.
2245 if (pss_overlap(pss
, &ram_state
->pss
[RAM_CHANNEL_PRECOPY
])) {
2246 trace_postcopy_preempt_hit(pss
->block
->idstr
,
2247 pss
->page
<< TARGET_PAGE_BITS
);
2252 page_dirty
= migration_bitmap_clear_dirty(rs
, pss
->block
, pss
->page
);
2255 /* Be strict to return code; it must be 1, or what else? */
2256 if (migration_ops
->ram_save_target_page(rs
, pss
) != 1) {
2257 error_report_once("%s: ram_save_target_page failed", __func__
);
2263 pss_find_next_dirty(pss
);
2264 } while (pss_within_range(pss
));
2266 pss_host_page_finish(pss
);
2267 /* For urgent requests, flush immediately if sent */
2269 qemu_fflush(pss
->pss_channel
);
2275 * ram_save_host_page: save a whole host page
2277 * Starting at *offset send pages up to the end of the current host
2278 * page. It's valid for the initial offset to point into the middle of
2279 * a host page in which case the remainder of the hostpage is sent.
2280 * Only dirty target pages are sent. Note that the host page size may
2281 * be a huge page for this block.
2283 * The saving stops at the boundary of the used_length of the block
2284 * if the RAMBlock isn't a multiple of the host page size.
2286 * The caller must be with ram_state.bitmap_mutex held to call this
2287 * function. Note that this function can temporarily release the lock, but
2288 * when the function is returned it'll make sure the lock is still held.
2290 * Returns the number of pages written or negative on error
2292 * @rs: current RAM state
2293 * @pss: data about the page we want to send
2295 static int ram_save_host_page(RAMState
*rs
, PageSearchStatus
*pss
)
2297 bool page_dirty
, preempt_active
= postcopy_preempt_active();
2298 int tmppages
, pages
= 0;
2299 size_t pagesize_bits
=
2300 qemu_ram_pagesize(pss
->block
) >> TARGET_PAGE_BITS
;
2301 unsigned long start_page
= pss
->page
;
2304 if (migrate_ram_is_ignored(pss
->block
)) {
2305 error_report("block %s should not be migrated !", pss
->block
->idstr
);
2309 /* Update host page boundary information */
2310 pss_host_page_prepare(pss
);
2313 page_dirty
= migration_bitmap_clear_dirty(rs
, pss
->block
, pss
->page
);
2315 /* Check the pages is dirty and if it is send it */
2318 * Properly yield the lock only in postcopy preempt mode
2319 * because both migration thread and rp-return thread can
2320 * operate on the bitmaps.
2322 if (preempt_active
) {
2323 qemu_mutex_unlock(&rs
->bitmap_mutex
);
2325 tmppages
= migration_ops
->ram_save_target_page(rs
, pss
);
2326 if (tmppages
>= 0) {
2329 * Allow rate limiting to happen in the middle of huge pages if
2330 * something is sent in the current iteration.
2332 if (pagesize_bits
> 1 && tmppages
> 0) {
2333 migration_rate_limit();
2336 if (preempt_active
) {
2337 qemu_mutex_lock(&rs
->bitmap_mutex
);
2344 pss_host_page_finish(pss
);
2348 pss_find_next_dirty(pss
);
2349 } while (pss_within_range(pss
));
2351 pss_host_page_finish(pss
);
2353 res
= ram_save_release_protection(rs
, pss
, start_page
);
2354 return (res
< 0 ? res
: pages
);
2358 * ram_find_and_save_block: finds a dirty page and sends it to f
2360 * Called within an RCU critical section.
2362 * Returns the number of pages written where zero means no dirty pages,
2363 * or negative on error
2365 * @rs: current RAM state
2367 * On systems where host-page-size > target-page-size it will send all the
2368 * pages in a host page that are dirty.
2370 static int ram_find_and_save_block(RAMState
*rs
)
2372 PageSearchStatus
*pss
= &rs
->pss
[RAM_CHANNEL_PRECOPY
];
2375 /* No dirty page as there is zero RAM */
2376 if (!rs
->ram_bytes_total
) {
2381 * Always keep last_seen_block/last_page valid during this procedure,
2382 * because find_dirty_block() relies on these values (e.g., we compare
2383 * last_seen_block with pss.block to see whether we searched all the
2384 * ramblocks) to detect the completion of migration. Having NULL value
2385 * of last_seen_block can conditionally cause below loop to run forever.
2387 if (!rs
->last_seen_block
) {
2388 rs
->last_seen_block
= QLIST_FIRST_RCU(&ram_list
.blocks
);
2392 pss_init(pss
, rs
->last_seen_block
, rs
->last_page
);
2395 if (!get_queued_page(rs
, pss
)) {
2396 /* priority queue empty, so just search for something dirty */
2397 int res
= find_dirty_block(rs
, pss
);
2398 if (res
!= PAGE_DIRTY_FOUND
) {
2399 if (res
== PAGE_ALL_CLEAN
) {
2401 } else if (res
== PAGE_TRY_AGAIN
) {
2403 } else if (res
< 0) {
2409 pages
= ram_save_host_page(rs
, pss
);
2415 rs
->last_seen_block
= pss
->block
;
2416 rs
->last_page
= pss
->page
;
2421 static uint64_t ram_bytes_total_with_ignored(void)
2426 RCU_READ_LOCK_GUARD();
2428 RAMBLOCK_FOREACH_MIGRATABLE(block
) {
2429 total
+= block
->used_length
;
2434 uint64_t ram_bytes_total(void)
2439 RCU_READ_LOCK_GUARD();
2441 RAMBLOCK_FOREACH_NOT_IGNORED(block
) {
2442 total
+= block
->used_length
;
2447 static void xbzrle_load_setup(void)
2449 XBZRLE
.decoded_buf
= g_malloc(TARGET_PAGE_SIZE
);
2452 static void xbzrle_load_cleanup(void)
2454 g_free(XBZRLE
.decoded_buf
);
2455 XBZRLE
.decoded_buf
= NULL
;
2458 static void ram_state_cleanup(RAMState
**rsp
)
2461 migration_page_queue_free(*rsp
);
2462 qemu_mutex_destroy(&(*rsp
)->bitmap_mutex
);
2463 qemu_mutex_destroy(&(*rsp
)->src_page_req_mutex
);
2469 static void xbzrle_cleanup(void)
2471 XBZRLE_cache_lock();
2473 cache_fini(XBZRLE
.cache
);
2474 g_free(XBZRLE
.encoded_buf
);
2475 g_free(XBZRLE
.current_buf
);
2476 g_free(XBZRLE
.zero_target_page
);
2477 XBZRLE
.cache
= NULL
;
2478 XBZRLE
.encoded_buf
= NULL
;
2479 XBZRLE
.current_buf
= NULL
;
2480 XBZRLE
.zero_target_page
= NULL
;
2482 XBZRLE_cache_unlock();
2485 static void ram_save_cleanup(void *opaque
)
2487 RAMState
**rsp
= opaque
;
2490 /* We don't use dirty log with background snapshots */
2491 if (!migrate_background_snapshot()) {
2492 /* caller have hold iothread lock or is in a bh, so there is
2493 * no writing race against the migration bitmap
2495 if (global_dirty_tracking
& GLOBAL_DIRTY_MIGRATION
) {
2497 * do not stop dirty log without starting it, since
2498 * memory_global_dirty_log_stop will assert that
2499 * memory_global_dirty_log_start/stop used in pairs
2501 memory_global_dirty_log_stop(GLOBAL_DIRTY_MIGRATION
);
2505 RAMBLOCK_FOREACH_NOT_IGNORED(block
) {
2506 g_free(block
->clear_bmap
);
2507 block
->clear_bmap
= NULL
;
2508 g_free(block
->bmap
);
2513 compress_threads_save_cleanup();
2514 ram_state_cleanup(rsp
);
2515 g_free(migration_ops
);
2516 migration_ops
= NULL
;
2519 static void ram_state_reset(RAMState
*rs
)
2523 for (i
= 0; i
< RAM_CHANNEL_MAX
; i
++) {
2524 rs
->pss
[i
].last_sent_block
= NULL
;
2527 rs
->last_seen_block
= NULL
;
2529 rs
->last_version
= ram_list
.version
;
2530 rs
->xbzrle_started
= false;
2533 #define MAX_WAIT 50 /* ms, half buffered_file limit */
2535 /* **** functions for postcopy ***** */
2537 void ram_postcopy_migrated_memory_release(MigrationState
*ms
)
2539 struct RAMBlock
*block
;
2541 RAMBLOCK_FOREACH_NOT_IGNORED(block
) {
2542 unsigned long *bitmap
= block
->bmap
;
2543 unsigned long range
= block
->used_length
>> TARGET_PAGE_BITS
;
2544 unsigned long run_start
= find_next_zero_bit(bitmap
, range
, 0);
2546 while (run_start
< range
) {
2547 unsigned long run_end
= find_next_bit(bitmap
, range
, run_start
+ 1);
2548 ram_discard_range(block
->idstr
,
2549 ((ram_addr_t
)run_start
) << TARGET_PAGE_BITS
,
2550 ((ram_addr_t
)(run_end
- run_start
))
2551 << TARGET_PAGE_BITS
);
2552 run_start
= find_next_zero_bit(bitmap
, range
, run_end
+ 1);
2558 * postcopy_send_discard_bm_ram: discard a RAMBlock
2560 * Callback from postcopy_each_ram_send_discard for each RAMBlock
2562 * @ms: current migration state
2563 * @block: RAMBlock to discard
2565 static void postcopy_send_discard_bm_ram(MigrationState
*ms
, RAMBlock
*block
)
2567 unsigned long end
= block
->used_length
>> TARGET_PAGE_BITS
;
2568 unsigned long current
;
2569 unsigned long *bitmap
= block
->bmap
;
2571 for (current
= 0; current
< end
; ) {
2572 unsigned long one
= find_next_bit(bitmap
, end
, current
);
2573 unsigned long zero
, discard_length
;
2579 zero
= find_next_zero_bit(bitmap
, end
, one
+ 1);
2582 discard_length
= end
- one
;
2584 discard_length
= zero
- one
;
2586 postcopy_discard_send_range(ms
, one
, discard_length
);
2587 current
= one
+ discard_length
;
2591 static void postcopy_chunk_hostpages_pass(MigrationState
*ms
, RAMBlock
*block
);
2594 * postcopy_each_ram_send_discard: discard all RAMBlocks
2596 * Utility for the outgoing postcopy code.
2597 * Calls postcopy_send_discard_bm_ram for each RAMBlock
2598 * passing it bitmap indexes and name.
2599 * (qemu_ram_foreach_block ends up passing unscaled lengths
2600 * which would mean postcopy code would have to deal with target page)
2602 * @ms: current migration state
2604 static void postcopy_each_ram_send_discard(MigrationState
*ms
)
2606 struct RAMBlock
*block
;
2608 RAMBLOCK_FOREACH_NOT_IGNORED(block
) {
2609 postcopy_discard_send_init(ms
, block
->idstr
);
2612 * Deal with TPS != HPS and huge pages. It discard any partially sent
2613 * host-page size chunks, mark any partially dirty host-page size
2614 * chunks as all dirty. In this case the host-page is the host-page
2615 * for the particular RAMBlock, i.e. it might be a huge page.
2617 postcopy_chunk_hostpages_pass(ms
, block
);
2620 * Postcopy sends chunks of bitmap over the wire, but it
2621 * just needs indexes at this point, avoids it having
2622 * target page specific code.
2624 postcopy_send_discard_bm_ram(ms
, block
);
2625 postcopy_discard_send_finish(ms
);
2630 * postcopy_chunk_hostpages_pass: canonicalize bitmap in hostpages
2632 * Helper for postcopy_chunk_hostpages; it's called twice to
2633 * canonicalize the two bitmaps, that are similar, but one is
2636 * Postcopy requires that all target pages in a hostpage are dirty or
2637 * clean, not a mix. This function canonicalizes the bitmaps.
2639 * @ms: current migration state
2640 * @block: block that contains the page we want to canonicalize
2642 static void postcopy_chunk_hostpages_pass(MigrationState
*ms
, RAMBlock
*block
)
2644 RAMState
*rs
= ram_state
;
2645 unsigned long *bitmap
= block
->bmap
;
2646 unsigned int host_ratio
= block
->page_size
/ TARGET_PAGE_SIZE
;
2647 unsigned long pages
= block
->used_length
>> TARGET_PAGE_BITS
;
2648 unsigned long run_start
;
2650 if (block
->page_size
== TARGET_PAGE_SIZE
) {
2651 /* Easy case - TPS==HPS for a non-huge page RAMBlock */
2655 /* Find a dirty page */
2656 run_start
= find_next_bit(bitmap
, pages
, 0);
2658 while (run_start
< pages
) {
2661 * If the start of this run of pages is in the middle of a host
2662 * page, then we need to fixup this host page.
2664 if (QEMU_IS_ALIGNED(run_start
, host_ratio
)) {
2665 /* Find the end of this run */
2666 run_start
= find_next_zero_bit(bitmap
, pages
, run_start
+ 1);
2668 * If the end isn't at the start of a host page, then the
2669 * run doesn't finish at the end of a host page
2670 * and we need to discard.
2674 if (!QEMU_IS_ALIGNED(run_start
, host_ratio
)) {
2676 unsigned long fixup_start_addr
= QEMU_ALIGN_DOWN(run_start
,
2678 run_start
= QEMU_ALIGN_UP(run_start
, host_ratio
);
2680 /* Clean up the bitmap */
2681 for (page
= fixup_start_addr
;
2682 page
< fixup_start_addr
+ host_ratio
; page
++) {
2684 * Remark them as dirty, updating the count for any pages
2685 * that weren't previously dirty.
2687 rs
->migration_dirty_pages
+= !test_and_set_bit(page
, bitmap
);
2691 /* Find the next dirty page for the next iteration */
2692 run_start
= find_next_bit(bitmap
, pages
, run_start
);
2697 * ram_postcopy_send_discard_bitmap: transmit the discard bitmap
2699 * Transmit the set of pages to be discarded after precopy to the target
2700 * these are pages that:
2701 * a) Have been previously transmitted but are now dirty again
2702 * b) Pages that have never been transmitted, this ensures that
2703 * any pages on the destination that have been mapped by background
2704 * tasks get discarded (transparent huge pages is the specific concern)
2705 * Hopefully this is pretty sparse
2707 * @ms: current migration state
2709 void ram_postcopy_send_discard_bitmap(MigrationState
*ms
)
2711 RAMState
*rs
= ram_state
;
2713 RCU_READ_LOCK_GUARD();
2715 /* This should be our last sync, the src is now paused */
2716 migration_bitmap_sync(rs
, false);
2718 /* Easiest way to make sure we don't resume in the middle of a host-page */
2719 rs
->pss
[RAM_CHANNEL_PRECOPY
].last_sent_block
= NULL
;
2720 rs
->last_seen_block
= NULL
;
2723 postcopy_each_ram_send_discard(ms
);
2725 trace_ram_postcopy_send_discard_bitmap();
2729 * ram_discard_range: discard dirtied pages at the beginning of postcopy
2731 * Returns zero on success
2733 * @rbname: name of the RAMBlock of the request. NULL means the
2734 * same that last one.
2735 * @start: RAMBlock starting page
2736 * @length: RAMBlock size
2738 int ram_discard_range(const char *rbname
, uint64_t start
, size_t length
)
2740 trace_ram_discard_range(rbname
, start
, length
);
2742 RCU_READ_LOCK_GUARD();
2743 RAMBlock
*rb
= qemu_ram_block_by_name(rbname
);
2746 error_report("ram_discard_range: Failed to find block '%s'", rbname
);
2751 * On source VM, we don't need to update the received bitmap since
2752 * we don't even have one.
2754 if (rb
->receivedmap
) {
2755 bitmap_clear(rb
->receivedmap
, start
>> qemu_target_page_bits(),
2756 length
>> qemu_target_page_bits());
2759 return ram_block_discard_range(rb
, start
, length
);
2763 * For every allocation, we will try not to crash the VM if the
2764 * allocation failed.
2766 static int xbzrle_init(void)
2768 Error
*local_err
= NULL
;
2770 if (!migrate_xbzrle()) {
2774 XBZRLE_cache_lock();
2776 XBZRLE
.zero_target_page
= g_try_malloc0(TARGET_PAGE_SIZE
);
2777 if (!XBZRLE
.zero_target_page
) {
2778 error_report("%s: Error allocating zero page", __func__
);
2782 XBZRLE
.cache
= cache_init(migrate_xbzrle_cache_size(),
2783 TARGET_PAGE_SIZE
, &local_err
);
2784 if (!XBZRLE
.cache
) {
2785 error_report_err(local_err
);
2786 goto free_zero_page
;
2789 XBZRLE
.encoded_buf
= g_try_malloc0(TARGET_PAGE_SIZE
);
2790 if (!XBZRLE
.encoded_buf
) {
2791 error_report("%s: Error allocating encoded_buf", __func__
);
2795 XBZRLE
.current_buf
= g_try_malloc(TARGET_PAGE_SIZE
);
2796 if (!XBZRLE
.current_buf
) {
2797 error_report("%s: Error allocating current_buf", __func__
);
2798 goto free_encoded_buf
;
2801 /* We are all good */
2802 XBZRLE_cache_unlock();
2806 g_free(XBZRLE
.encoded_buf
);
2807 XBZRLE
.encoded_buf
= NULL
;
2809 cache_fini(XBZRLE
.cache
);
2810 XBZRLE
.cache
= NULL
;
2812 g_free(XBZRLE
.zero_target_page
);
2813 XBZRLE
.zero_target_page
= NULL
;
2815 XBZRLE_cache_unlock();
2819 static int ram_state_init(RAMState
**rsp
)
2821 *rsp
= g_try_new0(RAMState
, 1);
2824 error_report("%s: Init ramstate fail", __func__
);
2828 qemu_mutex_init(&(*rsp
)->bitmap_mutex
);
2829 qemu_mutex_init(&(*rsp
)->src_page_req_mutex
);
2830 QSIMPLEQ_INIT(&(*rsp
)->src_page_requests
);
2831 (*rsp
)->ram_bytes_total
= ram_bytes_total();
2834 * Count the total number of pages used by ram blocks not including any
2835 * gaps due to alignment or unplugs.
2836 * This must match with the initial values of dirty bitmap.
2838 (*rsp
)->migration_dirty_pages
= (*rsp
)->ram_bytes_total
>> TARGET_PAGE_BITS
;
2839 ram_state_reset(*rsp
);
2844 static void ram_list_init_bitmaps(void)
2846 MigrationState
*ms
= migrate_get_current();
2848 unsigned long pages
;
2851 /* Skip setting bitmap if there is no RAM */
2852 if (ram_bytes_total()) {
2853 shift
= ms
->clear_bitmap_shift
;
2854 if (shift
> CLEAR_BITMAP_SHIFT_MAX
) {
2855 error_report("clear_bitmap_shift (%u) too big, using "
2856 "max value (%u)", shift
, CLEAR_BITMAP_SHIFT_MAX
);
2857 shift
= CLEAR_BITMAP_SHIFT_MAX
;
2858 } else if (shift
< CLEAR_BITMAP_SHIFT_MIN
) {
2859 error_report("clear_bitmap_shift (%u) too small, using "
2860 "min value (%u)", shift
, CLEAR_BITMAP_SHIFT_MIN
);
2861 shift
= CLEAR_BITMAP_SHIFT_MIN
;
2864 RAMBLOCK_FOREACH_NOT_IGNORED(block
) {
2865 pages
= block
->max_length
>> TARGET_PAGE_BITS
;
2867 * The initial dirty bitmap for migration must be set with all
2868 * ones to make sure we'll migrate every guest RAM page to
2870 * Here we set RAMBlock.bmap all to 1 because when rebegin a
2871 * new migration after a failed migration, ram_list.
2872 * dirty_memory[DIRTY_MEMORY_MIGRATION] don't include the whole
2875 block
->bmap
= bitmap_new(pages
);
2876 bitmap_set(block
->bmap
, 0, pages
);
2877 block
->clear_bmap_shift
= shift
;
2878 block
->clear_bmap
= bitmap_new(clear_bmap_size(pages
, shift
));
2883 static void migration_bitmap_clear_discarded_pages(RAMState
*rs
)
2885 unsigned long pages
;
2888 RCU_READ_LOCK_GUARD();
2890 RAMBLOCK_FOREACH_NOT_IGNORED(rb
) {
2891 pages
= ramblock_dirty_bitmap_clear_discarded_pages(rb
);
2892 rs
->migration_dirty_pages
-= pages
;
2896 static void ram_init_bitmaps(RAMState
*rs
)
2898 /* For memory_global_dirty_log_start below. */
2899 qemu_mutex_lock_iothread();
2900 qemu_mutex_lock_ramlist();
2902 WITH_RCU_READ_LOCK_GUARD() {
2903 ram_list_init_bitmaps();
2904 /* We don't use dirty log with background snapshots */
2905 if (!migrate_background_snapshot()) {
2906 memory_global_dirty_log_start(GLOBAL_DIRTY_MIGRATION
);
2907 migration_bitmap_sync_precopy(rs
, false);
2910 qemu_mutex_unlock_ramlist();
2911 qemu_mutex_unlock_iothread();
2914 * After an eventual first bitmap sync, fixup the initial bitmap
2915 * containing all 1s to exclude any discarded pages from migration.
2917 migration_bitmap_clear_discarded_pages(rs
);
2920 static int ram_init_all(RAMState
**rsp
)
2922 if (ram_state_init(rsp
)) {
2926 if (xbzrle_init()) {
2927 ram_state_cleanup(rsp
);
2931 ram_init_bitmaps(*rsp
);
2936 static void ram_state_resume_prepare(RAMState
*rs
, QEMUFile
*out
)
2942 * Postcopy is not using xbzrle/compression, so no need for that.
2943 * Also, since source are already halted, we don't need to care
2944 * about dirty page logging as well.
2947 RAMBLOCK_FOREACH_NOT_IGNORED(block
) {
2948 pages
+= bitmap_count_one(block
->bmap
,
2949 block
->used_length
>> TARGET_PAGE_BITS
);
2952 /* This may not be aligned with current bitmaps. Recalculate. */
2953 rs
->migration_dirty_pages
= pages
;
2955 ram_state_reset(rs
);
2957 /* Update RAMState cache of output QEMUFile */
2958 rs
->pss
[RAM_CHANNEL_PRECOPY
].pss_channel
= out
;
2960 trace_ram_state_resume_prepare(pages
);
2964 * This function clears bits of the free pages reported by the caller from the
2965 * migration dirty bitmap. @addr is the host address corresponding to the
2966 * start of the continuous guest free pages, and @len is the total bytes of
2969 void qemu_guest_free_page_hint(void *addr
, size_t len
)
2973 size_t used_len
, start
, npages
;
2974 MigrationState
*s
= migrate_get_current();
2976 /* This function is currently expected to be used during live migration */
2977 if (!migration_is_setup_or_active(s
->state
)) {
2981 for (; len
> 0; len
-= used_len
, addr
+= used_len
) {
2982 block
= qemu_ram_block_from_host(addr
, false, &offset
);
2983 if (unlikely(!block
|| offset
>= block
->used_length
)) {
2985 * The implementation might not support RAMBlock resize during
2986 * live migration, but it could happen in theory with future
2987 * updates. So we add a check here to capture that case.
2989 error_report_once("%s unexpected error", __func__
);
2993 if (len
<= block
->used_length
- offset
) {
2996 used_len
= block
->used_length
- offset
;
2999 start
= offset
>> TARGET_PAGE_BITS
;
3000 npages
= used_len
>> TARGET_PAGE_BITS
;
3002 qemu_mutex_lock(&ram_state
->bitmap_mutex
);
3004 * The skipped free pages are equavalent to be sent from clear_bmap's
3005 * perspective, so clear the bits from the memory region bitmap which
3006 * are initially set. Otherwise those skipped pages will be sent in
3007 * the next round after syncing from the memory region bitmap.
3009 migration_clear_memory_region_dirty_bitmap_range(block
, start
, npages
);
3010 ram_state
->migration_dirty_pages
-=
3011 bitmap_count_one_with_offset(block
->bmap
, start
, npages
);
3012 bitmap_clear(block
->bmap
, start
, npages
);
3013 qemu_mutex_unlock(&ram_state
->bitmap_mutex
);
3018 * Each of ram_save_setup, ram_save_iterate and ram_save_complete has
3019 * long-running RCU critical section. When rcu-reclaims in the code
3020 * start to become numerous it will be necessary to reduce the
3021 * granularity of these critical sections.
3025 * ram_save_setup: Setup RAM for migration
3027 * Returns zero to indicate success and negative for error
3029 * @f: QEMUFile where to send the data
3030 * @opaque: RAMState pointer
3032 static int ram_save_setup(QEMUFile
*f
, void *opaque
)
3034 RAMState
**rsp
= opaque
;
3038 if (compress_threads_save_setup()) {
3042 /* migration has already setup the bitmap, reuse it. */
3043 if (!migration_in_colo_state()) {
3044 if (ram_init_all(rsp
) != 0) {
3045 compress_threads_save_cleanup();
3049 (*rsp
)->pss
[RAM_CHANNEL_PRECOPY
].pss_channel
= f
;
3051 WITH_RCU_READ_LOCK_GUARD() {
3052 qemu_put_be64(f
, ram_bytes_total_with_ignored()
3053 | RAM_SAVE_FLAG_MEM_SIZE
);
3055 RAMBLOCK_FOREACH_MIGRATABLE(block
) {
3056 qemu_put_byte(f
, strlen(block
->idstr
));
3057 qemu_put_buffer(f
, (uint8_t *)block
->idstr
, strlen(block
->idstr
));
3058 qemu_put_be64(f
, block
->used_length
);
3059 if (migrate_postcopy_ram() && block
->page_size
!=
3060 qemu_host_page_size
) {
3061 qemu_put_be64(f
, block
->page_size
);
3063 if (migrate_ignore_shared()) {
3064 qemu_put_be64(f
, block
->mr
->addr
);
3069 ram_control_before_iterate(f
, RAM_CONTROL_SETUP
);
3070 ram_control_after_iterate(f
, RAM_CONTROL_SETUP
);
3072 migration_ops
= g_malloc0(sizeof(MigrationOps
));
3073 migration_ops
->ram_save_target_page
= ram_save_target_page_legacy
;
3074 ret
= multifd_send_sync_main(f
);
3079 if (!migrate_multifd_flush_after_each_section()) {
3080 qemu_put_be64(f
, RAM_SAVE_FLAG_MULTIFD_FLUSH
);
3083 qemu_put_be64(f
, RAM_SAVE_FLAG_EOS
);
3090 * ram_save_iterate: iterative stage for migration
3092 * Returns zero to indicate success and negative for error
3094 * @f: QEMUFile where to send the data
3095 * @opaque: RAMState pointer
3097 static int ram_save_iterate(QEMUFile
*f
, void *opaque
)
3099 RAMState
**temp
= opaque
;
3100 RAMState
*rs
= *temp
;
3106 if (blk_mig_bulk_active()) {
3107 /* Avoid transferring ram during bulk phase of block migration as
3108 * the bulk phase will usually take a long time and transferring
3109 * ram updates during that time is pointless. */
3114 * We'll take this lock a little bit long, but it's okay for two reasons.
3115 * Firstly, the only possible other thread to take it is who calls
3116 * qemu_guest_free_page_hint(), which should be rare; secondly, see
3117 * MAX_WAIT (if curious, further see commit 4508bd9ed8053ce) below, which
3118 * guarantees that we'll at least released it in a regular basis.
3120 qemu_mutex_lock(&rs
->bitmap_mutex
);
3121 WITH_RCU_READ_LOCK_GUARD() {
3122 if (ram_list
.version
!= rs
->last_version
) {
3123 ram_state_reset(rs
);
3126 /* Read version before ram_list.blocks */
3129 ram_control_before_iterate(f
, RAM_CONTROL_ROUND
);
3131 t0
= qemu_clock_get_ns(QEMU_CLOCK_REALTIME
);
3133 while ((ret
= migration_rate_exceeded(f
)) == 0 ||
3134 postcopy_has_request(rs
)) {
3137 if (qemu_file_get_error(f
)) {
3141 pages
= ram_find_and_save_block(rs
);
3142 /* no more pages to sent */
3149 qemu_file_set_error(f
, pages
);
3153 rs
->target_page_count
+= pages
;
3156 * During postcopy, it is necessary to make sure one whole host
3157 * page is sent in one chunk.
3159 if (migrate_postcopy_ram()) {
3160 ram_flush_compressed_data(rs
);
3164 * we want to check in the 1st loop, just in case it was the 1st
3165 * time and we had to sync the dirty bitmap.
3166 * qemu_clock_get_ns() is a bit expensive, so we only check each
3169 if ((i
& 63) == 0) {
3170 uint64_t t1
= (qemu_clock_get_ns(QEMU_CLOCK_REALTIME
) - t0
) /
3172 if (t1
> MAX_WAIT
) {
3173 trace_ram_save_iterate_big_wait(t1
, i
);
3180 qemu_mutex_unlock(&rs
->bitmap_mutex
);
3183 * Must occur before EOS (or any QEMUFile operation)
3184 * because of RDMA protocol.
3186 ram_control_after_iterate(f
, RAM_CONTROL_ROUND
);
3190 && migration_is_setup_or_active(migrate_get_current()->state
)) {
3191 if (migrate_multifd_flush_after_each_section()) {
3192 ret
= multifd_send_sync_main(rs
->pss
[RAM_CHANNEL_PRECOPY
].pss_channel
);
3198 qemu_put_be64(f
, RAM_SAVE_FLAG_EOS
);
3200 ram_transferred_add(8);
3202 ret
= qemu_file_get_error(f
);
3212 * ram_save_complete: function called to send the remaining amount of ram
3214 * Returns zero to indicate success or negative on error
3216 * Called with iothread lock
3218 * @f: QEMUFile where to send the data
3219 * @opaque: RAMState pointer
3221 static int ram_save_complete(QEMUFile
*f
, void *opaque
)
3223 RAMState
**temp
= opaque
;
3224 RAMState
*rs
= *temp
;
3227 rs
->last_stage
= !migration_in_colo_state();
3229 WITH_RCU_READ_LOCK_GUARD() {
3230 if (!migration_in_postcopy()) {
3231 migration_bitmap_sync_precopy(rs
, true);
3234 ram_control_before_iterate(f
, RAM_CONTROL_FINISH
);
3236 /* try transferring iterative blocks of memory */
3238 /* flush all remaining blocks regardless of rate limiting */
3239 qemu_mutex_lock(&rs
->bitmap_mutex
);
3243 pages
= ram_find_and_save_block(rs
);
3244 /* no more blocks to sent */
3253 qemu_mutex_unlock(&rs
->bitmap_mutex
);
3255 ram_flush_compressed_data(rs
);
3256 ram_control_after_iterate(f
, RAM_CONTROL_FINISH
);
3263 ret
= multifd_send_sync_main(rs
->pss
[RAM_CHANNEL_PRECOPY
].pss_channel
);
3268 if (!migrate_multifd_flush_after_each_section()) {
3269 qemu_put_be64(f
, RAM_SAVE_FLAG_MULTIFD_FLUSH
);
3271 qemu_put_be64(f
, RAM_SAVE_FLAG_EOS
);
3277 static void ram_state_pending_estimate(void *opaque
, uint64_t *must_precopy
,
3278 uint64_t *can_postcopy
)
3280 RAMState
**temp
= opaque
;
3281 RAMState
*rs
= *temp
;
3283 uint64_t remaining_size
= rs
->migration_dirty_pages
* TARGET_PAGE_SIZE
;
3285 if (migrate_postcopy_ram()) {
3286 /* We can do postcopy, and all the data is postcopiable */
3287 *can_postcopy
+= remaining_size
;
3289 *must_precopy
+= remaining_size
;
3293 static void ram_state_pending_exact(void *opaque
, uint64_t *must_precopy
,
3294 uint64_t *can_postcopy
)
3296 MigrationState
*s
= migrate_get_current();
3297 RAMState
**temp
= opaque
;
3298 RAMState
*rs
= *temp
;
3300 uint64_t remaining_size
= rs
->migration_dirty_pages
* TARGET_PAGE_SIZE
;
3302 if (!migration_in_postcopy() && remaining_size
< s
->threshold_size
) {
3303 qemu_mutex_lock_iothread();
3304 WITH_RCU_READ_LOCK_GUARD() {
3305 migration_bitmap_sync_precopy(rs
, false);
3307 qemu_mutex_unlock_iothread();
3308 remaining_size
= rs
->migration_dirty_pages
* TARGET_PAGE_SIZE
;
3311 if (migrate_postcopy_ram()) {
3312 /* We can do postcopy, and all the data is postcopiable */
3313 *can_postcopy
+= remaining_size
;
3315 *must_precopy
+= remaining_size
;
3319 static int load_xbzrle(QEMUFile
*f
, ram_addr_t addr
, void *host
)
3321 unsigned int xh_len
;
3323 uint8_t *loaded_data
;
3325 /* extract RLE header */
3326 xh_flags
= qemu_get_byte(f
);
3327 xh_len
= qemu_get_be16(f
);
3329 if (xh_flags
!= ENCODING_FLAG_XBZRLE
) {
3330 error_report("Failed to load XBZRLE page - wrong compression!");
3334 if (xh_len
> TARGET_PAGE_SIZE
) {
3335 error_report("Failed to load XBZRLE page - len overflow!");
3338 loaded_data
= XBZRLE
.decoded_buf
;
3339 /* load data and decode */
3340 /* it can change loaded_data to point to an internal buffer */
3341 qemu_get_buffer_in_place(f
, &loaded_data
, xh_len
);
3344 if (xbzrle_decode_buffer(loaded_data
, xh_len
, host
,
3345 TARGET_PAGE_SIZE
) == -1) {
3346 error_report("Failed to load XBZRLE page - decode error!");
3354 * ram_block_from_stream: read a RAMBlock id from the migration stream
3356 * Must be called from within a rcu critical section.
3358 * Returns a pointer from within the RCU-protected ram_list.
3360 * @mis: the migration incoming state pointer
3361 * @f: QEMUFile where to read the data from
3362 * @flags: Page flags (mostly to see if it's a continuation of previous block)
3363 * @channel: the channel we're using
3365 static inline RAMBlock
*ram_block_from_stream(MigrationIncomingState
*mis
,
3366 QEMUFile
*f
, int flags
,
3369 RAMBlock
*block
= mis
->last_recv_block
[channel
];
3373 if (flags
& RAM_SAVE_FLAG_CONTINUE
) {
3375 error_report("Ack, bad migration stream!");
3381 len
= qemu_get_byte(f
);
3382 qemu_get_buffer(f
, (uint8_t *)id
, len
);
3385 block
= qemu_ram_block_by_name(id
);
3387 error_report("Can't find block %s", id
);
3391 if (migrate_ram_is_ignored(block
)) {
3392 error_report("block %s should not be migrated !", id
);
3396 mis
->last_recv_block
[channel
] = block
;
3401 static inline void *host_from_ram_block_offset(RAMBlock
*block
,
3404 if (!offset_in_ramblock(block
, offset
)) {
3408 return block
->host
+ offset
;
3411 static void *host_page_from_ram_block_offset(RAMBlock
*block
,
3414 /* Note: Explicitly no check against offset_in_ramblock(). */
3415 return (void *)QEMU_ALIGN_DOWN((uintptr_t)(block
->host
+ offset
),
3419 static ram_addr_t
host_page_offset_from_ram_block_offset(RAMBlock
*block
,
3422 return ((uintptr_t)block
->host
+ offset
) & (block
->page_size
- 1);
3425 void colo_record_bitmap(RAMBlock
*block
, ram_addr_t
*normal
, uint32_t pages
)
3427 qemu_mutex_lock(&ram_state
->bitmap_mutex
);
3428 for (int i
= 0; i
< pages
; i
++) {
3429 ram_addr_t offset
= normal
[i
];
3430 ram_state
->migration_dirty_pages
+= !test_and_set_bit(
3431 offset
>> TARGET_PAGE_BITS
,
3434 qemu_mutex_unlock(&ram_state
->bitmap_mutex
);
3437 static inline void *colo_cache_from_block_offset(RAMBlock
*block
,
3438 ram_addr_t offset
, bool record_bitmap
)
3440 if (!offset_in_ramblock(block
, offset
)) {
3443 if (!block
->colo_cache
) {
3444 error_report("%s: colo_cache is NULL in block :%s",
3445 __func__
, block
->idstr
);
3450 * During colo checkpoint, we need bitmap of these migrated pages.
3451 * It help us to decide which pages in ram cache should be flushed
3452 * into VM's RAM later.
3454 if (record_bitmap
) {
3455 colo_record_bitmap(block
, &offset
, 1);
3457 return block
->colo_cache
+ offset
;
3461 * ram_handle_compressed: handle the zero page case
3463 * If a page (or a whole RDMA chunk) has been
3464 * determined to be zero, then zap it.
3466 * @host: host address for the zero page
3467 * @ch: what the page is filled from. We only support zero
3468 * @size: size of the zero page
3470 void ram_handle_compressed(void *host
, uint8_t ch
, uint64_t size
)
3472 if (ch
!= 0 || !buffer_is_zero(host
, size
)) {
3473 memset(host
, ch
, size
);
3477 static void colo_init_ram_state(void)
3479 ram_state_init(&ram_state
);
3483 * colo cache: this is for secondary VM, we cache the whole
3484 * memory of the secondary VM, it is need to hold the global lock
3485 * to call this helper.
3487 int colo_init_ram_cache(void)
3491 WITH_RCU_READ_LOCK_GUARD() {
3492 RAMBLOCK_FOREACH_NOT_IGNORED(block
) {
3493 block
->colo_cache
= qemu_anon_ram_alloc(block
->used_length
,
3494 NULL
, false, false);
3495 if (!block
->colo_cache
) {
3496 error_report("%s: Can't alloc memory for COLO cache of block %s,"
3497 "size 0x" RAM_ADDR_FMT
, __func__
, block
->idstr
,
3498 block
->used_length
);
3499 RAMBLOCK_FOREACH_NOT_IGNORED(block
) {
3500 if (block
->colo_cache
) {
3501 qemu_anon_ram_free(block
->colo_cache
, block
->used_length
);
3502 block
->colo_cache
= NULL
;
3507 if (!machine_dump_guest_core(current_machine
)) {
3508 qemu_madvise(block
->colo_cache
, block
->used_length
,
3509 QEMU_MADV_DONTDUMP
);
3515 * Record the dirty pages that sent by PVM, we use this dirty bitmap together
3516 * with to decide which page in cache should be flushed into SVM's RAM. Here
3517 * we use the same name 'ram_bitmap' as for migration.
3519 if (ram_bytes_total()) {
3522 RAMBLOCK_FOREACH_NOT_IGNORED(block
) {
3523 unsigned long pages
= block
->max_length
>> TARGET_PAGE_BITS
;
3524 block
->bmap
= bitmap_new(pages
);
3528 colo_init_ram_state();
3532 /* TODO: duplicated with ram_init_bitmaps */
3533 void colo_incoming_start_dirty_log(void)
3535 RAMBlock
*block
= NULL
;
3536 /* For memory_global_dirty_log_start below. */
3537 qemu_mutex_lock_iothread();
3538 qemu_mutex_lock_ramlist();
3540 memory_global_dirty_log_sync(false);
3541 WITH_RCU_READ_LOCK_GUARD() {
3542 RAMBLOCK_FOREACH_NOT_IGNORED(block
) {
3543 ramblock_sync_dirty_bitmap(ram_state
, block
);
3544 /* Discard this dirty bitmap record */
3545 bitmap_zero(block
->bmap
, block
->max_length
>> TARGET_PAGE_BITS
);
3547 memory_global_dirty_log_start(GLOBAL_DIRTY_MIGRATION
);
3549 ram_state
->migration_dirty_pages
= 0;
3550 qemu_mutex_unlock_ramlist();
3551 qemu_mutex_unlock_iothread();
3554 /* It is need to hold the global lock to call this helper */
3555 void colo_release_ram_cache(void)
3559 memory_global_dirty_log_stop(GLOBAL_DIRTY_MIGRATION
);
3560 RAMBLOCK_FOREACH_NOT_IGNORED(block
) {
3561 g_free(block
->bmap
);
3565 WITH_RCU_READ_LOCK_GUARD() {
3566 RAMBLOCK_FOREACH_NOT_IGNORED(block
) {
3567 if (block
->colo_cache
) {
3568 qemu_anon_ram_free(block
->colo_cache
, block
->used_length
);
3569 block
->colo_cache
= NULL
;
3573 ram_state_cleanup(&ram_state
);
3577 * ram_load_setup: Setup RAM for migration incoming side
3579 * Returns zero to indicate success and negative for error
3581 * @f: QEMUFile where to receive the data
3582 * @opaque: RAMState pointer
3584 static int ram_load_setup(QEMUFile
*f
, void *opaque
)
3586 xbzrle_load_setup();
3587 ramblock_recv_map_init();
3592 static int ram_load_cleanup(void *opaque
)
3596 RAMBLOCK_FOREACH_NOT_IGNORED(rb
) {
3597 qemu_ram_block_writeback(rb
);
3600 xbzrle_load_cleanup();
3602 RAMBLOCK_FOREACH_NOT_IGNORED(rb
) {
3603 g_free(rb
->receivedmap
);
3604 rb
->receivedmap
= NULL
;
3611 * ram_postcopy_incoming_init: allocate postcopy data structures
3613 * Returns 0 for success and negative if there was one error
3615 * @mis: current migration incoming state
3617 * Allocate data structures etc needed by incoming migration with
3618 * postcopy-ram. postcopy-ram's similarly names
3619 * postcopy_ram_incoming_init does the work.
3621 int ram_postcopy_incoming_init(MigrationIncomingState
*mis
)
3623 return postcopy_ram_incoming_init(mis
);
3627 * ram_load_postcopy: load a page in postcopy case
3629 * Returns 0 for success or -errno in case of error
3631 * Called in postcopy mode by ram_load().
3632 * rcu_read_lock is taken prior to this being called.
3634 * @f: QEMUFile where to send the data
3635 * @channel: the channel to use for loading
3637 int ram_load_postcopy(QEMUFile
*f
, int channel
)
3639 int flags
= 0, ret
= 0;
3640 bool place_needed
= false;
3641 bool matches_target_page_size
= false;
3642 MigrationIncomingState
*mis
= migration_incoming_get_current();
3643 PostcopyTmpPage
*tmp_page
= &mis
->postcopy_tmp_pages
[channel
];
3645 while (!ret
&& !(flags
& RAM_SAVE_FLAG_EOS
)) {
3647 void *page_buffer
= NULL
;
3648 void *place_source
= NULL
;
3649 RAMBlock
*block
= NULL
;
3653 addr
= qemu_get_be64(f
);
3656 * If qemu file error, we should stop here, and then "addr"
3659 ret
= qemu_file_get_error(f
);
3664 flags
= addr
& ~TARGET_PAGE_MASK
;
3665 addr
&= TARGET_PAGE_MASK
;
3667 trace_ram_load_postcopy_loop(channel
, (uint64_t)addr
, flags
);
3668 if (flags
& (RAM_SAVE_FLAG_ZERO
| RAM_SAVE_FLAG_PAGE
|
3669 RAM_SAVE_FLAG_COMPRESS_PAGE
)) {
3670 block
= ram_block_from_stream(mis
, f
, flags
, channel
);
3677 * Relying on used_length is racy and can result in false positives.
3678 * We might place pages beyond used_length in case RAM was shrunk
3679 * while in postcopy, which is fine - trying to place via
3680 * UFFDIO_COPY/UFFDIO_ZEROPAGE will never segfault.
3682 if (!block
->host
|| addr
>= block
->postcopy_length
) {
3683 error_report("Illegal RAM offset " RAM_ADDR_FMT
, addr
);
3687 tmp_page
->target_pages
++;
3688 matches_target_page_size
= block
->page_size
== TARGET_PAGE_SIZE
;
3690 * Postcopy requires that we place whole host pages atomically;
3691 * these may be huge pages for RAMBlocks that are backed by
3693 * To make it atomic, the data is read into a temporary page
3694 * that's moved into place later.
3695 * The migration protocol uses, possibly smaller, target-pages
3696 * however the source ensures it always sends all the components
3697 * of a host page in one chunk.
3699 page_buffer
= tmp_page
->tmp_huge_page
+
3700 host_page_offset_from_ram_block_offset(block
, addr
);
3701 /* If all TP are zero then we can optimise the place */
3702 if (tmp_page
->target_pages
== 1) {
3703 tmp_page
->host_addr
=
3704 host_page_from_ram_block_offset(block
, addr
);
3705 } else if (tmp_page
->host_addr
!=
3706 host_page_from_ram_block_offset(block
, addr
)) {
3707 /* not the 1st TP within the HP */
3708 error_report("Non-same host page detected on channel %d: "
3709 "Target host page %p, received host page %p "
3710 "(rb %s offset 0x"RAM_ADDR_FMT
" target_pages %d)",
3711 channel
, tmp_page
->host_addr
,
3712 host_page_from_ram_block_offset(block
, addr
),
3713 block
->idstr
, addr
, tmp_page
->target_pages
);
3719 * If it's the last part of a host page then we place the host
3722 if (tmp_page
->target_pages
==
3723 (block
->page_size
/ TARGET_PAGE_SIZE
)) {
3724 place_needed
= true;
3726 place_source
= tmp_page
->tmp_huge_page
;
3729 switch (flags
& ~RAM_SAVE_FLAG_CONTINUE
) {
3730 case RAM_SAVE_FLAG_ZERO
:
3731 ch
= qemu_get_byte(f
);
3733 * Can skip to set page_buffer when
3734 * this is a zero page and (block->page_size == TARGET_PAGE_SIZE).
3736 if (ch
|| !matches_target_page_size
) {
3737 memset(page_buffer
, ch
, TARGET_PAGE_SIZE
);
3740 tmp_page
->all_zero
= false;
3744 case RAM_SAVE_FLAG_PAGE
:
3745 tmp_page
->all_zero
= false;
3746 if (!matches_target_page_size
) {
3747 /* For huge pages, we always use temporary buffer */
3748 qemu_get_buffer(f
, page_buffer
, TARGET_PAGE_SIZE
);
3751 * For small pages that matches target page size, we
3752 * avoid the qemu_file copy. Instead we directly use
3753 * the buffer of QEMUFile to place the page. Note: we
3754 * cannot do any QEMUFile operation before using that
3755 * buffer to make sure the buffer is valid when
3758 qemu_get_buffer_in_place(f
, (uint8_t **)&place_source
,
3762 case RAM_SAVE_FLAG_COMPRESS_PAGE
:
3763 tmp_page
->all_zero
= false;
3764 len
= qemu_get_be32(f
);
3765 if (len
< 0 || len
> compressBound(TARGET_PAGE_SIZE
)) {
3766 error_report("Invalid compressed data length: %d", len
);
3770 decompress_data_with_multi_threads(f
, page_buffer
, len
);
3772 case RAM_SAVE_FLAG_MULTIFD_FLUSH
:
3773 multifd_recv_sync_main();
3775 case RAM_SAVE_FLAG_EOS
:
3777 if (migrate_multifd_flush_after_each_section()) {
3778 multifd_recv_sync_main();
3782 error_report("Unknown combination of migration flags: 0x%x"
3783 " (postcopy mode)", flags
);
3788 /* Got the whole host page, wait for decompress before placing. */
3790 ret
|= wait_for_decompress_done();
3793 /* Detect for any possible file errors */
3794 if (!ret
&& qemu_file_get_error(f
)) {
3795 ret
= qemu_file_get_error(f
);
3798 if (!ret
&& place_needed
) {
3799 if (tmp_page
->all_zero
) {
3800 ret
= postcopy_place_page_zero(mis
, tmp_page
->host_addr
, block
);
3802 ret
= postcopy_place_page(mis
, tmp_page
->host_addr
,
3803 place_source
, block
);
3805 place_needed
= false;
3806 postcopy_temp_page_reset(tmp_page
);
3813 static bool postcopy_is_running(void)
3815 PostcopyState ps
= postcopy_state_get();
3816 return ps
>= POSTCOPY_INCOMING_LISTENING
&& ps
< POSTCOPY_INCOMING_END
;
3820 * Flush content of RAM cache into SVM's memory.
3821 * Only flush the pages that be dirtied by PVM or SVM or both.
3823 void colo_flush_ram_cache(void)
3825 RAMBlock
*block
= NULL
;
3828 unsigned long offset
= 0;
3830 memory_global_dirty_log_sync(false);
3831 qemu_mutex_lock(&ram_state
->bitmap_mutex
);
3832 WITH_RCU_READ_LOCK_GUARD() {
3833 RAMBLOCK_FOREACH_NOT_IGNORED(block
) {
3834 ramblock_sync_dirty_bitmap(ram_state
, block
);
3838 trace_colo_flush_ram_cache_begin(ram_state
->migration_dirty_pages
);
3839 WITH_RCU_READ_LOCK_GUARD() {
3840 block
= QLIST_FIRST_RCU(&ram_list
.blocks
);
3843 unsigned long num
= 0;
3845 offset
= colo_bitmap_find_dirty(ram_state
, block
, offset
, &num
);
3846 if (!offset_in_ramblock(block
,
3847 ((ram_addr_t
)offset
) << TARGET_PAGE_BITS
)) {
3850 block
= QLIST_NEXT_RCU(block
, next
);
3852 unsigned long i
= 0;
3854 for (i
= 0; i
< num
; i
++) {
3855 migration_bitmap_clear_dirty(ram_state
, block
, offset
+ i
);
3857 dst_host
= block
->host
3858 + (((ram_addr_t
)offset
) << TARGET_PAGE_BITS
);
3859 src_host
= block
->colo_cache
3860 + (((ram_addr_t
)offset
) << TARGET_PAGE_BITS
);
3861 memcpy(dst_host
, src_host
, TARGET_PAGE_SIZE
* num
);
3866 qemu_mutex_unlock(&ram_state
->bitmap_mutex
);
3867 trace_colo_flush_ram_cache_end();
3871 * ram_load_precopy: load pages in precopy case
3873 * Returns 0 for success or -errno in case of error
3875 * Called in precopy mode by ram_load().
3876 * rcu_read_lock is taken prior to this being called.
3878 * @f: QEMUFile where to send the data
3880 static int ram_load_precopy(QEMUFile
*f
)
3882 MigrationIncomingState
*mis
= migration_incoming_get_current();
3883 int flags
= 0, ret
= 0, invalid_flags
= 0, len
= 0, i
= 0;
3884 /* ADVISE is earlier, it shows the source has the postcopy capability on */
3885 bool postcopy_advised
= migration_incoming_postcopy_advised();
3886 if (!migrate_compress()) {
3887 invalid_flags
|= RAM_SAVE_FLAG_COMPRESS_PAGE
;
3890 while (!ret
&& !(flags
& RAM_SAVE_FLAG_EOS
)) {
3891 ram_addr_t addr
, total_ram_bytes
;
3892 void *host
= NULL
, *host_bak
= NULL
;
3896 * Yield periodically to let main loop run, but an iteration of
3897 * the main loop is expensive, so do it each some iterations
3899 if ((i
& 32767) == 0 && qemu_in_coroutine()) {
3900 aio_co_schedule(qemu_get_current_aio_context(),
3901 qemu_coroutine_self());
3902 qemu_coroutine_yield();
3906 addr
= qemu_get_be64(f
);
3907 flags
= addr
& ~TARGET_PAGE_MASK
;
3908 addr
&= TARGET_PAGE_MASK
;
3910 if (flags
& invalid_flags
) {
3911 if (flags
& invalid_flags
& RAM_SAVE_FLAG_COMPRESS_PAGE
) {
3912 error_report("Received an unexpected compressed page");
3919 if (flags
& (RAM_SAVE_FLAG_ZERO
| RAM_SAVE_FLAG_PAGE
|
3920 RAM_SAVE_FLAG_COMPRESS_PAGE
| RAM_SAVE_FLAG_XBZRLE
)) {
3921 RAMBlock
*block
= ram_block_from_stream(mis
, f
, flags
,
3922 RAM_CHANNEL_PRECOPY
);
3924 host
= host_from_ram_block_offset(block
, addr
);
3926 * After going into COLO stage, we should not load the page
3927 * into SVM's memory directly, we put them into colo_cache firstly.
3928 * NOTE: We need to keep a copy of SVM's ram in colo_cache.
3929 * Previously, we copied all these memory in preparing stage of COLO
3930 * while we need to stop VM, which is a time-consuming process.
3931 * Here we optimize it by a trick, back-up every page while in
3932 * migration process while COLO is enabled, though it affects the
3933 * speed of the migration, but it obviously reduce the downtime of
3934 * back-up all SVM'S memory in COLO preparing stage.
3936 if (migration_incoming_colo_enabled()) {
3937 if (migration_incoming_in_colo_state()) {
3938 /* In COLO stage, put all pages into cache temporarily */
3939 host
= colo_cache_from_block_offset(block
, addr
, true);
3942 * In migration stage but before COLO stage,
3943 * Put all pages into both cache and SVM's memory.
3945 host_bak
= colo_cache_from_block_offset(block
, addr
, false);
3949 error_report("Illegal RAM offset " RAM_ADDR_FMT
, addr
);
3953 if (!migration_incoming_in_colo_state()) {
3954 ramblock_recv_bitmap_set(block
, host
);
3957 trace_ram_load_loop(block
->idstr
, (uint64_t)addr
, flags
, host
);
3960 switch (flags
& ~RAM_SAVE_FLAG_CONTINUE
) {
3961 case RAM_SAVE_FLAG_MEM_SIZE
:
3962 /* Synchronize RAM block list */
3963 total_ram_bytes
= addr
;
3964 while (!ret
&& total_ram_bytes
) {
3969 len
= qemu_get_byte(f
);
3970 qemu_get_buffer(f
, (uint8_t *)id
, len
);
3972 length
= qemu_get_be64(f
);
3974 block
= qemu_ram_block_by_name(id
);
3975 if (block
&& !qemu_ram_is_migratable(block
)) {
3976 error_report("block %s should not be migrated !", id
);
3979 if (length
!= block
->used_length
) {
3980 Error
*local_err
= NULL
;
3982 ret
= qemu_ram_resize(block
, length
,
3985 error_report_err(local_err
);
3988 /* For postcopy we need to check hugepage sizes match */
3989 if (postcopy_advised
&& migrate_postcopy_ram() &&
3990 block
->page_size
!= qemu_host_page_size
) {
3991 uint64_t remote_page_size
= qemu_get_be64(f
);
3992 if (remote_page_size
!= block
->page_size
) {
3993 error_report("Mismatched RAM page size %s "
3994 "(local) %zd != %" PRId64
,
3995 id
, block
->page_size
,
4000 if (migrate_ignore_shared()) {
4001 hwaddr addr
= qemu_get_be64(f
);
4002 if (migrate_ram_is_ignored(block
) &&
4003 block
->mr
->addr
!= addr
) {
4004 error_report("Mismatched GPAs for block %s "
4005 "%" PRId64
"!= %" PRId64
,
4007 (uint64_t)block
->mr
->addr
);
4011 ram_control_load_hook(f
, RAM_CONTROL_BLOCK_REG
,
4014 error_report("Unknown ramblock \"%s\", cannot "
4015 "accept migration", id
);
4019 total_ram_bytes
-= length
;
4023 case RAM_SAVE_FLAG_ZERO
:
4024 ch
= qemu_get_byte(f
);
4025 ram_handle_compressed(host
, ch
, TARGET_PAGE_SIZE
);
4028 case RAM_SAVE_FLAG_PAGE
:
4029 qemu_get_buffer(f
, host
, TARGET_PAGE_SIZE
);
4032 case RAM_SAVE_FLAG_COMPRESS_PAGE
:
4033 len
= qemu_get_be32(f
);
4034 if (len
< 0 || len
> compressBound(TARGET_PAGE_SIZE
)) {
4035 error_report("Invalid compressed data length: %d", len
);
4039 decompress_data_with_multi_threads(f
, host
, len
);
4042 case RAM_SAVE_FLAG_XBZRLE
:
4043 if (load_xbzrle(f
, addr
, host
) < 0) {
4044 error_report("Failed to decompress XBZRLE page at "
4045 RAM_ADDR_FMT
, addr
);
4050 case RAM_SAVE_FLAG_MULTIFD_FLUSH
:
4051 multifd_recv_sync_main();
4053 case RAM_SAVE_FLAG_EOS
:
4055 if (migrate_multifd_flush_after_each_section()) {
4056 multifd_recv_sync_main();
4059 case RAM_SAVE_FLAG_HOOK
:
4060 ram_control_load_hook(f
, RAM_CONTROL_HOOK
, NULL
);
4063 error_report("Unknown combination of migration flags: 0x%x", flags
);
4067 ret
= qemu_file_get_error(f
);
4069 if (!ret
&& host_bak
) {
4070 memcpy(host_bak
, host
, TARGET_PAGE_SIZE
);
4074 ret
|= wait_for_decompress_done();
4078 static int ram_load(QEMUFile
*f
, void *opaque
, int version_id
)
4081 static uint64_t seq_iter
;
4083 * If system is running in postcopy mode, page inserts to host memory must
4086 bool postcopy_running
= postcopy_is_running();
4090 if (version_id
!= 4) {
4095 * This RCU critical section can be very long running.
4096 * When RCU reclaims in the code start to become numerous,
4097 * it will be necessary to reduce the granularity of this
4100 WITH_RCU_READ_LOCK_GUARD() {
4101 if (postcopy_running
) {
4103 * Note! Here RAM_CHANNEL_PRECOPY is the precopy channel of
4104 * postcopy migration, we have another RAM_CHANNEL_POSTCOPY to
4105 * service fast page faults.
4107 ret
= ram_load_postcopy(f
, RAM_CHANNEL_PRECOPY
);
4109 ret
= ram_load_precopy(f
);
4112 trace_ram_load_complete(ret
, seq_iter
);
4117 static bool ram_has_postcopy(void *opaque
)
4120 RAMBLOCK_FOREACH_NOT_IGNORED(rb
) {
4121 if (ramblock_is_pmem(rb
)) {
4122 info_report("Block: %s, host: %p is a nvdimm memory, postcopy"
4123 "is not supported now!", rb
->idstr
, rb
->host
);
4128 return migrate_postcopy_ram();
4131 /* Sync all the dirty bitmap with destination VM. */
4132 static int ram_dirty_bitmap_sync_all(MigrationState
*s
, RAMState
*rs
)
4135 QEMUFile
*file
= s
->to_dst_file
;
4136 int ramblock_count
= 0;
4138 trace_ram_dirty_bitmap_sync_start();
4140 RAMBLOCK_FOREACH_NOT_IGNORED(block
) {
4141 qemu_savevm_send_recv_bitmap(file
, block
->idstr
);
4142 trace_ram_dirty_bitmap_request(block
->idstr
);
4146 trace_ram_dirty_bitmap_sync_wait();
4148 /* Wait until all the ramblocks' dirty bitmap synced */
4149 while (ramblock_count
--) {
4150 qemu_sem_wait(&s
->rp_state
.rp_sem
);
4153 trace_ram_dirty_bitmap_sync_complete();
4158 static void ram_dirty_bitmap_reload_notify(MigrationState
*s
)
4160 qemu_sem_post(&s
->rp_state
.rp_sem
);
4164 * Read the received bitmap, revert it as the initial dirty bitmap.
4165 * This is only used when the postcopy migration is paused but wants
4166 * to resume from a middle point.
4168 int ram_dirty_bitmap_reload(MigrationState
*s
, RAMBlock
*block
)
4171 /* from_dst_file is always valid because we're within rp_thread */
4172 QEMUFile
*file
= s
->rp_state
.from_dst_file
;
4173 unsigned long *le_bitmap
, nbits
= block
->used_length
>> TARGET_PAGE_BITS
;
4174 uint64_t local_size
= DIV_ROUND_UP(nbits
, 8);
4175 uint64_t size
, end_mark
;
4177 trace_ram_dirty_bitmap_reload_begin(block
->idstr
);
4179 if (s
->state
!= MIGRATION_STATUS_POSTCOPY_RECOVER
) {
4180 error_report("%s: incorrect state %s", __func__
,
4181 MigrationStatus_str(s
->state
));
4186 * Note: see comments in ramblock_recv_bitmap_send() on why we
4187 * need the endianness conversion, and the paddings.
4189 local_size
= ROUND_UP(local_size
, 8);
4192 le_bitmap
= bitmap_new(nbits
+ BITS_PER_LONG
);
4194 size
= qemu_get_be64(file
);
4196 /* The size of the bitmap should match with our ramblock */
4197 if (size
!= local_size
) {
4198 error_report("%s: ramblock '%s' bitmap size mismatch "
4199 "(0x%"PRIx64
" != 0x%"PRIx64
")", __func__
,
4200 block
->idstr
, size
, local_size
);
4205 size
= qemu_get_buffer(file
, (uint8_t *)le_bitmap
, local_size
);
4206 end_mark
= qemu_get_be64(file
);
4208 ret
= qemu_file_get_error(file
);
4209 if (ret
|| size
!= local_size
) {
4210 error_report("%s: read bitmap failed for ramblock '%s': %d"
4211 " (size 0x%"PRIx64
", got: 0x%"PRIx64
")",
4212 __func__
, block
->idstr
, ret
, local_size
, size
);
4217 if (end_mark
!= RAMBLOCK_RECV_BITMAP_ENDING
) {
4218 error_report("%s: ramblock '%s' end mark incorrect: 0x%"PRIx64
,
4219 __func__
, block
->idstr
, end_mark
);
4225 * Endianness conversion. We are during postcopy (though paused).
4226 * The dirty bitmap won't change. We can directly modify it.
4228 bitmap_from_le(block
->bmap
, le_bitmap
, nbits
);
4231 * What we received is "received bitmap". Revert it as the initial
4232 * dirty bitmap for this ramblock.
4234 bitmap_complement(block
->bmap
, block
->bmap
, nbits
);
4236 /* Clear dirty bits of discarded ranges that we don't want to migrate. */
4237 ramblock_dirty_bitmap_clear_discarded_pages(block
);
4239 /* We'll recalculate migration_dirty_pages in ram_state_resume_prepare(). */
4240 trace_ram_dirty_bitmap_reload_complete(block
->idstr
);
4243 * We succeeded to sync bitmap for current ramblock. If this is
4244 * the last one to sync, we need to notify the main send thread.
4246 ram_dirty_bitmap_reload_notify(s
);
4254 static int ram_resume_prepare(MigrationState
*s
, void *opaque
)
4256 RAMState
*rs
= *(RAMState
**)opaque
;
4259 ret
= ram_dirty_bitmap_sync_all(s
, rs
);
4264 ram_state_resume_prepare(rs
, s
->to_dst_file
);
4269 void postcopy_preempt_shutdown_file(MigrationState
*s
)
4271 qemu_put_be64(s
->postcopy_qemufile_src
, RAM_SAVE_FLAG_EOS
);
4272 qemu_fflush(s
->postcopy_qemufile_src
);
4275 static SaveVMHandlers savevm_ram_handlers
= {
4276 .save_setup
= ram_save_setup
,
4277 .save_live_iterate
= ram_save_iterate
,
4278 .save_live_complete_postcopy
= ram_save_complete
,
4279 .save_live_complete_precopy
= ram_save_complete
,
4280 .has_postcopy
= ram_has_postcopy
,
4281 .state_pending_exact
= ram_state_pending_exact
,
4282 .state_pending_estimate
= ram_state_pending_estimate
,
4283 .load_state
= ram_load
,
4284 .save_cleanup
= ram_save_cleanup
,
4285 .load_setup
= ram_load_setup
,
4286 .load_cleanup
= ram_load_cleanup
,
4287 .resume_prepare
= ram_resume_prepare
,
4290 static void ram_mig_ram_block_resized(RAMBlockNotifier
*n
, void *host
,
4291 size_t old_size
, size_t new_size
)
4293 PostcopyState ps
= postcopy_state_get();
4295 RAMBlock
*rb
= qemu_ram_block_from_host(host
, false, &offset
);
4298 if (migrate_ram_is_ignored(rb
)) {
4302 if (!migration_is_idle()) {
4304 * Precopy code on the source cannot deal with the size of RAM blocks
4305 * changing at random points in time - especially after sending the
4306 * RAM block sizes in the migration stream, they must no longer change.
4307 * Abort and indicate a proper reason.
4309 error_setg(&err
, "RAM block '%s' resized during precopy.", rb
->idstr
);
4310 migration_cancel(err
);
4315 case POSTCOPY_INCOMING_ADVISE
:
4317 * Update what ram_postcopy_incoming_init()->init_range() does at the
4318 * time postcopy was advised. Syncing RAM blocks with the source will
4319 * result in RAM resizes.
4321 if (old_size
< new_size
) {
4322 if (ram_discard_range(rb
->idstr
, old_size
, new_size
- old_size
)) {
4323 error_report("RAM block '%s' discard of resized RAM failed",
4327 rb
->postcopy_length
= new_size
;
4329 case POSTCOPY_INCOMING_NONE
:
4330 case POSTCOPY_INCOMING_RUNNING
:
4331 case POSTCOPY_INCOMING_END
:
4333 * Once our guest is running, postcopy does no longer care about
4334 * resizes. When growing, the new memory was not available on the
4335 * source, no handler needed.
4339 error_report("RAM block '%s' resized during postcopy state: %d",
4345 static RAMBlockNotifier ram_mig_ram_notifier
= {
4346 .ram_block_resized
= ram_mig_ram_block_resized
,
4349 void ram_mig_init(void)
4351 qemu_mutex_init(&XBZRLE
.lock
);
4352 register_savevm_live("ram", 0, 4, &savevm_ram_handlers
, &ram_state
);
4353 ram_block_notifier_add(&ram_mig_ram_notifier
);