4 * Copyright (c) 2003-2008 Fabrice Bellard
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see <http://www.gnu.org/licenses/>.
26 #include <sys/syscall.h>
27 #include <sys/resource.h>
30 #include "qemu-common.h"
31 #include "qemu/cache-utils.h"
34 #include "qemu/timer.h"
35 #include "qemu/envlist.h"
45 static const char *cpu_model
;
46 unsigned long mmap_min_addr
;
47 #if defined(CONFIG_USE_GUEST_BASE)
48 unsigned long guest_base
;
50 #if (TARGET_LONG_BITS == 32) && (HOST_LONG_BITS == 64)
52 * When running 32-on-64 we should make sure we can fit all of the possible
53 * guest address space into a contiguous chunk of virtual host memory.
55 * This way we will never overlap with our own libraries or binaries or stack
56 * or anything else that QEMU maps.
59 /* MIPS only supports 31 bits of virtual address space for user space */
60 unsigned long reserved_va
= 0x77000000;
62 unsigned long reserved_va
= 0xf7000000;
65 unsigned long reserved_va
;
69 static void usage(void);
71 static const char *interp_prefix
= CONFIG_QEMU_INTERP_PREFIX
;
72 const char *qemu_uname_release
;
74 /* XXX: on x86 MAP_GROWSDOWN only works if ESP <= address + 32, so
75 we allocate a bigger stack. Need a better solution, for example
76 by remapping the process stack directly at the right place */
77 unsigned long guest_stack_size
= 8 * 1024 * 1024UL;
79 void gemu_log(const char *fmt
, ...)
84 vfprintf(stderr
, fmt
, ap
);
88 #if defined(TARGET_I386)
89 int cpu_get_pic_interrupt(CPUX86State
*env
)
95 /***********************************************************/
96 /* Helper routines for implementing atomic operations. */
98 /* To implement exclusive operations we force all cpus to syncronise.
99 We don't require a full sync, only that no cpus are executing guest code.
100 The alternative is to map target atomic ops onto host equivalents,
101 which requires quite a lot of per host/target work. */
102 static pthread_mutex_t cpu_list_mutex
= PTHREAD_MUTEX_INITIALIZER
;
103 static pthread_mutex_t exclusive_lock
= PTHREAD_MUTEX_INITIALIZER
;
104 static pthread_cond_t exclusive_cond
= PTHREAD_COND_INITIALIZER
;
105 static pthread_cond_t exclusive_resume
= PTHREAD_COND_INITIALIZER
;
106 static int pending_cpus
;
108 /* Make sure everything is in a consistent state for calling fork(). */
109 void fork_start(void)
111 pthread_mutex_lock(&tcg_ctx
.tb_ctx
.tb_lock
);
112 pthread_mutex_lock(&exclusive_lock
);
116 void fork_end(int child
)
118 mmap_fork_end(child
);
120 CPUState
*cpu
, *next_cpu
;
121 /* Child processes created by fork() only have a single thread.
122 Discard information about the parent threads. */
123 CPU_FOREACH_SAFE(cpu
, next_cpu
) {
124 if (cpu
!= thread_cpu
) {
125 QTAILQ_REMOVE(&cpus
, thread_cpu
, node
);
129 pthread_mutex_init(&exclusive_lock
, NULL
);
130 pthread_mutex_init(&cpu_list_mutex
, NULL
);
131 pthread_cond_init(&exclusive_cond
, NULL
);
132 pthread_cond_init(&exclusive_resume
, NULL
);
133 pthread_mutex_init(&tcg_ctx
.tb_ctx
.tb_lock
, NULL
);
134 gdbserver_fork((CPUArchState
*)thread_cpu
->env_ptr
);
136 pthread_mutex_unlock(&exclusive_lock
);
137 pthread_mutex_unlock(&tcg_ctx
.tb_ctx
.tb_lock
);
141 /* Wait for pending exclusive operations to complete. The exclusive lock
143 static inline void exclusive_idle(void)
145 while (pending_cpus
) {
146 pthread_cond_wait(&exclusive_resume
, &exclusive_lock
);
150 /* Start an exclusive operation.
151 Must only be called from outside cpu_arm_exec. */
152 static inline void start_exclusive(void)
156 pthread_mutex_lock(&exclusive_lock
);
160 /* Make all other cpus stop executing. */
161 CPU_FOREACH(other_cpu
) {
162 if (other_cpu
->running
) {
167 if (pending_cpus
> 1) {
168 pthread_cond_wait(&exclusive_cond
, &exclusive_lock
);
172 /* Finish an exclusive operation. */
173 static inline void end_exclusive(void)
176 pthread_cond_broadcast(&exclusive_resume
);
177 pthread_mutex_unlock(&exclusive_lock
);
180 /* Wait for exclusive ops to finish, and begin cpu execution. */
181 static inline void cpu_exec_start(CPUState
*cpu
)
183 pthread_mutex_lock(&exclusive_lock
);
186 pthread_mutex_unlock(&exclusive_lock
);
189 /* Mark cpu as not executing, and release pending exclusive ops. */
190 static inline void cpu_exec_end(CPUState
*cpu
)
192 pthread_mutex_lock(&exclusive_lock
);
193 cpu
->running
= false;
194 if (pending_cpus
> 1) {
196 if (pending_cpus
== 1) {
197 pthread_cond_signal(&exclusive_cond
);
201 pthread_mutex_unlock(&exclusive_lock
);
204 void cpu_list_lock(void)
206 pthread_mutex_lock(&cpu_list_mutex
);
209 void cpu_list_unlock(void)
211 pthread_mutex_unlock(&cpu_list_mutex
);
216 /***********************************************************/
217 /* CPUX86 core interface */
219 void cpu_smm_update(CPUX86State
*env
)
223 uint64_t cpu_get_tsc(CPUX86State
*env
)
225 return cpu_get_real_ticks();
228 static void write_dt(void *ptr
, unsigned long addr
, unsigned long limit
,
233 e1
= (addr
<< 16) | (limit
& 0xffff);
234 e2
= ((addr
>> 16) & 0xff) | (addr
& 0xff000000) | (limit
& 0x000f0000);
241 static uint64_t *idt_table
;
243 static void set_gate64(void *ptr
, unsigned int type
, unsigned int dpl
,
244 uint64_t addr
, unsigned int sel
)
247 e1
= (addr
& 0xffff) | (sel
<< 16);
248 e2
= (addr
& 0xffff0000) | 0x8000 | (dpl
<< 13) | (type
<< 8);
252 p
[2] = tswap32(addr
>> 32);
255 /* only dpl matters as we do only user space emulation */
256 static void set_idt(int n
, unsigned int dpl
)
258 set_gate64(idt_table
+ n
* 2, 0, dpl
, 0, 0);
261 static void set_gate(void *ptr
, unsigned int type
, unsigned int dpl
,
262 uint32_t addr
, unsigned int sel
)
265 e1
= (addr
& 0xffff) | (sel
<< 16);
266 e2
= (addr
& 0xffff0000) | 0x8000 | (dpl
<< 13) | (type
<< 8);
272 /* only dpl matters as we do only user space emulation */
273 static void set_idt(int n
, unsigned int dpl
)
275 set_gate(idt_table
+ n
, 0, dpl
, 0, 0);
279 void cpu_loop(CPUX86State
*env
)
281 CPUState
*cs
= CPU(x86_env_get_cpu(env
));
284 target_siginfo_t info
;
287 trapnr
= cpu_x86_exec(env
);
290 /* linux syscall from int $0x80 */
291 env
->regs
[R_EAX
] = do_syscall(env
,
303 /* linux syscall from syscall instruction */
304 env
->regs
[R_EAX
] = do_syscall(env
,
313 env
->eip
= env
->exception_next_eip
;
318 info
.si_signo
= SIGBUS
;
320 info
.si_code
= TARGET_SI_KERNEL
;
321 info
._sifields
._sigfault
._addr
= 0;
322 queue_signal(env
, info
.si_signo
, &info
);
325 /* XXX: potential problem if ABI32 */
326 #ifndef TARGET_X86_64
327 if (env
->eflags
& VM_MASK
) {
328 handle_vm86_fault(env
);
332 info
.si_signo
= SIGSEGV
;
334 info
.si_code
= TARGET_SI_KERNEL
;
335 info
._sifields
._sigfault
._addr
= 0;
336 queue_signal(env
, info
.si_signo
, &info
);
340 info
.si_signo
= SIGSEGV
;
342 if (!(env
->error_code
& 1))
343 info
.si_code
= TARGET_SEGV_MAPERR
;
345 info
.si_code
= TARGET_SEGV_ACCERR
;
346 info
._sifields
._sigfault
._addr
= env
->cr
[2];
347 queue_signal(env
, info
.si_signo
, &info
);
350 #ifndef TARGET_X86_64
351 if (env
->eflags
& VM_MASK
) {
352 handle_vm86_trap(env
, trapnr
);
356 /* division by zero */
357 info
.si_signo
= SIGFPE
;
359 info
.si_code
= TARGET_FPE_INTDIV
;
360 info
._sifields
._sigfault
._addr
= env
->eip
;
361 queue_signal(env
, info
.si_signo
, &info
);
366 #ifndef TARGET_X86_64
367 if (env
->eflags
& VM_MASK
) {
368 handle_vm86_trap(env
, trapnr
);
372 info
.si_signo
= SIGTRAP
;
374 if (trapnr
== EXCP01_DB
) {
375 info
.si_code
= TARGET_TRAP_BRKPT
;
376 info
._sifields
._sigfault
._addr
= env
->eip
;
378 info
.si_code
= TARGET_SI_KERNEL
;
379 info
._sifields
._sigfault
._addr
= 0;
381 queue_signal(env
, info
.si_signo
, &info
);
386 #ifndef TARGET_X86_64
387 if (env
->eflags
& VM_MASK
) {
388 handle_vm86_trap(env
, trapnr
);
392 info
.si_signo
= SIGSEGV
;
394 info
.si_code
= TARGET_SI_KERNEL
;
395 info
._sifields
._sigfault
._addr
= 0;
396 queue_signal(env
, info
.si_signo
, &info
);
400 info
.si_signo
= SIGILL
;
402 info
.si_code
= TARGET_ILL_ILLOPN
;
403 info
._sifields
._sigfault
._addr
= env
->eip
;
404 queue_signal(env
, info
.si_signo
, &info
);
407 /* just indicate that signals should be handled asap */
413 sig
= gdb_handlesig(cs
, TARGET_SIGTRAP
);
418 info
.si_code
= TARGET_TRAP_BRKPT
;
419 queue_signal(env
, info
.si_signo
, &info
);
424 pc
= env
->segs
[R_CS
].base
+ env
->eip
;
425 fprintf(stderr
, "qemu: 0x%08lx: unhandled CPU exception 0x%x - aborting\n",
429 process_pending_signals(env
);
436 #define get_user_code_u32(x, gaddr, doswap) \
437 ({ abi_long __r = get_user_u32((x), (gaddr)); \
438 if (!__r && (doswap)) { \
444 #define get_user_code_u16(x, gaddr, doswap) \
445 ({ abi_long __r = get_user_u16((x), (gaddr)); \
446 if (!__r && (doswap)) { \
453 /* Commpage handling -- there is no commpage for AArch64 */
456 * See the Linux kernel's Documentation/arm/kernel_user_helpers.txt
458 * r0 = pointer to oldval
459 * r1 = pointer to newval
460 * r2 = pointer to target value
463 * r0 = 0 if *ptr was changed, non-0 if no exchange happened
464 * C set if *ptr was changed, clear if no exchange happened
466 * Note segv's in kernel helpers are a bit tricky, we can set the
467 * data address sensibly but the PC address is just the entry point.
469 static void arm_kernel_cmpxchg64_helper(CPUARMState
*env
)
471 uint64_t oldval
, newval
, val
;
473 target_siginfo_t info
;
475 /* Based on the 32 bit code in do_kernel_trap */
477 /* XXX: This only works between threads, not between processes.
478 It's probably possible to implement this with native host
479 operations. However things like ldrex/strex are much harder so
480 there's not much point trying. */
482 cpsr
= cpsr_read(env
);
485 if (get_user_u64(oldval
, env
->regs
[0])) {
486 env
->exception
.vaddress
= env
->regs
[0];
490 if (get_user_u64(newval
, env
->regs
[1])) {
491 env
->exception
.vaddress
= env
->regs
[1];
495 if (get_user_u64(val
, addr
)) {
496 env
->exception
.vaddress
= addr
;
503 if (put_user_u64(val
, addr
)) {
504 env
->exception
.vaddress
= addr
;
514 cpsr_write(env
, cpsr
, CPSR_C
);
520 /* We get the PC of the entry address - which is as good as anything,
521 on a real kernel what you get depends on which mode it uses. */
522 info
.si_signo
= SIGSEGV
;
524 /* XXX: check env->error_code */
525 info
.si_code
= TARGET_SEGV_MAPERR
;
526 info
._sifields
._sigfault
._addr
= env
->exception
.vaddress
;
527 queue_signal(env
, info
.si_signo
, &info
);
532 /* Handle a jump to the kernel code page. */
534 do_kernel_trap(CPUARMState
*env
)
540 switch (env
->regs
[15]) {
541 case 0xffff0fa0: /* __kernel_memory_barrier */
542 /* ??? No-op. Will need to do better for SMP. */
544 case 0xffff0fc0: /* __kernel_cmpxchg */
545 /* XXX: This only works between threads, not between processes.
546 It's probably possible to implement this with native host
547 operations. However things like ldrex/strex are much harder so
548 there's not much point trying. */
550 cpsr
= cpsr_read(env
);
552 /* FIXME: This should SEGV if the access fails. */
553 if (get_user_u32(val
, addr
))
555 if (val
== env
->regs
[0]) {
557 /* FIXME: Check for segfaults. */
558 put_user_u32(val
, addr
);
565 cpsr_write(env
, cpsr
, CPSR_C
);
568 case 0xffff0fe0: /* __kernel_get_tls */
569 env
->regs
[0] = env
->cp15
.tpidrro_el0
;
571 case 0xffff0f60: /* __kernel_cmpxchg64 */
572 arm_kernel_cmpxchg64_helper(env
);
578 /* Jump back to the caller. */
579 addr
= env
->regs
[14];
584 env
->regs
[15] = addr
;
589 /* Store exclusive handling for AArch32 */
590 static int do_strex(CPUARMState
*env
)
598 if (env
->exclusive_addr
!= env
->exclusive_test
) {
601 /* We know we're always AArch32 so the address is in uint32_t range
602 * unless it was the -1 exclusive-monitor-lost value (which won't
603 * match exclusive_test above).
605 assert(extract64(env
->exclusive_addr
, 32, 32) == 0);
606 addr
= env
->exclusive_addr
;
607 size
= env
->exclusive_info
& 0xf;
610 segv
= get_user_u8(val
, addr
);
613 segv
= get_user_u16(val
, addr
);
617 segv
= get_user_u32(val
, addr
);
623 env
->exception
.vaddress
= addr
;
628 segv
= get_user_u32(valhi
, addr
+ 4);
630 env
->exception
.vaddress
= addr
+ 4;
633 val
= deposit64(val
, 32, 32, valhi
);
635 if (val
!= env
->exclusive_val
) {
639 val
= env
->regs
[(env
->exclusive_info
>> 8) & 0xf];
642 segv
= put_user_u8(val
, addr
);
645 segv
= put_user_u16(val
, addr
);
649 segv
= put_user_u32(val
, addr
);
653 env
->exception
.vaddress
= addr
;
657 val
= env
->regs
[(env
->exclusive_info
>> 12) & 0xf];
658 segv
= put_user_u32(val
, addr
+ 4);
660 env
->exception
.vaddress
= addr
+ 4;
667 env
->regs
[(env
->exclusive_info
>> 4) & 0xf] = rc
;
673 void cpu_loop(CPUARMState
*env
)
675 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
677 unsigned int n
, insn
;
678 target_siginfo_t info
;
683 trapnr
= cpu_arm_exec(env
);
688 TaskState
*ts
= cs
->opaque
;
692 /* we handle the FPU emulation here, as Linux */
693 /* we get the opcode */
694 /* FIXME - what to do if get_user() fails? */
695 get_user_code_u32(opcode
, env
->regs
[15], env
->bswap_code
);
697 rc
= EmulateAll(opcode
, &ts
->fpa
, env
);
698 if (rc
== 0) { /* illegal instruction */
699 info
.si_signo
= SIGILL
;
701 info
.si_code
= TARGET_ILL_ILLOPN
;
702 info
._sifields
._sigfault
._addr
= env
->regs
[15];
703 queue_signal(env
, info
.si_signo
, &info
);
704 } else if (rc
< 0) { /* FP exception */
707 /* translate softfloat flags to FPSR flags */
708 if (-rc
& float_flag_invalid
)
710 if (-rc
& float_flag_divbyzero
)
712 if (-rc
& float_flag_overflow
)
714 if (-rc
& float_flag_underflow
)
716 if (-rc
& float_flag_inexact
)
719 FPSR fpsr
= ts
->fpa
.fpsr
;
720 //printf("fpsr 0x%x, arm_fpe 0x%x\n",fpsr,arm_fpe);
722 if (fpsr
& (arm_fpe
<< 16)) { /* exception enabled? */
723 info
.si_signo
= SIGFPE
;
726 /* ordered by priority, least first */
727 if (arm_fpe
& BIT_IXC
) info
.si_code
= TARGET_FPE_FLTRES
;
728 if (arm_fpe
& BIT_UFC
) info
.si_code
= TARGET_FPE_FLTUND
;
729 if (arm_fpe
& BIT_OFC
) info
.si_code
= TARGET_FPE_FLTOVF
;
730 if (arm_fpe
& BIT_DZC
) info
.si_code
= TARGET_FPE_FLTDIV
;
731 if (arm_fpe
& BIT_IOC
) info
.si_code
= TARGET_FPE_FLTINV
;
733 info
._sifields
._sigfault
._addr
= env
->regs
[15];
734 queue_signal(env
, info
.si_signo
, &info
);
739 /* accumulate unenabled exceptions */
740 if ((!(fpsr
& BIT_IXE
)) && (arm_fpe
& BIT_IXC
))
742 if ((!(fpsr
& BIT_UFE
)) && (arm_fpe
& BIT_UFC
))
744 if ((!(fpsr
& BIT_OFE
)) && (arm_fpe
& BIT_OFC
))
746 if ((!(fpsr
& BIT_DZE
)) && (arm_fpe
& BIT_DZC
))
748 if ((!(fpsr
& BIT_IOE
)) && (arm_fpe
& BIT_IOC
))
751 } else { /* everything OK */
762 if (trapnr
== EXCP_BKPT
) {
764 /* FIXME - what to do if get_user() fails? */
765 get_user_code_u16(insn
, env
->regs
[15], env
->bswap_code
);
769 /* FIXME - what to do if get_user() fails? */
770 get_user_code_u32(insn
, env
->regs
[15], env
->bswap_code
);
771 n
= (insn
& 0xf) | ((insn
>> 4) & 0xff0);
776 /* FIXME - what to do if get_user() fails? */
777 get_user_code_u16(insn
, env
->regs
[15] - 2,
781 /* FIXME - what to do if get_user() fails? */
782 get_user_code_u32(insn
, env
->regs
[15] - 4,
788 if (n
== ARM_NR_cacheflush
) {
790 } else if (n
== ARM_NR_semihosting
791 || n
== ARM_NR_thumb_semihosting
) {
792 env
->regs
[0] = do_arm_semihosting (env
);
793 } else if (n
== 0 || n
>= ARM_SYSCALL_BASE
|| env
->thumb
) {
795 if (env
->thumb
|| n
== 0) {
798 n
-= ARM_SYSCALL_BASE
;
801 if ( n
> ARM_NR_BASE
) {
803 case ARM_NR_cacheflush
:
807 cpu_set_tls(env
, env
->regs
[0]);
811 gemu_log("qemu: Unsupported ARM syscall: 0x%x\n",
813 env
->regs
[0] = -TARGET_ENOSYS
;
817 env
->regs
[0] = do_syscall(env
,
833 /* just indicate that signals should be handled asap */
836 if (!do_strex(env
)) {
839 /* fall through for segv */
840 case EXCP_PREFETCH_ABORT
:
841 case EXCP_DATA_ABORT
:
842 addr
= env
->exception
.vaddress
;
844 info
.si_signo
= SIGSEGV
;
846 /* XXX: check env->error_code */
847 info
.si_code
= TARGET_SEGV_MAPERR
;
848 info
._sifields
._sigfault
._addr
= addr
;
849 queue_signal(env
, info
.si_signo
, &info
);
856 sig
= gdb_handlesig(cs
, TARGET_SIGTRAP
);
861 info
.si_code
= TARGET_TRAP_BRKPT
;
862 queue_signal(env
, info
.si_signo
, &info
);
866 case EXCP_KERNEL_TRAP
:
867 if (do_kernel_trap(env
))
872 fprintf(stderr
, "qemu: unhandled CPU exception 0x%x - aborting\n",
874 cpu_dump_state(cs
, stderr
, fprintf
, 0);
877 process_pending_signals(env
);
884 * Handle AArch64 store-release exclusive
886 * rs = gets the status result of store exclusive
887 * rt = is the register that is stored
888 * rt2 = is the second register store (in STP)
891 static int do_strex_a64(CPUARMState
*env
)
902 /* size | is_pair << 2 | (rs << 4) | (rt << 9) | (rt2 << 14)); */
903 size
= extract32(env
->exclusive_info
, 0, 2);
904 is_pair
= extract32(env
->exclusive_info
, 2, 1);
905 rs
= extract32(env
->exclusive_info
, 4, 5);
906 rt
= extract32(env
->exclusive_info
, 9, 5);
907 rt2
= extract32(env
->exclusive_info
, 14, 5);
909 addr
= env
->exclusive_addr
;
911 if (addr
!= env
->exclusive_test
) {
917 segv
= get_user_u8(val
, addr
);
920 segv
= get_user_u16(val
, addr
);
923 segv
= get_user_u32(val
, addr
);
926 segv
= get_user_u64(val
, addr
);
932 env
->exception
.vaddress
= addr
;
935 if (val
!= env
->exclusive_val
) {
940 segv
= get_user_u32(val
, addr
+ 4);
942 segv
= get_user_u64(val
, addr
+ 8);
945 env
->exception
.vaddress
= addr
+ (size
== 2 ? 4 : 8);
948 if (val
!= env
->exclusive_high
) {
952 /* handle the zero register */
953 val
= rt
== 31 ? 0 : env
->xregs
[rt
];
956 segv
= put_user_u8(val
, addr
);
959 segv
= put_user_u16(val
, addr
);
962 segv
= put_user_u32(val
, addr
);
965 segv
= put_user_u64(val
, addr
);
972 /* handle the zero register */
973 val
= rt2
== 31 ? 0 : env
->xregs
[rt2
];
975 segv
= put_user_u32(val
, addr
+ 4);
977 segv
= put_user_u64(val
, addr
+ 8);
980 env
->exception
.vaddress
= addr
+ (size
== 2 ? 4 : 8);
987 /* rs == 31 encodes a write to the ZR, thus throwing away
988 * the status return. This is rather silly but valid.
994 /* instruction faulted, PC does not advance */
995 /* either way a strex releases any exclusive lock we have */
996 env
->exclusive_addr
= -1;
1001 /* AArch64 main loop */
1002 void cpu_loop(CPUARMState
*env
)
1004 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
1006 target_siginfo_t info
;
1011 trapnr
= cpu_arm_exec(env
);
1016 env
->xregs
[0] = do_syscall(env
,
1026 case EXCP_INTERRUPT
:
1027 /* just indicate that signals should be handled asap */
1030 info
.si_signo
= SIGILL
;
1032 info
.si_code
= TARGET_ILL_ILLOPN
;
1033 info
._sifields
._sigfault
._addr
= env
->pc
;
1034 queue_signal(env
, info
.si_signo
, &info
);
1037 if (!do_strex_a64(env
)) {
1040 /* fall through for segv */
1041 case EXCP_PREFETCH_ABORT
:
1042 case EXCP_DATA_ABORT
:
1043 addr
= env
->exception
.vaddress
;
1044 info
.si_signo
= SIGSEGV
;
1046 /* XXX: check env->error_code */
1047 info
.si_code
= TARGET_SEGV_MAPERR
;
1048 info
._sifields
._sigfault
._addr
= addr
;
1049 queue_signal(env
, info
.si_signo
, &info
);
1053 sig
= gdb_handlesig(cs
, TARGET_SIGTRAP
);
1055 info
.si_signo
= sig
;
1057 info
.si_code
= TARGET_TRAP_BRKPT
;
1058 queue_signal(env
, info
.si_signo
, &info
);
1062 fprintf(stderr
, "qemu: unhandled CPU exception 0x%x - aborting\n",
1064 cpu_dump_state(cs
, stderr
, fprintf
, 0);
1067 process_pending_signals(env
);
1068 /* Exception return on AArch64 always clears the exclusive monitor,
1069 * so any return to running guest code implies this.
1070 * A strex (successful or otherwise) also clears the monitor, so
1071 * we don't need to specialcase EXCP_STREX.
1073 env
->exclusive_addr
= -1;
1076 #endif /* ndef TARGET_ABI32 */
1080 #ifdef TARGET_UNICORE32
1082 void cpu_loop(CPUUniCore32State
*env
)
1084 CPUState
*cs
= CPU(uc32_env_get_cpu(env
));
1086 unsigned int n
, insn
;
1087 target_siginfo_t info
;
1091 trapnr
= uc32_cpu_exec(env
);
1094 case UC32_EXCP_PRIV
:
1097 get_user_u32(insn
, env
->regs
[31] - 4);
1098 n
= insn
& 0xffffff;
1100 if (n
>= UC32_SYSCALL_BASE
) {
1102 n
-= UC32_SYSCALL_BASE
;
1103 if (n
== UC32_SYSCALL_NR_set_tls
) {
1104 cpu_set_tls(env
, env
->regs
[0]);
1107 env
->regs
[0] = do_syscall(env
,
1122 case UC32_EXCP_DTRAP
:
1123 case UC32_EXCP_ITRAP
:
1124 info
.si_signo
= SIGSEGV
;
1126 /* XXX: check env->error_code */
1127 info
.si_code
= TARGET_SEGV_MAPERR
;
1128 info
._sifields
._sigfault
._addr
= env
->cp0
.c4_faultaddr
;
1129 queue_signal(env
, info
.si_signo
, &info
);
1131 case EXCP_INTERRUPT
:
1132 /* just indicate that signals should be handled asap */
1138 sig
= gdb_handlesig(cs
, TARGET_SIGTRAP
);
1140 info
.si_signo
= sig
;
1142 info
.si_code
= TARGET_TRAP_BRKPT
;
1143 queue_signal(env
, info
.si_signo
, &info
);
1150 process_pending_signals(env
);
1154 fprintf(stderr
, "qemu: unhandled CPU exception 0x%x - aborting\n", trapnr
);
1155 cpu_dump_state(cs
, stderr
, fprintf
, 0);
1161 #define SPARC64_STACK_BIAS 2047
1165 /* WARNING: dealing with register windows _is_ complicated. More info
1166 can be found at http://www.sics.se/~psm/sparcstack.html */
1167 static inline int get_reg_index(CPUSPARCState
*env
, int cwp
, int index
)
1169 index
= (index
+ cwp
* 16) % (16 * env
->nwindows
);
1170 /* wrap handling : if cwp is on the last window, then we use the
1171 registers 'after' the end */
1172 if (index
< 8 && env
->cwp
== env
->nwindows
- 1)
1173 index
+= 16 * env
->nwindows
;
1177 /* save the register window 'cwp1' */
1178 static inline void save_window_offset(CPUSPARCState
*env
, int cwp1
)
1183 sp_ptr
= env
->regbase
[get_reg_index(env
, cwp1
, 6)];
1184 #ifdef TARGET_SPARC64
1186 sp_ptr
+= SPARC64_STACK_BIAS
;
1188 #if defined(DEBUG_WIN)
1189 printf("win_overflow: sp_ptr=0x" TARGET_ABI_FMT_lx
" save_cwp=%d\n",
1192 for(i
= 0; i
< 16; i
++) {
1193 /* FIXME - what to do if put_user() fails? */
1194 put_user_ual(env
->regbase
[get_reg_index(env
, cwp1
, 8 + i
)], sp_ptr
);
1195 sp_ptr
+= sizeof(abi_ulong
);
1199 static void save_window(CPUSPARCState
*env
)
1201 #ifndef TARGET_SPARC64
1202 unsigned int new_wim
;
1203 new_wim
= ((env
->wim
>> 1) | (env
->wim
<< (env
->nwindows
- 1))) &
1204 ((1LL << env
->nwindows
) - 1);
1205 save_window_offset(env
, cpu_cwp_dec(env
, env
->cwp
- 2));
1208 save_window_offset(env
, cpu_cwp_dec(env
, env
->cwp
- 2));
1214 static void restore_window(CPUSPARCState
*env
)
1216 #ifndef TARGET_SPARC64
1217 unsigned int new_wim
;
1219 unsigned int i
, cwp1
;
1222 #ifndef TARGET_SPARC64
1223 new_wim
= ((env
->wim
<< 1) | (env
->wim
>> (env
->nwindows
- 1))) &
1224 ((1LL << env
->nwindows
) - 1);
1227 /* restore the invalid window */
1228 cwp1
= cpu_cwp_inc(env
, env
->cwp
+ 1);
1229 sp_ptr
= env
->regbase
[get_reg_index(env
, cwp1
, 6)];
1230 #ifdef TARGET_SPARC64
1232 sp_ptr
+= SPARC64_STACK_BIAS
;
1234 #if defined(DEBUG_WIN)
1235 printf("win_underflow: sp_ptr=0x" TARGET_ABI_FMT_lx
" load_cwp=%d\n",
1238 for(i
= 0; i
< 16; i
++) {
1239 /* FIXME - what to do if get_user() fails? */
1240 get_user_ual(env
->regbase
[get_reg_index(env
, cwp1
, 8 + i
)], sp_ptr
);
1241 sp_ptr
+= sizeof(abi_ulong
);
1243 #ifdef TARGET_SPARC64
1245 if (env
->cleanwin
< env
->nwindows
- 1)
1253 static void flush_windows(CPUSPARCState
*env
)
1259 /* if restore would invoke restore_window(), then we can stop */
1260 cwp1
= cpu_cwp_inc(env
, env
->cwp
+ offset
);
1261 #ifndef TARGET_SPARC64
1262 if (env
->wim
& (1 << cwp1
))
1265 if (env
->canrestore
== 0)
1270 save_window_offset(env
, cwp1
);
1273 cwp1
= cpu_cwp_inc(env
, env
->cwp
+ 1);
1274 #ifndef TARGET_SPARC64
1275 /* set wim so that restore will reload the registers */
1276 env
->wim
= 1 << cwp1
;
1278 #if defined(DEBUG_WIN)
1279 printf("flush_windows: nb=%d\n", offset
- 1);
1283 void cpu_loop (CPUSPARCState
*env
)
1285 CPUState
*cs
= CPU(sparc_env_get_cpu(env
));
1288 target_siginfo_t info
;
1291 trapnr
= cpu_sparc_exec (env
);
1293 /* Compute PSR before exposing state. */
1294 if (env
->cc_op
!= CC_OP_FLAGS
) {
1299 #ifndef TARGET_SPARC64
1306 ret
= do_syscall (env
, env
->gregs
[1],
1307 env
->regwptr
[0], env
->regwptr
[1],
1308 env
->regwptr
[2], env
->regwptr
[3],
1309 env
->regwptr
[4], env
->regwptr
[5],
1311 if ((abi_ulong
)ret
>= (abi_ulong
)(-515)) {
1312 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
1313 env
->xcc
|= PSR_CARRY
;
1315 env
->psr
|= PSR_CARRY
;
1319 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
1320 env
->xcc
&= ~PSR_CARRY
;
1322 env
->psr
&= ~PSR_CARRY
;
1325 env
->regwptr
[0] = ret
;
1326 /* next instruction */
1328 env
->npc
= env
->npc
+ 4;
1330 case 0x83: /* flush windows */
1335 /* next instruction */
1337 env
->npc
= env
->npc
+ 4;
1339 #ifndef TARGET_SPARC64
1340 case TT_WIN_OVF
: /* window overflow */
1343 case TT_WIN_UNF
: /* window underflow */
1344 restore_window(env
);
1349 info
.si_signo
= TARGET_SIGSEGV
;
1351 /* XXX: check env->error_code */
1352 info
.si_code
= TARGET_SEGV_MAPERR
;
1353 info
._sifields
._sigfault
._addr
= env
->mmuregs
[4];
1354 queue_signal(env
, info
.si_signo
, &info
);
1358 case TT_SPILL
: /* window overflow */
1361 case TT_FILL
: /* window underflow */
1362 restore_window(env
);
1367 info
.si_signo
= TARGET_SIGSEGV
;
1369 /* XXX: check env->error_code */
1370 info
.si_code
= TARGET_SEGV_MAPERR
;
1371 if (trapnr
== TT_DFAULT
)
1372 info
._sifields
._sigfault
._addr
= env
->dmmuregs
[4];
1374 info
._sifields
._sigfault
._addr
= cpu_tsptr(env
)->tpc
;
1375 queue_signal(env
, info
.si_signo
, &info
);
1378 #ifndef TARGET_ABI32
1381 sparc64_get_context(env
);
1385 sparc64_set_context(env
);
1389 case EXCP_INTERRUPT
:
1390 /* just indicate that signals should be handled asap */
1394 info
.si_signo
= TARGET_SIGILL
;
1396 info
.si_code
= TARGET_ILL_ILLOPC
;
1397 info
._sifields
._sigfault
._addr
= env
->pc
;
1398 queue_signal(env
, info
.si_signo
, &info
);
1405 sig
= gdb_handlesig(cs
, TARGET_SIGTRAP
);
1408 info
.si_signo
= sig
;
1410 info
.si_code
= TARGET_TRAP_BRKPT
;
1411 queue_signal(env
, info
.si_signo
, &info
);
1416 printf ("Unhandled trap: 0x%x\n", trapnr
);
1417 cpu_dump_state(cs
, stderr
, fprintf
, 0);
1420 process_pending_signals (env
);
1427 static inline uint64_t cpu_ppc_get_tb(CPUPPCState
*env
)
1433 uint64_t cpu_ppc_load_tbl(CPUPPCState
*env
)
1435 return cpu_ppc_get_tb(env
);
1438 uint32_t cpu_ppc_load_tbu(CPUPPCState
*env
)
1440 return cpu_ppc_get_tb(env
) >> 32;
1443 uint64_t cpu_ppc_load_atbl(CPUPPCState
*env
)
1445 return cpu_ppc_get_tb(env
);
1448 uint32_t cpu_ppc_load_atbu(CPUPPCState
*env
)
1450 return cpu_ppc_get_tb(env
) >> 32;
1453 uint32_t cpu_ppc601_load_rtcu(CPUPPCState
*env
)
1454 __attribute__ (( alias ("cpu_ppc_load_tbu") ));
1456 uint32_t cpu_ppc601_load_rtcl(CPUPPCState
*env
)
1458 return cpu_ppc_load_tbl(env
) & 0x3FFFFF80;
1461 /* XXX: to be fixed */
1462 int ppc_dcr_read (ppc_dcr_t
*dcr_env
, int dcrn
, uint32_t *valp
)
1467 int ppc_dcr_write (ppc_dcr_t
*dcr_env
, int dcrn
, uint32_t val
)
1472 #define EXCP_DUMP(env, fmt, ...) \
1474 CPUState *cs = ENV_GET_CPU(env); \
1475 fprintf(stderr, fmt , ## __VA_ARGS__); \
1476 cpu_dump_state(cs, stderr, fprintf, 0); \
1477 qemu_log(fmt, ## __VA_ARGS__); \
1478 if (qemu_log_enabled()) { \
1479 log_cpu_state(cs, 0); \
1483 static int do_store_exclusive(CPUPPCState
*env
)
1486 target_ulong page_addr
;
1487 target_ulong val
, val2
__attribute__((unused
)) = 0;
1491 addr
= env
->reserve_ea
;
1492 page_addr
= addr
& TARGET_PAGE_MASK
;
1495 flags
= page_get_flags(page_addr
);
1496 if ((flags
& PAGE_READ
) == 0) {
1499 int reg
= env
->reserve_info
& 0x1f;
1500 int size
= env
->reserve_info
>> 5;
1503 if (addr
== env
->reserve_addr
) {
1505 case 1: segv
= get_user_u8(val
, addr
); break;
1506 case 2: segv
= get_user_u16(val
, addr
); break;
1507 case 4: segv
= get_user_u32(val
, addr
); break;
1508 #if defined(TARGET_PPC64)
1509 case 8: segv
= get_user_u64(val
, addr
); break;
1511 segv
= get_user_u64(val
, addr
);
1513 segv
= get_user_u64(val2
, addr
+ 8);
1520 if (!segv
&& val
== env
->reserve_val
) {
1521 val
= env
->gpr
[reg
];
1523 case 1: segv
= put_user_u8(val
, addr
); break;
1524 case 2: segv
= put_user_u16(val
, addr
); break;
1525 case 4: segv
= put_user_u32(val
, addr
); break;
1526 #if defined(TARGET_PPC64)
1527 case 8: segv
= put_user_u64(val
, addr
); break;
1529 if (val2
== env
->reserve_val2
) {
1532 val
= env
->gpr
[reg
+1];
1534 val2
= env
->gpr
[reg
+1];
1536 segv
= put_user_u64(val
, addr
);
1538 segv
= put_user_u64(val2
, addr
+ 8);
1551 env
->crf
[0] = (stored
<< 1) | xer_so
;
1552 env
->reserve_addr
= (target_ulong
)-1;
1562 void cpu_loop(CPUPPCState
*env
)
1564 CPUState
*cs
= CPU(ppc_env_get_cpu(env
));
1565 target_siginfo_t info
;
1571 trapnr
= cpu_ppc_exec(env
);
1574 case POWERPC_EXCP_NONE
:
1577 case POWERPC_EXCP_CRITICAL
: /* Critical input */
1578 cpu_abort(cs
, "Critical interrupt while in user mode. "
1581 case POWERPC_EXCP_MCHECK
: /* Machine check exception */
1582 cpu_abort(cs
, "Machine check exception while in user mode. "
1585 case POWERPC_EXCP_DSI
: /* Data storage exception */
1586 EXCP_DUMP(env
, "Invalid data memory access: 0x" TARGET_FMT_lx
"\n",
1588 /* XXX: check this. Seems bugged */
1589 switch (env
->error_code
& 0xFF000000) {
1591 info
.si_signo
= TARGET_SIGSEGV
;
1593 info
.si_code
= TARGET_SEGV_MAPERR
;
1596 info
.si_signo
= TARGET_SIGILL
;
1598 info
.si_code
= TARGET_ILL_ILLADR
;
1601 info
.si_signo
= TARGET_SIGSEGV
;
1603 info
.si_code
= TARGET_SEGV_ACCERR
;
1606 /* Let's send a regular segfault... */
1607 EXCP_DUMP(env
, "Invalid segfault errno (%02x)\n",
1609 info
.si_signo
= TARGET_SIGSEGV
;
1611 info
.si_code
= TARGET_SEGV_MAPERR
;
1614 info
._sifields
._sigfault
._addr
= env
->nip
;
1615 queue_signal(env
, info
.si_signo
, &info
);
1617 case POWERPC_EXCP_ISI
: /* Instruction storage exception */
1618 EXCP_DUMP(env
, "Invalid instruction fetch: 0x\n" TARGET_FMT_lx
1619 "\n", env
->spr
[SPR_SRR0
]);
1620 /* XXX: check this */
1621 switch (env
->error_code
& 0xFF000000) {
1623 info
.si_signo
= TARGET_SIGSEGV
;
1625 info
.si_code
= TARGET_SEGV_MAPERR
;
1629 info
.si_signo
= TARGET_SIGSEGV
;
1631 info
.si_code
= TARGET_SEGV_ACCERR
;
1634 /* Let's send a regular segfault... */
1635 EXCP_DUMP(env
, "Invalid segfault errno (%02x)\n",
1637 info
.si_signo
= TARGET_SIGSEGV
;
1639 info
.si_code
= TARGET_SEGV_MAPERR
;
1642 info
._sifields
._sigfault
._addr
= env
->nip
- 4;
1643 queue_signal(env
, info
.si_signo
, &info
);
1645 case POWERPC_EXCP_EXTERNAL
: /* External input */
1646 cpu_abort(cs
, "External interrupt while in user mode. "
1649 case POWERPC_EXCP_ALIGN
: /* Alignment exception */
1650 EXCP_DUMP(env
, "Unaligned memory access\n");
1651 /* XXX: check this */
1652 info
.si_signo
= TARGET_SIGBUS
;
1654 info
.si_code
= TARGET_BUS_ADRALN
;
1655 info
._sifields
._sigfault
._addr
= env
->nip
- 4;
1656 queue_signal(env
, info
.si_signo
, &info
);
1658 case POWERPC_EXCP_PROGRAM
: /* Program exception */
1659 /* XXX: check this */
1660 switch (env
->error_code
& ~0xF) {
1661 case POWERPC_EXCP_FP
:
1662 EXCP_DUMP(env
, "Floating point program exception\n");
1663 info
.si_signo
= TARGET_SIGFPE
;
1665 switch (env
->error_code
& 0xF) {
1666 case POWERPC_EXCP_FP_OX
:
1667 info
.si_code
= TARGET_FPE_FLTOVF
;
1669 case POWERPC_EXCP_FP_UX
:
1670 info
.si_code
= TARGET_FPE_FLTUND
;
1672 case POWERPC_EXCP_FP_ZX
:
1673 case POWERPC_EXCP_FP_VXZDZ
:
1674 info
.si_code
= TARGET_FPE_FLTDIV
;
1676 case POWERPC_EXCP_FP_XX
:
1677 info
.si_code
= TARGET_FPE_FLTRES
;
1679 case POWERPC_EXCP_FP_VXSOFT
:
1680 info
.si_code
= TARGET_FPE_FLTINV
;
1682 case POWERPC_EXCP_FP_VXSNAN
:
1683 case POWERPC_EXCP_FP_VXISI
:
1684 case POWERPC_EXCP_FP_VXIDI
:
1685 case POWERPC_EXCP_FP_VXIMZ
:
1686 case POWERPC_EXCP_FP_VXVC
:
1687 case POWERPC_EXCP_FP_VXSQRT
:
1688 case POWERPC_EXCP_FP_VXCVI
:
1689 info
.si_code
= TARGET_FPE_FLTSUB
;
1692 EXCP_DUMP(env
, "Unknown floating point exception (%02x)\n",
1697 case POWERPC_EXCP_INVAL
:
1698 EXCP_DUMP(env
, "Invalid instruction\n");
1699 info
.si_signo
= TARGET_SIGILL
;
1701 switch (env
->error_code
& 0xF) {
1702 case POWERPC_EXCP_INVAL_INVAL
:
1703 info
.si_code
= TARGET_ILL_ILLOPC
;
1705 case POWERPC_EXCP_INVAL_LSWX
:
1706 info
.si_code
= TARGET_ILL_ILLOPN
;
1708 case POWERPC_EXCP_INVAL_SPR
:
1709 info
.si_code
= TARGET_ILL_PRVREG
;
1711 case POWERPC_EXCP_INVAL_FP
:
1712 info
.si_code
= TARGET_ILL_COPROC
;
1715 EXCP_DUMP(env
, "Unknown invalid operation (%02x)\n",
1716 env
->error_code
& 0xF);
1717 info
.si_code
= TARGET_ILL_ILLADR
;
1721 case POWERPC_EXCP_PRIV
:
1722 EXCP_DUMP(env
, "Privilege violation\n");
1723 info
.si_signo
= TARGET_SIGILL
;
1725 switch (env
->error_code
& 0xF) {
1726 case POWERPC_EXCP_PRIV_OPC
:
1727 info
.si_code
= TARGET_ILL_PRVOPC
;
1729 case POWERPC_EXCP_PRIV_REG
:
1730 info
.si_code
= TARGET_ILL_PRVREG
;
1733 EXCP_DUMP(env
, "Unknown privilege violation (%02x)\n",
1734 env
->error_code
& 0xF);
1735 info
.si_code
= TARGET_ILL_PRVOPC
;
1739 case POWERPC_EXCP_TRAP
:
1740 cpu_abort(cs
, "Tried to call a TRAP\n");
1743 /* Should not happen ! */
1744 cpu_abort(cs
, "Unknown program exception (%02x)\n",
1748 info
._sifields
._sigfault
._addr
= env
->nip
- 4;
1749 queue_signal(env
, info
.si_signo
, &info
);
1751 case POWERPC_EXCP_FPU
: /* Floating-point unavailable exception */
1752 EXCP_DUMP(env
, "No floating point allowed\n");
1753 info
.si_signo
= TARGET_SIGILL
;
1755 info
.si_code
= TARGET_ILL_COPROC
;
1756 info
._sifields
._sigfault
._addr
= env
->nip
- 4;
1757 queue_signal(env
, info
.si_signo
, &info
);
1759 case POWERPC_EXCP_SYSCALL
: /* System call exception */
1760 cpu_abort(cs
, "Syscall exception while in user mode. "
1763 case POWERPC_EXCP_APU
: /* Auxiliary processor unavailable */
1764 EXCP_DUMP(env
, "No APU instruction allowed\n");
1765 info
.si_signo
= TARGET_SIGILL
;
1767 info
.si_code
= TARGET_ILL_COPROC
;
1768 info
._sifields
._sigfault
._addr
= env
->nip
- 4;
1769 queue_signal(env
, info
.si_signo
, &info
);
1771 case POWERPC_EXCP_DECR
: /* Decrementer exception */
1772 cpu_abort(cs
, "Decrementer interrupt while in user mode. "
1775 case POWERPC_EXCP_FIT
: /* Fixed-interval timer interrupt */
1776 cpu_abort(cs
, "Fix interval timer interrupt while in user mode. "
1779 case POWERPC_EXCP_WDT
: /* Watchdog timer interrupt */
1780 cpu_abort(cs
, "Watchdog timer interrupt while in user mode. "
1783 case POWERPC_EXCP_DTLB
: /* Data TLB error */
1784 cpu_abort(cs
, "Data TLB exception while in user mode. "
1787 case POWERPC_EXCP_ITLB
: /* Instruction TLB error */
1788 cpu_abort(cs
, "Instruction TLB exception while in user mode. "
1791 case POWERPC_EXCP_SPEU
: /* SPE/embedded floating-point unavail. */
1792 EXCP_DUMP(env
, "No SPE/floating-point instruction allowed\n");
1793 info
.si_signo
= TARGET_SIGILL
;
1795 info
.si_code
= TARGET_ILL_COPROC
;
1796 info
._sifields
._sigfault
._addr
= env
->nip
- 4;
1797 queue_signal(env
, info
.si_signo
, &info
);
1799 case POWERPC_EXCP_EFPDI
: /* Embedded floating-point data IRQ */
1800 cpu_abort(cs
, "Embedded floating-point data IRQ not handled\n");
1802 case POWERPC_EXCP_EFPRI
: /* Embedded floating-point round IRQ */
1803 cpu_abort(cs
, "Embedded floating-point round IRQ not handled\n");
1805 case POWERPC_EXCP_EPERFM
: /* Embedded performance monitor IRQ */
1806 cpu_abort(cs
, "Performance monitor exception not handled\n");
1808 case POWERPC_EXCP_DOORI
: /* Embedded doorbell interrupt */
1809 cpu_abort(cs
, "Doorbell interrupt while in user mode. "
1812 case POWERPC_EXCP_DOORCI
: /* Embedded doorbell critical interrupt */
1813 cpu_abort(cs
, "Doorbell critical interrupt while in user mode. "
1816 case POWERPC_EXCP_RESET
: /* System reset exception */
1817 cpu_abort(cs
, "Reset interrupt while in user mode. "
1820 case POWERPC_EXCP_DSEG
: /* Data segment exception */
1821 cpu_abort(cs
, "Data segment exception while in user mode. "
1824 case POWERPC_EXCP_ISEG
: /* Instruction segment exception */
1825 cpu_abort(cs
, "Instruction segment exception "
1826 "while in user mode. Aborting\n");
1828 /* PowerPC 64 with hypervisor mode support */
1829 case POWERPC_EXCP_HDECR
: /* Hypervisor decrementer exception */
1830 cpu_abort(cs
, "Hypervisor decrementer interrupt "
1831 "while in user mode. Aborting\n");
1833 case POWERPC_EXCP_TRACE
: /* Trace exception */
1835 * we use this exception to emulate step-by-step execution mode.
1838 /* PowerPC 64 with hypervisor mode support */
1839 case POWERPC_EXCP_HDSI
: /* Hypervisor data storage exception */
1840 cpu_abort(cs
, "Hypervisor data storage exception "
1841 "while in user mode. Aborting\n");
1843 case POWERPC_EXCP_HISI
: /* Hypervisor instruction storage excp */
1844 cpu_abort(cs
, "Hypervisor instruction storage exception "
1845 "while in user mode. Aborting\n");
1847 case POWERPC_EXCP_HDSEG
: /* Hypervisor data segment exception */
1848 cpu_abort(cs
, "Hypervisor data segment exception "
1849 "while in user mode. Aborting\n");
1851 case POWERPC_EXCP_HISEG
: /* Hypervisor instruction segment excp */
1852 cpu_abort(cs
, "Hypervisor instruction segment exception "
1853 "while in user mode. Aborting\n");
1855 case POWERPC_EXCP_VPU
: /* Vector unavailable exception */
1856 EXCP_DUMP(env
, "No Altivec instructions allowed\n");
1857 info
.si_signo
= TARGET_SIGILL
;
1859 info
.si_code
= TARGET_ILL_COPROC
;
1860 info
._sifields
._sigfault
._addr
= env
->nip
- 4;
1861 queue_signal(env
, info
.si_signo
, &info
);
1863 case POWERPC_EXCP_PIT
: /* Programmable interval timer IRQ */
1864 cpu_abort(cs
, "Programmable interval timer interrupt "
1865 "while in user mode. Aborting\n");
1867 case POWERPC_EXCP_IO
: /* IO error exception */
1868 cpu_abort(cs
, "IO error exception while in user mode. "
1871 case POWERPC_EXCP_RUNM
: /* Run mode exception */
1872 cpu_abort(cs
, "Run mode exception while in user mode. "
1875 case POWERPC_EXCP_EMUL
: /* Emulation trap exception */
1876 cpu_abort(cs
, "Emulation trap exception not handled\n");
1878 case POWERPC_EXCP_IFTLB
: /* Instruction fetch TLB error */
1879 cpu_abort(cs
, "Instruction fetch TLB exception "
1880 "while in user-mode. Aborting");
1882 case POWERPC_EXCP_DLTLB
: /* Data load TLB miss */
1883 cpu_abort(cs
, "Data load TLB exception while in user-mode. "
1886 case POWERPC_EXCP_DSTLB
: /* Data store TLB miss */
1887 cpu_abort(cs
, "Data store TLB exception while in user-mode. "
1890 case POWERPC_EXCP_FPA
: /* Floating-point assist exception */
1891 cpu_abort(cs
, "Floating-point assist exception not handled\n");
1893 case POWERPC_EXCP_IABR
: /* Instruction address breakpoint */
1894 cpu_abort(cs
, "Instruction address breakpoint exception "
1897 case POWERPC_EXCP_SMI
: /* System management interrupt */
1898 cpu_abort(cs
, "System management interrupt while in user mode. "
1901 case POWERPC_EXCP_THERM
: /* Thermal interrupt */
1902 cpu_abort(cs
, "Thermal interrupt interrupt while in user mode. "
1905 case POWERPC_EXCP_PERFM
: /* Embedded performance monitor IRQ */
1906 cpu_abort(cs
, "Performance monitor exception not handled\n");
1908 case POWERPC_EXCP_VPUA
: /* Vector assist exception */
1909 cpu_abort(cs
, "Vector assist exception not handled\n");
1911 case POWERPC_EXCP_SOFTP
: /* Soft patch exception */
1912 cpu_abort(cs
, "Soft patch exception not handled\n");
1914 case POWERPC_EXCP_MAINT
: /* Maintenance exception */
1915 cpu_abort(cs
, "Maintenance exception while in user mode. "
1918 case POWERPC_EXCP_STOP
: /* stop translation */
1919 /* We did invalidate the instruction cache. Go on */
1921 case POWERPC_EXCP_BRANCH
: /* branch instruction: */
1922 /* We just stopped because of a branch. Go on */
1924 case POWERPC_EXCP_SYSCALL_USER
:
1925 /* system call in user-mode emulation */
1927 * PPC ABI uses overflow flag in cr0 to signal an error
1930 env
->crf
[0] &= ~0x1;
1931 ret
= do_syscall(env
, env
->gpr
[0], env
->gpr
[3], env
->gpr
[4],
1932 env
->gpr
[5], env
->gpr
[6], env
->gpr
[7],
1934 if (ret
== (target_ulong
)(-TARGET_QEMU_ESIGRETURN
)) {
1935 /* Returning from a successful sigreturn syscall.
1936 Avoid corrupting register state. */
1939 if (ret
> (target_ulong
)(-515)) {
1945 case POWERPC_EXCP_STCX
:
1946 if (do_store_exclusive(env
)) {
1947 info
.si_signo
= TARGET_SIGSEGV
;
1949 info
.si_code
= TARGET_SEGV_MAPERR
;
1950 info
._sifields
._sigfault
._addr
= env
->nip
;
1951 queue_signal(env
, info
.si_signo
, &info
);
1958 sig
= gdb_handlesig(cs
, TARGET_SIGTRAP
);
1960 info
.si_signo
= sig
;
1962 info
.si_code
= TARGET_TRAP_BRKPT
;
1963 queue_signal(env
, info
.si_signo
, &info
);
1967 case EXCP_INTERRUPT
:
1968 /* just indicate that signals should be handled asap */
1971 cpu_abort(cs
, "Unknown exception 0x%d. Aborting\n", trapnr
);
1974 process_pending_signals(env
);
1981 # ifdef TARGET_ABI_MIPSO32
1982 # define MIPS_SYS(name, args) args,
1983 static const uint8_t mips_syscall_args
[] = {
1984 MIPS_SYS(sys_syscall
, 8) /* 4000 */
1985 MIPS_SYS(sys_exit
, 1)
1986 MIPS_SYS(sys_fork
, 0)
1987 MIPS_SYS(sys_read
, 3)
1988 MIPS_SYS(sys_write
, 3)
1989 MIPS_SYS(sys_open
, 3) /* 4005 */
1990 MIPS_SYS(sys_close
, 1)
1991 MIPS_SYS(sys_waitpid
, 3)
1992 MIPS_SYS(sys_creat
, 2)
1993 MIPS_SYS(sys_link
, 2)
1994 MIPS_SYS(sys_unlink
, 1) /* 4010 */
1995 MIPS_SYS(sys_execve
, 0)
1996 MIPS_SYS(sys_chdir
, 1)
1997 MIPS_SYS(sys_time
, 1)
1998 MIPS_SYS(sys_mknod
, 3)
1999 MIPS_SYS(sys_chmod
, 2) /* 4015 */
2000 MIPS_SYS(sys_lchown
, 3)
2001 MIPS_SYS(sys_ni_syscall
, 0)
2002 MIPS_SYS(sys_ni_syscall
, 0) /* was sys_stat */
2003 MIPS_SYS(sys_lseek
, 3)
2004 MIPS_SYS(sys_getpid
, 0) /* 4020 */
2005 MIPS_SYS(sys_mount
, 5)
2006 MIPS_SYS(sys_umount
, 1)
2007 MIPS_SYS(sys_setuid
, 1)
2008 MIPS_SYS(sys_getuid
, 0)
2009 MIPS_SYS(sys_stime
, 1) /* 4025 */
2010 MIPS_SYS(sys_ptrace
, 4)
2011 MIPS_SYS(sys_alarm
, 1)
2012 MIPS_SYS(sys_ni_syscall
, 0) /* was sys_fstat */
2013 MIPS_SYS(sys_pause
, 0)
2014 MIPS_SYS(sys_utime
, 2) /* 4030 */
2015 MIPS_SYS(sys_ni_syscall
, 0)
2016 MIPS_SYS(sys_ni_syscall
, 0)
2017 MIPS_SYS(sys_access
, 2)
2018 MIPS_SYS(sys_nice
, 1)
2019 MIPS_SYS(sys_ni_syscall
, 0) /* 4035 */
2020 MIPS_SYS(sys_sync
, 0)
2021 MIPS_SYS(sys_kill
, 2)
2022 MIPS_SYS(sys_rename
, 2)
2023 MIPS_SYS(sys_mkdir
, 2)
2024 MIPS_SYS(sys_rmdir
, 1) /* 4040 */
2025 MIPS_SYS(sys_dup
, 1)
2026 MIPS_SYS(sys_pipe
, 0)
2027 MIPS_SYS(sys_times
, 1)
2028 MIPS_SYS(sys_ni_syscall
, 0)
2029 MIPS_SYS(sys_brk
, 1) /* 4045 */
2030 MIPS_SYS(sys_setgid
, 1)
2031 MIPS_SYS(sys_getgid
, 0)
2032 MIPS_SYS(sys_ni_syscall
, 0) /* was signal(2) */
2033 MIPS_SYS(sys_geteuid
, 0)
2034 MIPS_SYS(sys_getegid
, 0) /* 4050 */
2035 MIPS_SYS(sys_acct
, 0)
2036 MIPS_SYS(sys_umount2
, 2)
2037 MIPS_SYS(sys_ni_syscall
, 0)
2038 MIPS_SYS(sys_ioctl
, 3)
2039 MIPS_SYS(sys_fcntl
, 3) /* 4055 */
2040 MIPS_SYS(sys_ni_syscall
, 2)
2041 MIPS_SYS(sys_setpgid
, 2)
2042 MIPS_SYS(sys_ni_syscall
, 0)
2043 MIPS_SYS(sys_olduname
, 1)
2044 MIPS_SYS(sys_umask
, 1) /* 4060 */
2045 MIPS_SYS(sys_chroot
, 1)
2046 MIPS_SYS(sys_ustat
, 2)
2047 MIPS_SYS(sys_dup2
, 2)
2048 MIPS_SYS(sys_getppid
, 0)
2049 MIPS_SYS(sys_getpgrp
, 0) /* 4065 */
2050 MIPS_SYS(sys_setsid
, 0)
2051 MIPS_SYS(sys_sigaction
, 3)
2052 MIPS_SYS(sys_sgetmask
, 0)
2053 MIPS_SYS(sys_ssetmask
, 1)
2054 MIPS_SYS(sys_setreuid
, 2) /* 4070 */
2055 MIPS_SYS(sys_setregid
, 2)
2056 MIPS_SYS(sys_sigsuspend
, 0)
2057 MIPS_SYS(sys_sigpending
, 1)
2058 MIPS_SYS(sys_sethostname
, 2)
2059 MIPS_SYS(sys_setrlimit
, 2) /* 4075 */
2060 MIPS_SYS(sys_getrlimit
, 2)
2061 MIPS_SYS(sys_getrusage
, 2)
2062 MIPS_SYS(sys_gettimeofday
, 2)
2063 MIPS_SYS(sys_settimeofday
, 2)
2064 MIPS_SYS(sys_getgroups
, 2) /* 4080 */
2065 MIPS_SYS(sys_setgroups
, 2)
2066 MIPS_SYS(sys_ni_syscall
, 0) /* old_select */
2067 MIPS_SYS(sys_symlink
, 2)
2068 MIPS_SYS(sys_ni_syscall
, 0) /* was sys_lstat */
2069 MIPS_SYS(sys_readlink
, 3) /* 4085 */
2070 MIPS_SYS(sys_uselib
, 1)
2071 MIPS_SYS(sys_swapon
, 2)
2072 MIPS_SYS(sys_reboot
, 3)
2073 MIPS_SYS(old_readdir
, 3)
2074 MIPS_SYS(old_mmap
, 6) /* 4090 */
2075 MIPS_SYS(sys_munmap
, 2)
2076 MIPS_SYS(sys_truncate
, 2)
2077 MIPS_SYS(sys_ftruncate
, 2)
2078 MIPS_SYS(sys_fchmod
, 2)
2079 MIPS_SYS(sys_fchown
, 3) /* 4095 */
2080 MIPS_SYS(sys_getpriority
, 2)
2081 MIPS_SYS(sys_setpriority
, 3)
2082 MIPS_SYS(sys_ni_syscall
, 0)
2083 MIPS_SYS(sys_statfs
, 2)
2084 MIPS_SYS(sys_fstatfs
, 2) /* 4100 */
2085 MIPS_SYS(sys_ni_syscall
, 0) /* was ioperm(2) */
2086 MIPS_SYS(sys_socketcall
, 2)
2087 MIPS_SYS(sys_syslog
, 3)
2088 MIPS_SYS(sys_setitimer
, 3)
2089 MIPS_SYS(sys_getitimer
, 2) /* 4105 */
2090 MIPS_SYS(sys_newstat
, 2)
2091 MIPS_SYS(sys_newlstat
, 2)
2092 MIPS_SYS(sys_newfstat
, 2)
2093 MIPS_SYS(sys_uname
, 1)
2094 MIPS_SYS(sys_ni_syscall
, 0) /* 4110 was iopl(2) */
2095 MIPS_SYS(sys_vhangup
, 0)
2096 MIPS_SYS(sys_ni_syscall
, 0) /* was sys_idle() */
2097 MIPS_SYS(sys_ni_syscall
, 0) /* was sys_vm86 */
2098 MIPS_SYS(sys_wait4
, 4)
2099 MIPS_SYS(sys_swapoff
, 1) /* 4115 */
2100 MIPS_SYS(sys_sysinfo
, 1)
2101 MIPS_SYS(sys_ipc
, 6)
2102 MIPS_SYS(sys_fsync
, 1)
2103 MIPS_SYS(sys_sigreturn
, 0)
2104 MIPS_SYS(sys_clone
, 6) /* 4120 */
2105 MIPS_SYS(sys_setdomainname
, 2)
2106 MIPS_SYS(sys_newuname
, 1)
2107 MIPS_SYS(sys_ni_syscall
, 0) /* sys_modify_ldt */
2108 MIPS_SYS(sys_adjtimex
, 1)
2109 MIPS_SYS(sys_mprotect
, 3) /* 4125 */
2110 MIPS_SYS(sys_sigprocmask
, 3)
2111 MIPS_SYS(sys_ni_syscall
, 0) /* was create_module */
2112 MIPS_SYS(sys_init_module
, 5)
2113 MIPS_SYS(sys_delete_module
, 1)
2114 MIPS_SYS(sys_ni_syscall
, 0) /* 4130 was get_kernel_syms */
2115 MIPS_SYS(sys_quotactl
, 0)
2116 MIPS_SYS(sys_getpgid
, 1)
2117 MIPS_SYS(sys_fchdir
, 1)
2118 MIPS_SYS(sys_bdflush
, 2)
2119 MIPS_SYS(sys_sysfs
, 3) /* 4135 */
2120 MIPS_SYS(sys_personality
, 1)
2121 MIPS_SYS(sys_ni_syscall
, 0) /* for afs_syscall */
2122 MIPS_SYS(sys_setfsuid
, 1)
2123 MIPS_SYS(sys_setfsgid
, 1)
2124 MIPS_SYS(sys_llseek
, 5) /* 4140 */
2125 MIPS_SYS(sys_getdents
, 3)
2126 MIPS_SYS(sys_select
, 5)
2127 MIPS_SYS(sys_flock
, 2)
2128 MIPS_SYS(sys_msync
, 3)
2129 MIPS_SYS(sys_readv
, 3) /* 4145 */
2130 MIPS_SYS(sys_writev
, 3)
2131 MIPS_SYS(sys_cacheflush
, 3)
2132 MIPS_SYS(sys_cachectl
, 3)
2133 MIPS_SYS(sys_sysmips
, 4)
2134 MIPS_SYS(sys_ni_syscall
, 0) /* 4150 */
2135 MIPS_SYS(sys_getsid
, 1)
2136 MIPS_SYS(sys_fdatasync
, 0)
2137 MIPS_SYS(sys_sysctl
, 1)
2138 MIPS_SYS(sys_mlock
, 2)
2139 MIPS_SYS(sys_munlock
, 2) /* 4155 */
2140 MIPS_SYS(sys_mlockall
, 1)
2141 MIPS_SYS(sys_munlockall
, 0)
2142 MIPS_SYS(sys_sched_setparam
, 2)
2143 MIPS_SYS(sys_sched_getparam
, 2)
2144 MIPS_SYS(sys_sched_setscheduler
, 3) /* 4160 */
2145 MIPS_SYS(sys_sched_getscheduler
, 1)
2146 MIPS_SYS(sys_sched_yield
, 0)
2147 MIPS_SYS(sys_sched_get_priority_max
, 1)
2148 MIPS_SYS(sys_sched_get_priority_min
, 1)
2149 MIPS_SYS(sys_sched_rr_get_interval
, 2) /* 4165 */
2150 MIPS_SYS(sys_nanosleep
, 2)
2151 MIPS_SYS(sys_mremap
, 5)
2152 MIPS_SYS(sys_accept
, 3)
2153 MIPS_SYS(sys_bind
, 3)
2154 MIPS_SYS(sys_connect
, 3) /* 4170 */
2155 MIPS_SYS(sys_getpeername
, 3)
2156 MIPS_SYS(sys_getsockname
, 3)
2157 MIPS_SYS(sys_getsockopt
, 5)
2158 MIPS_SYS(sys_listen
, 2)
2159 MIPS_SYS(sys_recv
, 4) /* 4175 */
2160 MIPS_SYS(sys_recvfrom
, 6)
2161 MIPS_SYS(sys_recvmsg
, 3)
2162 MIPS_SYS(sys_send
, 4)
2163 MIPS_SYS(sys_sendmsg
, 3)
2164 MIPS_SYS(sys_sendto
, 6) /* 4180 */
2165 MIPS_SYS(sys_setsockopt
, 5)
2166 MIPS_SYS(sys_shutdown
, 2)
2167 MIPS_SYS(sys_socket
, 3)
2168 MIPS_SYS(sys_socketpair
, 4)
2169 MIPS_SYS(sys_setresuid
, 3) /* 4185 */
2170 MIPS_SYS(sys_getresuid
, 3)
2171 MIPS_SYS(sys_ni_syscall
, 0) /* was sys_query_module */
2172 MIPS_SYS(sys_poll
, 3)
2173 MIPS_SYS(sys_nfsservctl
, 3)
2174 MIPS_SYS(sys_setresgid
, 3) /* 4190 */
2175 MIPS_SYS(sys_getresgid
, 3)
2176 MIPS_SYS(sys_prctl
, 5)
2177 MIPS_SYS(sys_rt_sigreturn
, 0)
2178 MIPS_SYS(sys_rt_sigaction
, 4)
2179 MIPS_SYS(sys_rt_sigprocmask
, 4) /* 4195 */
2180 MIPS_SYS(sys_rt_sigpending
, 2)
2181 MIPS_SYS(sys_rt_sigtimedwait
, 4)
2182 MIPS_SYS(sys_rt_sigqueueinfo
, 3)
2183 MIPS_SYS(sys_rt_sigsuspend
, 0)
2184 MIPS_SYS(sys_pread64
, 6) /* 4200 */
2185 MIPS_SYS(sys_pwrite64
, 6)
2186 MIPS_SYS(sys_chown
, 3)
2187 MIPS_SYS(sys_getcwd
, 2)
2188 MIPS_SYS(sys_capget
, 2)
2189 MIPS_SYS(sys_capset
, 2) /* 4205 */
2190 MIPS_SYS(sys_sigaltstack
, 2)
2191 MIPS_SYS(sys_sendfile
, 4)
2192 MIPS_SYS(sys_ni_syscall
, 0)
2193 MIPS_SYS(sys_ni_syscall
, 0)
2194 MIPS_SYS(sys_mmap2
, 6) /* 4210 */
2195 MIPS_SYS(sys_truncate64
, 4)
2196 MIPS_SYS(sys_ftruncate64
, 4)
2197 MIPS_SYS(sys_stat64
, 2)
2198 MIPS_SYS(sys_lstat64
, 2)
2199 MIPS_SYS(sys_fstat64
, 2) /* 4215 */
2200 MIPS_SYS(sys_pivot_root
, 2)
2201 MIPS_SYS(sys_mincore
, 3)
2202 MIPS_SYS(sys_madvise
, 3)
2203 MIPS_SYS(sys_getdents64
, 3)
2204 MIPS_SYS(sys_fcntl64
, 3) /* 4220 */
2205 MIPS_SYS(sys_ni_syscall
, 0)
2206 MIPS_SYS(sys_gettid
, 0)
2207 MIPS_SYS(sys_readahead
, 5)
2208 MIPS_SYS(sys_setxattr
, 5)
2209 MIPS_SYS(sys_lsetxattr
, 5) /* 4225 */
2210 MIPS_SYS(sys_fsetxattr
, 5)
2211 MIPS_SYS(sys_getxattr
, 4)
2212 MIPS_SYS(sys_lgetxattr
, 4)
2213 MIPS_SYS(sys_fgetxattr
, 4)
2214 MIPS_SYS(sys_listxattr
, 3) /* 4230 */
2215 MIPS_SYS(sys_llistxattr
, 3)
2216 MIPS_SYS(sys_flistxattr
, 3)
2217 MIPS_SYS(sys_removexattr
, 2)
2218 MIPS_SYS(sys_lremovexattr
, 2)
2219 MIPS_SYS(sys_fremovexattr
, 2) /* 4235 */
2220 MIPS_SYS(sys_tkill
, 2)
2221 MIPS_SYS(sys_sendfile64
, 5)
2222 MIPS_SYS(sys_futex
, 6)
2223 MIPS_SYS(sys_sched_setaffinity
, 3)
2224 MIPS_SYS(sys_sched_getaffinity
, 3) /* 4240 */
2225 MIPS_SYS(sys_io_setup
, 2)
2226 MIPS_SYS(sys_io_destroy
, 1)
2227 MIPS_SYS(sys_io_getevents
, 5)
2228 MIPS_SYS(sys_io_submit
, 3)
2229 MIPS_SYS(sys_io_cancel
, 3) /* 4245 */
2230 MIPS_SYS(sys_exit_group
, 1)
2231 MIPS_SYS(sys_lookup_dcookie
, 3)
2232 MIPS_SYS(sys_epoll_create
, 1)
2233 MIPS_SYS(sys_epoll_ctl
, 4)
2234 MIPS_SYS(sys_epoll_wait
, 3) /* 4250 */
2235 MIPS_SYS(sys_remap_file_pages
, 5)
2236 MIPS_SYS(sys_set_tid_address
, 1)
2237 MIPS_SYS(sys_restart_syscall
, 0)
2238 MIPS_SYS(sys_fadvise64_64
, 7)
2239 MIPS_SYS(sys_statfs64
, 3) /* 4255 */
2240 MIPS_SYS(sys_fstatfs64
, 2)
2241 MIPS_SYS(sys_timer_create
, 3)
2242 MIPS_SYS(sys_timer_settime
, 4)
2243 MIPS_SYS(sys_timer_gettime
, 2)
2244 MIPS_SYS(sys_timer_getoverrun
, 1) /* 4260 */
2245 MIPS_SYS(sys_timer_delete
, 1)
2246 MIPS_SYS(sys_clock_settime
, 2)
2247 MIPS_SYS(sys_clock_gettime
, 2)
2248 MIPS_SYS(sys_clock_getres
, 2)
2249 MIPS_SYS(sys_clock_nanosleep
, 4) /* 4265 */
2250 MIPS_SYS(sys_tgkill
, 3)
2251 MIPS_SYS(sys_utimes
, 2)
2252 MIPS_SYS(sys_mbind
, 4)
2253 MIPS_SYS(sys_ni_syscall
, 0) /* sys_get_mempolicy */
2254 MIPS_SYS(sys_ni_syscall
, 0) /* 4270 sys_set_mempolicy */
2255 MIPS_SYS(sys_mq_open
, 4)
2256 MIPS_SYS(sys_mq_unlink
, 1)
2257 MIPS_SYS(sys_mq_timedsend
, 5)
2258 MIPS_SYS(sys_mq_timedreceive
, 5)
2259 MIPS_SYS(sys_mq_notify
, 2) /* 4275 */
2260 MIPS_SYS(sys_mq_getsetattr
, 3)
2261 MIPS_SYS(sys_ni_syscall
, 0) /* sys_vserver */
2262 MIPS_SYS(sys_waitid
, 4)
2263 MIPS_SYS(sys_ni_syscall
, 0) /* available, was setaltroot */
2264 MIPS_SYS(sys_add_key
, 5)
2265 MIPS_SYS(sys_request_key
, 4)
2266 MIPS_SYS(sys_keyctl
, 5)
2267 MIPS_SYS(sys_set_thread_area
, 1)
2268 MIPS_SYS(sys_inotify_init
, 0)
2269 MIPS_SYS(sys_inotify_add_watch
, 3) /* 4285 */
2270 MIPS_SYS(sys_inotify_rm_watch
, 2)
2271 MIPS_SYS(sys_migrate_pages
, 4)
2272 MIPS_SYS(sys_openat
, 4)
2273 MIPS_SYS(sys_mkdirat
, 3)
2274 MIPS_SYS(sys_mknodat
, 4) /* 4290 */
2275 MIPS_SYS(sys_fchownat
, 5)
2276 MIPS_SYS(sys_futimesat
, 3)
2277 MIPS_SYS(sys_fstatat64
, 4)
2278 MIPS_SYS(sys_unlinkat
, 3)
2279 MIPS_SYS(sys_renameat
, 4) /* 4295 */
2280 MIPS_SYS(sys_linkat
, 5)
2281 MIPS_SYS(sys_symlinkat
, 3)
2282 MIPS_SYS(sys_readlinkat
, 4)
2283 MIPS_SYS(sys_fchmodat
, 3)
2284 MIPS_SYS(sys_faccessat
, 3) /* 4300 */
2285 MIPS_SYS(sys_pselect6
, 6)
2286 MIPS_SYS(sys_ppoll
, 5)
2287 MIPS_SYS(sys_unshare
, 1)
2288 MIPS_SYS(sys_splice
, 6)
2289 MIPS_SYS(sys_sync_file_range
, 7) /* 4305 */
2290 MIPS_SYS(sys_tee
, 4)
2291 MIPS_SYS(sys_vmsplice
, 4)
2292 MIPS_SYS(sys_move_pages
, 6)
2293 MIPS_SYS(sys_set_robust_list
, 2)
2294 MIPS_SYS(sys_get_robust_list
, 3) /* 4310 */
2295 MIPS_SYS(sys_kexec_load
, 4)
2296 MIPS_SYS(sys_getcpu
, 3)
2297 MIPS_SYS(sys_epoll_pwait
, 6)
2298 MIPS_SYS(sys_ioprio_set
, 3)
2299 MIPS_SYS(sys_ioprio_get
, 2)
2300 MIPS_SYS(sys_utimensat
, 4)
2301 MIPS_SYS(sys_signalfd
, 3)
2302 MIPS_SYS(sys_ni_syscall
, 0) /* was timerfd */
2303 MIPS_SYS(sys_eventfd
, 1)
2304 MIPS_SYS(sys_fallocate
, 6) /* 4320 */
2305 MIPS_SYS(sys_timerfd_create
, 2)
2306 MIPS_SYS(sys_timerfd_gettime
, 2)
2307 MIPS_SYS(sys_timerfd_settime
, 4)
2308 MIPS_SYS(sys_signalfd4
, 4)
2309 MIPS_SYS(sys_eventfd2
, 2) /* 4325 */
2310 MIPS_SYS(sys_epoll_create1
, 1)
2311 MIPS_SYS(sys_dup3
, 3)
2312 MIPS_SYS(sys_pipe2
, 2)
2313 MIPS_SYS(sys_inotify_init1
, 1)
2314 MIPS_SYS(sys_preadv
, 6) /* 4330 */
2315 MIPS_SYS(sys_pwritev
, 6)
2316 MIPS_SYS(sys_rt_tgsigqueueinfo
, 4)
2317 MIPS_SYS(sys_perf_event_open
, 5)
2318 MIPS_SYS(sys_accept4
, 4)
2319 MIPS_SYS(sys_recvmmsg
, 5) /* 4335 */
2320 MIPS_SYS(sys_fanotify_init
, 2)
2321 MIPS_SYS(sys_fanotify_mark
, 6)
2322 MIPS_SYS(sys_prlimit64
, 4)
2323 MIPS_SYS(sys_name_to_handle_at
, 5)
2324 MIPS_SYS(sys_open_by_handle_at
, 3) /* 4340 */
2325 MIPS_SYS(sys_clock_adjtime
, 2)
2326 MIPS_SYS(sys_syncfs
, 1)
2331 static int do_store_exclusive(CPUMIPSState
*env
)
2334 target_ulong page_addr
;
2342 page_addr
= addr
& TARGET_PAGE_MASK
;
2345 flags
= page_get_flags(page_addr
);
2346 if ((flags
& PAGE_READ
) == 0) {
2349 reg
= env
->llreg
& 0x1f;
2350 d
= (env
->llreg
& 0x20) != 0;
2352 segv
= get_user_s64(val
, addr
);
2354 segv
= get_user_s32(val
, addr
);
2357 if (val
!= env
->llval
) {
2358 env
->active_tc
.gpr
[reg
] = 0;
2361 segv
= put_user_u64(env
->llnewval
, addr
);
2363 segv
= put_user_u32(env
->llnewval
, addr
);
2366 env
->active_tc
.gpr
[reg
] = 1;
2373 env
->active_tc
.PC
+= 4;
2386 static int do_break(CPUMIPSState
*env
, target_siginfo_t
*info
,
2394 info
->si_signo
= TARGET_SIGFPE
;
2396 info
->si_code
= (code
== BRK_OVERFLOW
) ? FPE_INTOVF
: FPE_INTDIV
;
2397 queue_signal(env
, info
->si_signo
, &*info
);
2401 info
->si_signo
= TARGET_SIGTRAP
;
2403 queue_signal(env
, info
->si_signo
, &*info
);
2411 void cpu_loop(CPUMIPSState
*env
)
2413 CPUState
*cs
= CPU(mips_env_get_cpu(env
));
2414 target_siginfo_t info
;
2417 # ifdef TARGET_ABI_MIPSO32
2418 unsigned int syscall_num
;
2423 trapnr
= cpu_mips_exec(env
);
2427 env
->active_tc
.PC
+= 4;
2428 # ifdef TARGET_ABI_MIPSO32
2429 syscall_num
= env
->active_tc
.gpr
[2] - 4000;
2430 if (syscall_num
>= sizeof(mips_syscall_args
)) {
2431 ret
= -TARGET_ENOSYS
;
2435 abi_ulong arg5
= 0, arg6
= 0, arg7
= 0, arg8
= 0;
2437 nb_args
= mips_syscall_args
[syscall_num
];
2438 sp_reg
= env
->active_tc
.gpr
[29];
2440 /* these arguments are taken from the stack */
2442 if ((ret
= get_user_ual(arg8
, sp_reg
+ 28)) != 0) {
2446 if ((ret
= get_user_ual(arg7
, sp_reg
+ 24)) != 0) {
2450 if ((ret
= get_user_ual(arg6
, sp_reg
+ 20)) != 0) {
2454 if ((ret
= get_user_ual(arg5
, sp_reg
+ 16)) != 0) {
2460 ret
= do_syscall(env
, env
->active_tc
.gpr
[2],
2461 env
->active_tc
.gpr
[4],
2462 env
->active_tc
.gpr
[5],
2463 env
->active_tc
.gpr
[6],
2464 env
->active_tc
.gpr
[7],
2465 arg5
, arg6
, arg7
, arg8
);
2469 ret
= do_syscall(env
, env
->active_tc
.gpr
[2],
2470 env
->active_tc
.gpr
[4], env
->active_tc
.gpr
[5],
2471 env
->active_tc
.gpr
[6], env
->active_tc
.gpr
[7],
2472 env
->active_tc
.gpr
[8], env
->active_tc
.gpr
[9],
2473 env
->active_tc
.gpr
[10], env
->active_tc
.gpr
[11]);
2475 if (ret
== -TARGET_QEMU_ESIGRETURN
) {
2476 /* Returning from a successful sigreturn syscall.
2477 Avoid clobbering register state. */
2480 if ((abi_ulong
)ret
>= (abi_ulong
)-1133) {
2481 env
->active_tc
.gpr
[7] = 1; /* error flag */
2484 env
->active_tc
.gpr
[7] = 0; /* error flag */
2486 env
->active_tc
.gpr
[2] = ret
;
2492 info
.si_signo
= TARGET_SIGSEGV
;
2494 /* XXX: check env->error_code */
2495 info
.si_code
= TARGET_SEGV_MAPERR
;
2496 info
._sifields
._sigfault
._addr
= env
->CP0_BadVAddr
;
2497 queue_signal(env
, info
.si_signo
, &info
);
2501 info
.si_signo
= TARGET_SIGILL
;
2504 queue_signal(env
, info
.si_signo
, &info
);
2506 case EXCP_INTERRUPT
:
2507 /* just indicate that signals should be handled asap */
2513 sig
= gdb_handlesig(cs
, TARGET_SIGTRAP
);
2516 info
.si_signo
= sig
;
2518 info
.si_code
= TARGET_TRAP_BRKPT
;
2519 queue_signal(env
, info
.si_signo
, &info
);
2524 if (do_store_exclusive(env
)) {
2525 info
.si_signo
= TARGET_SIGSEGV
;
2527 info
.si_code
= TARGET_SEGV_MAPERR
;
2528 info
._sifields
._sigfault
._addr
= env
->active_tc
.PC
;
2529 queue_signal(env
, info
.si_signo
, &info
);
2533 info
.si_signo
= TARGET_SIGILL
;
2535 info
.si_code
= TARGET_ILL_ILLOPC
;
2536 queue_signal(env
, info
.si_signo
, &info
);
2538 /* The code below was inspired by the MIPS Linux kernel trap
2539 * handling code in arch/mips/kernel/traps.c.
2543 abi_ulong trap_instr
;
2546 if (env
->hflags
& MIPS_HFLAG_M16
) {
2547 if (env
->insn_flags
& ASE_MICROMIPS
) {
2548 /* microMIPS mode */
2549 ret
= get_user_u16(trap_instr
, env
->active_tc
.PC
);
2554 if ((trap_instr
>> 10) == 0x11) {
2555 /* 16-bit instruction */
2556 code
= trap_instr
& 0xf;
2558 /* 32-bit instruction */
2561 ret
= get_user_u16(instr_lo
,
2562 env
->active_tc
.PC
+ 2);
2566 trap_instr
= (trap_instr
<< 16) | instr_lo
;
2567 code
= ((trap_instr
>> 6) & ((1 << 20) - 1));
2568 /* Unfortunately, microMIPS also suffers from
2569 the old assembler bug... */
2570 if (code
>= (1 << 10)) {
2576 ret
= get_user_u16(trap_instr
, env
->active_tc
.PC
);
2580 code
= (trap_instr
>> 6) & 0x3f;
2583 ret
= get_user_ual(trap_instr
, env
->active_tc
.PC
);
2588 /* As described in the original Linux kernel code, the
2589 * below checks on 'code' are to work around an old
2592 code
= ((trap_instr
>> 6) & ((1 << 20) - 1));
2593 if (code
>= (1 << 10)) {
2598 if (do_break(env
, &info
, code
) != 0) {
2605 abi_ulong trap_instr
;
2606 unsigned int code
= 0;
2608 if (env
->hflags
& MIPS_HFLAG_M16
) {
2609 /* microMIPS mode */
2612 ret
= get_user_u16(instr
[0], env
->active_tc
.PC
) ||
2613 get_user_u16(instr
[1], env
->active_tc
.PC
+ 2);
2615 trap_instr
= (instr
[0] << 16) | instr
[1];
2617 ret
= get_user_ual(trap_instr
, env
->active_tc
.PC
);
2624 /* The immediate versions don't provide a code. */
2625 if (!(trap_instr
& 0xFC000000)) {
2626 if (env
->hflags
& MIPS_HFLAG_M16
) {
2627 /* microMIPS mode */
2628 code
= ((trap_instr
>> 12) & ((1 << 4) - 1));
2630 code
= ((trap_instr
>> 6) & ((1 << 10) - 1));
2634 if (do_break(env
, &info
, code
) != 0) {
2641 fprintf(stderr
, "qemu: unhandled CPU exception 0x%x - aborting\n",
2643 cpu_dump_state(cs
, stderr
, fprintf
, 0);
2646 process_pending_signals(env
);
2651 #ifdef TARGET_OPENRISC
2653 void cpu_loop(CPUOpenRISCState
*env
)
2655 CPUState
*cs
= CPU(openrisc_env_get_cpu(env
));
2659 trapnr
= cpu_exec(env
);
2664 qemu_log("\nReset request, exit, pc is %#x\n", env
->pc
);
2668 qemu_log("\nBus error, exit, pc is %#x\n", env
->pc
);
2673 cpu_dump_state(cs
, stderr
, fprintf
, 0);
2674 gdbsig
= TARGET_SIGSEGV
;
2677 qemu_log("\nTick time interrupt pc is %#x\n", env
->pc
);
2680 qemu_log("\nAlignment pc is %#x\n", env
->pc
);
2684 qemu_log("\nIllegal instructionpc is %#x\n", env
->pc
);
2688 qemu_log("\nExternal interruptpc is %#x\n", env
->pc
);
2692 qemu_log("\nTLB miss\n");
2695 qemu_log("\nRange\n");
2699 env
->pc
+= 4; /* 0xc00; */
2700 env
->gpr
[11] = do_syscall(env
,
2701 env
->gpr
[11], /* return value */
2702 env
->gpr
[3], /* r3 - r7 are params */
2710 qemu_log("\nFloating point error\n");
2713 qemu_log("\nTrap\n");
2720 qemu_log("\nqemu: unhandled CPU exception %#x - aborting\n",
2722 cpu_dump_state(cs
, stderr
, fprintf
, 0);
2723 gdbsig
= TARGET_SIGILL
;
2727 gdb_handlesig(cs
, gdbsig
);
2728 if (gdbsig
!= TARGET_SIGTRAP
) {
2733 process_pending_signals(env
);
2737 #endif /* TARGET_OPENRISC */
2740 void cpu_loop(CPUSH4State
*env
)
2742 CPUState
*cs
= CPU(sh_env_get_cpu(env
));
2744 target_siginfo_t info
;
2747 trapnr
= cpu_sh4_exec (env
);
2752 ret
= do_syscall(env
,
2761 env
->gregs
[0] = ret
;
2763 case EXCP_INTERRUPT
:
2764 /* just indicate that signals should be handled asap */
2770 sig
= gdb_handlesig(cs
, TARGET_SIGTRAP
);
2773 info
.si_signo
= sig
;
2775 info
.si_code
= TARGET_TRAP_BRKPT
;
2776 queue_signal(env
, info
.si_signo
, &info
);
2782 info
.si_signo
= SIGSEGV
;
2784 info
.si_code
= TARGET_SEGV_MAPERR
;
2785 info
._sifields
._sigfault
._addr
= env
->tea
;
2786 queue_signal(env
, info
.si_signo
, &info
);
2790 printf ("Unhandled trap: 0x%x\n", trapnr
);
2791 cpu_dump_state(cs
, stderr
, fprintf
, 0);
2794 process_pending_signals (env
);
2800 void cpu_loop(CPUCRISState
*env
)
2802 CPUState
*cs
= CPU(cris_env_get_cpu(env
));
2804 target_siginfo_t info
;
2807 trapnr
= cpu_cris_exec (env
);
2811 info
.si_signo
= SIGSEGV
;
2813 /* XXX: check env->error_code */
2814 info
.si_code
= TARGET_SEGV_MAPERR
;
2815 info
._sifields
._sigfault
._addr
= env
->pregs
[PR_EDA
];
2816 queue_signal(env
, info
.si_signo
, &info
);
2819 case EXCP_INTERRUPT
:
2820 /* just indicate that signals should be handled asap */
2823 ret
= do_syscall(env
,
2832 env
->regs
[10] = ret
;
2838 sig
= gdb_handlesig(cs
, TARGET_SIGTRAP
);
2841 info
.si_signo
= sig
;
2843 info
.si_code
= TARGET_TRAP_BRKPT
;
2844 queue_signal(env
, info
.si_signo
, &info
);
2849 printf ("Unhandled trap: 0x%x\n", trapnr
);
2850 cpu_dump_state(cs
, stderr
, fprintf
, 0);
2853 process_pending_signals (env
);
2858 #ifdef TARGET_MICROBLAZE
2859 void cpu_loop(CPUMBState
*env
)
2861 CPUState
*cs
= CPU(mb_env_get_cpu(env
));
2863 target_siginfo_t info
;
2866 trapnr
= cpu_mb_exec (env
);
2870 info
.si_signo
= SIGSEGV
;
2872 /* XXX: check env->error_code */
2873 info
.si_code
= TARGET_SEGV_MAPERR
;
2874 info
._sifields
._sigfault
._addr
= 0;
2875 queue_signal(env
, info
.si_signo
, &info
);
2878 case EXCP_INTERRUPT
:
2879 /* just indicate that signals should be handled asap */
2882 /* Return address is 4 bytes after the call. */
2884 env
->sregs
[SR_PC
] = env
->regs
[14];
2885 ret
= do_syscall(env
,
2897 env
->regs
[17] = env
->sregs
[SR_PC
] + 4;
2898 if (env
->iflags
& D_FLAG
) {
2899 env
->sregs
[SR_ESR
] |= 1 << 12;
2900 env
->sregs
[SR_PC
] -= 4;
2901 /* FIXME: if branch was immed, replay the imm as well. */
2904 env
->iflags
&= ~(IMM_FLAG
| D_FLAG
);
2906 switch (env
->sregs
[SR_ESR
] & 31) {
2907 case ESR_EC_DIVZERO
:
2908 info
.si_signo
= SIGFPE
;
2910 info
.si_code
= TARGET_FPE_FLTDIV
;
2911 info
._sifields
._sigfault
._addr
= 0;
2912 queue_signal(env
, info
.si_signo
, &info
);
2915 info
.si_signo
= SIGFPE
;
2917 if (env
->sregs
[SR_FSR
] & FSR_IO
) {
2918 info
.si_code
= TARGET_FPE_FLTINV
;
2920 if (env
->sregs
[SR_FSR
] & FSR_DZ
) {
2921 info
.si_code
= TARGET_FPE_FLTDIV
;
2923 info
._sifields
._sigfault
._addr
= 0;
2924 queue_signal(env
, info
.si_signo
, &info
);
2927 printf ("Unhandled hw-exception: 0x%x\n",
2928 env
->sregs
[SR_ESR
] & ESR_EC_MASK
);
2929 cpu_dump_state(cs
, stderr
, fprintf
, 0);
2938 sig
= gdb_handlesig(cs
, TARGET_SIGTRAP
);
2941 info
.si_signo
= sig
;
2943 info
.si_code
= TARGET_TRAP_BRKPT
;
2944 queue_signal(env
, info
.si_signo
, &info
);
2949 printf ("Unhandled trap: 0x%x\n", trapnr
);
2950 cpu_dump_state(cs
, stderr
, fprintf
, 0);
2953 process_pending_signals (env
);
2960 void cpu_loop(CPUM68KState
*env
)
2962 CPUState
*cs
= CPU(m68k_env_get_cpu(env
));
2965 target_siginfo_t info
;
2966 TaskState
*ts
= cs
->opaque
;
2969 trapnr
= cpu_m68k_exec(env
);
2973 if (ts
->sim_syscalls
) {
2975 nr
= lduw(env
->pc
+ 2);
2977 do_m68k_simcall(env
, nr
);
2983 case EXCP_HALT_INSN
:
2984 /* Semihosing syscall. */
2986 do_m68k_semihosting(env
, env
->dregs
[0]);
2990 case EXCP_UNSUPPORTED
:
2992 info
.si_signo
= SIGILL
;
2994 info
.si_code
= TARGET_ILL_ILLOPN
;
2995 info
._sifields
._sigfault
._addr
= env
->pc
;
2996 queue_signal(env
, info
.si_signo
, &info
);
3000 ts
->sim_syscalls
= 0;
3003 env
->dregs
[0] = do_syscall(env
,
3014 case EXCP_INTERRUPT
:
3015 /* just indicate that signals should be handled asap */
3019 info
.si_signo
= SIGSEGV
;
3021 /* XXX: check env->error_code */
3022 info
.si_code
= TARGET_SEGV_MAPERR
;
3023 info
._sifields
._sigfault
._addr
= env
->mmu
.ar
;
3024 queue_signal(env
, info
.si_signo
, &info
);
3031 sig
= gdb_handlesig(cs
, TARGET_SIGTRAP
);
3034 info
.si_signo
= sig
;
3036 info
.si_code
= TARGET_TRAP_BRKPT
;
3037 queue_signal(env
, info
.si_signo
, &info
);
3042 fprintf(stderr
, "qemu: unhandled CPU exception 0x%x - aborting\n",
3044 cpu_dump_state(cs
, stderr
, fprintf
, 0);
3047 process_pending_signals(env
);
3050 #endif /* TARGET_M68K */
3053 static void do_store_exclusive(CPUAlphaState
*env
, int reg
, int quad
)
3055 target_ulong addr
, val
, tmp
;
3056 target_siginfo_t info
;
3059 addr
= env
->lock_addr
;
3060 tmp
= env
->lock_st_addr
;
3061 env
->lock_addr
= -1;
3062 env
->lock_st_addr
= 0;
3068 if (quad
? get_user_s64(val
, addr
) : get_user_s32(val
, addr
)) {
3072 if (val
== env
->lock_value
) {
3074 if (quad
? put_user_u64(tmp
, addr
) : put_user_u32(tmp
, addr
)) {
3091 info
.si_signo
= TARGET_SIGSEGV
;
3093 info
.si_code
= TARGET_SEGV_MAPERR
;
3094 info
._sifields
._sigfault
._addr
= addr
;
3095 queue_signal(env
, TARGET_SIGSEGV
, &info
);
3098 void cpu_loop(CPUAlphaState
*env
)
3100 CPUState
*cs
= CPU(alpha_env_get_cpu(env
));
3102 target_siginfo_t info
;
3106 trapnr
= cpu_alpha_exec (env
);
3108 /* All of the traps imply a transition through PALcode, which
3109 implies an REI instruction has been executed. Which means
3110 that the intr_flag should be cleared. */
3115 fprintf(stderr
, "Reset requested. Exit\n");
3119 fprintf(stderr
, "Machine check exception. Exit\n");
3122 case EXCP_SMP_INTERRUPT
:
3123 case EXCP_CLK_INTERRUPT
:
3124 case EXCP_DEV_INTERRUPT
:
3125 fprintf(stderr
, "External interrupt. Exit\n");
3129 env
->lock_addr
= -1;
3130 info
.si_signo
= TARGET_SIGSEGV
;
3132 info
.si_code
= (page_get_flags(env
->trap_arg0
) & PAGE_VALID
3133 ? TARGET_SEGV_ACCERR
: TARGET_SEGV_MAPERR
);
3134 info
._sifields
._sigfault
._addr
= env
->trap_arg0
;
3135 queue_signal(env
, info
.si_signo
, &info
);
3138 env
->lock_addr
= -1;
3139 info
.si_signo
= TARGET_SIGBUS
;
3141 info
.si_code
= TARGET_BUS_ADRALN
;
3142 info
._sifields
._sigfault
._addr
= env
->trap_arg0
;
3143 queue_signal(env
, info
.si_signo
, &info
);
3147 env
->lock_addr
= -1;
3148 info
.si_signo
= TARGET_SIGILL
;
3150 info
.si_code
= TARGET_ILL_ILLOPC
;
3151 info
._sifields
._sigfault
._addr
= env
->pc
;
3152 queue_signal(env
, info
.si_signo
, &info
);
3155 env
->lock_addr
= -1;
3156 info
.si_signo
= TARGET_SIGFPE
;
3158 info
.si_code
= TARGET_FPE_FLTINV
;
3159 info
._sifields
._sigfault
._addr
= env
->pc
;
3160 queue_signal(env
, info
.si_signo
, &info
);
3163 /* No-op. Linux simply re-enables the FPU. */
3166 env
->lock_addr
= -1;
3167 switch (env
->error_code
) {
3170 info
.si_signo
= TARGET_SIGTRAP
;
3172 info
.si_code
= TARGET_TRAP_BRKPT
;
3173 info
._sifields
._sigfault
._addr
= env
->pc
;
3174 queue_signal(env
, info
.si_signo
, &info
);
3178 info
.si_signo
= TARGET_SIGTRAP
;
3181 info
._sifields
._sigfault
._addr
= env
->pc
;
3182 queue_signal(env
, info
.si_signo
, &info
);
3186 trapnr
= env
->ir
[IR_V0
];
3187 sysret
= do_syscall(env
, trapnr
,
3188 env
->ir
[IR_A0
], env
->ir
[IR_A1
],
3189 env
->ir
[IR_A2
], env
->ir
[IR_A3
],
3190 env
->ir
[IR_A4
], env
->ir
[IR_A5
],
3192 if (trapnr
== TARGET_NR_sigreturn
3193 || trapnr
== TARGET_NR_rt_sigreturn
) {
3196 /* Syscall writes 0 to V0 to bypass error check, similar
3197 to how this is handled internal to Linux kernel.
3198 (Ab)use trapnr temporarily as boolean indicating error. */
3199 trapnr
= (env
->ir
[IR_V0
] != 0 && sysret
< 0);
3200 env
->ir
[IR_V0
] = (trapnr
? -sysret
: sysret
);
3201 env
->ir
[IR_A3
] = trapnr
;
3205 /* ??? We can probably elide the code using page_unprotect
3206 that is checking for self-modifying code. Instead we
3207 could simply call tb_flush here. Until we work out the
3208 changes required to turn off the extra write protection,
3209 this can be a no-op. */
3213 /* Handled in the translator for usermode. */
3217 /* Handled in the translator for usermode. */
3221 info
.si_signo
= TARGET_SIGFPE
;
3222 switch (env
->ir
[IR_A0
]) {
3223 case TARGET_GEN_INTOVF
:
3224 info
.si_code
= TARGET_FPE_INTOVF
;
3226 case TARGET_GEN_INTDIV
:
3227 info
.si_code
= TARGET_FPE_INTDIV
;
3229 case TARGET_GEN_FLTOVF
:
3230 info
.si_code
= TARGET_FPE_FLTOVF
;
3232 case TARGET_GEN_FLTUND
:
3233 info
.si_code
= TARGET_FPE_FLTUND
;
3235 case TARGET_GEN_FLTINV
:
3236 info
.si_code
= TARGET_FPE_FLTINV
;
3238 case TARGET_GEN_FLTINE
:
3239 info
.si_code
= TARGET_FPE_FLTRES
;
3241 case TARGET_GEN_ROPRAND
:
3245 info
.si_signo
= TARGET_SIGTRAP
;
3250 info
._sifields
._sigfault
._addr
= env
->pc
;
3251 queue_signal(env
, info
.si_signo
, &info
);
3258 info
.si_signo
= gdb_handlesig(cs
, TARGET_SIGTRAP
);
3259 if (info
.si_signo
) {
3260 env
->lock_addr
= -1;
3262 info
.si_code
= TARGET_TRAP_BRKPT
;
3263 queue_signal(env
, info
.si_signo
, &info
);
3268 do_store_exclusive(env
, env
->error_code
, trapnr
- EXCP_STL_C
);
3270 case EXCP_INTERRUPT
:
3271 /* Just indicate that signals should be handled asap. */
3274 printf ("Unhandled trap: 0x%x\n", trapnr
);
3275 cpu_dump_state(cs
, stderr
, fprintf
, 0);
3278 process_pending_signals (env
);
3281 #endif /* TARGET_ALPHA */
3284 void cpu_loop(CPUS390XState
*env
)
3286 CPUState
*cs
= CPU(s390_env_get_cpu(env
));
3288 target_siginfo_t info
;
3292 trapnr
= cpu_s390x_exec(env
);
3294 case EXCP_INTERRUPT
:
3295 /* Just indicate that signals should be handled asap. */
3299 n
= env
->int_svc_code
;
3301 /* syscalls > 255 */
3304 env
->psw
.addr
+= env
->int_svc_ilen
;
3305 env
->regs
[2] = do_syscall(env
, n
, env
->regs
[2], env
->regs
[3],
3306 env
->regs
[4], env
->regs
[5],
3307 env
->regs
[6], env
->regs
[7], 0, 0);
3311 sig
= gdb_handlesig(cs
, TARGET_SIGTRAP
);
3313 n
= TARGET_TRAP_BRKPT
;
3318 n
= env
->int_pgm_code
;
3321 case PGM_PRIVILEGED
:
3323 n
= TARGET_ILL_ILLOPC
;
3325 case PGM_PROTECTION
:
3326 case PGM_ADDRESSING
:
3328 /* XXX: check env->error_code */
3329 n
= TARGET_SEGV_MAPERR
;
3330 addr
= env
->__excp_addr
;
3333 case PGM_SPECIFICATION
:
3334 case PGM_SPECIAL_OP
:
3338 n
= TARGET_ILL_ILLOPN
;
3341 case PGM_FIXPT_OVERFLOW
:
3343 n
= TARGET_FPE_INTOVF
;
3345 case PGM_FIXPT_DIVIDE
:
3347 n
= TARGET_FPE_INTDIV
;
3351 n
= (env
->fpc
>> 8) & 0xff;
3353 /* compare-and-trap */
3356 /* An IEEE exception, simulated or otherwise. */
3358 n
= TARGET_FPE_FLTINV
;
3359 } else if (n
& 0x40) {
3360 n
= TARGET_FPE_FLTDIV
;
3361 } else if (n
& 0x20) {
3362 n
= TARGET_FPE_FLTOVF
;
3363 } else if (n
& 0x10) {
3364 n
= TARGET_FPE_FLTUND
;
3365 } else if (n
& 0x08) {
3366 n
= TARGET_FPE_FLTRES
;
3368 /* ??? Quantum exception; BFP, DFP error. */
3376 fprintf(stderr
, "Unhandled program exception: %#x\n", n
);
3377 cpu_dump_state(cs
, stderr
, fprintf
, 0);
3383 addr
= env
->psw
.addr
;
3385 info
.si_signo
= sig
;
3388 info
._sifields
._sigfault
._addr
= addr
;
3389 queue_signal(env
, info
.si_signo
, &info
);
3393 fprintf(stderr
, "Unhandled trap: 0x%x\n", trapnr
);
3394 cpu_dump_state(cs
, stderr
, fprintf
, 0);
3397 process_pending_signals (env
);
3401 #endif /* TARGET_S390X */
3403 THREAD CPUState
*thread_cpu
;
3405 void task_settid(TaskState
*ts
)
3407 if (ts
->ts_tid
== 0) {
3408 ts
->ts_tid
= (pid_t
)syscall(SYS_gettid
);
3412 void stop_all_tasks(void)
3415 * We trust that when using NPTL, start_exclusive()
3416 * handles thread stopping correctly.
3421 /* Assumes contents are already zeroed. */
3422 void init_task_state(TaskState
*ts
)
3427 ts
->first_free
= ts
->sigqueue_table
;
3428 for (i
= 0; i
< MAX_SIGQUEUE_SIZE
- 1; i
++) {
3429 ts
->sigqueue_table
[i
].next
= &ts
->sigqueue_table
[i
+ 1];
3431 ts
->sigqueue_table
[i
].next
= NULL
;
3434 CPUArchState
*cpu_copy(CPUArchState
*env
)
3436 CPUState
*cpu
= ENV_GET_CPU(env
);
3437 CPUArchState
*new_env
= cpu_init(cpu_model
);
3438 CPUState
*new_cpu
= ENV_GET_CPU(new_env
);
3439 #if defined(TARGET_HAS_ICE)
3444 /* Reset non arch specific state */
3447 memcpy(new_env
, env
, sizeof(CPUArchState
));
3449 /* Clone all break/watchpoints.
3450 Note: Once we support ptrace with hw-debug register access, make sure
3451 BP_CPU break/watchpoints are handled correctly on clone. */
3452 QTAILQ_INIT(&cpu
->breakpoints
);
3453 QTAILQ_INIT(&cpu
->watchpoints
);
3454 #if defined(TARGET_HAS_ICE)
3455 QTAILQ_FOREACH(bp
, &cpu
->breakpoints
, entry
) {
3456 cpu_breakpoint_insert(new_cpu
, bp
->pc
, bp
->flags
, NULL
);
3458 QTAILQ_FOREACH(wp
, &cpu
->watchpoints
, entry
) {
3459 cpu_watchpoint_insert(new_cpu
, wp
->vaddr
, (~wp
->len_mask
) + 1,
3467 static void handle_arg_help(const char *arg
)
3472 static void handle_arg_log(const char *arg
)
3476 mask
= qemu_str_to_log_mask(arg
);
3478 qemu_print_log_usage(stdout
);
3484 static void handle_arg_log_filename(const char *arg
)
3486 qemu_set_log_filename(arg
);
3489 static void handle_arg_set_env(const char *arg
)
3491 char *r
, *p
, *token
;
3492 r
= p
= strdup(arg
);
3493 while ((token
= strsep(&p
, ",")) != NULL
) {
3494 if (envlist_setenv(envlist
, token
) != 0) {
3501 static void handle_arg_unset_env(const char *arg
)
3503 char *r
, *p
, *token
;
3504 r
= p
= strdup(arg
);
3505 while ((token
= strsep(&p
, ",")) != NULL
) {
3506 if (envlist_unsetenv(envlist
, token
) != 0) {
3513 static void handle_arg_argv0(const char *arg
)
3515 argv0
= strdup(arg
);
3518 static void handle_arg_stack_size(const char *arg
)
3521 guest_stack_size
= strtoul(arg
, &p
, 0);
3522 if (guest_stack_size
== 0) {
3527 guest_stack_size
*= 1024 * 1024;
3528 } else if (*p
== 'k' || *p
== 'K') {
3529 guest_stack_size
*= 1024;
3533 static void handle_arg_ld_prefix(const char *arg
)
3535 interp_prefix
= strdup(arg
);
3538 static void handle_arg_pagesize(const char *arg
)
3540 qemu_host_page_size
= atoi(arg
);
3541 if (qemu_host_page_size
== 0 ||
3542 (qemu_host_page_size
& (qemu_host_page_size
- 1)) != 0) {
3543 fprintf(stderr
, "page size must be a power of two\n");
3548 static void handle_arg_gdb(const char *arg
)
3550 gdbstub_port
= atoi(arg
);
3553 static void handle_arg_uname(const char *arg
)
3555 qemu_uname_release
= strdup(arg
);
3558 static void handle_arg_cpu(const char *arg
)
3560 cpu_model
= strdup(arg
);
3561 if (cpu_model
== NULL
|| is_help_option(cpu_model
)) {
3562 /* XXX: implement xxx_cpu_list for targets that still miss it */
3563 #if defined(cpu_list)
3564 cpu_list(stdout
, &fprintf
);
3570 #if defined(CONFIG_USE_GUEST_BASE)
3571 static void handle_arg_guest_base(const char *arg
)
3573 guest_base
= strtol(arg
, NULL
, 0);
3574 have_guest_base
= 1;
3577 static void handle_arg_reserved_va(const char *arg
)
3581 reserved_va
= strtoul(arg
, &p
, 0);
3595 unsigned long unshifted
= reserved_va
;
3597 reserved_va
<<= shift
;
3598 if (((reserved_va
>> shift
) != unshifted
)
3599 #if HOST_LONG_BITS > TARGET_VIRT_ADDR_SPACE_BITS
3600 || (reserved_va
> (1ul << TARGET_VIRT_ADDR_SPACE_BITS
))
3603 fprintf(stderr
, "Reserved virtual address too big\n");
3608 fprintf(stderr
, "Unrecognised -R size suffix '%s'\n", p
);
3614 static void handle_arg_singlestep(const char *arg
)
3619 static void handle_arg_strace(const char *arg
)
3624 static void handle_arg_version(const char *arg
)
3626 printf("qemu-" TARGET_NAME
" version " QEMU_VERSION QEMU_PKGVERSION
3627 ", Copyright (c) 2003-2008 Fabrice Bellard\n");
3631 struct qemu_argument
{
3635 void (*handle_opt
)(const char *arg
);
3636 const char *example
;
3640 static const struct qemu_argument arg_table
[] = {
3641 {"h", "", false, handle_arg_help
,
3642 "", "print this help"},
3643 {"g", "QEMU_GDB", true, handle_arg_gdb
,
3644 "port", "wait gdb connection to 'port'"},
3645 {"L", "QEMU_LD_PREFIX", true, handle_arg_ld_prefix
,
3646 "path", "set the elf interpreter prefix to 'path'"},
3647 {"s", "QEMU_STACK_SIZE", true, handle_arg_stack_size
,
3648 "size", "set the stack size to 'size' bytes"},
3649 {"cpu", "QEMU_CPU", true, handle_arg_cpu
,
3650 "model", "select CPU (-cpu help for list)"},
3651 {"E", "QEMU_SET_ENV", true, handle_arg_set_env
,
3652 "var=value", "sets targets environment variable (see below)"},
3653 {"U", "QEMU_UNSET_ENV", true, handle_arg_unset_env
,
3654 "var", "unsets targets environment variable (see below)"},
3655 {"0", "QEMU_ARGV0", true, handle_arg_argv0
,
3656 "argv0", "forces target process argv[0] to be 'argv0'"},
3657 {"r", "QEMU_UNAME", true, handle_arg_uname
,
3658 "uname", "set qemu uname release string to 'uname'"},
3659 #if defined(CONFIG_USE_GUEST_BASE)
3660 {"B", "QEMU_GUEST_BASE", true, handle_arg_guest_base
,
3661 "address", "set guest_base address to 'address'"},
3662 {"R", "QEMU_RESERVED_VA", true, handle_arg_reserved_va
,
3663 "size", "reserve 'size' bytes for guest virtual address space"},
3665 {"d", "QEMU_LOG", true, handle_arg_log
,
3666 "item[,...]", "enable logging of specified items "
3667 "(use '-d help' for a list of items)"},
3668 {"D", "QEMU_LOG_FILENAME", true, handle_arg_log_filename
,
3669 "logfile", "write logs to 'logfile' (default stderr)"},
3670 {"p", "QEMU_PAGESIZE", true, handle_arg_pagesize
,
3671 "pagesize", "set the host page size to 'pagesize'"},
3672 {"singlestep", "QEMU_SINGLESTEP", false, handle_arg_singlestep
,
3673 "", "run in singlestep mode"},
3674 {"strace", "QEMU_STRACE", false, handle_arg_strace
,
3675 "", "log system calls"},
3676 {"version", "QEMU_VERSION", false, handle_arg_version
,
3677 "", "display version information and exit"},
3678 {NULL
, NULL
, false, NULL
, NULL
, NULL
}
3681 static void usage(void)
3683 const struct qemu_argument
*arginfo
;
3687 printf("usage: qemu-" TARGET_NAME
" [options] program [arguments...]\n"
3688 "Linux CPU emulator (compiled for " TARGET_NAME
" emulation)\n"
3690 "Options and associated environment variables:\n"
3693 /* Calculate column widths. We must always have at least enough space
3694 * for the column header.
3696 maxarglen
= strlen("Argument");
3697 maxenvlen
= strlen("Env-variable");
3699 for (arginfo
= arg_table
; arginfo
->handle_opt
!= NULL
; arginfo
++) {
3700 int arglen
= strlen(arginfo
->argv
);
3701 if (arginfo
->has_arg
) {
3702 arglen
+= strlen(arginfo
->example
) + 1;
3704 if (strlen(arginfo
->env
) > maxenvlen
) {
3705 maxenvlen
= strlen(arginfo
->env
);
3707 if (arglen
> maxarglen
) {
3712 printf("%-*s %-*s Description\n", maxarglen
+1, "Argument",
3713 maxenvlen
, "Env-variable");
3715 for (arginfo
= arg_table
; arginfo
->handle_opt
!= NULL
; arginfo
++) {
3716 if (arginfo
->has_arg
) {
3717 printf("-%s %-*s %-*s %s\n", arginfo
->argv
,
3718 (int)(maxarglen
- strlen(arginfo
->argv
) - 1),
3719 arginfo
->example
, maxenvlen
, arginfo
->env
, arginfo
->help
);
3721 printf("-%-*s %-*s %s\n", maxarglen
, arginfo
->argv
,
3722 maxenvlen
, arginfo
->env
,
3729 "QEMU_LD_PREFIX = %s\n"
3730 "QEMU_STACK_SIZE = %ld byte\n",
3735 "You can use -E and -U options or the QEMU_SET_ENV and\n"
3736 "QEMU_UNSET_ENV environment variables to set and unset\n"
3737 "environment variables for the target process.\n"
3738 "It is possible to provide several variables by separating them\n"
3739 "by commas in getsubopt(3) style. Additionally it is possible to\n"
3740 "provide the -E and -U options multiple times.\n"
3741 "The following lines are equivalent:\n"
3742 " -E var1=val2 -E var2=val2 -U LD_PRELOAD -U LD_DEBUG\n"
3743 " -E var1=val2,var2=val2 -U LD_PRELOAD,LD_DEBUG\n"
3744 " QEMU_SET_ENV=var1=val2,var2=val2 QEMU_UNSET_ENV=LD_PRELOAD,LD_DEBUG\n"
3745 "Note that if you provide several changes to a single variable\n"
3746 "the last change will stay in effect.\n");
3751 static int parse_args(int argc
, char **argv
)
3755 const struct qemu_argument
*arginfo
;
3757 for (arginfo
= arg_table
; arginfo
->handle_opt
!= NULL
; arginfo
++) {
3758 if (arginfo
->env
== NULL
) {
3762 r
= getenv(arginfo
->env
);
3764 arginfo
->handle_opt(r
);
3770 if (optind
>= argc
) {
3779 if (!strcmp(r
, "-")) {
3783 for (arginfo
= arg_table
; arginfo
->handle_opt
!= NULL
; arginfo
++) {
3784 if (!strcmp(r
, arginfo
->argv
)) {
3785 if (arginfo
->has_arg
) {
3786 if (optind
>= argc
) {
3789 arginfo
->handle_opt(argv
[optind
]);
3792 arginfo
->handle_opt(NULL
);
3798 /* no option matched the current argv */
3799 if (arginfo
->handle_opt
== NULL
) {
3804 if (optind
>= argc
) {
3808 filename
= argv
[optind
];
3809 exec_path
= argv
[optind
];
3814 int main(int argc
, char **argv
, char **envp
)
3816 struct target_pt_regs regs1
, *regs
= ®s1
;
3817 struct image_info info1
, *info
= &info1
;
3818 struct linux_binprm bprm
;
3823 char **target_environ
, **wrk
;
3830 module_call_init(MODULE_INIT_QOM
);
3832 qemu_init_auxval(envp
);
3833 qemu_cache_utils_init();
3835 if ((envlist
= envlist_create()) == NULL
) {
3836 (void) fprintf(stderr
, "Unable to allocate envlist\n");
3840 /* add current environment into the list */
3841 for (wrk
= environ
; *wrk
!= NULL
; wrk
++) {
3842 (void) envlist_setenv(envlist
, *wrk
);
3845 /* Read the stack limit from the kernel. If it's "unlimited",
3846 then we can do little else besides use the default. */
3849 if (getrlimit(RLIMIT_STACK
, &lim
) == 0
3850 && lim
.rlim_cur
!= RLIM_INFINITY
3851 && lim
.rlim_cur
== (target_long
)lim
.rlim_cur
) {
3852 guest_stack_size
= lim
.rlim_cur
;
3857 #if defined(cpudef_setup)
3858 cpudef_setup(); /* parse cpu definitions in target config file (TBD) */
3861 optind
= parse_args(argc
, argv
);
3864 memset(regs
, 0, sizeof(struct target_pt_regs
));
3866 /* Zero out image_info */
3867 memset(info
, 0, sizeof(struct image_info
));
3869 memset(&bprm
, 0, sizeof (bprm
));
3871 /* Scan interp_prefix dir for replacement files. */
3872 init_paths(interp_prefix
);
3874 init_qemu_uname_release();
3876 if (cpu_model
== NULL
) {
3877 #if defined(TARGET_I386)
3878 #ifdef TARGET_X86_64
3879 cpu_model
= "qemu64";
3881 cpu_model
= "qemu32";
3883 #elif defined(TARGET_ARM)
3885 #elif defined(TARGET_UNICORE32)
3887 #elif defined(TARGET_M68K)
3889 #elif defined(TARGET_SPARC)
3890 #ifdef TARGET_SPARC64
3891 cpu_model
= "TI UltraSparc II";
3893 cpu_model
= "Fujitsu MB86904";
3895 #elif defined(TARGET_MIPS)
3896 #if defined(TARGET_ABI_MIPSN32) || defined(TARGET_ABI_MIPSN64)
3901 #elif defined TARGET_OPENRISC
3902 cpu_model
= "or1200";
3903 #elif defined(TARGET_PPC)
3905 cpu_model
= "970fx";
3914 cpu_exec_init_all();
3915 /* NOTE: we need to init the CPU at this stage to get
3916 qemu_host_page_size */
3917 env
= cpu_init(cpu_model
);
3919 fprintf(stderr
, "Unable to find CPU definition\n");
3922 cpu
= ENV_GET_CPU(env
);
3927 if (getenv("QEMU_STRACE")) {
3931 target_environ
= envlist_to_environ(envlist
, NULL
);
3932 envlist_free(envlist
);
3934 #if defined(CONFIG_USE_GUEST_BASE)
3936 * Now that page sizes are configured in cpu_init() we can do
3937 * proper page alignment for guest_base.
3939 guest_base
= HOST_PAGE_ALIGN(guest_base
);
3941 if (reserved_va
|| have_guest_base
) {
3942 guest_base
= init_guest_space(guest_base
, reserved_va
, 0,
3944 if (guest_base
== (unsigned long)-1) {
3945 fprintf(stderr
, "Unable to reserve 0x%lx bytes of virtual address "
3946 "space for use as guest address space (check your virtual "
3947 "memory ulimit setting or reserve less using -R option)\n",
3953 mmap_next_start
= reserved_va
;
3956 #endif /* CONFIG_USE_GUEST_BASE */
3959 * Read in mmap_min_addr kernel parameter. This value is used
3960 * When loading the ELF image to determine whether guest_base
3961 * is needed. It is also used in mmap_find_vma.
3966 if ((fp
= fopen("/proc/sys/vm/mmap_min_addr", "r")) != NULL
) {
3968 if (fscanf(fp
, "%lu", &tmp
) == 1) {
3969 mmap_min_addr
= tmp
;
3970 qemu_log("host mmap_min_addr=0x%lx\n", mmap_min_addr
);
3977 * Prepare copy of argv vector for target.
3979 target_argc
= argc
- optind
;
3980 target_argv
= calloc(target_argc
+ 1, sizeof (char *));
3981 if (target_argv
== NULL
) {
3982 (void) fprintf(stderr
, "Unable to allocate memory for target_argv\n");
3987 * If argv0 is specified (using '-0' switch) we replace
3988 * argv[0] pointer with the given one.
3991 if (argv0
!= NULL
) {
3992 target_argv
[i
++] = strdup(argv0
);
3994 for (; i
< target_argc
; i
++) {
3995 target_argv
[i
] = strdup(argv
[optind
+ i
]);
3997 target_argv
[target_argc
] = NULL
;
3999 ts
= g_malloc0 (sizeof(TaskState
));
4000 init_task_state(ts
);
4001 /* build Task State */
4007 execfd
= qemu_getauxval(AT_EXECFD
);
4009 execfd
= open(filename
, O_RDONLY
);
4011 printf("Error while loading %s: %s\n", filename
, strerror(errno
));
4016 ret
= loader_exec(execfd
, filename
, target_argv
, target_environ
, regs
,
4019 printf("Error while loading %s: %s\n", filename
, strerror(-ret
));
4023 for (wrk
= target_environ
; *wrk
; wrk
++) {
4027 free(target_environ
);
4029 if (qemu_log_enabled()) {
4030 #if defined(CONFIG_USE_GUEST_BASE)
4031 qemu_log("guest_base 0x%lx\n", guest_base
);
4035 qemu_log("start_brk 0x" TARGET_ABI_FMT_lx
"\n", info
->start_brk
);
4036 qemu_log("end_code 0x" TARGET_ABI_FMT_lx
"\n", info
->end_code
);
4037 qemu_log("start_code 0x" TARGET_ABI_FMT_lx
"\n",
4039 qemu_log("start_data 0x" TARGET_ABI_FMT_lx
"\n",
4041 qemu_log("end_data 0x" TARGET_ABI_FMT_lx
"\n", info
->end_data
);
4042 qemu_log("start_stack 0x" TARGET_ABI_FMT_lx
"\n",
4044 qemu_log("brk 0x" TARGET_ABI_FMT_lx
"\n", info
->brk
);
4045 qemu_log("entry 0x" TARGET_ABI_FMT_lx
"\n", info
->entry
);
4048 target_set_brk(info
->brk
);
4052 #if defined(CONFIG_USE_GUEST_BASE)
4053 /* Now that we've loaded the binary, GUEST_BASE is fixed. Delay
4054 generating the prologue until now so that the prologue can take
4055 the real value of GUEST_BASE into account. */
4056 tcg_prologue_init(&tcg_ctx
);
4059 #if defined(TARGET_I386)
4060 env
->cr
[0] = CR0_PG_MASK
| CR0_WP_MASK
| CR0_PE_MASK
;
4061 env
->hflags
|= HF_PE_MASK
| HF_CPL_MASK
;
4062 if (env
->features
[FEAT_1_EDX
] & CPUID_SSE
) {
4063 env
->cr
[4] |= CR4_OSFXSR_MASK
;
4064 env
->hflags
|= HF_OSFXSR_MASK
;
4066 #ifndef TARGET_ABI32
4067 /* enable 64 bit mode if possible */
4068 if (!(env
->features
[FEAT_8000_0001_EDX
] & CPUID_EXT2_LM
)) {
4069 fprintf(stderr
, "The selected x86 CPU does not support 64 bit mode\n");
4072 env
->cr
[4] |= CR4_PAE_MASK
;
4073 env
->efer
|= MSR_EFER_LMA
| MSR_EFER_LME
;
4074 env
->hflags
|= HF_LMA_MASK
;
4077 /* flags setup : we activate the IRQs by default as in user mode */
4078 env
->eflags
|= IF_MASK
;
4080 /* linux register setup */
4081 #ifndef TARGET_ABI32
4082 env
->regs
[R_EAX
] = regs
->rax
;
4083 env
->regs
[R_EBX
] = regs
->rbx
;
4084 env
->regs
[R_ECX
] = regs
->rcx
;
4085 env
->regs
[R_EDX
] = regs
->rdx
;
4086 env
->regs
[R_ESI
] = regs
->rsi
;
4087 env
->regs
[R_EDI
] = regs
->rdi
;
4088 env
->regs
[R_EBP
] = regs
->rbp
;
4089 env
->regs
[R_ESP
] = regs
->rsp
;
4090 env
->eip
= regs
->rip
;
4092 env
->regs
[R_EAX
] = regs
->eax
;
4093 env
->regs
[R_EBX
] = regs
->ebx
;
4094 env
->regs
[R_ECX
] = regs
->ecx
;
4095 env
->regs
[R_EDX
] = regs
->edx
;
4096 env
->regs
[R_ESI
] = regs
->esi
;
4097 env
->regs
[R_EDI
] = regs
->edi
;
4098 env
->regs
[R_EBP
] = regs
->ebp
;
4099 env
->regs
[R_ESP
] = regs
->esp
;
4100 env
->eip
= regs
->eip
;
4103 /* linux interrupt setup */
4104 #ifndef TARGET_ABI32
4105 env
->idt
.limit
= 511;
4107 env
->idt
.limit
= 255;
4109 env
->idt
.base
= target_mmap(0, sizeof(uint64_t) * (env
->idt
.limit
+ 1),
4110 PROT_READ
|PROT_WRITE
,
4111 MAP_ANONYMOUS
|MAP_PRIVATE
, -1, 0);
4112 idt_table
= g2h(env
->idt
.base
);
4135 /* linux segment setup */
4137 uint64_t *gdt_table
;
4138 env
->gdt
.base
= target_mmap(0, sizeof(uint64_t) * TARGET_GDT_ENTRIES
,
4139 PROT_READ
|PROT_WRITE
,
4140 MAP_ANONYMOUS
|MAP_PRIVATE
, -1, 0);
4141 env
->gdt
.limit
= sizeof(uint64_t) * TARGET_GDT_ENTRIES
- 1;
4142 gdt_table
= g2h(env
->gdt
.base
);
4144 write_dt(&gdt_table
[__USER_CS
>> 3], 0, 0xfffff,
4145 DESC_G_MASK
| DESC_B_MASK
| DESC_P_MASK
| DESC_S_MASK
|
4146 (3 << DESC_DPL_SHIFT
) | (0xa << DESC_TYPE_SHIFT
));
4148 /* 64 bit code segment */
4149 write_dt(&gdt_table
[__USER_CS
>> 3], 0, 0xfffff,
4150 DESC_G_MASK
| DESC_B_MASK
| DESC_P_MASK
| DESC_S_MASK
|
4152 (3 << DESC_DPL_SHIFT
) | (0xa << DESC_TYPE_SHIFT
));
4154 write_dt(&gdt_table
[__USER_DS
>> 3], 0, 0xfffff,
4155 DESC_G_MASK
| DESC_B_MASK
| DESC_P_MASK
| DESC_S_MASK
|
4156 (3 << DESC_DPL_SHIFT
) | (0x2 << DESC_TYPE_SHIFT
));
4158 cpu_x86_load_seg(env
, R_CS
, __USER_CS
);
4159 cpu_x86_load_seg(env
, R_SS
, __USER_DS
);
4161 cpu_x86_load_seg(env
, R_DS
, __USER_DS
);
4162 cpu_x86_load_seg(env
, R_ES
, __USER_DS
);
4163 cpu_x86_load_seg(env
, R_FS
, __USER_DS
);
4164 cpu_x86_load_seg(env
, R_GS
, __USER_DS
);
4165 /* This hack makes Wine work... */
4166 env
->segs
[R_FS
].selector
= 0;
4168 cpu_x86_load_seg(env
, R_DS
, 0);
4169 cpu_x86_load_seg(env
, R_ES
, 0);
4170 cpu_x86_load_seg(env
, R_FS
, 0);
4171 cpu_x86_load_seg(env
, R_GS
, 0);
4173 #elif defined(TARGET_AARCH64)
4177 if (!(arm_feature(env
, ARM_FEATURE_AARCH64
))) {
4179 "The selected ARM CPU does not support 64 bit mode\n");
4183 for (i
= 0; i
< 31; i
++) {
4184 env
->xregs
[i
] = regs
->regs
[i
];
4187 env
->xregs
[31] = regs
->sp
;
4189 #elif defined(TARGET_ARM)
4192 cpsr_write(env
, regs
->uregs
[16], 0xffffffff);
4193 for(i
= 0; i
< 16; i
++) {
4194 env
->regs
[i
] = regs
->uregs
[i
];
4197 if (EF_ARM_EABI_VERSION(info
->elf_flags
) >= EF_ARM_EABI_VER4
4198 && (info
->elf_flags
& EF_ARM_BE8
)) {
4199 env
->bswap_code
= 1;
4202 #elif defined(TARGET_UNICORE32)
4205 cpu_asr_write(env
, regs
->uregs
[32], 0xffffffff);
4206 for (i
= 0; i
< 32; i
++) {
4207 env
->regs
[i
] = regs
->uregs
[i
];
4210 #elif defined(TARGET_SPARC)
4214 env
->npc
= regs
->npc
;
4216 for(i
= 0; i
< 8; i
++)
4217 env
->gregs
[i
] = regs
->u_regs
[i
];
4218 for(i
= 0; i
< 8; i
++)
4219 env
->regwptr
[i
] = regs
->u_regs
[i
+ 8];
4221 #elif defined(TARGET_PPC)
4225 #if defined(TARGET_PPC64)
4226 #if defined(TARGET_ABI32)
4227 env
->msr
&= ~((target_ulong
)1 << MSR_SF
);
4229 env
->msr
|= (target_ulong
)1 << MSR_SF
;
4232 env
->nip
= regs
->nip
;
4233 for(i
= 0; i
< 32; i
++) {
4234 env
->gpr
[i
] = regs
->gpr
[i
];
4237 #elif defined(TARGET_M68K)
4240 env
->dregs
[0] = regs
->d0
;
4241 env
->dregs
[1] = regs
->d1
;
4242 env
->dregs
[2] = regs
->d2
;
4243 env
->dregs
[3] = regs
->d3
;
4244 env
->dregs
[4] = regs
->d4
;
4245 env
->dregs
[5] = regs
->d5
;
4246 env
->dregs
[6] = regs
->d6
;
4247 env
->dregs
[7] = regs
->d7
;
4248 env
->aregs
[0] = regs
->a0
;
4249 env
->aregs
[1] = regs
->a1
;
4250 env
->aregs
[2] = regs
->a2
;
4251 env
->aregs
[3] = regs
->a3
;
4252 env
->aregs
[4] = regs
->a4
;
4253 env
->aregs
[5] = regs
->a5
;
4254 env
->aregs
[6] = regs
->a6
;
4255 env
->aregs
[7] = regs
->usp
;
4257 ts
->sim_syscalls
= 1;
4259 #elif defined(TARGET_MICROBLAZE)
4261 env
->regs
[0] = regs
->r0
;
4262 env
->regs
[1] = regs
->r1
;
4263 env
->regs
[2] = regs
->r2
;
4264 env
->regs
[3] = regs
->r3
;
4265 env
->regs
[4] = regs
->r4
;
4266 env
->regs
[5] = regs
->r5
;
4267 env
->regs
[6] = regs
->r6
;
4268 env
->regs
[7] = regs
->r7
;
4269 env
->regs
[8] = regs
->r8
;
4270 env
->regs
[9] = regs
->r9
;
4271 env
->regs
[10] = regs
->r10
;
4272 env
->regs
[11] = regs
->r11
;
4273 env
->regs
[12] = regs
->r12
;
4274 env
->regs
[13] = regs
->r13
;
4275 env
->regs
[14] = regs
->r14
;
4276 env
->regs
[15] = regs
->r15
;
4277 env
->regs
[16] = regs
->r16
;
4278 env
->regs
[17] = regs
->r17
;
4279 env
->regs
[18] = regs
->r18
;
4280 env
->regs
[19] = regs
->r19
;
4281 env
->regs
[20] = regs
->r20
;
4282 env
->regs
[21] = regs
->r21
;
4283 env
->regs
[22] = regs
->r22
;
4284 env
->regs
[23] = regs
->r23
;
4285 env
->regs
[24] = regs
->r24
;
4286 env
->regs
[25] = regs
->r25
;
4287 env
->regs
[26] = regs
->r26
;
4288 env
->regs
[27] = regs
->r27
;
4289 env
->regs
[28] = regs
->r28
;
4290 env
->regs
[29] = regs
->r29
;
4291 env
->regs
[30] = regs
->r30
;
4292 env
->regs
[31] = regs
->r31
;
4293 env
->sregs
[SR_PC
] = regs
->pc
;
4295 #elif defined(TARGET_MIPS)
4299 for(i
= 0; i
< 32; i
++) {
4300 env
->active_tc
.gpr
[i
] = regs
->regs
[i
];
4302 env
->active_tc
.PC
= regs
->cp0_epc
& ~(target_ulong
)1;
4303 if (regs
->cp0_epc
& 1) {
4304 env
->hflags
|= MIPS_HFLAG_M16
;
4307 #elif defined(TARGET_OPENRISC)
4311 for (i
= 0; i
< 32; i
++) {
4312 env
->gpr
[i
] = regs
->gpr
[i
];
4318 #elif defined(TARGET_SH4)
4322 for(i
= 0; i
< 16; i
++) {
4323 env
->gregs
[i
] = regs
->regs
[i
];
4327 #elif defined(TARGET_ALPHA)
4331 for(i
= 0; i
< 28; i
++) {
4332 env
->ir
[i
] = ((abi_ulong
*)regs
)[i
];
4334 env
->ir
[IR_SP
] = regs
->usp
;
4337 #elif defined(TARGET_CRIS)
4339 env
->regs
[0] = regs
->r0
;
4340 env
->regs
[1] = regs
->r1
;
4341 env
->regs
[2] = regs
->r2
;
4342 env
->regs
[3] = regs
->r3
;
4343 env
->regs
[4] = regs
->r4
;
4344 env
->regs
[5] = regs
->r5
;
4345 env
->regs
[6] = regs
->r6
;
4346 env
->regs
[7] = regs
->r7
;
4347 env
->regs
[8] = regs
->r8
;
4348 env
->regs
[9] = regs
->r9
;
4349 env
->regs
[10] = regs
->r10
;
4350 env
->regs
[11] = regs
->r11
;
4351 env
->regs
[12] = regs
->r12
;
4352 env
->regs
[13] = regs
->r13
;
4353 env
->regs
[14] = info
->start_stack
;
4354 env
->regs
[15] = regs
->acr
;
4355 env
->pc
= regs
->erp
;
4357 #elif defined(TARGET_S390X)
4360 for (i
= 0; i
< 16; i
++) {
4361 env
->regs
[i
] = regs
->gprs
[i
];
4363 env
->psw
.mask
= regs
->psw
.mask
;
4364 env
->psw
.addr
= regs
->psw
.addr
;
4367 #error unsupported target CPU
4370 #if defined(TARGET_ARM) || defined(TARGET_M68K) || defined(TARGET_UNICORE32)
4371 ts
->stack_base
= info
->start_stack
;
4372 ts
->heap_base
= info
->brk
;
4373 /* This will be filled in on the first SYS_HEAPINFO call. */
4378 if (gdbserver_start(gdbstub_port
) < 0) {
4379 fprintf(stderr
, "qemu: could not open gdbserver on port %d\n",
4383 gdb_handlesig(cpu
, 0);