crypto: add support for the serpent cipher algorithm
[qemu/kevin.git] / target-ppc / mem_helper.c
blob581d9faa2309024fbbf72f26cf2c7029c3879bd0
1 /*
2 * PowerPC memory access emulation helpers for QEMU.
4 * Copyright (c) 2003-2007 Jocelyn Mayer
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
20 #include "cpu.h"
21 #include "qemu/host-utils.h"
22 #include "exec/helper-proto.h"
24 #include "helper_regs.h"
25 #include "exec/cpu_ldst.h"
27 //#define DEBUG_OP
29 static inline bool needs_byteswap(const CPUPPCState *env)
31 #if defined(TARGET_WORDS_BIGENDIAN)
32 return msr_le;
33 #else
34 return !msr_le;
35 #endif
38 /*****************************************************************************/
39 /* Memory load and stores */
41 static inline target_ulong addr_add(CPUPPCState *env, target_ulong addr,
42 target_long arg)
44 #if defined(TARGET_PPC64)
45 if (!msr_is_64bit(env, env->msr)) {
46 return (uint32_t)(addr + arg);
47 } else
48 #endif
50 return addr + arg;
54 void helper_lmw(CPUPPCState *env, target_ulong addr, uint32_t reg)
56 for (; reg < 32; reg++) {
57 if (needs_byteswap(env)) {
58 env->gpr[reg] = bswap32(cpu_ldl_data(env, addr));
59 } else {
60 env->gpr[reg] = cpu_ldl_data(env, addr);
62 addr = addr_add(env, addr, 4);
66 void helper_stmw(CPUPPCState *env, target_ulong addr, uint32_t reg)
68 for (; reg < 32; reg++) {
69 if (needs_byteswap(env)) {
70 cpu_stl_data(env, addr, bswap32((uint32_t)env->gpr[reg]));
71 } else {
72 cpu_stl_data(env, addr, (uint32_t)env->gpr[reg]);
74 addr = addr_add(env, addr, 4);
78 void helper_lsw(CPUPPCState *env, target_ulong addr, uint32_t nb, uint32_t reg)
80 int sh;
82 for (; nb > 3; nb -= 4) {
83 env->gpr[reg] = cpu_ldl_data(env, addr);
84 reg = (reg + 1) % 32;
85 addr = addr_add(env, addr, 4);
87 if (unlikely(nb > 0)) {
88 env->gpr[reg] = 0;
89 for (sh = 24; nb > 0; nb--, sh -= 8) {
90 env->gpr[reg] |= cpu_ldub_data(env, addr) << sh;
91 addr = addr_add(env, addr, 1);
95 /* PPC32 specification says we must generate an exception if
96 * rA is in the range of registers to be loaded.
97 * In an other hand, IBM says this is valid, but rA won't be loaded.
98 * For now, I'll follow the spec...
100 void helper_lswx(CPUPPCState *env, target_ulong addr, uint32_t reg,
101 uint32_t ra, uint32_t rb)
103 if (likely(xer_bc != 0)) {
104 int num_used_regs = (xer_bc + 3) / 4;
105 if (unlikely((ra != 0 && reg < ra && (reg + num_used_regs) > ra) ||
106 (reg < rb && (reg + num_used_regs) > rb))) {
107 helper_raise_exception_err(env, POWERPC_EXCP_PROGRAM,
108 POWERPC_EXCP_INVAL |
109 POWERPC_EXCP_INVAL_LSWX);
110 } else {
111 helper_lsw(env, addr, xer_bc, reg);
116 void helper_stsw(CPUPPCState *env, target_ulong addr, uint32_t nb,
117 uint32_t reg)
119 int sh;
121 for (; nb > 3; nb -= 4) {
122 cpu_stl_data(env, addr, env->gpr[reg]);
123 reg = (reg + 1) % 32;
124 addr = addr_add(env, addr, 4);
126 if (unlikely(nb > 0)) {
127 for (sh = 24; nb > 0; nb--, sh -= 8) {
128 cpu_stb_data(env, addr, (env->gpr[reg] >> sh) & 0xFF);
129 addr = addr_add(env, addr, 1);
134 static void do_dcbz(CPUPPCState *env, target_ulong addr, int dcache_line_size)
136 int i;
138 addr &= ~(dcache_line_size - 1);
139 for (i = 0; i < dcache_line_size; i += 4) {
140 cpu_stl_data(env, addr + i, 0);
142 if (env->reserve_addr == addr) {
143 env->reserve_addr = (target_ulong)-1ULL;
147 void helper_dcbz(CPUPPCState *env, target_ulong addr, uint32_t is_dcbzl)
149 int dcbz_size = env->dcache_line_size;
151 #if defined(TARGET_PPC64)
152 if (!is_dcbzl &&
153 (env->excp_model == POWERPC_EXCP_970) &&
154 ((env->spr[SPR_970_HID5] >> 7) & 0x3) == 1) {
155 dcbz_size = 32;
157 #endif
159 /* XXX add e500mc support */
161 do_dcbz(env, addr, dcbz_size);
164 void helper_icbi(CPUPPCState *env, target_ulong addr)
166 addr &= ~(env->dcache_line_size - 1);
167 /* Invalidate one cache line :
168 * PowerPC specification says this is to be treated like a load
169 * (not a fetch) by the MMU. To be sure it will be so,
170 * do the load "by hand".
172 cpu_ldl_data(env, addr);
175 /* XXX: to be tested */
176 target_ulong helper_lscbx(CPUPPCState *env, target_ulong addr, uint32_t reg,
177 uint32_t ra, uint32_t rb)
179 int i, c, d;
181 d = 24;
182 for (i = 0; i < xer_bc; i++) {
183 c = cpu_ldub_data(env, addr);
184 addr = addr_add(env, addr, 1);
185 /* ra (if not 0) and rb are never modified */
186 if (likely(reg != rb && (ra == 0 || reg != ra))) {
187 env->gpr[reg] = (env->gpr[reg] & ~(0xFF << d)) | (c << d);
189 if (unlikely(c == xer_cmp)) {
190 break;
192 if (likely(d != 0)) {
193 d -= 8;
194 } else {
195 d = 24;
196 reg++;
197 reg = reg & 0x1F;
200 return i;
203 /*****************************************************************************/
204 /* Altivec extension helpers */
205 #if defined(HOST_WORDS_BIGENDIAN)
206 #define HI_IDX 0
207 #define LO_IDX 1
208 #else
209 #define HI_IDX 1
210 #define LO_IDX 0
211 #endif
213 /* We use msr_le to determine index ordering in a vector. However,
214 byteswapping is not simply controlled by msr_le. We also need to take
215 into account endianness of the target. This is done for the little-endian
216 PPC64 user-mode target. */
218 #define LVE(name, access, swap, element) \
219 void helper_##name(CPUPPCState *env, ppc_avr_t *r, \
220 target_ulong addr) \
222 size_t n_elems = ARRAY_SIZE(r->element); \
223 int adjust = HI_IDX*(n_elems - 1); \
224 int sh = sizeof(r->element[0]) >> 1; \
225 int index = (addr & 0xf) >> sh; \
226 if (msr_le) { \
227 index = n_elems - index - 1; \
230 if (needs_byteswap(env)) { \
231 r->element[LO_IDX ? index : (adjust - index)] = \
232 swap(access(env, addr)); \
233 } else { \
234 r->element[LO_IDX ? index : (adjust - index)] = \
235 access(env, addr); \
238 #define I(x) (x)
239 LVE(lvebx, cpu_ldub_data, I, u8)
240 LVE(lvehx, cpu_lduw_data, bswap16, u16)
241 LVE(lvewx, cpu_ldl_data, bswap32, u32)
242 #undef I
243 #undef LVE
245 #define STVE(name, access, swap, element) \
246 void helper_##name(CPUPPCState *env, ppc_avr_t *r, \
247 target_ulong addr) \
249 size_t n_elems = ARRAY_SIZE(r->element); \
250 int adjust = HI_IDX * (n_elems - 1); \
251 int sh = sizeof(r->element[0]) >> 1; \
252 int index = (addr & 0xf) >> sh; \
253 if (msr_le) { \
254 index = n_elems - index - 1; \
257 if (needs_byteswap(env)) { \
258 access(env, addr, swap(r->element[LO_IDX ? index : \
259 (adjust - index)])); \
260 } else { \
261 access(env, addr, r->element[LO_IDX ? index : \
262 (adjust - index)]); \
265 #define I(x) (x)
266 STVE(stvebx, cpu_stb_data, I, u8)
267 STVE(stvehx, cpu_stw_data, bswap16, u16)
268 STVE(stvewx, cpu_stl_data, bswap32, u32)
269 #undef I
270 #undef LVE
272 #undef HI_IDX
273 #undef LO_IDX
275 void helper_tbegin(CPUPPCState *env)
277 /* As a degenerate implementation, always fail tbegin. The reason
278 * given is "Nesting overflow". The "persistent" bit is set,
279 * providing a hint to the error handler to not retry. The TFIAR
280 * captures the address of the failure, which is this tbegin
281 * instruction. Instruction execution will continue with the
282 * next instruction in memory, which is precisely what we want.
285 env->spr[SPR_TEXASR] =
286 (1ULL << TEXASR_FAILURE_PERSISTENT) |
287 (1ULL << TEXASR_NESTING_OVERFLOW) |
288 (msr_hv << TEXASR_PRIVILEGE_HV) |
289 (msr_pr << TEXASR_PRIVILEGE_PR) |
290 (1ULL << TEXASR_FAILURE_SUMMARY) |
291 (1ULL << TEXASR_TFIAR_EXACT);
292 env->spr[SPR_TFIAR] = env->nip | (msr_hv << 1) | msr_pr;
293 env->spr[SPR_TFHAR] = env->nip + 4;
294 env->crf[0] = 0xB; /* 0b1010 = transaction failure */