rename HAVE_BYTESWAP_H to CONFIG_BYTESWAP_H
[qemu/kevin.git] / exec.c
blobef79d6d29e8f230c11118e1d51c2c62de318417c
1 /*
2 * virtual page mapping and translated block handling
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "config.h"
20 #ifdef _WIN32
21 #include <windows.h>
22 #else
23 #include <sys/types.h>
24 #include <sys/mman.h>
25 #endif
26 #include <stdlib.h>
27 #include <stdio.h>
28 #include <stdarg.h>
29 #include <string.h>
30 #include <errno.h>
31 #include <unistd.h>
32 #include <inttypes.h>
34 #include "cpu.h"
35 #include "exec-all.h"
36 #include "qemu-common.h"
37 #include "tcg.h"
38 #include "hw/hw.h"
39 #include "osdep.h"
40 #include "kvm.h"
41 #if defined(CONFIG_USER_ONLY)
42 #include <qemu.h>
43 #endif
45 //#define DEBUG_TB_INVALIDATE
46 //#define DEBUG_FLUSH
47 //#define DEBUG_TLB
48 //#define DEBUG_UNASSIGNED
50 /* make various TB consistency checks */
51 //#define DEBUG_TB_CHECK
52 //#define DEBUG_TLB_CHECK
54 //#define DEBUG_IOPORT
55 //#define DEBUG_SUBPAGE
57 #if !defined(CONFIG_USER_ONLY)
58 /* TB consistency checks only implemented for usermode emulation. */
59 #undef DEBUG_TB_CHECK
60 #endif
62 #define SMC_BITMAP_USE_THRESHOLD 10
64 #if defined(TARGET_SPARC64)
65 #define TARGET_PHYS_ADDR_SPACE_BITS 41
66 #elif defined(TARGET_SPARC)
67 #define TARGET_PHYS_ADDR_SPACE_BITS 36
68 #elif defined(TARGET_ALPHA)
69 #define TARGET_PHYS_ADDR_SPACE_BITS 42
70 #define TARGET_VIRT_ADDR_SPACE_BITS 42
71 #elif defined(TARGET_PPC64)
72 #define TARGET_PHYS_ADDR_SPACE_BITS 42
73 #elif defined(TARGET_X86_64) && !defined(CONFIG_KQEMU)
74 #define TARGET_PHYS_ADDR_SPACE_BITS 42
75 #elif defined(TARGET_I386) && !defined(CONFIG_KQEMU)
76 #define TARGET_PHYS_ADDR_SPACE_BITS 36
77 #else
78 /* Note: for compatibility with kqemu, we use 32 bits for x86_64 */
79 #define TARGET_PHYS_ADDR_SPACE_BITS 32
80 #endif
82 static TranslationBlock *tbs;
83 int code_gen_max_blocks;
84 TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
85 static int nb_tbs;
86 /* any access to the tbs or the page table must use this lock */
87 spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
89 #if defined(__arm__) || defined(__sparc_v9__)
90 /* The prologue must be reachable with a direct jump. ARM and Sparc64
91 have limited branch ranges (possibly also PPC) so place it in a
92 section close to code segment. */
93 #define code_gen_section \
94 __attribute__((__section__(".gen_code"))) \
95 __attribute__((aligned (32)))
96 #elif defined(_WIN32)
97 /* Maximum alignment for Win32 is 16. */
98 #define code_gen_section \
99 __attribute__((aligned (16)))
100 #else
101 #define code_gen_section \
102 __attribute__((aligned (32)))
103 #endif
105 uint8_t code_gen_prologue[1024] code_gen_section;
106 static uint8_t *code_gen_buffer;
107 static unsigned long code_gen_buffer_size;
108 /* threshold to flush the translated code buffer */
109 static unsigned long code_gen_buffer_max_size;
110 uint8_t *code_gen_ptr;
112 #if !defined(CONFIG_USER_ONLY)
113 int phys_ram_fd;
114 uint8_t *phys_ram_dirty;
115 static int in_migration;
117 typedef struct RAMBlock {
118 uint8_t *host;
119 ram_addr_t offset;
120 ram_addr_t length;
121 struct RAMBlock *next;
122 } RAMBlock;
124 static RAMBlock *ram_blocks;
125 /* TODO: When we implement (and use) ram deallocation (e.g. for hotplug)
126 then we can no longer assume contiguous ram offsets, and external uses
127 of this variable will break. */
128 ram_addr_t last_ram_offset;
129 #endif
131 CPUState *first_cpu;
132 /* current CPU in the current thread. It is only valid inside
133 cpu_exec() */
134 CPUState *cpu_single_env;
135 /* 0 = Do not count executed instructions.
136 1 = Precise instruction counting.
137 2 = Adaptive rate instruction counting. */
138 int use_icount = 0;
139 /* Current instruction counter. While executing translated code this may
140 include some instructions that have not yet been executed. */
141 int64_t qemu_icount;
143 typedef struct PageDesc {
144 /* list of TBs intersecting this ram page */
145 TranslationBlock *first_tb;
146 /* in order to optimize self modifying code, we count the number
147 of lookups we do to a given page to use a bitmap */
148 unsigned int code_write_count;
149 uint8_t *code_bitmap;
150 #if defined(CONFIG_USER_ONLY)
151 unsigned long flags;
152 #endif
153 } PageDesc;
155 typedef struct PhysPageDesc {
156 /* offset in host memory of the page + io_index in the low bits */
157 ram_addr_t phys_offset;
158 ram_addr_t region_offset;
159 } PhysPageDesc;
161 #define L2_BITS 10
162 #if defined(CONFIG_USER_ONLY) && defined(TARGET_VIRT_ADDR_SPACE_BITS)
163 /* XXX: this is a temporary hack for alpha target.
164 * In the future, this is to be replaced by a multi-level table
165 * to actually be able to handle the complete 64 bits address space.
167 #define L1_BITS (TARGET_VIRT_ADDR_SPACE_BITS - L2_BITS - TARGET_PAGE_BITS)
168 #else
169 #define L1_BITS (32 - L2_BITS - TARGET_PAGE_BITS)
170 #endif
172 #define L1_SIZE (1 << L1_BITS)
173 #define L2_SIZE (1 << L2_BITS)
175 unsigned long qemu_real_host_page_size;
176 unsigned long qemu_host_page_bits;
177 unsigned long qemu_host_page_size;
178 unsigned long qemu_host_page_mask;
180 /* XXX: for system emulation, it could just be an array */
181 static PageDesc *l1_map[L1_SIZE];
182 static PhysPageDesc **l1_phys_map;
184 #if !defined(CONFIG_USER_ONLY)
185 static void io_mem_init(void);
187 /* io memory support */
188 CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
189 CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
190 void *io_mem_opaque[IO_MEM_NB_ENTRIES];
191 static char io_mem_used[IO_MEM_NB_ENTRIES];
192 static int io_mem_watch;
193 #endif
195 /* log support */
196 static const char *logfilename = "/tmp/qemu.log";
197 FILE *logfile;
198 int loglevel;
199 static int log_append = 0;
201 /* statistics */
202 static int tlb_flush_count;
203 static int tb_flush_count;
204 static int tb_phys_invalidate_count;
206 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
207 typedef struct subpage_t {
208 target_phys_addr_t base;
209 CPUReadMemoryFunc **mem_read[TARGET_PAGE_SIZE][4];
210 CPUWriteMemoryFunc **mem_write[TARGET_PAGE_SIZE][4];
211 void *opaque[TARGET_PAGE_SIZE][2][4];
212 ram_addr_t region_offset[TARGET_PAGE_SIZE][2][4];
213 } subpage_t;
215 #ifdef _WIN32
216 static void map_exec(void *addr, long size)
218 DWORD old_protect;
219 VirtualProtect(addr, size,
220 PAGE_EXECUTE_READWRITE, &old_protect);
223 #else
224 static void map_exec(void *addr, long size)
226 unsigned long start, end, page_size;
228 page_size = getpagesize();
229 start = (unsigned long)addr;
230 start &= ~(page_size - 1);
232 end = (unsigned long)addr + size;
233 end += page_size - 1;
234 end &= ~(page_size - 1);
236 mprotect((void *)start, end - start,
237 PROT_READ | PROT_WRITE | PROT_EXEC);
239 #endif
241 static void page_init(void)
243 /* NOTE: we can always suppose that qemu_host_page_size >=
244 TARGET_PAGE_SIZE */
245 #ifdef _WIN32
247 SYSTEM_INFO system_info;
249 GetSystemInfo(&system_info);
250 qemu_real_host_page_size = system_info.dwPageSize;
252 #else
253 qemu_real_host_page_size = getpagesize();
254 #endif
255 if (qemu_host_page_size == 0)
256 qemu_host_page_size = qemu_real_host_page_size;
257 if (qemu_host_page_size < TARGET_PAGE_SIZE)
258 qemu_host_page_size = TARGET_PAGE_SIZE;
259 qemu_host_page_bits = 0;
260 while ((1 << qemu_host_page_bits) < qemu_host_page_size)
261 qemu_host_page_bits++;
262 qemu_host_page_mask = ~(qemu_host_page_size - 1);
263 l1_phys_map = qemu_vmalloc(L1_SIZE * sizeof(void *));
264 memset(l1_phys_map, 0, L1_SIZE * sizeof(void *));
266 #if !defined(_WIN32) && defined(CONFIG_USER_ONLY)
268 long long startaddr, endaddr;
269 FILE *f;
270 int n;
272 mmap_lock();
273 last_brk = (unsigned long)sbrk(0);
274 f = fopen("/proc/self/maps", "r");
275 if (f) {
276 do {
277 n = fscanf (f, "%llx-%llx %*[^\n]\n", &startaddr, &endaddr);
278 if (n == 2) {
279 startaddr = MIN(startaddr,
280 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
281 endaddr = MIN(endaddr,
282 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
283 page_set_flags(startaddr & TARGET_PAGE_MASK,
284 TARGET_PAGE_ALIGN(endaddr),
285 PAGE_RESERVED);
287 } while (!feof(f));
288 fclose(f);
290 mmap_unlock();
292 #endif
295 static inline PageDesc **page_l1_map(target_ulong index)
297 #if TARGET_LONG_BITS > 32
298 /* Host memory outside guest VM. For 32-bit targets we have already
299 excluded high addresses. */
300 if (index > ((target_ulong)L2_SIZE * L1_SIZE))
301 return NULL;
302 #endif
303 return &l1_map[index >> L2_BITS];
306 static inline PageDesc *page_find_alloc(target_ulong index)
308 PageDesc **lp, *p;
309 lp = page_l1_map(index);
310 if (!lp)
311 return NULL;
313 p = *lp;
314 if (!p) {
315 /* allocate if not found */
316 #if defined(CONFIG_USER_ONLY)
317 size_t len = sizeof(PageDesc) * L2_SIZE;
318 /* Don't use qemu_malloc because it may recurse. */
319 p = mmap(0, len, PROT_READ | PROT_WRITE,
320 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
321 *lp = p;
322 if (h2g_valid(p)) {
323 unsigned long addr = h2g(p);
324 page_set_flags(addr & TARGET_PAGE_MASK,
325 TARGET_PAGE_ALIGN(addr + len),
326 PAGE_RESERVED);
328 #else
329 p = qemu_mallocz(sizeof(PageDesc) * L2_SIZE);
330 *lp = p;
331 #endif
333 return p + (index & (L2_SIZE - 1));
336 static inline PageDesc *page_find(target_ulong index)
338 PageDesc **lp, *p;
339 lp = page_l1_map(index);
340 if (!lp)
341 return NULL;
343 p = *lp;
344 if (!p)
345 return 0;
346 return p + (index & (L2_SIZE - 1));
349 static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc)
351 void **lp, **p;
352 PhysPageDesc *pd;
354 p = (void **)l1_phys_map;
355 #if TARGET_PHYS_ADDR_SPACE_BITS > 32
357 #if TARGET_PHYS_ADDR_SPACE_BITS > (32 + L1_BITS)
358 #error unsupported TARGET_PHYS_ADDR_SPACE_BITS
359 #endif
360 lp = p + ((index >> (L1_BITS + L2_BITS)) & (L1_SIZE - 1));
361 p = *lp;
362 if (!p) {
363 /* allocate if not found */
364 if (!alloc)
365 return NULL;
366 p = qemu_vmalloc(sizeof(void *) * L1_SIZE);
367 memset(p, 0, sizeof(void *) * L1_SIZE);
368 *lp = p;
370 #endif
371 lp = p + ((index >> L2_BITS) & (L1_SIZE - 1));
372 pd = *lp;
373 if (!pd) {
374 int i;
375 /* allocate if not found */
376 if (!alloc)
377 return NULL;
378 pd = qemu_vmalloc(sizeof(PhysPageDesc) * L2_SIZE);
379 *lp = pd;
380 for (i = 0; i < L2_SIZE; i++) {
381 pd[i].phys_offset = IO_MEM_UNASSIGNED;
382 pd[i].region_offset = (index + i) << TARGET_PAGE_BITS;
385 return ((PhysPageDesc *)pd) + (index & (L2_SIZE - 1));
388 static inline PhysPageDesc *phys_page_find(target_phys_addr_t index)
390 return phys_page_find_alloc(index, 0);
393 #if !defined(CONFIG_USER_ONLY)
394 static void tlb_protect_code(ram_addr_t ram_addr);
395 static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
396 target_ulong vaddr);
397 #define mmap_lock() do { } while(0)
398 #define mmap_unlock() do { } while(0)
399 #endif
401 #define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
403 #if defined(CONFIG_USER_ONLY)
404 /* Currently it is not recommended to allocate big chunks of data in
405 user mode. It will change when a dedicated libc will be used */
406 #define USE_STATIC_CODE_GEN_BUFFER
407 #endif
409 #ifdef USE_STATIC_CODE_GEN_BUFFER
410 static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE];
411 #endif
413 static void code_gen_alloc(unsigned long tb_size)
415 #ifdef USE_STATIC_CODE_GEN_BUFFER
416 code_gen_buffer = static_code_gen_buffer;
417 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
418 map_exec(code_gen_buffer, code_gen_buffer_size);
419 #else
420 code_gen_buffer_size = tb_size;
421 if (code_gen_buffer_size == 0) {
422 #if defined(CONFIG_USER_ONLY)
423 /* in user mode, phys_ram_size is not meaningful */
424 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
425 #else
426 /* XXX: needs adjustments */
427 code_gen_buffer_size = (unsigned long)(ram_size / 4);
428 #endif
430 if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
431 code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
432 /* The code gen buffer location may have constraints depending on
433 the host cpu and OS */
434 #if defined(__linux__)
436 int flags;
437 void *start = NULL;
439 flags = MAP_PRIVATE | MAP_ANONYMOUS;
440 #if defined(__x86_64__)
441 flags |= MAP_32BIT;
442 /* Cannot map more than that */
443 if (code_gen_buffer_size > (800 * 1024 * 1024))
444 code_gen_buffer_size = (800 * 1024 * 1024);
445 #elif defined(__sparc_v9__)
446 // Map the buffer below 2G, so we can use direct calls and branches
447 flags |= MAP_FIXED;
448 start = (void *) 0x60000000UL;
449 if (code_gen_buffer_size > (512 * 1024 * 1024))
450 code_gen_buffer_size = (512 * 1024 * 1024);
451 #elif defined(__arm__)
452 /* Map the buffer below 32M, so we can use direct calls and branches */
453 flags |= MAP_FIXED;
454 start = (void *) 0x01000000UL;
455 if (code_gen_buffer_size > 16 * 1024 * 1024)
456 code_gen_buffer_size = 16 * 1024 * 1024;
457 #endif
458 code_gen_buffer = mmap(start, code_gen_buffer_size,
459 PROT_WRITE | PROT_READ | PROT_EXEC,
460 flags, -1, 0);
461 if (code_gen_buffer == MAP_FAILED) {
462 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
463 exit(1);
466 #elif defined(__FreeBSD__) || defined(__DragonFly__)
468 int flags;
469 void *addr = NULL;
470 flags = MAP_PRIVATE | MAP_ANONYMOUS;
471 #if defined(__x86_64__)
472 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
473 * 0x40000000 is free */
474 flags |= MAP_FIXED;
475 addr = (void *)0x40000000;
476 /* Cannot map more than that */
477 if (code_gen_buffer_size > (800 * 1024 * 1024))
478 code_gen_buffer_size = (800 * 1024 * 1024);
479 #endif
480 code_gen_buffer = mmap(addr, code_gen_buffer_size,
481 PROT_WRITE | PROT_READ | PROT_EXEC,
482 flags, -1, 0);
483 if (code_gen_buffer == MAP_FAILED) {
484 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
485 exit(1);
488 #else
489 code_gen_buffer = qemu_malloc(code_gen_buffer_size);
490 map_exec(code_gen_buffer, code_gen_buffer_size);
491 #endif
492 #endif /* !USE_STATIC_CODE_GEN_BUFFER */
493 map_exec(code_gen_prologue, sizeof(code_gen_prologue));
494 code_gen_buffer_max_size = code_gen_buffer_size -
495 code_gen_max_block_size();
496 code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
497 tbs = qemu_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
500 /* Must be called before using the QEMU cpus. 'tb_size' is the size
501 (in bytes) allocated to the translation buffer. Zero means default
502 size. */
503 void cpu_exec_init_all(unsigned long tb_size)
505 cpu_gen_init();
506 code_gen_alloc(tb_size);
507 code_gen_ptr = code_gen_buffer;
508 page_init();
509 #if !defined(CONFIG_USER_ONLY)
510 io_mem_init();
511 #endif
514 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
516 #define CPU_COMMON_SAVE_VERSION 1
518 static void cpu_common_save(QEMUFile *f, void *opaque)
520 CPUState *env = opaque;
522 cpu_synchronize_state(env, 0);
524 qemu_put_be32s(f, &env->halted);
525 qemu_put_be32s(f, &env->interrupt_request);
528 static int cpu_common_load(QEMUFile *f, void *opaque, int version_id)
530 CPUState *env = opaque;
532 if (version_id != CPU_COMMON_SAVE_VERSION)
533 return -EINVAL;
535 qemu_get_be32s(f, &env->halted);
536 qemu_get_be32s(f, &env->interrupt_request);
537 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
538 version_id is increased. */
539 env->interrupt_request &= ~0x01;
540 tlb_flush(env, 1);
541 cpu_synchronize_state(env, 1);
543 return 0;
545 #endif
547 CPUState *qemu_get_cpu(int cpu)
549 CPUState *env = first_cpu;
551 while (env) {
552 if (env->cpu_index == cpu)
553 break;
554 env = env->next_cpu;
557 return env;
560 void cpu_exec_init(CPUState *env)
562 CPUState **penv;
563 int cpu_index;
565 #if defined(CONFIG_USER_ONLY)
566 cpu_list_lock();
567 #endif
568 env->next_cpu = NULL;
569 penv = &first_cpu;
570 cpu_index = 0;
571 while (*penv != NULL) {
572 penv = &(*penv)->next_cpu;
573 cpu_index++;
575 env->cpu_index = cpu_index;
576 env->numa_node = 0;
577 TAILQ_INIT(&env->breakpoints);
578 TAILQ_INIT(&env->watchpoints);
579 *penv = env;
580 #if defined(CONFIG_USER_ONLY)
581 cpu_list_unlock();
582 #endif
583 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
584 register_savevm("cpu_common", cpu_index, CPU_COMMON_SAVE_VERSION,
585 cpu_common_save, cpu_common_load, env);
586 register_savevm("cpu", cpu_index, CPU_SAVE_VERSION,
587 cpu_save, cpu_load, env);
588 #endif
591 static inline void invalidate_page_bitmap(PageDesc *p)
593 if (p->code_bitmap) {
594 qemu_free(p->code_bitmap);
595 p->code_bitmap = NULL;
597 p->code_write_count = 0;
600 /* set to NULL all the 'first_tb' fields in all PageDescs */
601 static void page_flush_tb(void)
603 int i, j;
604 PageDesc *p;
606 for(i = 0; i < L1_SIZE; i++) {
607 p = l1_map[i];
608 if (p) {
609 for(j = 0; j < L2_SIZE; j++) {
610 p->first_tb = NULL;
611 invalidate_page_bitmap(p);
612 p++;
618 /* flush all the translation blocks */
619 /* XXX: tb_flush is currently not thread safe */
620 void tb_flush(CPUState *env1)
622 CPUState *env;
623 #if defined(DEBUG_FLUSH)
624 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
625 (unsigned long)(code_gen_ptr - code_gen_buffer),
626 nb_tbs, nb_tbs > 0 ?
627 ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
628 #endif
629 if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
630 cpu_abort(env1, "Internal error: code buffer overflow\n");
632 nb_tbs = 0;
634 for(env = first_cpu; env != NULL; env = env->next_cpu) {
635 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
638 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
639 page_flush_tb();
641 code_gen_ptr = code_gen_buffer;
642 /* XXX: flush processor icache at this point if cache flush is
643 expensive */
644 tb_flush_count++;
647 #ifdef DEBUG_TB_CHECK
649 static void tb_invalidate_check(target_ulong address)
651 TranslationBlock *tb;
652 int i;
653 address &= TARGET_PAGE_MASK;
654 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
655 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
656 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
657 address >= tb->pc + tb->size)) {
658 printf("ERROR invalidate: address=" TARGET_FMT_lx
659 " PC=%08lx size=%04x\n",
660 address, (long)tb->pc, tb->size);
666 /* verify that all the pages have correct rights for code */
667 static void tb_page_check(void)
669 TranslationBlock *tb;
670 int i, flags1, flags2;
672 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
673 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
674 flags1 = page_get_flags(tb->pc);
675 flags2 = page_get_flags(tb->pc + tb->size - 1);
676 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
677 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
678 (long)tb->pc, tb->size, flags1, flags2);
684 #endif
686 /* invalidate one TB */
687 static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
688 int next_offset)
690 TranslationBlock *tb1;
691 for(;;) {
692 tb1 = *ptb;
693 if (tb1 == tb) {
694 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
695 break;
697 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
701 static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
703 TranslationBlock *tb1;
704 unsigned int n1;
706 for(;;) {
707 tb1 = *ptb;
708 n1 = (long)tb1 & 3;
709 tb1 = (TranslationBlock *)((long)tb1 & ~3);
710 if (tb1 == tb) {
711 *ptb = tb1->page_next[n1];
712 break;
714 ptb = &tb1->page_next[n1];
718 static inline void tb_jmp_remove(TranslationBlock *tb, int n)
720 TranslationBlock *tb1, **ptb;
721 unsigned int n1;
723 ptb = &tb->jmp_next[n];
724 tb1 = *ptb;
725 if (tb1) {
726 /* find tb(n) in circular list */
727 for(;;) {
728 tb1 = *ptb;
729 n1 = (long)tb1 & 3;
730 tb1 = (TranslationBlock *)((long)tb1 & ~3);
731 if (n1 == n && tb1 == tb)
732 break;
733 if (n1 == 2) {
734 ptb = &tb1->jmp_first;
735 } else {
736 ptb = &tb1->jmp_next[n1];
739 /* now we can suppress tb(n) from the list */
740 *ptb = tb->jmp_next[n];
742 tb->jmp_next[n] = NULL;
746 /* reset the jump entry 'n' of a TB so that it is not chained to
747 another TB */
748 static inline void tb_reset_jump(TranslationBlock *tb, int n)
750 tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
753 void tb_phys_invalidate(TranslationBlock *tb, target_ulong page_addr)
755 CPUState *env;
756 PageDesc *p;
757 unsigned int h, n1;
758 target_phys_addr_t phys_pc;
759 TranslationBlock *tb1, *tb2;
761 /* remove the TB from the hash list */
762 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
763 h = tb_phys_hash_func(phys_pc);
764 tb_remove(&tb_phys_hash[h], tb,
765 offsetof(TranslationBlock, phys_hash_next));
767 /* remove the TB from the page list */
768 if (tb->page_addr[0] != page_addr) {
769 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
770 tb_page_remove(&p->first_tb, tb);
771 invalidate_page_bitmap(p);
773 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
774 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
775 tb_page_remove(&p->first_tb, tb);
776 invalidate_page_bitmap(p);
779 tb_invalidated_flag = 1;
781 /* remove the TB from the hash list */
782 h = tb_jmp_cache_hash_func(tb->pc);
783 for(env = first_cpu; env != NULL; env = env->next_cpu) {
784 if (env->tb_jmp_cache[h] == tb)
785 env->tb_jmp_cache[h] = NULL;
788 /* suppress this TB from the two jump lists */
789 tb_jmp_remove(tb, 0);
790 tb_jmp_remove(tb, 1);
792 /* suppress any remaining jumps to this TB */
793 tb1 = tb->jmp_first;
794 for(;;) {
795 n1 = (long)tb1 & 3;
796 if (n1 == 2)
797 break;
798 tb1 = (TranslationBlock *)((long)tb1 & ~3);
799 tb2 = tb1->jmp_next[n1];
800 tb_reset_jump(tb1, n1);
801 tb1->jmp_next[n1] = NULL;
802 tb1 = tb2;
804 tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
806 tb_phys_invalidate_count++;
809 static inline void set_bits(uint8_t *tab, int start, int len)
811 int end, mask, end1;
813 end = start + len;
814 tab += start >> 3;
815 mask = 0xff << (start & 7);
816 if ((start & ~7) == (end & ~7)) {
817 if (start < end) {
818 mask &= ~(0xff << (end & 7));
819 *tab |= mask;
821 } else {
822 *tab++ |= mask;
823 start = (start + 8) & ~7;
824 end1 = end & ~7;
825 while (start < end1) {
826 *tab++ = 0xff;
827 start += 8;
829 if (start < end) {
830 mask = ~(0xff << (end & 7));
831 *tab |= mask;
836 static void build_page_bitmap(PageDesc *p)
838 int n, tb_start, tb_end;
839 TranslationBlock *tb;
841 p->code_bitmap = qemu_mallocz(TARGET_PAGE_SIZE / 8);
843 tb = p->first_tb;
844 while (tb != NULL) {
845 n = (long)tb & 3;
846 tb = (TranslationBlock *)((long)tb & ~3);
847 /* NOTE: this is subtle as a TB may span two physical pages */
848 if (n == 0) {
849 /* NOTE: tb_end may be after the end of the page, but
850 it is not a problem */
851 tb_start = tb->pc & ~TARGET_PAGE_MASK;
852 tb_end = tb_start + tb->size;
853 if (tb_end > TARGET_PAGE_SIZE)
854 tb_end = TARGET_PAGE_SIZE;
855 } else {
856 tb_start = 0;
857 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
859 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
860 tb = tb->page_next[n];
864 TranslationBlock *tb_gen_code(CPUState *env,
865 target_ulong pc, target_ulong cs_base,
866 int flags, int cflags)
868 TranslationBlock *tb;
869 uint8_t *tc_ptr;
870 target_ulong phys_pc, phys_page2, virt_page2;
871 int code_gen_size;
873 phys_pc = get_phys_addr_code(env, pc);
874 tb = tb_alloc(pc);
875 if (!tb) {
876 /* flush must be done */
877 tb_flush(env);
878 /* cannot fail at this point */
879 tb = tb_alloc(pc);
880 /* Don't forget to invalidate previous TB info. */
881 tb_invalidated_flag = 1;
883 tc_ptr = code_gen_ptr;
884 tb->tc_ptr = tc_ptr;
885 tb->cs_base = cs_base;
886 tb->flags = flags;
887 tb->cflags = cflags;
888 cpu_gen_code(env, tb, &code_gen_size);
889 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
891 /* check next page if needed */
892 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
893 phys_page2 = -1;
894 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
895 phys_page2 = get_phys_addr_code(env, virt_page2);
897 tb_link_phys(tb, phys_pc, phys_page2);
898 return tb;
901 /* invalidate all TBs which intersect with the target physical page
902 starting in range [start;end[. NOTE: start and end must refer to
903 the same physical page. 'is_cpu_write_access' should be true if called
904 from a real cpu write access: the virtual CPU will exit the current
905 TB if code is modified inside this TB. */
906 void tb_invalidate_phys_page_range(target_phys_addr_t start, target_phys_addr_t end,
907 int is_cpu_write_access)
909 TranslationBlock *tb, *tb_next, *saved_tb;
910 CPUState *env = cpu_single_env;
911 target_ulong tb_start, tb_end;
912 PageDesc *p;
913 int n;
914 #ifdef TARGET_HAS_PRECISE_SMC
915 int current_tb_not_found = is_cpu_write_access;
916 TranslationBlock *current_tb = NULL;
917 int current_tb_modified = 0;
918 target_ulong current_pc = 0;
919 target_ulong current_cs_base = 0;
920 int current_flags = 0;
921 #endif /* TARGET_HAS_PRECISE_SMC */
923 p = page_find(start >> TARGET_PAGE_BITS);
924 if (!p)
925 return;
926 if (!p->code_bitmap &&
927 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
928 is_cpu_write_access) {
929 /* build code bitmap */
930 build_page_bitmap(p);
933 /* we remove all the TBs in the range [start, end[ */
934 /* XXX: see if in some cases it could be faster to invalidate all the code */
935 tb = p->first_tb;
936 while (tb != NULL) {
937 n = (long)tb & 3;
938 tb = (TranslationBlock *)((long)tb & ~3);
939 tb_next = tb->page_next[n];
940 /* NOTE: this is subtle as a TB may span two physical pages */
941 if (n == 0) {
942 /* NOTE: tb_end may be after the end of the page, but
943 it is not a problem */
944 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
945 tb_end = tb_start + tb->size;
946 } else {
947 tb_start = tb->page_addr[1];
948 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
950 if (!(tb_end <= start || tb_start >= end)) {
951 #ifdef TARGET_HAS_PRECISE_SMC
952 if (current_tb_not_found) {
953 current_tb_not_found = 0;
954 current_tb = NULL;
955 if (env->mem_io_pc) {
956 /* now we have a real cpu fault */
957 current_tb = tb_find_pc(env->mem_io_pc);
960 if (current_tb == tb &&
961 (current_tb->cflags & CF_COUNT_MASK) != 1) {
962 /* If we are modifying the current TB, we must stop
963 its execution. We could be more precise by checking
964 that the modification is after the current PC, but it
965 would require a specialized function to partially
966 restore the CPU state */
968 current_tb_modified = 1;
969 cpu_restore_state(current_tb, env,
970 env->mem_io_pc, NULL);
971 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
972 &current_flags);
974 #endif /* TARGET_HAS_PRECISE_SMC */
975 /* we need to do that to handle the case where a signal
976 occurs while doing tb_phys_invalidate() */
977 saved_tb = NULL;
978 if (env) {
979 saved_tb = env->current_tb;
980 env->current_tb = NULL;
982 tb_phys_invalidate(tb, -1);
983 if (env) {
984 env->current_tb = saved_tb;
985 if (env->interrupt_request && env->current_tb)
986 cpu_interrupt(env, env->interrupt_request);
989 tb = tb_next;
991 #if !defined(CONFIG_USER_ONLY)
992 /* if no code remaining, no need to continue to use slow writes */
993 if (!p->first_tb) {
994 invalidate_page_bitmap(p);
995 if (is_cpu_write_access) {
996 tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
999 #endif
1000 #ifdef TARGET_HAS_PRECISE_SMC
1001 if (current_tb_modified) {
1002 /* we generate a block containing just the instruction
1003 modifying the memory. It will ensure that it cannot modify
1004 itself */
1005 env->current_tb = NULL;
1006 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
1007 cpu_resume_from_signal(env, NULL);
1009 #endif
1012 /* len must be <= 8 and start must be a multiple of len */
1013 static inline void tb_invalidate_phys_page_fast(target_phys_addr_t start, int len)
1015 PageDesc *p;
1016 int offset, b;
1017 #if 0
1018 if (1) {
1019 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1020 cpu_single_env->mem_io_vaddr, len,
1021 cpu_single_env->eip,
1022 cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
1024 #endif
1025 p = page_find(start >> TARGET_PAGE_BITS);
1026 if (!p)
1027 return;
1028 if (p->code_bitmap) {
1029 offset = start & ~TARGET_PAGE_MASK;
1030 b = p->code_bitmap[offset >> 3] >> (offset & 7);
1031 if (b & ((1 << len) - 1))
1032 goto do_invalidate;
1033 } else {
1034 do_invalidate:
1035 tb_invalidate_phys_page_range(start, start + len, 1);
1039 #if !defined(CONFIG_SOFTMMU)
1040 static void tb_invalidate_phys_page(target_phys_addr_t addr,
1041 unsigned long pc, void *puc)
1043 TranslationBlock *tb;
1044 PageDesc *p;
1045 int n;
1046 #ifdef TARGET_HAS_PRECISE_SMC
1047 TranslationBlock *current_tb = NULL;
1048 CPUState *env = cpu_single_env;
1049 int current_tb_modified = 0;
1050 target_ulong current_pc = 0;
1051 target_ulong current_cs_base = 0;
1052 int current_flags = 0;
1053 #endif
1055 addr &= TARGET_PAGE_MASK;
1056 p = page_find(addr >> TARGET_PAGE_BITS);
1057 if (!p)
1058 return;
1059 tb = p->first_tb;
1060 #ifdef TARGET_HAS_PRECISE_SMC
1061 if (tb && pc != 0) {
1062 current_tb = tb_find_pc(pc);
1064 #endif
1065 while (tb != NULL) {
1066 n = (long)tb & 3;
1067 tb = (TranslationBlock *)((long)tb & ~3);
1068 #ifdef TARGET_HAS_PRECISE_SMC
1069 if (current_tb == tb &&
1070 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1071 /* If we are modifying the current TB, we must stop
1072 its execution. We could be more precise by checking
1073 that the modification is after the current PC, but it
1074 would require a specialized function to partially
1075 restore the CPU state */
1077 current_tb_modified = 1;
1078 cpu_restore_state(current_tb, env, pc, puc);
1079 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1080 &current_flags);
1082 #endif /* TARGET_HAS_PRECISE_SMC */
1083 tb_phys_invalidate(tb, addr);
1084 tb = tb->page_next[n];
1086 p->first_tb = NULL;
1087 #ifdef TARGET_HAS_PRECISE_SMC
1088 if (current_tb_modified) {
1089 /* we generate a block containing just the instruction
1090 modifying the memory. It will ensure that it cannot modify
1091 itself */
1092 env->current_tb = NULL;
1093 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
1094 cpu_resume_from_signal(env, puc);
1096 #endif
1098 #endif
1100 /* add the tb in the target page and protect it if necessary */
1101 static inline void tb_alloc_page(TranslationBlock *tb,
1102 unsigned int n, target_ulong page_addr)
1104 PageDesc *p;
1105 TranslationBlock *last_first_tb;
1107 tb->page_addr[n] = page_addr;
1108 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS);
1109 tb->page_next[n] = p->first_tb;
1110 last_first_tb = p->first_tb;
1111 p->first_tb = (TranslationBlock *)((long)tb | n);
1112 invalidate_page_bitmap(p);
1114 #if defined(TARGET_HAS_SMC) || 1
1116 #if defined(CONFIG_USER_ONLY)
1117 if (p->flags & PAGE_WRITE) {
1118 target_ulong addr;
1119 PageDesc *p2;
1120 int prot;
1122 /* force the host page as non writable (writes will have a
1123 page fault + mprotect overhead) */
1124 page_addr &= qemu_host_page_mask;
1125 prot = 0;
1126 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
1127 addr += TARGET_PAGE_SIZE) {
1129 p2 = page_find (addr >> TARGET_PAGE_BITS);
1130 if (!p2)
1131 continue;
1132 prot |= p2->flags;
1133 p2->flags &= ~PAGE_WRITE;
1134 page_get_flags(addr);
1136 mprotect(g2h(page_addr), qemu_host_page_size,
1137 (prot & PAGE_BITS) & ~PAGE_WRITE);
1138 #ifdef DEBUG_TB_INVALIDATE
1139 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
1140 page_addr);
1141 #endif
1143 #else
1144 /* if some code is already present, then the pages are already
1145 protected. So we handle the case where only the first TB is
1146 allocated in a physical page */
1147 if (!last_first_tb) {
1148 tlb_protect_code(page_addr);
1150 #endif
1152 #endif /* TARGET_HAS_SMC */
1155 /* Allocate a new translation block. Flush the translation buffer if
1156 too many translation blocks or too much generated code. */
1157 TranslationBlock *tb_alloc(target_ulong pc)
1159 TranslationBlock *tb;
1161 if (nb_tbs >= code_gen_max_blocks ||
1162 (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
1163 return NULL;
1164 tb = &tbs[nb_tbs++];
1165 tb->pc = pc;
1166 tb->cflags = 0;
1167 return tb;
1170 void tb_free(TranslationBlock *tb)
1172 /* In practice this is mostly used for single use temporary TB
1173 Ignore the hard cases and just back up if this TB happens to
1174 be the last one generated. */
1175 if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
1176 code_gen_ptr = tb->tc_ptr;
1177 nb_tbs--;
1181 /* add a new TB and link it to the physical page tables. phys_page2 is
1182 (-1) to indicate that only one page contains the TB. */
1183 void tb_link_phys(TranslationBlock *tb,
1184 target_ulong phys_pc, target_ulong phys_page2)
1186 unsigned int h;
1187 TranslationBlock **ptb;
1189 /* Grab the mmap lock to stop another thread invalidating this TB
1190 before we are done. */
1191 mmap_lock();
1192 /* add in the physical hash table */
1193 h = tb_phys_hash_func(phys_pc);
1194 ptb = &tb_phys_hash[h];
1195 tb->phys_hash_next = *ptb;
1196 *ptb = tb;
1198 /* add in the page list */
1199 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1200 if (phys_page2 != -1)
1201 tb_alloc_page(tb, 1, phys_page2);
1202 else
1203 tb->page_addr[1] = -1;
1205 tb->jmp_first = (TranslationBlock *)((long)tb | 2);
1206 tb->jmp_next[0] = NULL;
1207 tb->jmp_next[1] = NULL;
1209 /* init original jump addresses */
1210 if (tb->tb_next_offset[0] != 0xffff)
1211 tb_reset_jump(tb, 0);
1212 if (tb->tb_next_offset[1] != 0xffff)
1213 tb_reset_jump(tb, 1);
1215 #ifdef DEBUG_TB_CHECK
1216 tb_page_check();
1217 #endif
1218 mmap_unlock();
1221 /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1222 tb[1].tc_ptr. Return NULL if not found */
1223 TranslationBlock *tb_find_pc(unsigned long tc_ptr)
1225 int m_min, m_max, m;
1226 unsigned long v;
1227 TranslationBlock *tb;
1229 if (nb_tbs <= 0)
1230 return NULL;
1231 if (tc_ptr < (unsigned long)code_gen_buffer ||
1232 tc_ptr >= (unsigned long)code_gen_ptr)
1233 return NULL;
1234 /* binary search (cf Knuth) */
1235 m_min = 0;
1236 m_max = nb_tbs - 1;
1237 while (m_min <= m_max) {
1238 m = (m_min + m_max) >> 1;
1239 tb = &tbs[m];
1240 v = (unsigned long)tb->tc_ptr;
1241 if (v == tc_ptr)
1242 return tb;
1243 else if (tc_ptr < v) {
1244 m_max = m - 1;
1245 } else {
1246 m_min = m + 1;
1249 return &tbs[m_max];
1252 static void tb_reset_jump_recursive(TranslationBlock *tb);
1254 static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
1256 TranslationBlock *tb1, *tb_next, **ptb;
1257 unsigned int n1;
1259 tb1 = tb->jmp_next[n];
1260 if (tb1 != NULL) {
1261 /* find head of list */
1262 for(;;) {
1263 n1 = (long)tb1 & 3;
1264 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1265 if (n1 == 2)
1266 break;
1267 tb1 = tb1->jmp_next[n1];
1269 /* we are now sure now that tb jumps to tb1 */
1270 tb_next = tb1;
1272 /* remove tb from the jmp_first list */
1273 ptb = &tb_next->jmp_first;
1274 for(;;) {
1275 tb1 = *ptb;
1276 n1 = (long)tb1 & 3;
1277 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1278 if (n1 == n && tb1 == tb)
1279 break;
1280 ptb = &tb1->jmp_next[n1];
1282 *ptb = tb->jmp_next[n];
1283 tb->jmp_next[n] = NULL;
1285 /* suppress the jump to next tb in generated code */
1286 tb_reset_jump(tb, n);
1288 /* suppress jumps in the tb on which we could have jumped */
1289 tb_reset_jump_recursive(tb_next);
1293 static void tb_reset_jump_recursive(TranslationBlock *tb)
1295 tb_reset_jump_recursive2(tb, 0);
1296 tb_reset_jump_recursive2(tb, 1);
1299 #if defined(TARGET_HAS_ICE)
1300 static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1302 target_phys_addr_t addr;
1303 target_ulong pd;
1304 ram_addr_t ram_addr;
1305 PhysPageDesc *p;
1307 addr = cpu_get_phys_page_debug(env, pc);
1308 p = phys_page_find(addr >> TARGET_PAGE_BITS);
1309 if (!p) {
1310 pd = IO_MEM_UNASSIGNED;
1311 } else {
1312 pd = p->phys_offset;
1314 ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
1315 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1317 #endif
1319 /* Add a watchpoint. */
1320 int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1321 int flags, CPUWatchpoint **watchpoint)
1323 target_ulong len_mask = ~(len - 1);
1324 CPUWatchpoint *wp;
1326 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
1327 if ((len != 1 && len != 2 && len != 4 && len != 8) || (addr & ~len_mask)) {
1328 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
1329 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
1330 return -EINVAL;
1332 wp = qemu_malloc(sizeof(*wp));
1334 wp->vaddr = addr;
1335 wp->len_mask = len_mask;
1336 wp->flags = flags;
1338 /* keep all GDB-injected watchpoints in front */
1339 if (flags & BP_GDB)
1340 TAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
1341 else
1342 TAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
1344 tlb_flush_page(env, addr);
1346 if (watchpoint)
1347 *watchpoint = wp;
1348 return 0;
1351 /* Remove a specific watchpoint. */
1352 int cpu_watchpoint_remove(CPUState *env, target_ulong addr, target_ulong len,
1353 int flags)
1355 target_ulong len_mask = ~(len - 1);
1356 CPUWatchpoint *wp;
1358 TAILQ_FOREACH(wp, &env->watchpoints, entry) {
1359 if (addr == wp->vaddr && len_mask == wp->len_mask
1360 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
1361 cpu_watchpoint_remove_by_ref(env, wp);
1362 return 0;
1365 return -ENOENT;
1368 /* Remove a specific watchpoint by reference. */
1369 void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint)
1371 TAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
1373 tlb_flush_page(env, watchpoint->vaddr);
1375 qemu_free(watchpoint);
1378 /* Remove all matching watchpoints. */
1379 void cpu_watchpoint_remove_all(CPUState *env, int mask)
1381 CPUWatchpoint *wp, *next;
1383 TAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
1384 if (wp->flags & mask)
1385 cpu_watchpoint_remove_by_ref(env, wp);
1389 /* Add a breakpoint. */
1390 int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
1391 CPUBreakpoint **breakpoint)
1393 #if defined(TARGET_HAS_ICE)
1394 CPUBreakpoint *bp;
1396 bp = qemu_malloc(sizeof(*bp));
1398 bp->pc = pc;
1399 bp->flags = flags;
1401 /* keep all GDB-injected breakpoints in front */
1402 if (flags & BP_GDB)
1403 TAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
1404 else
1405 TAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
1407 breakpoint_invalidate(env, pc);
1409 if (breakpoint)
1410 *breakpoint = bp;
1411 return 0;
1412 #else
1413 return -ENOSYS;
1414 #endif
1417 /* Remove a specific breakpoint. */
1418 int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags)
1420 #if defined(TARGET_HAS_ICE)
1421 CPUBreakpoint *bp;
1423 TAILQ_FOREACH(bp, &env->breakpoints, entry) {
1424 if (bp->pc == pc && bp->flags == flags) {
1425 cpu_breakpoint_remove_by_ref(env, bp);
1426 return 0;
1429 return -ENOENT;
1430 #else
1431 return -ENOSYS;
1432 #endif
1435 /* Remove a specific breakpoint by reference. */
1436 void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint)
1438 #if defined(TARGET_HAS_ICE)
1439 TAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
1441 breakpoint_invalidate(env, breakpoint->pc);
1443 qemu_free(breakpoint);
1444 #endif
1447 /* Remove all matching breakpoints. */
1448 void cpu_breakpoint_remove_all(CPUState *env, int mask)
1450 #if defined(TARGET_HAS_ICE)
1451 CPUBreakpoint *bp, *next;
1453 TAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
1454 if (bp->flags & mask)
1455 cpu_breakpoint_remove_by_ref(env, bp);
1457 #endif
1460 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1461 CPU loop after each instruction */
1462 void cpu_single_step(CPUState *env, int enabled)
1464 #if defined(TARGET_HAS_ICE)
1465 if (env->singlestep_enabled != enabled) {
1466 env->singlestep_enabled = enabled;
1467 if (kvm_enabled())
1468 kvm_update_guest_debug(env, 0);
1469 else {
1470 /* must flush all the translated code to avoid inconsistencies */
1471 /* XXX: only flush what is necessary */
1472 tb_flush(env);
1475 #endif
1478 /* enable or disable low levels log */
1479 void cpu_set_log(int log_flags)
1481 loglevel = log_flags;
1482 if (loglevel && !logfile) {
1483 logfile = fopen(logfilename, log_append ? "a" : "w");
1484 if (!logfile) {
1485 perror(logfilename);
1486 _exit(1);
1488 #if !defined(CONFIG_SOFTMMU)
1489 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1491 static char logfile_buf[4096];
1492 setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
1494 #elif !defined(_WIN32)
1495 /* Win32 doesn't support line-buffering and requires size >= 2 */
1496 setvbuf(logfile, NULL, _IOLBF, 0);
1497 #endif
1498 log_append = 1;
1500 if (!loglevel && logfile) {
1501 fclose(logfile);
1502 logfile = NULL;
1506 void cpu_set_log_filename(const char *filename)
1508 logfilename = strdup(filename);
1509 if (logfile) {
1510 fclose(logfile);
1511 logfile = NULL;
1513 cpu_set_log(loglevel);
1516 static void cpu_unlink_tb(CPUState *env)
1518 #if defined(USE_NPTL)
1519 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1520 problem and hope the cpu will stop of its own accord. For userspace
1521 emulation this often isn't actually as bad as it sounds. Often
1522 signals are used primarily to interrupt blocking syscalls. */
1523 #else
1524 TranslationBlock *tb;
1525 static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
1527 tb = env->current_tb;
1528 /* if the cpu is currently executing code, we must unlink it and
1529 all the potentially executing TB */
1530 if (tb && !testandset(&interrupt_lock)) {
1531 env->current_tb = NULL;
1532 tb_reset_jump_recursive(tb);
1533 resetlock(&interrupt_lock);
1535 #endif
1538 /* mask must never be zero, except for A20 change call */
1539 void cpu_interrupt(CPUState *env, int mask)
1541 int old_mask;
1543 old_mask = env->interrupt_request;
1544 env->interrupt_request |= mask;
1546 #ifndef CONFIG_USER_ONLY
1548 * If called from iothread context, wake the target cpu in
1549 * case its halted.
1551 if (!qemu_cpu_self(env)) {
1552 qemu_cpu_kick(env);
1553 return;
1555 #endif
1557 if (use_icount) {
1558 env->icount_decr.u16.high = 0xffff;
1559 #ifndef CONFIG_USER_ONLY
1560 if (!can_do_io(env)
1561 && (mask & ~old_mask) != 0) {
1562 cpu_abort(env, "Raised interrupt while not in I/O function");
1564 #endif
1565 } else {
1566 cpu_unlink_tb(env);
1570 void cpu_reset_interrupt(CPUState *env, int mask)
1572 env->interrupt_request &= ~mask;
1575 void cpu_exit(CPUState *env)
1577 env->exit_request = 1;
1578 cpu_unlink_tb(env);
1581 const CPULogItem cpu_log_items[] = {
1582 { CPU_LOG_TB_OUT_ASM, "out_asm",
1583 "show generated host assembly code for each compiled TB" },
1584 { CPU_LOG_TB_IN_ASM, "in_asm",
1585 "show target assembly code for each compiled TB" },
1586 { CPU_LOG_TB_OP, "op",
1587 "show micro ops for each compiled TB" },
1588 { CPU_LOG_TB_OP_OPT, "op_opt",
1589 "show micro ops "
1590 #ifdef TARGET_I386
1591 "before eflags optimization and "
1592 #endif
1593 "after liveness analysis" },
1594 { CPU_LOG_INT, "int",
1595 "show interrupts/exceptions in short format" },
1596 { CPU_LOG_EXEC, "exec",
1597 "show trace before each executed TB (lots of logs)" },
1598 { CPU_LOG_TB_CPU, "cpu",
1599 "show CPU state before block translation" },
1600 #ifdef TARGET_I386
1601 { CPU_LOG_PCALL, "pcall",
1602 "show protected mode far calls/returns/exceptions" },
1603 { CPU_LOG_RESET, "cpu_reset",
1604 "show CPU state before CPU resets" },
1605 #endif
1606 #ifdef DEBUG_IOPORT
1607 { CPU_LOG_IOPORT, "ioport",
1608 "show all i/o ports accesses" },
1609 #endif
1610 { 0, NULL, NULL },
1613 static int cmp1(const char *s1, int n, const char *s2)
1615 if (strlen(s2) != n)
1616 return 0;
1617 return memcmp(s1, s2, n) == 0;
1620 /* takes a comma separated list of log masks. Return 0 if error. */
1621 int cpu_str_to_log_mask(const char *str)
1623 const CPULogItem *item;
1624 int mask;
1625 const char *p, *p1;
1627 p = str;
1628 mask = 0;
1629 for(;;) {
1630 p1 = strchr(p, ',');
1631 if (!p1)
1632 p1 = p + strlen(p);
1633 if(cmp1(p,p1-p,"all")) {
1634 for(item = cpu_log_items; item->mask != 0; item++) {
1635 mask |= item->mask;
1637 } else {
1638 for(item = cpu_log_items; item->mask != 0; item++) {
1639 if (cmp1(p, p1 - p, item->name))
1640 goto found;
1642 return 0;
1644 found:
1645 mask |= item->mask;
1646 if (*p1 != ',')
1647 break;
1648 p = p1 + 1;
1650 return mask;
1653 void cpu_abort(CPUState *env, const char *fmt, ...)
1655 va_list ap;
1656 va_list ap2;
1658 va_start(ap, fmt);
1659 va_copy(ap2, ap);
1660 fprintf(stderr, "qemu: fatal: ");
1661 vfprintf(stderr, fmt, ap);
1662 fprintf(stderr, "\n");
1663 #ifdef TARGET_I386
1664 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1665 #else
1666 cpu_dump_state(env, stderr, fprintf, 0);
1667 #endif
1668 if (qemu_log_enabled()) {
1669 qemu_log("qemu: fatal: ");
1670 qemu_log_vprintf(fmt, ap2);
1671 qemu_log("\n");
1672 #ifdef TARGET_I386
1673 log_cpu_state(env, X86_DUMP_FPU | X86_DUMP_CCOP);
1674 #else
1675 log_cpu_state(env, 0);
1676 #endif
1677 qemu_log_flush();
1678 qemu_log_close();
1680 va_end(ap2);
1681 va_end(ap);
1682 abort();
1685 CPUState *cpu_copy(CPUState *env)
1687 CPUState *new_env = cpu_init(env->cpu_model_str);
1688 CPUState *next_cpu = new_env->next_cpu;
1689 int cpu_index = new_env->cpu_index;
1690 #if defined(TARGET_HAS_ICE)
1691 CPUBreakpoint *bp;
1692 CPUWatchpoint *wp;
1693 #endif
1695 memcpy(new_env, env, sizeof(CPUState));
1697 /* Preserve chaining and index. */
1698 new_env->next_cpu = next_cpu;
1699 new_env->cpu_index = cpu_index;
1701 /* Clone all break/watchpoints.
1702 Note: Once we support ptrace with hw-debug register access, make sure
1703 BP_CPU break/watchpoints are handled correctly on clone. */
1704 TAILQ_INIT(&env->breakpoints);
1705 TAILQ_INIT(&env->watchpoints);
1706 #if defined(TARGET_HAS_ICE)
1707 TAILQ_FOREACH(bp, &env->breakpoints, entry) {
1708 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
1710 TAILQ_FOREACH(wp, &env->watchpoints, entry) {
1711 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
1712 wp->flags, NULL);
1714 #endif
1716 return new_env;
1719 #if !defined(CONFIG_USER_ONLY)
1721 static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr)
1723 unsigned int i;
1725 /* Discard jump cache entries for any tb which might potentially
1726 overlap the flushed page. */
1727 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1728 memset (&env->tb_jmp_cache[i], 0,
1729 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1731 i = tb_jmp_cache_hash_page(addr);
1732 memset (&env->tb_jmp_cache[i], 0,
1733 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1736 static CPUTLBEntry s_cputlb_empty_entry = {
1737 .addr_read = -1,
1738 .addr_write = -1,
1739 .addr_code = -1,
1740 .addend = -1,
1743 /* NOTE: if flush_global is true, also flush global entries (not
1744 implemented yet) */
1745 void tlb_flush(CPUState *env, int flush_global)
1747 int i;
1749 #if defined(DEBUG_TLB)
1750 printf("tlb_flush:\n");
1751 #endif
1752 /* must reset current TB so that interrupts cannot modify the
1753 links while we are modifying them */
1754 env->current_tb = NULL;
1756 for(i = 0; i < CPU_TLB_SIZE; i++) {
1757 int mmu_idx;
1758 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1759 env->tlb_table[mmu_idx][i] = s_cputlb_empty_entry;
1763 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
1765 #ifdef CONFIG_KQEMU
1766 if (env->kqemu_enabled) {
1767 kqemu_flush(env, flush_global);
1769 #endif
1770 tlb_flush_count++;
1773 static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
1775 if (addr == (tlb_entry->addr_read &
1776 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
1777 addr == (tlb_entry->addr_write &
1778 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
1779 addr == (tlb_entry->addr_code &
1780 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
1781 *tlb_entry = s_cputlb_empty_entry;
1785 void tlb_flush_page(CPUState *env, target_ulong addr)
1787 int i;
1788 int mmu_idx;
1790 #if defined(DEBUG_TLB)
1791 printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
1792 #endif
1793 /* must reset current TB so that interrupts cannot modify the
1794 links while we are modifying them */
1795 env->current_tb = NULL;
1797 addr &= TARGET_PAGE_MASK;
1798 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
1799 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
1800 tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr);
1802 tlb_flush_jmp_cache(env, addr);
1804 #ifdef CONFIG_KQEMU
1805 if (env->kqemu_enabled) {
1806 kqemu_flush_page(env, addr);
1808 #endif
1811 /* update the TLBs so that writes to code in the virtual page 'addr'
1812 can be detected */
1813 static void tlb_protect_code(ram_addr_t ram_addr)
1815 cpu_physical_memory_reset_dirty(ram_addr,
1816 ram_addr + TARGET_PAGE_SIZE,
1817 CODE_DIRTY_FLAG);
1820 /* update the TLB so that writes in physical page 'phys_addr' are no longer
1821 tested for self modifying code */
1822 static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
1823 target_ulong vaddr)
1825 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] |= CODE_DIRTY_FLAG;
1828 static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
1829 unsigned long start, unsigned long length)
1831 unsigned long addr;
1832 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
1833 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
1834 if ((addr - start) < length) {
1835 tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY;
1840 /* Note: start and end must be within the same ram block. */
1841 void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
1842 int dirty_flags)
1844 CPUState *env;
1845 unsigned long length, start1;
1846 int i, mask, len;
1847 uint8_t *p;
1849 start &= TARGET_PAGE_MASK;
1850 end = TARGET_PAGE_ALIGN(end);
1852 length = end - start;
1853 if (length == 0)
1854 return;
1855 len = length >> TARGET_PAGE_BITS;
1856 #ifdef CONFIG_KQEMU
1857 /* XXX: should not depend on cpu context */
1858 env = first_cpu;
1859 if (env->kqemu_enabled) {
1860 ram_addr_t addr;
1861 addr = start;
1862 for(i = 0; i < len; i++) {
1863 kqemu_set_notdirty(env, addr);
1864 addr += TARGET_PAGE_SIZE;
1867 #endif
1868 mask = ~dirty_flags;
1869 p = phys_ram_dirty + (start >> TARGET_PAGE_BITS);
1870 for(i = 0; i < len; i++)
1871 p[i] &= mask;
1873 /* we modify the TLB cache so that the dirty bit will be set again
1874 when accessing the range */
1875 start1 = (unsigned long)qemu_get_ram_ptr(start);
1876 /* Chek that we don't span multiple blocks - this breaks the
1877 address comparisons below. */
1878 if ((unsigned long)qemu_get_ram_ptr(end - 1) - start1
1879 != (end - 1) - start) {
1880 abort();
1883 for(env = first_cpu; env != NULL; env = env->next_cpu) {
1884 int mmu_idx;
1885 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1886 for(i = 0; i < CPU_TLB_SIZE; i++)
1887 tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i],
1888 start1, length);
1893 int cpu_physical_memory_set_dirty_tracking(int enable)
1895 in_migration = enable;
1896 if (kvm_enabled()) {
1897 return kvm_set_migration_log(enable);
1899 return 0;
1902 int cpu_physical_memory_get_dirty_tracking(void)
1904 return in_migration;
1907 int cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
1908 target_phys_addr_t end_addr)
1910 int ret = 0;
1912 if (kvm_enabled())
1913 ret = kvm_physical_sync_dirty_bitmap(start_addr, end_addr);
1914 return ret;
1917 static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
1919 ram_addr_t ram_addr;
1920 void *p;
1922 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
1923 p = (void *)(unsigned long)((tlb_entry->addr_write & TARGET_PAGE_MASK)
1924 + tlb_entry->addend);
1925 ram_addr = qemu_ram_addr_from_host(p);
1926 if (!cpu_physical_memory_is_dirty(ram_addr)) {
1927 tlb_entry->addr_write |= TLB_NOTDIRTY;
1932 /* update the TLB according to the current state of the dirty bits */
1933 void cpu_tlb_update_dirty(CPUState *env)
1935 int i;
1936 int mmu_idx;
1937 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1938 for(i = 0; i < CPU_TLB_SIZE; i++)
1939 tlb_update_dirty(&env->tlb_table[mmu_idx][i]);
1943 static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
1945 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY))
1946 tlb_entry->addr_write = vaddr;
1949 /* update the TLB corresponding to virtual page vaddr
1950 so that it is no longer dirty */
1951 static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr)
1953 int i;
1954 int mmu_idx;
1956 vaddr &= TARGET_PAGE_MASK;
1957 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
1958 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
1959 tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr);
1962 /* add a new TLB entry. At most one entry for a given virtual address
1963 is permitted. Return 0 if OK or 2 if the page could not be mapped
1964 (can only happen in non SOFTMMU mode for I/O pages or pages
1965 conflicting with the host address space). */
1966 int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
1967 target_phys_addr_t paddr, int prot,
1968 int mmu_idx, int is_softmmu)
1970 PhysPageDesc *p;
1971 unsigned long pd;
1972 unsigned int index;
1973 target_ulong address;
1974 target_ulong code_address;
1975 target_phys_addr_t addend;
1976 int ret;
1977 CPUTLBEntry *te;
1978 CPUWatchpoint *wp;
1979 target_phys_addr_t iotlb;
1981 p = phys_page_find(paddr >> TARGET_PAGE_BITS);
1982 if (!p) {
1983 pd = IO_MEM_UNASSIGNED;
1984 } else {
1985 pd = p->phys_offset;
1987 #if defined(DEBUG_TLB)
1988 printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x%08x prot=%x idx=%d smmu=%d pd=0x%08lx\n",
1989 vaddr, (int)paddr, prot, mmu_idx, is_softmmu, pd);
1990 #endif
1992 ret = 0;
1993 address = vaddr;
1994 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
1995 /* IO memory case (romd handled later) */
1996 address |= TLB_MMIO;
1998 addend = (unsigned long)qemu_get_ram_ptr(pd & TARGET_PAGE_MASK);
1999 if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) {
2000 /* Normal RAM. */
2001 iotlb = pd & TARGET_PAGE_MASK;
2002 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
2003 iotlb |= IO_MEM_NOTDIRTY;
2004 else
2005 iotlb |= IO_MEM_ROM;
2006 } else {
2007 /* IO handlers are currently passed a physical address.
2008 It would be nice to pass an offset from the base address
2009 of that region. This would avoid having to special case RAM,
2010 and avoid full address decoding in every device.
2011 We can't use the high bits of pd for this because
2012 IO_MEM_ROMD uses these as a ram address. */
2013 iotlb = (pd & ~TARGET_PAGE_MASK);
2014 if (p) {
2015 iotlb += p->region_offset;
2016 } else {
2017 iotlb += paddr;
2021 code_address = address;
2022 /* Make accesses to pages with watchpoints go via the
2023 watchpoint trap routines. */
2024 TAILQ_FOREACH(wp, &env->watchpoints, entry) {
2025 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
2026 iotlb = io_mem_watch + paddr;
2027 /* TODO: The memory case can be optimized by not trapping
2028 reads of pages with a write breakpoint. */
2029 address |= TLB_MMIO;
2033 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2034 env->iotlb[mmu_idx][index] = iotlb - vaddr;
2035 te = &env->tlb_table[mmu_idx][index];
2036 te->addend = addend - vaddr;
2037 if (prot & PAGE_READ) {
2038 te->addr_read = address;
2039 } else {
2040 te->addr_read = -1;
2043 if (prot & PAGE_EXEC) {
2044 te->addr_code = code_address;
2045 } else {
2046 te->addr_code = -1;
2048 if (prot & PAGE_WRITE) {
2049 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
2050 (pd & IO_MEM_ROMD)) {
2051 /* Write access calls the I/O callback. */
2052 te->addr_write = address | TLB_MMIO;
2053 } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
2054 !cpu_physical_memory_is_dirty(pd)) {
2055 te->addr_write = address | TLB_NOTDIRTY;
2056 } else {
2057 te->addr_write = address;
2059 } else {
2060 te->addr_write = -1;
2062 return ret;
2065 #else
2067 void tlb_flush(CPUState *env, int flush_global)
2071 void tlb_flush_page(CPUState *env, target_ulong addr)
2075 int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
2076 target_phys_addr_t paddr, int prot,
2077 int mmu_idx, int is_softmmu)
2079 return 0;
2083 * Walks guest process memory "regions" one by one
2084 * and calls callback function 'fn' for each region.
2086 int walk_memory_regions(void *priv,
2087 int (*fn)(void *, unsigned long, unsigned long, unsigned long))
2089 unsigned long start, end;
2090 PageDesc *p = NULL;
2091 int i, j, prot, prot1;
2092 int rc = 0;
2094 start = end = -1;
2095 prot = 0;
2097 for (i = 0; i <= L1_SIZE; i++) {
2098 p = (i < L1_SIZE) ? l1_map[i] : NULL;
2099 for (j = 0; j < L2_SIZE; j++) {
2100 prot1 = (p == NULL) ? 0 : p[j].flags;
2102 * "region" is one continuous chunk of memory
2103 * that has same protection flags set.
2105 if (prot1 != prot) {
2106 end = (i << (32 - L1_BITS)) | (j << TARGET_PAGE_BITS);
2107 if (start != -1) {
2108 rc = (*fn)(priv, start, end, prot);
2109 /* callback can stop iteration by returning != 0 */
2110 if (rc != 0)
2111 return (rc);
2113 if (prot1 != 0)
2114 start = end;
2115 else
2116 start = -1;
2117 prot = prot1;
2119 if (p == NULL)
2120 break;
2123 return (rc);
2126 static int dump_region(void *priv, unsigned long start,
2127 unsigned long end, unsigned long prot)
2129 FILE *f = (FILE *)priv;
2131 (void) fprintf(f, "%08lx-%08lx %08lx %c%c%c\n",
2132 start, end, end - start,
2133 ((prot & PAGE_READ) ? 'r' : '-'),
2134 ((prot & PAGE_WRITE) ? 'w' : '-'),
2135 ((prot & PAGE_EXEC) ? 'x' : '-'));
2137 return (0);
2140 /* dump memory mappings */
2141 void page_dump(FILE *f)
2143 (void) fprintf(f, "%-8s %-8s %-8s %s\n",
2144 "start", "end", "size", "prot");
2145 walk_memory_regions(f, dump_region);
2148 int page_get_flags(target_ulong address)
2150 PageDesc *p;
2152 p = page_find(address >> TARGET_PAGE_BITS);
2153 if (!p)
2154 return 0;
2155 return p->flags;
2158 /* modify the flags of a page and invalidate the code if
2159 necessary. The flag PAGE_WRITE_ORG is positioned automatically
2160 depending on PAGE_WRITE */
2161 void page_set_flags(target_ulong start, target_ulong end, int flags)
2163 PageDesc *p;
2164 target_ulong addr;
2166 /* mmap_lock should already be held. */
2167 start = start & TARGET_PAGE_MASK;
2168 end = TARGET_PAGE_ALIGN(end);
2169 if (flags & PAGE_WRITE)
2170 flags |= PAGE_WRITE_ORG;
2171 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
2172 p = page_find_alloc(addr >> TARGET_PAGE_BITS);
2173 /* We may be called for host regions that are outside guest
2174 address space. */
2175 if (!p)
2176 return;
2177 /* if the write protection is set, then we invalidate the code
2178 inside */
2179 if (!(p->flags & PAGE_WRITE) &&
2180 (flags & PAGE_WRITE) &&
2181 p->first_tb) {
2182 tb_invalidate_phys_page(addr, 0, NULL);
2184 p->flags = flags;
2188 int page_check_range(target_ulong start, target_ulong len, int flags)
2190 PageDesc *p;
2191 target_ulong end;
2192 target_ulong addr;
2194 if (start + len < start)
2195 /* we've wrapped around */
2196 return -1;
2198 end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
2199 start = start & TARGET_PAGE_MASK;
2201 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
2202 p = page_find(addr >> TARGET_PAGE_BITS);
2203 if( !p )
2204 return -1;
2205 if( !(p->flags & PAGE_VALID) )
2206 return -1;
2208 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
2209 return -1;
2210 if (flags & PAGE_WRITE) {
2211 if (!(p->flags & PAGE_WRITE_ORG))
2212 return -1;
2213 /* unprotect the page if it was put read-only because it
2214 contains translated code */
2215 if (!(p->flags & PAGE_WRITE)) {
2216 if (!page_unprotect(addr, 0, NULL))
2217 return -1;
2219 return 0;
2222 return 0;
2225 /* called from signal handler: invalidate the code and unprotect the
2226 page. Return TRUE if the fault was successfully handled. */
2227 int page_unprotect(target_ulong address, unsigned long pc, void *puc)
2229 unsigned int page_index, prot, pindex;
2230 PageDesc *p, *p1;
2231 target_ulong host_start, host_end, addr;
2233 /* Technically this isn't safe inside a signal handler. However we
2234 know this only ever happens in a synchronous SEGV handler, so in
2235 practice it seems to be ok. */
2236 mmap_lock();
2238 host_start = address & qemu_host_page_mask;
2239 page_index = host_start >> TARGET_PAGE_BITS;
2240 p1 = page_find(page_index);
2241 if (!p1) {
2242 mmap_unlock();
2243 return 0;
2245 host_end = host_start + qemu_host_page_size;
2246 p = p1;
2247 prot = 0;
2248 for(addr = host_start;addr < host_end; addr += TARGET_PAGE_SIZE) {
2249 prot |= p->flags;
2250 p++;
2252 /* if the page was really writable, then we change its
2253 protection back to writable */
2254 if (prot & PAGE_WRITE_ORG) {
2255 pindex = (address - host_start) >> TARGET_PAGE_BITS;
2256 if (!(p1[pindex].flags & PAGE_WRITE)) {
2257 mprotect((void *)g2h(host_start), qemu_host_page_size,
2258 (prot & PAGE_BITS) | PAGE_WRITE);
2259 p1[pindex].flags |= PAGE_WRITE;
2260 /* and since the content will be modified, we must invalidate
2261 the corresponding translated code. */
2262 tb_invalidate_phys_page(address, pc, puc);
2263 #ifdef DEBUG_TB_CHECK
2264 tb_invalidate_check(address);
2265 #endif
2266 mmap_unlock();
2267 return 1;
2270 mmap_unlock();
2271 return 0;
2274 static inline void tlb_set_dirty(CPUState *env,
2275 unsigned long addr, target_ulong vaddr)
2278 #endif /* defined(CONFIG_USER_ONLY) */
2280 #if !defined(CONFIG_USER_ONLY)
2282 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2283 ram_addr_t memory, ram_addr_t region_offset);
2284 static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2285 ram_addr_t orig_memory, ram_addr_t region_offset);
2286 #define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
2287 need_subpage) \
2288 do { \
2289 if (addr > start_addr) \
2290 start_addr2 = 0; \
2291 else { \
2292 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
2293 if (start_addr2 > 0) \
2294 need_subpage = 1; \
2297 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
2298 end_addr2 = TARGET_PAGE_SIZE - 1; \
2299 else { \
2300 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
2301 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
2302 need_subpage = 1; \
2304 } while (0)
2306 /* register physical memory. 'size' must be a multiple of the target
2307 page size. If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
2308 io memory page. The address used when calling the IO function is
2309 the offset from the start of the region, plus region_offset. Both
2310 start_addr and region_offset are rounded down to a page boundary
2311 before calculating this offset. This should not be a problem unless
2312 the low bits of start_addr and region_offset differ. */
2313 void cpu_register_physical_memory_offset(target_phys_addr_t start_addr,
2314 ram_addr_t size,
2315 ram_addr_t phys_offset,
2316 ram_addr_t region_offset)
2318 target_phys_addr_t addr, end_addr;
2319 PhysPageDesc *p;
2320 CPUState *env;
2321 ram_addr_t orig_size = size;
2322 void *subpage;
2324 #ifdef CONFIG_KQEMU
2325 /* XXX: should not depend on cpu context */
2326 env = first_cpu;
2327 if (env->kqemu_enabled) {
2328 kqemu_set_phys_mem(start_addr, size, phys_offset);
2330 #endif
2331 if (kvm_enabled())
2332 kvm_set_phys_mem(start_addr, size, phys_offset);
2334 if (phys_offset == IO_MEM_UNASSIGNED) {
2335 region_offset = start_addr;
2337 region_offset &= TARGET_PAGE_MASK;
2338 size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
2339 end_addr = start_addr + (target_phys_addr_t)size;
2340 for(addr = start_addr; addr != end_addr; addr += TARGET_PAGE_SIZE) {
2341 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2342 if (p && p->phys_offset != IO_MEM_UNASSIGNED) {
2343 ram_addr_t orig_memory = p->phys_offset;
2344 target_phys_addr_t start_addr2, end_addr2;
2345 int need_subpage = 0;
2347 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2,
2348 need_subpage);
2349 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
2350 if (!(orig_memory & IO_MEM_SUBPAGE)) {
2351 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2352 &p->phys_offset, orig_memory,
2353 p->region_offset);
2354 } else {
2355 subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK)
2356 >> IO_MEM_SHIFT];
2358 subpage_register(subpage, start_addr2, end_addr2, phys_offset,
2359 region_offset);
2360 p->region_offset = 0;
2361 } else {
2362 p->phys_offset = phys_offset;
2363 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2364 (phys_offset & IO_MEM_ROMD))
2365 phys_offset += TARGET_PAGE_SIZE;
2367 } else {
2368 p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2369 p->phys_offset = phys_offset;
2370 p->region_offset = region_offset;
2371 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2372 (phys_offset & IO_MEM_ROMD)) {
2373 phys_offset += TARGET_PAGE_SIZE;
2374 } else {
2375 target_phys_addr_t start_addr2, end_addr2;
2376 int need_subpage = 0;
2378 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr,
2379 end_addr2, need_subpage);
2381 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
2382 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2383 &p->phys_offset, IO_MEM_UNASSIGNED,
2384 addr & TARGET_PAGE_MASK);
2385 subpage_register(subpage, start_addr2, end_addr2,
2386 phys_offset, region_offset);
2387 p->region_offset = 0;
2391 region_offset += TARGET_PAGE_SIZE;
2394 /* since each CPU stores ram addresses in its TLB cache, we must
2395 reset the modified entries */
2396 /* XXX: slow ! */
2397 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2398 tlb_flush(env, 1);
2402 /* XXX: temporary until new memory mapping API */
2403 ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr)
2405 PhysPageDesc *p;
2407 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2408 if (!p)
2409 return IO_MEM_UNASSIGNED;
2410 return p->phys_offset;
2413 void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2415 if (kvm_enabled())
2416 kvm_coalesce_mmio_region(addr, size);
2419 void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2421 if (kvm_enabled())
2422 kvm_uncoalesce_mmio_region(addr, size);
2425 #ifdef CONFIG_KQEMU
2426 /* XXX: better than nothing */
2427 static ram_addr_t kqemu_ram_alloc(ram_addr_t size)
2429 ram_addr_t addr;
2430 if ((last_ram_offset + size) > kqemu_phys_ram_size) {
2431 fprintf(stderr, "Not enough memory (requested_size = %" PRIu64 ", max memory = %" PRIu64 ")\n",
2432 (uint64_t)size, (uint64_t)kqemu_phys_ram_size);
2433 abort();
2435 addr = last_ram_offset;
2436 last_ram_offset = TARGET_PAGE_ALIGN(last_ram_offset + size);
2437 return addr;
2439 #endif
2441 ram_addr_t qemu_ram_alloc(ram_addr_t size)
2443 RAMBlock *new_block;
2445 #ifdef CONFIG_KQEMU
2446 if (kqemu_phys_ram_base) {
2447 return kqemu_ram_alloc(size);
2449 #endif
2451 size = TARGET_PAGE_ALIGN(size);
2452 new_block = qemu_malloc(sizeof(*new_block));
2454 new_block->host = qemu_vmalloc(size);
2455 new_block->offset = last_ram_offset;
2456 new_block->length = size;
2458 new_block->next = ram_blocks;
2459 ram_blocks = new_block;
2461 phys_ram_dirty = qemu_realloc(phys_ram_dirty,
2462 (last_ram_offset + size) >> TARGET_PAGE_BITS);
2463 memset(phys_ram_dirty + (last_ram_offset >> TARGET_PAGE_BITS),
2464 0xff, size >> TARGET_PAGE_BITS);
2466 last_ram_offset += size;
2468 if (kvm_enabled())
2469 kvm_setup_guest_memory(new_block->host, size);
2471 return new_block->offset;
2474 void qemu_ram_free(ram_addr_t addr)
2476 /* TODO: implement this. */
2479 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2480 With the exception of the softmmu code in this file, this should
2481 only be used for local memory (e.g. video ram) that the device owns,
2482 and knows it isn't going to access beyond the end of the block.
2484 It should not be used for general purpose DMA.
2485 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
2487 void *qemu_get_ram_ptr(ram_addr_t addr)
2489 RAMBlock *prev;
2490 RAMBlock **prevp;
2491 RAMBlock *block;
2493 #ifdef CONFIG_KQEMU
2494 if (kqemu_phys_ram_base) {
2495 return kqemu_phys_ram_base + addr;
2497 #endif
2499 prev = NULL;
2500 prevp = &ram_blocks;
2501 block = ram_blocks;
2502 while (block && (block->offset > addr
2503 || block->offset + block->length <= addr)) {
2504 if (prev)
2505 prevp = &prev->next;
2506 prev = block;
2507 block = block->next;
2509 if (!block) {
2510 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
2511 abort();
2513 /* Move this entry to to start of the list. */
2514 if (prev) {
2515 prev->next = block->next;
2516 block->next = *prevp;
2517 *prevp = block;
2519 return block->host + (addr - block->offset);
2522 /* Some of the softmmu routines need to translate from a host pointer
2523 (typically a TLB entry) back to a ram offset. */
2524 ram_addr_t qemu_ram_addr_from_host(void *ptr)
2526 RAMBlock *prev;
2527 RAMBlock **prevp;
2528 RAMBlock *block;
2529 uint8_t *host = ptr;
2531 #ifdef CONFIG_KQEMU
2532 if (kqemu_phys_ram_base) {
2533 return host - kqemu_phys_ram_base;
2535 #endif
2537 prev = NULL;
2538 prevp = &ram_blocks;
2539 block = ram_blocks;
2540 while (block && (block->host > host
2541 || block->host + block->length <= host)) {
2542 if (prev)
2543 prevp = &prev->next;
2544 prev = block;
2545 block = block->next;
2547 if (!block) {
2548 fprintf(stderr, "Bad ram pointer %p\n", ptr);
2549 abort();
2551 return block->offset + (host - block->host);
2554 static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
2556 #ifdef DEBUG_UNASSIGNED
2557 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2558 #endif
2559 #if defined(TARGET_SPARC)
2560 do_unassigned_access(addr, 0, 0, 0, 1);
2561 #endif
2562 return 0;
2565 static uint32_t unassigned_mem_readw(void *opaque, target_phys_addr_t addr)
2567 #ifdef DEBUG_UNASSIGNED
2568 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2569 #endif
2570 #if defined(TARGET_SPARC)
2571 do_unassigned_access(addr, 0, 0, 0, 2);
2572 #endif
2573 return 0;
2576 static uint32_t unassigned_mem_readl(void *opaque, target_phys_addr_t addr)
2578 #ifdef DEBUG_UNASSIGNED
2579 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2580 #endif
2581 #if defined(TARGET_SPARC)
2582 do_unassigned_access(addr, 0, 0, 0, 4);
2583 #endif
2584 return 0;
2587 static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
2589 #ifdef DEBUG_UNASSIGNED
2590 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2591 #endif
2592 #if defined(TARGET_SPARC)
2593 do_unassigned_access(addr, 1, 0, 0, 1);
2594 #endif
2597 static void unassigned_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
2599 #ifdef DEBUG_UNASSIGNED
2600 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2601 #endif
2602 #if defined(TARGET_SPARC)
2603 do_unassigned_access(addr, 1, 0, 0, 2);
2604 #endif
2607 static void unassigned_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
2609 #ifdef DEBUG_UNASSIGNED
2610 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2611 #endif
2612 #if defined(TARGET_SPARC)
2613 do_unassigned_access(addr, 1, 0, 0, 4);
2614 #endif
2617 static CPUReadMemoryFunc *unassigned_mem_read[3] = {
2618 unassigned_mem_readb,
2619 unassigned_mem_readw,
2620 unassigned_mem_readl,
2623 static CPUWriteMemoryFunc *unassigned_mem_write[3] = {
2624 unassigned_mem_writeb,
2625 unassigned_mem_writew,
2626 unassigned_mem_writel,
2629 static void notdirty_mem_writeb(void *opaque, target_phys_addr_t ram_addr,
2630 uint32_t val)
2632 int dirty_flags;
2633 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2634 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2635 #if !defined(CONFIG_USER_ONLY)
2636 tb_invalidate_phys_page_fast(ram_addr, 1);
2637 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2638 #endif
2640 stb_p(qemu_get_ram_ptr(ram_addr), val);
2641 #ifdef CONFIG_KQEMU
2642 if (cpu_single_env->kqemu_enabled &&
2643 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2644 kqemu_modify_page(cpu_single_env, ram_addr);
2645 #endif
2646 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2647 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2648 /* we remove the notdirty callback only if the code has been
2649 flushed */
2650 if (dirty_flags == 0xff)
2651 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
2654 static void notdirty_mem_writew(void *opaque, target_phys_addr_t ram_addr,
2655 uint32_t val)
2657 int dirty_flags;
2658 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2659 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2660 #if !defined(CONFIG_USER_ONLY)
2661 tb_invalidate_phys_page_fast(ram_addr, 2);
2662 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2663 #endif
2665 stw_p(qemu_get_ram_ptr(ram_addr), val);
2666 #ifdef CONFIG_KQEMU
2667 if (cpu_single_env->kqemu_enabled &&
2668 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2669 kqemu_modify_page(cpu_single_env, ram_addr);
2670 #endif
2671 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2672 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2673 /* we remove the notdirty callback only if the code has been
2674 flushed */
2675 if (dirty_flags == 0xff)
2676 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
2679 static void notdirty_mem_writel(void *opaque, target_phys_addr_t ram_addr,
2680 uint32_t val)
2682 int dirty_flags;
2683 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2684 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2685 #if !defined(CONFIG_USER_ONLY)
2686 tb_invalidate_phys_page_fast(ram_addr, 4);
2687 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2688 #endif
2690 stl_p(qemu_get_ram_ptr(ram_addr), val);
2691 #ifdef CONFIG_KQEMU
2692 if (cpu_single_env->kqemu_enabled &&
2693 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2694 kqemu_modify_page(cpu_single_env, ram_addr);
2695 #endif
2696 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2697 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2698 /* we remove the notdirty callback only if the code has been
2699 flushed */
2700 if (dirty_flags == 0xff)
2701 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
2704 static CPUReadMemoryFunc *error_mem_read[3] = {
2705 NULL, /* never used */
2706 NULL, /* never used */
2707 NULL, /* never used */
2710 static CPUWriteMemoryFunc *notdirty_mem_write[3] = {
2711 notdirty_mem_writeb,
2712 notdirty_mem_writew,
2713 notdirty_mem_writel,
2716 /* Generate a debug exception if a watchpoint has been hit. */
2717 static void check_watchpoint(int offset, int len_mask, int flags)
2719 CPUState *env = cpu_single_env;
2720 target_ulong pc, cs_base;
2721 TranslationBlock *tb;
2722 target_ulong vaddr;
2723 CPUWatchpoint *wp;
2724 int cpu_flags;
2726 if (env->watchpoint_hit) {
2727 /* We re-entered the check after replacing the TB. Now raise
2728 * the debug interrupt so that is will trigger after the
2729 * current instruction. */
2730 cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
2731 return;
2733 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
2734 TAILQ_FOREACH(wp, &env->watchpoints, entry) {
2735 if ((vaddr == (wp->vaddr & len_mask) ||
2736 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
2737 wp->flags |= BP_WATCHPOINT_HIT;
2738 if (!env->watchpoint_hit) {
2739 env->watchpoint_hit = wp;
2740 tb = tb_find_pc(env->mem_io_pc);
2741 if (!tb) {
2742 cpu_abort(env, "check_watchpoint: could not find TB for "
2743 "pc=%p", (void *)env->mem_io_pc);
2745 cpu_restore_state(tb, env, env->mem_io_pc, NULL);
2746 tb_phys_invalidate(tb, -1);
2747 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2748 env->exception_index = EXCP_DEBUG;
2749 } else {
2750 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
2751 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
2753 cpu_resume_from_signal(env, NULL);
2755 } else {
2756 wp->flags &= ~BP_WATCHPOINT_HIT;
2761 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2762 so these check for a hit then pass through to the normal out-of-line
2763 phys routines. */
2764 static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr)
2766 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_READ);
2767 return ldub_phys(addr);
2770 static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr)
2772 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_READ);
2773 return lduw_phys(addr);
2776 static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr)
2778 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_READ);
2779 return ldl_phys(addr);
2782 static void watch_mem_writeb(void *opaque, target_phys_addr_t addr,
2783 uint32_t val)
2785 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_WRITE);
2786 stb_phys(addr, val);
2789 static void watch_mem_writew(void *opaque, target_phys_addr_t addr,
2790 uint32_t val)
2792 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_WRITE);
2793 stw_phys(addr, val);
2796 static void watch_mem_writel(void *opaque, target_phys_addr_t addr,
2797 uint32_t val)
2799 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_WRITE);
2800 stl_phys(addr, val);
2803 static CPUReadMemoryFunc *watch_mem_read[3] = {
2804 watch_mem_readb,
2805 watch_mem_readw,
2806 watch_mem_readl,
2809 static CPUWriteMemoryFunc *watch_mem_write[3] = {
2810 watch_mem_writeb,
2811 watch_mem_writew,
2812 watch_mem_writel,
2815 static inline uint32_t subpage_readlen (subpage_t *mmio, target_phys_addr_t addr,
2816 unsigned int len)
2818 uint32_t ret;
2819 unsigned int idx;
2821 idx = SUBPAGE_IDX(addr);
2822 #if defined(DEBUG_SUBPAGE)
2823 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
2824 mmio, len, addr, idx);
2825 #endif
2826 ret = (**mmio->mem_read[idx][len])(mmio->opaque[idx][0][len],
2827 addr + mmio->region_offset[idx][0][len]);
2829 return ret;
2832 static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr,
2833 uint32_t value, unsigned int len)
2835 unsigned int idx;
2837 idx = SUBPAGE_IDX(addr);
2838 #if defined(DEBUG_SUBPAGE)
2839 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n", __func__,
2840 mmio, len, addr, idx, value);
2841 #endif
2842 (**mmio->mem_write[idx][len])(mmio->opaque[idx][1][len],
2843 addr + mmio->region_offset[idx][1][len],
2844 value);
2847 static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr)
2849 #if defined(DEBUG_SUBPAGE)
2850 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2851 #endif
2853 return subpage_readlen(opaque, addr, 0);
2856 static void subpage_writeb (void *opaque, target_phys_addr_t addr,
2857 uint32_t value)
2859 #if defined(DEBUG_SUBPAGE)
2860 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2861 #endif
2862 subpage_writelen(opaque, addr, value, 0);
2865 static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr)
2867 #if defined(DEBUG_SUBPAGE)
2868 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2869 #endif
2871 return subpage_readlen(opaque, addr, 1);
2874 static void subpage_writew (void *opaque, target_phys_addr_t addr,
2875 uint32_t value)
2877 #if defined(DEBUG_SUBPAGE)
2878 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2879 #endif
2880 subpage_writelen(opaque, addr, value, 1);
2883 static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr)
2885 #if defined(DEBUG_SUBPAGE)
2886 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2887 #endif
2889 return subpage_readlen(opaque, addr, 2);
2892 static void subpage_writel (void *opaque,
2893 target_phys_addr_t addr, uint32_t value)
2895 #if defined(DEBUG_SUBPAGE)
2896 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2897 #endif
2898 subpage_writelen(opaque, addr, value, 2);
2901 static CPUReadMemoryFunc *subpage_read[] = {
2902 &subpage_readb,
2903 &subpage_readw,
2904 &subpage_readl,
2907 static CPUWriteMemoryFunc *subpage_write[] = {
2908 &subpage_writeb,
2909 &subpage_writew,
2910 &subpage_writel,
2913 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2914 ram_addr_t memory, ram_addr_t region_offset)
2916 int idx, eidx;
2917 unsigned int i;
2919 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2920 return -1;
2921 idx = SUBPAGE_IDX(start);
2922 eidx = SUBPAGE_IDX(end);
2923 #if defined(DEBUG_SUBPAGE)
2924 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
2925 mmio, start, end, idx, eidx, memory);
2926 #endif
2927 memory >>= IO_MEM_SHIFT;
2928 for (; idx <= eidx; idx++) {
2929 for (i = 0; i < 4; i++) {
2930 if (io_mem_read[memory][i]) {
2931 mmio->mem_read[idx][i] = &io_mem_read[memory][i];
2932 mmio->opaque[idx][0][i] = io_mem_opaque[memory];
2933 mmio->region_offset[idx][0][i] = region_offset;
2935 if (io_mem_write[memory][i]) {
2936 mmio->mem_write[idx][i] = &io_mem_write[memory][i];
2937 mmio->opaque[idx][1][i] = io_mem_opaque[memory];
2938 mmio->region_offset[idx][1][i] = region_offset;
2943 return 0;
2946 static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2947 ram_addr_t orig_memory, ram_addr_t region_offset)
2949 subpage_t *mmio;
2950 int subpage_memory;
2952 mmio = qemu_mallocz(sizeof(subpage_t));
2954 mmio->base = base;
2955 subpage_memory = cpu_register_io_memory(subpage_read, subpage_write, mmio);
2956 #if defined(DEBUG_SUBPAGE)
2957 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
2958 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
2959 #endif
2960 *phys = subpage_memory | IO_MEM_SUBPAGE;
2961 subpage_register(mmio, 0, TARGET_PAGE_SIZE - 1, orig_memory,
2962 region_offset);
2964 return mmio;
2967 static int get_free_io_mem_idx(void)
2969 int i;
2971 for (i = 0; i<IO_MEM_NB_ENTRIES; i++)
2972 if (!io_mem_used[i]) {
2973 io_mem_used[i] = 1;
2974 return i;
2977 return -1;
2980 /* mem_read and mem_write are arrays of functions containing the
2981 function to access byte (index 0), word (index 1) and dword (index
2982 2). Functions can be omitted with a NULL function pointer.
2983 If io_index is non zero, the corresponding io zone is
2984 modified. If it is zero, a new io zone is allocated. The return
2985 value can be used with cpu_register_physical_memory(). (-1) is
2986 returned if error. */
2987 static int cpu_register_io_memory_fixed(int io_index,
2988 CPUReadMemoryFunc **mem_read,
2989 CPUWriteMemoryFunc **mem_write,
2990 void *opaque)
2992 int i, subwidth = 0;
2994 if (io_index <= 0) {
2995 io_index = get_free_io_mem_idx();
2996 if (io_index == -1)
2997 return io_index;
2998 } else {
2999 io_index >>= IO_MEM_SHIFT;
3000 if (io_index >= IO_MEM_NB_ENTRIES)
3001 return -1;
3004 for(i = 0;i < 3; i++) {
3005 if (!mem_read[i] || !mem_write[i])
3006 subwidth = IO_MEM_SUBWIDTH;
3007 io_mem_read[io_index][i] = mem_read[i];
3008 io_mem_write[io_index][i] = mem_write[i];
3010 io_mem_opaque[io_index] = opaque;
3011 return (io_index << IO_MEM_SHIFT) | subwidth;
3014 int cpu_register_io_memory(CPUReadMemoryFunc **mem_read,
3015 CPUWriteMemoryFunc **mem_write,
3016 void *opaque)
3018 return cpu_register_io_memory_fixed(0, mem_read, mem_write, opaque);
3021 void cpu_unregister_io_memory(int io_table_address)
3023 int i;
3024 int io_index = io_table_address >> IO_MEM_SHIFT;
3026 for (i=0;i < 3; i++) {
3027 io_mem_read[io_index][i] = unassigned_mem_read[i];
3028 io_mem_write[io_index][i] = unassigned_mem_write[i];
3030 io_mem_opaque[io_index] = NULL;
3031 io_mem_used[io_index] = 0;
3034 static void io_mem_init(void)
3036 int i;
3038 cpu_register_io_memory_fixed(IO_MEM_ROM, error_mem_read, unassigned_mem_write, NULL);
3039 cpu_register_io_memory_fixed(IO_MEM_UNASSIGNED, unassigned_mem_read, unassigned_mem_write, NULL);
3040 cpu_register_io_memory_fixed(IO_MEM_NOTDIRTY, error_mem_read, notdirty_mem_write, NULL);
3041 for (i=0; i<5; i++)
3042 io_mem_used[i] = 1;
3044 io_mem_watch = cpu_register_io_memory(watch_mem_read,
3045 watch_mem_write, NULL);
3046 #ifdef CONFIG_KQEMU
3047 if (kqemu_phys_ram_base) {
3048 /* alloc dirty bits array */
3049 phys_ram_dirty = qemu_vmalloc(kqemu_phys_ram_size >> TARGET_PAGE_BITS);
3050 memset(phys_ram_dirty, 0xff, kqemu_phys_ram_size >> TARGET_PAGE_BITS);
3052 #endif
3055 #endif /* !defined(CONFIG_USER_ONLY) */
3057 /* physical memory access (slow version, mainly for debug) */
3058 #if defined(CONFIG_USER_ONLY)
3059 void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
3060 int len, int is_write)
3062 int l, flags;
3063 target_ulong page;
3064 void * p;
3066 while (len > 0) {
3067 page = addr & TARGET_PAGE_MASK;
3068 l = (page + TARGET_PAGE_SIZE) - addr;
3069 if (l > len)
3070 l = len;
3071 flags = page_get_flags(page);
3072 if (!(flags & PAGE_VALID))
3073 return;
3074 if (is_write) {
3075 if (!(flags & PAGE_WRITE))
3076 return;
3077 /* XXX: this code should not depend on lock_user */
3078 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
3079 /* FIXME - should this return an error rather than just fail? */
3080 return;
3081 memcpy(p, buf, l);
3082 unlock_user(p, addr, l);
3083 } else {
3084 if (!(flags & PAGE_READ))
3085 return;
3086 /* XXX: this code should not depend on lock_user */
3087 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
3088 /* FIXME - should this return an error rather than just fail? */
3089 return;
3090 memcpy(buf, p, l);
3091 unlock_user(p, addr, 0);
3093 len -= l;
3094 buf += l;
3095 addr += l;
3099 #else
3100 void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
3101 int len, int is_write)
3103 int l, io_index;
3104 uint8_t *ptr;
3105 uint32_t val;
3106 target_phys_addr_t page;
3107 unsigned long pd;
3108 PhysPageDesc *p;
3110 while (len > 0) {
3111 page = addr & TARGET_PAGE_MASK;
3112 l = (page + TARGET_PAGE_SIZE) - addr;
3113 if (l > len)
3114 l = len;
3115 p = phys_page_find(page >> TARGET_PAGE_BITS);
3116 if (!p) {
3117 pd = IO_MEM_UNASSIGNED;
3118 } else {
3119 pd = p->phys_offset;
3122 if (is_write) {
3123 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3124 target_phys_addr_t addr1 = addr;
3125 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3126 if (p)
3127 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3128 /* XXX: could force cpu_single_env to NULL to avoid
3129 potential bugs */
3130 if (l >= 4 && ((addr1 & 3) == 0)) {
3131 /* 32 bit write access */
3132 val = ldl_p(buf);
3133 io_mem_write[io_index][2](io_mem_opaque[io_index], addr1, val);
3134 l = 4;
3135 } else if (l >= 2 && ((addr1 & 1) == 0)) {
3136 /* 16 bit write access */
3137 val = lduw_p(buf);
3138 io_mem_write[io_index][1](io_mem_opaque[io_index], addr1, val);
3139 l = 2;
3140 } else {
3141 /* 8 bit write access */
3142 val = ldub_p(buf);
3143 io_mem_write[io_index][0](io_mem_opaque[io_index], addr1, val);
3144 l = 1;
3146 } else {
3147 unsigned long addr1;
3148 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3149 /* RAM case */
3150 ptr = qemu_get_ram_ptr(addr1);
3151 memcpy(ptr, buf, l);
3152 if (!cpu_physical_memory_is_dirty(addr1)) {
3153 /* invalidate code */
3154 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3155 /* set dirty bit */
3156 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3157 (0xff & ~CODE_DIRTY_FLAG);
3160 } else {
3161 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3162 !(pd & IO_MEM_ROMD)) {
3163 target_phys_addr_t addr1 = addr;
3164 /* I/O case */
3165 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3166 if (p)
3167 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3168 if (l >= 4 && ((addr1 & 3) == 0)) {
3169 /* 32 bit read access */
3170 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr1);
3171 stl_p(buf, val);
3172 l = 4;
3173 } else if (l >= 2 && ((addr1 & 1) == 0)) {
3174 /* 16 bit read access */
3175 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr1);
3176 stw_p(buf, val);
3177 l = 2;
3178 } else {
3179 /* 8 bit read access */
3180 val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr1);
3181 stb_p(buf, val);
3182 l = 1;
3184 } else {
3185 /* RAM case */
3186 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3187 (addr & ~TARGET_PAGE_MASK);
3188 memcpy(buf, ptr, l);
3191 len -= l;
3192 buf += l;
3193 addr += l;
3197 /* used for ROM loading : can write in RAM and ROM */
3198 void cpu_physical_memory_write_rom(target_phys_addr_t addr,
3199 const uint8_t *buf, int len)
3201 int l;
3202 uint8_t *ptr;
3203 target_phys_addr_t page;
3204 unsigned long pd;
3205 PhysPageDesc *p;
3207 while (len > 0) {
3208 page = addr & TARGET_PAGE_MASK;
3209 l = (page + TARGET_PAGE_SIZE) - addr;
3210 if (l > len)
3211 l = len;
3212 p = phys_page_find(page >> TARGET_PAGE_BITS);
3213 if (!p) {
3214 pd = IO_MEM_UNASSIGNED;
3215 } else {
3216 pd = p->phys_offset;
3219 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM &&
3220 (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM &&
3221 !(pd & IO_MEM_ROMD)) {
3222 /* do nothing */
3223 } else {
3224 unsigned long addr1;
3225 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3226 /* ROM/RAM case */
3227 ptr = qemu_get_ram_ptr(addr1);
3228 memcpy(ptr, buf, l);
3230 len -= l;
3231 buf += l;
3232 addr += l;
3236 typedef struct {
3237 void *buffer;
3238 target_phys_addr_t addr;
3239 target_phys_addr_t len;
3240 } BounceBuffer;
3242 static BounceBuffer bounce;
3244 typedef struct MapClient {
3245 void *opaque;
3246 void (*callback)(void *opaque);
3247 LIST_ENTRY(MapClient) link;
3248 } MapClient;
3250 static LIST_HEAD(map_client_list, MapClient) map_client_list
3251 = LIST_HEAD_INITIALIZER(map_client_list);
3253 void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
3255 MapClient *client = qemu_malloc(sizeof(*client));
3257 client->opaque = opaque;
3258 client->callback = callback;
3259 LIST_INSERT_HEAD(&map_client_list, client, link);
3260 return client;
3263 void cpu_unregister_map_client(void *_client)
3265 MapClient *client = (MapClient *)_client;
3267 LIST_REMOVE(client, link);
3268 qemu_free(client);
3271 static void cpu_notify_map_clients(void)
3273 MapClient *client;
3275 while (!LIST_EMPTY(&map_client_list)) {
3276 client = LIST_FIRST(&map_client_list);
3277 client->callback(client->opaque);
3278 cpu_unregister_map_client(client);
3282 /* Map a physical memory region into a host virtual address.
3283 * May map a subset of the requested range, given by and returned in *plen.
3284 * May return NULL if resources needed to perform the mapping are exhausted.
3285 * Use only for reads OR writes - not for read-modify-write operations.
3286 * Use cpu_register_map_client() to know when retrying the map operation is
3287 * likely to succeed.
3289 void *cpu_physical_memory_map(target_phys_addr_t addr,
3290 target_phys_addr_t *plen,
3291 int is_write)
3293 target_phys_addr_t len = *plen;
3294 target_phys_addr_t done = 0;
3295 int l;
3296 uint8_t *ret = NULL;
3297 uint8_t *ptr;
3298 target_phys_addr_t page;
3299 unsigned long pd;
3300 PhysPageDesc *p;
3301 unsigned long addr1;
3303 while (len > 0) {
3304 page = addr & TARGET_PAGE_MASK;
3305 l = (page + TARGET_PAGE_SIZE) - addr;
3306 if (l > len)
3307 l = len;
3308 p = phys_page_find(page >> TARGET_PAGE_BITS);
3309 if (!p) {
3310 pd = IO_MEM_UNASSIGNED;
3311 } else {
3312 pd = p->phys_offset;
3315 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3316 if (done || bounce.buffer) {
3317 break;
3319 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
3320 bounce.addr = addr;
3321 bounce.len = l;
3322 if (!is_write) {
3323 cpu_physical_memory_rw(addr, bounce.buffer, l, 0);
3325 ptr = bounce.buffer;
3326 } else {
3327 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3328 ptr = qemu_get_ram_ptr(addr1);
3330 if (!done) {
3331 ret = ptr;
3332 } else if (ret + done != ptr) {
3333 break;
3336 len -= l;
3337 addr += l;
3338 done += l;
3340 *plen = done;
3341 return ret;
3344 /* Unmaps a memory region previously mapped by cpu_physical_memory_map().
3345 * Will also mark the memory as dirty if is_write == 1. access_len gives
3346 * the amount of memory that was actually read or written by the caller.
3348 void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len,
3349 int is_write, target_phys_addr_t access_len)
3351 if (buffer != bounce.buffer) {
3352 if (is_write) {
3353 ram_addr_t addr1 = qemu_ram_addr_from_host(buffer);
3354 while (access_len) {
3355 unsigned l;
3356 l = TARGET_PAGE_SIZE;
3357 if (l > access_len)
3358 l = access_len;
3359 if (!cpu_physical_memory_is_dirty(addr1)) {
3360 /* invalidate code */
3361 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3362 /* set dirty bit */
3363 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3364 (0xff & ~CODE_DIRTY_FLAG);
3366 addr1 += l;
3367 access_len -= l;
3370 return;
3372 if (is_write) {
3373 cpu_physical_memory_write(bounce.addr, bounce.buffer, access_len);
3375 qemu_free(bounce.buffer);
3376 bounce.buffer = NULL;
3377 cpu_notify_map_clients();
3380 /* warning: addr must be aligned */
3381 uint32_t ldl_phys(target_phys_addr_t addr)
3383 int io_index;
3384 uint8_t *ptr;
3385 uint32_t val;
3386 unsigned long pd;
3387 PhysPageDesc *p;
3389 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3390 if (!p) {
3391 pd = IO_MEM_UNASSIGNED;
3392 } else {
3393 pd = p->phys_offset;
3396 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3397 !(pd & IO_MEM_ROMD)) {
3398 /* I/O case */
3399 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3400 if (p)
3401 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3402 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3403 } else {
3404 /* RAM case */
3405 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3406 (addr & ~TARGET_PAGE_MASK);
3407 val = ldl_p(ptr);
3409 return val;
3412 /* warning: addr must be aligned */
3413 uint64_t ldq_phys(target_phys_addr_t addr)
3415 int io_index;
3416 uint8_t *ptr;
3417 uint64_t val;
3418 unsigned long pd;
3419 PhysPageDesc *p;
3421 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3422 if (!p) {
3423 pd = IO_MEM_UNASSIGNED;
3424 } else {
3425 pd = p->phys_offset;
3428 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3429 !(pd & IO_MEM_ROMD)) {
3430 /* I/O case */
3431 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3432 if (p)
3433 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3434 #ifdef TARGET_WORDS_BIGENDIAN
3435 val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32;
3436 val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4);
3437 #else
3438 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3439 val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32;
3440 #endif
3441 } else {
3442 /* RAM case */
3443 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3444 (addr & ~TARGET_PAGE_MASK);
3445 val = ldq_p(ptr);
3447 return val;
3450 /* XXX: optimize */
3451 uint32_t ldub_phys(target_phys_addr_t addr)
3453 uint8_t val;
3454 cpu_physical_memory_read(addr, &val, 1);
3455 return val;
3458 /* XXX: optimize */
3459 uint32_t lduw_phys(target_phys_addr_t addr)
3461 uint16_t val;
3462 cpu_physical_memory_read(addr, (uint8_t *)&val, 2);
3463 return tswap16(val);
3466 /* warning: addr must be aligned. The ram page is not masked as dirty
3467 and the code inside is not invalidated. It is useful if the dirty
3468 bits are used to track modified PTEs */
3469 void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
3471 int io_index;
3472 uint8_t *ptr;
3473 unsigned long pd;
3474 PhysPageDesc *p;
3476 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3477 if (!p) {
3478 pd = IO_MEM_UNASSIGNED;
3479 } else {
3480 pd = p->phys_offset;
3483 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3484 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3485 if (p)
3486 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3487 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3488 } else {
3489 unsigned long addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3490 ptr = qemu_get_ram_ptr(addr1);
3491 stl_p(ptr, val);
3493 if (unlikely(in_migration)) {
3494 if (!cpu_physical_memory_is_dirty(addr1)) {
3495 /* invalidate code */
3496 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3497 /* set dirty bit */
3498 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3499 (0xff & ~CODE_DIRTY_FLAG);
3505 void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
3507 int io_index;
3508 uint8_t *ptr;
3509 unsigned long pd;
3510 PhysPageDesc *p;
3512 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3513 if (!p) {
3514 pd = IO_MEM_UNASSIGNED;
3515 } else {
3516 pd = p->phys_offset;
3519 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3520 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3521 if (p)
3522 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3523 #ifdef TARGET_WORDS_BIGENDIAN
3524 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32);
3525 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val);
3526 #else
3527 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3528 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32);
3529 #endif
3530 } else {
3531 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3532 (addr & ~TARGET_PAGE_MASK);
3533 stq_p(ptr, val);
3537 /* warning: addr must be aligned */
3538 void stl_phys(target_phys_addr_t addr, uint32_t val)
3540 int io_index;
3541 uint8_t *ptr;
3542 unsigned long pd;
3543 PhysPageDesc *p;
3545 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3546 if (!p) {
3547 pd = IO_MEM_UNASSIGNED;
3548 } else {
3549 pd = p->phys_offset;
3552 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3553 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3554 if (p)
3555 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3556 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3557 } else {
3558 unsigned long addr1;
3559 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3560 /* RAM case */
3561 ptr = qemu_get_ram_ptr(addr1);
3562 stl_p(ptr, val);
3563 if (!cpu_physical_memory_is_dirty(addr1)) {
3564 /* invalidate code */
3565 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3566 /* set dirty bit */
3567 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3568 (0xff & ~CODE_DIRTY_FLAG);
3573 /* XXX: optimize */
3574 void stb_phys(target_phys_addr_t addr, uint32_t val)
3576 uint8_t v = val;
3577 cpu_physical_memory_write(addr, &v, 1);
3580 /* XXX: optimize */
3581 void stw_phys(target_phys_addr_t addr, uint32_t val)
3583 uint16_t v = tswap16(val);
3584 cpu_physical_memory_write(addr, (const uint8_t *)&v, 2);
3587 /* XXX: optimize */
3588 void stq_phys(target_phys_addr_t addr, uint64_t val)
3590 val = tswap64(val);
3591 cpu_physical_memory_write(addr, (const uint8_t *)&val, 8);
3594 #endif
3596 /* virtual memory access for debug (includes writing to ROM) */
3597 int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
3598 uint8_t *buf, int len, int is_write)
3600 int l;
3601 target_phys_addr_t phys_addr;
3602 target_ulong page;
3604 while (len > 0) {
3605 page = addr & TARGET_PAGE_MASK;
3606 phys_addr = cpu_get_phys_page_debug(env, page);
3607 /* if no physical page mapped, return an error */
3608 if (phys_addr == -1)
3609 return -1;
3610 l = (page + TARGET_PAGE_SIZE) - addr;
3611 if (l > len)
3612 l = len;
3613 phys_addr += (addr & ~TARGET_PAGE_MASK);
3614 #if !defined(CONFIG_USER_ONLY)
3615 if (is_write)
3616 cpu_physical_memory_write_rom(phys_addr, buf, l);
3617 else
3618 #endif
3619 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
3620 len -= l;
3621 buf += l;
3622 addr += l;
3624 return 0;
3627 /* in deterministic execution mode, instructions doing device I/Os
3628 must be at the end of the TB */
3629 void cpu_io_recompile(CPUState *env, void *retaddr)
3631 TranslationBlock *tb;
3632 uint32_t n, cflags;
3633 target_ulong pc, cs_base;
3634 uint64_t flags;
3636 tb = tb_find_pc((unsigned long)retaddr);
3637 if (!tb) {
3638 cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
3639 retaddr);
3641 n = env->icount_decr.u16.low + tb->icount;
3642 cpu_restore_state(tb, env, (unsigned long)retaddr, NULL);
3643 /* Calculate how many instructions had been executed before the fault
3644 occurred. */
3645 n = n - env->icount_decr.u16.low;
3646 /* Generate a new TB ending on the I/O insn. */
3647 n++;
3648 /* On MIPS and SH, delay slot instructions can only be restarted if
3649 they were already the first instruction in the TB. If this is not
3650 the first instruction in a TB then re-execute the preceding
3651 branch. */
3652 #if defined(TARGET_MIPS)
3653 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
3654 env->active_tc.PC -= 4;
3655 env->icount_decr.u16.low++;
3656 env->hflags &= ~MIPS_HFLAG_BMASK;
3658 #elif defined(TARGET_SH4)
3659 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
3660 && n > 1) {
3661 env->pc -= 2;
3662 env->icount_decr.u16.low++;
3663 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
3665 #endif
3666 /* This should never happen. */
3667 if (n > CF_COUNT_MASK)
3668 cpu_abort(env, "TB too big during recompile");
3670 cflags = n | CF_LAST_IO;
3671 pc = tb->pc;
3672 cs_base = tb->cs_base;
3673 flags = tb->flags;
3674 tb_phys_invalidate(tb, -1);
3675 /* FIXME: In theory this could raise an exception. In practice
3676 we have already translated the block once so it's probably ok. */
3677 tb_gen_code(env, pc, cs_base, flags, cflags);
3678 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
3679 the first in the TB) then we end up generating a whole new TB and
3680 repeating the fault, which is horribly inefficient.
3681 Better would be to execute just this insn uncached, or generate a
3682 second new TB. */
3683 cpu_resume_from_signal(env, NULL);
3686 void dump_exec_info(FILE *f,
3687 int (*cpu_fprintf)(FILE *f, const char *fmt, ...))
3689 int i, target_code_size, max_target_code_size;
3690 int direct_jmp_count, direct_jmp2_count, cross_page;
3691 TranslationBlock *tb;
3693 target_code_size = 0;
3694 max_target_code_size = 0;
3695 cross_page = 0;
3696 direct_jmp_count = 0;
3697 direct_jmp2_count = 0;
3698 for(i = 0; i < nb_tbs; i++) {
3699 tb = &tbs[i];
3700 target_code_size += tb->size;
3701 if (tb->size > max_target_code_size)
3702 max_target_code_size = tb->size;
3703 if (tb->page_addr[1] != -1)
3704 cross_page++;
3705 if (tb->tb_next_offset[0] != 0xffff) {
3706 direct_jmp_count++;
3707 if (tb->tb_next_offset[1] != 0xffff) {
3708 direct_jmp2_count++;
3712 /* XXX: avoid using doubles ? */
3713 cpu_fprintf(f, "Translation buffer state:\n");
3714 cpu_fprintf(f, "gen code size %ld/%ld\n",
3715 code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
3716 cpu_fprintf(f, "TB count %d/%d\n",
3717 nb_tbs, code_gen_max_blocks);
3718 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
3719 nb_tbs ? target_code_size / nb_tbs : 0,
3720 max_target_code_size);
3721 cpu_fprintf(f, "TB avg host size %d bytes (expansion ratio: %0.1f)\n",
3722 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
3723 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
3724 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
3725 cross_page,
3726 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
3727 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
3728 direct_jmp_count,
3729 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
3730 direct_jmp2_count,
3731 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
3732 cpu_fprintf(f, "\nStatistics:\n");
3733 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
3734 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
3735 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
3736 tcg_dump_info(f, cpu_fprintf);
3739 #if !defined(CONFIG_USER_ONLY)
3741 #define MMUSUFFIX _cmmu
3742 #define GETPC() NULL
3743 #define env cpu_single_env
3744 #define SOFTMMU_CODE_ACCESS
3746 #define SHIFT 0
3747 #include "softmmu_template.h"
3749 #define SHIFT 1
3750 #include "softmmu_template.h"
3752 #define SHIFT 2
3753 #include "softmmu_template.h"
3755 #define SHIFT 3
3756 #include "softmmu_template.h"
3758 #undef env
3760 #endif