tcg/tcg-op: Document bswap32_i32() byte pattern
[qemu/kevin.git] / target / avr / helper.c
blobe6e7d51487faaf1d541e6ca9f3f172504122a04f
1 /*
2 * QEMU AVR CPU helpers
4 * Copyright (c) 2016-2020 Michael Rolnik
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see
18 * <http://www.gnu.org/licenses/lgpl-2.1.html>
21 #include "qemu/osdep.h"
22 #include "qemu/log.h"
23 #include "qemu/error-report.h"
24 #include "cpu.h"
25 #include "hw/core/tcg-cpu-ops.h"
26 #include "exec/exec-all.h"
27 #include "exec/address-spaces.h"
28 #include "exec/helper-proto.h"
30 bool avr_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
32 AVRCPU *cpu = AVR_CPU(cs);
33 CPUAVRState *env = &cpu->env;
36 * We cannot separate a skip from the next instruction,
37 * as the skip would not be preserved across the interrupt.
38 * Separating the two insn normally only happens at page boundaries.
40 if (env->skip) {
41 return false;
44 if (interrupt_request & CPU_INTERRUPT_RESET) {
45 if (cpu_interrupts_enabled(env)) {
46 cs->exception_index = EXCP_RESET;
47 avr_cpu_do_interrupt(cs);
49 cs->interrupt_request &= ~CPU_INTERRUPT_RESET;
50 return true;
53 if (interrupt_request & CPU_INTERRUPT_HARD) {
54 if (cpu_interrupts_enabled(env) && env->intsrc != 0) {
55 int index = ctz64(env->intsrc);
56 cs->exception_index = EXCP_INT(index);
57 avr_cpu_do_interrupt(cs);
59 env->intsrc &= env->intsrc - 1; /* clear the interrupt */
60 if (!env->intsrc) {
61 cs->interrupt_request &= ~CPU_INTERRUPT_HARD;
63 return true;
66 return false;
69 void avr_cpu_do_interrupt(CPUState *cs)
71 AVRCPU *cpu = AVR_CPU(cs);
72 CPUAVRState *env = &cpu->env;
74 uint32_t ret = env->pc_w;
75 int vector = 0;
76 int size = avr_feature(env, AVR_FEATURE_JMP_CALL) ? 2 : 1;
77 int base = 0;
79 if (cs->exception_index == EXCP_RESET) {
80 vector = 0;
81 } else if (env->intsrc != 0) {
82 vector = ctz64(env->intsrc) + 1;
85 if (avr_feature(env, AVR_FEATURE_3_BYTE_PC)) {
86 cpu_stb_data(env, env->sp--, (ret & 0x0000ff));
87 cpu_stb_data(env, env->sp--, (ret & 0x00ff00) >> 8);
88 cpu_stb_data(env, env->sp--, (ret & 0xff0000) >> 16);
89 } else if (avr_feature(env, AVR_FEATURE_2_BYTE_PC)) {
90 cpu_stb_data(env, env->sp--, (ret & 0x0000ff));
91 cpu_stb_data(env, env->sp--, (ret & 0x00ff00) >> 8);
92 } else {
93 cpu_stb_data(env, env->sp--, (ret & 0x0000ff));
96 env->pc_w = base + vector * size;
97 env->sregI = 0; /* clear Global Interrupt Flag */
99 cs->exception_index = -1;
102 hwaddr avr_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
104 return addr; /* I assume 1:1 address correspondence */
107 bool avr_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
108 MMUAccessType access_type, int mmu_idx,
109 bool probe, uintptr_t retaddr)
111 int prot, page_size = TARGET_PAGE_SIZE;
112 uint32_t paddr;
114 address &= TARGET_PAGE_MASK;
116 if (mmu_idx == MMU_CODE_IDX) {
117 /* Access to code in flash. */
118 paddr = OFFSET_CODE + address;
119 prot = PAGE_READ | PAGE_EXEC;
120 if (paddr >= OFFSET_DATA) {
122 * This should not be possible via any architectural operations.
123 * There is certainly not an exception that we can deliver.
124 * Accept probing that might come from generic code.
126 if (probe) {
127 return false;
129 error_report("execution left flash memory");
130 abort();
132 } else {
133 /* Access to memory. */
134 paddr = OFFSET_DATA + address;
135 prot = PAGE_READ | PAGE_WRITE;
136 if (address < NUMBER_OF_CPU_REGISTERS + NUMBER_OF_IO_REGISTERS) {
138 * Access to CPU registers, exit and rebuilt this TB to use
139 * full access in case it touches specially handled registers
140 * like SREG or SP. For probing, set page_size = 1, in order
141 * to force tlb_fill to be called for the next access.
143 if (probe) {
144 page_size = 1;
145 } else {
146 AVRCPU *cpu = AVR_CPU(cs);
147 CPUAVRState *env = &cpu->env;
148 env->fullacc = 1;
149 cpu_loop_exit_restore(cs, retaddr);
154 tlb_set_page(cs, address, paddr, prot, mmu_idx, page_size);
155 return true;
159 * helpers
162 void helper_sleep(CPUAVRState *env)
164 CPUState *cs = env_cpu(env);
166 cs->exception_index = EXCP_HLT;
167 cpu_loop_exit(cs);
170 void helper_unsupported(CPUAVRState *env)
172 CPUState *cs = env_cpu(env);
175 * I count not find what happens on the real platform, so
176 * it's EXCP_DEBUG for meanwhile
178 cs->exception_index = EXCP_DEBUG;
179 if (qemu_loglevel_mask(LOG_UNIMP)) {
180 qemu_log("UNSUPPORTED\n");
181 cpu_dump_state(cs, stderr, 0);
183 cpu_loop_exit(cs);
186 void helper_debug(CPUAVRState *env)
188 CPUState *cs = env_cpu(env);
190 cs->exception_index = EXCP_DEBUG;
191 cpu_loop_exit(cs);
194 void helper_break(CPUAVRState *env)
196 CPUState *cs = env_cpu(env);
198 cs->exception_index = EXCP_DEBUG;
199 cpu_loop_exit(cs);
202 void helper_wdr(CPUAVRState *env)
204 qemu_log_mask(LOG_UNIMP, "WDG reset (not implemented)\n");
208 * This function implements IN instruction
210 * It does the following
211 * a. if an IO register belongs to CPU, its value is read and returned
212 * b. otherwise io address is translated to mem address and physical memory
213 * is read.
214 * c. it caches the value for sake of SBI, SBIC, SBIS & CBI implementation
217 target_ulong helper_inb(CPUAVRState *env, uint32_t port)
219 target_ulong data = 0;
221 switch (port) {
222 case 0x38: /* RAMPD */
223 data = 0xff & (env->rampD >> 16);
224 break;
225 case 0x39: /* RAMPX */
226 data = 0xff & (env->rampX >> 16);
227 break;
228 case 0x3a: /* RAMPY */
229 data = 0xff & (env->rampY >> 16);
230 break;
231 case 0x3b: /* RAMPZ */
232 data = 0xff & (env->rampZ >> 16);
233 break;
234 case 0x3c: /* EIND */
235 data = 0xff & (env->eind >> 16);
236 break;
237 case 0x3d: /* SPL */
238 data = env->sp & 0x00ff;
239 break;
240 case 0x3e: /* SPH */
241 data = env->sp >> 8;
242 break;
243 case 0x3f: /* SREG */
244 data = cpu_get_sreg(env);
245 break;
246 default:
247 /* not a special register, pass to normal memory access */
248 data = address_space_ldub(&address_space_memory,
249 OFFSET_IO_REGISTERS + port,
250 MEMTXATTRS_UNSPECIFIED, NULL);
253 return data;
257 * This function implements OUT instruction
259 * It does the following
260 * a. if an IO register belongs to CPU, its value is written into the register
261 * b. otherwise io address is translated to mem address and physical memory
262 * is written.
263 * c. it caches the value for sake of SBI, SBIC, SBIS & CBI implementation
266 void helper_outb(CPUAVRState *env, uint32_t port, uint32_t data)
268 data &= 0x000000ff;
270 switch (port) {
271 case 0x38: /* RAMPD */
272 if (avr_feature(env, AVR_FEATURE_RAMPD)) {
273 env->rampD = (data & 0xff) << 16;
275 break;
276 case 0x39: /* RAMPX */
277 if (avr_feature(env, AVR_FEATURE_RAMPX)) {
278 env->rampX = (data & 0xff) << 16;
280 break;
281 case 0x3a: /* RAMPY */
282 if (avr_feature(env, AVR_FEATURE_RAMPY)) {
283 env->rampY = (data & 0xff) << 16;
285 break;
286 case 0x3b: /* RAMPZ */
287 if (avr_feature(env, AVR_FEATURE_RAMPZ)) {
288 env->rampZ = (data & 0xff) << 16;
290 break;
291 case 0x3c: /* EIDN */
292 env->eind = (data & 0xff) << 16;
293 break;
294 case 0x3d: /* SPL */
295 env->sp = (env->sp & 0xff00) | (data);
296 break;
297 case 0x3e: /* SPH */
298 if (avr_feature(env, AVR_FEATURE_2_BYTE_SP)) {
299 env->sp = (env->sp & 0x00ff) | (data << 8);
301 break;
302 case 0x3f: /* SREG */
303 cpu_set_sreg(env, data);
304 break;
305 default:
306 /* not a special register, pass to normal memory access */
307 address_space_stb(&address_space_memory, OFFSET_IO_REGISTERS + port,
308 data, MEMTXATTRS_UNSPECIFIED, NULL);
313 * this function implements LD instruction when there is a possibility to read
314 * from a CPU register
316 target_ulong helper_fullrd(CPUAVRState *env, uint32_t addr)
318 uint8_t data;
320 env->fullacc = false;
322 if (addr < NUMBER_OF_CPU_REGISTERS) {
323 /* CPU registers */
324 data = env->r[addr];
325 } else if (addr < NUMBER_OF_CPU_REGISTERS + NUMBER_OF_IO_REGISTERS) {
326 /* IO registers */
327 data = helper_inb(env, addr - NUMBER_OF_CPU_REGISTERS);
328 } else {
329 /* memory */
330 data = address_space_ldub(&address_space_memory, OFFSET_DATA + addr,
331 MEMTXATTRS_UNSPECIFIED, NULL);
333 return data;
337 * this function implements ST instruction when there is a possibility to write
338 * into a CPU register
340 void helper_fullwr(CPUAVRState *env, uint32_t data, uint32_t addr)
342 env->fullacc = false;
344 /* Following logic assumes this: */
345 assert(OFFSET_CPU_REGISTERS == OFFSET_DATA);
346 assert(OFFSET_IO_REGISTERS == OFFSET_CPU_REGISTERS +
347 NUMBER_OF_CPU_REGISTERS);
349 if (addr < NUMBER_OF_CPU_REGISTERS) {
350 /* CPU registers */
351 env->r[addr] = data;
352 } else if (addr < NUMBER_OF_CPU_REGISTERS + NUMBER_OF_IO_REGISTERS) {
353 /* IO registers */
354 helper_outb(env, addr - NUMBER_OF_CPU_REGISTERS, data);
355 } else {
356 /* memory */
357 address_space_stb(&address_space_memory, OFFSET_DATA + addr, data,
358 MEMTXATTRS_UNSPECIFIED, NULL);