block: Remove bdrv_aio_multiwrite()
[qemu/kevin.git] / softmmu_template.h
blob208f808f3ec9528c3345ae8ae5b5d66f9cb9e26b
1 /*
2 * Software MMU support
4 * Generate helpers used by TCG for qemu_ld/st ops and code load
5 * functions.
7 * Included from target op helpers and exec.c.
9 * Copyright (c) 2003 Fabrice Bellard
11 * This library is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU Lesser General Public
13 * License as published by the Free Software Foundation; either
14 * version 2 of the License, or (at your option) any later version.
16 * This library is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * Lesser General Public License for more details.
21 * You should have received a copy of the GNU Lesser General Public
22 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
24 #include "qemu/timer.h"
25 #include "exec/address-spaces.h"
26 #include "exec/memory.h"
28 #define DATA_SIZE (1 << SHIFT)
30 #if DATA_SIZE == 8
31 #define SUFFIX q
32 #define LSUFFIX q
33 #define SDATA_TYPE int64_t
34 #define DATA_TYPE uint64_t
35 #elif DATA_SIZE == 4
36 #define SUFFIX l
37 #define LSUFFIX l
38 #define SDATA_TYPE int32_t
39 #define DATA_TYPE uint32_t
40 #elif DATA_SIZE == 2
41 #define SUFFIX w
42 #define LSUFFIX uw
43 #define SDATA_TYPE int16_t
44 #define DATA_TYPE uint16_t
45 #elif DATA_SIZE == 1
46 #define SUFFIX b
47 #define LSUFFIX ub
48 #define SDATA_TYPE int8_t
49 #define DATA_TYPE uint8_t
50 #else
51 #error unsupported data size
52 #endif
55 /* For the benefit of TCG generated code, we want to avoid the complication
56 of ABI-specific return type promotion and always return a value extended
57 to the register size of the host. This is tcg_target_long, except in the
58 case of a 32-bit host and 64-bit data, and for that we always have
59 uint64_t. Don't bother with this widened value for SOFTMMU_CODE_ACCESS. */
60 #if defined(SOFTMMU_CODE_ACCESS) || DATA_SIZE == 8
61 # define WORD_TYPE DATA_TYPE
62 # define USUFFIX SUFFIX
63 #else
64 # define WORD_TYPE tcg_target_ulong
65 # define USUFFIX glue(u, SUFFIX)
66 # define SSUFFIX glue(s, SUFFIX)
67 #endif
69 #ifdef SOFTMMU_CODE_ACCESS
70 #define READ_ACCESS_TYPE MMU_INST_FETCH
71 #define ADDR_READ addr_code
72 #else
73 #define READ_ACCESS_TYPE MMU_DATA_LOAD
74 #define ADDR_READ addr_read
75 #endif
77 #if DATA_SIZE == 8
78 # define BSWAP(X) bswap64(X)
79 #elif DATA_SIZE == 4
80 # define BSWAP(X) bswap32(X)
81 #elif DATA_SIZE == 2
82 # define BSWAP(X) bswap16(X)
83 #else
84 # define BSWAP(X) (X)
85 #endif
87 #ifdef TARGET_WORDS_BIGENDIAN
88 # define TGT_BE(X) (X)
89 # define TGT_LE(X) BSWAP(X)
90 #else
91 # define TGT_BE(X) BSWAP(X)
92 # define TGT_LE(X) (X)
93 #endif
95 #if DATA_SIZE == 1
96 # define helper_le_ld_name glue(glue(helper_ret_ld, USUFFIX), MMUSUFFIX)
97 # define helper_be_ld_name helper_le_ld_name
98 # define helper_le_lds_name glue(glue(helper_ret_ld, SSUFFIX), MMUSUFFIX)
99 # define helper_be_lds_name helper_le_lds_name
100 # define helper_le_st_name glue(glue(helper_ret_st, SUFFIX), MMUSUFFIX)
101 # define helper_be_st_name helper_le_st_name
102 #else
103 # define helper_le_ld_name glue(glue(helper_le_ld, USUFFIX), MMUSUFFIX)
104 # define helper_be_ld_name glue(glue(helper_be_ld, USUFFIX), MMUSUFFIX)
105 # define helper_le_lds_name glue(glue(helper_le_ld, SSUFFIX), MMUSUFFIX)
106 # define helper_be_lds_name glue(glue(helper_be_ld, SSUFFIX), MMUSUFFIX)
107 # define helper_le_st_name glue(glue(helper_le_st, SUFFIX), MMUSUFFIX)
108 # define helper_be_st_name glue(glue(helper_be_st, SUFFIX), MMUSUFFIX)
109 #endif
111 #ifdef TARGET_WORDS_BIGENDIAN
112 # define helper_te_ld_name helper_be_ld_name
113 # define helper_te_st_name helper_be_st_name
114 #else
115 # define helper_te_ld_name helper_le_ld_name
116 # define helper_te_st_name helper_le_st_name
117 #endif
119 /* macro to check the victim tlb */
120 #define VICTIM_TLB_HIT(ty) \
121 ({ \
122 /* we are about to do a page table walk. our last hope is the \
123 * victim tlb. try to refill from the victim tlb before walking the \
124 * page table. */ \
125 int vidx; \
126 CPUIOTLBEntry tmpiotlb; \
127 CPUTLBEntry tmptlb; \
128 for (vidx = CPU_VTLB_SIZE-1; vidx >= 0; --vidx) { \
129 if (env->tlb_v_table[mmu_idx][vidx].ty == (addr & TARGET_PAGE_MASK)) {\
130 /* found entry in victim tlb, swap tlb and iotlb */ \
131 tmptlb = env->tlb_table[mmu_idx][index]; \
132 env->tlb_table[mmu_idx][index] = env->tlb_v_table[mmu_idx][vidx]; \
133 env->tlb_v_table[mmu_idx][vidx] = tmptlb; \
134 tmpiotlb = env->iotlb[mmu_idx][index]; \
135 env->iotlb[mmu_idx][index] = env->iotlb_v[mmu_idx][vidx]; \
136 env->iotlb_v[mmu_idx][vidx] = tmpiotlb; \
137 break; \
140 /* return true when there is a vtlb hit, i.e. vidx >=0 */ \
141 vidx >= 0; \
144 #ifndef SOFTMMU_CODE_ACCESS
145 static inline DATA_TYPE glue(io_read, SUFFIX)(CPUArchState *env,
146 CPUIOTLBEntry *iotlbentry,
147 target_ulong addr,
148 uintptr_t retaddr)
150 uint64_t val;
151 CPUState *cpu = ENV_GET_CPU(env);
152 hwaddr physaddr = iotlbentry->addr;
153 MemoryRegion *mr = iotlb_to_region(cpu, physaddr, iotlbentry->attrs);
155 physaddr = (physaddr & TARGET_PAGE_MASK) + addr;
156 cpu->mem_io_pc = retaddr;
157 if (mr != &io_mem_rom && mr != &io_mem_notdirty && !cpu->can_do_io) {
158 cpu_io_recompile(cpu, retaddr);
161 cpu->mem_io_vaddr = addr;
162 memory_region_dispatch_read(mr, physaddr, &val, 1 << SHIFT,
163 iotlbentry->attrs);
164 return val;
166 #endif
168 WORD_TYPE helper_le_ld_name(CPUArchState *env, target_ulong addr,
169 TCGMemOpIdx oi, uintptr_t retaddr)
171 unsigned mmu_idx = get_mmuidx(oi);
172 int index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
173 target_ulong tlb_addr = env->tlb_table[mmu_idx][index].ADDR_READ;
174 uintptr_t haddr;
175 DATA_TYPE res;
177 /* Adjust the given return address. */
178 retaddr -= GETPC_ADJ;
180 /* If the TLB entry is for a different page, reload and try again. */
181 if ((addr & TARGET_PAGE_MASK)
182 != (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
183 if ((addr & (DATA_SIZE - 1)) != 0
184 && (get_memop(oi) & MO_AMASK) == MO_ALIGN) {
185 cpu_unaligned_access(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE,
186 mmu_idx, retaddr);
188 if (!VICTIM_TLB_HIT(ADDR_READ)) {
189 tlb_fill(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE,
190 mmu_idx, retaddr);
192 tlb_addr = env->tlb_table[mmu_idx][index].ADDR_READ;
195 /* Handle an IO access. */
196 if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
197 CPUIOTLBEntry *iotlbentry;
198 if ((addr & (DATA_SIZE - 1)) != 0) {
199 goto do_unaligned_access;
201 iotlbentry = &env->iotlb[mmu_idx][index];
203 /* ??? Note that the io helpers always read data in the target
204 byte ordering. We should push the LE/BE request down into io. */
205 res = glue(io_read, SUFFIX)(env, iotlbentry, addr, retaddr);
206 res = TGT_LE(res);
207 return res;
210 /* Handle slow unaligned access (it spans two pages or IO). */
211 if (DATA_SIZE > 1
212 && unlikely((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1
213 >= TARGET_PAGE_SIZE)) {
214 target_ulong addr1, addr2;
215 DATA_TYPE res1, res2;
216 unsigned shift;
217 do_unaligned_access:
218 if ((get_memop(oi) & MO_AMASK) == MO_ALIGN) {
219 cpu_unaligned_access(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE,
220 mmu_idx, retaddr);
222 addr1 = addr & ~(DATA_SIZE - 1);
223 addr2 = addr1 + DATA_SIZE;
224 /* Note the adjustment at the beginning of the function.
225 Undo that for the recursion. */
226 res1 = helper_le_ld_name(env, addr1, oi, retaddr + GETPC_ADJ);
227 res2 = helper_le_ld_name(env, addr2, oi, retaddr + GETPC_ADJ);
228 shift = (addr & (DATA_SIZE - 1)) * 8;
230 /* Little-endian combine. */
231 res = (res1 >> shift) | (res2 << ((DATA_SIZE * 8) - shift));
232 return res;
235 /* Handle aligned access or unaligned access in the same page. */
236 if ((addr & (DATA_SIZE - 1)) != 0
237 && (get_memop(oi) & MO_AMASK) == MO_ALIGN) {
238 cpu_unaligned_access(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE,
239 mmu_idx, retaddr);
242 haddr = addr + env->tlb_table[mmu_idx][index].addend;
243 #if DATA_SIZE == 1
244 res = glue(glue(ld, LSUFFIX), _p)((uint8_t *)haddr);
245 #else
246 res = glue(glue(ld, LSUFFIX), _le_p)((uint8_t *)haddr);
247 #endif
248 return res;
251 #if DATA_SIZE > 1
252 WORD_TYPE helper_be_ld_name(CPUArchState *env, target_ulong addr,
253 TCGMemOpIdx oi, uintptr_t retaddr)
255 unsigned mmu_idx = get_mmuidx(oi);
256 int index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
257 target_ulong tlb_addr = env->tlb_table[mmu_idx][index].ADDR_READ;
258 uintptr_t haddr;
259 DATA_TYPE res;
261 /* Adjust the given return address. */
262 retaddr -= GETPC_ADJ;
264 /* If the TLB entry is for a different page, reload and try again. */
265 if ((addr & TARGET_PAGE_MASK)
266 != (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
267 if ((addr & (DATA_SIZE - 1)) != 0
268 && (get_memop(oi) & MO_AMASK) == MO_ALIGN) {
269 cpu_unaligned_access(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE,
270 mmu_idx, retaddr);
272 if (!VICTIM_TLB_HIT(ADDR_READ)) {
273 tlb_fill(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE,
274 mmu_idx, retaddr);
276 tlb_addr = env->tlb_table[mmu_idx][index].ADDR_READ;
279 /* Handle an IO access. */
280 if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
281 CPUIOTLBEntry *iotlbentry;
282 if ((addr & (DATA_SIZE - 1)) != 0) {
283 goto do_unaligned_access;
285 iotlbentry = &env->iotlb[mmu_idx][index];
287 /* ??? Note that the io helpers always read data in the target
288 byte ordering. We should push the LE/BE request down into io. */
289 res = glue(io_read, SUFFIX)(env, iotlbentry, addr, retaddr);
290 res = TGT_BE(res);
291 return res;
294 /* Handle slow unaligned access (it spans two pages or IO). */
295 if (DATA_SIZE > 1
296 && unlikely((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1
297 >= TARGET_PAGE_SIZE)) {
298 target_ulong addr1, addr2;
299 DATA_TYPE res1, res2;
300 unsigned shift;
301 do_unaligned_access:
302 if ((get_memop(oi) & MO_AMASK) == MO_ALIGN) {
303 cpu_unaligned_access(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE,
304 mmu_idx, retaddr);
306 addr1 = addr & ~(DATA_SIZE - 1);
307 addr2 = addr1 + DATA_SIZE;
308 /* Note the adjustment at the beginning of the function.
309 Undo that for the recursion. */
310 res1 = helper_be_ld_name(env, addr1, oi, retaddr + GETPC_ADJ);
311 res2 = helper_be_ld_name(env, addr2, oi, retaddr + GETPC_ADJ);
312 shift = (addr & (DATA_SIZE - 1)) * 8;
314 /* Big-endian combine. */
315 res = (res1 << shift) | (res2 >> ((DATA_SIZE * 8) - shift));
316 return res;
319 /* Handle aligned access or unaligned access in the same page. */
320 if ((addr & (DATA_SIZE - 1)) != 0
321 && (get_memop(oi) & MO_AMASK) == MO_ALIGN) {
322 cpu_unaligned_access(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE,
323 mmu_idx, retaddr);
326 haddr = addr + env->tlb_table[mmu_idx][index].addend;
327 res = glue(glue(ld, LSUFFIX), _be_p)((uint8_t *)haddr);
328 return res;
330 #endif /* DATA_SIZE > 1 */
332 #ifndef SOFTMMU_CODE_ACCESS
334 /* Provide signed versions of the load routines as well. We can of course
335 avoid this for 64-bit data, or for 32-bit data on 32-bit host. */
336 #if DATA_SIZE * 8 < TCG_TARGET_REG_BITS
337 WORD_TYPE helper_le_lds_name(CPUArchState *env, target_ulong addr,
338 TCGMemOpIdx oi, uintptr_t retaddr)
340 return (SDATA_TYPE)helper_le_ld_name(env, addr, oi, retaddr);
343 # if DATA_SIZE > 1
344 WORD_TYPE helper_be_lds_name(CPUArchState *env, target_ulong addr,
345 TCGMemOpIdx oi, uintptr_t retaddr)
347 return (SDATA_TYPE)helper_be_ld_name(env, addr, oi, retaddr);
349 # endif
350 #endif
352 static inline void glue(io_write, SUFFIX)(CPUArchState *env,
353 CPUIOTLBEntry *iotlbentry,
354 DATA_TYPE val,
355 target_ulong addr,
356 uintptr_t retaddr)
358 CPUState *cpu = ENV_GET_CPU(env);
359 hwaddr physaddr = iotlbentry->addr;
360 MemoryRegion *mr = iotlb_to_region(cpu, physaddr, iotlbentry->attrs);
362 physaddr = (physaddr & TARGET_PAGE_MASK) + addr;
363 if (mr != &io_mem_rom && mr != &io_mem_notdirty && !cpu->can_do_io) {
364 cpu_io_recompile(cpu, retaddr);
367 cpu->mem_io_vaddr = addr;
368 cpu->mem_io_pc = retaddr;
369 memory_region_dispatch_write(mr, physaddr, val, 1 << SHIFT,
370 iotlbentry->attrs);
373 void helper_le_st_name(CPUArchState *env, target_ulong addr, DATA_TYPE val,
374 TCGMemOpIdx oi, uintptr_t retaddr)
376 unsigned mmu_idx = get_mmuidx(oi);
377 int index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
378 target_ulong tlb_addr = env->tlb_table[mmu_idx][index].addr_write;
379 uintptr_t haddr;
381 /* Adjust the given return address. */
382 retaddr -= GETPC_ADJ;
384 /* If the TLB entry is for a different page, reload and try again. */
385 if ((addr & TARGET_PAGE_MASK)
386 != (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
387 if ((addr & (DATA_SIZE - 1)) != 0
388 && (get_memop(oi) & MO_AMASK) == MO_ALIGN) {
389 cpu_unaligned_access(ENV_GET_CPU(env), addr, MMU_DATA_STORE,
390 mmu_idx, retaddr);
392 if (!VICTIM_TLB_HIT(addr_write)) {
393 tlb_fill(ENV_GET_CPU(env), addr, MMU_DATA_STORE, mmu_idx, retaddr);
395 tlb_addr = env->tlb_table[mmu_idx][index].addr_write;
398 /* Handle an IO access. */
399 if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
400 CPUIOTLBEntry *iotlbentry;
401 if ((addr & (DATA_SIZE - 1)) != 0) {
402 goto do_unaligned_access;
404 iotlbentry = &env->iotlb[mmu_idx][index];
406 /* ??? Note that the io helpers always read data in the target
407 byte ordering. We should push the LE/BE request down into io. */
408 val = TGT_LE(val);
409 glue(io_write, SUFFIX)(env, iotlbentry, val, addr, retaddr);
410 return;
413 /* Handle slow unaligned access (it spans two pages or IO). */
414 if (DATA_SIZE > 1
415 && unlikely((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1
416 >= TARGET_PAGE_SIZE)) {
417 int i;
418 do_unaligned_access:
419 if ((get_memop(oi) & MO_AMASK) == MO_ALIGN) {
420 cpu_unaligned_access(ENV_GET_CPU(env), addr, MMU_DATA_STORE,
421 mmu_idx, retaddr);
423 /* XXX: not efficient, but simple */
424 /* Note: relies on the fact that tlb_fill() does not remove the
425 * previous page from the TLB cache. */
426 for (i = DATA_SIZE - 1; i >= 0; i--) {
427 /* Little-endian extract. */
428 uint8_t val8 = val >> (i * 8);
429 /* Note the adjustment at the beginning of the function.
430 Undo that for the recursion. */
431 glue(helper_ret_stb, MMUSUFFIX)(env, addr + i, val8,
432 oi, retaddr + GETPC_ADJ);
434 return;
437 /* Handle aligned access or unaligned access in the same page. */
438 if ((addr & (DATA_SIZE - 1)) != 0
439 && (get_memop(oi) & MO_AMASK) == MO_ALIGN) {
440 cpu_unaligned_access(ENV_GET_CPU(env), addr, MMU_DATA_STORE,
441 mmu_idx, retaddr);
444 haddr = addr + env->tlb_table[mmu_idx][index].addend;
445 #if DATA_SIZE == 1
446 glue(glue(st, SUFFIX), _p)((uint8_t *)haddr, val);
447 #else
448 glue(glue(st, SUFFIX), _le_p)((uint8_t *)haddr, val);
449 #endif
452 #if DATA_SIZE > 1
453 void helper_be_st_name(CPUArchState *env, target_ulong addr, DATA_TYPE val,
454 TCGMemOpIdx oi, uintptr_t retaddr)
456 unsigned mmu_idx = get_mmuidx(oi);
457 int index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
458 target_ulong tlb_addr = env->tlb_table[mmu_idx][index].addr_write;
459 uintptr_t haddr;
461 /* Adjust the given return address. */
462 retaddr -= GETPC_ADJ;
464 /* If the TLB entry is for a different page, reload and try again. */
465 if ((addr & TARGET_PAGE_MASK)
466 != (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
467 if ((addr & (DATA_SIZE - 1)) != 0
468 && (get_memop(oi) & MO_AMASK) == MO_ALIGN) {
469 cpu_unaligned_access(ENV_GET_CPU(env), addr, MMU_DATA_STORE,
470 mmu_idx, retaddr);
472 if (!VICTIM_TLB_HIT(addr_write)) {
473 tlb_fill(ENV_GET_CPU(env), addr, MMU_DATA_STORE, mmu_idx, retaddr);
475 tlb_addr = env->tlb_table[mmu_idx][index].addr_write;
478 /* Handle an IO access. */
479 if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
480 CPUIOTLBEntry *iotlbentry;
481 if ((addr & (DATA_SIZE - 1)) != 0) {
482 goto do_unaligned_access;
484 iotlbentry = &env->iotlb[mmu_idx][index];
486 /* ??? Note that the io helpers always read data in the target
487 byte ordering. We should push the LE/BE request down into io. */
488 val = TGT_BE(val);
489 glue(io_write, SUFFIX)(env, iotlbentry, val, addr, retaddr);
490 return;
493 /* Handle slow unaligned access (it spans two pages or IO). */
494 if (DATA_SIZE > 1
495 && unlikely((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1
496 >= TARGET_PAGE_SIZE)) {
497 int i;
498 do_unaligned_access:
499 if ((get_memop(oi) & MO_AMASK) == MO_ALIGN) {
500 cpu_unaligned_access(ENV_GET_CPU(env), addr, MMU_DATA_STORE,
501 mmu_idx, retaddr);
503 /* XXX: not efficient, but simple */
504 /* Note: relies on the fact that tlb_fill() does not remove the
505 * previous page from the TLB cache. */
506 for (i = DATA_SIZE - 1; i >= 0; i--) {
507 /* Big-endian extract. */
508 uint8_t val8 = val >> (((DATA_SIZE - 1) * 8) - (i * 8));
509 /* Note the adjustment at the beginning of the function.
510 Undo that for the recursion. */
511 glue(helper_ret_stb, MMUSUFFIX)(env, addr + i, val8,
512 oi, retaddr + GETPC_ADJ);
514 return;
517 /* Handle aligned access or unaligned access in the same page. */
518 if ((addr & (DATA_SIZE - 1)) != 0
519 && (get_memop(oi) & MO_AMASK) == MO_ALIGN) {
520 cpu_unaligned_access(ENV_GET_CPU(env), addr, MMU_DATA_STORE,
521 mmu_idx, retaddr);
524 haddr = addr + env->tlb_table[mmu_idx][index].addend;
525 glue(glue(st, SUFFIX), _be_p)((uint8_t *)haddr, val);
527 #endif /* DATA_SIZE > 1 */
529 #if DATA_SIZE == 1
530 /* Probe for whether the specified guest write access is permitted.
531 * If it is not permitted then an exception will be taken in the same
532 * way as if this were a real write access (and we will not return).
533 * Otherwise the function will return, and there will be a valid
534 * entry in the TLB for this access.
536 void probe_write(CPUArchState *env, target_ulong addr, int mmu_idx,
537 uintptr_t retaddr)
539 int index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
540 target_ulong tlb_addr = env->tlb_table[mmu_idx][index].addr_write;
542 if ((addr & TARGET_PAGE_MASK)
543 != (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
544 /* TLB entry is for a different page */
545 if (!VICTIM_TLB_HIT(addr_write)) {
546 tlb_fill(ENV_GET_CPU(env), addr, MMU_DATA_STORE, mmu_idx, retaddr);
550 #endif
551 #endif /* !defined(SOFTMMU_CODE_ACCESS) */
553 #undef READ_ACCESS_TYPE
554 #undef SHIFT
555 #undef DATA_TYPE
556 #undef SUFFIX
557 #undef LSUFFIX
558 #undef DATA_SIZE
559 #undef ADDR_READ
560 #undef WORD_TYPE
561 #undef SDATA_TYPE
562 #undef USUFFIX
563 #undef SSUFFIX
564 #undef BSWAP
565 #undef TGT_BE
566 #undef TGT_LE
567 #undef CPU_BE
568 #undef CPU_LE
569 #undef helper_le_ld_name
570 #undef helper_be_ld_name
571 #undef helper_le_lds_name
572 #undef helper_be_lds_name
573 #undef helper_le_st_name
574 #undef helper_be_st_name
575 #undef helper_te_ld_name
576 #undef helper_te_st_name