2 * Physical memory management
4 * Copyright 2011 Red Hat, Inc. and/or its affiliates
7 * Avi Kivity <avi@redhat.com>
9 * This work is licensed under the terms of the GNU GPL, version 2. See
10 * the COPYING file in the top-level directory.
12 * Contributions after 2012-01-13 are licensed under the terms of the
13 * GNU GPL, version 2 or (at your option) any later version.
16 #include "qemu/osdep.h"
18 #include "qapi/error.h"
20 #include "exec/memory.h"
21 #include "exec/address-spaces.h"
22 #include "qapi/visitor.h"
23 #include "qemu/bitops.h"
24 #include "qemu/error-report.h"
25 #include "qemu/main-loop.h"
26 #include "qemu/qemu-print.h"
27 #include "qom/object.h"
30 #include "exec/memory-internal.h"
31 #include "exec/ram_addr.h"
32 #include "sysemu/kvm.h"
33 #include "sysemu/runstate.h"
34 #include "sysemu/tcg.h"
35 #include "sysemu/accel.h"
36 #include "hw/boards.h"
37 #include "migration/vmstate.h"
39 //#define DEBUG_UNASSIGNED
41 static unsigned memory_region_transaction_depth
;
42 static bool memory_region_update_pending
;
43 static bool ioeventfd_update_pending
;
44 bool global_dirty_log
;
46 static QTAILQ_HEAD(, MemoryListener
) memory_listeners
47 = QTAILQ_HEAD_INITIALIZER(memory_listeners
);
49 static QTAILQ_HEAD(, AddressSpace
) address_spaces
50 = QTAILQ_HEAD_INITIALIZER(address_spaces
);
52 static GHashTable
*flat_views
;
54 typedef struct AddrRange AddrRange
;
57 * Note that signed integers are needed for negative offsetting in aliases
58 * (large MemoryRegion::alias_offset).
65 static AddrRange
addrrange_make(Int128 start
, Int128 size
)
67 return (AddrRange
) { start
, size
};
70 static bool addrrange_equal(AddrRange r1
, AddrRange r2
)
72 return int128_eq(r1
.start
, r2
.start
) && int128_eq(r1
.size
, r2
.size
);
75 static Int128
addrrange_end(AddrRange r
)
77 return int128_add(r
.start
, r
.size
);
80 static AddrRange
addrrange_shift(AddrRange range
, Int128 delta
)
82 int128_addto(&range
.start
, delta
);
86 static bool addrrange_contains(AddrRange range
, Int128 addr
)
88 return int128_ge(addr
, range
.start
)
89 && int128_lt(addr
, addrrange_end(range
));
92 static bool addrrange_intersects(AddrRange r1
, AddrRange r2
)
94 return addrrange_contains(r1
, r2
.start
)
95 || addrrange_contains(r2
, r1
.start
);
98 static AddrRange
addrrange_intersection(AddrRange r1
, AddrRange r2
)
100 Int128 start
= int128_max(r1
.start
, r2
.start
);
101 Int128 end
= int128_min(addrrange_end(r1
), addrrange_end(r2
));
102 return addrrange_make(start
, int128_sub(end
, start
));
105 enum ListenerDirection
{ Forward
, Reverse
};
107 #define MEMORY_LISTENER_CALL_GLOBAL(_callback, _direction, _args...) \
109 MemoryListener *_listener; \
111 switch (_direction) { \
113 QTAILQ_FOREACH(_listener, &memory_listeners, link) { \
114 if (_listener->_callback) { \
115 _listener->_callback(_listener, ##_args); \
120 QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners, link) { \
121 if (_listener->_callback) { \
122 _listener->_callback(_listener, ##_args); \
131 #define MEMORY_LISTENER_CALL(_as, _callback, _direction, _section, _args...) \
133 MemoryListener *_listener; \
135 switch (_direction) { \
137 QTAILQ_FOREACH(_listener, &(_as)->listeners, link_as) { \
138 if (_listener->_callback) { \
139 _listener->_callback(_listener, _section, ##_args); \
144 QTAILQ_FOREACH_REVERSE(_listener, &(_as)->listeners, link_as) { \
145 if (_listener->_callback) { \
146 _listener->_callback(_listener, _section, ##_args); \
155 /* No need to ref/unref .mr, the FlatRange keeps it alive. */
156 #define MEMORY_LISTENER_UPDATE_REGION(fr, as, dir, callback, _args...) \
158 MemoryRegionSection mrs = section_from_flat_range(fr, \
159 address_space_to_flatview(as)); \
160 MEMORY_LISTENER_CALL(as, callback, dir, &mrs, ##_args); \
163 struct CoalescedMemoryRange
{
165 QTAILQ_ENTRY(CoalescedMemoryRange
) link
;
168 struct MemoryRegionIoeventfd
{
175 static bool memory_region_ioeventfd_before(MemoryRegionIoeventfd
*a
,
176 MemoryRegionIoeventfd
*b
)
178 if (int128_lt(a
->addr
.start
, b
->addr
.start
)) {
180 } else if (int128_gt(a
->addr
.start
, b
->addr
.start
)) {
182 } else if (int128_lt(a
->addr
.size
, b
->addr
.size
)) {
184 } else if (int128_gt(a
->addr
.size
, b
->addr
.size
)) {
186 } else if (a
->match_data
< b
->match_data
) {
188 } else if (a
->match_data
> b
->match_data
) {
190 } else if (a
->match_data
) {
191 if (a
->data
< b
->data
) {
193 } else if (a
->data
> b
->data
) {
199 } else if (a
->e
> b
->e
) {
205 static bool memory_region_ioeventfd_equal(MemoryRegionIoeventfd
*a
,
206 MemoryRegionIoeventfd
*b
)
208 return !memory_region_ioeventfd_before(a
, b
)
209 && !memory_region_ioeventfd_before(b
, a
);
212 /* Range of memory in the global map. Addresses are absolute. */
215 hwaddr offset_in_region
;
217 uint8_t dirty_log_mask
;
223 #define FOR_EACH_FLAT_RANGE(var, view) \
224 for (var = (view)->ranges; var < (view)->ranges + (view)->nr; ++var)
226 static inline MemoryRegionSection
227 section_from_flat_range(FlatRange
*fr
, FlatView
*fv
)
229 return (MemoryRegionSection
) {
232 .offset_within_region
= fr
->offset_in_region
,
233 .size
= fr
->addr
.size
,
234 .offset_within_address_space
= int128_get64(fr
->addr
.start
),
235 .readonly
= fr
->readonly
,
236 .nonvolatile
= fr
->nonvolatile
,
240 static bool flatrange_equal(FlatRange
*a
, FlatRange
*b
)
242 return a
->mr
== b
->mr
243 && addrrange_equal(a
->addr
, b
->addr
)
244 && a
->offset_in_region
== b
->offset_in_region
245 && a
->romd_mode
== b
->romd_mode
246 && a
->readonly
== b
->readonly
247 && a
->nonvolatile
== b
->nonvolatile
;
250 static FlatView
*flatview_new(MemoryRegion
*mr_root
)
254 view
= g_new0(FlatView
, 1);
256 view
->root
= mr_root
;
257 memory_region_ref(mr_root
);
258 trace_flatview_new(view
, mr_root
);
263 /* Insert a range into a given position. Caller is responsible for maintaining
266 static void flatview_insert(FlatView
*view
, unsigned pos
, FlatRange
*range
)
268 if (view
->nr
== view
->nr_allocated
) {
269 view
->nr_allocated
= MAX(2 * view
->nr
, 10);
270 view
->ranges
= g_realloc(view
->ranges
,
271 view
->nr_allocated
* sizeof(*view
->ranges
));
273 memmove(view
->ranges
+ pos
+ 1, view
->ranges
+ pos
,
274 (view
->nr
- pos
) * sizeof(FlatRange
));
275 view
->ranges
[pos
] = *range
;
276 memory_region_ref(range
->mr
);
280 static void flatview_destroy(FlatView
*view
)
284 trace_flatview_destroy(view
, view
->root
);
285 if (view
->dispatch
) {
286 address_space_dispatch_free(view
->dispatch
);
288 for (i
= 0; i
< view
->nr
; i
++) {
289 memory_region_unref(view
->ranges
[i
].mr
);
291 g_free(view
->ranges
);
292 memory_region_unref(view
->root
);
296 static bool flatview_ref(FlatView
*view
)
298 return qatomic_fetch_inc_nonzero(&view
->ref
) > 0;
301 void flatview_unref(FlatView
*view
)
303 if (qatomic_fetch_dec(&view
->ref
) == 1) {
304 trace_flatview_destroy_rcu(view
, view
->root
);
306 call_rcu(view
, flatview_destroy
, rcu
);
310 static bool can_merge(FlatRange
*r1
, FlatRange
*r2
)
312 return int128_eq(addrrange_end(r1
->addr
), r2
->addr
.start
)
314 && int128_eq(int128_add(int128_make64(r1
->offset_in_region
),
316 int128_make64(r2
->offset_in_region
))
317 && r1
->dirty_log_mask
== r2
->dirty_log_mask
318 && r1
->romd_mode
== r2
->romd_mode
319 && r1
->readonly
== r2
->readonly
320 && r1
->nonvolatile
== r2
->nonvolatile
;
323 /* Attempt to simplify a view by merging adjacent ranges */
324 static void flatview_simplify(FlatView
*view
)
329 while (i
< view
->nr
) {
332 && can_merge(&view
->ranges
[j
-1], &view
->ranges
[j
])) {
333 int128_addto(&view
->ranges
[i
].addr
.size
, view
->ranges
[j
].addr
.size
);
337 for (k
= i
; k
< j
; k
++) {
338 memory_region_unref(view
->ranges
[k
].mr
);
340 memmove(&view
->ranges
[i
], &view
->ranges
[j
],
341 (view
->nr
- j
) * sizeof(view
->ranges
[j
]));
346 static bool memory_region_big_endian(MemoryRegion
*mr
)
348 #ifdef TARGET_WORDS_BIGENDIAN
349 return mr
->ops
->endianness
!= DEVICE_LITTLE_ENDIAN
;
351 return mr
->ops
->endianness
== DEVICE_BIG_ENDIAN
;
355 static void adjust_endianness(MemoryRegion
*mr
, uint64_t *data
, MemOp op
)
357 if ((op
& MO_BSWAP
) != devend_memop(mr
->ops
->endianness
)) {
358 switch (op
& MO_SIZE
) {
362 *data
= bswap16(*data
);
365 *data
= bswap32(*data
);
368 *data
= bswap64(*data
);
371 g_assert_not_reached();
376 static inline void memory_region_shift_read_access(uint64_t *value
,
382 *value
|= (tmp
& mask
) << shift
;
384 *value
|= (tmp
& mask
) >> -shift
;
388 static inline uint64_t memory_region_shift_write_access(uint64_t *value
,
395 tmp
= (*value
>> shift
) & mask
;
397 tmp
= (*value
<< -shift
) & mask
;
403 static hwaddr
memory_region_to_absolute_addr(MemoryRegion
*mr
, hwaddr offset
)
406 hwaddr abs_addr
= offset
;
408 abs_addr
+= mr
->addr
;
409 for (root
= mr
; root
->container
; ) {
410 root
= root
->container
;
411 abs_addr
+= root
->addr
;
417 static int get_cpu_index(void)
420 return current_cpu
->cpu_index
;
425 static MemTxResult
memory_region_read_accessor(MemoryRegion
*mr
,
435 tmp
= mr
->ops
->read(mr
->opaque
, addr
, size
);
437 trace_memory_region_subpage_read(get_cpu_index(), mr
, addr
, tmp
, size
);
438 } else if (trace_event_get_state_backends(TRACE_MEMORY_REGION_OPS_READ
)) {
439 hwaddr abs_addr
= memory_region_to_absolute_addr(mr
, addr
);
440 trace_memory_region_ops_read(get_cpu_index(), mr
, abs_addr
, tmp
, size
);
442 memory_region_shift_read_access(value
, shift
, mask
, tmp
);
446 static MemTxResult
memory_region_read_with_attrs_accessor(MemoryRegion
*mr
,
457 r
= mr
->ops
->read_with_attrs(mr
->opaque
, addr
, &tmp
, size
, attrs
);
459 trace_memory_region_subpage_read(get_cpu_index(), mr
, addr
, tmp
, size
);
460 } else if (trace_event_get_state_backends(TRACE_MEMORY_REGION_OPS_READ
)) {
461 hwaddr abs_addr
= memory_region_to_absolute_addr(mr
, addr
);
462 trace_memory_region_ops_read(get_cpu_index(), mr
, abs_addr
, tmp
, size
);
464 memory_region_shift_read_access(value
, shift
, mask
, tmp
);
468 static MemTxResult
memory_region_write_accessor(MemoryRegion
*mr
,
476 uint64_t tmp
= memory_region_shift_write_access(value
, shift
, mask
);
479 trace_memory_region_subpage_write(get_cpu_index(), mr
, addr
, tmp
, size
);
480 } else if (trace_event_get_state_backends(TRACE_MEMORY_REGION_OPS_WRITE
)) {
481 hwaddr abs_addr
= memory_region_to_absolute_addr(mr
, addr
);
482 trace_memory_region_ops_write(get_cpu_index(), mr
, abs_addr
, tmp
, size
);
484 mr
->ops
->write(mr
->opaque
, addr
, tmp
, size
);
488 static MemTxResult
memory_region_write_with_attrs_accessor(MemoryRegion
*mr
,
496 uint64_t tmp
= memory_region_shift_write_access(value
, shift
, mask
);
499 trace_memory_region_subpage_write(get_cpu_index(), mr
, addr
, tmp
, size
);
500 } else if (trace_event_get_state_backends(TRACE_MEMORY_REGION_OPS_WRITE
)) {
501 hwaddr abs_addr
= memory_region_to_absolute_addr(mr
, addr
);
502 trace_memory_region_ops_write(get_cpu_index(), mr
, abs_addr
, tmp
, size
);
504 return mr
->ops
->write_with_attrs(mr
->opaque
, addr
, tmp
, size
, attrs
);
507 static MemTxResult
access_with_adjusted_size(hwaddr addr
,
510 unsigned access_size_min
,
511 unsigned access_size_max
,
512 MemTxResult (*access_fn
)
523 uint64_t access_mask
;
524 unsigned access_size
;
526 MemTxResult r
= MEMTX_OK
;
528 if (!access_size_min
) {
531 if (!access_size_max
) {
535 /* FIXME: support unaligned access? */
536 access_size
= MAX(MIN(size
, access_size_max
), access_size_min
);
537 access_mask
= MAKE_64BIT_MASK(0, access_size
* 8);
538 if (memory_region_big_endian(mr
)) {
539 for (i
= 0; i
< size
; i
+= access_size
) {
540 r
|= access_fn(mr
, addr
+ i
, value
, access_size
,
541 (size
- access_size
- i
) * 8, access_mask
, attrs
);
544 for (i
= 0; i
< size
; i
+= access_size
) {
545 r
|= access_fn(mr
, addr
+ i
, value
, access_size
, i
* 8,
552 static AddressSpace
*memory_region_to_address_space(MemoryRegion
*mr
)
556 while (mr
->container
) {
559 QTAILQ_FOREACH(as
, &address_spaces
, address_spaces_link
) {
560 if (mr
== as
->root
) {
567 /* Render a memory region into the global view. Ranges in @view obscure
570 static void render_memory_region(FlatView
*view
,
577 MemoryRegion
*subregion
;
579 hwaddr offset_in_region
;
589 int128_addto(&base
, int128_make64(mr
->addr
));
590 readonly
|= mr
->readonly
;
591 nonvolatile
|= mr
->nonvolatile
;
593 tmp
= addrrange_make(base
, mr
->size
);
595 if (!addrrange_intersects(tmp
, clip
)) {
599 clip
= addrrange_intersection(tmp
, clip
);
602 int128_subfrom(&base
, int128_make64(mr
->alias
->addr
));
603 int128_subfrom(&base
, int128_make64(mr
->alias_offset
));
604 render_memory_region(view
, mr
->alias
, base
, clip
,
605 readonly
, nonvolatile
);
609 /* Render subregions in priority order. */
610 QTAILQ_FOREACH(subregion
, &mr
->subregions
, subregions_link
) {
611 render_memory_region(view
, subregion
, base
, clip
,
612 readonly
, nonvolatile
);
615 if (!mr
->terminates
) {
619 offset_in_region
= int128_get64(int128_sub(clip
.start
, base
));
624 fr
.dirty_log_mask
= memory_region_get_dirty_log_mask(mr
);
625 fr
.romd_mode
= mr
->romd_mode
;
626 fr
.readonly
= readonly
;
627 fr
.nonvolatile
= nonvolatile
;
629 /* Render the region itself into any gaps left by the current view. */
630 for (i
= 0; i
< view
->nr
&& int128_nz(remain
); ++i
) {
631 if (int128_ge(base
, addrrange_end(view
->ranges
[i
].addr
))) {
634 if (int128_lt(base
, view
->ranges
[i
].addr
.start
)) {
635 now
= int128_min(remain
,
636 int128_sub(view
->ranges
[i
].addr
.start
, base
));
637 fr
.offset_in_region
= offset_in_region
;
638 fr
.addr
= addrrange_make(base
, now
);
639 flatview_insert(view
, i
, &fr
);
641 int128_addto(&base
, now
);
642 offset_in_region
+= int128_get64(now
);
643 int128_subfrom(&remain
, now
);
645 now
= int128_sub(int128_min(int128_add(base
, remain
),
646 addrrange_end(view
->ranges
[i
].addr
)),
648 int128_addto(&base
, now
);
649 offset_in_region
+= int128_get64(now
);
650 int128_subfrom(&remain
, now
);
652 if (int128_nz(remain
)) {
653 fr
.offset_in_region
= offset_in_region
;
654 fr
.addr
= addrrange_make(base
, remain
);
655 flatview_insert(view
, i
, &fr
);
659 static MemoryRegion
*memory_region_get_flatview_root(MemoryRegion
*mr
)
661 while (mr
->enabled
) {
663 if (!mr
->alias_offset
&& int128_ge(mr
->size
, mr
->alias
->size
)) {
664 /* The alias is included in its entirety. Use it as
665 * the "real" root, so that we can share more FlatViews.
670 } else if (!mr
->terminates
) {
671 unsigned int found
= 0;
672 MemoryRegion
*child
, *next
= NULL
;
673 QTAILQ_FOREACH(child
, &mr
->subregions
, subregions_link
) {
674 if (child
->enabled
) {
679 if (!child
->addr
&& int128_ge(mr
->size
, child
->size
)) {
680 /* A child is included in its entirety. If it's the only
681 * enabled one, use it in the hope of finding an alias down the
682 * way. This will also let us share FlatViews.
703 /* Render a memory topology into a list of disjoint absolute ranges. */
704 static FlatView
*generate_memory_topology(MemoryRegion
*mr
)
709 view
= flatview_new(mr
);
712 render_memory_region(view
, mr
, int128_zero(),
713 addrrange_make(int128_zero(), int128_2_64()),
716 flatview_simplify(view
);
718 view
->dispatch
= address_space_dispatch_new(view
);
719 for (i
= 0; i
< view
->nr
; i
++) {
720 MemoryRegionSection mrs
=
721 section_from_flat_range(&view
->ranges
[i
], view
);
722 flatview_add_to_dispatch(view
, &mrs
);
724 address_space_dispatch_compact(view
->dispatch
);
725 g_hash_table_replace(flat_views
, mr
, view
);
730 static void address_space_add_del_ioeventfds(AddressSpace
*as
,
731 MemoryRegionIoeventfd
*fds_new
,
733 MemoryRegionIoeventfd
*fds_old
,
737 MemoryRegionIoeventfd
*fd
;
738 MemoryRegionSection section
;
740 /* Generate a symmetric difference of the old and new fd sets, adding
741 * and deleting as necessary.
745 while (iold
< fds_old_nb
|| inew
< fds_new_nb
) {
746 if (iold
< fds_old_nb
747 && (inew
== fds_new_nb
748 || memory_region_ioeventfd_before(&fds_old
[iold
],
751 section
= (MemoryRegionSection
) {
752 .fv
= address_space_to_flatview(as
),
753 .offset_within_address_space
= int128_get64(fd
->addr
.start
),
754 .size
= fd
->addr
.size
,
756 MEMORY_LISTENER_CALL(as
, eventfd_del
, Forward
, §ion
,
757 fd
->match_data
, fd
->data
, fd
->e
);
759 } else if (inew
< fds_new_nb
760 && (iold
== fds_old_nb
761 || memory_region_ioeventfd_before(&fds_new
[inew
],
764 section
= (MemoryRegionSection
) {
765 .fv
= address_space_to_flatview(as
),
766 .offset_within_address_space
= int128_get64(fd
->addr
.start
),
767 .size
= fd
->addr
.size
,
769 MEMORY_LISTENER_CALL(as
, eventfd_add
, Reverse
, §ion
,
770 fd
->match_data
, fd
->data
, fd
->e
);
779 FlatView
*address_space_get_flatview(AddressSpace
*as
)
783 RCU_READ_LOCK_GUARD();
785 view
= address_space_to_flatview(as
);
786 /* If somebody has replaced as->current_map concurrently,
787 * flatview_ref returns false.
789 } while (!flatview_ref(view
));
793 static void address_space_update_ioeventfds(AddressSpace
*as
)
797 unsigned ioeventfd_nb
= 0;
798 unsigned ioeventfd_max
;
799 MemoryRegionIoeventfd
*ioeventfds
;
804 * It is likely that the number of ioeventfds hasn't changed much, so use
805 * the previous size as the starting value, with some headroom to avoid
806 * gratuitous reallocations.
808 ioeventfd_max
= QEMU_ALIGN_UP(as
->ioeventfd_nb
, 4);
809 ioeventfds
= g_new(MemoryRegionIoeventfd
, ioeventfd_max
);
811 view
= address_space_get_flatview(as
);
812 FOR_EACH_FLAT_RANGE(fr
, view
) {
813 for (i
= 0; i
< fr
->mr
->ioeventfd_nb
; ++i
) {
814 tmp
= addrrange_shift(fr
->mr
->ioeventfds
[i
].addr
,
815 int128_sub(fr
->addr
.start
,
816 int128_make64(fr
->offset_in_region
)));
817 if (addrrange_intersects(fr
->addr
, tmp
)) {
819 if (ioeventfd_nb
> ioeventfd_max
) {
820 ioeventfd_max
= MAX(ioeventfd_max
* 2, 4);
821 ioeventfds
= g_realloc(ioeventfds
,
822 ioeventfd_max
* sizeof(*ioeventfds
));
824 ioeventfds
[ioeventfd_nb
-1] = fr
->mr
->ioeventfds
[i
];
825 ioeventfds
[ioeventfd_nb
-1].addr
= tmp
;
830 address_space_add_del_ioeventfds(as
, ioeventfds
, ioeventfd_nb
,
831 as
->ioeventfds
, as
->ioeventfd_nb
);
833 g_free(as
->ioeventfds
);
834 as
->ioeventfds
= ioeventfds
;
835 as
->ioeventfd_nb
= ioeventfd_nb
;
836 flatview_unref(view
);
840 * Notify the memory listeners about the coalesced IO change events of
841 * range `cmr'. Only the part that has intersection of the specified
842 * FlatRange will be sent.
844 static void flat_range_coalesced_io_notify(FlatRange
*fr
, AddressSpace
*as
,
845 CoalescedMemoryRange
*cmr
, bool add
)
849 tmp
= addrrange_shift(cmr
->addr
,
850 int128_sub(fr
->addr
.start
,
851 int128_make64(fr
->offset_in_region
)));
852 if (!addrrange_intersects(tmp
, fr
->addr
)) {
855 tmp
= addrrange_intersection(tmp
, fr
->addr
);
858 MEMORY_LISTENER_UPDATE_REGION(fr
, as
, Forward
, coalesced_io_add
,
859 int128_get64(tmp
.start
),
860 int128_get64(tmp
.size
));
862 MEMORY_LISTENER_UPDATE_REGION(fr
, as
, Reverse
, coalesced_io_del
,
863 int128_get64(tmp
.start
),
864 int128_get64(tmp
.size
));
868 static void flat_range_coalesced_io_del(FlatRange
*fr
, AddressSpace
*as
)
870 CoalescedMemoryRange
*cmr
;
872 QTAILQ_FOREACH(cmr
, &fr
->mr
->coalesced
, link
) {
873 flat_range_coalesced_io_notify(fr
, as
, cmr
, false);
877 static void flat_range_coalesced_io_add(FlatRange
*fr
, AddressSpace
*as
)
879 MemoryRegion
*mr
= fr
->mr
;
880 CoalescedMemoryRange
*cmr
;
882 if (QTAILQ_EMPTY(&mr
->coalesced
)) {
886 QTAILQ_FOREACH(cmr
, &mr
->coalesced
, link
) {
887 flat_range_coalesced_io_notify(fr
, as
, cmr
, true);
891 static void address_space_update_topology_pass(AddressSpace
*as
,
892 const FlatView
*old_view
,
893 const FlatView
*new_view
,
897 FlatRange
*frold
, *frnew
;
899 /* Generate a symmetric difference of the old and new memory maps.
900 * Kill ranges in the old map, and instantiate ranges in the new map.
903 while (iold
< old_view
->nr
|| inew
< new_view
->nr
) {
904 if (iold
< old_view
->nr
) {
905 frold
= &old_view
->ranges
[iold
];
909 if (inew
< new_view
->nr
) {
910 frnew
= &new_view
->ranges
[inew
];
917 || int128_lt(frold
->addr
.start
, frnew
->addr
.start
)
918 || (int128_eq(frold
->addr
.start
, frnew
->addr
.start
)
919 && !flatrange_equal(frold
, frnew
)))) {
920 /* In old but not in new, or in both but attributes changed. */
923 flat_range_coalesced_io_del(frold
, as
);
924 MEMORY_LISTENER_UPDATE_REGION(frold
, as
, Reverse
, region_del
);
928 } else if (frold
&& frnew
&& flatrange_equal(frold
, frnew
)) {
929 /* In both and unchanged (except logging may have changed) */
932 MEMORY_LISTENER_UPDATE_REGION(frnew
, as
, Forward
, region_nop
);
933 if (frnew
->dirty_log_mask
& ~frold
->dirty_log_mask
) {
934 MEMORY_LISTENER_UPDATE_REGION(frnew
, as
, Forward
, log_start
,
935 frold
->dirty_log_mask
,
936 frnew
->dirty_log_mask
);
938 if (frold
->dirty_log_mask
& ~frnew
->dirty_log_mask
) {
939 MEMORY_LISTENER_UPDATE_REGION(frnew
, as
, Reverse
, log_stop
,
940 frold
->dirty_log_mask
,
941 frnew
->dirty_log_mask
);
951 MEMORY_LISTENER_UPDATE_REGION(frnew
, as
, Forward
, region_add
);
952 flat_range_coalesced_io_add(frnew
, as
);
960 static void flatviews_init(void)
962 static FlatView
*empty_view
;
968 flat_views
= g_hash_table_new_full(g_direct_hash
, g_direct_equal
, NULL
,
969 (GDestroyNotify
) flatview_unref
);
971 empty_view
= generate_memory_topology(NULL
);
972 /* We keep it alive forever in the global variable. */
973 flatview_ref(empty_view
);
975 g_hash_table_replace(flat_views
, NULL
, empty_view
);
976 flatview_ref(empty_view
);
980 static void flatviews_reset(void)
985 g_hash_table_unref(flat_views
);
990 /* Render unique FVs */
991 QTAILQ_FOREACH(as
, &address_spaces
, address_spaces_link
) {
992 MemoryRegion
*physmr
= memory_region_get_flatview_root(as
->root
);
994 if (g_hash_table_lookup(flat_views
, physmr
)) {
998 generate_memory_topology(physmr
);
1002 static void address_space_set_flatview(AddressSpace
*as
)
1004 FlatView
*old_view
= address_space_to_flatview(as
);
1005 MemoryRegion
*physmr
= memory_region_get_flatview_root(as
->root
);
1006 FlatView
*new_view
= g_hash_table_lookup(flat_views
, physmr
);
1010 if (old_view
== new_view
) {
1015 flatview_ref(old_view
);
1018 flatview_ref(new_view
);
1020 if (!QTAILQ_EMPTY(&as
->listeners
)) {
1021 FlatView tmpview
= { .nr
= 0 }, *old_view2
= old_view
;
1024 old_view2
= &tmpview
;
1026 address_space_update_topology_pass(as
, old_view2
, new_view
, false);
1027 address_space_update_topology_pass(as
, old_view2
, new_view
, true);
1030 /* Writes are protected by the BQL. */
1031 qatomic_rcu_set(&as
->current_map
, new_view
);
1033 flatview_unref(old_view
);
1036 /* Note that all the old MemoryRegions are still alive up to this
1037 * point. This relieves most MemoryListeners from the need to
1038 * ref/unref the MemoryRegions they get---unless they use them
1039 * outside the iothread mutex, in which case precise reference
1040 * counting is necessary.
1043 flatview_unref(old_view
);
1047 static void address_space_update_topology(AddressSpace
*as
)
1049 MemoryRegion
*physmr
= memory_region_get_flatview_root(as
->root
);
1052 if (!g_hash_table_lookup(flat_views
, physmr
)) {
1053 generate_memory_topology(physmr
);
1055 address_space_set_flatview(as
);
1058 void memory_region_transaction_begin(void)
1060 qemu_flush_coalesced_mmio_buffer();
1061 ++memory_region_transaction_depth
;
1064 void memory_region_transaction_commit(void)
1068 assert(memory_region_transaction_depth
);
1069 assert(qemu_mutex_iothread_locked());
1071 --memory_region_transaction_depth
;
1072 if (!memory_region_transaction_depth
) {
1073 if (memory_region_update_pending
) {
1076 MEMORY_LISTENER_CALL_GLOBAL(begin
, Forward
);
1078 QTAILQ_FOREACH(as
, &address_spaces
, address_spaces_link
) {
1079 address_space_set_flatview(as
);
1080 address_space_update_ioeventfds(as
);
1082 memory_region_update_pending
= false;
1083 ioeventfd_update_pending
= false;
1084 MEMORY_LISTENER_CALL_GLOBAL(commit
, Forward
);
1085 } else if (ioeventfd_update_pending
) {
1086 QTAILQ_FOREACH(as
, &address_spaces
, address_spaces_link
) {
1087 address_space_update_ioeventfds(as
);
1089 ioeventfd_update_pending
= false;
1094 static void memory_region_destructor_none(MemoryRegion
*mr
)
1098 static void memory_region_destructor_ram(MemoryRegion
*mr
)
1100 qemu_ram_free(mr
->ram_block
);
1103 static bool memory_region_need_escape(char c
)
1105 return c
== '/' || c
== '[' || c
== '\\' || c
== ']';
1108 static char *memory_region_escape_name(const char *name
)
1115 for (p
= name
; *p
; p
++) {
1116 bytes
+= memory_region_need_escape(*p
) ? 4 : 1;
1118 if (bytes
== p
- name
) {
1119 return g_memdup(name
, bytes
+ 1);
1122 escaped
= g_malloc(bytes
+ 1);
1123 for (p
= name
, q
= escaped
; *p
; p
++) {
1125 if (unlikely(memory_region_need_escape(c
))) {
1128 *q
++ = "0123456789abcdef"[c
>> 4];
1129 c
= "0123456789abcdef"[c
& 15];
1137 static void memory_region_do_init(MemoryRegion
*mr
,
1142 mr
->size
= int128_make64(size
);
1143 if (size
== UINT64_MAX
) {
1144 mr
->size
= int128_2_64();
1146 mr
->name
= g_strdup(name
);
1148 mr
->ram_block
= NULL
;
1151 char *escaped_name
= memory_region_escape_name(name
);
1152 char *name_array
= g_strdup_printf("%s[*]", escaped_name
);
1155 owner
= container_get(qdev_get_machine(), "/unattached");
1158 object_property_add_child(owner
, name_array
, OBJECT(mr
));
1159 object_unref(OBJECT(mr
));
1161 g_free(escaped_name
);
1165 void memory_region_init(MemoryRegion
*mr
,
1170 object_initialize(mr
, sizeof(*mr
), TYPE_MEMORY_REGION
);
1171 memory_region_do_init(mr
, owner
, name
, size
);
1174 static void memory_region_get_container(Object
*obj
, Visitor
*v
,
1175 const char *name
, void *opaque
,
1178 MemoryRegion
*mr
= MEMORY_REGION(obj
);
1179 char *path
= (char *)"";
1181 if (mr
->container
) {
1182 path
= object_get_canonical_path(OBJECT(mr
->container
));
1184 visit_type_str(v
, name
, &path
, errp
);
1185 if (mr
->container
) {
1190 static Object
*memory_region_resolve_container(Object
*obj
, void *opaque
,
1193 MemoryRegion
*mr
= MEMORY_REGION(obj
);
1195 return OBJECT(mr
->container
);
1198 static void memory_region_get_priority(Object
*obj
, Visitor
*v
,
1199 const char *name
, void *opaque
,
1202 MemoryRegion
*mr
= MEMORY_REGION(obj
);
1203 int32_t value
= mr
->priority
;
1205 visit_type_int32(v
, name
, &value
, errp
);
1208 static void memory_region_get_size(Object
*obj
, Visitor
*v
, const char *name
,
1209 void *opaque
, Error
**errp
)
1211 MemoryRegion
*mr
= MEMORY_REGION(obj
);
1212 uint64_t value
= memory_region_size(mr
);
1214 visit_type_uint64(v
, name
, &value
, errp
);
1217 static void memory_region_initfn(Object
*obj
)
1219 MemoryRegion
*mr
= MEMORY_REGION(obj
);
1222 mr
->ops
= &unassigned_mem_ops
;
1224 mr
->romd_mode
= true;
1225 mr
->destructor
= memory_region_destructor_none
;
1226 QTAILQ_INIT(&mr
->subregions
);
1227 QTAILQ_INIT(&mr
->coalesced
);
1229 op
= object_property_add(OBJECT(mr
), "container",
1230 "link<" TYPE_MEMORY_REGION
">",
1231 memory_region_get_container
,
1232 NULL
, /* memory_region_set_container */
1234 op
->resolve
= memory_region_resolve_container
;
1236 object_property_add_uint64_ptr(OBJECT(mr
), "addr",
1237 &mr
->addr
, OBJ_PROP_FLAG_READ
);
1238 object_property_add(OBJECT(mr
), "priority", "uint32",
1239 memory_region_get_priority
,
1240 NULL
, /* memory_region_set_priority */
1242 object_property_add(OBJECT(mr
), "size", "uint64",
1243 memory_region_get_size
,
1244 NULL
, /* memory_region_set_size, */
1248 static void iommu_memory_region_initfn(Object
*obj
)
1250 MemoryRegion
*mr
= MEMORY_REGION(obj
);
1252 mr
->is_iommu
= true;
1255 static uint64_t unassigned_mem_read(void *opaque
, hwaddr addr
,
1258 #ifdef DEBUG_UNASSIGNED
1259 printf("Unassigned mem read " TARGET_FMT_plx
"\n", addr
);
1264 static void unassigned_mem_write(void *opaque
, hwaddr addr
,
1265 uint64_t val
, unsigned size
)
1267 #ifdef DEBUG_UNASSIGNED
1268 printf("Unassigned mem write " TARGET_FMT_plx
" = 0x%"PRIx64
"\n", addr
, val
);
1272 static bool unassigned_mem_accepts(void *opaque
, hwaddr addr
,
1273 unsigned size
, bool is_write
,
1279 const MemoryRegionOps unassigned_mem_ops
= {
1280 .valid
.accepts
= unassigned_mem_accepts
,
1281 .endianness
= DEVICE_NATIVE_ENDIAN
,
1284 static uint64_t memory_region_ram_device_read(void *opaque
,
1285 hwaddr addr
, unsigned size
)
1287 MemoryRegion
*mr
= opaque
;
1288 uint64_t data
= (uint64_t)~0;
1292 data
= *(uint8_t *)(mr
->ram_block
->host
+ addr
);
1295 data
= *(uint16_t *)(mr
->ram_block
->host
+ addr
);
1298 data
= *(uint32_t *)(mr
->ram_block
->host
+ addr
);
1301 data
= *(uint64_t *)(mr
->ram_block
->host
+ addr
);
1305 trace_memory_region_ram_device_read(get_cpu_index(), mr
, addr
, data
, size
);
1310 static void memory_region_ram_device_write(void *opaque
, hwaddr addr
,
1311 uint64_t data
, unsigned size
)
1313 MemoryRegion
*mr
= opaque
;
1315 trace_memory_region_ram_device_write(get_cpu_index(), mr
, addr
, data
, size
);
1319 *(uint8_t *)(mr
->ram_block
->host
+ addr
) = (uint8_t)data
;
1322 *(uint16_t *)(mr
->ram_block
->host
+ addr
) = (uint16_t)data
;
1325 *(uint32_t *)(mr
->ram_block
->host
+ addr
) = (uint32_t)data
;
1328 *(uint64_t *)(mr
->ram_block
->host
+ addr
) = data
;
1333 static const MemoryRegionOps ram_device_mem_ops
= {
1334 .read
= memory_region_ram_device_read
,
1335 .write
= memory_region_ram_device_write
,
1336 .endianness
= DEVICE_HOST_ENDIAN
,
1338 .min_access_size
= 1,
1339 .max_access_size
= 8,
1343 .min_access_size
= 1,
1344 .max_access_size
= 8,
1349 bool memory_region_access_valid(MemoryRegion
*mr
,
1355 if (mr
->ops
->valid
.accepts
1356 && !mr
->ops
->valid
.accepts(mr
->opaque
, addr
, size
, is_write
, attrs
)) {
1357 qemu_log_mask(LOG_GUEST_ERROR
, "Invalid access at addr "
1358 "0x%" HWADDR_PRIX
", size %u, "
1359 "region '%s', reason: rejected\n",
1360 addr
, size
, memory_region_name(mr
));
1364 if (!mr
->ops
->valid
.unaligned
&& (addr
& (size
- 1))) {
1365 qemu_log_mask(LOG_GUEST_ERROR
, "Invalid access at addr "
1366 "0x%" HWADDR_PRIX
", size %u, "
1367 "region '%s', reason: unaligned\n",
1368 addr
, size
, memory_region_name(mr
));
1372 /* Treat zero as compatibility all valid */
1373 if (!mr
->ops
->valid
.max_access_size
) {
1377 if (size
> mr
->ops
->valid
.max_access_size
1378 || size
< mr
->ops
->valid
.min_access_size
) {
1379 qemu_log_mask(LOG_GUEST_ERROR
, "Invalid access at addr "
1380 "0x%" HWADDR_PRIX
", size %u, "
1381 "region '%s', reason: invalid size "
1382 "(min:%u max:%u)\n",
1383 addr
, size
, memory_region_name(mr
),
1384 mr
->ops
->valid
.min_access_size
,
1385 mr
->ops
->valid
.max_access_size
);
1391 static MemTxResult
memory_region_dispatch_read1(MemoryRegion
*mr
,
1399 if (mr
->ops
->read
) {
1400 return access_with_adjusted_size(addr
, pval
, size
,
1401 mr
->ops
->impl
.min_access_size
,
1402 mr
->ops
->impl
.max_access_size
,
1403 memory_region_read_accessor
,
1406 return access_with_adjusted_size(addr
, pval
, size
,
1407 mr
->ops
->impl
.min_access_size
,
1408 mr
->ops
->impl
.max_access_size
,
1409 memory_region_read_with_attrs_accessor
,
1414 MemTxResult
memory_region_dispatch_read(MemoryRegion
*mr
,
1420 unsigned size
= memop_size(op
);
1423 if (!memory_region_access_valid(mr
, addr
, size
, false, attrs
)) {
1424 *pval
= unassigned_mem_read(mr
, addr
, size
);
1425 return MEMTX_DECODE_ERROR
;
1428 r
= memory_region_dispatch_read1(mr
, addr
, pval
, size
, attrs
);
1429 adjust_endianness(mr
, pval
, op
);
1433 /* Return true if an eventfd was signalled */
1434 static bool memory_region_dispatch_write_eventfds(MemoryRegion
*mr
,
1440 MemoryRegionIoeventfd ioeventfd
= {
1441 .addr
= addrrange_make(int128_make64(addr
), int128_make64(size
)),
1446 for (i
= 0; i
< mr
->ioeventfd_nb
; i
++) {
1447 ioeventfd
.match_data
= mr
->ioeventfds
[i
].match_data
;
1448 ioeventfd
.e
= mr
->ioeventfds
[i
].e
;
1450 if (memory_region_ioeventfd_equal(&ioeventfd
, &mr
->ioeventfds
[i
])) {
1451 event_notifier_set(ioeventfd
.e
);
1459 MemTxResult
memory_region_dispatch_write(MemoryRegion
*mr
,
1465 unsigned size
= memop_size(op
);
1467 if (!memory_region_access_valid(mr
, addr
, size
, true, attrs
)) {
1468 unassigned_mem_write(mr
, addr
, data
, size
);
1469 return MEMTX_DECODE_ERROR
;
1472 adjust_endianness(mr
, &data
, op
);
1474 if ((!kvm_eventfds_enabled()) &&
1475 memory_region_dispatch_write_eventfds(mr
, addr
, data
, size
, attrs
)) {
1479 if (mr
->ops
->write
) {
1480 return access_with_adjusted_size(addr
, &data
, size
,
1481 mr
->ops
->impl
.min_access_size
,
1482 mr
->ops
->impl
.max_access_size
,
1483 memory_region_write_accessor
, mr
,
1487 access_with_adjusted_size(addr
, &data
, size
,
1488 mr
->ops
->impl
.min_access_size
,
1489 mr
->ops
->impl
.max_access_size
,
1490 memory_region_write_with_attrs_accessor
,
1495 void memory_region_init_io(MemoryRegion
*mr
,
1497 const MemoryRegionOps
*ops
,
1502 memory_region_init(mr
, owner
, name
, size
);
1503 mr
->ops
= ops
? ops
: &unassigned_mem_ops
;
1504 mr
->opaque
= opaque
;
1505 mr
->terminates
= true;
1508 void memory_region_init_ram_nomigrate(MemoryRegion
*mr
,
1514 memory_region_init_ram_shared_nomigrate(mr
, owner
, name
, size
, false, errp
);
1517 void memory_region_init_ram_shared_nomigrate(MemoryRegion
*mr
,
1525 memory_region_init(mr
, owner
, name
, size
);
1527 mr
->terminates
= true;
1528 mr
->destructor
= memory_region_destructor_ram
;
1529 mr
->ram_block
= qemu_ram_alloc(size
, share
, mr
, &err
);
1530 mr
->dirty_log_mask
= tcg_enabled() ? (1 << DIRTY_MEMORY_CODE
) : 0;
1532 mr
->size
= int128_zero();
1533 object_unparent(OBJECT(mr
));
1534 error_propagate(errp
, err
);
1538 void memory_region_init_resizeable_ram(MemoryRegion
*mr
,
1543 void (*resized
)(const char*,
1549 memory_region_init(mr
, owner
, name
, size
);
1551 mr
->terminates
= true;
1552 mr
->destructor
= memory_region_destructor_ram
;
1553 mr
->ram_block
= qemu_ram_alloc_resizeable(size
, max_size
, resized
,
1555 mr
->dirty_log_mask
= tcg_enabled() ? (1 << DIRTY_MEMORY_CODE
) : 0;
1557 mr
->size
= int128_zero();
1558 object_unparent(OBJECT(mr
));
1559 error_propagate(errp
, err
);
1564 void memory_region_init_ram_from_file(MemoryRegion
*mr
,
1565 struct Object
*owner
,
1574 memory_region_init(mr
, owner
, name
, size
);
1576 mr
->terminates
= true;
1577 mr
->destructor
= memory_region_destructor_ram
;
1579 mr
->ram_block
= qemu_ram_alloc_from_file(size
, mr
, ram_flags
, path
, &err
);
1580 mr
->dirty_log_mask
= tcg_enabled() ? (1 << DIRTY_MEMORY_CODE
) : 0;
1582 mr
->size
= int128_zero();
1583 object_unparent(OBJECT(mr
));
1584 error_propagate(errp
, err
);
1588 void memory_region_init_ram_from_fd(MemoryRegion
*mr
,
1589 struct Object
*owner
,
1597 memory_region_init(mr
, owner
, name
, size
);
1599 mr
->terminates
= true;
1600 mr
->destructor
= memory_region_destructor_ram
;
1601 mr
->ram_block
= qemu_ram_alloc_from_fd(size
, mr
,
1602 share
? RAM_SHARED
: 0,
1604 mr
->dirty_log_mask
= tcg_enabled() ? (1 << DIRTY_MEMORY_CODE
) : 0;
1606 mr
->size
= int128_zero();
1607 object_unparent(OBJECT(mr
));
1608 error_propagate(errp
, err
);
1613 void memory_region_init_ram_ptr(MemoryRegion
*mr
,
1619 memory_region_init(mr
, owner
, name
, size
);
1621 mr
->terminates
= true;
1622 mr
->destructor
= memory_region_destructor_ram
;
1623 mr
->dirty_log_mask
= tcg_enabled() ? (1 << DIRTY_MEMORY_CODE
) : 0;
1625 /* qemu_ram_alloc_from_ptr cannot fail with ptr != NULL. */
1626 assert(ptr
!= NULL
);
1627 mr
->ram_block
= qemu_ram_alloc_from_ptr(size
, ptr
, mr
, &error_fatal
);
1630 void memory_region_init_ram_device_ptr(MemoryRegion
*mr
,
1636 memory_region_init(mr
, owner
, name
, size
);
1638 mr
->terminates
= true;
1639 mr
->ram_device
= true;
1640 mr
->ops
= &ram_device_mem_ops
;
1642 mr
->destructor
= memory_region_destructor_ram
;
1643 mr
->dirty_log_mask
= tcg_enabled() ? (1 << DIRTY_MEMORY_CODE
) : 0;
1644 /* qemu_ram_alloc_from_ptr cannot fail with ptr != NULL. */
1645 assert(ptr
!= NULL
);
1646 mr
->ram_block
= qemu_ram_alloc_from_ptr(size
, ptr
, mr
, &error_fatal
);
1649 void memory_region_init_alias(MemoryRegion
*mr
,
1656 memory_region_init(mr
, owner
, name
, size
);
1658 mr
->alias_offset
= offset
;
1661 void memory_region_init_rom_nomigrate(MemoryRegion
*mr
,
1662 struct Object
*owner
,
1667 memory_region_init_ram_shared_nomigrate(mr
, owner
, name
, size
, false, errp
);
1668 mr
->readonly
= true;
1671 void memory_region_init_rom_device_nomigrate(MemoryRegion
*mr
,
1673 const MemoryRegionOps
*ops
,
1681 memory_region_init(mr
, owner
, name
, size
);
1683 mr
->opaque
= opaque
;
1684 mr
->terminates
= true;
1685 mr
->rom_device
= true;
1686 mr
->destructor
= memory_region_destructor_ram
;
1687 mr
->ram_block
= qemu_ram_alloc(size
, false, mr
, &err
);
1689 mr
->size
= int128_zero();
1690 object_unparent(OBJECT(mr
));
1691 error_propagate(errp
, err
);
1695 void memory_region_init_iommu(void *_iommu_mr
,
1696 size_t instance_size
,
1697 const char *mrtypename
,
1702 struct IOMMUMemoryRegion
*iommu_mr
;
1703 struct MemoryRegion
*mr
;
1705 object_initialize(_iommu_mr
, instance_size
, mrtypename
);
1706 mr
= MEMORY_REGION(_iommu_mr
);
1707 memory_region_do_init(mr
, owner
, name
, size
);
1708 iommu_mr
= IOMMU_MEMORY_REGION(mr
);
1709 mr
->terminates
= true; /* then re-forwards */
1710 QLIST_INIT(&iommu_mr
->iommu_notify
);
1711 iommu_mr
->iommu_notify_flags
= IOMMU_NOTIFIER_NONE
;
1714 static void memory_region_finalize(Object
*obj
)
1716 MemoryRegion
*mr
= MEMORY_REGION(obj
);
1718 assert(!mr
->container
);
1720 /* We know the region is not visible in any address space (it
1721 * does not have a container and cannot be a root either because
1722 * it has no references, so we can blindly clear mr->enabled.
1723 * memory_region_set_enabled instead could trigger a transaction
1724 * and cause an infinite loop.
1726 mr
->enabled
= false;
1727 memory_region_transaction_begin();
1728 while (!QTAILQ_EMPTY(&mr
->subregions
)) {
1729 MemoryRegion
*subregion
= QTAILQ_FIRST(&mr
->subregions
);
1730 memory_region_del_subregion(mr
, subregion
);
1732 memory_region_transaction_commit();
1735 memory_region_clear_coalescing(mr
);
1736 g_free((char *)mr
->name
);
1737 g_free(mr
->ioeventfds
);
1740 Object
*memory_region_owner(MemoryRegion
*mr
)
1742 Object
*obj
= OBJECT(mr
);
1746 void memory_region_ref(MemoryRegion
*mr
)
1748 /* MMIO callbacks most likely will access data that belongs
1749 * to the owner, hence the need to ref/unref the owner whenever
1750 * the memory region is in use.
1752 * The memory region is a child of its owner. As long as the
1753 * owner doesn't call unparent itself on the memory region,
1754 * ref-ing the owner will also keep the memory region alive.
1755 * Memory regions without an owner are supposed to never go away;
1756 * we do not ref/unref them because it slows down DMA sensibly.
1758 if (mr
&& mr
->owner
) {
1759 object_ref(mr
->owner
);
1763 void memory_region_unref(MemoryRegion
*mr
)
1765 if (mr
&& mr
->owner
) {
1766 object_unref(mr
->owner
);
1770 uint64_t memory_region_size(MemoryRegion
*mr
)
1772 if (int128_eq(mr
->size
, int128_2_64())) {
1775 return int128_get64(mr
->size
);
1778 const char *memory_region_name(const MemoryRegion
*mr
)
1781 ((MemoryRegion
*)mr
)->name
=
1782 g_strdup(object_get_canonical_path_component(OBJECT(mr
)));
1787 bool memory_region_is_ram_device(MemoryRegion
*mr
)
1789 return mr
->ram_device
;
1792 uint8_t memory_region_get_dirty_log_mask(MemoryRegion
*mr
)
1794 uint8_t mask
= mr
->dirty_log_mask
;
1795 if (global_dirty_log
&& mr
->ram_block
) {
1796 mask
|= (1 << DIRTY_MEMORY_MIGRATION
);
1801 bool memory_region_is_logging(MemoryRegion
*mr
, uint8_t client
)
1803 return memory_region_get_dirty_log_mask(mr
) & (1 << client
);
1806 static int memory_region_update_iommu_notify_flags(IOMMUMemoryRegion
*iommu_mr
,
1809 IOMMUNotifierFlag flags
= IOMMU_NOTIFIER_NONE
;
1810 IOMMUNotifier
*iommu_notifier
;
1811 IOMMUMemoryRegionClass
*imrc
= IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr
);
1814 IOMMU_NOTIFIER_FOREACH(iommu_notifier
, iommu_mr
) {
1815 flags
|= iommu_notifier
->notifier_flags
;
1818 if (flags
!= iommu_mr
->iommu_notify_flags
&& imrc
->notify_flag_changed
) {
1819 ret
= imrc
->notify_flag_changed(iommu_mr
,
1820 iommu_mr
->iommu_notify_flags
,
1825 iommu_mr
->iommu_notify_flags
= flags
;
1830 int memory_region_register_iommu_notifier(MemoryRegion
*mr
,
1831 IOMMUNotifier
*n
, Error
**errp
)
1833 IOMMUMemoryRegion
*iommu_mr
;
1837 return memory_region_register_iommu_notifier(mr
->alias
, n
, errp
);
1840 /* We need to register for at least one bitfield */
1841 iommu_mr
= IOMMU_MEMORY_REGION(mr
);
1842 assert(n
->notifier_flags
!= IOMMU_NOTIFIER_NONE
);
1843 assert(n
->start
<= n
->end
);
1844 assert(n
->iommu_idx
>= 0 &&
1845 n
->iommu_idx
< memory_region_iommu_num_indexes(iommu_mr
));
1847 QLIST_INSERT_HEAD(&iommu_mr
->iommu_notify
, n
, node
);
1848 ret
= memory_region_update_iommu_notify_flags(iommu_mr
, errp
);
1850 QLIST_REMOVE(n
, node
);
1855 uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion
*iommu_mr
)
1857 IOMMUMemoryRegionClass
*imrc
= IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr
);
1859 if (imrc
->get_min_page_size
) {
1860 return imrc
->get_min_page_size(iommu_mr
);
1862 return TARGET_PAGE_SIZE
;
1865 void memory_region_iommu_replay(IOMMUMemoryRegion
*iommu_mr
, IOMMUNotifier
*n
)
1867 MemoryRegion
*mr
= MEMORY_REGION(iommu_mr
);
1868 IOMMUMemoryRegionClass
*imrc
= IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr
);
1869 hwaddr addr
, granularity
;
1870 IOMMUTLBEntry iotlb
;
1872 /* If the IOMMU has its own replay callback, override */
1874 imrc
->replay(iommu_mr
, n
);
1878 granularity
= memory_region_iommu_get_min_page_size(iommu_mr
);
1880 for (addr
= 0; addr
< memory_region_size(mr
); addr
+= granularity
) {
1881 iotlb
= imrc
->translate(iommu_mr
, addr
, IOMMU_NONE
, n
->iommu_idx
);
1882 if (iotlb
.perm
!= IOMMU_NONE
) {
1883 n
->notify(n
, &iotlb
);
1886 /* if (2^64 - MR size) < granularity, it's possible to get an
1887 * infinite loop here. This should catch such a wraparound */
1888 if ((addr
+ granularity
) < addr
) {
1894 void memory_region_unregister_iommu_notifier(MemoryRegion
*mr
,
1897 IOMMUMemoryRegion
*iommu_mr
;
1900 memory_region_unregister_iommu_notifier(mr
->alias
, n
);
1903 QLIST_REMOVE(n
, node
);
1904 iommu_mr
= IOMMU_MEMORY_REGION(mr
);
1905 memory_region_update_iommu_notify_flags(iommu_mr
, NULL
);
1908 void memory_region_notify_one(IOMMUNotifier
*notifier
,
1909 IOMMUTLBEntry
*entry
)
1911 IOMMUNotifierFlag request_flags
;
1912 hwaddr entry_end
= entry
->iova
+ entry
->addr_mask
;
1915 * Skip the notification if the notification does not overlap
1916 * with registered range.
1918 if (notifier
->start
> entry_end
|| notifier
->end
< entry
->iova
) {
1922 assert(entry
->iova
>= notifier
->start
&& entry_end
<= notifier
->end
);
1924 if (entry
->perm
& IOMMU_RW
) {
1925 request_flags
= IOMMU_NOTIFIER_MAP
;
1927 request_flags
= IOMMU_NOTIFIER_UNMAP
;
1930 if (notifier
->notifier_flags
& request_flags
) {
1931 notifier
->notify(notifier
, entry
);
1935 void memory_region_notify_iommu(IOMMUMemoryRegion
*iommu_mr
,
1937 IOMMUTLBEntry entry
)
1939 IOMMUNotifier
*iommu_notifier
;
1941 assert(memory_region_is_iommu(MEMORY_REGION(iommu_mr
)));
1943 IOMMU_NOTIFIER_FOREACH(iommu_notifier
, iommu_mr
) {
1944 if (iommu_notifier
->iommu_idx
== iommu_idx
) {
1945 memory_region_notify_one(iommu_notifier
, &entry
);
1950 int memory_region_iommu_get_attr(IOMMUMemoryRegion
*iommu_mr
,
1951 enum IOMMUMemoryRegionAttr attr
,
1954 IOMMUMemoryRegionClass
*imrc
= IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr
);
1956 if (!imrc
->get_attr
) {
1960 return imrc
->get_attr(iommu_mr
, attr
, data
);
1963 int memory_region_iommu_attrs_to_index(IOMMUMemoryRegion
*iommu_mr
,
1966 IOMMUMemoryRegionClass
*imrc
= IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr
);
1968 if (!imrc
->attrs_to_index
) {
1972 return imrc
->attrs_to_index(iommu_mr
, attrs
);
1975 int memory_region_iommu_num_indexes(IOMMUMemoryRegion
*iommu_mr
)
1977 IOMMUMemoryRegionClass
*imrc
= IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr
);
1979 if (!imrc
->num_indexes
) {
1983 return imrc
->num_indexes(iommu_mr
);
1986 void memory_region_set_log(MemoryRegion
*mr
, bool log
, unsigned client
)
1988 uint8_t mask
= 1 << client
;
1989 uint8_t old_logging
;
1991 assert(client
== DIRTY_MEMORY_VGA
);
1992 old_logging
= mr
->vga_logging_count
;
1993 mr
->vga_logging_count
+= log
? 1 : -1;
1994 if (!!old_logging
== !!mr
->vga_logging_count
) {
1998 memory_region_transaction_begin();
1999 mr
->dirty_log_mask
= (mr
->dirty_log_mask
& ~mask
) | (log
* mask
);
2000 memory_region_update_pending
|= mr
->enabled
;
2001 memory_region_transaction_commit();
2004 void memory_region_set_dirty(MemoryRegion
*mr
, hwaddr addr
,
2007 assert(mr
->ram_block
);
2008 cpu_physical_memory_set_dirty_range(memory_region_get_ram_addr(mr
) + addr
,
2010 memory_region_get_dirty_log_mask(mr
));
2013 static void memory_region_sync_dirty_bitmap(MemoryRegion
*mr
)
2015 MemoryListener
*listener
;
2020 /* If the same address space has multiple log_sync listeners, we
2021 * visit that address space's FlatView multiple times. But because
2022 * log_sync listeners are rare, it's still cheaper than walking each
2023 * address space once.
2025 QTAILQ_FOREACH(listener
, &memory_listeners
, link
) {
2026 if (!listener
->log_sync
) {
2029 as
= listener
->address_space
;
2030 view
= address_space_get_flatview(as
);
2031 FOR_EACH_FLAT_RANGE(fr
, view
) {
2032 if (fr
->dirty_log_mask
&& (!mr
|| fr
->mr
== mr
)) {
2033 MemoryRegionSection mrs
= section_from_flat_range(fr
, view
);
2034 listener
->log_sync(listener
, &mrs
);
2037 flatview_unref(view
);
2041 void memory_region_clear_dirty_bitmap(MemoryRegion
*mr
, hwaddr start
,
2044 MemoryRegionSection mrs
;
2045 MemoryListener
*listener
;
2049 hwaddr sec_start
, sec_end
, sec_size
;
2051 QTAILQ_FOREACH(listener
, &memory_listeners
, link
) {
2052 if (!listener
->log_clear
) {
2055 as
= listener
->address_space
;
2056 view
= address_space_get_flatview(as
);
2057 FOR_EACH_FLAT_RANGE(fr
, view
) {
2058 if (!fr
->dirty_log_mask
|| fr
->mr
!= mr
) {
2060 * Clear dirty bitmap operation only applies to those
2061 * regions whose dirty logging is at least enabled
2066 mrs
= section_from_flat_range(fr
, view
);
2068 sec_start
= MAX(mrs
.offset_within_region
, start
);
2069 sec_end
= mrs
.offset_within_region
+ int128_get64(mrs
.size
);
2070 sec_end
= MIN(sec_end
, start
+ len
);
2072 if (sec_start
>= sec_end
) {
2074 * If this memory region section has no intersection
2075 * with the requested range, skip.
2080 /* Valid case; shrink the section if needed */
2081 mrs
.offset_within_address_space
+=
2082 sec_start
- mrs
.offset_within_region
;
2083 mrs
.offset_within_region
= sec_start
;
2084 sec_size
= sec_end
- sec_start
;
2085 mrs
.size
= int128_make64(sec_size
);
2086 listener
->log_clear(listener
, &mrs
);
2088 flatview_unref(view
);
2092 DirtyBitmapSnapshot
*memory_region_snapshot_and_clear_dirty(MemoryRegion
*mr
,
2097 DirtyBitmapSnapshot
*snapshot
;
2098 assert(mr
->ram_block
);
2099 memory_region_sync_dirty_bitmap(mr
);
2100 snapshot
= cpu_physical_memory_snapshot_and_clear_dirty(mr
, addr
, size
, client
);
2101 memory_global_after_dirty_log_sync();
2105 bool memory_region_snapshot_get_dirty(MemoryRegion
*mr
, DirtyBitmapSnapshot
*snap
,
2106 hwaddr addr
, hwaddr size
)
2108 assert(mr
->ram_block
);
2109 return cpu_physical_memory_snapshot_get_dirty(snap
,
2110 memory_region_get_ram_addr(mr
) + addr
, size
);
2113 void memory_region_set_readonly(MemoryRegion
*mr
, bool readonly
)
2115 if (mr
->readonly
!= readonly
) {
2116 memory_region_transaction_begin();
2117 mr
->readonly
= readonly
;
2118 memory_region_update_pending
|= mr
->enabled
;
2119 memory_region_transaction_commit();
2123 void memory_region_set_nonvolatile(MemoryRegion
*mr
, bool nonvolatile
)
2125 if (mr
->nonvolatile
!= nonvolatile
) {
2126 memory_region_transaction_begin();
2127 mr
->nonvolatile
= nonvolatile
;
2128 memory_region_update_pending
|= mr
->enabled
;
2129 memory_region_transaction_commit();
2133 void memory_region_rom_device_set_romd(MemoryRegion
*mr
, bool romd_mode
)
2135 if (mr
->romd_mode
!= romd_mode
) {
2136 memory_region_transaction_begin();
2137 mr
->romd_mode
= romd_mode
;
2138 memory_region_update_pending
|= mr
->enabled
;
2139 memory_region_transaction_commit();
2143 void memory_region_reset_dirty(MemoryRegion
*mr
, hwaddr addr
,
2144 hwaddr size
, unsigned client
)
2146 assert(mr
->ram_block
);
2147 cpu_physical_memory_test_and_clear_dirty(
2148 memory_region_get_ram_addr(mr
) + addr
, size
, client
);
2151 int memory_region_get_fd(MemoryRegion
*mr
)
2155 RCU_READ_LOCK_GUARD();
2159 fd
= mr
->ram_block
->fd
;
2164 void *memory_region_get_ram_ptr(MemoryRegion
*mr
)
2167 uint64_t offset
= 0;
2169 RCU_READ_LOCK_GUARD();
2171 offset
+= mr
->alias_offset
;
2174 assert(mr
->ram_block
);
2175 ptr
= qemu_map_ram_ptr(mr
->ram_block
, offset
);
2180 MemoryRegion
*memory_region_from_host(void *ptr
, ram_addr_t
*offset
)
2184 block
= qemu_ram_block_from_host(ptr
, false, offset
);
2192 ram_addr_t
memory_region_get_ram_addr(MemoryRegion
*mr
)
2194 return mr
->ram_block
? mr
->ram_block
->offset
: RAM_ADDR_INVALID
;
2197 void memory_region_ram_resize(MemoryRegion
*mr
, ram_addr_t newsize
, Error
**errp
)
2199 assert(mr
->ram_block
);
2201 qemu_ram_resize(mr
->ram_block
, newsize
, errp
);
2204 void memory_region_msync(MemoryRegion
*mr
, hwaddr addr
, hwaddr size
)
2206 if (mr
->ram_block
) {
2207 qemu_ram_msync(mr
->ram_block
, addr
, size
);
2211 void memory_region_writeback(MemoryRegion
*mr
, hwaddr addr
, hwaddr size
)
2214 * Might be extended case needed to cover
2215 * different types of memory regions
2217 if (mr
->dirty_log_mask
) {
2218 memory_region_msync(mr
, addr
, size
);
2223 * Call proper memory listeners about the change on the newly
2224 * added/removed CoalescedMemoryRange.
2226 static void memory_region_update_coalesced_range(MemoryRegion
*mr
,
2227 CoalescedMemoryRange
*cmr
,
2234 QTAILQ_FOREACH(as
, &address_spaces
, address_spaces_link
) {
2235 view
= address_space_get_flatview(as
);
2236 FOR_EACH_FLAT_RANGE(fr
, view
) {
2238 flat_range_coalesced_io_notify(fr
, as
, cmr
, add
);
2241 flatview_unref(view
);
2245 void memory_region_set_coalescing(MemoryRegion
*mr
)
2247 memory_region_clear_coalescing(mr
);
2248 memory_region_add_coalescing(mr
, 0, int128_get64(mr
->size
));
2251 void memory_region_add_coalescing(MemoryRegion
*mr
,
2255 CoalescedMemoryRange
*cmr
= g_malloc(sizeof(*cmr
));
2257 cmr
->addr
= addrrange_make(int128_make64(offset
), int128_make64(size
));
2258 QTAILQ_INSERT_TAIL(&mr
->coalesced
, cmr
, link
);
2259 memory_region_update_coalesced_range(mr
, cmr
, true);
2260 memory_region_set_flush_coalesced(mr
);
2263 void memory_region_clear_coalescing(MemoryRegion
*mr
)
2265 CoalescedMemoryRange
*cmr
;
2267 if (QTAILQ_EMPTY(&mr
->coalesced
)) {
2271 qemu_flush_coalesced_mmio_buffer();
2272 mr
->flush_coalesced_mmio
= false;
2274 while (!QTAILQ_EMPTY(&mr
->coalesced
)) {
2275 cmr
= QTAILQ_FIRST(&mr
->coalesced
);
2276 QTAILQ_REMOVE(&mr
->coalesced
, cmr
, link
);
2277 memory_region_update_coalesced_range(mr
, cmr
, false);
2282 void memory_region_set_flush_coalesced(MemoryRegion
*mr
)
2284 mr
->flush_coalesced_mmio
= true;
2287 void memory_region_clear_flush_coalesced(MemoryRegion
*mr
)
2289 qemu_flush_coalesced_mmio_buffer();
2290 if (QTAILQ_EMPTY(&mr
->coalesced
)) {
2291 mr
->flush_coalesced_mmio
= false;
2295 static bool userspace_eventfd_warning
;
2297 void memory_region_add_eventfd(MemoryRegion
*mr
,
2304 MemoryRegionIoeventfd mrfd
= {
2305 .addr
.start
= int128_make64(addr
),
2306 .addr
.size
= int128_make64(size
),
2307 .match_data
= match_data
,
2313 if (kvm_enabled() && (!(kvm_eventfds_enabled() ||
2314 userspace_eventfd_warning
))) {
2315 userspace_eventfd_warning
= true;
2316 error_report("Using eventfd without MMIO binding in KVM. "
2317 "Suboptimal performance expected");
2321 adjust_endianness(mr
, &mrfd
.data
, size_memop(size
) | MO_TE
);
2323 memory_region_transaction_begin();
2324 for (i
= 0; i
< mr
->ioeventfd_nb
; ++i
) {
2325 if (memory_region_ioeventfd_before(&mrfd
, &mr
->ioeventfds
[i
])) {
2330 mr
->ioeventfds
= g_realloc(mr
->ioeventfds
,
2331 sizeof(*mr
->ioeventfds
) * mr
->ioeventfd_nb
);
2332 memmove(&mr
->ioeventfds
[i
+1], &mr
->ioeventfds
[i
],
2333 sizeof(*mr
->ioeventfds
) * (mr
->ioeventfd_nb
-1 - i
));
2334 mr
->ioeventfds
[i
] = mrfd
;
2335 ioeventfd_update_pending
|= mr
->enabled
;
2336 memory_region_transaction_commit();
2339 void memory_region_del_eventfd(MemoryRegion
*mr
,
2346 MemoryRegionIoeventfd mrfd
= {
2347 .addr
.start
= int128_make64(addr
),
2348 .addr
.size
= int128_make64(size
),
2349 .match_data
= match_data
,
2356 adjust_endianness(mr
, &mrfd
.data
, size_memop(size
) | MO_TE
);
2358 memory_region_transaction_begin();
2359 for (i
= 0; i
< mr
->ioeventfd_nb
; ++i
) {
2360 if (memory_region_ioeventfd_equal(&mrfd
, &mr
->ioeventfds
[i
])) {
2364 assert(i
!= mr
->ioeventfd_nb
);
2365 memmove(&mr
->ioeventfds
[i
], &mr
->ioeventfds
[i
+1],
2366 sizeof(*mr
->ioeventfds
) * (mr
->ioeventfd_nb
- (i
+1)));
2368 mr
->ioeventfds
= g_realloc(mr
->ioeventfds
,
2369 sizeof(*mr
->ioeventfds
)*mr
->ioeventfd_nb
+ 1);
2370 ioeventfd_update_pending
|= mr
->enabled
;
2371 memory_region_transaction_commit();
2374 static void memory_region_update_container_subregions(MemoryRegion
*subregion
)
2376 MemoryRegion
*mr
= subregion
->container
;
2377 MemoryRegion
*other
;
2379 memory_region_transaction_begin();
2381 memory_region_ref(subregion
);
2382 QTAILQ_FOREACH(other
, &mr
->subregions
, subregions_link
) {
2383 if (subregion
->priority
>= other
->priority
) {
2384 QTAILQ_INSERT_BEFORE(other
, subregion
, subregions_link
);
2388 QTAILQ_INSERT_TAIL(&mr
->subregions
, subregion
, subregions_link
);
2390 memory_region_update_pending
|= mr
->enabled
&& subregion
->enabled
;
2391 memory_region_transaction_commit();
2394 static void memory_region_add_subregion_common(MemoryRegion
*mr
,
2396 MemoryRegion
*subregion
)
2398 assert(!subregion
->container
);
2399 subregion
->container
= mr
;
2400 subregion
->addr
= offset
;
2401 memory_region_update_container_subregions(subregion
);
2404 void memory_region_add_subregion(MemoryRegion
*mr
,
2406 MemoryRegion
*subregion
)
2408 subregion
->priority
= 0;
2409 memory_region_add_subregion_common(mr
, offset
, subregion
);
2412 void memory_region_add_subregion_overlap(MemoryRegion
*mr
,
2414 MemoryRegion
*subregion
,
2417 subregion
->priority
= priority
;
2418 memory_region_add_subregion_common(mr
, offset
, subregion
);
2421 void memory_region_del_subregion(MemoryRegion
*mr
,
2422 MemoryRegion
*subregion
)
2424 memory_region_transaction_begin();
2425 assert(subregion
->container
== mr
);
2426 subregion
->container
= NULL
;
2427 QTAILQ_REMOVE(&mr
->subregions
, subregion
, subregions_link
);
2428 memory_region_unref(subregion
);
2429 memory_region_update_pending
|= mr
->enabled
&& subregion
->enabled
;
2430 memory_region_transaction_commit();
2433 void memory_region_set_enabled(MemoryRegion
*mr
, bool enabled
)
2435 if (enabled
== mr
->enabled
) {
2438 memory_region_transaction_begin();
2439 mr
->enabled
= enabled
;
2440 memory_region_update_pending
= true;
2441 memory_region_transaction_commit();
2444 void memory_region_set_size(MemoryRegion
*mr
, uint64_t size
)
2446 Int128 s
= int128_make64(size
);
2448 if (size
== UINT64_MAX
) {
2451 if (int128_eq(s
, mr
->size
)) {
2454 memory_region_transaction_begin();
2456 memory_region_update_pending
= true;
2457 memory_region_transaction_commit();
2460 static void memory_region_readd_subregion(MemoryRegion
*mr
)
2462 MemoryRegion
*container
= mr
->container
;
2465 memory_region_transaction_begin();
2466 memory_region_ref(mr
);
2467 memory_region_del_subregion(container
, mr
);
2468 mr
->container
= container
;
2469 memory_region_update_container_subregions(mr
);
2470 memory_region_unref(mr
);
2471 memory_region_transaction_commit();
2475 void memory_region_set_address(MemoryRegion
*mr
, hwaddr addr
)
2477 if (addr
!= mr
->addr
) {
2479 memory_region_readd_subregion(mr
);
2483 void memory_region_set_alias_offset(MemoryRegion
*mr
, hwaddr offset
)
2487 if (offset
== mr
->alias_offset
) {
2491 memory_region_transaction_begin();
2492 mr
->alias_offset
= offset
;
2493 memory_region_update_pending
|= mr
->enabled
;
2494 memory_region_transaction_commit();
2497 uint64_t memory_region_get_alignment(const MemoryRegion
*mr
)
2502 static int cmp_flatrange_addr(const void *addr_
, const void *fr_
)
2504 const AddrRange
*addr
= addr_
;
2505 const FlatRange
*fr
= fr_
;
2507 if (int128_le(addrrange_end(*addr
), fr
->addr
.start
)) {
2509 } else if (int128_ge(addr
->start
, addrrange_end(fr
->addr
))) {
2515 static FlatRange
*flatview_lookup(FlatView
*view
, AddrRange addr
)
2517 return bsearch(&addr
, view
->ranges
, view
->nr
,
2518 sizeof(FlatRange
), cmp_flatrange_addr
);
2521 bool memory_region_is_mapped(MemoryRegion
*mr
)
2523 return mr
->container
? true : false;
2526 /* Same as memory_region_find, but it does not add a reference to the
2527 * returned region. It must be called from an RCU critical section.
2529 static MemoryRegionSection
memory_region_find_rcu(MemoryRegion
*mr
,
2530 hwaddr addr
, uint64_t size
)
2532 MemoryRegionSection ret
= { .mr
= NULL
};
2540 for (root
= mr
; root
->container
; ) {
2541 root
= root
->container
;
2545 as
= memory_region_to_address_space(root
);
2549 range
= addrrange_make(int128_make64(addr
), int128_make64(size
));
2551 view
= address_space_to_flatview(as
);
2552 fr
= flatview_lookup(view
, range
);
2557 while (fr
> view
->ranges
&& addrrange_intersects(fr
[-1].addr
, range
)) {
2563 range
= addrrange_intersection(range
, fr
->addr
);
2564 ret
.offset_within_region
= fr
->offset_in_region
;
2565 ret
.offset_within_region
+= int128_get64(int128_sub(range
.start
,
2567 ret
.size
= range
.size
;
2568 ret
.offset_within_address_space
= int128_get64(range
.start
);
2569 ret
.readonly
= fr
->readonly
;
2570 ret
.nonvolatile
= fr
->nonvolatile
;
2574 MemoryRegionSection
memory_region_find(MemoryRegion
*mr
,
2575 hwaddr addr
, uint64_t size
)
2577 MemoryRegionSection ret
;
2578 RCU_READ_LOCK_GUARD();
2579 ret
= memory_region_find_rcu(mr
, addr
, size
);
2581 memory_region_ref(ret
.mr
);
2586 bool memory_region_present(MemoryRegion
*container
, hwaddr addr
)
2590 RCU_READ_LOCK_GUARD();
2591 mr
= memory_region_find_rcu(container
, addr
, 1).mr
;
2592 return mr
&& mr
!= container
;
2595 void memory_global_dirty_log_sync(void)
2597 memory_region_sync_dirty_bitmap(NULL
);
2600 void memory_global_after_dirty_log_sync(void)
2602 MEMORY_LISTENER_CALL_GLOBAL(log_global_after_sync
, Forward
);
2605 static VMChangeStateEntry
*vmstate_change
;
2607 void memory_global_dirty_log_start(void)
2609 if (vmstate_change
) {
2610 qemu_del_vm_change_state_handler(vmstate_change
);
2611 vmstate_change
= NULL
;
2614 global_dirty_log
= true;
2616 MEMORY_LISTENER_CALL_GLOBAL(log_global_start
, Forward
);
2618 /* Refresh DIRTY_MEMORY_MIGRATION bit. */
2619 memory_region_transaction_begin();
2620 memory_region_update_pending
= true;
2621 memory_region_transaction_commit();
2624 static void memory_global_dirty_log_do_stop(void)
2626 global_dirty_log
= false;
2628 /* Refresh DIRTY_MEMORY_MIGRATION bit. */
2629 memory_region_transaction_begin();
2630 memory_region_update_pending
= true;
2631 memory_region_transaction_commit();
2633 MEMORY_LISTENER_CALL_GLOBAL(log_global_stop
, Reverse
);
2636 static void memory_vm_change_state_handler(void *opaque
, int running
,
2640 memory_global_dirty_log_do_stop();
2642 if (vmstate_change
) {
2643 qemu_del_vm_change_state_handler(vmstate_change
);
2644 vmstate_change
= NULL
;
2649 void memory_global_dirty_log_stop(void)
2651 if (!runstate_is_running()) {
2652 if (vmstate_change
) {
2655 vmstate_change
= qemu_add_vm_change_state_handler(
2656 memory_vm_change_state_handler
, NULL
);
2660 memory_global_dirty_log_do_stop();
2663 static void listener_add_address_space(MemoryListener
*listener
,
2669 if (listener
->begin
) {
2670 listener
->begin(listener
);
2672 if (global_dirty_log
) {
2673 if (listener
->log_global_start
) {
2674 listener
->log_global_start(listener
);
2678 view
= address_space_get_flatview(as
);
2679 FOR_EACH_FLAT_RANGE(fr
, view
) {
2680 MemoryRegionSection section
= section_from_flat_range(fr
, view
);
2682 if (listener
->region_add
) {
2683 listener
->region_add(listener
, §ion
);
2685 if (fr
->dirty_log_mask
&& listener
->log_start
) {
2686 listener
->log_start(listener
, §ion
, 0, fr
->dirty_log_mask
);
2689 if (listener
->commit
) {
2690 listener
->commit(listener
);
2692 flatview_unref(view
);
2695 static void listener_del_address_space(MemoryListener
*listener
,
2701 if (listener
->begin
) {
2702 listener
->begin(listener
);
2704 view
= address_space_get_flatview(as
);
2705 FOR_EACH_FLAT_RANGE(fr
, view
) {
2706 MemoryRegionSection section
= section_from_flat_range(fr
, view
);
2708 if (fr
->dirty_log_mask
&& listener
->log_stop
) {
2709 listener
->log_stop(listener
, §ion
, fr
->dirty_log_mask
, 0);
2711 if (listener
->region_del
) {
2712 listener
->region_del(listener
, §ion
);
2715 if (listener
->commit
) {
2716 listener
->commit(listener
);
2718 flatview_unref(view
);
2721 void memory_listener_register(MemoryListener
*listener
, AddressSpace
*as
)
2723 MemoryListener
*other
= NULL
;
2725 listener
->address_space
= as
;
2726 if (QTAILQ_EMPTY(&memory_listeners
)
2727 || listener
->priority
>= QTAILQ_LAST(&memory_listeners
)->priority
) {
2728 QTAILQ_INSERT_TAIL(&memory_listeners
, listener
, link
);
2730 QTAILQ_FOREACH(other
, &memory_listeners
, link
) {
2731 if (listener
->priority
< other
->priority
) {
2735 QTAILQ_INSERT_BEFORE(other
, listener
, link
);
2738 if (QTAILQ_EMPTY(&as
->listeners
)
2739 || listener
->priority
>= QTAILQ_LAST(&as
->listeners
)->priority
) {
2740 QTAILQ_INSERT_TAIL(&as
->listeners
, listener
, link_as
);
2742 QTAILQ_FOREACH(other
, &as
->listeners
, link_as
) {
2743 if (listener
->priority
< other
->priority
) {
2747 QTAILQ_INSERT_BEFORE(other
, listener
, link_as
);
2750 listener_add_address_space(listener
, as
);
2753 void memory_listener_unregister(MemoryListener
*listener
)
2755 if (!listener
->address_space
) {
2759 listener_del_address_space(listener
, listener
->address_space
);
2760 QTAILQ_REMOVE(&memory_listeners
, listener
, link
);
2761 QTAILQ_REMOVE(&listener
->address_space
->listeners
, listener
, link_as
);
2762 listener
->address_space
= NULL
;
2765 void address_space_remove_listeners(AddressSpace
*as
)
2767 while (!QTAILQ_EMPTY(&as
->listeners
)) {
2768 memory_listener_unregister(QTAILQ_FIRST(&as
->listeners
));
2772 void address_space_init(AddressSpace
*as
, MemoryRegion
*root
, const char *name
)
2774 memory_region_ref(root
);
2776 as
->current_map
= NULL
;
2777 as
->ioeventfd_nb
= 0;
2778 as
->ioeventfds
= NULL
;
2779 QTAILQ_INIT(&as
->listeners
);
2780 QTAILQ_INSERT_TAIL(&address_spaces
, as
, address_spaces_link
);
2781 as
->name
= g_strdup(name
? name
: "anonymous");
2782 address_space_update_topology(as
);
2783 address_space_update_ioeventfds(as
);
2786 static void do_address_space_destroy(AddressSpace
*as
)
2788 assert(QTAILQ_EMPTY(&as
->listeners
));
2790 flatview_unref(as
->current_map
);
2792 g_free(as
->ioeventfds
);
2793 memory_region_unref(as
->root
);
2796 void address_space_destroy(AddressSpace
*as
)
2798 MemoryRegion
*root
= as
->root
;
2800 /* Flush out anything from MemoryListeners listening in on this */
2801 memory_region_transaction_begin();
2803 memory_region_transaction_commit();
2804 QTAILQ_REMOVE(&address_spaces
, as
, address_spaces_link
);
2806 /* At this point, as->dispatch and as->current_map are dummy
2807 * entries that the guest should never use. Wait for the old
2808 * values to expire before freeing the data.
2811 call_rcu(as
, do_address_space_destroy
, rcu
);
2814 static const char *memory_region_type(MemoryRegion
*mr
)
2817 return memory_region_type(mr
->alias
);
2819 if (memory_region_is_ram_device(mr
)) {
2821 } else if (memory_region_is_romd(mr
)) {
2823 } else if (memory_region_is_rom(mr
)) {
2825 } else if (memory_region_is_ram(mr
)) {
2832 typedef struct MemoryRegionList MemoryRegionList
;
2834 struct MemoryRegionList
{
2835 const MemoryRegion
*mr
;
2836 QTAILQ_ENTRY(MemoryRegionList
) mrqueue
;
2839 typedef QTAILQ_HEAD(, MemoryRegionList
) MemoryRegionListHead
;
2841 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
2842 int128_sub((size), int128_one())) : 0)
2843 #define MTREE_INDENT " "
2845 static void mtree_expand_owner(const char *label
, Object
*obj
)
2847 DeviceState
*dev
= (DeviceState
*) object_dynamic_cast(obj
, TYPE_DEVICE
);
2849 qemu_printf(" %s:{%s", label
, dev
? "dev" : "obj");
2850 if (dev
&& dev
->id
) {
2851 qemu_printf(" id=%s", dev
->id
);
2853 char *canonical_path
= object_get_canonical_path(obj
);
2854 if (canonical_path
) {
2855 qemu_printf(" path=%s", canonical_path
);
2856 g_free(canonical_path
);
2858 qemu_printf(" type=%s", object_get_typename(obj
));
2864 static void mtree_print_mr_owner(const MemoryRegion
*mr
)
2866 Object
*owner
= mr
->owner
;
2867 Object
*parent
= memory_region_owner((MemoryRegion
*)mr
);
2869 if (!owner
&& !parent
) {
2870 qemu_printf(" orphan");
2874 mtree_expand_owner("owner", owner
);
2876 if (parent
&& parent
!= owner
) {
2877 mtree_expand_owner("parent", parent
);
2881 static void mtree_print_mr(const MemoryRegion
*mr
, unsigned int level
,
2883 MemoryRegionListHead
*alias_print_queue
,
2884 bool owner
, bool display_disabled
)
2886 MemoryRegionList
*new_ml
, *ml
, *next_ml
;
2887 MemoryRegionListHead submr_print_queue
;
2888 const MemoryRegion
*submr
;
2890 hwaddr cur_start
, cur_end
;
2896 cur_start
= base
+ mr
->addr
;
2897 cur_end
= cur_start
+ MR_SIZE(mr
->size
);
2900 * Try to detect overflow of memory region. This should never
2901 * happen normally. When it happens, we dump something to warn the
2902 * user who is observing this.
2904 if (cur_start
< base
|| cur_end
< cur_start
) {
2905 qemu_printf("[DETECTED OVERFLOW!] ");
2909 MemoryRegionList
*ml
;
2912 /* check if the alias is already in the queue */
2913 QTAILQ_FOREACH(ml
, alias_print_queue
, mrqueue
) {
2914 if (ml
->mr
== mr
->alias
) {
2920 ml
= g_new(MemoryRegionList
, 1);
2922 QTAILQ_INSERT_TAIL(alias_print_queue
, ml
, mrqueue
);
2924 if (mr
->enabled
|| display_disabled
) {
2925 for (i
= 0; i
< level
; i
++) {
2926 qemu_printf(MTREE_INDENT
);
2928 qemu_printf(TARGET_FMT_plx
"-" TARGET_FMT_plx
2929 " (prio %d, %s%s): alias %s @%s " TARGET_FMT_plx
2930 "-" TARGET_FMT_plx
"%s",
2933 mr
->nonvolatile
? "nv-" : "",
2934 memory_region_type((MemoryRegion
*)mr
),
2935 memory_region_name(mr
),
2936 memory_region_name(mr
->alias
),
2938 mr
->alias_offset
+ MR_SIZE(mr
->size
),
2939 mr
->enabled
? "" : " [disabled]");
2941 mtree_print_mr_owner(mr
);
2946 if (mr
->enabled
|| display_disabled
) {
2947 for (i
= 0; i
< level
; i
++) {
2948 qemu_printf(MTREE_INDENT
);
2950 qemu_printf(TARGET_FMT_plx
"-" TARGET_FMT_plx
2951 " (prio %d, %s%s): %s%s",
2954 mr
->nonvolatile
? "nv-" : "",
2955 memory_region_type((MemoryRegion
*)mr
),
2956 memory_region_name(mr
),
2957 mr
->enabled
? "" : " [disabled]");
2959 mtree_print_mr_owner(mr
);
2965 QTAILQ_INIT(&submr_print_queue
);
2967 QTAILQ_FOREACH(submr
, &mr
->subregions
, subregions_link
) {
2968 new_ml
= g_new(MemoryRegionList
, 1);
2970 QTAILQ_FOREACH(ml
, &submr_print_queue
, mrqueue
) {
2971 if (new_ml
->mr
->addr
< ml
->mr
->addr
||
2972 (new_ml
->mr
->addr
== ml
->mr
->addr
&&
2973 new_ml
->mr
->priority
> ml
->mr
->priority
)) {
2974 QTAILQ_INSERT_BEFORE(ml
, new_ml
, mrqueue
);
2980 QTAILQ_INSERT_TAIL(&submr_print_queue
, new_ml
, mrqueue
);
2984 QTAILQ_FOREACH(ml
, &submr_print_queue
, mrqueue
) {
2985 mtree_print_mr(ml
->mr
, level
+ 1, cur_start
,
2986 alias_print_queue
, owner
, display_disabled
);
2989 QTAILQ_FOREACH_SAFE(ml
, &submr_print_queue
, mrqueue
, next_ml
) {
2994 struct FlatViewInfo
{
3001 static void mtree_print_flatview(gpointer key
, gpointer value
,
3004 FlatView
*view
= key
;
3005 GArray
*fv_address_spaces
= value
;
3006 struct FlatViewInfo
*fvi
= user_data
;
3007 FlatRange
*range
= &view
->ranges
[0];
3013 qemu_printf("FlatView #%d\n", fvi
->counter
);
3016 for (i
= 0; i
< fv_address_spaces
->len
; ++i
) {
3017 as
= g_array_index(fv_address_spaces
, AddressSpace
*, i
);
3018 qemu_printf(" AS \"%s\", root: %s",
3019 as
->name
, memory_region_name(as
->root
));
3020 if (as
->root
->alias
) {
3021 qemu_printf(", alias %s", memory_region_name(as
->root
->alias
));
3026 qemu_printf(" Root memory region: %s\n",
3027 view
->root
? memory_region_name(view
->root
) : "(none)");
3030 qemu_printf(MTREE_INDENT
"No rendered FlatView\n\n");
3036 if (range
->offset_in_region
) {
3037 qemu_printf(MTREE_INDENT TARGET_FMT_plx
"-" TARGET_FMT_plx
3038 " (prio %d, %s%s): %s @" TARGET_FMT_plx
,
3039 int128_get64(range
->addr
.start
),
3040 int128_get64(range
->addr
.start
)
3041 + MR_SIZE(range
->addr
.size
),
3043 range
->nonvolatile
? "nv-" : "",
3044 range
->readonly
? "rom" : memory_region_type(mr
),
3045 memory_region_name(mr
),
3046 range
->offset_in_region
);
3048 qemu_printf(MTREE_INDENT TARGET_FMT_plx
"-" TARGET_FMT_plx
3049 " (prio %d, %s%s): %s",
3050 int128_get64(range
->addr
.start
),
3051 int128_get64(range
->addr
.start
)
3052 + MR_SIZE(range
->addr
.size
),
3054 range
->nonvolatile
? "nv-" : "",
3055 range
->readonly
? "rom" : memory_region_type(mr
),
3056 memory_region_name(mr
));
3059 mtree_print_mr_owner(mr
);
3063 for (i
= 0; i
< fv_address_spaces
->len
; ++i
) {
3064 as
= g_array_index(fv_address_spaces
, AddressSpace
*, i
);
3065 if (fvi
->ac
->has_memory(current_machine
, as
,
3066 int128_get64(range
->addr
.start
),
3067 MR_SIZE(range
->addr
.size
) + 1)) {
3068 qemu_printf(" %s", fvi
->ac
->name
);
3076 #if !defined(CONFIG_USER_ONLY)
3077 if (fvi
->dispatch_tree
&& view
->root
) {
3078 mtree_print_dispatch(view
->dispatch
, view
->root
);
3085 static gboolean
mtree_info_flatview_free(gpointer key
, gpointer value
,
3088 FlatView
*view
= key
;
3089 GArray
*fv_address_spaces
= value
;
3091 g_array_unref(fv_address_spaces
);
3092 flatview_unref(view
);
3097 void mtree_info(bool flatview
, bool dispatch_tree
, bool owner
, bool disabled
)
3099 MemoryRegionListHead ml_head
;
3100 MemoryRegionList
*ml
, *ml2
;
3105 struct FlatViewInfo fvi
= {
3107 .dispatch_tree
= dispatch_tree
,
3110 GArray
*fv_address_spaces
;
3111 GHashTable
*views
= g_hash_table_new(g_direct_hash
, g_direct_equal
);
3112 AccelClass
*ac
= ACCEL_GET_CLASS(current_accel());
3114 if (ac
->has_memory
) {
3118 /* Gather all FVs in one table */
3119 QTAILQ_FOREACH(as
, &address_spaces
, address_spaces_link
) {
3120 view
= address_space_get_flatview(as
);
3122 fv_address_spaces
= g_hash_table_lookup(views
, view
);
3123 if (!fv_address_spaces
) {
3124 fv_address_spaces
= g_array_new(false, false, sizeof(as
));
3125 g_hash_table_insert(views
, view
, fv_address_spaces
);
3128 g_array_append_val(fv_address_spaces
, as
);
3132 g_hash_table_foreach(views
, mtree_print_flatview
, &fvi
);
3135 g_hash_table_foreach_remove(views
, mtree_info_flatview_free
, 0);
3136 g_hash_table_unref(views
);
3141 QTAILQ_INIT(&ml_head
);
3143 QTAILQ_FOREACH(as
, &address_spaces
, address_spaces_link
) {
3144 qemu_printf("address-space: %s\n", as
->name
);
3145 mtree_print_mr(as
->root
, 1, 0, &ml_head
, owner
, disabled
);
3149 /* print aliased regions */
3150 QTAILQ_FOREACH(ml
, &ml_head
, mrqueue
) {
3151 qemu_printf("memory-region: %s\n", memory_region_name(ml
->mr
));
3152 mtree_print_mr(ml
->mr
, 1, 0, &ml_head
, owner
, disabled
);
3156 QTAILQ_FOREACH_SAFE(ml
, &ml_head
, mrqueue
, ml2
) {
3161 void memory_region_init_ram(MemoryRegion
*mr
,
3162 struct Object
*owner
,
3167 DeviceState
*owner_dev
;
3170 memory_region_init_ram_nomigrate(mr
, owner
, name
, size
, &err
);
3172 error_propagate(errp
, err
);
3175 /* This will assert if owner is neither NULL nor a DeviceState.
3176 * We only want the owner here for the purposes of defining a
3177 * unique name for migration. TODO: Ideally we should implement
3178 * a naming scheme for Objects which are not DeviceStates, in
3179 * which case we can relax this restriction.
3181 owner_dev
= DEVICE(owner
);
3182 vmstate_register_ram(mr
, owner_dev
);
3185 void memory_region_init_rom(MemoryRegion
*mr
,
3186 struct Object
*owner
,
3191 DeviceState
*owner_dev
;
3194 memory_region_init_rom_nomigrate(mr
, owner
, name
, size
, &err
);
3196 error_propagate(errp
, err
);
3199 /* This will assert if owner is neither NULL nor a DeviceState.
3200 * We only want the owner here for the purposes of defining a
3201 * unique name for migration. TODO: Ideally we should implement
3202 * a naming scheme for Objects which are not DeviceStates, in
3203 * which case we can relax this restriction.
3205 owner_dev
= DEVICE(owner
);
3206 vmstate_register_ram(mr
, owner_dev
);
3209 void memory_region_init_rom_device(MemoryRegion
*mr
,
3210 struct Object
*owner
,
3211 const MemoryRegionOps
*ops
,
3217 DeviceState
*owner_dev
;
3220 memory_region_init_rom_device_nomigrate(mr
, owner
, ops
, opaque
,
3223 error_propagate(errp
, err
);
3226 /* This will assert if owner is neither NULL nor a DeviceState.
3227 * We only want the owner here for the purposes of defining a
3228 * unique name for migration. TODO: Ideally we should implement
3229 * a naming scheme for Objects which are not DeviceStates, in
3230 * which case we can relax this restriction.
3232 owner_dev
= DEVICE(owner
);
3233 vmstate_register_ram(mr
, owner_dev
);
3236 static const TypeInfo memory_region_info
= {
3237 .parent
= TYPE_OBJECT
,
3238 .name
= TYPE_MEMORY_REGION
,
3239 .class_size
= sizeof(MemoryRegionClass
),
3240 .instance_size
= sizeof(MemoryRegion
),
3241 .instance_init
= memory_region_initfn
,
3242 .instance_finalize
= memory_region_finalize
,
3245 static const TypeInfo iommu_memory_region_info
= {
3246 .parent
= TYPE_MEMORY_REGION
,
3247 .name
= TYPE_IOMMU_MEMORY_REGION
,
3248 .class_size
= sizeof(IOMMUMemoryRegionClass
),
3249 .instance_size
= sizeof(IOMMUMemoryRegion
),
3250 .instance_init
= iommu_memory_region_initfn
,
3254 static void memory_register_types(void)
3256 type_register_static(&memory_region_info
);
3257 type_register_static(&iommu_memory_region_info
);
3260 type_init(memory_register_types
)