1 = How to use the QAPI code generator =
3 * Note: as of this writing, QMP does not use QAPI. Eventually QMP
4 commands will be converted to use QAPI internally. The following
5 information describes QMP/QAPI as it will exist after the
8 QAPI is a native C API within QEMU which provides management-level
9 functionality to internal/external users. For external
10 users/processes, this interface is made available by a JSON-based
11 QEMU Monitor protocol that is provided by the QMP server.
13 To map QMP-defined interfaces to the native C QAPI implementations,
14 a JSON-based schema is used to define types and function
15 signatures, and a set of scripts is used to generate types/signatures,
16 and marshaling/dispatch code. The QEMU Guest Agent also uses these
17 scripts, paired with a separate schema, to generate
18 marshaling/dispatch code for the guest agent server running in the
21 This document will describe how the schemas, scripts, and resulting
25 == QMP/Guest agent schema ==
27 This file defines the types, commands, and events used by QMP. It should
28 fully describe the interface used by QMP.
30 This file is designed to be loosely based on JSON although it's technically
31 executable Python. While dictionaries are used, they are parsed as
32 OrderedDicts so that ordering is preserved.
34 There are two basic syntaxes used, type definitions and command definitions.
36 The first syntax defines a type and is represented by a dictionary. There are
37 three kinds of user-defined types that are supported: complex types,
38 enumeration types and union types.
40 Generally speaking, types definitions should always use CamelCase for the type
41 names. Command names should be all lower case with words separated by a hyphen.
46 The QAPI schema definitions can be modularized using the 'include' directive:
48 { 'include': 'path/to/file.json'}
50 The directive is evaluated recursively, and include paths are relative to the
51 file using the directive. Multiple includes of the same file are safe.
56 A complex type is a dictionary containing a single key whose value is a
57 dictionary. This corresponds to a struct in C or an Object in JSON. An
58 example of a complex type is:
61 'data': { 'member1': 'str', 'member2': 'int', '*member3': 'str' } }
63 The use of '*' as a prefix to the name means the member is optional.
65 The default initialization value of an optional argument should not be changed
66 between versions of QEMU unless the new default maintains backward
67 compatibility to the user-visible behavior of the old default.
69 With proper documentation, this policy still allows some flexibility; for
70 example, documenting that a default of 0 picks an optimal buffer size allows
71 one release to declare the optimal size at 512 while another release declares
72 the optimal size at 4096 - the user-visible behavior is not the bytes used by
73 the buffer, but the fact that the buffer was optimal size.
75 On input structures (only mentioned in the 'data' side of a command), changing
76 from mandatory to optional is safe (older clients will supply the option, and
77 newer clients can benefit from the default); changing from optional to
78 mandatory is backwards incompatible (older clients may be omitting the option,
79 and must continue to work).
81 On output structures (only mentioned in the 'returns' side of a command),
82 changing from mandatory to optional is in general unsafe (older clients may be
83 expecting the field, and could crash if it is missing), although it can be done
84 if the only way that the optional argument will be omitted is when it is
85 triggered by the presence of a new input flag to the command that older clients
86 don't know to send. Changing from optional to mandatory is safe.
88 A structure that is used in both input and output of various commands
89 must consider the backwards compatibility constraints of both directions
92 A complex type definition can specify another complex type as its base.
93 In this case, the fields of the base type are included as top-level fields
94 of the new complex type's dictionary in the QMP wire format. An example
97 { 'type': 'BlockdevOptionsGenericFormat', 'data': { 'file': 'str' } }
98 { 'type': 'BlockdevOptionsGenericCOWFormat',
99 'base': 'BlockdevOptionsGenericFormat',
100 'data': { '*backing': 'str' } }
102 An example BlockdevOptionsGenericCOWFormat object on the wire could use
103 both fields like this:
105 { "file": "/some/place/my-image",
106 "backing": "/some/place/my-backing-file" }
108 === Enumeration types ===
110 An enumeration type is a dictionary containing a single key whose value is a
111 list of strings. An example enumeration is:
113 { 'enum': 'MyEnum', 'data': [ 'value1', 'value2', 'value3' ] }
117 Union types are used to let the user choose between several different data
118 types. A union type is defined using a dictionary as explained in the
119 following paragraphs.
122 A simple union type defines a mapping from discriminator values to data types
123 like in this example:
125 { 'type': 'FileOptions', 'data': { 'filename': 'str' } }
126 { 'type': 'Qcow2Options',
127 'data': { 'backing-file': 'str', 'lazy-refcounts': 'bool' } }
129 { 'union': 'BlockdevOptions',
130 'data': { 'file': 'FileOptions',
131 'qcow2': 'Qcow2Options' } }
133 In the QMP wire format, a simple union is represented by a dictionary that
134 contains the 'type' field as a discriminator, and a 'data' field that is of the
135 specified data type corresponding to the discriminator value:
137 { "type": "qcow2", "data" : { "backing-file": "/some/place/my-image",
138 "lazy-refcounts": true } }
141 A union definition can specify a complex type as its base. In this case, the
142 fields of the complex type are included as top-level fields of the union
143 dictionary in the QMP wire format. An example definition is:
145 { 'type': 'BlockdevCommonOptions', 'data': { 'readonly': 'bool' } }
146 { 'union': 'BlockdevOptions',
147 'base': 'BlockdevCommonOptions',
148 'data': { 'raw': 'RawOptions',
149 'qcow2': 'Qcow2Options' } }
151 And it looks like this on the wire:
155 "data" : { "backing-file": "/some/place/my-image",
156 "lazy-refcounts": true } }
159 Flat union types avoid the nesting on the wire. They are used whenever a
160 specific field of the base type is declared as the discriminator ('type' is
161 then no longer generated). The discriminator must be of enumeration type.
162 The above example can then be modified as follows:
164 { 'enum': 'BlockdevDriver', 'data': [ 'raw', 'qcow2' ] }
165 { 'type': 'BlockdevCommonOptions',
166 'data': { 'driver': 'BlockdevDriver', 'readonly': 'bool' } }
167 { 'union': 'BlockdevOptions',
168 'base': 'BlockdevCommonOptions',
169 'discriminator': 'driver',
170 'data': { 'raw': 'RawOptions',
171 'qcow2': 'Qcow2Options' } }
173 Resulting in this JSON object:
177 "backing-file": "/some/place/my-image",
178 "lazy-refcounts": true }
181 A special type of unions are anonymous unions. They don't form a dictionary in
182 the wire format but allow the direct use of different types in their place. As
183 they aren't structured, they don't have any explicit discriminator but use
184 the (QObject) data type of their value as an implicit discriminator. This means
185 that they are restricted to using only one discriminator value per QObject
186 type. For example, you cannot have two different complex types in an anonymous
187 union, or two different integer types.
189 Anonymous unions are declared using an empty dictionary as their discriminator.
190 The discriminator values never appear on the wire, they are only used in the
191 generated C code. Anonymous unions cannot have a base type.
193 { 'union': 'BlockRef',
195 'data': { 'definition': 'BlockdevOptions',
196 'reference': 'str' } }
198 This example allows using both of the following example objects:
200 { "file": "my_existing_block_device_id" }
201 { "file": { "driver": "file",
203 "filename": "/tmp/mydisk.qcow2" } }
208 Commands are defined by using a list containing three members. The first
209 member is the command name, the second member is a dictionary containing
210 arguments, and the third member is the return type.
212 An example command is:
214 { 'command': 'my-command',
215 'data': { 'arg1': 'str', '*arg2': 'str' },
220 Events are defined with the keyword 'event'. When 'data' is also specified,
221 additional info will be included in the event. Finally there will be C API
222 generated in qapi-event.h; when called by QEMU code, a message with timestamp
223 will be emitted on the wire. If timestamp is -1, it means failure to retrieve
228 { 'event': 'EVENT_C',
229 'data': { '*a': 'int', 'b': 'str' } }
231 Resulting in this JSON object:
233 { "event": "EVENT_C",
234 "data": { "b": "test string" },
235 "timestamp": { "seconds": 1267020223, "microseconds": 435656 } }
237 == Code generation ==
239 Schemas are fed into 3 scripts to generate all the code/files that, paired
240 with the core QAPI libraries, comprise everything required to take JSON
241 commands read in by a QMP/guest agent server, unmarshal the arguments into
242 the underlying C types, call into the corresponding C function, and map the
243 response back to a QMP/guest agent response to be returned to the user.
245 As an example, we'll use the following schema, which describes a single
246 complex user-defined type (which will produce a C struct, along with a list
247 node structure that can be used to chain together a list of such types in
248 case we want to accept/return a list of this type with a command), and a
249 command which takes that type as a parameter and returns the same type:
251 $ cat example-schema.json
252 { 'type': 'UserDefOne',
253 'data': { 'integer': 'int', 'string': 'str' } }
255 { 'command': 'my-command',
256 'data': {'arg1': 'UserDefOne'},
257 'returns': 'UserDefOne' }
259 === scripts/qapi-types.py ===
261 Used to generate the C types defined by a schema. The following files are
264 $(prefix)qapi-types.h - C types corresponding to types defined in
265 the schema you pass in
266 $(prefix)qapi-types.c - Cleanup functions for the above C types
268 The $(prefix) is an optional parameter used as a namespace to keep the
269 generated code from one schema/code-generation separated from others so code
270 can be generated/used from multiple schemas without clobbering previously
275 $ python scripts/qapi-types.py --output-dir="qapi-generated" \
276 --prefix="example-" --input-file=example-schema.json
277 $ cat qapi-generated/example-qapi-types.c
278 [Uninteresting stuff omitted...]
280 void qapi_free_UserDefOneList(UserDefOneList * obj)
282 QapiDeallocVisitor *md;
289 md = qapi_dealloc_visitor_new();
290 v = qapi_dealloc_get_visitor(md);
291 visit_type_UserDefOneList(v, &obj, NULL, NULL);
292 qapi_dealloc_visitor_cleanup(md);
295 void qapi_free_UserDefOne(UserDefOne * obj)
297 QapiDeallocVisitor *md;
304 md = qapi_dealloc_visitor_new();
305 v = qapi_dealloc_get_visitor(md);
306 visit_type_UserDefOne(v, &obj, NULL, NULL);
307 qapi_dealloc_visitor_cleanup(md);
310 $ cat qapi-generated/example-qapi-types.h
311 [Uninteresting stuff omitted...]
313 #ifndef EXAMPLE_QAPI_TYPES_H
314 #define EXAMPLE_QAPI_TYPES_H
316 [Builtin types omitted...]
318 typedef struct UserDefOne UserDefOne;
320 typedef struct UserDefOneList
326 struct UserDefOneList *next;
329 [Functions on builtin types omitted...]
337 void qapi_free_UserDefOneList(UserDefOneList * obj);
338 void qapi_free_UserDefOne(UserDefOne * obj);
342 === scripts/qapi-visit.py ===
344 Used to generate the visitor functions used to walk through and convert
345 a QObject (as provided by QMP) to a native C data structure and
346 vice-versa, as well as the visitor function used to dealloc a complex
347 schema-defined C type.
349 The following files are generated:
351 $(prefix)qapi-visit.c: visitor function for a particular C type, used
352 to automagically convert QObjects into the
353 corresponding C type and vice-versa, as well
354 as for deallocating memory for an existing C
357 $(prefix)qapi-visit.h: declarations for previously mentioned visitor
362 $ python scripts/qapi-visit.py --output-dir="qapi-generated"
363 --prefix="example-" --input-file=example-schema.json
364 $ cat qapi-generated/example-qapi-visit.c
365 [Uninteresting stuff omitted...]
367 static void visit_type_UserDefOne_fields(Visitor *m, UserDefOne ** obj, Error **errp)
370 visit_type_int(m, &(*obj)->integer, "integer", &err);
374 visit_type_str(m, &(*obj)->string, "string", &err);
380 error_propagate(errp, err);
383 void visit_type_UserDefOne(Visitor *m, UserDefOne ** obj, const char *name, Error **errp)
387 visit_start_struct(m, (void **)obj, "UserDefOne", name, sizeof(UserDefOne), &err);
390 visit_type_UserDefOne_fields(m, obj, errp);
392 visit_end_struct(m, &err);
394 error_propagate(errp, err);
397 void visit_type_UserDefOneList(Visitor *m, UserDefOneList ** obj, const char *name, Error **errp)
400 GenericList *i, **prev;
402 visit_start_list(m, name, &err);
407 for (prev = (GenericList **)obj;
408 !err && (i = visit_next_list(m, prev, &err)) != NULL;
410 UserDefOneList *native_i = (UserDefOneList *)i;
411 visit_type_UserDefOne(m, &native_i->value, NULL, &err);
414 error_propagate(errp, err);
416 visit_end_list(m, &err);
418 error_propagate(errp, err);
420 $ python scripts/qapi-commands.py --output-dir="qapi-generated" \
421 --prefix="example-" --input-file=example-schema.json
422 $ cat qapi-generated/example-qapi-visit.h
423 [Uninteresting stuff omitted...]
425 #ifndef EXAMPLE_QAPI_VISIT_H
426 #define EXAMPLE_QAPI_VISIT_H
428 [Visitors for builtin types omitted...]
430 void visit_type_UserDefOne(Visitor *m, UserDefOne ** obj, const char *name, Error **errp);
431 void visit_type_UserDefOneList(Visitor *m, UserDefOneList ** obj, const char *name, Error **errp);
435 === scripts/qapi-commands.py ===
437 Used to generate the marshaling/dispatch functions for the commands defined
438 in the schema. The following files are generated:
440 $(prefix)qmp-marshal.c: command marshal/dispatch functions for each
441 QMP command defined in the schema. Functions
442 generated by qapi-visit.py are used to
443 convert QObjects received from the wire into
444 function parameters, and uses the same
445 visitor functions to convert native C return
446 values to QObjects from transmission back
449 $(prefix)qmp-commands.h: Function prototypes for the QMP commands
450 specified in the schema.
454 $ cat qapi-generated/example-qmp-marshal.c
455 [Uninteresting stuff omitted...]
457 static void qmp_marshal_output_my_command(UserDefOne * ret_in, QObject **ret_out, Error **errp)
459 Error *local_err = NULL;
460 QmpOutputVisitor *mo = qmp_output_visitor_new();
461 QapiDeallocVisitor *md;
464 v = qmp_output_get_visitor(mo);
465 visit_type_UserDefOne(v, &ret_in, "unused", &local_err);
469 *ret_out = qmp_output_get_qobject(mo);
472 error_propagate(errp, local_err);
473 qmp_output_visitor_cleanup(mo);
474 md = qapi_dealloc_visitor_new();
475 v = qapi_dealloc_get_visitor(md);
476 visit_type_UserDefOne(v, &ret_in, "unused", NULL);
477 qapi_dealloc_visitor_cleanup(md);
480 static void qmp_marshal_input_my_command(QDict *args, QObject **ret, Error **errp)
482 Error *local_err = NULL;
483 UserDefOne * retval = NULL;
484 QmpInputVisitor *mi = qmp_input_visitor_new_strict(QOBJECT(args));
485 QapiDeallocVisitor *md;
487 UserDefOne * arg1 = NULL;
489 v = qmp_input_get_visitor(mi);
490 visit_type_UserDefOne(v, &arg1, "arg1", &local_err);
495 retval = qmp_my_command(arg1, &local_err);
500 qmp_marshal_output_my_command(retval, ret, &local_err);
503 error_propagate(errp, local_err);
504 qmp_input_visitor_cleanup(mi);
505 md = qapi_dealloc_visitor_new();
506 v = qapi_dealloc_get_visitor(md);
507 visit_type_UserDefOne(v, &arg1, "arg1", NULL);
508 qapi_dealloc_visitor_cleanup(md);
512 static void qmp_init_marshal(void)
514 qmp_register_command("my-command", qmp_marshal_input_my_command, QCO_NO_OPTIONS);
517 qapi_init(qmp_init_marshal);
518 $ cat qapi-generated/example-qmp-commands.h
519 [Uninteresting stuff omitted...]
521 #ifndef EXAMPLE_QMP_COMMANDS_H
522 #define EXAMPLE_QMP_COMMANDS_H
524 #include "example-qapi-types.h"
525 #include "qapi/qmp/qdict.h"
526 #include "qapi/error.h"
528 UserDefOne * qmp_my_command(UserDefOne * arg1, Error **errp);