2 * ARM implementation of KVM hooks
4 * Copyright Christoffer Dall 2009-2010
5 * Copyright Mian-M. Hamayun 2013, Virtual Open Systems
6 * Copyright Alex Bennée 2014, Linaro
8 * This work is licensed under the terms of the GNU GPL, version 2 or later.
9 * See the COPYING file in the top-level directory.
13 #include "qemu/osdep.h"
14 #include <sys/ioctl.h>
16 #include <linux/kvm.h>
18 #include "qemu/timer.h"
19 #include "qemu/error-report.h"
20 #include "qemu/main-loop.h"
21 #include "qom/object.h"
22 #include "qapi/error.h"
23 #include "sysemu/sysemu.h"
24 #include "sysemu/runstate.h"
25 #include "sysemu/kvm.h"
26 #include "sysemu/kvm_int.h"
30 #include "internals.h"
31 #include "hw/pci/pci.h"
32 #include "exec/memattrs.h"
33 #include "exec/address-spaces.h"
34 #include "exec/gdbstub.h"
35 #include "hw/boards.h"
37 #include "qapi/visitor.h"
39 #include "hw/acpi/acpi.h"
40 #include "hw/acpi/ghes.h"
42 const KVMCapabilityInfo kvm_arch_required_capabilities
[] = {
46 static bool cap_has_mp_state
;
47 static bool cap_has_inject_serror_esr
;
48 static bool cap_has_inject_ext_dabt
;
51 * ARMHostCPUFeatures: information about the host CPU (identified
52 * by asking the host kernel)
54 typedef struct ARMHostCPUFeatures
{
58 const char *dtb_compatible
;
61 static ARMHostCPUFeatures arm_host_cpu_features
;
67 * Initialize (or reinitialize) the VCPU by invoking the
68 * KVM_ARM_VCPU_INIT ioctl with the CPU type and feature
69 * bitmask specified in the CPUState.
71 * Returns: 0 if success else < 0 error code
73 static int kvm_arm_vcpu_init(ARMCPU
*cpu
)
75 struct kvm_vcpu_init init
;
77 init
.target
= cpu
->kvm_target
;
78 memcpy(init
.features
, cpu
->kvm_init_features
, sizeof(init
.features
));
80 return kvm_vcpu_ioctl(CPU(cpu
), KVM_ARM_VCPU_INIT
, &init
);
84 * kvm_arm_vcpu_finalize:
86 * @feature: feature to finalize
88 * Finalizes the configuration of the specified VCPU feature by
89 * invoking the KVM_ARM_VCPU_FINALIZE ioctl. Features requiring
90 * this are documented in the "KVM_ARM_VCPU_FINALIZE" section of
91 * KVM's API documentation.
93 * Returns: 0 if success else < 0 error code
95 static int kvm_arm_vcpu_finalize(ARMCPU
*cpu
, int feature
)
97 return kvm_vcpu_ioctl(CPU(cpu
), KVM_ARM_VCPU_FINALIZE
, &feature
);
100 bool kvm_arm_create_scratch_host_vcpu(const uint32_t *cpus_to_try
,
102 struct kvm_vcpu_init
*init
)
104 int ret
= 0, kvmfd
= -1, vmfd
= -1, cpufd
= -1;
107 kvmfd
= qemu_open_old("/dev/kvm", O_RDWR
);
111 max_vm_pa_size
= ioctl(kvmfd
, KVM_CHECK_EXTENSION
, KVM_CAP_ARM_VM_IPA_SIZE
);
112 if (max_vm_pa_size
< 0) {
116 vmfd
= ioctl(kvmfd
, KVM_CREATE_VM
, max_vm_pa_size
);
117 } while (vmfd
== -1 && errno
== EINTR
);
121 cpufd
= ioctl(vmfd
, KVM_CREATE_VCPU
, 0);
127 /* Caller doesn't want the VCPU to be initialized, so skip it */
131 if (init
->target
== -1) {
132 struct kvm_vcpu_init preferred
;
134 ret
= ioctl(vmfd
, KVM_ARM_PREFERRED_TARGET
, &preferred
);
136 init
->target
= preferred
.target
;
140 ret
= ioctl(cpufd
, KVM_ARM_VCPU_INIT
, init
);
144 } else if (cpus_to_try
) {
145 /* Old kernel which doesn't know about the
146 * PREFERRED_TARGET ioctl: we know it will only support
147 * creating one kind of guest CPU which is its preferred
150 struct kvm_vcpu_init
try;
152 while (*cpus_to_try
!= QEMU_KVM_ARM_TARGET_NONE
) {
153 try.target
= *cpus_to_try
++;
154 memcpy(try.features
, init
->features
, sizeof(init
->features
));
155 ret
= ioctl(cpufd
, KVM_ARM_VCPU_INIT
, &try);
163 init
->target
= try.target
;
165 /* Treat a NULL cpus_to_try argument the same as an empty
166 * list, which means we will fail the call since this must
167 * be an old kernel which doesn't support PREFERRED_TARGET.
193 void kvm_arm_destroy_scratch_host_vcpu(int *fdarray
)
197 for (i
= 2; i
>= 0; i
--) {
202 static int read_sys_reg32(int fd
, uint32_t *pret
, uint64_t id
)
205 struct kvm_one_reg idreg
= { .id
= id
, .addr
= (uintptr_t)&ret
};
208 assert((id
& KVM_REG_SIZE_MASK
) == KVM_REG_SIZE_U64
);
209 err
= ioctl(fd
, KVM_GET_ONE_REG
, &idreg
);
217 static int read_sys_reg64(int fd
, uint64_t *pret
, uint64_t id
)
219 struct kvm_one_reg idreg
= { .id
= id
, .addr
= (uintptr_t)pret
};
221 assert((id
& KVM_REG_SIZE_MASK
) == KVM_REG_SIZE_U64
);
222 return ioctl(fd
, KVM_GET_ONE_REG
, &idreg
);
225 static bool kvm_arm_pauth_supported(void)
227 return (kvm_check_extension(kvm_state
, KVM_CAP_ARM_PTRAUTH_ADDRESS
) &&
228 kvm_check_extension(kvm_state
, KVM_CAP_ARM_PTRAUTH_GENERIC
));
231 static bool kvm_arm_get_host_cpu_features(ARMHostCPUFeatures
*ahcf
)
233 /* Identify the feature bits corresponding to the host CPU, and
234 * fill out the ARMHostCPUClass fields accordingly. To do this
235 * we have to create a scratch VM, create a single CPU inside it,
236 * and then query that CPU for the relevant ID registers.
240 bool pmu_supported
= false;
241 uint64_t features
= 0;
244 /* Old kernels may not know about the PREFERRED_TARGET ioctl: however
245 * we know these will only support creating one kind of guest CPU,
246 * which is its preferred CPU type. Fortunately these old kernels
247 * support only a very limited number of CPUs.
249 static const uint32_t cpus_to_try
[] = {
250 KVM_ARM_TARGET_AEM_V8
,
251 KVM_ARM_TARGET_FOUNDATION_V8
,
252 KVM_ARM_TARGET_CORTEX_A57
,
253 QEMU_KVM_ARM_TARGET_NONE
256 * target = -1 informs kvm_arm_create_scratch_host_vcpu()
257 * to use the preferred target
259 struct kvm_vcpu_init init
= { .target
= -1, };
262 * Ask for SVE if supported, so that we can query ID_AA64ZFR0,
263 * which is otherwise RAZ.
265 sve_supported
= kvm_arm_sve_supported();
267 init
.features
[0] |= 1 << KVM_ARM_VCPU_SVE
;
271 * Ask for Pointer Authentication if supported, so that we get
272 * the unsanitized field values for AA64ISAR1_EL1.
274 if (kvm_arm_pauth_supported()) {
275 init
.features
[0] |= (1 << KVM_ARM_VCPU_PTRAUTH_ADDRESS
|
276 1 << KVM_ARM_VCPU_PTRAUTH_GENERIC
);
279 if (kvm_arm_pmu_supported()) {
280 init
.features
[0] |= 1 << KVM_ARM_VCPU_PMU_V3
;
281 pmu_supported
= true;
284 if (!kvm_arm_create_scratch_host_vcpu(cpus_to_try
, fdarray
, &init
)) {
288 ahcf
->target
= init
.target
;
289 ahcf
->dtb_compatible
= "arm,arm-v8";
291 err
= read_sys_reg64(fdarray
[2], &ahcf
->isar
.id_aa64pfr0
,
292 ARM64_SYS_REG(3, 0, 0, 4, 0));
293 if (unlikely(err
< 0)) {
295 * Before v4.15, the kernel only exposed a limited number of system
296 * registers, not including any of the interesting AArch64 ID regs.
297 * For the most part we could leave these fields as zero with minimal
298 * effect, since this does not affect the values seen by the guest.
300 * However, it could cause problems down the line for QEMU,
301 * so provide a minimal v8.0 default.
303 * ??? Could read MIDR and use knowledge from cpu64.c.
304 * ??? Could map a page of memory into our temp guest and
305 * run the tiniest of hand-crafted kernels to extract
306 * the values seen by the guest.
307 * ??? Either of these sounds like too much effort just
308 * to work around running a modern host kernel.
310 ahcf
->isar
.id_aa64pfr0
= 0x00000011; /* EL1&0, AArch64 only */
313 err
|= read_sys_reg64(fdarray
[2], &ahcf
->isar
.id_aa64pfr1
,
314 ARM64_SYS_REG(3, 0, 0, 4, 1));
315 err
|= read_sys_reg64(fdarray
[2], &ahcf
->isar
.id_aa64smfr0
,
316 ARM64_SYS_REG(3, 0, 0, 4, 5));
317 err
|= read_sys_reg64(fdarray
[2], &ahcf
->isar
.id_aa64dfr0
,
318 ARM64_SYS_REG(3, 0, 0, 5, 0));
319 err
|= read_sys_reg64(fdarray
[2], &ahcf
->isar
.id_aa64dfr1
,
320 ARM64_SYS_REG(3, 0, 0, 5, 1));
321 err
|= read_sys_reg64(fdarray
[2], &ahcf
->isar
.id_aa64isar0
,
322 ARM64_SYS_REG(3, 0, 0, 6, 0));
323 err
|= read_sys_reg64(fdarray
[2], &ahcf
->isar
.id_aa64isar1
,
324 ARM64_SYS_REG(3, 0, 0, 6, 1));
325 err
|= read_sys_reg64(fdarray
[2], &ahcf
->isar
.id_aa64isar2
,
326 ARM64_SYS_REG(3, 0, 0, 6, 2));
327 err
|= read_sys_reg64(fdarray
[2], &ahcf
->isar
.id_aa64mmfr0
,
328 ARM64_SYS_REG(3, 0, 0, 7, 0));
329 err
|= read_sys_reg64(fdarray
[2], &ahcf
->isar
.id_aa64mmfr1
,
330 ARM64_SYS_REG(3, 0, 0, 7, 1));
331 err
|= read_sys_reg64(fdarray
[2], &ahcf
->isar
.id_aa64mmfr2
,
332 ARM64_SYS_REG(3, 0, 0, 7, 2));
335 * Note that if AArch32 support is not present in the host,
336 * the AArch32 sysregs are present to be read, but will
337 * return UNKNOWN values. This is neither better nor worse
338 * than skipping the reads and leaving 0, as we must avoid
339 * considering the values in every case.
341 err
|= read_sys_reg32(fdarray
[2], &ahcf
->isar
.id_pfr0
,
342 ARM64_SYS_REG(3, 0, 0, 1, 0));
343 err
|= read_sys_reg32(fdarray
[2], &ahcf
->isar
.id_pfr1
,
344 ARM64_SYS_REG(3, 0, 0, 1, 1));
345 err
|= read_sys_reg32(fdarray
[2], &ahcf
->isar
.id_dfr0
,
346 ARM64_SYS_REG(3, 0, 0, 1, 2));
347 err
|= read_sys_reg32(fdarray
[2], &ahcf
->isar
.id_mmfr0
,
348 ARM64_SYS_REG(3, 0, 0, 1, 4));
349 err
|= read_sys_reg32(fdarray
[2], &ahcf
->isar
.id_mmfr1
,
350 ARM64_SYS_REG(3, 0, 0, 1, 5));
351 err
|= read_sys_reg32(fdarray
[2], &ahcf
->isar
.id_mmfr2
,
352 ARM64_SYS_REG(3, 0, 0, 1, 6));
353 err
|= read_sys_reg32(fdarray
[2], &ahcf
->isar
.id_mmfr3
,
354 ARM64_SYS_REG(3, 0, 0, 1, 7));
355 err
|= read_sys_reg32(fdarray
[2], &ahcf
->isar
.id_isar0
,
356 ARM64_SYS_REG(3, 0, 0, 2, 0));
357 err
|= read_sys_reg32(fdarray
[2], &ahcf
->isar
.id_isar1
,
358 ARM64_SYS_REG(3, 0, 0, 2, 1));
359 err
|= read_sys_reg32(fdarray
[2], &ahcf
->isar
.id_isar2
,
360 ARM64_SYS_REG(3, 0, 0, 2, 2));
361 err
|= read_sys_reg32(fdarray
[2], &ahcf
->isar
.id_isar3
,
362 ARM64_SYS_REG(3, 0, 0, 2, 3));
363 err
|= read_sys_reg32(fdarray
[2], &ahcf
->isar
.id_isar4
,
364 ARM64_SYS_REG(3, 0, 0, 2, 4));
365 err
|= read_sys_reg32(fdarray
[2], &ahcf
->isar
.id_isar5
,
366 ARM64_SYS_REG(3, 0, 0, 2, 5));
367 err
|= read_sys_reg32(fdarray
[2], &ahcf
->isar
.id_mmfr4
,
368 ARM64_SYS_REG(3, 0, 0, 2, 6));
369 err
|= read_sys_reg32(fdarray
[2], &ahcf
->isar
.id_isar6
,
370 ARM64_SYS_REG(3, 0, 0, 2, 7));
372 err
|= read_sys_reg32(fdarray
[2], &ahcf
->isar
.mvfr0
,
373 ARM64_SYS_REG(3, 0, 0, 3, 0));
374 err
|= read_sys_reg32(fdarray
[2], &ahcf
->isar
.mvfr1
,
375 ARM64_SYS_REG(3, 0, 0, 3, 1));
376 err
|= read_sys_reg32(fdarray
[2], &ahcf
->isar
.mvfr2
,
377 ARM64_SYS_REG(3, 0, 0, 3, 2));
378 err
|= read_sys_reg32(fdarray
[2], &ahcf
->isar
.id_pfr2
,
379 ARM64_SYS_REG(3, 0, 0, 3, 4));
380 err
|= read_sys_reg32(fdarray
[2], &ahcf
->isar
.id_dfr1
,
381 ARM64_SYS_REG(3, 0, 0, 3, 5));
382 err
|= read_sys_reg32(fdarray
[2], &ahcf
->isar
.id_mmfr5
,
383 ARM64_SYS_REG(3, 0, 0, 3, 6));
386 * DBGDIDR is a bit complicated because the kernel doesn't
387 * provide an accessor for it in 64-bit mode, which is what this
388 * scratch VM is in, and there's no architected "64-bit sysreg
389 * which reads the same as the 32-bit register" the way there is
390 * for other ID registers. Instead we synthesize a value from the
391 * AArch64 ID_AA64DFR0, the same way the kernel code in
392 * arch/arm64/kvm/sys_regs.c:trap_dbgidr() does.
393 * We only do this if the CPU supports AArch32 at EL1.
395 if (FIELD_EX32(ahcf
->isar
.id_aa64pfr0
, ID_AA64PFR0
, EL1
) >= 2) {
396 int wrps
= FIELD_EX64(ahcf
->isar
.id_aa64dfr0
, ID_AA64DFR0
, WRPS
);
397 int brps
= FIELD_EX64(ahcf
->isar
.id_aa64dfr0
, ID_AA64DFR0
, BRPS
);
399 FIELD_EX64(ahcf
->isar
.id_aa64dfr0
, ID_AA64DFR0
, CTX_CMPS
);
400 int version
= 6; /* ARMv8 debug architecture */
402 !!FIELD_EX32(ahcf
->isar
.id_aa64pfr0
, ID_AA64PFR0
, EL3
);
403 uint32_t dbgdidr
= 0;
405 dbgdidr
= FIELD_DP32(dbgdidr
, DBGDIDR
, WRPS
, wrps
);
406 dbgdidr
= FIELD_DP32(dbgdidr
, DBGDIDR
, BRPS
, brps
);
407 dbgdidr
= FIELD_DP32(dbgdidr
, DBGDIDR
, CTX_CMPS
, ctx_cmps
);
408 dbgdidr
= FIELD_DP32(dbgdidr
, DBGDIDR
, VERSION
, version
);
409 dbgdidr
= FIELD_DP32(dbgdidr
, DBGDIDR
, NSUHD_IMP
, has_el3
);
410 dbgdidr
= FIELD_DP32(dbgdidr
, DBGDIDR
, SE_IMP
, has_el3
);
411 dbgdidr
|= (1 << 15); /* RES1 bit */
412 ahcf
->isar
.dbgdidr
= dbgdidr
;
416 /* PMCR_EL0 is only accessible if the vCPU has feature PMU_V3 */
417 err
|= read_sys_reg64(fdarray
[2], &ahcf
->isar
.reset_pmcr_el0
,
418 ARM64_SYS_REG(3, 3, 9, 12, 0));
423 * There is a range of kernels between kernel commit 73433762fcae
424 * and f81cb2c3ad41 which have a bug where the kernel doesn't
425 * expose SYS_ID_AA64ZFR0_EL1 via the ONE_REG API unless the VM has
426 * enabled SVE support, which resulted in an error rather than RAZ.
427 * So only read the register if we set KVM_ARM_VCPU_SVE above.
429 err
|= read_sys_reg64(fdarray
[2], &ahcf
->isar
.id_aa64zfr0
,
430 ARM64_SYS_REG(3, 0, 0, 4, 4));
434 kvm_arm_destroy_scratch_host_vcpu(fdarray
);
441 * We can assume any KVM supporting CPU is at least a v8
442 * with VFPv4+Neon; this in turn implies most of the other
445 features
|= 1ULL << ARM_FEATURE_V8
;
446 features
|= 1ULL << ARM_FEATURE_NEON
;
447 features
|= 1ULL << ARM_FEATURE_AARCH64
;
448 features
|= 1ULL << ARM_FEATURE_PMU
;
449 features
|= 1ULL << ARM_FEATURE_GENERIC_TIMER
;
451 ahcf
->features
= features
;
456 void kvm_arm_set_cpu_features_from_host(ARMCPU
*cpu
)
458 CPUARMState
*env
= &cpu
->env
;
460 if (!arm_host_cpu_features
.dtb_compatible
) {
461 if (!kvm_enabled() ||
462 !kvm_arm_get_host_cpu_features(&arm_host_cpu_features
)) {
463 /* We can't report this error yet, so flag that we need to
464 * in arm_cpu_realizefn().
466 cpu
->kvm_target
= QEMU_KVM_ARM_TARGET_NONE
;
467 cpu
->host_cpu_probe_failed
= true;
472 cpu
->kvm_target
= arm_host_cpu_features
.target
;
473 cpu
->dtb_compatible
= arm_host_cpu_features
.dtb_compatible
;
474 cpu
->isar
= arm_host_cpu_features
.isar
;
475 env
->features
= arm_host_cpu_features
.features
;
478 static bool kvm_no_adjvtime_get(Object
*obj
, Error
**errp
)
480 return !ARM_CPU(obj
)->kvm_adjvtime
;
483 static void kvm_no_adjvtime_set(Object
*obj
, bool value
, Error
**errp
)
485 ARM_CPU(obj
)->kvm_adjvtime
= !value
;
488 static bool kvm_steal_time_get(Object
*obj
, Error
**errp
)
490 return ARM_CPU(obj
)->kvm_steal_time
!= ON_OFF_AUTO_OFF
;
493 static void kvm_steal_time_set(Object
*obj
, bool value
, Error
**errp
)
495 ARM_CPU(obj
)->kvm_steal_time
= value
? ON_OFF_AUTO_ON
: ON_OFF_AUTO_OFF
;
498 /* KVM VCPU properties should be prefixed with "kvm-". */
499 void kvm_arm_add_vcpu_properties(ARMCPU
*cpu
)
501 CPUARMState
*env
= &cpu
->env
;
502 Object
*obj
= OBJECT(cpu
);
504 if (arm_feature(env
, ARM_FEATURE_GENERIC_TIMER
)) {
505 cpu
->kvm_adjvtime
= true;
506 object_property_add_bool(obj
, "kvm-no-adjvtime", kvm_no_adjvtime_get
,
507 kvm_no_adjvtime_set
);
508 object_property_set_description(obj
, "kvm-no-adjvtime",
509 "Set on to disable the adjustment of "
510 "the virtual counter. VM stopped time "
514 cpu
->kvm_steal_time
= ON_OFF_AUTO_AUTO
;
515 object_property_add_bool(obj
, "kvm-steal-time", kvm_steal_time_get
,
517 object_property_set_description(obj
, "kvm-steal-time",
518 "Set off to disable KVM steal time.");
521 bool kvm_arm_pmu_supported(void)
523 return kvm_check_extension(kvm_state
, KVM_CAP_ARM_PMU_V3
);
526 int kvm_arm_get_max_vm_ipa_size(MachineState
*ms
, bool *fixed_ipa
)
528 KVMState
*s
= KVM_STATE(ms
->accelerator
);
531 ret
= kvm_check_extension(s
, KVM_CAP_ARM_VM_IPA_SIZE
);
532 *fixed_ipa
= ret
<= 0;
534 return ret
> 0 ? ret
: 40;
537 int kvm_arch_get_default_type(MachineState
*ms
)
540 int size
= kvm_arm_get_max_vm_ipa_size(ms
, &fixed_ipa
);
541 return fixed_ipa
? 0 : size
;
544 int kvm_arch_init(MachineState
*ms
, KVMState
*s
)
547 /* For ARM interrupt delivery is always asynchronous,
548 * whether we are using an in-kernel VGIC or not.
550 kvm_async_interrupts_allowed
= true;
553 * PSCI wakes up secondary cores, so we always need to
554 * have vCPUs waiting in kernel space
556 kvm_halt_in_kernel_allowed
= true;
558 cap_has_mp_state
= kvm_check_extension(s
, KVM_CAP_MP_STATE
);
560 /* Check whether user space can specify guest syndrome value */
561 cap_has_inject_serror_esr
=
562 kvm_check_extension(s
, KVM_CAP_ARM_INJECT_SERROR_ESR
);
564 if (ms
->smp
.cpus
> 256 &&
565 !kvm_check_extension(s
, KVM_CAP_ARM_IRQ_LINE_LAYOUT_2
)) {
566 error_report("Using more than 256 vcpus requires a host kernel "
567 "with KVM_CAP_ARM_IRQ_LINE_LAYOUT_2");
571 if (kvm_check_extension(s
, KVM_CAP_ARM_NISV_TO_USER
)) {
572 if (kvm_vm_enable_cap(s
, KVM_CAP_ARM_NISV_TO_USER
, 0)) {
573 error_report("Failed to enable KVM_CAP_ARM_NISV_TO_USER cap");
575 /* Set status for supporting the external dabt injection */
576 cap_has_inject_ext_dabt
= kvm_check_extension(s
,
577 KVM_CAP_ARM_INJECT_EXT_DABT
);
581 if (s
->kvm_eager_split_size
) {
584 sizes
= kvm_vm_check_extension(s
, KVM_CAP_ARM_SUPPORTED_BLOCK_SIZES
);
586 s
->kvm_eager_split_size
= 0;
587 warn_report("Eager Page Split support not available");
588 } else if (!(s
->kvm_eager_split_size
& sizes
)) {
589 error_report("Eager Page Split requested chunk size not valid");
592 ret
= kvm_vm_enable_cap(s
, KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE
, 0,
593 s
->kvm_eager_split_size
);
595 error_report("Enabling of Eager Page Split failed: %s",
601 max_hw_wps
= kvm_check_extension(s
, KVM_CAP_GUEST_DEBUG_HW_WPS
);
602 hw_watchpoints
= g_array_sized_new(true, true,
603 sizeof(HWWatchpoint
), max_hw_wps
);
605 max_hw_bps
= kvm_check_extension(s
, KVM_CAP_GUEST_DEBUG_HW_BPS
);
606 hw_breakpoints
= g_array_sized_new(true, true,
607 sizeof(HWBreakpoint
), max_hw_bps
);
612 unsigned long kvm_arch_vcpu_id(CPUState
*cpu
)
614 return cpu
->cpu_index
;
617 /* We track all the KVM devices which need their memory addresses
618 * passing to the kernel in a list of these structures.
619 * When board init is complete we run through the list and
620 * tell the kernel the base addresses of the memory regions.
621 * We use a MemoryListener to track mapping and unmapping of
622 * the regions during board creation, so the board models don't
623 * need to do anything special for the KVM case.
625 * Sometimes the address must be OR'ed with some other fields
626 * (for example for KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION).
627 * @kda_addr_ormask aims at storing the value of those fields.
629 typedef struct KVMDevice
{
630 struct kvm_arm_device_addr kda
;
631 struct kvm_device_attr kdattr
;
632 uint64_t kda_addr_ormask
;
634 QSLIST_ENTRY(KVMDevice
) entries
;
638 static QSLIST_HEAD(, KVMDevice
) kvm_devices_head
;
640 static void kvm_arm_devlistener_add(MemoryListener
*listener
,
641 MemoryRegionSection
*section
)
645 QSLIST_FOREACH(kd
, &kvm_devices_head
, entries
) {
646 if (section
->mr
== kd
->mr
) {
647 kd
->kda
.addr
= section
->offset_within_address_space
;
652 static void kvm_arm_devlistener_del(MemoryListener
*listener
,
653 MemoryRegionSection
*section
)
657 QSLIST_FOREACH(kd
, &kvm_devices_head
, entries
) {
658 if (section
->mr
== kd
->mr
) {
664 static MemoryListener devlistener
= {
666 .region_add
= kvm_arm_devlistener_add
,
667 .region_del
= kvm_arm_devlistener_del
,
668 .priority
= MEMORY_LISTENER_PRIORITY_MIN
,
671 static void kvm_arm_set_device_addr(KVMDevice
*kd
)
673 struct kvm_device_attr
*attr
= &kd
->kdattr
;
676 /* If the device control API is available and we have a device fd on the
677 * KVMDevice struct, let's use the newer API
679 if (kd
->dev_fd
>= 0) {
680 uint64_t addr
= kd
->kda
.addr
;
682 addr
|= kd
->kda_addr_ormask
;
683 attr
->addr
= (uintptr_t)&addr
;
684 ret
= kvm_device_ioctl(kd
->dev_fd
, KVM_SET_DEVICE_ATTR
, attr
);
686 ret
= kvm_vm_ioctl(kvm_state
, KVM_ARM_SET_DEVICE_ADDR
, &kd
->kda
);
690 fprintf(stderr
, "Failed to set device address: %s\n",
696 static void kvm_arm_machine_init_done(Notifier
*notifier
, void *data
)
700 QSLIST_FOREACH_SAFE(kd
, &kvm_devices_head
, entries
, tkd
) {
701 if (kd
->kda
.addr
!= -1) {
702 kvm_arm_set_device_addr(kd
);
704 memory_region_unref(kd
->mr
);
705 QSLIST_REMOVE_HEAD(&kvm_devices_head
, entries
);
708 memory_listener_unregister(&devlistener
);
711 static Notifier notify
= {
712 .notify
= kvm_arm_machine_init_done
,
715 void kvm_arm_register_device(MemoryRegion
*mr
, uint64_t devid
, uint64_t group
,
716 uint64_t attr
, int dev_fd
, uint64_t addr_ormask
)
720 if (!kvm_irqchip_in_kernel()) {
724 if (QSLIST_EMPTY(&kvm_devices_head
)) {
725 memory_listener_register(&devlistener
, &address_space_memory
);
726 qemu_add_machine_init_done_notifier(¬ify
);
728 kd
= g_new0(KVMDevice
, 1);
732 kd
->kdattr
.flags
= 0;
733 kd
->kdattr
.group
= group
;
734 kd
->kdattr
.attr
= attr
;
736 kd
->kda_addr_ormask
= addr_ormask
;
737 QSLIST_INSERT_HEAD(&kvm_devices_head
, kd
, entries
);
738 memory_region_ref(kd
->mr
);
741 static int compare_u64(const void *a
, const void *b
)
743 if (*(uint64_t *)a
> *(uint64_t *)b
) {
746 if (*(uint64_t *)a
< *(uint64_t *)b
) {
753 * cpreg_values are sorted in ascending order by KVM register ID
754 * (see kvm_arm_init_cpreg_list). This allows us to cheaply find
755 * the storage for a KVM register by ID with a binary search.
757 static uint64_t *kvm_arm_get_cpreg_ptr(ARMCPU
*cpu
, uint64_t regidx
)
761 res
= bsearch(®idx
, cpu
->cpreg_indexes
, cpu
->cpreg_array_len
,
762 sizeof(uint64_t), compare_u64
);
765 return &cpu
->cpreg_values
[res
- cpu
->cpreg_indexes
];
769 * kvm_arm_reg_syncs_via_cpreg_list:
770 * @regidx: KVM register index
772 * Return true if this KVM register should be synchronized via the
773 * cpreg list of arbitrary system registers, false if it is synchronized
774 * by hand using code in kvm_arch_get/put_registers().
776 static bool kvm_arm_reg_syncs_via_cpreg_list(uint64_t regidx
)
778 switch (regidx
& KVM_REG_ARM_COPROC_MASK
) {
779 case KVM_REG_ARM_CORE
:
780 case KVM_REG_ARM64_SVE
:
788 * kvm_arm_init_cpreg_list:
791 * Initialize the ARMCPU cpreg list according to the kernel's
792 * definition of what CPU registers it knows about (and throw away
793 * the previous TCG-created cpreg list).
795 * Returns: 0 if success, else < 0 error code
797 static int kvm_arm_init_cpreg_list(ARMCPU
*cpu
)
799 struct kvm_reg_list rl
;
800 struct kvm_reg_list
*rlp
;
801 int i
, ret
, arraylen
;
802 CPUState
*cs
= CPU(cpu
);
805 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_REG_LIST
, &rl
);
809 rlp
= g_malloc(sizeof(struct kvm_reg_list
) + rl
.n
* sizeof(uint64_t));
811 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_REG_LIST
, rlp
);
815 /* Sort the list we get back from the kernel, since cpreg_tuples
816 * must be in strictly ascending order.
818 qsort(&rlp
->reg
, rlp
->n
, sizeof(rlp
->reg
[0]), compare_u64
);
820 for (i
= 0, arraylen
= 0; i
< rlp
->n
; i
++) {
821 if (!kvm_arm_reg_syncs_via_cpreg_list(rlp
->reg
[i
])) {
824 switch (rlp
->reg
[i
] & KVM_REG_SIZE_MASK
) {
825 case KVM_REG_SIZE_U32
:
826 case KVM_REG_SIZE_U64
:
829 fprintf(stderr
, "Can't handle size of register in kernel list\n");
837 cpu
->cpreg_indexes
= g_renew(uint64_t, cpu
->cpreg_indexes
, arraylen
);
838 cpu
->cpreg_values
= g_renew(uint64_t, cpu
->cpreg_values
, arraylen
);
839 cpu
->cpreg_vmstate_indexes
= g_renew(uint64_t, cpu
->cpreg_vmstate_indexes
,
841 cpu
->cpreg_vmstate_values
= g_renew(uint64_t, cpu
->cpreg_vmstate_values
,
843 cpu
->cpreg_array_len
= arraylen
;
844 cpu
->cpreg_vmstate_array_len
= arraylen
;
846 for (i
= 0, arraylen
= 0; i
< rlp
->n
; i
++) {
847 uint64_t regidx
= rlp
->reg
[i
];
848 if (!kvm_arm_reg_syncs_via_cpreg_list(regidx
)) {
851 cpu
->cpreg_indexes
[arraylen
] = regidx
;
854 assert(cpu
->cpreg_array_len
== arraylen
);
856 if (!write_kvmstate_to_list(cpu
)) {
857 /* Shouldn't happen unless kernel is inconsistent about
858 * what registers exist.
860 fprintf(stderr
, "Initial read of kernel register state failed\n");
871 * kvm_arm_cpreg_level:
872 * @regidx: KVM register index
874 * Return the level of this coprocessor/system register. Return value is
875 * either KVM_PUT_RUNTIME_STATE, KVM_PUT_RESET_STATE, or KVM_PUT_FULL_STATE.
877 static int kvm_arm_cpreg_level(uint64_t regidx
)
880 * All system registers are assumed to be level KVM_PUT_RUNTIME_STATE.
881 * If a register should be written less often, you must add it here
882 * with a state of either KVM_PUT_RESET_STATE or KVM_PUT_FULL_STATE.
885 case KVM_REG_ARM_TIMER_CNT
:
886 case KVM_REG_ARM_PTIMER_CNT
:
887 return KVM_PUT_FULL_STATE
;
889 return KVM_PUT_RUNTIME_STATE
;
892 bool write_kvmstate_to_list(ARMCPU
*cpu
)
894 CPUState
*cs
= CPU(cpu
);
898 for (i
= 0; i
< cpu
->cpreg_array_len
; i
++) {
899 uint64_t regidx
= cpu
->cpreg_indexes
[i
];
903 switch (regidx
& KVM_REG_SIZE_MASK
) {
904 case KVM_REG_SIZE_U32
:
905 ret
= kvm_get_one_reg(cs
, regidx
, &v32
);
907 cpu
->cpreg_values
[i
] = v32
;
910 case KVM_REG_SIZE_U64
:
911 ret
= kvm_get_one_reg(cs
, regidx
, cpu
->cpreg_values
+ i
);
914 g_assert_not_reached();
923 bool write_list_to_kvmstate(ARMCPU
*cpu
, int level
)
925 CPUState
*cs
= CPU(cpu
);
929 for (i
= 0; i
< cpu
->cpreg_array_len
; i
++) {
930 uint64_t regidx
= cpu
->cpreg_indexes
[i
];
934 if (kvm_arm_cpreg_level(regidx
) > level
) {
938 switch (regidx
& KVM_REG_SIZE_MASK
) {
939 case KVM_REG_SIZE_U32
:
940 v32
= cpu
->cpreg_values
[i
];
941 ret
= kvm_set_one_reg(cs
, regidx
, &v32
);
943 case KVM_REG_SIZE_U64
:
944 ret
= kvm_set_one_reg(cs
, regidx
, cpu
->cpreg_values
+ i
);
947 g_assert_not_reached();
950 /* We might fail for "unknown register" and also for
951 * "you tried to set a register which is constant with
952 * a different value from what it actually contains".
960 void kvm_arm_cpu_pre_save(ARMCPU
*cpu
)
962 /* KVM virtual time adjustment */
963 if (cpu
->kvm_vtime_dirty
) {
964 *kvm_arm_get_cpreg_ptr(cpu
, KVM_REG_ARM_TIMER_CNT
) = cpu
->kvm_vtime
;
968 void kvm_arm_cpu_post_load(ARMCPU
*cpu
)
970 /* KVM virtual time adjustment */
971 if (cpu
->kvm_adjvtime
) {
972 cpu
->kvm_vtime
= *kvm_arm_get_cpreg_ptr(cpu
, KVM_REG_ARM_TIMER_CNT
);
973 cpu
->kvm_vtime_dirty
= true;
977 void kvm_arm_reset_vcpu(ARMCPU
*cpu
)
981 /* Re-init VCPU so that all registers are set to
982 * their respective reset values.
984 ret
= kvm_arm_vcpu_init(cpu
);
986 fprintf(stderr
, "kvm_arm_vcpu_init failed: %s\n", strerror(-ret
));
989 if (!write_kvmstate_to_list(cpu
)) {
990 fprintf(stderr
, "write_kvmstate_to_list failed\n");
994 * Sync the reset values also into the CPUState. This is necessary
995 * because the next thing we do will be a kvm_arch_put_registers()
996 * which will update the list values from the CPUState before copying
997 * the list values back to KVM. It's OK to ignore failure returns here
998 * for the same reason we do so in kvm_arch_get_registers().
1000 write_list_to_cpustate(cpu
);
1004 * Update KVM's MP_STATE based on what QEMU thinks it is
1006 static int kvm_arm_sync_mpstate_to_kvm(ARMCPU
*cpu
)
1008 if (cap_has_mp_state
) {
1009 struct kvm_mp_state mp_state
= {
1010 .mp_state
= (cpu
->power_state
== PSCI_OFF
) ?
1011 KVM_MP_STATE_STOPPED
: KVM_MP_STATE_RUNNABLE
1013 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_MP_STATE
, &mp_state
);
1019 * Sync the KVM MP_STATE into QEMU
1021 static int kvm_arm_sync_mpstate_to_qemu(ARMCPU
*cpu
)
1023 if (cap_has_mp_state
) {
1024 struct kvm_mp_state mp_state
;
1025 int ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_MP_STATE
, &mp_state
);
1029 cpu
->power_state
= (mp_state
.mp_state
== KVM_MP_STATE_STOPPED
) ?
1036 * kvm_arm_get_virtual_time:
1039 * Gets the VCPU's virtual counter and stores it in the KVM CPU state.
1041 static void kvm_arm_get_virtual_time(ARMCPU
*cpu
)
1045 if (cpu
->kvm_vtime_dirty
) {
1049 ret
= kvm_get_one_reg(CPU(cpu
), KVM_REG_ARM_TIMER_CNT
, &cpu
->kvm_vtime
);
1051 error_report("Failed to get KVM_REG_ARM_TIMER_CNT");
1055 cpu
->kvm_vtime_dirty
= true;
1059 * kvm_arm_put_virtual_time:
1062 * Sets the VCPU's virtual counter to the value stored in the KVM CPU state.
1064 static void kvm_arm_put_virtual_time(ARMCPU
*cpu
)
1068 if (!cpu
->kvm_vtime_dirty
) {
1072 ret
= kvm_set_one_reg(CPU(cpu
), KVM_REG_ARM_TIMER_CNT
, &cpu
->kvm_vtime
);
1074 error_report("Failed to set KVM_REG_ARM_TIMER_CNT");
1078 cpu
->kvm_vtime_dirty
= false;
1082 * kvm_put_vcpu_events:
1085 * Put VCPU related state to kvm.
1087 * Returns: 0 if success else < 0 error code
1089 static int kvm_put_vcpu_events(ARMCPU
*cpu
)
1091 CPUARMState
*env
= &cpu
->env
;
1092 struct kvm_vcpu_events events
;
1095 if (!kvm_has_vcpu_events()) {
1099 memset(&events
, 0, sizeof(events
));
1100 events
.exception
.serror_pending
= env
->serror
.pending
;
1102 /* Inject SError to guest with specified syndrome if host kernel
1103 * supports it, otherwise inject SError without syndrome.
1105 if (cap_has_inject_serror_esr
) {
1106 events
.exception
.serror_has_esr
= env
->serror
.has_esr
;
1107 events
.exception
.serror_esr
= env
->serror
.esr
;
1110 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_VCPU_EVENTS
, &events
);
1112 error_report("failed to put vcpu events");
1119 * kvm_get_vcpu_events:
1122 * Get VCPU related state from kvm.
1124 * Returns: 0 if success else < 0 error code
1126 static int kvm_get_vcpu_events(ARMCPU
*cpu
)
1128 CPUARMState
*env
= &cpu
->env
;
1129 struct kvm_vcpu_events events
;
1132 if (!kvm_has_vcpu_events()) {
1136 memset(&events
, 0, sizeof(events
));
1137 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_VCPU_EVENTS
, &events
);
1139 error_report("failed to get vcpu events");
1143 env
->serror
.pending
= events
.exception
.serror_pending
;
1144 env
->serror
.has_esr
= events
.exception
.serror_has_esr
;
1145 env
->serror
.esr
= events
.exception
.serror_esr
;
1150 #define ARM64_REG_ESR_EL1 ARM64_SYS_REG(3, 0, 5, 2, 0)
1151 #define ARM64_REG_TCR_EL1 ARM64_SYS_REG(3, 0, 2, 0, 2)
1156 * AARCH64: DFSC, bits [5:0]
1160 * FS[3:0] - DFSR[3:0]
1164 #define ESR_DFSC(aarch64, lpae, v) \
1165 ((aarch64 || (lpae)) ? ((v) & 0x3F) \
1166 : (((v) >> 6) | ((v) & 0x1F)))
1168 #define ESR_DFSC_EXTABT(aarch64, lpae) \
1169 ((aarch64) ? 0x10 : (lpae) ? 0x10 : 0x8)
1172 * kvm_arm_verify_ext_dabt_pending:
1175 * Verify the fault status code wrt the Ext DABT injection
1177 * Returns: true if the fault status code is as expected, false otherwise
1179 static bool kvm_arm_verify_ext_dabt_pending(ARMCPU
*cpu
)
1181 CPUState
*cs
= CPU(cpu
);
1184 if (!kvm_get_one_reg(cs
, ARM64_REG_ESR_EL1
, &dfsr_val
)) {
1185 CPUARMState
*env
= &cpu
->env
;
1186 int aarch64_mode
= arm_feature(env
, ARM_FEATURE_AARCH64
);
1189 if (!aarch64_mode
) {
1192 if (!kvm_get_one_reg(cs
, ARM64_REG_TCR_EL1
, &ttbcr
)) {
1193 lpae
= arm_feature(env
, ARM_FEATURE_LPAE
)
1194 && (ttbcr
& TTBCR_EAE
);
1198 * The verification here is based on the DFSC bits
1199 * of the ESR_EL1 reg only
1201 return (ESR_DFSC(aarch64_mode
, lpae
, dfsr_val
) ==
1202 ESR_DFSC_EXTABT(aarch64_mode
, lpae
));
1207 void kvm_arch_pre_run(CPUState
*cs
, struct kvm_run
*run
)
1209 ARMCPU
*cpu
= ARM_CPU(cs
);
1210 CPUARMState
*env
= &cpu
->env
;
1212 if (unlikely(env
->ext_dabt_raised
)) {
1214 * Verifying that the ext DABT has been properly injected,
1215 * otherwise risking indefinitely re-running the faulting instruction
1216 * Covering a very narrow case for kernels 5.5..5.5.4
1217 * when injected abort was misconfigured to be
1218 * an IMPLEMENTATION DEFINED exception (for 32-bit EL1)
1220 if (!arm_feature(env
, ARM_FEATURE_AARCH64
) &&
1221 unlikely(!kvm_arm_verify_ext_dabt_pending(cpu
))) {
1223 error_report("Data abort exception with no valid ISS generated by "
1224 "guest memory access. KVM unable to emulate faulting "
1225 "instruction. Failed to inject an external data abort "
1229 /* Clear the status */
1230 env
->ext_dabt_raised
= 0;
1234 MemTxAttrs
kvm_arch_post_run(CPUState
*cs
, struct kvm_run
*run
)
1237 uint32_t switched_level
;
1239 if (kvm_irqchip_in_kernel()) {
1241 * We only need to sync timer states with user-space interrupt
1242 * controllers, so return early and save cycles if we don't.
1244 return MEMTXATTRS_UNSPECIFIED
;
1249 /* Synchronize our shadowed in-kernel device irq lines with the kvm ones */
1250 if (run
->s
.regs
.device_irq_level
!= cpu
->device_irq_level
) {
1251 switched_level
= cpu
->device_irq_level
^ run
->s
.regs
.device_irq_level
;
1255 if (switched_level
& KVM_ARM_DEV_EL1_VTIMER
) {
1256 qemu_set_irq(cpu
->gt_timer_outputs
[GTIMER_VIRT
],
1257 !!(run
->s
.regs
.device_irq_level
&
1258 KVM_ARM_DEV_EL1_VTIMER
));
1259 switched_level
&= ~KVM_ARM_DEV_EL1_VTIMER
;
1262 if (switched_level
& KVM_ARM_DEV_EL1_PTIMER
) {
1263 qemu_set_irq(cpu
->gt_timer_outputs
[GTIMER_PHYS
],
1264 !!(run
->s
.regs
.device_irq_level
&
1265 KVM_ARM_DEV_EL1_PTIMER
));
1266 switched_level
&= ~KVM_ARM_DEV_EL1_PTIMER
;
1269 if (switched_level
& KVM_ARM_DEV_PMU
) {
1270 qemu_set_irq(cpu
->pmu_interrupt
,
1271 !!(run
->s
.regs
.device_irq_level
& KVM_ARM_DEV_PMU
));
1272 switched_level
&= ~KVM_ARM_DEV_PMU
;
1275 if (switched_level
) {
1276 qemu_log_mask(LOG_UNIMP
, "%s: unhandled in-kernel device IRQ %x\n",
1277 __func__
, switched_level
);
1280 /* We also mark unknown levels as processed to not waste cycles */
1281 cpu
->device_irq_level
= run
->s
.regs
.device_irq_level
;
1285 return MEMTXATTRS_UNSPECIFIED
;
1288 static void kvm_arm_vm_state_change(void *opaque
, bool running
, RunState state
)
1290 ARMCPU
*cpu
= opaque
;
1293 if (cpu
->kvm_adjvtime
) {
1294 kvm_arm_put_virtual_time(cpu
);
1297 if (cpu
->kvm_adjvtime
) {
1298 kvm_arm_get_virtual_time(cpu
);
1304 * kvm_arm_handle_dabt_nisv:
1306 * @esr_iss: ISS encoding (limited) for the exception from Data Abort
1307 * ISV bit set to '0b0' -> no valid instruction syndrome
1308 * @fault_ipa: faulting address for the synchronous data abort
1310 * Returns: 0 if the exception has been handled, < 0 otherwise
1312 static int kvm_arm_handle_dabt_nisv(ARMCPU
*cpu
, uint64_t esr_iss
,
1315 CPUARMState
*env
= &cpu
->env
;
1317 * Request KVM to inject the external data abort into the guest
1319 if (cap_has_inject_ext_dabt
) {
1320 struct kvm_vcpu_events events
= { };
1322 * The external data abort event will be handled immediately by KVM
1323 * using the address fault that triggered the exit on given VCPU.
1324 * Requesting injection of the external data abort does not rely
1325 * on any other VCPU state. Therefore, in this particular case, the VCPU
1326 * synchronization can be exceptionally skipped.
1328 events
.exception
.ext_dabt_pending
= 1;
1329 /* KVM_CAP_ARM_INJECT_EXT_DABT implies KVM_CAP_VCPU_EVENTS */
1330 if (!kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_VCPU_EVENTS
, &events
)) {
1331 env
->ext_dabt_raised
= 1;
1335 error_report("Data abort exception triggered by guest memory access "
1336 "at physical address: 0x" TARGET_FMT_lx
,
1337 (target_ulong
)fault_ipa
);
1338 error_printf("KVM unable to emulate faulting instruction.\n");
1344 * kvm_arm_handle_debug:
1346 * @debug_exit: debug part of the KVM exit structure
1348 * Returns: TRUE if the debug exception was handled.
1350 * See v8 ARM ARM D7.2.27 ESR_ELx, Exception Syndrome Register
1352 * To minimise translating between kernel and user-space the kernel
1353 * ABI just provides user-space with the full exception syndrome
1354 * register value to be decoded in QEMU.
1356 static bool kvm_arm_handle_debug(ARMCPU
*cpu
,
1357 struct kvm_debug_exit_arch
*debug_exit
)
1359 int hsr_ec
= syn_get_ec(debug_exit
->hsr
);
1360 CPUState
*cs
= CPU(cpu
);
1361 CPUARMState
*env
= &cpu
->env
;
1363 /* Ensure PC is synchronised */
1364 kvm_cpu_synchronize_state(cs
);
1367 case EC_SOFTWARESTEP
:
1368 if (cs
->singlestep_enabled
) {
1372 * The kernel should have suppressed the guest's ability to
1373 * single step at this point so something has gone wrong.
1375 error_report("%s: guest single-step while debugging unsupported"
1376 " (%"PRIx64
", %"PRIx32
")",
1377 __func__
, env
->pc
, debug_exit
->hsr
);
1382 if (kvm_find_sw_breakpoint(cs
, env
->pc
)) {
1387 if (find_hw_breakpoint(cs
, env
->pc
)) {
1393 CPUWatchpoint
*wp
= find_hw_watchpoint(cs
, debug_exit
->far
);
1395 cs
->watchpoint_hit
= wp
;
1401 error_report("%s: unhandled debug exit (%"PRIx32
", %"PRIx64
")",
1402 __func__
, debug_exit
->hsr
, env
->pc
);
1405 /* If we are not handling the debug exception it must belong to
1406 * the guest. Let's re-use the existing TCG interrupt code to set
1407 * everything up properly.
1409 cs
->exception_index
= EXCP_BKPT
;
1410 env
->exception
.syndrome
= debug_exit
->hsr
;
1411 env
->exception
.vaddress
= debug_exit
->far
;
1412 env
->exception
.target_el
= 1;
1414 arm_cpu_do_interrupt(cs
);
1420 int kvm_arch_handle_exit(CPUState
*cs
, struct kvm_run
*run
)
1422 ARMCPU
*cpu
= ARM_CPU(cs
);
1425 switch (run
->exit_reason
) {
1426 case KVM_EXIT_DEBUG
:
1427 if (kvm_arm_handle_debug(cpu
, &run
->debug
.arch
)) {
1429 } /* otherwise return to guest */
1431 case KVM_EXIT_ARM_NISV
:
1432 /* External DABT with no valid iss to decode */
1433 ret
= kvm_arm_handle_dabt_nisv(cpu
, run
->arm_nisv
.esr_iss
,
1434 run
->arm_nisv
.fault_ipa
);
1437 qemu_log_mask(LOG_UNIMP
, "%s: un-handled exit reason %d\n",
1438 __func__
, run
->exit_reason
);
1444 bool kvm_arch_stop_on_emulation_error(CPUState
*cs
)
1449 int kvm_arch_process_async_events(CPUState
*cs
)
1455 * kvm_arm_hw_debug_active:
1458 * Return: TRUE if any hardware breakpoints in use.
1460 static bool kvm_arm_hw_debug_active(ARMCPU
*cpu
)
1462 return ((cur_hw_wps
> 0) || (cur_hw_bps
> 0));
1466 * kvm_arm_copy_hw_debug_data:
1467 * @ptr: kvm_guest_debug_arch structure
1469 * Copy the architecture specific debug registers into the
1470 * kvm_guest_debug ioctl structure.
1472 static void kvm_arm_copy_hw_debug_data(struct kvm_guest_debug_arch
*ptr
)
1475 memset(ptr
, 0, sizeof(struct kvm_guest_debug_arch
));
1477 for (i
= 0; i
< max_hw_wps
; i
++) {
1478 HWWatchpoint
*wp
= get_hw_wp(i
);
1479 ptr
->dbg_wcr
[i
] = wp
->wcr
;
1480 ptr
->dbg_wvr
[i
] = wp
->wvr
;
1482 for (i
= 0; i
< max_hw_bps
; i
++) {
1483 HWBreakpoint
*bp
= get_hw_bp(i
);
1484 ptr
->dbg_bcr
[i
] = bp
->bcr
;
1485 ptr
->dbg_bvr
[i
] = bp
->bvr
;
1489 void kvm_arch_update_guest_debug(CPUState
*cs
, struct kvm_guest_debug
*dbg
)
1491 if (kvm_sw_breakpoints_active(cs
)) {
1492 dbg
->control
|= KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_USE_SW_BP
;
1494 if (kvm_arm_hw_debug_active(ARM_CPU(cs
))) {
1495 dbg
->control
|= KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_USE_HW
;
1496 kvm_arm_copy_hw_debug_data(&dbg
->arch
);
1500 void kvm_arch_init_irq_routing(KVMState
*s
)
1504 int kvm_arch_irqchip_create(KVMState
*s
)
1506 if (kvm_kernel_irqchip_split()) {
1507 error_report("-machine kernel_irqchip=split is not supported on ARM.");
1511 /* If we can create the VGIC using the newer device control API, we
1512 * let the device do this when it initializes itself, otherwise we
1513 * fall back to the old API */
1514 return kvm_check_extension(s
, KVM_CAP_DEVICE_CTRL
);
1517 int kvm_arm_vgic_probe(void)
1521 if (kvm_create_device(kvm_state
,
1522 KVM_DEV_TYPE_ARM_VGIC_V3
, true) == 0) {
1523 val
|= KVM_ARM_VGIC_V3
;
1525 if (kvm_create_device(kvm_state
,
1526 KVM_DEV_TYPE_ARM_VGIC_V2
, true) == 0) {
1527 val
|= KVM_ARM_VGIC_V2
;
1532 int kvm_arm_set_irq(int cpu
, int irqtype
, int irq
, int level
)
1534 int kvm_irq
= (irqtype
<< KVM_ARM_IRQ_TYPE_SHIFT
) | irq
;
1535 int cpu_idx1
= cpu
% 256;
1536 int cpu_idx2
= cpu
/ 256;
1538 kvm_irq
|= (cpu_idx1
<< KVM_ARM_IRQ_VCPU_SHIFT
) |
1539 (cpu_idx2
<< KVM_ARM_IRQ_VCPU2_SHIFT
);
1541 return kvm_set_irq(kvm_state
, kvm_irq
, !!level
);
1544 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry
*route
,
1545 uint64_t address
, uint32_t data
, PCIDevice
*dev
)
1547 AddressSpace
*as
= pci_device_iommu_address_space(dev
);
1548 hwaddr xlat
, len
, doorbell_gpa
;
1549 MemoryRegionSection mrs
;
1552 if (as
== &address_space_memory
) {
1556 /* MSI doorbell address is translated by an IOMMU */
1558 RCU_READ_LOCK_GUARD();
1560 mr
= address_space_translate(as
, address
, &xlat
, &len
, true,
1561 MEMTXATTRS_UNSPECIFIED
);
1567 mrs
= memory_region_find(mr
, xlat
, 1);
1573 doorbell_gpa
= mrs
.offset_within_address_space
;
1574 memory_region_unref(mrs
.mr
);
1576 route
->u
.msi
.address_lo
= doorbell_gpa
;
1577 route
->u
.msi
.address_hi
= doorbell_gpa
>> 32;
1579 trace_kvm_arm_fixup_msi_route(address
, doorbell_gpa
);
1584 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry
*route
,
1585 int vector
, PCIDevice
*dev
)
1590 int kvm_arch_release_virq_post(int virq
)
1595 int kvm_arch_msi_data_to_gsi(uint32_t data
)
1597 return (data
- 32) & 0xffff;
1600 bool kvm_arch_cpu_check_are_resettable(void)
1605 static void kvm_arch_get_eager_split_size(Object
*obj
, Visitor
*v
,
1606 const char *name
, void *opaque
,
1609 KVMState
*s
= KVM_STATE(obj
);
1610 uint64_t value
= s
->kvm_eager_split_size
;
1612 visit_type_size(v
, name
, &value
, errp
);
1615 static void kvm_arch_set_eager_split_size(Object
*obj
, Visitor
*v
,
1616 const char *name
, void *opaque
,
1619 KVMState
*s
= KVM_STATE(obj
);
1623 error_setg(errp
, "Unable to set early-split-size after KVM has been initialized");
1627 if (!visit_type_size(v
, name
, &value
, errp
)) {
1631 if (value
&& !is_power_of_2(value
)) {
1632 error_setg(errp
, "early-split-size must be a power of two");
1636 s
->kvm_eager_split_size
= value
;
1639 void kvm_arch_accel_class_init(ObjectClass
*oc
)
1641 object_class_property_add(oc
, "eager-split-size", "size",
1642 kvm_arch_get_eager_split_size
,
1643 kvm_arch_set_eager_split_size
, NULL
, NULL
);
1645 object_class_property_set_description(oc
, "eager-split-size",
1646 "Eager Page Split chunk size for hugepages. (default: 0, disabled)");
1649 int kvm_arch_insert_hw_breakpoint(vaddr addr
, vaddr len
, int type
)
1652 case GDB_BREAKPOINT_HW
:
1653 return insert_hw_breakpoint(addr
);
1655 case GDB_WATCHPOINT_READ
:
1656 case GDB_WATCHPOINT_WRITE
:
1657 case GDB_WATCHPOINT_ACCESS
:
1658 return insert_hw_watchpoint(addr
, len
, type
);
1664 int kvm_arch_remove_hw_breakpoint(vaddr addr
, vaddr len
, int type
)
1667 case GDB_BREAKPOINT_HW
:
1668 return delete_hw_breakpoint(addr
);
1669 case GDB_WATCHPOINT_READ
:
1670 case GDB_WATCHPOINT_WRITE
:
1671 case GDB_WATCHPOINT_ACCESS
:
1672 return delete_hw_watchpoint(addr
, len
, type
);
1678 void kvm_arch_remove_all_hw_breakpoints(void)
1680 if (cur_hw_wps
> 0) {
1681 g_array_remove_range(hw_watchpoints
, 0, cur_hw_wps
);
1683 if (cur_hw_bps
> 0) {
1684 g_array_remove_range(hw_breakpoints
, 0, cur_hw_bps
);
1688 static bool kvm_arm_set_device_attr(ARMCPU
*cpu
, struct kvm_device_attr
*attr
,
1693 err
= kvm_vcpu_ioctl(CPU(cpu
), KVM_HAS_DEVICE_ATTR
, attr
);
1695 error_report("%s: KVM_HAS_DEVICE_ATTR: %s", name
, strerror(-err
));
1699 err
= kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_DEVICE_ATTR
, attr
);
1701 error_report("%s: KVM_SET_DEVICE_ATTR: %s", name
, strerror(-err
));
1708 void kvm_arm_pmu_init(ARMCPU
*cpu
)
1710 struct kvm_device_attr attr
= {
1711 .group
= KVM_ARM_VCPU_PMU_V3_CTRL
,
1712 .attr
= KVM_ARM_VCPU_PMU_V3_INIT
,
1715 if (!cpu
->has_pmu
) {
1718 if (!kvm_arm_set_device_attr(cpu
, &attr
, "PMU")) {
1719 error_report("failed to init PMU");
1724 void kvm_arm_pmu_set_irq(ARMCPU
*cpu
, int irq
)
1726 struct kvm_device_attr attr
= {
1727 .group
= KVM_ARM_VCPU_PMU_V3_CTRL
,
1728 .addr
= (intptr_t)&irq
,
1729 .attr
= KVM_ARM_VCPU_PMU_V3_IRQ
,
1732 if (!cpu
->has_pmu
) {
1735 if (!kvm_arm_set_device_attr(cpu
, &attr
, "PMU")) {
1736 error_report("failed to set irq for PMU");
1741 void kvm_arm_pvtime_init(ARMCPU
*cpu
, uint64_t ipa
)
1743 struct kvm_device_attr attr
= {
1744 .group
= KVM_ARM_VCPU_PVTIME_CTRL
,
1745 .attr
= KVM_ARM_VCPU_PVTIME_IPA
,
1746 .addr
= (uint64_t)&ipa
,
1749 if (cpu
->kvm_steal_time
== ON_OFF_AUTO_OFF
) {
1752 if (!kvm_arm_set_device_attr(cpu
, &attr
, "PVTIME IPA")) {
1753 error_report("failed to init PVTIME IPA");
1758 void kvm_arm_steal_time_finalize(ARMCPU
*cpu
, Error
**errp
)
1760 bool has_steal_time
= kvm_check_extension(kvm_state
, KVM_CAP_STEAL_TIME
);
1762 if (cpu
->kvm_steal_time
== ON_OFF_AUTO_AUTO
) {
1763 if (!has_steal_time
|| !arm_feature(&cpu
->env
, ARM_FEATURE_AARCH64
)) {
1764 cpu
->kvm_steal_time
= ON_OFF_AUTO_OFF
;
1766 cpu
->kvm_steal_time
= ON_OFF_AUTO_ON
;
1768 } else if (cpu
->kvm_steal_time
== ON_OFF_AUTO_ON
) {
1769 if (!has_steal_time
) {
1770 error_setg(errp
, "'kvm-steal-time' cannot be enabled "
1773 } else if (!arm_feature(&cpu
->env
, ARM_FEATURE_AARCH64
)) {
1775 * DEN0057A chapter 2 says "This specification only covers
1776 * systems in which the Execution state of the hypervisor
1777 * as well as EL1 of virtual machines is AArch64.". And,
1778 * to ensure that, the smc/hvc calls are only specified as
1781 error_setg(errp
, "'kvm-steal-time' cannot be enabled "
1782 "for AArch32 guests");
1788 bool kvm_arm_aarch32_supported(void)
1790 return kvm_check_extension(kvm_state
, KVM_CAP_ARM_EL1_32BIT
);
1793 bool kvm_arm_sve_supported(void)
1795 return kvm_check_extension(kvm_state
, KVM_CAP_ARM_SVE
);
1798 QEMU_BUILD_BUG_ON(KVM_ARM64_SVE_VQ_MIN
!= 1);
1800 uint32_t kvm_arm_sve_get_vls(ARMCPU
*cpu
)
1802 /* Only call this function if kvm_arm_sve_supported() returns true. */
1803 static uint64_t vls
[KVM_ARM64_SVE_VLS_WORDS
];
1809 * KVM ensures all host CPUs support the same set of vector lengths.
1810 * So we only need to create the scratch VCPUs once and then cache
1814 struct kvm_vcpu_init init
= {
1816 .features
[0] = (1 << KVM_ARM_VCPU_SVE
),
1818 struct kvm_one_reg reg
= {
1819 .id
= KVM_REG_ARM64_SVE_VLS
,
1820 .addr
= (uint64_t)&vls
[0],
1822 int fdarray
[3], ret
;
1826 if (!kvm_arm_create_scratch_host_vcpu(NULL
, fdarray
, &init
)) {
1827 error_report("failed to create scratch VCPU with SVE enabled");
1830 ret
= ioctl(fdarray
[2], KVM_GET_ONE_REG
, ®
);
1831 kvm_arm_destroy_scratch_host_vcpu(fdarray
);
1833 error_report("failed to get KVM_REG_ARM64_SVE_VLS: %s",
1838 for (i
= KVM_ARM64_SVE_VLS_WORDS
- 1; i
>= 0; --i
) {
1840 vq
= 64 - clz64(vls
[i
]) + i
* 64;
1844 if (vq
> ARM_MAX_VQ
) {
1845 warn_report("KVM supports vector lengths larger than "
1847 vls
[0] &= MAKE_64BIT_MASK(0, ARM_MAX_VQ
);
1854 static int kvm_arm_sve_set_vls(ARMCPU
*cpu
)
1856 uint64_t vls
[KVM_ARM64_SVE_VLS_WORDS
] = { cpu
->sve_vq
.map
};
1858 assert(cpu
->sve_max_vq
<= KVM_ARM64_SVE_VQ_MAX
);
1860 return kvm_set_one_reg(CPU(cpu
), KVM_REG_ARM64_SVE_VLS
, &vls
[0]);
1863 #define ARM_CPU_ID_MPIDR 3, 0, 0, 0, 5
1865 int kvm_arch_init_vcpu(CPUState
*cs
)
1869 ARMCPU
*cpu
= ARM_CPU(cs
);
1870 CPUARMState
*env
= &cpu
->env
;
1873 if (cpu
->kvm_target
== QEMU_KVM_ARM_TARGET_NONE
||
1874 !object_dynamic_cast(OBJECT(cpu
), TYPE_AARCH64_CPU
)) {
1875 error_report("KVM is not supported for this guest CPU type");
1879 qemu_add_vm_change_state_handler(kvm_arm_vm_state_change
, cpu
);
1881 /* Determine init features for this CPU */
1882 memset(cpu
->kvm_init_features
, 0, sizeof(cpu
->kvm_init_features
));
1883 if (cs
->start_powered_off
) {
1884 cpu
->kvm_init_features
[0] |= 1 << KVM_ARM_VCPU_POWER_OFF
;
1886 if (kvm_check_extension(cs
->kvm_state
, KVM_CAP_ARM_PSCI_0_2
)) {
1887 cpu
->psci_version
= QEMU_PSCI_VERSION_0_2
;
1888 cpu
->kvm_init_features
[0] |= 1 << KVM_ARM_VCPU_PSCI_0_2
;
1890 if (!arm_feature(&cpu
->env
, ARM_FEATURE_AARCH64
)) {
1891 cpu
->kvm_init_features
[0] |= 1 << KVM_ARM_VCPU_EL1_32BIT
;
1893 if (!kvm_check_extension(cs
->kvm_state
, KVM_CAP_ARM_PMU_V3
)) {
1894 cpu
->has_pmu
= false;
1897 cpu
->kvm_init_features
[0] |= 1 << KVM_ARM_VCPU_PMU_V3
;
1899 env
->features
&= ~(1ULL << ARM_FEATURE_PMU
);
1901 if (cpu_isar_feature(aa64_sve
, cpu
)) {
1902 assert(kvm_arm_sve_supported());
1903 cpu
->kvm_init_features
[0] |= 1 << KVM_ARM_VCPU_SVE
;
1905 if (cpu_isar_feature(aa64_pauth
, cpu
)) {
1906 cpu
->kvm_init_features
[0] |= (1 << KVM_ARM_VCPU_PTRAUTH_ADDRESS
|
1907 1 << KVM_ARM_VCPU_PTRAUTH_GENERIC
);
1910 /* Do KVM_ARM_VCPU_INIT ioctl */
1911 ret
= kvm_arm_vcpu_init(cpu
);
1916 if (cpu_isar_feature(aa64_sve
, cpu
)) {
1917 ret
= kvm_arm_sve_set_vls(cpu
);
1921 ret
= kvm_arm_vcpu_finalize(cpu
, KVM_ARM_VCPU_SVE
);
1928 * KVM reports the exact PSCI version it is implementing via a
1929 * special sysreg. If it is present, use its contents to determine
1930 * what to report to the guest in the dtb (it is the PSCI version,
1931 * in the same 15-bits major 16-bits minor format that PSCI_VERSION
1934 if (!kvm_get_one_reg(cs
, KVM_REG_ARM_PSCI_VERSION
, &psciver
)) {
1935 cpu
->psci_version
= psciver
;
1939 * When KVM is in use, PSCI is emulated in-kernel and not by qemu.
1940 * Currently KVM has its own idea about MPIDR assignment, so we
1941 * override our defaults with what we get from KVM.
1943 ret
= kvm_get_one_reg(cs
, ARM64_SYS_REG(ARM_CPU_ID_MPIDR
), &mpidr
);
1947 cpu
->mp_affinity
= mpidr
& ARM64_AFFINITY_MASK
;
1949 return kvm_arm_init_cpreg_list(cpu
);
1952 int kvm_arch_destroy_vcpu(CPUState
*cs
)
1957 /* Callers must hold the iothread mutex lock */
1958 static void kvm_inject_arm_sea(CPUState
*c
)
1960 ARMCPU
*cpu
= ARM_CPU(c
);
1961 CPUARMState
*env
= &cpu
->env
;
1965 c
->exception_index
= EXCP_DATA_ABORT
;
1966 env
->exception
.target_el
= 1;
1969 * Set the DFSC to synchronous external abort and set FnV to not valid,
1970 * this will tell guest the FAR_ELx is UNKNOWN for this abort.
1972 same_el
= arm_current_el(env
) == env
->exception
.target_el
;
1973 esr
= syn_data_abort_no_iss(same_el
, 1, 0, 0, 0, 0, 0x10);
1975 env
->exception
.syndrome
= esr
;
1977 arm_cpu_do_interrupt(c
);
1980 #define AARCH64_CORE_REG(x) (KVM_REG_ARM64 | KVM_REG_SIZE_U64 | \
1981 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
1983 #define AARCH64_SIMD_CORE_REG(x) (KVM_REG_ARM64 | KVM_REG_SIZE_U128 | \
1984 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
1986 #define AARCH64_SIMD_CTRL_REG(x) (KVM_REG_ARM64 | KVM_REG_SIZE_U32 | \
1987 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
1989 static int kvm_arch_put_fpsimd(CPUState
*cs
)
1991 CPUARMState
*env
= &ARM_CPU(cs
)->env
;
1994 for (i
= 0; i
< 32; i
++) {
1995 uint64_t *q
= aa64_vfp_qreg(env
, i
);
1997 uint64_t fp_val
[2] = { q
[1], q
[0] };
1998 ret
= kvm_set_one_reg(cs
, AARCH64_SIMD_CORE_REG(fp_regs
.vregs
[i
]),
2001 ret
= kvm_set_one_reg(cs
, AARCH64_SIMD_CORE_REG(fp_regs
.vregs
[i
]), q
);
2012 * KVM SVE registers come in slices where ZREGs have a slice size of 2048 bits
2013 * and PREGS and the FFR have a slice size of 256 bits. However we simply hard
2014 * code the slice index to zero for now as it's unlikely we'll need more than
2015 * one slice for quite some time.
2017 static int kvm_arch_put_sve(CPUState
*cs
)
2019 ARMCPU
*cpu
= ARM_CPU(cs
);
2020 CPUARMState
*env
= &cpu
->env
;
2021 uint64_t tmp
[ARM_MAX_VQ
* 2];
2025 for (n
= 0; n
< KVM_ARM64_SVE_NUM_ZREGS
; ++n
) {
2026 r
= sve_bswap64(tmp
, &env
->vfp
.zregs
[n
].d
[0], cpu
->sve_max_vq
* 2);
2027 ret
= kvm_set_one_reg(cs
, KVM_REG_ARM64_SVE_ZREG(n
, 0), r
);
2033 for (n
= 0; n
< KVM_ARM64_SVE_NUM_PREGS
; ++n
) {
2034 r
= sve_bswap64(tmp
, r
= &env
->vfp
.pregs
[n
].p
[0],
2035 DIV_ROUND_UP(cpu
->sve_max_vq
* 2, 8));
2036 ret
= kvm_set_one_reg(cs
, KVM_REG_ARM64_SVE_PREG(n
, 0), r
);
2042 r
= sve_bswap64(tmp
, &env
->vfp
.pregs
[FFR_PRED_NUM
].p
[0],
2043 DIV_ROUND_UP(cpu
->sve_max_vq
* 2, 8));
2044 ret
= kvm_set_one_reg(cs
, KVM_REG_ARM64_SVE_FFR(0), r
);
2052 int kvm_arch_put_registers(CPUState
*cs
, int level
)
2059 ARMCPU
*cpu
= ARM_CPU(cs
);
2060 CPUARMState
*env
= &cpu
->env
;
2062 /* If we are in AArch32 mode then we need to copy the AArch32 regs to the
2063 * AArch64 registers before pushing them out to 64-bit KVM.
2066 aarch64_sync_32_to_64(env
);
2069 for (i
= 0; i
< 31; i
++) {
2070 ret
= kvm_set_one_reg(cs
, AARCH64_CORE_REG(regs
.regs
[i
]),
2077 /* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the
2078 * QEMU side we keep the current SP in xregs[31] as well.
2080 aarch64_save_sp(env
, 1);
2082 ret
= kvm_set_one_reg(cs
, AARCH64_CORE_REG(regs
.sp
), &env
->sp_el
[0]);
2087 ret
= kvm_set_one_reg(cs
, AARCH64_CORE_REG(sp_el1
), &env
->sp_el
[1]);
2092 /* Note that KVM thinks pstate is 64 bit but we use a uint32_t */
2094 val
= pstate_read(env
);
2096 val
= cpsr_read(env
);
2098 ret
= kvm_set_one_reg(cs
, AARCH64_CORE_REG(regs
.pstate
), &val
);
2103 ret
= kvm_set_one_reg(cs
, AARCH64_CORE_REG(regs
.pc
), &env
->pc
);
2108 ret
= kvm_set_one_reg(cs
, AARCH64_CORE_REG(elr_el1
), &env
->elr_el
[1]);
2113 /* Saved Program State Registers
2115 * Before we restore from the banked_spsr[] array we need to
2116 * ensure that any modifications to env->spsr are correctly
2117 * reflected in the banks.
2119 el
= arm_current_el(env
);
2120 if (el
> 0 && !is_a64(env
)) {
2121 i
= bank_number(env
->uncached_cpsr
& CPSR_M
);
2122 env
->banked_spsr
[i
] = env
->spsr
;
2125 /* KVM 0-4 map to QEMU banks 1-5 */
2126 for (i
= 0; i
< KVM_NR_SPSR
; i
++) {
2127 ret
= kvm_set_one_reg(cs
, AARCH64_CORE_REG(spsr
[i
]),
2128 &env
->banked_spsr
[i
+ 1]);
2134 if (cpu_isar_feature(aa64_sve
, cpu
)) {
2135 ret
= kvm_arch_put_sve(cs
);
2137 ret
= kvm_arch_put_fpsimd(cs
);
2143 fpr
= vfp_get_fpsr(env
);
2144 ret
= kvm_set_one_reg(cs
, AARCH64_SIMD_CTRL_REG(fp_regs
.fpsr
), &fpr
);
2149 fpr
= vfp_get_fpcr(env
);
2150 ret
= kvm_set_one_reg(cs
, AARCH64_SIMD_CTRL_REG(fp_regs
.fpcr
), &fpr
);
2155 write_cpustate_to_list(cpu
, true);
2157 if (!write_list_to_kvmstate(cpu
, level
)) {
2162 * Setting VCPU events should be triggered after syncing the registers
2163 * to avoid overwriting potential changes made by KVM upon calling
2164 * KVM_SET_VCPU_EVENTS ioctl
2166 ret
= kvm_put_vcpu_events(cpu
);
2171 return kvm_arm_sync_mpstate_to_kvm(cpu
);
2174 static int kvm_arch_get_fpsimd(CPUState
*cs
)
2176 CPUARMState
*env
= &ARM_CPU(cs
)->env
;
2179 for (i
= 0; i
< 32; i
++) {
2180 uint64_t *q
= aa64_vfp_qreg(env
, i
);
2181 ret
= kvm_get_one_reg(cs
, AARCH64_SIMD_CORE_REG(fp_regs
.vregs
[i
]), q
);
2187 t
= q
[0], q
[0] = q
[1], q
[1] = t
;
2196 * KVM SVE registers come in slices where ZREGs have a slice size of 2048 bits
2197 * and PREGS and the FFR have a slice size of 256 bits. However we simply hard
2198 * code the slice index to zero for now as it's unlikely we'll need more than
2199 * one slice for quite some time.
2201 static int kvm_arch_get_sve(CPUState
*cs
)
2203 ARMCPU
*cpu
= ARM_CPU(cs
);
2204 CPUARMState
*env
= &cpu
->env
;
2208 for (n
= 0; n
< KVM_ARM64_SVE_NUM_ZREGS
; ++n
) {
2209 r
= &env
->vfp
.zregs
[n
].d
[0];
2210 ret
= kvm_get_one_reg(cs
, KVM_REG_ARM64_SVE_ZREG(n
, 0), r
);
2214 sve_bswap64(r
, r
, cpu
->sve_max_vq
* 2);
2217 for (n
= 0; n
< KVM_ARM64_SVE_NUM_PREGS
; ++n
) {
2218 r
= &env
->vfp
.pregs
[n
].p
[0];
2219 ret
= kvm_get_one_reg(cs
, KVM_REG_ARM64_SVE_PREG(n
, 0), r
);
2223 sve_bswap64(r
, r
, DIV_ROUND_UP(cpu
->sve_max_vq
* 2, 8));
2226 r
= &env
->vfp
.pregs
[FFR_PRED_NUM
].p
[0];
2227 ret
= kvm_get_one_reg(cs
, KVM_REG_ARM64_SVE_FFR(0), r
);
2231 sve_bswap64(r
, r
, DIV_ROUND_UP(cpu
->sve_max_vq
* 2, 8));
2236 int kvm_arch_get_registers(CPUState
*cs
)
2243 ARMCPU
*cpu
= ARM_CPU(cs
);
2244 CPUARMState
*env
= &cpu
->env
;
2246 for (i
= 0; i
< 31; i
++) {
2247 ret
= kvm_get_one_reg(cs
, AARCH64_CORE_REG(regs
.regs
[i
]),
2254 ret
= kvm_get_one_reg(cs
, AARCH64_CORE_REG(regs
.sp
), &env
->sp_el
[0]);
2259 ret
= kvm_get_one_reg(cs
, AARCH64_CORE_REG(sp_el1
), &env
->sp_el
[1]);
2264 ret
= kvm_get_one_reg(cs
, AARCH64_CORE_REG(regs
.pstate
), &val
);
2269 env
->aarch64
= ((val
& PSTATE_nRW
) == 0);
2271 pstate_write(env
, val
);
2273 cpsr_write(env
, val
, 0xffffffff, CPSRWriteRaw
);
2276 /* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the
2277 * QEMU side we keep the current SP in xregs[31] as well.
2279 aarch64_restore_sp(env
, 1);
2281 ret
= kvm_get_one_reg(cs
, AARCH64_CORE_REG(regs
.pc
), &env
->pc
);
2286 /* If we are in AArch32 mode then we need to sync the AArch32 regs with the
2287 * incoming AArch64 regs received from 64-bit KVM.
2288 * We must perform this after all of the registers have been acquired from
2292 aarch64_sync_64_to_32(env
);
2295 ret
= kvm_get_one_reg(cs
, AARCH64_CORE_REG(elr_el1
), &env
->elr_el
[1]);
2300 /* Fetch the SPSR registers
2302 * KVM SPSRs 0-4 map to QEMU banks 1-5
2304 for (i
= 0; i
< KVM_NR_SPSR
; i
++) {
2305 ret
= kvm_get_one_reg(cs
, AARCH64_CORE_REG(spsr
[i
]),
2306 &env
->banked_spsr
[i
+ 1]);
2312 el
= arm_current_el(env
);
2313 if (el
> 0 && !is_a64(env
)) {
2314 i
= bank_number(env
->uncached_cpsr
& CPSR_M
);
2315 env
->spsr
= env
->banked_spsr
[i
];
2318 if (cpu_isar_feature(aa64_sve
, cpu
)) {
2319 ret
= kvm_arch_get_sve(cs
);
2321 ret
= kvm_arch_get_fpsimd(cs
);
2327 ret
= kvm_get_one_reg(cs
, AARCH64_SIMD_CTRL_REG(fp_regs
.fpsr
), &fpr
);
2331 vfp_set_fpsr(env
, fpr
);
2333 ret
= kvm_get_one_reg(cs
, AARCH64_SIMD_CTRL_REG(fp_regs
.fpcr
), &fpr
);
2337 vfp_set_fpcr(env
, fpr
);
2339 ret
= kvm_get_vcpu_events(cpu
);
2344 if (!write_kvmstate_to_list(cpu
)) {
2347 /* Note that it's OK to have registers which aren't in CPUState,
2348 * so we can ignore a failure return here.
2350 write_list_to_cpustate(cpu
);
2352 ret
= kvm_arm_sync_mpstate_to_qemu(cpu
);
2354 /* TODO: other registers */
2358 void kvm_arch_on_sigbus_vcpu(CPUState
*c
, int code
, void *addr
)
2360 ram_addr_t ram_addr
;
2363 assert(code
== BUS_MCEERR_AR
|| code
== BUS_MCEERR_AO
);
2365 if (acpi_ghes_present() && addr
) {
2366 ram_addr
= qemu_ram_addr_from_host(addr
);
2367 if (ram_addr
!= RAM_ADDR_INVALID
&&
2368 kvm_physical_memory_addr_from_host(c
->kvm_state
, addr
, &paddr
)) {
2369 kvm_hwpoison_page_add(ram_addr
);
2371 * If this is a BUS_MCEERR_AR, we know we have been called
2372 * synchronously from the vCPU thread, so we can easily
2373 * synchronize the state and inject an error.
2375 * TODO: we currently don't tell the guest at all about
2376 * BUS_MCEERR_AO. In that case we might either be being
2377 * called synchronously from the vCPU thread, or a bit
2378 * later from the main thread, so doing the injection of
2379 * the error would be more complicated.
2381 if (code
== BUS_MCEERR_AR
) {
2382 kvm_cpu_synchronize_state(c
);
2383 if (!acpi_ghes_record_errors(ACPI_HEST_SRC_ID_SEA
, paddr
)) {
2384 kvm_inject_arm_sea(c
);
2386 error_report("failed to record the error");
2392 if (code
== BUS_MCEERR_AO
) {
2393 error_report("Hardware memory error at addr %p for memory used by "
2394 "QEMU itself instead of guest system!", addr
);
2398 if (code
== BUS_MCEERR_AR
) {
2399 error_report("Hardware memory error!");
2404 /* C6.6.29 BRK instruction */
2405 static const uint32_t brk_insn
= 0xd4200000;
2407 int kvm_arch_insert_sw_breakpoint(CPUState
*cs
, struct kvm_sw_breakpoint
*bp
)
2409 if (cpu_memory_rw_debug(cs
, bp
->pc
, (uint8_t *)&bp
->saved_insn
, 4, 0) ||
2410 cpu_memory_rw_debug(cs
, bp
->pc
, (uint8_t *)&brk_insn
, 4, 1)) {
2416 int kvm_arch_remove_sw_breakpoint(CPUState
*cs
, struct kvm_sw_breakpoint
*bp
)
2418 static uint32_t brk
;
2420 if (cpu_memory_rw_debug(cs
, bp
->pc
, (uint8_t *)&brk
, 4, 0) ||
2422 cpu_memory_rw_debug(cs
, bp
->pc
, (uint8_t *)&bp
->saved_insn
, 4, 1)) {