util/uri: Remove the uri_string_escape() function
[qemu/kevin.git] / target / arm / helper.c
blobe068d353831063a84a046aa70847745b844007fd
1 /*
2 * ARM generic helpers.
4 * This code is licensed under the GNU GPL v2 or later.
6 * SPDX-License-Identifier: GPL-2.0-or-later
7 */
9 #include "qemu/osdep.h"
10 #include "qemu/log.h"
11 #include "trace.h"
12 #include "cpu.h"
13 #include "internals.h"
14 #include "cpu-features.h"
15 #include "exec/helper-proto.h"
16 #include "qemu/main-loop.h"
17 #include "qemu/timer.h"
18 #include "qemu/bitops.h"
19 #include "qemu/crc32c.h"
20 #include "qemu/qemu-print.h"
21 #include "exec/exec-all.h"
22 #include <zlib.h> /* For crc32 */
23 #include "hw/irq.h"
24 #include "sysemu/cpu-timers.h"
25 #include "sysemu/kvm.h"
26 #include "sysemu/tcg.h"
27 #include "qapi/error.h"
28 #include "qemu/guest-random.h"
29 #ifdef CONFIG_TCG
30 #include "semihosting/common-semi.h"
31 #endif
32 #include "cpregs.h"
34 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
36 static void switch_mode(CPUARMState *env, int mode);
38 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
40 assert(ri->fieldoffset);
41 if (cpreg_field_is_64bit(ri)) {
42 return CPREG_FIELD64(env, ri);
43 } else {
44 return CPREG_FIELD32(env, ri);
48 void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
50 assert(ri->fieldoffset);
51 if (cpreg_field_is_64bit(ri)) {
52 CPREG_FIELD64(env, ri) = value;
53 } else {
54 CPREG_FIELD32(env, ri) = value;
58 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
60 return (char *)env + ri->fieldoffset;
63 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
65 /* Raw read of a coprocessor register (as needed for migration, etc). */
66 if (ri->type & ARM_CP_CONST) {
67 return ri->resetvalue;
68 } else if (ri->raw_readfn) {
69 return ri->raw_readfn(env, ri);
70 } else if (ri->readfn) {
71 return ri->readfn(env, ri);
72 } else {
73 return raw_read(env, ri);
77 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
78 uint64_t v)
81 * Raw write of a coprocessor register (as needed for migration, etc).
82 * Note that constant registers are treated as write-ignored; the
83 * caller should check for success by whether a readback gives the
84 * value written.
86 if (ri->type & ARM_CP_CONST) {
87 return;
88 } else if (ri->raw_writefn) {
89 ri->raw_writefn(env, ri, v);
90 } else if (ri->writefn) {
91 ri->writefn(env, ri, v);
92 } else {
93 raw_write(env, ri, v);
97 static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
100 * Return true if the regdef would cause an assertion if you called
101 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
102 * program bug for it not to have the NO_RAW flag).
103 * NB that returning false here doesn't necessarily mean that calling
104 * read/write_raw_cp_reg() is safe, because we can't distinguish "has
105 * read/write access functions which are safe for raw use" from "has
106 * read/write access functions which have side effects but has forgotten
107 * to provide raw access functions".
108 * The tests here line up with the conditions in read/write_raw_cp_reg()
109 * and assertions in raw_read()/raw_write().
111 if ((ri->type & ARM_CP_CONST) ||
112 ri->fieldoffset ||
113 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
114 return false;
116 return true;
119 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync)
121 /* Write the coprocessor state from cpu->env to the (index,value) list. */
122 int i;
123 bool ok = true;
125 for (i = 0; i < cpu->cpreg_array_len; i++) {
126 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
127 const ARMCPRegInfo *ri;
128 uint64_t newval;
130 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
131 if (!ri) {
132 ok = false;
133 continue;
135 if (ri->type & ARM_CP_NO_RAW) {
136 continue;
139 newval = read_raw_cp_reg(&cpu->env, ri);
140 if (kvm_sync) {
142 * Only sync if the previous list->cpustate sync succeeded.
143 * Rather than tracking the success/failure state for every
144 * item in the list, we just recheck "does the raw write we must
145 * have made in write_list_to_cpustate() read back OK" here.
147 uint64_t oldval = cpu->cpreg_values[i];
149 if (oldval == newval) {
150 continue;
153 write_raw_cp_reg(&cpu->env, ri, oldval);
154 if (read_raw_cp_reg(&cpu->env, ri) != oldval) {
155 continue;
158 write_raw_cp_reg(&cpu->env, ri, newval);
160 cpu->cpreg_values[i] = newval;
162 return ok;
165 bool write_list_to_cpustate(ARMCPU *cpu)
167 int i;
168 bool ok = true;
170 for (i = 0; i < cpu->cpreg_array_len; i++) {
171 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
172 uint64_t v = cpu->cpreg_values[i];
173 const ARMCPRegInfo *ri;
175 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
176 if (!ri) {
177 ok = false;
178 continue;
180 if (ri->type & ARM_CP_NO_RAW) {
181 continue;
184 * Write value and confirm it reads back as written
185 * (to catch read-only registers and partially read-only
186 * registers where the incoming migration value doesn't match)
188 write_raw_cp_reg(&cpu->env, ri, v);
189 if (read_raw_cp_reg(&cpu->env, ri) != v) {
190 ok = false;
193 return ok;
196 static void add_cpreg_to_list(gpointer key, gpointer opaque)
198 ARMCPU *cpu = opaque;
199 uint32_t regidx = (uintptr_t)key;
200 const ARMCPRegInfo *ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
202 if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_ALIAS))) {
203 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
204 /* The value array need not be initialized at this point */
205 cpu->cpreg_array_len++;
209 static void count_cpreg(gpointer key, gpointer opaque)
211 ARMCPU *cpu = opaque;
212 const ARMCPRegInfo *ri;
214 ri = g_hash_table_lookup(cpu->cp_regs, key);
216 if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_ALIAS))) {
217 cpu->cpreg_array_len++;
221 static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
223 uint64_t aidx = cpreg_to_kvm_id((uintptr_t)a);
224 uint64_t bidx = cpreg_to_kvm_id((uintptr_t)b);
226 if (aidx > bidx) {
227 return 1;
229 if (aidx < bidx) {
230 return -1;
232 return 0;
235 void init_cpreg_list(ARMCPU *cpu)
238 * Initialise the cpreg_tuples[] array based on the cp_regs hash.
239 * Note that we require cpreg_tuples[] to be sorted by key ID.
241 GList *keys;
242 int arraylen;
244 keys = g_hash_table_get_keys(cpu->cp_regs);
245 keys = g_list_sort(keys, cpreg_key_compare);
247 cpu->cpreg_array_len = 0;
249 g_list_foreach(keys, count_cpreg, cpu);
251 arraylen = cpu->cpreg_array_len;
252 cpu->cpreg_indexes = g_new(uint64_t, arraylen);
253 cpu->cpreg_values = g_new(uint64_t, arraylen);
254 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
255 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
256 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
257 cpu->cpreg_array_len = 0;
259 g_list_foreach(keys, add_cpreg_to_list, cpu);
261 assert(cpu->cpreg_array_len == arraylen);
263 g_list_free(keys);
266 static bool arm_pan_enabled(CPUARMState *env)
268 if (is_a64(env)) {
269 if ((arm_hcr_el2_eff(env) & (HCR_NV | HCR_NV1)) == (HCR_NV | HCR_NV1)) {
270 return false;
272 return env->pstate & PSTATE_PAN;
273 } else {
274 return env->uncached_cpsr & CPSR_PAN;
279 * Some registers are not accessible from AArch32 EL3 if SCR.NS == 0.
281 static CPAccessResult access_el3_aa32ns(CPUARMState *env,
282 const ARMCPRegInfo *ri,
283 bool isread)
285 if (!is_a64(env) && arm_current_el(env) == 3 &&
286 arm_is_secure_below_el3(env)) {
287 return CP_ACCESS_TRAP_UNCATEGORIZED;
289 return CP_ACCESS_OK;
293 * Some secure-only AArch32 registers trap to EL3 if used from
294 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
295 * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
296 * We assume that the .access field is set to PL1_RW.
298 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
299 const ARMCPRegInfo *ri,
300 bool isread)
302 if (arm_current_el(env) == 3) {
303 return CP_ACCESS_OK;
305 if (arm_is_secure_below_el3(env)) {
306 if (env->cp15.scr_el3 & SCR_EEL2) {
307 return CP_ACCESS_TRAP_EL2;
309 return CP_ACCESS_TRAP_EL3;
311 /* This will be EL1 NS and EL2 NS, which just UNDEF */
312 return CP_ACCESS_TRAP_UNCATEGORIZED;
316 * Check for traps to performance monitor registers, which are controlled
317 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
319 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
320 bool isread)
322 int el = arm_current_el(env);
323 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
325 if (el < 2 && (mdcr_el2 & MDCR_TPM)) {
326 return CP_ACCESS_TRAP_EL2;
328 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
329 return CP_ACCESS_TRAP_EL3;
331 return CP_ACCESS_OK;
334 /* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM. */
335 CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri,
336 bool isread)
338 if (arm_current_el(env) == 1) {
339 uint64_t trap = isread ? HCR_TRVM : HCR_TVM;
340 if (arm_hcr_el2_eff(env) & trap) {
341 return CP_ACCESS_TRAP_EL2;
344 return CP_ACCESS_OK;
347 /* Check for traps from EL1 due to HCR_EL2.TSW. */
348 static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri,
349 bool isread)
351 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) {
352 return CP_ACCESS_TRAP_EL2;
354 return CP_ACCESS_OK;
357 /* Check for traps from EL1 due to HCR_EL2.TACR. */
358 static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri,
359 bool isread)
361 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) {
362 return CP_ACCESS_TRAP_EL2;
364 return CP_ACCESS_OK;
367 /* Check for traps from EL1 due to HCR_EL2.TTLB. */
368 static CPAccessResult access_ttlb(CPUARMState *env, const ARMCPRegInfo *ri,
369 bool isread)
371 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TTLB)) {
372 return CP_ACCESS_TRAP_EL2;
374 return CP_ACCESS_OK;
377 /* Check for traps from EL1 due to HCR_EL2.TTLB or TTLBIS. */
378 static CPAccessResult access_ttlbis(CPUARMState *env, const ARMCPRegInfo *ri,
379 bool isread)
381 if (arm_current_el(env) == 1 &&
382 (arm_hcr_el2_eff(env) & (HCR_TTLB | HCR_TTLBIS))) {
383 return CP_ACCESS_TRAP_EL2;
385 return CP_ACCESS_OK;
388 #ifdef TARGET_AARCH64
389 /* Check for traps from EL1 due to HCR_EL2.TTLB or TTLBOS. */
390 static CPAccessResult access_ttlbos(CPUARMState *env, const ARMCPRegInfo *ri,
391 bool isread)
393 if (arm_current_el(env) == 1 &&
394 (arm_hcr_el2_eff(env) & (HCR_TTLB | HCR_TTLBOS))) {
395 return CP_ACCESS_TRAP_EL2;
397 return CP_ACCESS_OK;
399 #endif
401 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
403 ARMCPU *cpu = env_archcpu(env);
405 raw_write(env, ri, value);
406 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */
409 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
411 ARMCPU *cpu = env_archcpu(env);
413 if (raw_read(env, ri) != value) {
415 * Unlike real hardware the qemu TLB uses virtual addresses,
416 * not modified virtual addresses, so this causes a TLB flush.
418 tlb_flush(CPU(cpu));
419 raw_write(env, ri, value);
423 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
424 uint64_t value)
426 ARMCPU *cpu = env_archcpu(env);
428 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA)
429 && !extended_addresses_enabled(env)) {
431 * For VMSA (when not using the LPAE long descriptor page table
432 * format) this register includes the ASID, so do a TLB flush.
433 * For PMSA it is purely a process ID and no action is needed.
435 tlb_flush(CPU(cpu));
437 raw_write(env, ri, value);
440 static int alle1_tlbmask(CPUARMState *env)
443 * Note that the 'ALL' scope must invalidate both stage 1 and
444 * stage 2 translations, whereas most other scopes only invalidate
445 * stage 1 translations.
447 return (ARMMMUIdxBit_E10_1 |
448 ARMMMUIdxBit_E10_1_PAN |
449 ARMMMUIdxBit_E10_0 |
450 ARMMMUIdxBit_Stage2 |
451 ARMMMUIdxBit_Stage2_S);
455 /* IS variants of TLB operations must affect all cores */
456 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
457 uint64_t value)
459 CPUState *cs = env_cpu(env);
461 tlb_flush_all_cpus_synced(cs);
464 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
465 uint64_t value)
467 CPUState *cs = env_cpu(env);
469 tlb_flush_all_cpus_synced(cs);
472 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
473 uint64_t value)
475 CPUState *cs = env_cpu(env);
477 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
480 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
481 uint64_t value)
483 CPUState *cs = env_cpu(env);
485 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
489 * Non-IS variants of TLB operations are upgraded to
490 * IS versions if we are at EL1 and HCR_EL2.FB is effectively set to
491 * force broadcast of these operations.
493 static bool tlb_force_broadcast(CPUARMState *env)
495 return arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_FB);
498 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
499 uint64_t value)
501 /* Invalidate all (TLBIALL) */
502 CPUState *cs = env_cpu(env);
504 if (tlb_force_broadcast(env)) {
505 tlb_flush_all_cpus_synced(cs);
506 } else {
507 tlb_flush(cs);
511 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
512 uint64_t value)
514 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
515 CPUState *cs = env_cpu(env);
517 value &= TARGET_PAGE_MASK;
518 if (tlb_force_broadcast(env)) {
519 tlb_flush_page_all_cpus_synced(cs, value);
520 } else {
521 tlb_flush_page(cs, value);
525 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
526 uint64_t value)
528 /* Invalidate by ASID (TLBIASID) */
529 CPUState *cs = env_cpu(env);
531 if (tlb_force_broadcast(env)) {
532 tlb_flush_all_cpus_synced(cs);
533 } else {
534 tlb_flush(cs);
538 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
539 uint64_t value)
541 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
542 CPUState *cs = env_cpu(env);
544 value &= TARGET_PAGE_MASK;
545 if (tlb_force_broadcast(env)) {
546 tlb_flush_page_all_cpus_synced(cs, value);
547 } else {
548 tlb_flush_page(cs, value);
552 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri,
553 uint64_t value)
555 CPUState *cs = env_cpu(env);
557 tlb_flush_by_mmuidx(cs, alle1_tlbmask(env));
560 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
561 uint64_t value)
563 CPUState *cs = env_cpu(env);
565 tlb_flush_by_mmuidx_all_cpus_synced(cs, alle1_tlbmask(env));
569 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
570 uint64_t value)
572 CPUState *cs = env_cpu(env);
574 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E2);
577 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
578 uint64_t value)
580 CPUState *cs = env_cpu(env);
582 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E2);
585 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
586 uint64_t value)
588 CPUState *cs = env_cpu(env);
589 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
591 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E2);
594 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
595 uint64_t value)
597 CPUState *cs = env_cpu(env);
598 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
600 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
601 ARMMMUIdxBit_E2);
604 static void tlbiipas2_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
605 uint64_t value)
607 CPUState *cs = env_cpu(env);
608 uint64_t pageaddr = (value & MAKE_64BIT_MASK(0, 28)) << 12;
610 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_Stage2);
613 static void tlbiipas2is_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
614 uint64_t value)
616 CPUState *cs = env_cpu(env);
617 uint64_t pageaddr = (value & MAKE_64BIT_MASK(0, 28)) << 12;
619 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, ARMMMUIdxBit_Stage2);
622 static const ARMCPRegInfo cp_reginfo[] = {
624 * Define the secure and non-secure FCSE identifier CP registers
625 * separately because there is no secure bank in V8 (no _EL3). This allows
626 * the secure register to be properly reset and migrated. There is also no
627 * v8 EL1 version of the register so the non-secure instance stands alone.
629 { .name = "FCSEIDR",
630 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
631 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
632 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
633 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
634 { .name = "FCSEIDR_S",
635 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
636 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
637 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
638 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
640 * Define the secure and non-secure context identifier CP registers
641 * separately because there is no secure bank in V8 (no _EL3). This allows
642 * the secure register to be properly reset and migrated. In the
643 * non-secure case, the 32-bit register will have reset and migration
644 * disabled during registration as it is handled by the 64-bit instance.
646 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
647 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
648 .access = PL1_RW, .accessfn = access_tvm_trvm,
649 .fgt = FGT_CONTEXTIDR_EL1,
650 .nv2_redirect_offset = 0x108 | NV2_REDIR_NV1,
651 .secure = ARM_CP_SECSTATE_NS,
652 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
653 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
654 { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32,
655 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
656 .access = PL1_RW, .accessfn = access_tvm_trvm,
657 .secure = ARM_CP_SECSTATE_S,
658 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
659 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
662 static const ARMCPRegInfo not_v8_cp_reginfo[] = {
664 * NB: Some of these registers exist in v8 but with more precise
665 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
667 /* MMU Domain access control / MPU write buffer control */
668 { .name = "DACR",
669 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
670 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
671 .writefn = dacr_write, .raw_writefn = raw_write,
672 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
673 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
675 * ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
676 * For v6 and v5, these mappings are overly broad.
678 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
679 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
680 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
681 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
682 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
683 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
684 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
685 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
686 /* Cache maintenance ops; some of this space may be overridden later. */
687 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
688 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
689 .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
692 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
694 * Not all pre-v6 cores implemented this WFI, so this is slightly
695 * over-broad.
697 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
698 .access = PL1_W, .type = ARM_CP_WFI },
701 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
703 * Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
704 * is UNPREDICTABLE; we choose to NOP as most implementations do).
706 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
707 .access = PL1_W, .type = ARM_CP_WFI },
709 * L1 cache lockdown. Not architectural in v6 and earlier but in practice
710 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
711 * OMAPCP will override this space.
713 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
714 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
715 .resetvalue = 0 },
716 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
717 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
718 .resetvalue = 0 },
719 /* v6 doesn't have the cache ID registers but Linux reads them anyway */
720 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
721 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
722 .resetvalue = 0 },
724 * We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
725 * implementing it as RAZ means the "debug architecture version" bits
726 * will read as a reserved value, which should cause Linux to not try
727 * to use the debug hardware.
729 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
730 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
732 * MMU TLB control. Note that the wildcarding means we cover not just
733 * the unified TLB ops but also the dside/iside/inner-shareable variants.
735 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
736 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
737 .type = ARM_CP_NO_RAW },
738 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
739 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
740 .type = ARM_CP_NO_RAW },
741 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
742 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
743 .type = ARM_CP_NO_RAW },
744 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
745 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
746 .type = ARM_CP_NO_RAW },
747 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
748 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
749 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
750 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
753 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
754 uint64_t value)
756 uint32_t mask = 0;
758 /* In ARMv8 most bits of CPACR_EL1 are RES0. */
759 if (!arm_feature(env, ARM_FEATURE_V8)) {
761 * ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
762 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
763 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
765 if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) {
766 /* VFP coprocessor: cp10 & cp11 [23:20] */
767 mask |= R_CPACR_ASEDIS_MASK |
768 R_CPACR_D32DIS_MASK |
769 R_CPACR_CP11_MASK |
770 R_CPACR_CP10_MASK;
772 if (!arm_feature(env, ARM_FEATURE_NEON)) {
773 /* ASEDIS [31] bit is RAO/WI */
774 value |= R_CPACR_ASEDIS_MASK;
778 * VFPv3 and upwards with NEON implement 32 double precision
779 * registers (D0-D31).
781 if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) {
782 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
783 value |= R_CPACR_D32DIS_MASK;
786 value &= mask;
790 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
791 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
793 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
794 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
795 mask = R_CPACR_CP11_MASK | R_CPACR_CP10_MASK;
796 value = (value & ~mask) | (env->cp15.cpacr_el1 & mask);
799 env->cp15.cpacr_el1 = value;
802 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri)
805 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
806 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
808 uint64_t value = env->cp15.cpacr_el1;
810 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
811 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
812 value = ~(R_CPACR_CP11_MASK | R_CPACR_CP10_MASK);
814 return value;
818 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
821 * Call cpacr_write() so that we reset with the correct RAO bits set
822 * for our CPU features.
824 cpacr_write(env, ri, 0);
827 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
828 bool isread)
830 if (arm_feature(env, ARM_FEATURE_V8)) {
831 /* Check if CPACR accesses are to be trapped to EL2 */
832 if (arm_current_el(env) == 1 && arm_is_el2_enabled(env) &&
833 FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TCPAC)) {
834 return CP_ACCESS_TRAP_EL2;
835 /* Check if CPACR accesses are to be trapped to EL3 */
836 } else if (arm_current_el(env) < 3 &&
837 FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) {
838 return CP_ACCESS_TRAP_EL3;
842 return CP_ACCESS_OK;
845 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
846 bool isread)
848 /* Check if CPTR accesses are set to trap to EL3 */
849 if (arm_current_el(env) == 2 &&
850 FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) {
851 return CP_ACCESS_TRAP_EL3;
854 return CP_ACCESS_OK;
857 static const ARMCPRegInfo v6_cp_reginfo[] = {
858 /* prefetch by MVA in v6, NOP in v7 */
859 { .name = "MVA_prefetch",
860 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
861 .access = PL1_W, .type = ARM_CP_NOP },
863 * We need to break the TB after ISB to execute self-modifying code
864 * correctly and also to take any pending interrupts immediately.
865 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
867 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
868 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
869 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
870 .access = PL0_W, .type = ARM_CP_NOP },
871 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
872 .access = PL0_W, .type = ARM_CP_NOP },
873 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
874 .access = PL1_RW, .accessfn = access_tvm_trvm,
875 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
876 offsetof(CPUARMState, cp15.ifar_ns) },
877 .resetvalue = 0, },
879 * Watchpoint Fault Address Register : should actually only be present
880 * for 1136, 1176, 11MPCore.
882 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
883 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
884 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
885 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
886 .fgt = FGT_CPACR_EL1,
887 .nv2_redirect_offset = 0x100 | NV2_REDIR_NV1,
888 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
889 .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read },
892 typedef struct pm_event {
893 uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */
894 /* If the event is supported on this CPU (used to generate PMCEID[01]) */
895 bool (*supported)(CPUARMState *);
897 * Retrieve the current count of the underlying event. The programmed
898 * counters hold a difference from the return value from this function
900 uint64_t (*get_count)(CPUARMState *);
902 * Return how many nanoseconds it will take (at a minimum) for count events
903 * to occur. A negative value indicates the counter will never overflow, or
904 * that the counter has otherwise arranged for the overflow bit to be set
905 * and the PMU interrupt to be raised on overflow.
907 int64_t (*ns_per_count)(uint64_t);
908 } pm_event;
910 static bool event_always_supported(CPUARMState *env)
912 return true;
915 static uint64_t swinc_get_count(CPUARMState *env)
918 * SW_INCR events are written directly to the pmevcntr's by writes to
919 * PMSWINC, so there is no underlying count maintained by the PMU itself
921 return 0;
924 static int64_t swinc_ns_per(uint64_t ignored)
926 return -1;
930 * Return the underlying cycle count for the PMU cycle counters. If we're in
931 * usermode, simply return 0.
933 static uint64_t cycles_get_count(CPUARMState *env)
935 #ifndef CONFIG_USER_ONLY
936 return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
937 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
938 #else
939 return cpu_get_host_ticks();
940 #endif
943 #ifndef CONFIG_USER_ONLY
944 static int64_t cycles_ns_per(uint64_t cycles)
946 return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles;
949 static bool instructions_supported(CPUARMState *env)
951 /* Precise instruction counting */
952 return icount_enabled() == ICOUNT_PRECISE;
955 static uint64_t instructions_get_count(CPUARMState *env)
957 assert(icount_enabled() == ICOUNT_PRECISE);
958 return (uint64_t)icount_get_raw();
961 static int64_t instructions_ns_per(uint64_t icount)
963 assert(icount_enabled() == ICOUNT_PRECISE);
964 return icount_to_ns((int64_t)icount);
966 #endif
968 static bool pmuv3p1_events_supported(CPUARMState *env)
970 /* For events which are supported in any v8.1 PMU */
971 return cpu_isar_feature(any_pmuv3p1, env_archcpu(env));
974 static bool pmuv3p4_events_supported(CPUARMState *env)
976 /* For events which are supported in any v8.1 PMU */
977 return cpu_isar_feature(any_pmuv3p4, env_archcpu(env));
980 static uint64_t zero_event_get_count(CPUARMState *env)
982 /* For events which on QEMU never fire, so their count is always zero */
983 return 0;
986 static int64_t zero_event_ns_per(uint64_t cycles)
988 /* An event which never fires can never overflow */
989 return -1;
992 static const pm_event pm_events[] = {
993 { .number = 0x000, /* SW_INCR */
994 .supported = event_always_supported,
995 .get_count = swinc_get_count,
996 .ns_per_count = swinc_ns_per,
998 #ifndef CONFIG_USER_ONLY
999 { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */
1000 .supported = instructions_supported,
1001 .get_count = instructions_get_count,
1002 .ns_per_count = instructions_ns_per,
1004 { .number = 0x011, /* CPU_CYCLES, Cycle */
1005 .supported = event_always_supported,
1006 .get_count = cycles_get_count,
1007 .ns_per_count = cycles_ns_per,
1009 #endif
1010 { .number = 0x023, /* STALL_FRONTEND */
1011 .supported = pmuv3p1_events_supported,
1012 .get_count = zero_event_get_count,
1013 .ns_per_count = zero_event_ns_per,
1015 { .number = 0x024, /* STALL_BACKEND */
1016 .supported = pmuv3p1_events_supported,
1017 .get_count = zero_event_get_count,
1018 .ns_per_count = zero_event_ns_per,
1020 { .number = 0x03c, /* STALL */
1021 .supported = pmuv3p4_events_supported,
1022 .get_count = zero_event_get_count,
1023 .ns_per_count = zero_event_ns_per,
1028 * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of
1029 * events (i.e. the statistical profiling extension), this implementation
1030 * should first be updated to something sparse instead of the current
1031 * supported_event_map[] array.
1033 #define MAX_EVENT_ID 0x3c
1034 #define UNSUPPORTED_EVENT UINT16_MAX
1035 static uint16_t supported_event_map[MAX_EVENT_ID + 1];
1038 * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map
1039 * of ARM event numbers to indices in our pm_events array.
1041 * Note: Events in the 0x40XX range are not currently supported.
1043 void pmu_init(ARMCPU *cpu)
1045 unsigned int i;
1048 * Empty supported_event_map and cpu->pmceid[01] before adding supported
1049 * events to them
1051 for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) {
1052 supported_event_map[i] = UNSUPPORTED_EVENT;
1054 cpu->pmceid0 = 0;
1055 cpu->pmceid1 = 0;
1057 for (i = 0; i < ARRAY_SIZE(pm_events); i++) {
1058 const pm_event *cnt = &pm_events[i];
1059 assert(cnt->number <= MAX_EVENT_ID);
1060 /* We do not currently support events in the 0x40xx range */
1061 assert(cnt->number <= 0x3f);
1063 if (cnt->supported(&cpu->env)) {
1064 supported_event_map[cnt->number] = i;
1065 uint64_t event_mask = 1ULL << (cnt->number & 0x1f);
1066 if (cnt->number & 0x20) {
1067 cpu->pmceid1 |= event_mask;
1068 } else {
1069 cpu->pmceid0 |= event_mask;
1076 * Check at runtime whether a PMU event is supported for the current machine
1078 static bool event_supported(uint16_t number)
1080 if (number > MAX_EVENT_ID) {
1081 return false;
1083 return supported_event_map[number] != UNSUPPORTED_EVENT;
1086 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
1087 bool isread)
1090 * Performance monitor registers user accessibility is controlled
1091 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
1092 * trapping to EL2 or EL3 for other accesses.
1094 int el = arm_current_el(env);
1095 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
1097 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) {
1098 return CP_ACCESS_TRAP;
1100 if (el < 2 && (mdcr_el2 & MDCR_TPM)) {
1101 return CP_ACCESS_TRAP_EL2;
1103 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
1104 return CP_ACCESS_TRAP_EL3;
1107 return CP_ACCESS_OK;
1110 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env,
1111 const ARMCPRegInfo *ri,
1112 bool isread)
1114 /* ER: event counter read trap control */
1115 if (arm_feature(env, ARM_FEATURE_V8)
1116 && arm_current_el(env) == 0
1117 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0
1118 && isread) {
1119 return CP_ACCESS_OK;
1122 return pmreg_access(env, ri, isread);
1125 static CPAccessResult pmreg_access_swinc(CPUARMState *env,
1126 const ARMCPRegInfo *ri,
1127 bool isread)
1129 /* SW: software increment write trap control */
1130 if (arm_feature(env, ARM_FEATURE_V8)
1131 && arm_current_el(env) == 0
1132 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0
1133 && !isread) {
1134 return CP_ACCESS_OK;
1137 return pmreg_access(env, ri, isread);
1140 static CPAccessResult pmreg_access_selr(CPUARMState *env,
1141 const ARMCPRegInfo *ri,
1142 bool isread)
1144 /* ER: event counter read trap control */
1145 if (arm_feature(env, ARM_FEATURE_V8)
1146 && arm_current_el(env) == 0
1147 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) {
1148 return CP_ACCESS_OK;
1151 return pmreg_access(env, ri, isread);
1154 static CPAccessResult pmreg_access_ccntr(CPUARMState *env,
1155 const ARMCPRegInfo *ri,
1156 bool isread)
1158 /* CR: cycle counter read trap control */
1159 if (arm_feature(env, ARM_FEATURE_V8)
1160 && arm_current_el(env) == 0
1161 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0
1162 && isread) {
1163 return CP_ACCESS_OK;
1166 return pmreg_access(env, ri, isread);
1170 * Bits in MDCR_EL2 and MDCR_EL3 which pmu_counter_enabled() looks at.
1171 * We use these to decide whether we need to wrap a write to MDCR_EL2
1172 * or MDCR_EL3 in pmu_op_start()/pmu_op_finish() calls.
1174 #define MDCR_EL2_PMU_ENABLE_BITS \
1175 (MDCR_HPME | MDCR_HPMD | MDCR_HPMN | MDCR_HCCD | MDCR_HLP)
1176 #define MDCR_EL3_PMU_ENABLE_BITS (MDCR_SPME | MDCR_SCCD)
1179 * Returns true if the counter (pass 31 for PMCCNTR) should count events using
1180 * the current EL, security state, and register configuration.
1182 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter)
1184 uint64_t filter;
1185 bool e, p, u, nsk, nsu, nsh, m;
1186 bool enabled, prohibited = false, filtered;
1187 bool secure = arm_is_secure(env);
1188 int el = arm_current_el(env);
1189 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
1190 uint8_t hpmn = mdcr_el2 & MDCR_HPMN;
1192 if (!arm_feature(env, ARM_FEATURE_PMU)) {
1193 return false;
1196 if (!arm_feature(env, ARM_FEATURE_EL2) ||
1197 (counter < hpmn || counter == 31)) {
1198 e = env->cp15.c9_pmcr & PMCRE;
1199 } else {
1200 e = mdcr_el2 & MDCR_HPME;
1202 enabled = e && (env->cp15.c9_pmcnten & (1 << counter));
1204 /* Is event counting prohibited? */
1205 if (el == 2 && (counter < hpmn || counter == 31)) {
1206 prohibited = mdcr_el2 & MDCR_HPMD;
1208 if (secure) {
1209 prohibited = prohibited || !(env->cp15.mdcr_el3 & MDCR_SPME);
1212 if (counter == 31) {
1214 * The cycle counter defaults to running. PMCR.DP says "disable
1215 * the cycle counter when event counting is prohibited".
1216 * Some MDCR bits disable the cycle counter specifically.
1218 prohibited = prohibited && env->cp15.c9_pmcr & PMCRDP;
1219 if (cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1220 if (secure) {
1221 prohibited = prohibited || (env->cp15.mdcr_el3 & MDCR_SCCD);
1223 if (el == 2) {
1224 prohibited = prohibited || (mdcr_el2 & MDCR_HCCD);
1229 if (counter == 31) {
1230 filter = env->cp15.pmccfiltr_el0;
1231 } else {
1232 filter = env->cp15.c14_pmevtyper[counter];
1235 p = filter & PMXEVTYPER_P;
1236 u = filter & PMXEVTYPER_U;
1237 nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK);
1238 nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU);
1239 nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH);
1240 m = arm_el_is_aa64(env, 1) &&
1241 arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M);
1243 if (el == 0) {
1244 filtered = secure ? u : u != nsu;
1245 } else if (el == 1) {
1246 filtered = secure ? p : p != nsk;
1247 } else if (el == 2) {
1248 filtered = !nsh;
1249 } else { /* EL3 */
1250 filtered = m != p;
1253 if (counter != 31) {
1255 * If not checking PMCCNTR, ensure the counter is setup to an event we
1256 * support
1258 uint16_t event = filter & PMXEVTYPER_EVTCOUNT;
1259 if (!event_supported(event)) {
1260 return false;
1264 return enabled && !prohibited && !filtered;
1267 static void pmu_update_irq(CPUARMState *env)
1269 ARMCPU *cpu = env_archcpu(env);
1270 qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) &&
1271 (env->cp15.c9_pminten & env->cp15.c9_pmovsr));
1274 static bool pmccntr_clockdiv_enabled(CPUARMState *env)
1277 * Return true if the clock divider is enabled and the cycle counter
1278 * is supposed to tick only once every 64 clock cycles. This is
1279 * controlled by PMCR.D, but if PMCR.LC is set to enable the long
1280 * (64-bit) cycle counter PMCR.D has no effect.
1282 return (env->cp15.c9_pmcr & (PMCRD | PMCRLC)) == PMCRD;
1285 static bool pmevcntr_is_64_bit(CPUARMState *env, int counter)
1287 /* Return true if the specified event counter is configured to be 64 bit */
1289 /* This isn't intended to be used with the cycle counter */
1290 assert(counter < 31);
1292 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1293 return false;
1296 if (arm_feature(env, ARM_FEATURE_EL2)) {
1298 * MDCR_EL2.HLP still applies even when EL2 is disabled in the
1299 * current security state, so we don't use arm_mdcr_el2_eff() here.
1301 bool hlp = env->cp15.mdcr_el2 & MDCR_HLP;
1302 int hpmn = env->cp15.mdcr_el2 & MDCR_HPMN;
1304 if (counter >= hpmn) {
1305 return hlp;
1308 return env->cp15.c9_pmcr & PMCRLP;
1312 * Ensure c15_ccnt is the guest-visible count so that operations such as
1313 * enabling/disabling the counter or filtering, modifying the count itself,
1314 * etc. can be done logically. This is essentially a no-op if the counter is
1315 * not enabled at the time of the call.
1317 static void pmccntr_op_start(CPUARMState *env)
1319 uint64_t cycles = cycles_get_count(env);
1321 if (pmu_counter_enabled(env, 31)) {
1322 uint64_t eff_cycles = cycles;
1323 if (pmccntr_clockdiv_enabled(env)) {
1324 eff_cycles /= 64;
1327 uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta;
1329 uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \
1330 1ull << 63 : 1ull << 31;
1331 if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) {
1332 env->cp15.c9_pmovsr |= (1ULL << 31);
1333 pmu_update_irq(env);
1336 env->cp15.c15_ccnt = new_pmccntr;
1338 env->cp15.c15_ccnt_delta = cycles;
1342 * If PMCCNTR is enabled, recalculate the delta between the clock and the
1343 * guest-visible count. A call to pmccntr_op_finish should follow every call to
1344 * pmccntr_op_start.
1346 static void pmccntr_op_finish(CPUARMState *env)
1348 if (pmu_counter_enabled(env, 31)) {
1349 #ifndef CONFIG_USER_ONLY
1350 /* Calculate when the counter will next overflow */
1351 uint64_t remaining_cycles = -env->cp15.c15_ccnt;
1352 if (!(env->cp15.c9_pmcr & PMCRLC)) {
1353 remaining_cycles = (uint32_t)remaining_cycles;
1355 int64_t overflow_in = cycles_ns_per(remaining_cycles);
1357 if (overflow_in > 0) {
1358 int64_t overflow_at;
1360 if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1361 overflow_in, &overflow_at)) {
1362 ARMCPU *cpu = env_archcpu(env);
1363 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1366 #endif
1368 uint64_t prev_cycles = env->cp15.c15_ccnt_delta;
1369 if (pmccntr_clockdiv_enabled(env)) {
1370 prev_cycles /= 64;
1372 env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt;
1376 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter)
1379 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1380 uint64_t count = 0;
1381 if (event_supported(event)) {
1382 uint16_t event_idx = supported_event_map[event];
1383 count = pm_events[event_idx].get_count(env);
1386 if (pmu_counter_enabled(env, counter)) {
1387 uint64_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter];
1388 uint64_t overflow_mask = pmevcntr_is_64_bit(env, counter) ?
1389 1ULL << 63 : 1ULL << 31;
1391 if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & overflow_mask) {
1392 env->cp15.c9_pmovsr |= (1 << counter);
1393 pmu_update_irq(env);
1395 env->cp15.c14_pmevcntr[counter] = new_pmevcntr;
1397 env->cp15.c14_pmevcntr_delta[counter] = count;
1400 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter)
1402 if (pmu_counter_enabled(env, counter)) {
1403 #ifndef CONFIG_USER_ONLY
1404 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1405 uint16_t event_idx = supported_event_map[event];
1406 uint64_t delta = -(env->cp15.c14_pmevcntr[counter] + 1);
1407 int64_t overflow_in;
1409 if (!pmevcntr_is_64_bit(env, counter)) {
1410 delta = (uint32_t)delta;
1412 overflow_in = pm_events[event_idx].ns_per_count(delta);
1414 if (overflow_in > 0) {
1415 int64_t overflow_at;
1417 if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1418 overflow_in, &overflow_at)) {
1419 ARMCPU *cpu = env_archcpu(env);
1420 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1423 #endif
1425 env->cp15.c14_pmevcntr_delta[counter] -=
1426 env->cp15.c14_pmevcntr[counter];
1430 void pmu_op_start(CPUARMState *env)
1432 unsigned int i;
1433 pmccntr_op_start(env);
1434 for (i = 0; i < pmu_num_counters(env); i++) {
1435 pmevcntr_op_start(env, i);
1439 void pmu_op_finish(CPUARMState *env)
1441 unsigned int i;
1442 pmccntr_op_finish(env);
1443 for (i = 0; i < pmu_num_counters(env); i++) {
1444 pmevcntr_op_finish(env, i);
1448 void pmu_pre_el_change(ARMCPU *cpu, void *ignored)
1450 pmu_op_start(&cpu->env);
1453 void pmu_post_el_change(ARMCPU *cpu, void *ignored)
1455 pmu_op_finish(&cpu->env);
1458 void arm_pmu_timer_cb(void *opaque)
1460 ARMCPU *cpu = opaque;
1463 * Update all the counter values based on the current underlying counts,
1464 * triggering interrupts to be raised, if necessary. pmu_op_finish() also
1465 * has the effect of setting the cpu->pmu_timer to the next earliest time a
1466 * counter may expire.
1468 pmu_op_start(&cpu->env);
1469 pmu_op_finish(&cpu->env);
1472 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1473 uint64_t value)
1475 pmu_op_start(env);
1477 if (value & PMCRC) {
1478 /* The counter has been reset */
1479 env->cp15.c15_ccnt = 0;
1482 if (value & PMCRP) {
1483 unsigned int i;
1484 for (i = 0; i < pmu_num_counters(env); i++) {
1485 env->cp15.c14_pmevcntr[i] = 0;
1489 env->cp15.c9_pmcr &= ~PMCR_WRITABLE_MASK;
1490 env->cp15.c9_pmcr |= (value & PMCR_WRITABLE_MASK);
1492 pmu_op_finish(env);
1495 static uint64_t pmcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1497 uint64_t pmcr = env->cp15.c9_pmcr;
1500 * If EL2 is implemented and enabled for the current security state, reads
1501 * of PMCR.N from EL1 or EL0 return the value of MDCR_EL2.HPMN or HDCR.HPMN.
1503 if (arm_current_el(env) <= 1 && arm_is_el2_enabled(env)) {
1504 pmcr &= ~PMCRN_MASK;
1505 pmcr |= (env->cp15.mdcr_el2 & MDCR_HPMN) << PMCRN_SHIFT;
1508 return pmcr;
1511 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri,
1512 uint64_t value)
1514 unsigned int i;
1515 uint64_t overflow_mask, new_pmswinc;
1517 for (i = 0; i < pmu_num_counters(env); i++) {
1518 /* Increment a counter's count iff: */
1519 if ((value & (1 << i)) && /* counter's bit is set */
1520 /* counter is enabled and not filtered */
1521 pmu_counter_enabled(env, i) &&
1522 /* counter is SW_INCR */
1523 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) {
1524 pmevcntr_op_start(env, i);
1527 * Detect if this write causes an overflow since we can't predict
1528 * PMSWINC overflows like we can for other events
1530 new_pmswinc = env->cp15.c14_pmevcntr[i] + 1;
1532 overflow_mask = pmevcntr_is_64_bit(env, i) ?
1533 1ULL << 63 : 1ULL << 31;
1535 if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & overflow_mask) {
1536 env->cp15.c9_pmovsr |= (1 << i);
1537 pmu_update_irq(env);
1540 env->cp15.c14_pmevcntr[i] = new_pmswinc;
1542 pmevcntr_op_finish(env, i);
1547 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1549 uint64_t ret;
1550 pmccntr_op_start(env);
1551 ret = env->cp15.c15_ccnt;
1552 pmccntr_op_finish(env);
1553 return ret;
1556 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1557 uint64_t value)
1560 * The value of PMSELR.SEL affects the behavior of PMXEVTYPER and
1561 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the
1562 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are
1563 * accessed.
1565 env->cp15.c9_pmselr = value & 0x1f;
1568 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1569 uint64_t value)
1571 pmccntr_op_start(env);
1572 env->cp15.c15_ccnt = value;
1573 pmccntr_op_finish(env);
1576 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
1577 uint64_t value)
1579 uint64_t cur_val = pmccntr_read(env, NULL);
1581 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
1584 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1585 uint64_t value)
1587 pmccntr_op_start(env);
1588 env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0;
1589 pmccntr_op_finish(env);
1592 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri,
1593 uint64_t value)
1595 pmccntr_op_start(env);
1596 /* M is not accessible from AArch32 */
1597 env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) |
1598 (value & PMCCFILTR);
1599 pmccntr_op_finish(env);
1602 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri)
1604 /* M is not visible in AArch32 */
1605 return env->cp15.pmccfiltr_el0 & PMCCFILTR;
1608 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1609 uint64_t value)
1611 pmu_op_start(env);
1612 value &= pmu_counter_mask(env);
1613 env->cp15.c9_pmcnten |= value;
1614 pmu_op_finish(env);
1617 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1618 uint64_t value)
1620 pmu_op_start(env);
1621 value &= pmu_counter_mask(env);
1622 env->cp15.c9_pmcnten &= ~value;
1623 pmu_op_finish(env);
1626 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1627 uint64_t value)
1629 value &= pmu_counter_mask(env);
1630 env->cp15.c9_pmovsr &= ~value;
1631 pmu_update_irq(env);
1634 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1635 uint64_t value)
1637 value &= pmu_counter_mask(env);
1638 env->cp15.c9_pmovsr |= value;
1639 pmu_update_irq(env);
1642 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1643 uint64_t value, const uint8_t counter)
1645 if (counter == 31) {
1646 pmccfiltr_write(env, ri, value);
1647 } else if (counter < pmu_num_counters(env)) {
1648 pmevcntr_op_start(env, counter);
1651 * If this counter's event type is changing, store the current
1652 * underlying count for the new type in c14_pmevcntr_delta[counter] so
1653 * pmevcntr_op_finish has the correct baseline when it converts back to
1654 * a delta.
1656 uint16_t old_event = env->cp15.c14_pmevtyper[counter] &
1657 PMXEVTYPER_EVTCOUNT;
1658 uint16_t new_event = value & PMXEVTYPER_EVTCOUNT;
1659 if (old_event != new_event) {
1660 uint64_t count = 0;
1661 if (event_supported(new_event)) {
1662 uint16_t event_idx = supported_event_map[new_event];
1663 count = pm_events[event_idx].get_count(env);
1665 env->cp15.c14_pmevcntr_delta[counter] = count;
1668 env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK;
1669 pmevcntr_op_finish(env, counter);
1672 * Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when
1673 * PMSELR value is equal to or greater than the number of implemented
1674 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI.
1678 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri,
1679 const uint8_t counter)
1681 if (counter == 31) {
1682 return env->cp15.pmccfiltr_el0;
1683 } else if (counter < pmu_num_counters(env)) {
1684 return env->cp15.c14_pmevtyper[counter];
1685 } else {
1687 * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER
1688 * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write().
1690 return 0;
1694 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1695 uint64_t value)
1697 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1698 pmevtyper_write(env, ri, value, counter);
1701 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1702 uint64_t value)
1704 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1705 env->cp15.c14_pmevtyper[counter] = value;
1708 * pmevtyper_rawwrite is called between a pair of pmu_op_start and
1709 * pmu_op_finish calls when loading saved state for a migration. Because
1710 * we're potentially updating the type of event here, the value written to
1711 * c14_pmevcntr_delta by the preceding pmu_op_start call may be for a
1712 * different counter type. Therefore, we need to set this value to the
1713 * current count for the counter type we're writing so that pmu_op_finish
1714 * has the correct count for its calculation.
1716 uint16_t event = value & PMXEVTYPER_EVTCOUNT;
1717 if (event_supported(event)) {
1718 uint16_t event_idx = supported_event_map[event];
1719 env->cp15.c14_pmevcntr_delta[counter] =
1720 pm_events[event_idx].get_count(env);
1724 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1726 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1727 return pmevtyper_read(env, ri, counter);
1730 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1731 uint64_t value)
1733 pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31);
1736 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri)
1738 return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31);
1741 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1742 uint64_t value, uint8_t counter)
1744 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1745 /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */
1746 value &= MAKE_64BIT_MASK(0, 32);
1748 if (counter < pmu_num_counters(env)) {
1749 pmevcntr_op_start(env, counter);
1750 env->cp15.c14_pmevcntr[counter] = value;
1751 pmevcntr_op_finish(env, counter);
1754 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1755 * are CONSTRAINED UNPREDICTABLE.
1759 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri,
1760 uint8_t counter)
1762 if (counter < pmu_num_counters(env)) {
1763 uint64_t ret;
1764 pmevcntr_op_start(env, counter);
1765 ret = env->cp15.c14_pmevcntr[counter];
1766 pmevcntr_op_finish(env, counter);
1767 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1768 /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */
1769 ret &= MAKE_64BIT_MASK(0, 32);
1771 return ret;
1772 } else {
1774 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1775 * are CONSTRAINED UNPREDICTABLE.
1777 return 0;
1781 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1782 uint64_t value)
1784 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1785 pmevcntr_write(env, ri, value, counter);
1788 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1790 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1791 return pmevcntr_read(env, ri, counter);
1794 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1795 uint64_t value)
1797 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1798 assert(counter < pmu_num_counters(env));
1799 env->cp15.c14_pmevcntr[counter] = value;
1800 pmevcntr_write(env, ri, value, counter);
1803 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri)
1805 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1806 assert(counter < pmu_num_counters(env));
1807 return env->cp15.c14_pmevcntr[counter];
1810 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1811 uint64_t value)
1813 pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31);
1816 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1818 return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31);
1821 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1822 uint64_t value)
1824 if (arm_feature(env, ARM_FEATURE_V8)) {
1825 env->cp15.c9_pmuserenr = value & 0xf;
1826 } else {
1827 env->cp15.c9_pmuserenr = value & 1;
1831 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1832 uint64_t value)
1834 /* We have no event counters so only the C bit can be changed */
1835 value &= pmu_counter_mask(env);
1836 env->cp15.c9_pminten |= value;
1837 pmu_update_irq(env);
1840 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1841 uint64_t value)
1843 value &= pmu_counter_mask(env);
1844 env->cp15.c9_pminten &= ~value;
1845 pmu_update_irq(env);
1848 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
1849 uint64_t value)
1852 * Note that even though the AArch64 view of this register has bits
1853 * [10:0] all RES0 we can only mask the bottom 5, to comply with the
1854 * architectural requirements for bits which are RES0 only in some
1855 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
1856 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
1858 raw_write(env, ri, value & ~0x1FULL);
1861 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1863 /* Begin with base v8.0 state. */
1864 uint64_t valid_mask = 0x3fff;
1865 ARMCPU *cpu = env_archcpu(env);
1866 uint64_t changed;
1869 * Because SCR_EL3 is the "real" cpreg and SCR is the alias, reset always
1870 * passes the reginfo for SCR_EL3, which has type ARM_CP_STATE_AA64.
1871 * Instead, choose the format based on the mode of EL3.
1873 if (arm_el_is_aa64(env, 3)) {
1874 value |= SCR_FW | SCR_AW; /* RES1 */
1875 valid_mask &= ~SCR_NET; /* RES0 */
1877 if (!cpu_isar_feature(aa64_aa32_el1, cpu) &&
1878 !cpu_isar_feature(aa64_aa32_el2, cpu)) {
1879 value |= SCR_RW; /* RAO/WI */
1881 if (cpu_isar_feature(aa64_ras, cpu)) {
1882 valid_mask |= SCR_TERR;
1884 if (cpu_isar_feature(aa64_lor, cpu)) {
1885 valid_mask |= SCR_TLOR;
1887 if (cpu_isar_feature(aa64_pauth, cpu)) {
1888 valid_mask |= SCR_API | SCR_APK;
1890 if (cpu_isar_feature(aa64_sel2, cpu)) {
1891 valid_mask |= SCR_EEL2;
1892 } else if (cpu_isar_feature(aa64_rme, cpu)) {
1893 /* With RME and without SEL2, NS is RES1 (R_GSWWH, I_DJJQJ). */
1894 value |= SCR_NS;
1896 if (cpu_isar_feature(aa64_mte, cpu)) {
1897 valid_mask |= SCR_ATA;
1899 if (cpu_isar_feature(aa64_scxtnum, cpu)) {
1900 valid_mask |= SCR_ENSCXT;
1902 if (cpu_isar_feature(aa64_doublefault, cpu)) {
1903 valid_mask |= SCR_EASE | SCR_NMEA;
1905 if (cpu_isar_feature(aa64_sme, cpu)) {
1906 valid_mask |= SCR_ENTP2;
1908 if (cpu_isar_feature(aa64_hcx, cpu)) {
1909 valid_mask |= SCR_HXEN;
1911 if (cpu_isar_feature(aa64_fgt, cpu)) {
1912 valid_mask |= SCR_FGTEN;
1914 if (cpu_isar_feature(aa64_rme, cpu)) {
1915 valid_mask |= SCR_NSE | SCR_GPF;
1917 } else {
1918 valid_mask &= ~(SCR_RW | SCR_ST);
1919 if (cpu_isar_feature(aa32_ras, cpu)) {
1920 valid_mask |= SCR_TERR;
1924 if (!arm_feature(env, ARM_FEATURE_EL2)) {
1925 valid_mask &= ~SCR_HCE;
1928 * On ARMv7, SMD (or SCD as it is called in v7) is only
1929 * supported if EL2 exists. The bit is UNK/SBZP when
1930 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
1931 * when EL2 is unavailable.
1932 * On ARMv8, this bit is always available.
1934 if (arm_feature(env, ARM_FEATURE_V7) &&
1935 !arm_feature(env, ARM_FEATURE_V8)) {
1936 valid_mask &= ~SCR_SMD;
1940 /* Clear all-context RES0 bits. */
1941 value &= valid_mask;
1942 changed = env->cp15.scr_el3 ^ value;
1943 env->cp15.scr_el3 = value;
1946 * If SCR_EL3.{NS,NSE} changes, i.e. change of security state,
1947 * we must invalidate all TLBs below EL3.
1949 if (changed & (SCR_NS | SCR_NSE)) {
1950 tlb_flush_by_mmuidx(env_cpu(env), (ARMMMUIdxBit_E10_0 |
1951 ARMMMUIdxBit_E20_0 |
1952 ARMMMUIdxBit_E10_1 |
1953 ARMMMUIdxBit_E20_2 |
1954 ARMMMUIdxBit_E10_1_PAN |
1955 ARMMMUIdxBit_E20_2_PAN |
1956 ARMMMUIdxBit_E2));
1960 static void scr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1963 * scr_write will set the RES1 bits on an AArch64-only CPU.
1964 * The reset value will be 0x30 on an AArch64-only CPU and 0 otherwise.
1966 scr_write(env, ri, 0);
1969 static CPAccessResult access_tid4(CPUARMState *env,
1970 const ARMCPRegInfo *ri,
1971 bool isread)
1973 if (arm_current_el(env) == 1 &&
1974 (arm_hcr_el2_eff(env) & (HCR_TID2 | HCR_TID4))) {
1975 return CP_ACCESS_TRAP_EL2;
1978 return CP_ACCESS_OK;
1981 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1983 ARMCPU *cpu = env_archcpu(env);
1986 * Acquire the CSSELR index from the bank corresponding to the CCSIDR
1987 * bank
1989 uint32_t index = A32_BANKED_REG_GET(env, csselr,
1990 ri->secure & ARM_CP_SECSTATE_S);
1992 return cpu->ccsidr[index];
1995 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1996 uint64_t value)
1998 raw_write(env, ri, value & 0xf);
2001 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2003 CPUState *cs = env_cpu(env);
2004 bool el1 = arm_current_el(env) == 1;
2005 uint64_t hcr_el2 = el1 ? arm_hcr_el2_eff(env) : 0;
2006 uint64_t ret = 0;
2008 if (hcr_el2 & HCR_IMO) {
2009 if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) {
2010 ret |= CPSR_I;
2012 } else {
2013 if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
2014 ret |= CPSR_I;
2018 if (hcr_el2 & HCR_FMO) {
2019 if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) {
2020 ret |= CPSR_F;
2022 } else {
2023 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
2024 ret |= CPSR_F;
2028 if (hcr_el2 & HCR_AMO) {
2029 if (cs->interrupt_request & CPU_INTERRUPT_VSERR) {
2030 ret |= CPSR_A;
2034 return ret;
2037 static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
2038 bool isread)
2040 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) {
2041 return CP_ACCESS_TRAP_EL2;
2044 return CP_ACCESS_OK;
2047 static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
2048 bool isread)
2050 if (arm_feature(env, ARM_FEATURE_V8)) {
2051 return access_aa64_tid1(env, ri, isread);
2054 return CP_ACCESS_OK;
2057 static const ARMCPRegInfo v7_cp_reginfo[] = {
2058 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
2059 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
2060 .access = PL1_W, .type = ARM_CP_NOP },
2062 * Performance monitors are implementation defined in v7,
2063 * but with an ARM recommended set of registers, which we
2064 * follow.
2066 * Performance registers fall into three categories:
2067 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
2068 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
2069 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
2070 * For the cases controlled by PMUSERENR we must set .access to PL0_RW
2071 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
2073 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
2074 .access = PL0_RW, .type = ARM_CP_ALIAS | ARM_CP_IO,
2075 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
2076 .writefn = pmcntenset_write,
2077 .accessfn = pmreg_access,
2078 .fgt = FGT_PMCNTEN,
2079 .raw_writefn = raw_write },
2080 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, .type = ARM_CP_IO,
2081 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
2082 .access = PL0_RW, .accessfn = pmreg_access,
2083 .fgt = FGT_PMCNTEN,
2084 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
2085 .writefn = pmcntenset_write, .raw_writefn = raw_write },
2086 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
2087 .access = PL0_RW,
2088 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
2089 .accessfn = pmreg_access,
2090 .fgt = FGT_PMCNTEN,
2091 .writefn = pmcntenclr_write,
2092 .type = ARM_CP_ALIAS | ARM_CP_IO },
2093 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
2094 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
2095 .access = PL0_RW, .accessfn = pmreg_access,
2096 .fgt = FGT_PMCNTEN,
2097 .type = ARM_CP_ALIAS | ARM_CP_IO,
2098 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
2099 .writefn = pmcntenclr_write },
2100 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
2101 .access = PL0_RW, .type = ARM_CP_IO,
2102 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2103 .accessfn = pmreg_access,
2104 .fgt = FGT_PMOVS,
2105 .writefn = pmovsr_write,
2106 .raw_writefn = raw_write },
2107 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
2108 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
2109 .access = PL0_RW, .accessfn = pmreg_access,
2110 .fgt = FGT_PMOVS,
2111 .type = ARM_CP_ALIAS | ARM_CP_IO,
2112 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2113 .writefn = pmovsr_write,
2114 .raw_writefn = raw_write },
2115 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
2116 .access = PL0_W, .accessfn = pmreg_access_swinc,
2117 .fgt = FGT_PMSWINC_EL0,
2118 .type = ARM_CP_NO_RAW | ARM_CP_IO,
2119 .writefn = pmswinc_write },
2120 { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64,
2121 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4,
2122 .access = PL0_W, .accessfn = pmreg_access_swinc,
2123 .fgt = FGT_PMSWINC_EL0,
2124 .type = ARM_CP_NO_RAW | ARM_CP_IO,
2125 .writefn = pmswinc_write },
2126 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
2127 .access = PL0_RW, .type = ARM_CP_ALIAS,
2128 .fgt = FGT_PMSELR_EL0,
2129 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr),
2130 .accessfn = pmreg_access_selr, .writefn = pmselr_write,
2131 .raw_writefn = raw_write},
2132 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64,
2133 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5,
2134 .access = PL0_RW, .accessfn = pmreg_access_selr,
2135 .fgt = FGT_PMSELR_EL0,
2136 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr),
2137 .writefn = pmselr_write, .raw_writefn = raw_write, },
2138 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
2139 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO,
2140 .fgt = FGT_PMCCNTR_EL0,
2141 .readfn = pmccntr_read, .writefn = pmccntr_write32,
2142 .accessfn = pmreg_access_ccntr },
2143 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
2144 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
2145 .access = PL0_RW, .accessfn = pmreg_access_ccntr,
2146 .fgt = FGT_PMCCNTR_EL0,
2147 .type = ARM_CP_IO,
2148 .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt),
2149 .readfn = pmccntr_read, .writefn = pmccntr_write,
2150 .raw_readfn = raw_read, .raw_writefn = raw_write, },
2151 { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7,
2152 .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32,
2153 .access = PL0_RW, .accessfn = pmreg_access,
2154 .fgt = FGT_PMCCFILTR_EL0,
2155 .type = ARM_CP_ALIAS | ARM_CP_IO,
2156 .resetvalue = 0, },
2157 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
2158 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
2159 .writefn = pmccfiltr_write, .raw_writefn = raw_write,
2160 .access = PL0_RW, .accessfn = pmreg_access,
2161 .fgt = FGT_PMCCFILTR_EL0,
2162 .type = ARM_CP_IO,
2163 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
2164 .resetvalue = 0, },
2165 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
2166 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2167 .accessfn = pmreg_access,
2168 .fgt = FGT_PMEVTYPERN_EL0,
2169 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2170 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64,
2171 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1,
2172 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2173 .accessfn = pmreg_access,
2174 .fgt = FGT_PMEVTYPERN_EL0,
2175 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2176 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
2177 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2178 .accessfn = pmreg_access_xevcntr,
2179 .fgt = FGT_PMEVCNTRN_EL0,
2180 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2181 { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64,
2182 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2,
2183 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2184 .accessfn = pmreg_access_xevcntr,
2185 .fgt = FGT_PMEVCNTRN_EL0,
2186 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2187 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
2188 .access = PL0_R | PL1_RW, .accessfn = access_tpm,
2189 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr),
2190 .resetvalue = 0,
2191 .writefn = pmuserenr_write, .raw_writefn = raw_write },
2192 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
2193 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
2194 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
2195 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
2196 .resetvalue = 0,
2197 .writefn = pmuserenr_write, .raw_writefn = raw_write },
2198 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
2199 .access = PL1_RW, .accessfn = access_tpm,
2200 .fgt = FGT_PMINTEN,
2201 .type = ARM_CP_ALIAS | ARM_CP_IO,
2202 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten),
2203 .resetvalue = 0,
2204 .writefn = pmintenset_write, .raw_writefn = raw_write },
2205 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64,
2206 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1,
2207 .access = PL1_RW, .accessfn = access_tpm,
2208 .fgt = FGT_PMINTEN,
2209 .type = ARM_CP_IO,
2210 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2211 .writefn = pmintenset_write, .raw_writefn = raw_write,
2212 .resetvalue = 0x0 },
2213 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
2214 .access = PL1_RW, .accessfn = access_tpm,
2215 .fgt = FGT_PMINTEN,
2216 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW,
2217 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2218 .writefn = pmintenclr_write, },
2219 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
2220 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
2221 .access = PL1_RW, .accessfn = access_tpm,
2222 .fgt = FGT_PMINTEN,
2223 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW,
2224 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2225 .writefn = pmintenclr_write },
2226 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
2227 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
2228 .access = PL1_R,
2229 .accessfn = access_tid4,
2230 .fgt = FGT_CCSIDR_EL1,
2231 .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
2232 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
2233 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
2234 .access = PL1_RW,
2235 .accessfn = access_tid4,
2236 .fgt = FGT_CSSELR_EL1,
2237 .writefn = csselr_write, .resetvalue = 0,
2238 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
2239 offsetof(CPUARMState, cp15.csselr_ns) } },
2241 * Auxiliary ID register: this actually has an IMPDEF value but for now
2242 * just RAZ for all cores:
2244 { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
2245 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
2246 .access = PL1_R, .type = ARM_CP_CONST,
2247 .accessfn = access_aa64_tid1,
2248 .fgt = FGT_AIDR_EL1,
2249 .resetvalue = 0 },
2251 * Auxiliary fault status registers: these also are IMPDEF, and we
2252 * choose to RAZ/WI for all cores.
2254 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
2255 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
2256 .access = PL1_RW, .accessfn = access_tvm_trvm,
2257 .fgt = FGT_AFSR0_EL1,
2258 .nv2_redirect_offset = 0x128 | NV2_REDIR_NV1,
2259 .type = ARM_CP_CONST, .resetvalue = 0 },
2260 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
2261 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
2262 .access = PL1_RW, .accessfn = access_tvm_trvm,
2263 .fgt = FGT_AFSR1_EL1,
2264 .nv2_redirect_offset = 0x130 | NV2_REDIR_NV1,
2265 .type = ARM_CP_CONST, .resetvalue = 0 },
2267 * MAIR can just read-as-written because we don't implement caches
2268 * and so don't need to care about memory attributes.
2270 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
2271 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2272 .access = PL1_RW, .accessfn = access_tvm_trvm,
2273 .fgt = FGT_MAIR_EL1,
2274 .nv2_redirect_offset = 0x140 | NV2_REDIR_NV1,
2275 .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
2276 .resetvalue = 0 },
2277 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
2278 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
2279 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
2280 .resetvalue = 0 },
2282 * For non-long-descriptor page tables these are PRRR and NMRR;
2283 * regardless they still act as reads-as-written for QEMU.
2286 * MAIR0/1 are defined separately from their 64-bit counterpart which
2287 * allows them to assign the correct fieldoffset based on the endianness
2288 * handled in the field definitions.
2290 { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
2291 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2292 .access = PL1_RW, .accessfn = access_tvm_trvm,
2293 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
2294 offsetof(CPUARMState, cp15.mair0_ns) },
2295 .resetfn = arm_cp_reset_ignore },
2296 { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
2297 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1,
2298 .access = PL1_RW, .accessfn = access_tvm_trvm,
2299 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
2300 offsetof(CPUARMState, cp15.mair1_ns) },
2301 .resetfn = arm_cp_reset_ignore },
2302 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
2303 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
2304 .fgt = FGT_ISR_EL1,
2305 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
2306 /* 32 bit ITLB invalidates */
2307 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
2308 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2309 .writefn = tlbiall_write },
2310 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
2311 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2312 .writefn = tlbimva_write },
2313 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
2314 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2315 .writefn = tlbiasid_write },
2316 /* 32 bit DTLB invalidates */
2317 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
2318 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2319 .writefn = tlbiall_write },
2320 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
2321 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2322 .writefn = tlbimva_write },
2323 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
2324 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2325 .writefn = tlbiasid_write },
2326 /* 32 bit TLB invalidates */
2327 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
2328 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2329 .writefn = tlbiall_write },
2330 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
2331 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2332 .writefn = tlbimva_write },
2333 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
2334 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2335 .writefn = tlbiasid_write },
2336 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
2337 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2338 .writefn = tlbimvaa_write },
2341 static const ARMCPRegInfo v7mp_cp_reginfo[] = {
2342 /* 32 bit TLB invalidates, Inner Shareable */
2343 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
2344 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
2345 .writefn = tlbiall_is_write },
2346 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
2347 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
2348 .writefn = tlbimva_is_write },
2349 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
2350 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
2351 .writefn = tlbiasid_is_write },
2352 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
2353 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
2354 .writefn = tlbimvaa_is_write },
2357 static const ARMCPRegInfo pmovsset_cp_reginfo[] = {
2358 /* PMOVSSET is not implemented in v7 before v7ve */
2359 { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3,
2360 .access = PL0_RW, .accessfn = pmreg_access,
2361 .fgt = FGT_PMOVS,
2362 .type = ARM_CP_ALIAS | ARM_CP_IO,
2363 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2364 .writefn = pmovsset_write,
2365 .raw_writefn = raw_write },
2366 { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64,
2367 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3,
2368 .access = PL0_RW, .accessfn = pmreg_access,
2369 .fgt = FGT_PMOVS,
2370 .type = ARM_CP_ALIAS | ARM_CP_IO,
2371 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2372 .writefn = pmovsset_write,
2373 .raw_writefn = raw_write },
2376 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2377 uint64_t value)
2379 value &= 1;
2380 env->teecr = value;
2383 static CPAccessResult teecr_access(CPUARMState *env, const ARMCPRegInfo *ri,
2384 bool isread)
2387 * HSTR.TTEE only exists in v7A, not v8A, but v8A doesn't have T2EE
2388 * at all, so we don't need to check whether we're v8A.
2390 if (arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) &&
2391 (env->cp15.hstr_el2 & HSTR_TTEE)) {
2392 return CP_ACCESS_TRAP_EL2;
2394 return CP_ACCESS_OK;
2397 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
2398 bool isread)
2400 if (arm_current_el(env) == 0 && (env->teecr & 1)) {
2401 return CP_ACCESS_TRAP;
2403 return teecr_access(env, ri, isread);
2406 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
2407 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
2408 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
2409 .resetvalue = 0,
2410 .writefn = teecr_write, .accessfn = teecr_access },
2411 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
2412 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
2413 .accessfn = teehbr_access, .resetvalue = 0 },
2416 static const ARMCPRegInfo v6k_cp_reginfo[] = {
2417 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
2418 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
2419 .access = PL0_RW,
2420 .fgt = FGT_TPIDR_EL0,
2421 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
2422 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
2423 .access = PL0_RW,
2424 .fgt = FGT_TPIDR_EL0,
2425 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
2426 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
2427 .resetfn = arm_cp_reset_ignore },
2428 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
2429 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
2430 .access = PL0_R | PL1_W,
2431 .fgt = FGT_TPIDRRO_EL0,
2432 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
2433 .resetvalue = 0},
2434 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
2435 .access = PL0_R | PL1_W,
2436 .fgt = FGT_TPIDRRO_EL0,
2437 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
2438 offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
2439 .resetfn = arm_cp_reset_ignore },
2440 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
2441 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
2442 .access = PL1_RW,
2443 .fgt = FGT_TPIDR_EL1,
2444 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
2445 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
2446 .access = PL1_RW,
2447 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
2448 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
2449 .resetvalue = 0 },
2452 #ifndef CONFIG_USER_ONLY
2454 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
2455 bool isread)
2458 * CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
2459 * Writable only at the highest implemented exception level.
2461 int el = arm_current_el(env);
2462 uint64_t hcr;
2463 uint32_t cntkctl;
2465 switch (el) {
2466 case 0:
2467 hcr = arm_hcr_el2_eff(env);
2468 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2469 cntkctl = env->cp15.cnthctl_el2;
2470 } else {
2471 cntkctl = env->cp15.c14_cntkctl;
2473 if (!extract32(cntkctl, 0, 2)) {
2474 return CP_ACCESS_TRAP;
2476 break;
2477 case 1:
2478 if (!isread && ri->state == ARM_CP_STATE_AA32 &&
2479 arm_is_secure_below_el3(env)) {
2480 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
2481 return CP_ACCESS_TRAP_UNCATEGORIZED;
2483 break;
2484 case 2:
2485 case 3:
2486 break;
2489 if (!isread && el < arm_highest_el(env)) {
2490 return CP_ACCESS_TRAP_UNCATEGORIZED;
2493 return CP_ACCESS_OK;
2496 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
2497 bool isread)
2499 unsigned int cur_el = arm_current_el(env);
2500 bool has_el2 = arm_is_el2_enabled(env);
2501 uint64_t hcr = arm_hcr_el2_eff(env);
2503 switch (cur_el) {
2504 case 0:
2505 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */
2506 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2507 return (extract32(env->cp15.cnthctl_el2, timeridx, 1)
2508 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
2511 /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */
2512 if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
2513 return CP_ACCESS_TRAP;
2515 /* fall through */
2516 case 1:
2517 /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */
2518 if (has_el2 && timeridx == GTIMER_PHYS &&
2519 (hcr & HCR_E2H
2520 ? !extract32(env->cp15.cnthctl_el2, 10, 1)
2521 : !extract32(env->cp15.cnthctl_el2, 0, 1))) {
2522 return CP_ACCESS_TRAP_EL2;
2524 break;
2526 return CP_ACCESS_OK;
2529 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
2530 bool isread)
2532 unsigned int cur_el = arm_current_el(env);
2533 bool has_el2 = arm_is_el2_enabled(env);
2534 uint64_t hcr = arm_hcr_el2_eff(env);
2536 switch (cur_el) {
2537 case 0:
2538 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2539 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */
2540 return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1)
2541 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
2545 * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from
2546 * EL0 if EL0[PV]TEN is zero.
2548 if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
2549 return CP_ACCESS_TRAP;
2551 /* fall through */
2553 case 1:
2554 if (has_el2 && timeridx == GTIMER_PHYS) {
2555 if (hcr & HCR_E2H) {
2556 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */
2557 if (!extract32(env->cp15.cnthctl_el2, 11, 1)) {
2558 return CP_ACCESS_TRAP_EL2;
2560 } else {
2561 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */
2562 if (!extract32(env->cp15.cnthctl_el2, 1, 1)) {
2563 return CP_ACCESS_TRAP_EL2;
2567 break;
2569 return CP_ACCESS_OK;
2572 static CPAccessResult gt_pct_access(CPUARMState *env,
2573 const ARMCPRegInfo *ri,
2574 bool isread)
2576 return gt_counter_access(env, GTIMER_PHYS, isread);
2579 static CPAccessResult gt_vct_access(CPUARMState *env,
2580 const ARMCPRegInfo *ri,
2581 bool isread)
2583 return gt_counter_access(env, GTIMER_VIRT, isread);
2586 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2587 bool isread)
2589 return gt_timer_access(env, GTIMER_PHYS, isread);
2592 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2593 bool isread)
2595 return gt_timer_access(env, GTIMER_VIRT, isread);
2598 static CPAccessResult gt_stimer_access(CPUARMState *env,
2599 const ARMCPRegInfo *ri,
2600 bool isread)
2603 * The AArch64 register view of the secure physical timer is
2604 * always accessible from EL3, and configurably accessible from
2605 * Secure EL1.
2607 switch (arm_current_el(env)) {
2608 case 1:
2609 if (!arm_is_secure(env)) {
2610 return CP_ACCESS_TRAP;
2612 if (!(env->cp15.scr_el3 & SCR_ST)) {
2613 return CP_ACCESS_TRAP_EL3;
2615 return CP_ACCESS_OK;
2616 case 0:
2617 case 2:
2618 return CP_ACCESS_TRAP;
2619 case 3:
2620 return CP_ACCESS_OK;
2621 default:
2622 g_assert_not_reached();
2626 static uint64_t gt_get_countervalue(CPUARMState *env)
2628 ARMCPU *cpu = env_archcpu(env);
2630 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu);
2633 static void gt_update_irq(ARMCPU *cpu, int timeridx)
2635 CPUARMState *env = &cpu->env;
2636 uint64_t cnthctl = env->cp15.cnthctl_el2;
2637 ARMSecuritySpace ss = arm_security_space(env);
2638 /* ISTATUS && !IMASK */
2639 int irqstate = (env->cp15.c14_timer[timeridx].ctl & 6) == 4;
2642 * If bit CNTHCTL_EL2.CNT[VP]MASK is set, it overrides IMASK.
2643 * It is RES0 in Secure and NonSecure state.
2645 if ((ss == ARMSS_Root || ss == ARMSS_Realm) &&
2646 ((timeridx == GTIMER_VIRT && (cnthctl & CNTHCTL_CNTVMASK)) ||
2647 (timeridx == GTIMER_PHYS && (cnthctl & CNTHCTL_CNTPMASK)))) {
2648 irqstate = 0;
2651 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2652 trace_arm_gt_update_irq(timeridx, irqstate);
2655 void gt_rme_post_el_change(ARMCPU *cpu, void *ignored)
2658 * Changing security state between Root and Secure/NonSecure, which may
2659 * happen when switching EL, can change the effective value of CNTHCTL_EL2
2660 * mask bits. Update the IRQ state accordingly.
2662 gt_update_irq(cpu, GTIMER_VIRT);
2663 gt_update_irq(cpu, GTIMER_PHYS);
2666 static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
2668 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
2670 if (gt->ctl & 1) {
2672 * Timer enabled: calculate and set current ISTATUS, irq, and
2673 * reset timer to when ISTATUS next has to change
2675 uint64_t offset = timeridx == GTIMER_VIRT ?
2676 cpu->env.cp15.cntvoff_el2 : 0;
2677 uint64_t count = gt_get_countervalue(&cpu->env);
2678 /* Note that this must be unsigned 64 bit arithmetic: */
2679 int istatus = count - offset >= gt->cval;
2680 uint64_t nexttick;
2682 gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
2684 if (istatus) {
2686 * Next transition is when (count - offset) rolls back over to 0.
2687 * If offset > count then this is when count == offset;
2688 * if offset <= count then this is when count == offset + 2^64
2689 * For the latter case we set nexttick to an "as far in future
2690 * as possible" value and let the code below handle it.
2692 if (offset > count) {
2693 nexttick = offset;
2694 } else {
2695 nexttick = UINT64_MAX;
2697 } else {
2699 * Next transition is when (count - offset) == cval, i.e.
2700 * when count == (cval + offset).
2701 * If that would overflow, then again we set up the next interrupt
2702 * for "as far in the future as possible" for the code below.
2704 if (uadd64_overflow(gt->cval, offset, &nexttick)) {
2705 nexttick = UINT64_MAX;
2709 * Note that the desired next expiry time might be beyond the
2710 * signed-64-bit range of a QEMUTimer -- in this case we just
2711 * set the timer for as far in the future as possible. When the
2712 * timer expires we will reset the timer for any remaining period.
2714 if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) {
2715 timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX);
2716 } else {
2717 timer_mod(cpu->gt_timer[timeridx], nexttick);
2719 trace_arm_gt_recalc(timeridx, nexttick);
2720 } else {
2721 /* Timer disabled: ISTATUS and timer output always clear */
2722 gt->ctl &= ~4;
2723 timer_del(cpu->gt_timer[timeridx]);
2724 trace_arm_gt_recalc_disabled(timeridx);
2726 gt_update_irq(cpu, timeridx);
2729 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
2730 int timeridx)
2732 ARMCPU *cpu = env_archcpu(env);
2734 timer_del(cpu->gt_timer[timeridx]);
2737 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2739 return gt_get_countervalue(env);
2742 static uint64_t gt_virt_cnt_offset(CPUARMState *env)
2744 uint64_t hcr;
2746 switch (arm_current_el(env)) {
2747 case 2:
2748 hcr = arm_hcr_el2_eff(env);
2749 if (hcr & HCR_E2H) {
2750 return 0;
2752 break;
2753 case 0:
2754 hcr = arm_hcr_el2_eff(env);
2755 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2756 return 0;
2758 break;
2761 return env->cp15.cntvoff_el2;
2764 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2766 return gt_get_countervalue(env) - gt_virt_cnt_offset(env);
2769 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2770 int timeridx,
2771 uint64_t value)
2773 trace_arm_gt_cval_write(timeridx, value);
2774 env->cp15.c14_timer[timeridx].cval = value;
2775 gt_recalc_timer(env_archcpu(env), timeridx);
2778 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
2779 int timeridx)
2781 uint64_t offset = 0;
2783 switch (timeridx) {
2784 case GTIMER_VIRT:
2785 case GTIMER_HYPVIRT:
2786 offset = gt_virt_cnt_offset(env);
2787 break;
2790 return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
2791 (gt_get_countervalue(env) - offset));
2794 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2795 int timeridx,
2796 uint64_t value)
2798 uint64_t offset = 0;
2800 switch (timeridx) {
2801 case GTIMER_VIRT:
2802 case GTIMER_HYPVIRT:
2803 offset = gt_virt_cnt_offset(env);
2804 break;
2807 trace_arm_gt_tval_write(timeridx, value);
2808 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
2809 sextract64(value, 0, 32);
2810 gt_recalc_timer(env_archcpu(env), timeridx);
2813 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2814 int timeridx,
2815 uint64_t value)
2817 ARMCPU *cpu = env_archcpu(env);
2818 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
2820 trace_arm_gt_ctl_write(timeridx, value);
2821 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
2822 if ((oldval ^ value) & 1) {
2823 /* Enable toggled */
2824 gt_recalc_timer(cpu, timeridx);
2825 } else if ((oldval ^ value) & 2) {
2827 * IMASK toggled: don't need to recalculate,
2828 * just set the interrupt line based on ISTATUS
2830 trace_arm_gt_imask_toggle(timeridx);
2831 gt_update_irq(cpu, timeridx);
2835 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2837 gt_timer_reset(env, ri, GTIMER_PHYS);
2840 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2841 uint64_t value)
2843 gt_cval_write(env, ri, GTIMER_PHYS, value);
2846 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2848 return gt_tval_read(env, ri, GTIMER_PHYS);
2851 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2852 uint64_t value)
2854 gt_tval_write(env, ri, GTIMER_PHYS, value);
2857 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2858 uint64_t value)
2860 gt_ctl_write(env, ri, GTIMER_PHYS, value);
2863 static int gt_phys_redir_timeridx(CPUARMState *env)
2865 switch (arm_mmu_idx(env)) {
2866 case ARMMMUIdx_E20_0:
2867 case ARMMMUIdx_E20_2:
2868 case ARMMMUIdx_E20_2_PAN:
2869 return GTIMER_HYP;
2870 default:
2871 return GTIMER_PHYS;
2875 static int gt_virt_redir_timeridx(CPUARMState *env)
2877 switch (arm_mmu_idx(env)) {
2878 case ARMMMUIdx_E20_0:
2879 case ARMMMUIdx_E20_2:
2880 case ARMMMUIdx_E20_2_PAN:
2881 return GTIMER_HYPVIRT;
2882 default:
2883 return GTIMER_VIRT;
2887 static uint64_t gt_phys_redir_cval_read(CPUARMState *env,
2888 const ARMCPRegInfo *ri)
2890 int timeridx = gt_phys_redir_timeridx(env);
2891 return env->cp15.c14_timer[timeridx].cval;
2894 static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2895 uint64_t value)
2897 int timeridx = gt_phys_redir_timeridx(env);
2898 gt_cval_write(env, ri, timeridx, value);
2901 static uint64_t gt_phys_redir_tval_read(CPUARMState *env,
2902 const ARMCPRegInfo *ri)
2904 int timeridx = gt_phys_redir_timeridx(env);
2905 return gt_tval_read(env, ri, timeridx);
2908 static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2909 uint64_t value)
2911 int timeridx = gt_phys_redir_timeridx(env);
2912 gt_tval_write(env, ri, timeridx, value);
2915 static uint64_t gt_phys_redir_ctl_read(CPUARMState *env,
2916 const ARMCPRegInfo *ri)
2918 int timeridx = gt_phys_redir_timeridx(env);
2919 return env->cp15.c14_timer[timeridx].ctl;
2922 static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2923 uint64_t value)
2925 int timeridx = gt_phys_redir_timeridx(env);
2926 gt_ctl_write(env, ri, timeridx, value);
2929 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2931 gt_timer_reset(env, ri, GTIMER_VIRT);
2934 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2935 uint64_t value)
2937 gt_cval_write(env, ri, GTIMER_VIRT, value);
2940 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2942 return gt_tval_read(env, ri, GTIMER_VIRT);
2945 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2946 uint64_t value)
2948 gt_tval_write(env, ri, GTIMER_VIRT, value);
2951 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2952 uint64_t value)
2954 gt_ctl_write(env, ri, GTIMER_VIRT, value);
2957 static void gt_cnthctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2958 uint64_t value)
2960 ARMCPU *cpu = env_archcpu(env);
2961 uint32_t oldval = env->cp15.cnthctl_el2;
2963 raw_write(env, ri, value);
2965 if ((oldval ^ value) & CNTHCTL_CNTVMASK) {
2966 gt_update_irq(cpu, GTIMER_VIRT);
2967 } else if ((oldval ^ value) & CNTHCTL_CNTPMASK) {
2968 gt_update_irq(cpu, GTIMER_PHYS);
2972 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
2973 uint64_t value)
2975 ARMCPU *cpu = env_archcpu(env);
2977 trace_arm_gt_cntvoff_write(value);
2978 raw_write(env, ri, value);
2979 gt_recalc_timer(cpu, GTIMER_VIRT);
2982 static uint64_t gt_virt_redir_cval_read(CPUARMState *env,
2983 const ARMCPRegInfo *ri)
2985 int timeridx = gt_virt_redir_timeridx(env);
2986 return env->cp15.c14_timer[timeridx].cval;
2989 static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2990 uint64_t value)
2992 int timeridx = gt_virt_redir_timeridx(env);
2993 gt_cval_write(env, ri, timeridx, value);
2996 static uint64_t gt_virt_redir_tval_read(CPUARMState *env,
2997 const ARMCPRegInfo *ri)
2999 int timeridx = gt_virt_redir_timeridx(env);
3000 return gt_tval_read(env, ri, timeridx);
3003 static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3004 uint64_t value)
3006 int timeridx = gt_virt_redir_timeridx(env);
3007 gt_tval_write(env, ri, timeridx, value);
3010 static uint64_t gt_virt_redir_ctl_read(CPUARMState *env,
3011 const ARMCPRegInfo *ri)
3013 int timeridx = gt_virt_redir_timeridx(env);
3014 return env->cp15.c14_timer[timeridx].ctl;
3017 static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3018 uint64_t value)
3020 int timeridx = gt_virt_redir_timeridx(env);
3021 gt_ctl_write(env, ri, timeridx, value);
3024 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3026 gt_timer_reset(env, ri, GTIMER_HYP);
3029 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3030 uint64_t value)
3032 gt_cval_write(env, ri, GTIMER_HYP, value);
3035 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
3037 return gt_tval_read(env, ri, GTIMER_HYP);
3040 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3041 uint64_t value)
3043 gt_tval_write(env, ri, GTIMER_HYP, value);
3046 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3047 uint64_t value)
3049 gt_ctl_write(env, ri, GTIMER_HYP, value);
3052 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3054 gt_timer_reset(env, ri, GTIMER_SEC);
3057 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3058 uint64_t value)
3060 gt_cval_write(env, ri, GTIMER_SEC, value);
3063 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
3065 return gt_tval_read(env, ri, GTIMER_SEC);
3068 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3069 uint64_t value)
3071 gt_tval_write(env, ri, GTIMER_SEC, value);
3074 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3075 uint64_t value)
3077 gt_ctl_write(env, ri, GTIMER_SEC, value);
3080 static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3082 gt_timer_reset(env, ri, GTIMER_HYPVIRT);
3085 static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3086 uint64_t value)
3088 gt_cval_write(env, ri, GTIMER_HYPVIRT, value);
3091 static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
3093 return gt_tval_read(env, ri, GTIMER_HYPVIRT);
3096 static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3097 uint64_t value)
3099 gt_tval_write(env, ri, GTIMER_HYPVIRT, value);
3102 static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3103 uint64_t value)
3105 gt_ctl_write(env, ri, GTIMER_HYPVIRT, value);
3108 void arm_gt_ptimer_cb(void *opaque)
3110 ARMCPU *cpu = opaque;
3112 gt_recalc_timer(cpu, GTIMER_PHYS);
3115 void arm_gt_vtimer_cb(void *opaque)
3117 ARMCPU *cpu = opaque;
3119 gt_recalc_timer(cpu, GTIMER_VIRT);
3122 void arm_gt_htimer_cb(void *opaque)
3124 ARMCPU *cpu = opaque;
3126 gt_recalc_timer(cpu, GTIMER_HYP);
3129 void arm_gt_stimer_cb(void *opaque)
3131 ARMCPU *cpu = opaque;
3133 gt_recalc_timer(cpu, GTIMER_SEC);
3136 void arm_gt_hvtimer_cb(void *opaque)
3138 ARMCPU *cpu = opaque;
3140 gt_recalc_timer(cpu, GTIMER_HYPVIRT);
3143 static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque)
3145 ARMCPU *cpu = env_archcpu(env);
3147 cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz;
3150 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
3152 * Note that CNTFRQ is purely reads-as-written for the benefit
3153 * of software; writing it doesn't actually change the timer frequency.
3154 * Our reset value matches the fixed frequency we implement the timer at.
3156 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
3157 .type = ARM_CP_ALIAS,
3158 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
3159 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
3161 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
3162 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
3163 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
3164 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
3165 .resetfn = arm_gt_cntfrq_reset,
3167 /* overall control: mostly access permissions */
3168 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
3169 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
3170 .access = PL1_RW,
3171 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
3172 .resetvalue = 0,
3174 /* per-timer control */
3175 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
3176 .secure = ARM_CP_SECSTATE_NS,
3177 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3178 .accessfn = gt_ptimer_access,
3179 .fieldoffset = offsetoflow32(CPUARMState,
3180 cp15.c14_timer[GTIMER_PHYS].ctl),
3181 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
3182 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
3184 { .name = "CNTP_CTL_S",
3185 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
3186 .secure = ARM_CP_SECSTATE_S,
3187 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3188 .accessfn = gt_ptimer_access,
3189 .fieldoffset = offsetoflow32(CPUARMState,
3190 cp15.c14_timer[GTIMER_SEC].ctl),
3191 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
3193 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
3194 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
3195 .type = ARM_CP_IO, .access = PL0_RW,
3196 .accessfn = gt_ptimer_access,
3197 .nv2_redirect_offset = 0x180 | NV2_REDIR_NV1,
3198 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
3199 .resetvalue = 0,
3200 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
3201 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
3203 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
3204 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3205 .accessfn = gt_vtimer_access,
3206 .fieldoffset = offsetoflow32(CPUARMState,
3207 cp15.c14_timer[GTIMER_VIRT].ctl),
3208 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
3209 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
3211 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
3212 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
3213 .type = ARM_CP_IO, .access = PL0_RW,
3214 .accessfn = gt_vtimer_access,
3215 .nv2_redirect_offset = 0x170 | NV2_REDIR_NV1,
3216 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
3217 .resetvalue = 0,
3218 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
3219 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
3221 /* TimerValue views: a 32 bit downcounting view of the underlying state */
3222 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
3223 .secure = ARM_CP_SECSTATE_NS,
3224 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3225 .accessfn = gt_ptimer_access,
3226 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
3228 { .name = "CNTP_TVAL_S",
3229 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
3230 .secure = ARM_CP_SECSTATE_S,
3231 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3232 .accessfn = gt_ptimer_access,
3233 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
3235 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
3236 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
3237 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3238 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
3239 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
3241 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
3242 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3243 .accessfn = gt_vtimer_access,
3244 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
3246 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
3247 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
3248 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3249 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
3250 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
3252 /* The counter itself */
3253 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
3254 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3255 .accessfn = gt_pct_access,
3256 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
3258 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
3259 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
3260 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3261 .accessfn = gt_pct_access, .readfn = gt_cnt_read,
3263 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
3264 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3265 .accessfn = gt_vct_access,
3266 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
3268 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
3269 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
3270 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3271 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
3273 /* Comparison value, indicating when the timer goes off */
3274 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
3275 .secure = ARM_CP_SECSTATE_NS,
3276 .access = PL0_RW,
3277 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3278 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
3279 .accessfn = gt_ptimer_access,
3280 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
3281 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
3283 { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2,
3284 .secure = ARM_CP_SECSTATE_S,
3285 .access = PL0_RW,
3286 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3287 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
3288 .accessfn = gt_ptimer_access,
3289 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
3291 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
3292 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
3293 .access = PL0_RW,
3294 .type = ARM_CP_IO,
3295 .nv2_redirect_offset = 0x178 | NV2_REDIR_NV1,
3296 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
3297 .resetvalue = 0, .accessfn = gt_ptimer_access,
3298 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
3299 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
3301 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
3302 .access = PL0_RW,
3303 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3304 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
3305 .accessfn = gt_vtimer_access,
3306 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
3307 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
3309 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
3310 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
3311 .access = PL0_RW,
3312 .type = ARM_CP_IO,
3313 .nv2_redirect_offset = 0x168 | NV2_REDIR_NV1,
3314 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
3315 .resetvalue = 0, .accessfn = gt_vtimer_access,
3316 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
3317 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
3320 * Secure timer -- this is actually restricted to only EL3
3321 * and configurably Secure-EL1 via the accessfn.
3323 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
3324 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
3325 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
3326 .accessfn = gt_stimer_access,
3327 .readfn = gt_sec_tval_read,
3328 .writefn = gt_sec_tval_write,
3329 .resetfn = gt_sec_timer_reset,
3331 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
3332 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
3333 .type = ARM_CP_IO, .access = PL1_RW,
3334 .accessfn = gt_stimer_access,
3335 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
3336 .resetvalue = 0,
3337 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
3339 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
3340 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
3341 .type = ARM_CP_IO, .access = PL1_RW,
3342 .accessfn = gt_stimer_access,
3343 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
3344 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
3348 static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri,
3349 bool isread)
3351 if (arm_current_el(env) == 1) {
3352 /* This must be a FEAT_NV access */
3353 /* TODO: FEAT_ECV will need to check CNTHCTL_EL2 here */
3354 return CP_ACCESS_OK;
3356 if (!(arm_hcr_el2_eff(env) & HCR_E2H)) {
3357 return CP_ACCESS_TRAP;
3359 return CP_ACCESS_OK;
3362 #else
3365 * In user-mode most of the generic timer registers are inaccessible
3366 * however modern kernels (4.12+) allow access to cntvct_el0
3369 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
3371 ARMCPU *cpu = env_archcpu(env);
3374 * Currently we have no support for QEMUTimer in linux-user so we
3375 * can't call gt_get_countervalue(env), instead we directly
3376 * call the lower level functions.
3378 return cpu_get_clock() / gt_cntfrq_period_ns(cpu);
3381 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
3382 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
3383 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
3384 .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */,
3385 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
3386 .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE,
3388 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
3389 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
3390 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3391 .readfn = gt_virt_cnt_read,
3395 #endif
3397 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3399 if (arm_feature(env, ARM_FEATURE_LPAE)) {
3400 raw_write(env, ri, value);
3401 } else if (arm_feature(env, ARM_FEATURE_V7)) {
3402 raw_write(env, ri, value & 0xfffff6ff);
3403 } else {
3404 raw_write(env, ri, value & 0xfffff1ff);
3408 #ifndef CONFIG_USER_ONLY
3409 /* get_phys_addr() isn't present for user-mode-only targets */
3411 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
3412 bool isread)
3414 if (ri->opc2 & 4) {
3416 * The ATS12NSO* operations must trap to EL3 or EL2 if executed in
3417 * Secure EL1 (which can only happen if EL3 is AArch64).
3418 * They are simply UNDEF if executed from NS EL1.
3419 * They function normally from EL2 or EL3.
3421 if (arm_current_el(env) == 1) {
3422 if (arm_is_secure_below_el3(env)) {
3423 if (env->cp15.scr_el3 & SCR_EEL2) {
3424 return CP_ACCESS_TRAP_EL2;
3426 return CP_ACCESS_TRAP_EL3;
3428 return CP_ACCESS_TRAP_UNCATEGORIZED;
3431 return CP_ACCESS_OK;
3434 #ifdef CONFIG_TCG
3435 static int par_el1_shareability(GetPhysAddrResult *res)
3438 * The PAR_EL1.SH field must be 0b10 for Device or Normal-NC
3439 * memory -- see pseudocode PAREncodeShareability().
3441 if (((res->cacheattrs.attrs & 0xf0) == 0) ||
3442 res->cacheattrs.attrs == 0x44 || res->cacheattrs.attrs == 0x40) {
3443 return 2;
3445 return res->cacheattrs.shareability;
3448 static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
3449 MMUAccessType access_type, ARMMMUIdx mmu_idx,
3450 ARMSecuritySpace ss)
3452 bool ret;
3453 uint64_t par64;
3454 bool format64 = false;
3455 ARMMMUFaultInfo fi = {};
3456 GetPhysAddrResult res = {};
3459 * I_MXTJT: Granule protection checks are not performed on the final address
3460 * of a successful translation.
3462 ret = get_phys_addr_with_space_nogpc(env, value, access_type, mmu_idx, ss,
3463 &res, &fi);
3466 * ATS operations only do S1 or S1+S2 translations, so we never
3467 * have to deal with the ARMCacheAttrs format for S2 only.
3469 assert(!res.cacheattrs.is_s2_format);
3471 if (ret) {
3473 * Some kinds of translation fault must cause exceptions rather
3474 * than being reported in the PAR.
3476 int current_el = arm_current_el(env);
3477 int target_el;
3478 uint32_t syn, fsr, fsc;
3479 bool take_exc = false;
3481 if (fi.s1ptw && current_el == 1
3482 && arm_mmu_idx_is_stage1_of_2(mmu_idx)) {
3484 * Synchronous stage 2 fault on an access made as part of the
3485 * translation table walk for AT S1E0* or AT S1E1* insn
3486 * executed from NS EL1. If this is a synchronous external abort
3487 * and SCR_EL3.EA == 1, then we take a synchronous external abort
3488 * to EL3. Otherwise the fault is taken as an exception to EL2,
3489 * and HPFAR_EL2 holds the faulting IPA.
3491 if (fi.type == ARMFault_SyncExternalOnWalk &&
3492 (env->cp15.scr_el3 & SCR_EA)) {
3493 target_el = 3;
3494 } else {
3495 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4;
3496 if (arm_is_secure_below_el3(env) && fi.s1ns) {
3497 env->cp15.hpfar_el2 |= HPFAR_NS;
3499 target_el = 2;
3501 take_exc = true;
3502 } else if (fi.type == ARMFault_SyncExternalOnWalk) {
3504 * Synchronous external aborts during a translation table walk
3505 * are taken as Data Abort exceptions.
3507 if (fi.stage2) {
3508 if (current_el == 3) {
3509 target_el = 3;
3510 } else {
3511 target_el = 2;
3513 } else {
3514 target_el = exception_target_el(env);
3516 take_exc = true;
3519 if (take_exc) {
3520 /* Construct FSR and FSC using same logic as arm_deliver_fault() */
3521 if (target_el == 2 || arm_el_is_aa64(env, target_el) ||
3522 arm_s1_regime_using_lpae_format(env, mmu_idx)) {
3523 fsr = arm_fi_to_lfsc(&fi);
3524 fsc = extract32(fsr, 0, 6);
3525 } else {
3526 fsr = arm_fi_to_sfsc(&fi);
3527 fsc = 0x3f;
3530 * Report exception with ESR indicating a fault due to a
3531 * translation table walk for a cache maintenance instruction.
3533 syn = syn_data_abort_no_iss(current_el == target_el, 0,
3534 fi.ea, 1, fi.s1ptw, 1, fsc);
3535 env->exception.vaddress = value;
3536 env->exception.fsr = fsr;
3537 raise_exception(env, EXCP_DATA_ABORT, syn, target_el);
3541 if (is_a64(env)) {
3542 format64 = true;
3543 } else if (arm_feature(env, ARM_FEATURE_LPAE)) {
3545 * ATS1Cxx:
3546 * * TTBCR.EAE determines whether the result is returned using the
3547 * 32-bit or the 64-bit PAR format
3548 * * Instructions executed in Hyp mode always use the 64bit format
3550 * ATS1S2NSOxx uses the 64bit format if any of the following is true:
3551 * * The Non-secure TTBCR.EAE bit is set to 1
3552 * * The implementation includes EL2, and the value of HCR.VM is 1
3554 * (Note that HCR.DC makes HCR.VM behave as if it is 1.)
3556 * ATS1Hx always uses the 64bit format.
3558 format64 = arm_s1_regime_using_lpae_format(env, mmu_idx);
3560 if (arm_feature(env, ARM_FEATURE_EL2)) {
3561 if (mmu_idx == ARMMMUIdx_E10_0 ||
3562 mmu_idx == ARMMMUIdx_E10_1 ||
3563 mmu_idx == ARMMMUIdx_E10_1_PAN) {
3564 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC);
3565 } else {
3566 format64 |= arm_current_el(env) == 2;
3571 if (format64) {
3572 /* Create a 64-bit PAR */
3573 par64 = (1 << 11); /* LPAE bit always set */
3574 if (!ret) {
3575 par64 |= res.f.phys_addr & ~0xfffULL;
3576 if (!res.f.attrs.secure) {
3577 par64 |= (1 << 9); /* NS */
3579 par64 |= (uint64_t)res.cacheattrs.attrs << 56; /* ATTR */
3580 par64 |= par_el1_shareability(&res) << 7; /* SH */
3581 } else {
3582 uint32_t fsr = arm_fi_to_lfsc(&fi);
3584 par64 |= 1; /* F */
3585 par64 |= (fsr & 0x3f) << 1; /* FS */
3586 if (fi.stage2) {
3587 par64 |= (1 << 9); /* S */
3589 if (fi.s1ptw) {
3590 par64 |= (1 << 8); /* PTW */
3593 } else {
3595 * fsr is a DFSR/IFSR value for the short descriptor
3596 * translation table format (with WnR always clear).
3597 * Convert it to a 32-bit PAR.
3599 if (!ret) {
3600 /* We do not set any attribute bits in the PAR */
3601 if (res.f.lg_page_size == 24
3602 && arm_feature(env, ARM_FEATURE_V7)) {
3603 par64 = (res.f.phys_addr & 0xff000000) | (1 << 1);
3604 } else {
3605 par64 = res.f.phys_addr & 0xfffff000;
3607 if (!res.f.attrs.secure) {
3608 par64 |= (1 << 9); /* NS */
3610 } else {
3611 uint32_t fsr = arm_fi_to_sfsc(&fi);
3613 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
3614 ((fsr & 0xf) << 1) | 1;
3617 return par64;
3619 #endif /* CONFIG_TCG */
3621 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3623 #ifdef CONFIG_TCG
3624 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3625 uint64_t par64;
3626 ARMMMUIdx mmu_idx;
3627 int el = arm_current_el(env);
3628 ARMSecuritySpace ss = arm_security_space(env);
3630 switch (ri->opc2 & 6) {
3631 case 0:
3632 /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */
3633 switch (el) {
3634 case 3:
3635 mmu_idx = ARMMMUIdx_E3;
3636 break;
3637 case 2:
3638 g_assert(ss != ARMSS_Secure); /* ARMv8.4-SecEL2 is 64-bit only */
3639 /* fall through */
3640 case 1:
3641 if (ri->crm == 9 && arm_pan_enabled(env)) {
3642 mmu_idx = ARMMMUIdx_Stage1_E1_PAN;
3643 } else {
3644 mmu_idx = ARMMMUIdx_Stage1_E1;
3646 break;
3647 default:
3648 g_assert_not_reached();
3650 break;
3651 case 2:
3652 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
3653 switch (el) {
3654 case 3:
3655 mmu_idx = ARMMMUIdx_E10_0;
3656 break;
3657 case 2:
3658 g_assert(ss != ARMSS_Secure); /* ARMv8.4-SecEL2 is 64-bit only */
3659 mmu_idx = ARMMMUIdx_Stage1_E0;
3660 break;
3661 case 1:
3662 mmu_idx = ARMMMUIdx_Stage1_E0;
3663 break;
3664 default:
3665 g_assert_not_reached();
3667 break;
3668 case 4:
3669 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
3670 mmu_idx = ARMMMUIdx_E10_1;
3671 ss = ARMSS_NonSecure;
3672 break;
3673 case 6:
3674 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
3675 mmu_idx = ARMMMUIdx_E10_0;
3676 ss = ARMSS_NonSecure;
3677 break;
3678 default:
3679 g_assert_not_reached();
3682 par64 = do_ats_write(env, value, access_type, mmu_idx, ss);
3684 A32_BANKED_CURRENT_REG_SET(env, par, par64);
3685 #else
3686 /* Handled by hardware accelerator. */
3687 g_assert_not_reached();
3688 #endif /* CONFIG_TCG */
3691 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
3692 uint64_t value)
3694 #ifdef CONFIG_TCG
3695 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3696 uint64_t par64;
3698 /* There is no SecureEL2 for AArch32. */
3699 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2,
3700 ARMSS_NonSecure);
3702 A32_BANKED_CURRENT_REG_SET(env, par, par64);
3703 #else
3704 /* Handled by hardware accelerator. */
3705 g_assert_not_reached();
3706 #endif /* CONFIG_TCG */
3709 static CPAccessResult at_e012_access(CPUARMState *env, const ARMCPRegInfo *ri,
3710 bool isread)
3713 * R_NYXTL: instruction is UNDEFINED if it applies to an Exception level
3714 * lower than EL3 and the combination SCR_EL3.{NSE,NS} is reserved. This can
3715 * only happen when executing at EL3 because that combination also causes an
3716 * illegal exception return. We don't need to check FEAT_RME either, because
3717 * scr_write() ensures that the NSE bit is not set otherwise.
3719 if ((env->cp15.scr_el3 & (SCR_NSE | SCR_NS)) == SCR_NSE) {
3720 return CP_ACCESS_TRAP;
3722 return CP_ACCESS_OK;
3725 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
3726 bool isread)
3728 if (arm_current_el(env) == 3 &&
3729 !(env->cp15.scr_el3 & (SCR_NS | SCR_EEL2))) {
3730 return CP_ACCESS_TRAP;
3732 return at_e012_access(env, ri, isread);
3735 static CPAccessResult at_s1e01_access(CPUARMState *env, const ARMCPRegInfo *ri,
3736 bool isread)
3738 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_AT)) {
3739 return CP_ACCESS_TRAP_EL2;
3741 return at_e012_access(env, ri, isread);
3744 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
3745 uint64_t value)
3747 #ifdef CONFIG_TCG
3748 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3749 ARMMMUIdx mmu_idx;
3750 uint64_t hcr_el2 = arm_hcr_el2_eff(env);
3751 bool regime_e20 = (hcr_el2 & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE);
3753 switch (ri->opc2 & 6) {
3754 case 0:
3755 switch (ri->opc1) {
3756 case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */
3757 if (ri->crm == 9 && arm_pan_enabled(env)) {
3758 mmu_idx = regime_e20 ?
3759 ARMMMUIdx_E20_2_PAN : ARMMMUIdx_Stage1_E1_PAN;
3760 } else {
3761 mmu_idx = regime_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_Stage1_E1;
3763 break;
3764 case 4: /* AT S1E2R, AT S1E2W */
3765 mmu_idx = hcr_el2 & HCR_E2H ? ARMMMUIdx_E20_2 : ARMMMUIdx_E2;
3766 break;
3767 case 6: /* AT S1E3R, AT S1E3W */
3768 mmu_idx = ARMMMUIdx_E3;
3769 break;
3770 default:
3771 g_assert_not_reached();
3773 break;
3774 case 2: /* AT S1E0R, AT S1E0W */
3775 mmu_idx = regime_e20 ? ARMMMUIdx_E20_0 : ARMMMUIdx_Stage1_E0;
3776 break;
3777 case 4: /* AT S12E1R, AT S12E1W */
3778 mmu_idx = regime_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_E10_1;
3779 break;
3780 case 6: /* AT S12E0R, AT S12E0W */
3781 mmu_idx = regime_e20 ? ARMMMUIdx_E20_0 : ARMMMUIdx_E10_0;
3782 break;
3783 default:
3784 g_assert_not_reached();
3787 env->cp15.par_el[1] = do_ats_write(env, value, access_type,
3788 mmu_idx, arm_security_space(env));
3789 #else
3790 /* Handled by hardware accelerator. */
3791 g_assert_not_reached();
3792 #endif /* CONFIG_TCG */
3794 #endif
3796 /* Return basic MPU access permission bits. */
3797 static uint32_t simple_mpu_ap_bits(uint32_t val)
3799 uint32_t ret;
3800 uint32_t mask;
3801 int i;
3802 ret = 0;
3803 mask = 3;
3804 for (i = 0; i < 16; i += 2) {
3805 ret |= (val >> i) & mask;
3806 mask <<= 2;
3808 return ret;
3811 /* Pad basic MPU access permission bits to extended format. */
3812 static uint32_t extended_mpu_ap_bits(uint32_t val)
3814 uint32_t ret;
3815 uint32_t mask;
3816 int i;
3817 ret = 0;
3818 mask = 3;
3819 for (i = 0; i < 16; i += 2) {
3820 ret |= (val & mask) << i;
3821 mask <<= 2;
3823 return ret;
3826 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3827 uint64_t value)
3829 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
3832 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3834 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
3837 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3838 uint64_t value)
3840 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
3843 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3845 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
3848 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
3850 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3852 if (!u32p) {
3853 return 0;
3856 u32p += env->pmsav7.rnr[M_REG_NS];
3857 return *u32p;
3860 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
3861 uint64_t value)
3863 ARMCPU *cpu = env_archcpu(env);
3864 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3866 if (!u32p) {
3867 return;
3870 u32p += env->pmsav7.rnr[M_REG_NS];
3871 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3872 *u32p = value;
3875 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3876 uint64_t value)
3878 ARMCPU *cpu = env_archcpu(env);
3879 uint32_t nrgs = cpu->pmsav7_dregion;
3881 if (value >= nrgs) {
3882 qemu_log_mask(LOG_GUEST_ERROR,
3883 "PMSAv7 RGNR write >= # supported regions, %" PRIu32
3884 " > %" PRIu32 "\n", (uint32_t)value, nrgs);
3885 return;
3888 raw_write(env, ri, value);
3891 static void prbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3892 uint64_t value)
3894 ARMCPU *cpu = env_archcpu(env);
3896 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3897 env->pmsav8.rbar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]] = value;
3900 static uint64_t prbar_read(CPUARMState *env, const ARMCPRegInfo *ri)
3902 return env->pmsav8.rbar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]];
3905 static void prlar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3906 uint64_t value)
3908 ARMCPU *cpu = env_archcpu(env);
3910 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3911 env->pmsav8.rlar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]] = value;
3914 static uint64_t prlar_read(CPUARMState *env, const ARMCPRegInfo *ri)
3916 return env->pmsav8.rlar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]];
3919 static void prselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3920 uint64_t value)
3922 ARMCPU *cpu = env_archcpu(env);
3925 * Ignore writes that would select not implemented region.
3926 * This is architecturally UNPREDICTABLE.
3928 if (value >= cpu->pmsav7_dregion) {
3929 return;
3932 env->pmsav7.rnr[M_REG_NS] = value;
3935 static void hprbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3936 uint64_t value)
3938 ARMCPU *cpu = env_archcpu(env);
3940 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3941 env->pmsav8.hprbar[env->pmsav8.hprselr] = value;
3944 static uint64_t hprbar_read(CPUARMState *env, const ARMCPRegInfo *ri)
3946 return env->pmsav8.hprbar[env->pmsav8.hprselr];
3949 static void hprlar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3950 uint64_t value)
3952 ARMCPU *cpu = env_archcpu(env);
3954 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3955 env->pmsav8.hprlar[env->pmsav8.hprselr] = value;
3958 static uint64_t hprlar_read(CPUARMState *env, const ARMCPRegInfo *ri)
3960 return env->pmsav8.hprlar[env->pmsav8.hprselr];
3963 static void hprenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3964 uint64_t value)
3966 uint32_t n;
3967 uint32_t bit;
3968 ARMCPU *cpu = env_archcpu(env);
3970 /* Ignore writes to unimplemented regions */
3971 int rmax = MIN(cpu->pmsav8r_hdregion, 32);
3972 value &= MAKE_64BIT_MASK(0, rmax);
3974 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3976 /* Register alias is only valid for first 32 indexes */
3977 for (n = 0; n < rmax; ++n) {
3978 bit = extract32(value, n, 1);
3979 env->pmsav8.hprlar[n] = deposit32(
3980 env->pmsav8.hprlar[n], 0, 1, bit);
3984 static uint64_t hprenr_read(CPUARMState *env, const ARMCPRegInfo *ri)
3986 uint32_t n;
3987 uint32_t result = 0x0;
3988 ARMCPU *cpu = env_archcpu(env);
3990 /* Register alias is only valid for first 32 indexes */
3991 for (n = 0; n < MIN(cpu->pmsav8r_hdregion, 32); ++n) {
3992 if (env->pmsav8.hprlar[n] & 0x1) {
3993 result |= (0x1 << n);
3996 return result;
3999 static void hprselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4000 uint64_t value)
4002 ARMCPU *cpu = env_archcpu(env);
4005 * Ignore writes that would select not implemented region.
4006 * This is architecturally UNPREDICTABLE.
4008 if (value >= cpu->pmsav8r_hdregion) {
4009 return;
4012 env->pmsav8.hprselr = value;
4015 static void pmsav8r_regn_write(CPUARMState *env, const ARMCPRegInfo *ri,
4016 uint64_t value)
4018 ARMCPU *cpu = env_archcpu(env);
4019 uint8_t index = (extract32(ri->opc0, 0, 1) << 4) |
4020 (extract32(ri->crm, 0, 3) << 1) | extract32(ri->opc2, 2, 1);
4022 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
4024 if (ri->opc1 & 4) {
4025 if (index >= cpu->pmsav8r_hdregion) {
4026 return;
4028 if (ri->opc2 & 0x1) {
4029 env->pmsav8.hprlar[index] = value;
4030 } else {
4031 env->pmsav8.hprbar[index] = value;
4033 } else {
4034 if (index >= cpu->pmsav7_dregion) {
4035 return;
4037 if (ri->opc2 & 0x1) {
4038 env->pmsav8.rlar[M_REG_NS][index] = value;
4039 } else {
4040 env->pmsav8.rbar[M_REG_NS][index] = value;
4045 static uint64_t pmsav8r_regn_read(CPUARMState *env, const ARMCPRegInfo *ri)
4047 ARMCPU *cpu = env_archcpu(env);
4048 uint8_t index = (extract32(ri->opc0, 0, 1) << 4) |
4049 (extract32(ri->crm, 0, 3) << 1) | extract32(ri->opc2, 2, 1);
4051 if (ri->opc1 & 4) {
4052 if (index >= cpu->pmsav8r_hdregion) {
4053 return 0x0;
4055 if (ri->opc2 & 0x1) {
4056 return env->pmsav8.hprlar[index];
4057 } else {
4058 return env->pmsav8.hprbar[index];
4060 } else {
4061 if (index >= cpu->pmsav7_dregion) {
4062 return 0x0;
4064 if (ri->opc2 & 0x1) {
4065 return env->pmsav8.rlar[M_REG_NS][index];
4066 } else {
4067 return env->pmsav8.rbar[M_REG_NS][index];
4072 static const ARMCPRegInfo pmsav8r_cp_reginfo[] = {
4073 { .name = "PRBAR",
4074 .cp = 15, .opc1 = 0, .crn = 6, .crm = 3, .opc2 = 0,
4075 .access = PL1_RW, .type = ARM_CP_NO_RAW,
4076 .accessfn = access_tvm_trvm,
4077 .readfn = prbar_read, .writefn = prbar_write },
4078 { .name = "PRLAR",
4079 .cp = 15, .opc1 = 0, .crn = 6, .crm = 3, .opc2 = 1,
4080 .access = PL1_RW, .type = ARM_CP_NO_RAW,
4081 .accessfn = access_tvm_trvm,
4082 .readfn = prlar_read, .writefn = prlar_write },
4083 { .name = "PRSELR", .resetvalue = 0,
4084 .cp = 15, .opc1 = 0, .crn = 6, .crm = 2, .opc2 = 1,
4085 .access = PL1_RW, .accessfn = access_tvm_trvm,
4086 .writefn = prselr_write,
4087 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]) },
4088 { .name = "HPRBAR", .resetvalue = 0,
4089 .cp = 15, .opc1 = 4, .crn = 6, .crm = 3, .opc2 = 0,
4090 .access = PL2_RW, .type = ARM_CP_NO_RAW,
4091 .readfn = hprbar_read, .writefn = hprbar_write },
4092 { .name = "HPRLAR",
4093 .cp = 15, .opc1 = 4, .crn = 6, .crm = 3, .opc2 = 1,
4094 .access = PL2_RW, .type = ARM_CP_NO_RAW,
4095 .readfn = hprlar_read, .writefn = hprlar_write },
4096 { .name = "HPRSELR", .resetvalue = 0,
4097 .cp = 15, .opc1 = 4, .crn = 6, .crm = 2, .opc2 = 1,
4098 .access = PL2_RW,
4099 .writefn = hprselr_write,
4100 .fieldoffset = offsetof(CPUARMState, pmsav8.hprselr) },
4101 { .name = "HPRENR",
4102 .cp = 15, .opc1 = 4, .crn = 6, .crm = 1, .opc2 = 1,
4103 .access = PL2_RW, .type = ARM_CP_NO_RAW,
4104 .readfn = hprenr_read, .writefn = hprenr_write },
4107 static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
4109 * Reset for all these registers is handled in arm_cpu_reset(),
4110 * because the PMSAv7 is also used by M-profile CPUs, which do
4111 * not register cpregs but still need the state to be reset.
4113 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
4114 .access = PL1_RW, .type = ARM_CP_NO_RAW,
4115 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
4116 .readfn = pmsav7_read, .writefn = pmsav7_write,
4117 .resetfn = arm_cp_reset_ignore },
4118 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
4119 .access = PL1_RW, .type = ARM_CP_NO_RAW,
4120 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
4121 .readfn = pmsav7_read, .writefn = pmsav7_write,
4122 .resetfn = arm_cp_reset_ignore },
4123 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
4124 .access = PL1_RW, .type = ARM_CP_NO_RAW,
4125 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
4126 .readfn = pmsav7_read, .writefn = pmsav7_write,
4127 .resetfn = arm_cp_reset_ignore },
4128 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
4129 .access = PL1_RW,
4130 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]),
4131 .writefn = pmsav7_rgnr_write,
4132 .resetfn = arm_cp_reset_ignore },
4135 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
4136 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
4137 .access = PL1_RW, .type = ARM_CP_ALIAS,
4138 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
4139 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
4140 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
4141 .access = PL1_RW, .type = ARM_CP_ALIAS,
4142 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
4143 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
4144 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
4145 .access = PL1_RW,
4146 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
4147 .resetvalue = 0, },
4148 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
4149 .access = PL1_RW,
4150 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
4151 .resetvalue = 0, },
4152 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
4153 .access = PL1_RW,
4154 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
4155 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
4156 .access = PL1_RW,
4157 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
4158 /* Protection region base and size registers */
4159 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
4160 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4161 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
4162 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
4163 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4164 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
4165 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
4166 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4167 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
4168 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
4169 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4170 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
4171 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
4172 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4173 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
4174 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
4175 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4176 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
4177 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
4178 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4179 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
4180 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
4181 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4182 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
4185 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4186 uint64_t value)
4188 ARMCPU *cpu = env_archcpu(env);
4190 if (!arm_feature(env, ARM_FEATURE_V8)) {
4191 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
4193 * Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
4194 * using Long-descriptor translation table format
4196 value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
4197 } else if (arm_feature(env, ARM_FEATURE_EL3)) {
4199 * In an implementation that includes the Security Extensions
4200 * TTBCR has additional fields PD0 [4] and PD1 [5] for
4201 * Short-descriptor translation table format.
4203 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
4204 } else {
4205 value &= TTBCR_N;
4209 if (arm_feature(env, ARM_FEATURE_LPAE)) {
4211 * With LPAE the TTBCR could result in a change of ASID
4212 * via the TTBCR.A1 bit, so do a TLB flush.
4214 tlb_flush(CPU(cpu));
4216 raw_write(env, ri, value);
4219 static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri,
4220 uint64_t value)
4222 ARMCPU *cpu = env_archcpu(env);
4224 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
4225 tlb_flush(CPU(cpu));
4226 raw_write(env, ri, value);
4229 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4230 uint64_t value)
4232 /* If the ASID changes (with a 64-bit write), we must flush the TLB. */
4233 if (cpreg_field_is_64bit(ri) &&
4234 extract64(raw_read(env, ri) ^ value, 48, 16) != 0) {
4235 ARMCPU *cpu = env_archcpu(env);
4236 tlb_flush(CPU(cpu));
4238 raw_write(env, ri, value);
4241 static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4242 uint64_t value)
4245 * If we are running with E2&0 regime, then an ASID is active.
4246 * Flush if that might be changing. Note we're not checking
4247 * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that
4248 * holds the active ASID, only checking the field that might.
4250 if (extract64(raw_read(env, ri) ^ value, 48, 16) &&
4251 (arm_hcr_el2_eff(env) & HCR_E2H)) {
4252 uint16_t mask = ARMMMUIdxBit_E20_2 |
4253 ARMMMUIdxBit_E20_2_PAN |
4254 ARMMMUIdxBit_E20_0;
4255 tlb_flush_by_mmuidx(env_cpu(env), mask);
4257 raw_write(env, ri, value);
4260 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4261 uint64_t value)
4263 ARMCPU *cpu = env_archcpu(env);
4264 CPUState *cs = CPU(cpu);
4267 * A change in VMID to the stage2 page table (Stage2) invalidates
4268 * the stage2 and combined stage 1&2 tlbs (EL10_1 and EL10_0).
4270 if (extract64(raw_read(env, ri) ^ value, 48, 16) != 0) {
4271 tlb_flush_by_mmuidx(cs, alle1_tlbmask(env));
4273 raw_write(env, ri, value);
4276 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
4277 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
4278 .access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS,
4279 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
4280 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
4281 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
4282 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
4283 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
4284 offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
4285 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
4286 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
4287 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
4288 offsetof(CPUARMState, cp15.dfar_ns) } },
4289 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
4290 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
4291 .access = PL1_RW, .accessfn = access_tvm_trvm,
4292 .fgt = FGT_FAR_EL1,
4293 .nv2_redirect_offset = 0x220 | NV2_REDIR_NV1,
4294 .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
4295 .resetvalue = 0, },
4298 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
4299 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
4300 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
4301 .access = PL1_RW, .accessfn = access_tvm_trvm,
4302 .fgt = FGT_ESR_EL1,
4303 .nv2_redirect_offset = 0x138 | NV2_REDIR_NV1,
4304 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
4305 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
4306 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
4307 .access = PL1_RW, .accessfn = access_tvm_trvm,
4308 .fgt = FGT_TTBR0_EL1,
4309 .nv2_redirect_offset = 0x200 | NV2_REDIR_NV1,
4310 .writefn = vmsa_ttbr_write, .resetvalue = 0, .raw_writefn = raw_write,
4311 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
4312 offsetof(CPUARMState, cp15.ttbr0_ns) } },
4313 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
4314 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
4315 .access = PL1_RW, .accessfn = access_tvm_trvm,
4316 .fgt = FGT_TTBR1_EL1,
4317 .nv2_redirect_offset = 0x210 | NV2_REDIR_NV1,
4318 .writefn = vmsa_ttbr_write, .resetvalue = 0, .raw_writefn = raw_write,
4319 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
4320 offsetof(CPUARMState, cp15.ttbr1_ns) } },
4321 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
4322 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
4323 .access = PL1_RW, .accessfn = access_tvm_trvm,
4324 .fgt = FGT_TCR_EL1,
4325 .nv2_redirect_offset = 0x120 | NV2_REDIR_NV1,
4326 .writefn = vmsa_tcr_el12_write,
4327 .raw_writefn = raw_write,
4328 .resetvalue = 0,
4329 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
4330 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
4331 .access = PL1_RW, .accessfn = access_tvm_trvm,
4332 .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
4333 .raw_writefn = raw_write,
4334 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
4335 offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
4339 * Note that unlike TTBCR, writing to TTBCR2 does not require flushing
4340 * qemu tlbs nor adjusting cached masks.
4342 static const ARMCPRegInfo ttbcr2_reginfo = {
4343 .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3,
4344 .access = PL1_RW, .accessfn = access_tvm_trvm,
4345 .type = ARM_CP_ALIAS,
4346 .bank_fieldoffsets = {
4347 offsetofhigh32(CPUARMState, cp15.tcr_el[3]),
4348 offsetofhigh32(CPUARMState, cp15.tcr_el[1]),
4352 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
4353 uint64_t value)
4355 env->cp15.c15_ticonfig = value & 0xe7;
4356 /* The OS_TYPE bit in this register changes the reported CPUID! */
4357 env->cp15.c0_cpuid = (value & (1 << 5)) ?
4358 ARM_CPUID_TI915T : ARM_CPUID_TI925T;
4361 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
4362 uint64_t value)
4364 env->cp15.c15_threadid = value & 0xffff;
4367 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
4368 uint64_t value)
4370 /* Wait-for-interrupt (deprecated) */
4371 cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT);
4374 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
4375 uint64_t value)
4378 * On OMAP there are registers indicating the max/min index of dcache lines
4379 * containing a dirty line; cache flush operations have to reset these.
4381 env->cp15.c15_i_max = 0x000;
4382 env->cp15.c15_i_min = 0xff0;
4385 static const ARMCPRegInfo omap_cp_reginfo[] = {
4386 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
4387 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
4388 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
4389 .resetvalue = 0, },
4390 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
4391 .access = PL1_RW, .type = ARM_CP_NOP },
4392 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
4393 .access = PL1_RW,
4394 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
4395 .writefn = omap_ticonfig_write },
4396 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
4397 .access = PL1_RW,
4398 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
4399 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
4400 .access = PL1_RW, .resetvalue = 0xff0,
4401 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
4402 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
4403 .access = PL1_RW,
4404 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
4405 .writefn = omap_threadid_write },
4406 { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
4407 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
4408 .type = ARM_CP_NO_RAW,
4409 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
4411 * TODO: Peripheral port remap register:
4412 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
4413 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
4414 * when MMU is off.
4416 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
4417 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
4418 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
4419 .writefn = omap_cachemaint_write },
4420 { .name = "C9", .cp = 15, .crn = 9,
4421 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
4422 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
4425 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
4426 uint64_t value)
4428 env->cp15.c15_cpar = value & 0x3fff;
4431 static const ARMCPRegInfo xscale_cp_reginfo[] = {
4432 { .name = "XSCALE_CPAR",
4433 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
4434 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
4435 .writefn = xscale_cpar_write, },
4436 { .name = "XSCALE_AUXCR",
4437 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
4438 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
4439 .resetvalue = 0, },
4441 * XScale specific cache-lockdown: since we have no cache we NOP these
4442 * and hope the guest does not really rely on cache behaviour.
4444 { .name = "XSCALE_LOCK_ICACHE_LINE",
4445 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
4446 .access = PL1_W, .type = ARM_CP_NOP },
4447 { .name = "XSCALE_UNLOCK_ICACHE",
4448 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
4449 .access = PL1_W, .type = ARM_CP_NOP },
4450 { .name = "XSCALE_DCACHE_LOCK",
4451 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
4452 .access = PL1_RW, .type = ARM_CP_NOP },
4453 { .name = "XSCALE_UNLOCK_DCACHE",
4454 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
4455 .access = PL1_W, .type = ARM_CP_NOP },
4458 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
4460 * RAZ/WI the whole crn=15 space, when we don't have a more specific
4461 * implementation of this implementation-defined space.
4462 * Ideally this should eventually disappear in favour of actually
4463 * implementing the correct behaviour for all cores.
4465 { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
4466 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
4467 .access = PL1_RW,
4468 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
4469 .resetvalue = 0 },
4472 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
4473 /* Cache status: RAZ because we have no cache so it's always clean */
4474 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
4475 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4476 .resetvalue = 0 },
4479 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
4480 /* We never have a block transfer operation in progress */
4481 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
4482 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4483 .resetvalue = 0 },
4484 /* The cache ops themselves: these all NOP for QEMU */
4485 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
4486 .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4487 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
4488 .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4489 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
4490 .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4491 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
4492 .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4493 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
4494 .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4495 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
4496 .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4499 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
4501 * The cache test-and-clean instructions always return (1 << 30)
4502 * to indicate that there are no dirty cache lines.
4504 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
4505 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4506 .resetvalue = (1 << 30) },
4507 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
4508 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4509 .resetvalue = (1 << 30) },
4512 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
4513 /* Ignore ReadBuffer accesses */
4514 { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
4515 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
4516 .access = PL1_RW, .resetvalue = 0,
4517 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
4520 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4522 unsigned int cur_el = arm_current_el(env);
4524 if (arm_is_el2_enabled(env) && cur_el == 1) {
4525 return env->cp15.vpidr_el2;
4527 return raw_read(env, ri);
4530 static uint64_t mpidr_read_val(CPUARMState *env)
4532 ARMCPU *cpu = env_archcpu(env);
4533 uint64_t mpidr = cpu->mp_affinity;
4535 if (arm_feature(env, ARM_FEATURE_V7MP)) {
4536 mpidr |= (1U << 31);
4538 * Cores which are uniprocessor (non-coherent)
4539 * but still implement the MP extensions set
4540 * bit 30. (For instance, Cortex-R5).
4542 if (cpu->mp_is_up) {
4543 mpidr |= (1u << 30);
4546 return mpidr;
4549 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4551 unsigned int cur_el = arm_current_el(env);
4553 if (arm_is_el2_enabled(env) && cur_el == 1) {
4554 return env->cp15.vmpidr_el2;
4556 return mpidr_read_val(env);
4559 static const ARMCPRegInfo lpae_cp_reginfo[] = {
4560 /* NOP AMAIR0/1 */
4561 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
4562 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
4563 .access = PL1_RW, .accessfn = access_tvm_trvm,
4564 .fgt = FGT_AMAIR_EL1,
4565 .nv2_redirect_offset = 0x148 | NV2_REDIR_NV1,
4566 .type = ARM_CP_CONST, .resetvalue = 0 },
4567 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
4568 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
4569 .access = PL1_RW, .accessfn = access_tvm_trvm,
4570 .type = ARM_CP_CONST, .resetvalue = 0 },
4571 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
4572 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
4573 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
4574 offsetof(CPUARMState, cp15.par_ns)} },
4575 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
4576 .access = PL1_RW, .accessfn = access_tvm_trvm,
4577 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4578 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
4579 offsetof(CPUARMState, cp15.ttbr0_ns) },
4580 .writefn = vmsa_ttbr_write, .raw_writefn = raw_write },
4581 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
4582 .access = PL1_RW, .accessfn = access_tvm_trvm,
4583 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4584 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
4585 offsetof(CPUARMState, cp15.ttbr1_ns) },
4586 .writefn = vmsa_ttbr_write, .raw_writefn = raw_write },
4589 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4591 return vfp_get_fpcr(env);
4594 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4595 uint64_t value)
4597 vfp_set_fpcr(env, value);
4600 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4602 return vfp_get_fpsr(env);
4605 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4606 uint64_t value)
4608 vfp_set_fpsr(env, value);
4611 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
4612 bool isread)
4614 if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) {
4615 return CP_ACCESS_TRAP;
4617 return CP_ACCESS_OK;
4620 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
4621 uint64_t value)
4623 env->daif = value & PSTATE_DAIF;
4626 static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri)
4628 return env->pstate & PSTATE_PAN;
4631 static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri,
4632 uint64_t value)
4634 env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN);
4637 static const ARMCPRegInfo pan_reginfo = {
4638 .name = "PAN", .state = ARM_CP_STATE_AA64,
4639 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3,
4640 .type = ARM_CP_NO_RAW, .access = PL1_RW,
4641 .readfn = aa64_pan_read, .writefn = aa64_pan_write
4644 static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri)
4646 return env->pstate & PSTATE_UAO;
4649 static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri,
4650 uint64_t value)
4652 env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO);
4655 static const ARMCPRegInfo uao_reginfo = {
4656 .name = "UAO", .state = ARM_CP_STATE_AA64,
4657 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4,
4658 .type = ARM_CP_NO_RAW, .access = PL1_RW,
4659 .readfn = aa64_uao_read, .writefn = aa64_uao_write
4662 static uint64_t aa64_dit_read(CPUARMState *env, const ARMCPRegInfo *ri)
4664 return env->pstate & PSTATE_DIT;
4667 static void aa64_dit_write(CPUARMState *env, const ARMCPRegInfo *ri,
4668 uint64_t value)
4670 env->pstate = (env->pstate & ~PSTATE_DIT) | (value & PSTATE_DIT);
4673 static const ARMCPRegInfo dit_reginfo = {
4674 .name = "DIT", .state = ARM_CP_STATE_AA64,
4675 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 5,
4676 .type = ARM_CP_NO_RAW, .access = PL0_RW,
4677 .readfn = aa64_dit_read, .writefn = aa64_dit_write
4680 static uint64_t aa64_ssbs_read(CPUARMState *env, const ARMCPRegInfo *ri)
4682 return env->pstate & PSTATE_SSBS;
4685 static void aa64_ssbs_write(CPUARMState *env, const ARMCPRegInfo *ri,
4686 uint64_t value)
4688 env->pstate = (env->pstate & ~PSTATE_SSBS) | (value & PSTATE_SSBS);
4691 static const ARMCPRegInfo ssbs_reginfo = {
4692 .name = "SSBS", .state = ARM_CP_STATE_AA64,
4693 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 6,
4694 .type = ARM_CP_NO_RAW, .access = PL0_RW,
4695 .readfn = aa64_ssbs_read, .writefn = aa64_ssbs_write
4698 static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env,
4699 const ARMCPRegInfo *ri,
4700 bool isread)
4702 /* Cache invalidate/clean to Point of Coherency or Persistence... */
4703 switch (arm_current_el(env)) {
4704 case 0:
4705 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */
4706 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
4707 return CP_ACCESS_TRAP;
4709 /* fall through */
4710 case 1:
4711 /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set. */
4712 if (arm_hcr_el2_eff(env) & HCR_TPCP) {
4713 return CP_ACCESS_TRAP_EL2;
4715 break;
4717 return CP_ACCESS_OK;
4720 static CPAccessResult do_cacheop_pou_access(CPUARMState *env, uint64_t hcrflags)
4722 /* Cache invalidate/clean to Point of Unification... */
4723 switch (arm_current_el(env)) {
4724 case 0:
4725 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */
4726 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
4727 return CP_ACCESS_TRAP;
4729 /* fall through */
4730 case 1:
4731 /* ... EL1 must trap to EL2 if relevant HCR_EL2 flags are set. */
4732 if (arm_hcr_el2_eff(env) & hcrflags) {
4733 return CP_ACCESS_TRAP_EL2;
4735 break;
4737 return CP_ACCESS_OK;
4740 static CPAccessResult access_ticab(CPUARMState *env, const ARMCPRegInfo *ri,
4741 bool isread)
4743 return do_cacheop_pou_access(env, HCR_TICAB | HCR_TPU);
4746 static CPAccessResult access_tocu(CPUARMState *env, const ARMCPRegInfo *ri,
4747 bool isread)
4749 return do_cacheop_pou_access(env, HCR_TOCU | HCR_TPU);
4753 * See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
4754 * Page D4-1736 (DDI0487A.b)
4757 static int vae1_tlbmask(CPUARMState *env)
4759 uint64_t hcr = arm_hcr_el2_eff(env);
4760 uint16_t mask;
4762 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4763 mask = ARMMMUIdxBit_E20_2 |
4764 ARMMMUIdxBit_E20_2_PAN |
4765 ARMMMUIdxBit_E20_0;
4766 } else {
4767 mask = ARMMMUIdxBit_E10_1 |
4768 ARMMMUIdxBit_E10_1_PAN |
4769 ARMMMUIdxBit_E10_0;
4771 return mask;
4774 static int vae2_tlbmask(CPUARMState *env)
4776 uint64_t hcr = arm_hcr_el2_eff(env);
4777 uint16_t mask;
4779 if (hcr & HCR_E2H) {
4780 mask = ARMMMUIdxBit_E20_2 |
4781 ARMMMUIdxBit_E20_2_PAN |
4782 ARMMMUIdxBit_E20_0;
4783 } else {
4784 mask = ARMMMUIdxBit_E2;
4786 return mask;
4789 /* Return 56 if TBI is enabled, 64 otherwise. */
4790 static int tlbbits_for_regime(CPUARMState *env, ARMMMUIdx mmu_idx,
4791 uint64_t addr)
4793 uint64_t tcr = regime_tcr(env, mmu_idx);
4794 int tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
4795 int select = extract64(addr, 55, 1);
4797 return (tbi >> select) & 1 ? 56 : 64;
4800 static int vae1_tlbbits(CPUARMState *env, uint64_t addr)
4802 uint64_t hcr = arm_hcr_el2_eff(env);
4803 ARMMMUIdx mmu_idx;
4805 /* Only the regime of the mmu_idx below is significant. */
4806 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4807 mmu_idx = ARMMMUIdx_E20_0;
4808 } else {
4809 mmu_idx = ARMMMUIdx_E10_0;
4812 return tlbbits_for_regime(env, mmu_idx, addr);
4815 static int vae2_tlbbits(CPUARMState *env, uint64_t addr)
4817 uint64_t hcr = arm_hcr_el2_eff(env);
4818 ARMMMUIdx mmu_idx;
4821 * Only the regime of the mmu_idx below is significant.
4822 * Regime EL2&0 has two ranges with separate TBI configuration, while EL2
4823 * only has one.
4825 if (hcr & HCR_E2H) {
4826 mmu_idx = ARMMMUIdx_E20_2;
4827 } else {
4828 mmu_idx = ARMMMUIdx_E2;
4831 return tlbbits_for_regime(env, mmu_idx, addr);
4834 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4835 uint64_t value)
4837 CPUState *cs = env_cpu(env);
4838 int mask = vae1_tlbmask(env);
4840 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4843 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4844 uint64_t value)
4846 CPUState *cs = env_cpu(env);
4847 int mask = vae1_tlbmask(env);
4849 if (tlb_force_broadcast(env)) {
4850 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4851 } else {
4852 tlb_flush_by_mmuidx(cs, mask);
4856 static int e2_tlbmask(CPUARMState *env)
4858 return (ARMMMUIdxBit_E20_0 |
4859 ARMMMUIdxBit_E20_2 |
4860 ARMMMUIdxBit_E20_2_PAN |
4861 ARMMMUIdxBit_E2);
4864 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4865 uint64_t value)
4867 CPUState *cs = env_cpu(env);
4868 int mask = alle1_tlbmask(env);
4870 tlb_flush_by_mmuidx(cs, mask);
4873 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4874 uint64_t value)
4876 CPUState *cs = env_cpu(env);
4877 int mask = e2_tlbmask(env);
4879 tlb_flush_by_mmuidx(cs, mask);
4882 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
4883 uint64_t value)
4885 ARMCPU *cpu = env_archcpu(env);
4886 CPUState *cs = CPU(cpu);
4888 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E3);
4891 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4892 uint64_t value)
4894 CPUState *cs = env_cpu(env);
4895 int mask = alle1_tlbmask(env);
4897 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4900 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4901 uint64_t value)
4903 CPUState *cs = env_cpu(env);
4904 int mask = e2_tlbmask(env);
4906 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4909 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4910 uint64_t value)
4912 CPUState *cs = env_cpu(env);
4914 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E3);
4917 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4918 uint64_t value)
4921 * Invalidate by VA, EL2
4922 * Currently handles both VAE2 and VALE2, since we don't support
4923 * flush-last-level-only.
4925 CPUState *cs = env_cpu(env);
4926 int mask = vae2_tlbmask(env);
4927 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4928 int bits = vae2_tlbbits(env, pageaddr);
4930 tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits);
4933 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
4934 uint64_t value)
4937 * Invalidate by VA, EL3
4938 * Currently handles both VAE3 and VALE3, since we don't support
4939 * flush-last-level-only.
4941 ARMCPU *cpu = env_archcpu(env);
4942 CPUState *cs = CPU(cpu);
4943 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4945 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E3);
4948 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4949 uint64_t value)
4951 CPUState *cs = env_cpu(env);
4952 int mask = vae1_tlbmask(env);
4953 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4954 int bits = vae1_tlbbits(env, pageaddr);
4956 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
4959 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4960 uint64_t value)
4963 * Invalidate by VA, EL1&0 (AArch64 version).
4964 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
4965 * since we don't support flush-for-specific-ASID-only or
4966 * flush-last-level-only.
4968 CPUState *cs = env_cpu(env);
4969 int mask = vae1_tlbmask(env);
4970 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4971 int bits = vae1_tlbbits(env, pageaddr);
4973 if (tlb_force_broadcast(env)) {
4974 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
4975 } else {
4976 tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits);
4980 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4981 uint64_t value)
4983 CPUState *cs = env_cpu(env);
4984 int mask = vae2_tlbmask(env);
4985 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4986 int bits = vae2_tlbbits(env, pageaddr);
4988 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
4991 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4992 uint64_t value)
4994 CPUState *cs = env_cpu(env);
4995 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4996 int bits = tlbbits_for_regime(env, ARMMMUIdx_E3, pageaddr);
4998 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr,
4999 ARMMMUIdxBit_E3, bits);
5002 static int ipas2e1_tlbmask(CPUARMState *env, int64_t value)
5005 * The MSB of value is the NS field, which only applies if SEL2
5006 * is implemented and SCR_EL3.NS is not set (i.e. in secure mode).
5008 return (value >= 0
5009 && cpu_isar_feature(aa64_sel2, env_archcpu(env))
5010 && arm_is_secure_below_el3(env)
5011 ? ARMMMUIdxBit_Stage2_S
5012 : ARMMMUIdxBit_Stage2);
5015 static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
5016 uint64_t value)
5018 CPUState *cs = env_cpu(env);
5019 int mask = ipas2e1_tlbmask(env, value);
5020 uint64_t pageaddr = sextract64(value << 12, 0, 56);
5022 if (tlb_force_broadcast(env)) {
5023 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask);
5024 } else {
5025 tlb_flush_page_by_mmuidx(cs, pageaddr, mask);
5029 static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
5030 uint64_t value)
5032 CPUState *cs = env_cpu(env);
5033 int mask = ipas2e1_tlbmask(env, value);
5034 uint64_t pageaddr = sextract64(value << 12, 0, 56);
5036 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask);
5039 #ifdef TARGET_AARCH64
5040 typedef struct {
5041 uint64_t base;
5042 uint64_t length;
5043 } TLBIRange;
5045 static ARMGranuleSize tlbi_range_tg_to_gran_size(int tg)
5048 * Note that the TLBI range TG field encoding differs from both
5049 * TG0 and TG1 encodings.
5051 switch (tg) {
5052 case 1:
5053 return Gran4K;
5054 case 2:
5055 return Gran16K;
5056 case 3:
5057 return Gran64K;
5058 default:
5059 return GranInvalid;
5063 static TLBIRange tlbi_aa64_get_range(CPUARMState *env, ARMMMUIdx mmuidx,
5064 uint64_t value)
5066 unsigned int page_size_granule, page_shift, num, scale, exponent;
5067 /* Extract one bit to represent the va selector in use. */
5068 uint64_t select = sextract64(value, 36, 1);
5069 ARMVAParameters param = aa64_va_parameters(env, select, mmuidx, true, false);
5070 TLBIRange ret = { };
5071 ARMGranuleSize gran;
5073 page_size_granule = extract64(value, 46, 2);
5074 gran = tlbi_range_tg_to_gran_size(page_size_granule);
5076 /* The granule encoded in value must match the granule in use. */
5077 if (gran != param.gran) {
5078 qemu_log_mask(LOG_GUEST_ERROR, "Invalid tlbi page size granule %d\n",
5079 page_size_granule);
5080 return ret;
5083 page_shift = arm_granule_bits(gran);
5084 num = extract64(value, 39, 5);
5085 scale = extract64(value, 44, 2);
5086 exponent = (5 * scale) + 1;
5088 ret.length = (num + 1) << (exponent + page_shift);
5090 if (param.select) {
5091 ret.base = sextract64(value, 0, 37);
5092 } else {
5093 ret.base = extract64(value, 0, 37);
5095 if (param.ds) {
5097 * With DS=1, BaseADDR is always shifted 16 so that it is able
5098 * to address all 52 va bits. The input address is perforce
5099 * aligned on a 64k boundary regardless of translation granule.
5101 page_shift = 16;
5103 ret.base <<= page_shift;
5105 return ret;
5108 static void do_rvae_write(CPUARMState *env, uint64_t value,
5109 int idxmap, bool synced)
5111 ARMMMUIdx one_idx = ARM_MMU_IDX_A | ctz32(idxmap);
5112 TLBIRange range;
5113 int bits;
5115 range = tlbi_aa64_get_range(env, one_idx, value);
5116 bits = tlbbits_for_regime(env, one_idx, range.base);
5118 if (synced) {
5119 tlb_flush_range_by_mmuidx_all_cpus_synced(env_cpu(env),
5120 range.base,
5121 range.length,
5122 idxmap,
5123 bits);
5124 } else {
5125 tlb_flush_range_by_mmuidx(env_cpu(env), range.base,
5126 range.length, idxmap, bits);
5130 static void tlbi_aa64_rvae1_write(CPUARMState *env,
5131 const ARMCPRegInfo *ri,
5132 uint64_t value)
5135 * Invalidate by VA range, EL1&0.
5136 * Currently handles all of RVAE1, RVAAE1, RVAALE1 and RVALE1,
5137 * since we don't support flush-for-specific-ASID-only or
5138 * flush-last-level-only.
5141 do_rvae_write(env, value, vae1_tlbmask(env),
5142 tlb_force_broadcast(env));
5145 static void tlbi_aa64_rvae1is_write(CPUARMState *env,
5146 const ARMCPRegInfo *ri,
5147 uint64_t value)
5150 * Invalidate by VA range, Inner/Outer Shareable EL1&0.
5151 * Currently handles all of RVAE1IS, RVAE1OS, RVAAE1IS, RVAAE1OS,
5152 * RVAALE1IS, RVAALE1OS, RVALE1IS and RVALE1OS, since we don't support
5153 * flush-for-specific-ASID-only, flush-last-level-only or inner/outer
5154 * shareable specific flushes.
5157 do_rvae_write(env, value, vae1_tlbmask(env), true);
5160 static void tlbi_aa64_rvae2_write(CPUARMState *env,
5161 const ARMCPRegInfo *ri,
5162 uint64_t value)
5165 * Invalidate by VA range, EL2.
5166 * Currently handles all of RVAE2 and RVALE2,
5167 * since we don't support flush-for-specific-ASID-only or
5168 * flush-last-level-only.
5171 do_rvae_write(env, value, vae2_tlbmask(env),
5172 tlb_force_broadcast(env));
5177 static void tlbi_aa64_rvae2is_write(CPUARMState *env,
5178 const ARMCPRegInfo *ri,
5179 uint64_t value)
5182 * Invalidate by VA range, Inner/Outer Shareable, EL2.
5183 * Currently handles all of RVAE2IS, RVAE2OS, RVALE2IS and RVALE2OS,
5184 * since we don't support flush-for-specific-ASID-only,
5185 * flush-last-level-only or inner/outer shareable specific flushes.
5188 do_rvae_write(env, value, vae2_tlbmask(env), true);
5192 static void tlbi_aa64_rvae3_write(CPUARMState *env,
5193 const ARMCPRegInfo *ri,
5194 uint64_t value)
5197 * Invalidate by VA range, EL3.
5198 * Currently handles all of RVAE3 and RVALE3,
5199 * since we don't support flush-for-specific-ASID-only or
5200 * flush-last-level-only.
5203 do_rvae_write(env, value, ARMMMUIdxBit_E3, tlb_force_broadcast(env));
5206 static void tlbi_aa64_rvae3is_write(CPUARMState *env,
5207 const ARMCPRegInfo *ri,
5208 uint64_t value)
5211 * Invalidate by VA range, EL3, Inner/Outer Shareable.
5212 * Currently handles all of RVAE3IS, RVAE3OS, RVALE3IS and RVALE3OS,
5213 * since we don't support flush-for-specific-ASID-only,
5214 * flush-last-level-only or inner/outer specific flushes.
5217 do_rvae_write(env, value, ARMMMUIdxBit_E3, true);
5220 static void tlbi_aa64_ripas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
5221 uint64_t value)
5223 do_rvae_write(env, value, ipas2e1_tlbmask(env, value),
5224 tlb_force_broadcast(env));
5227 static void tlbi_aa64_ripas2e1is_write(CPUARMState *env,
5228 const ARMCPRegInfo *ri,
5229 uint64_t value)
5231 do_rvae_write(env, value, ipas2e1_tlbmask(env, value), true);
5233 #endif
5235 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
5236 bool isread)
5238 int cur_el = arm_current_el(env);
5240 if (cur_el < 2) {
5241 uint64_t hcr = arm_hcr_el2_eff(env);
5243 if (cur_el == 0) {
5244 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
5245 if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) {
5246 return CP_ACCESS_TRAP_EL2;
5248 } else {
5249 if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
5250 return CP_ACCESS_TRAP;
5252 if (hcr & HCR_TDZ) {
5253 return CP_ACCESS_TRAP_EL2;
5256 } else if (hcr & HCR_TDZ) {
5257 return CP_ACCESS_TRAP_EL2;
5260 return CP_ACCESS_OK;
5263 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
5265 ARMCPU *cpu = env_archcpu(env);
5266 int dzp_bit = 1 << 4;
5268 /* DZP indicates whether DC ZVA access is allowed */
5269 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
5270 dzp_bit = 0;
5272 return cpu->dcz_blocksize | dzp_bit;
5275 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
5276 bool isread)
5278 if (!(env->pstate & PSTATE_SP)) {
5280 * Access to SP_EL0 is undefined if it's being used as
5281 * the stack pointer.
5283 return CP_ACCESS_TRAP_UNCATEGORIZED;
5285 return CP_ACCESS_OK;
5288 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
5290 return env->pstate & PSTATE_SP;
5293 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
5295 update_spsel(env, val);
5298 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5299 uint64_t value)
5301 ARMCPU *cpu = env_archcpu(env);
5303 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) {
5304 /* M bit is RAZ/WI for PMSA with no MPU implemented */
5305 value &= ~SCTLR_M;
5308 /* ??? Lots of these bits are not implemented. */
5310 if (ri->state == ARM_CP_STATE_AA64 && !cpu_isar_feature(aa64_mte, cpu)) {
5311 if (ri->opc1 == 6) { /* SCTLR_EL3 */
5312 value &= ~(SCTLR_ITFSB | SCTLR_TCF | SCTLR_ATA);
5313 } else {
5314 value &= ~(SCTLR_ITFSB | SCTLR_TCF0 | SCTLR_TCF |
5315 SCTLR_ATA0 | SCTLR_ATA);
5319 if (raw_read(env, ri) == value) {
5321 * Skip the TLB flush if nothing actually changed; Linux likes
5322 * to do a lot of pointless SCTLR writes.
5324 return;
5327 raw_write(env, ri, value);
5329 /* This may enable/disable the MMU, so do a TLB flush. */
5330 tlb_flush(CPU(cpu));
5332 if (tcg_enabled() && ri->type & ARM_CP_SUPPRESS_TB_END) {
5334 * Normally we would always end the TB on an SCTLR write; see the
5335 * comment in ARMCPRegInfo sctlr initialization below for why Xscale
5336 * is special. Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild
5337 * of hflags from the translator, so do it here.
5339 arm_rebuild_hflags(env);
5343 static void mdcr_el3_write(CPUARMState *env, const ARMCPRegInfo *ri,
5344 uint64_t value)
5347 * Some MDCR_EL3 bits affect whether PMU counters are running:
5348 * if we are trying to change any of those then we must
5349 * bracket this update with PMU start/finish calls.
5351 bool pmu_op = (env->cp15.mdcr_el3 ^ value) & MDCR_EL3_PMU_ENABLE_BITS;
5353 if (pmu_op) {
5354 pmu_op_start(env);
5356 env->cp15.mdcr_el3 = value;
5357 if (pmu_op) {
5358 pmu_op_finish(env);
5362 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5363 uint64_t value)
5365 /* Not all bits defined for MDCR_EL3 exist in the AArch32 SDCR */
5366 mdcr_el3_write(env, ri, value & SDCR_VALID_MASK);
5369 static void mdcr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
5370 uint64_t value)
5373 * Some MDCR_EL2 bits affect whether PMU counters are running:
5374 * if we are trying to change any of those then we must
5375 * bracket this update with PMU start/finish calls.
5377 bool pmu_op = (env->cp15.mdcr_el2 ^ value) & MDCR_EL2_PMU_ENABLE_BITS;
5379 if (pmu_op) {
5380 pmu_op_start(env);
5382 env->cp15.mdcr_el2 = value;
5383 if (pmu_op) {
5384 pmu_op_finish(env);
5388 static CPAccessResult access_nv1(CPUARMState *env, const ARMCPRegInfo *ri,
5389 bool isread)
5391 if (arm_current_el(env) == 1) {
5392 uint64_t hcr_nv = arm_hcr_el2_eff(env) & (HCR_NV | HCR_NV1 | HCR_NV2);
5394 if (hcr_nv == (HCR_NV | HCR_NV1)) {
5395 return CP_ACCESS_TRAP_EL2;
5398 return CP_ACCESS_OK;
5401 #ifdef CONFIG_USER_ONLY
5403 * `IC IVAU` is handled to improve compatibility with JITs that dual-map their
5404 * code to get around W^X restrictions, where one region is writable and the
5405 * other is executable.
5407 * Since the executable region is never written to we cannot detect code
5408 * changes when running in user mode, and rely on the emulated JIT telling us
5409 * that the code has changed by executing this instruction.
5411 static void ic_ivau_write(CPUARMState *env, const ARMCPRegInfo *ri,
5412 uint64_t value)
5414 uint64_t icache_line_mask, start_address, end_address;
5415 const ARMCPU *cpu;
5417 cpu = env_archcpu(env);
5419 icache_line_mask = (4 << extract32(cpu->ctr, 0, 4)) - 1;
5420 start_address = value & ~icache_line_mask;
5421 end_address = value | icache_line_mask;
5423 mmap_lock();
5425 tb_invalidate_phys_range(start_address, end_address);
5427 mmap_unlock();
5429 #endif
5431 static const ARMCPRegInfo v8_cp_reginfo[] = {
5433 * Minimal set of EL0-visible registers. This will need to be expanded
5434 * significantly for system emulation of AArch64 CPUs.
5436 { .name = "NZCV", .state = ARM_CP_STATE_AA64,
5437 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
5438 .access = PL0_RW, .type = ARM_CP_NZCV },
5439 { .name = "DAIF", .state = ARM_CP_STATE_AA64,
5440 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
5441 .type = ARM_CP_NO_RAW,
5442 .access = PL0_RW, .accessfn = aa64_daif_access,
5443 .fieldoffset = offsetof(CPUARMState, daif),
5444 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
5445 { .name = "FPCR", .state = ARM_CP_STATE_AA64,
5446 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
5447 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
5448 .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
5449 { .name = "FPSR", .state = ARM_CP_STATE_AA64,
5450 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
5451 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
5452 .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
5453 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
5454 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
5455 .access = PL0_R, .type = ARM_CP_NO_RAW,
5456 .fgt = FGT_DCZID_EL0,
5457 .readfn = aa64_dczid_read },
5458 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
5459 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
5460 .access = PL0_W, .type = ARM_CP_DC_ZVA,
5461 #ifndef CONFIG_USER_ONLY
5462 /* Avoid overhead of an access check that always passes in user-mode */
5463 .accessfn = aa64_zva_access,
5464 .fgt = FGT_DCZVA,
5465 #endif
5467 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
5468 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
5469 .access = PL1_R, .type = ARM_CP_CURRENTEL },
5471 * Instruction cache ops. All of these except `IC IVAU` NOP because we
5472 * don't emulate caches.
5474 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
5475 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
5476 .access = PL1_W, .type = ARM_CP_NOP,
5477 .fgt = FGT_ICIALLUIS,
5478 .accessfn = access_ticab },
5479 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
5480 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
5481 .access = PL1_W, .type = ARM_CP_NOP,
5482 .fgt = FGT_ICIALLU,
5483 .accessfn = access_tocu },
5484 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
5485 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
5486 .access = PL0_W,
5487 .fgt = FGT_ICIVAU,
5488 .accessfn = access_tocu,
5489 #ifdef CONFIG_USER_ONLY
5490 .type = ARM_CP_NO_RAW,
5491 .writefn = ic_ivau_write
5492 #else
5493 .type = ARM_CP_NOP
5494 #endif
5496 /* Cache ops: all NOPs since we don't emulate caches */
5497 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
5498 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
5499 .access = PL1_W, .accessfn = aa64_cacheop_poc_access,
5500 .fgt = FGT_DCIVAC,
5501 .type = ARM_CP_NOP },
5502 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
5503 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
5504 .fgt = FGT_DCISW,
5505 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
5506 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
5507 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
5508 .access = PL0_W, .type = ARM_CP_NOP,
5509 .fgt = FGT_DCCVAC,
5510 .accessfn = aa64_cacheop_poc_access },
5511 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
5512 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
5513 .fgt = FGT_DCCSW,
5514 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
5515 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
5516 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
5517 .access = PL0_W, .type = ARM_CP_NOP,
5518 .fgt = FGT_DCCVAU,
5519 .accessfn = access_tocu },
5520 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
5521 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
5522 .access = PL0_W, .type = ARM_CP_NOP,
5523 .fgt = FGT_DCCIVAC,
5524 .accessfn = aa64_cacheop_poc_access },
5525 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
5526 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
5527 .fgt = FGT_DCCISW,
5528 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
5529 /* TLBI operations */
5530 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
5531 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
5532 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5533 .fgt = FGT_TLBIVMALLE1IS,
5534 .writefn = tlbi_aa64_vmalle1is_write },
5535 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
5536 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
5537 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5538 .fgt = FGT_TLBIVAE1IS,
5539 .writefn = tlbi_aa64_vae1is_write },
5540 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
5541 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
5542 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5543 .fgt = FGT_TLBIASIDE1IS,
5544 .writefn = tlbi_aa64_vmalle1is_write },
5545 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
5546 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
5547 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5548 .fgt = FGT_TLBIVAAE1IS,
5549 .writefn = tlbi_aa64_vae1is_write },
5550 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
5551 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
5552 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5553 .fgt = FGT_TLBIVALE1IS,
5554 .writefn = tlbi_aa64_vae1is_write },
5555 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
5556 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
5557 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5558 .fgt = FGT_TLBIVAALE1IS,
5559 .writefn = tlbi_aa64_vae1is_write },
5560 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
5561 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
5562 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5563 .fgt = FGT_TLBIVMALLE1,
5564 .writefn = tlbi_aa64_vmalle1_write },
5565 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
5566 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
5567 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5568 .fgt = FGT_TLBIVAE1,
5569 .writefn = tlbi_aa64_vae1_write },
5570 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
5571 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
5572 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5573 .fgt = FGT_TLBIASIDE1,
5574 .writefn = tlbi_aa64_vmalle1_write },
5575 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
5576 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
5577 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5578 .fgt = FGT_TLBIVAAE1,
5579 .writefn = tlbi_aa64_vae1_write },
5580 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
5581 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
5582 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5583 .fgt = FGT_TLBIVALE1,
5584 .writefn = tlbi_aa64_vae1_write },
5585 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
5586 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
5587 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5588 .fgt = FGT_TLBIVAALE1,
5589 .writefn = tlbi_aa64_vae1_write },
5590 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
5591 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
5592 .access = PL2_W, .type = ARM_CP_NO_RAW,
5593 .writefn = tlbi_aa64_ipas2e1is_write },
5594 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
5595 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
5596 .access = PL2_W, .type = ARM_CP_NO_RAW,
5597 .writefn = tlbi_aa64_ipas2e1is_write },
5598 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
5599 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
5600 .access = PL2_W, .type = ARM_CP_NO_RAW,
5601 .writefn = tlbi_aa64_alle1is_write },
5602 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
5603 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
5604 .access = PL2_W, .type = ARM_CP_NO_RAW,
5605 .writefn = tlbi_aa64_alle1is_write },
5606 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
5607 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
5608 .access = PL2_W, .type = ARM_CP_NO_RAW,
5609 .writefn = tlbi_aa64_ipas2e1_write },
5610 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
5611 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
5612 .access = PL2_W, .type = ARM_CP_NO_RAW,
5613 .writefn = tlbi_aa64_ipas2e1_write },
5614 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
5615 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
5616 .access = PL2_W, .type = ARM_CP_NO_RAW,
5617 .writefn = tlbi_aa64_alle1_write },
5618 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
5619 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
5620 .access = PL2_W, .type = ARM_CP_NO_RAW,
5621 .writefn = tlbi_aa64_alle1is_write },
5622 #ifndef CONFIG_USER_ONLY
5623 /* 64 bit address translation operations */
5624 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
5625 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
5626 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5627 .fgt = FGT_ATS1E1R,
5628 .accessfn = at_s1e01_access, .writefn = ats_write64 },
5629 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
5630 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
5631 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5632 .fgt = FGT_ATS1E1W,
5633 .accessfn = at_s1e01_access, .writefn = ats_write64 },
5634 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
5635 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
5636 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5637 .fgt = FGT_ATS1E0R,
5638 .accessfn = at_s1e01_access, .writefn = ats_write64 },
5639 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
5640 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
5641 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5642 .fgt = FGT_ATS1E0W,
5643 .accessfn = at_s1e01_access, .writefn = ats_write64 },
5644 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
5645 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
5646 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5647 .accessfn = at_e012_access, .writefn = ats_write64 },
5648 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
5649 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
5650 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5651 .accessfn = at_e012_access, .writefn = ats_write64 },
5652 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
5653 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
5654 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5655 .accessfn = at_e012_access, .writefn = ats_write64 },
5656 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
5657 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
5658 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5659 .accessfn = at_e012_access, .writefn = ats_write64 },
5660 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
5661 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
5662 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
5663 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5664 .writefn = ats_write64 },
5665 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
5666 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
5667 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5668 .writefn = ats_write64 },
5669 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
5670 .type = ARM_CP_ALIAS,
5671 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
5672 .access = PL1_RW, .resetvalue = 0,
5673 .fgt = FGT_PAR_EL1,
5674 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
5675 .writefn = par_write },
5676 #endif
5677 /* TLB invalidate last level of translation table walk */
5678 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
5679 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
5680 .writefn = tlbimva_is_write },
5681 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
5682 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
5683 .writefn = tlbimvaa_is_write },
5684 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
5685 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5686 .writefn = tlbimva_write },
5687 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
5688 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5689 .writefn = tlbimvaa_write },
5690 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
5691 .type = ARM_CP_NO_RAW, .access = PL2_W,
5692 .writefn = tlbimva_hyp_write },
5693 { .name = "TLBIMVALHIS",
5694 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
5695 .type = ARM_CP_NO_RAW, .access = PL2_W,
5696 .writefn = tlbimva_hyp_is_write },
5697 { .name = "TLBIIPAS2",
5698 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
5699 .type = ARM_CP_NO_RAW, .access = PL2_W,
5700 .writefn = tlbiipas2_hyp_write },
5701 { .name = "TLBIIPAS2IS",
5702 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
5703 .type = ARM_CP_NO_RAW, .access = PL2_W,
5704 .writefn = tlbiipas2is_hyp_write },
5705 { .name = "TLBIIPAS2L",
5706 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
5707 .type = ARM_CP_NO_RAW, .access = PL2_W,
5708 .writefn = tlbiipas2_hyp_write },
5709 { .name = "TLBIIPAS2LIS",
5710 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
5711 .type = ARM_CP_NO_RAW, .access = PL2_W,
5712 .writefn = tlbiipas2is_hyp_write },
5713 /* 32 bit cache operations */
5714 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
5715 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_ticab },
5716 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
5717 .type = ARM_CP_NOP, .access = PL1_W },
5718 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
5719 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu },
5720 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
5721 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu },
5722 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
5723 .type = ARM_CP_NOP, .access = PL1_W },
5724 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
5725 .type = ARM_CP_NOP, .access = PL1_W },
5726 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
5727 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5728 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
5729 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5730 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
5731 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5732 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
5733 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5734 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
5735 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu },
5736 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
5737 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5738 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
5739 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5740 /* MMU Domain access control / MPU write buffer control */
5741 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
5742 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
5743 .writefn = dacr_write, .raw_writefn = raw_write,
5744 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
5745 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
5746 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
5747 .type = ARM_CP_ALIAS,
5748 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
5749 .access = PL1_RW, .accessfn = access_nv1,
5750 .nv2_redirect_offset = 0x230 | NV2_REDIR_NV1,
5751 .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
5752 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
5753 .type = ARM_CP_ALIAS,
5754 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
5755 .access = PL1_RW, .accessfn = access_nv1,
5756 .nv2_redirect_offset = 0x160 | NV2_REDIR_NV1,
5757 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
5759 * We rely on the access checks not allowing the guest to write to the
5760 * state field when SPSel indicates that it's being used as the stack
5761 * pointer.
5763 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
5764 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
5765 .access = PL1_RW, .accessfn = sp_el0_access,
5766 .type = ARM_CP_ALIAS,
5767 .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
5768 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
5769 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
5770 .nv2_redirect_offset = 0x240,
5771 .access = PL2_RW, .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_KEEP,
5772 .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
5773 { .name = "SPSel", .state = ARM_CP_STATE_AA64,
5774 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
5775 .type = ARM_CP_NO_RAW,
5776 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
5777 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
5778 .type = ARM_CP_ALIAS,
5779 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
5780 .access = PL2_RW,
5781 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
5782 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
5783 .type = ARM_CP_ALIAS,
5784 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
5785 .access = PL2_RW,
5786 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
5787 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
5788 .type = ARM_CP_ALIAS,
5789 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
5790 .access = PL2_RW,
5791 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
5792 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
5793 .type = ARM_CP_ALIAS,
5794 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
5795 .access = PL2_RW,
5796 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
5797 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
5798 .type = ARM_CP_IO,
5799 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
5800 .resetvalue = 0,
5801 .access = PL3_RW,
5802 .writefn = mdcr_el3_write,
5803 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
5804 { .name = "SDCR", .type = ARM_CP_ALIAS | ARM_CP_IO,
5805 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
5806 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5807 .writefn = sdcr_write,
5808 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
5811 /* These are present only when EL1 supports AArch32 */
5812 static const ARMCPRegInfo v8_aa32_el1_reginfo[] = {
5813 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
5814 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
5815 .access = PL2_RW,
5816 .type = ARM_CP_ALIAS | ARM_CP_FPU | ARM_CP_EL3_NO_EL2_KEEP,
5817 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]) },
5818 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
5819 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
5820 .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP,
5821 .writefn = dacr_write, .raw_writefn = raw_write,
5822 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
5823 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
5824 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
5825 .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP,
5826 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
5829 static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask)
5831 ARMCPU *cpu = env_archcpu(env);
5833 if (arm_feature(env, ARM_FEATURE_V8)) {
5834 valid_mask |= MAKE_64BIT_MASK(0, 34); /* ARMv8.0 */
5835 } else {
5836 valid_mask |= MAKE_64BIT_MASK(0, 28); /* ARMv7VE */
5839 if (arm_feature(env, ARM_FEATURE_EL3)) {
5840 valid_mask &= ~HCR_HCD;
5841 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
5843 * Architecturally HCR.TSC is RES0 if EL3 is not implemented.
5844 * However, if we're using the SMC PSCI conduit then QEMU is
5845 * effectively acting like EL3 firmware and so the guest at
5846 * EL2 should retain the ability to prevent EL1 from being
5847 * able to make SMC calls into the ersatz firmware, so in
5848 * that case HCR.TSC should be read/write.
5850 valid_mask &= ~HCR_TSC;
5853 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5854 if (cpu_isar_feature(aa64_vh, cpu)) {
5855 valid_mask |= HCR_E2H;
5857 if (cpu_isar_feature(aa64_ras, cpu)) {
5858 valid_mask |= HCR_TERR | HCR_TEA;
5860 if (cpu_isar_feature(aa64_lor, cpu)) {
5861 valid_mask |= HCR_TLOR;
5863 if (cpu_isar_feature(aa64_pauth, cpu)) {
5864 valid_mask |= HCR_API | HCR_APK;
5866 if (cpu_isar_feature(aa64_mte, cpu)) {
5867 valid_mask |= HCR_ATA | HCR_DCT | HCR_TID5;
5869 if (cpu_isar_feature(aa64_scxtnum, cpu)) {
5870 valid_mask |= HCR_ENSCXT;
5872 if (cpu_isar_feature(aa64_fwb, cpu)) {
5873 valid_mask |= HCR_FWB;
5875 if (cpu_isar_feature(aa64_rme, cpu)) {
5876 valid_mask |= HCR_GPF;
5878 if (cpu_isar_feature(aa64_nv, cpu)) {
5879 valid_mask |= HCR_NV | HCR_NV1 | HCR_AT;
5881 if (cpu_isar_feature(aa64_nv2, cpu)) {
5882 valid_mask |= HCR_NV2;
5886 if (cpu_isar_feature(any_evt, cpu)) {
5887 valid_mask |= HCR_TTLBIS | HCR_TTLBOS | HCR_TICAB | HCR_TOCU | HCR_TID4;
5888 } else if (cpu_isar_feature(any_half_evt, cpu)) {
5889 valid_mask |= HCR_TICAB | HCR_TOCU | HCR_TID4;
5892 /* Clear RES0 bits. */
5893 value &= valid_mask;
5896 * These bits change the MMU setup:
5897 * HCR_VM enables stage 2 translation
5898 * HCR_PTW forbids certain page-table setups
5899 * HCR_DC disables stage1 and enables stage2 translation
5900 * HCR_DCT enables tagging on (disabled) stage1 translation
5901 * HCR_FWB changes the interpretation of stage2 descriptor bits
5902 * HCR_NV and HCR_NV1 affect interpretation of descriptor bits
5904 if ((env->cp15.hcr_el2 ^ value) &
5905 (HCR_VM | HCR_PTW | HCR_DC | HCR_DCT | HCR_FWB | HCR_NV | HCR_NV1)) {
5906 tlb_flush(CPU(cpu));
5908 env->cp15.hcr_el2 = value;
5911 * Updates to VI and VF require us to update the status of
5912 * virtual interrupts, which are the logical OR of these bits
5913 * and the state of the input lines from the GIC. (This requires
5914 * that we have the BQL, which is done by marking the
5915 * reginfo structs as ARM_CP_IO.)
5916 * Note that if a write to HCR pends a VIRQ or VFIQ it is never
5917 * possible for it to be taken immediately, because VIRQ and
5918 * VFIQ are masked unless running at EL0 or EL1, and HCR
5919 * can only be written at EL2.
5921 g_assert(bql_locked());
5922 arm_cpu_update_virq(cpu);
5923 arm_cpu_update_vfiq(cpu);
5924 arm_cpu_update_vserr(cpu);
5927 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
5929 do_hcr_write(env, value, 0);
5932 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri,
5933 uint64_t value)
5935 /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */
5936 value = deposit64(env->cp15.hcr_el2, 32, 32, value);
5937 do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32));
5940 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri,
5941 uint64_t value)
5943 /* Handle HCR write, i.e. write to low half of HCR_EL2 */
5944 value = deposit64(env->cp15.hcr_el2, 0, 32, value);
5945 do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32));
5949 * Return the effective value of HCR_EL2, at the given security state.
5950 * Bits that are not included here:
5951 * RW (read from SCR_EL3.RW as needed)
5953 uint64_t arm_hcr_el2_eff_secstate(CPUARMState *env, ARMSecuritySpace space)
5955 uint64_t ret = env->cp15.hcr_el2;
5957 assert(space != ARMSS_Root);
5959 if (!arm_is_el2_enabled_secstate(env, space)) {
5961 * "This register has no effect if EL2 is not enabled in the
5962 * current Security state". This is ARMv8.4-SecEL2 speak for
5963 * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1).
5965 * Prior to that, the language was "In an implementation that
5966 * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves
5967 * as if this field is 0 for all purposes other than a direct
5968 * read or write access of HCR_EL2". With lots of enumeration
5969 * on a per-field basis. In current QEMU, this is condition
5970 * is arm_is_secure_below_el3.
5972 * Since the v8.4 language applies to the entire register, and
5973 * appears to be backward compatible, use that.
5975 return 0;
5979 * For a cpu that supports both aarch64 and aarch32, we can set bits
5980 * in HCR_EL2 (e.g. via EL3) that are RES0 when we enter EL2 as aa32.
5981 * Ignore all of the bits in HCR+HCR2 that are not valid for aarch32.
5983 if (!arm_el_is_aa64(env, 2)) {
5984 uint64_t aa32_valid;
5987 * These bits are up-to-date as of ARMv8.6.
5988 * For HCR, it's easiest to list just the 2 bits that are invalid.
5989 * For HCR2, list those that are valid.
5991 aa32_valid = MAKE_64BIT_MASK(0, 32) & ~(HCR_RW | HCR_TDZ);
5992 aa32_valid |= (HCR_CD | HCR_ID | HCR_TERR | HCR_TEA | HCR_MIOCNCE |
5993 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_TTLBIS);
5994 ret &= aa32_valid;
5997 if (ret & HCR_TGE) {
5998 /* These bits are up-to-date as of ARMv8.6. */
5999 if (ret & HCR_E2H) {
6000 ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO |
6001 HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE |
6002 HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU |
6003 HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE |
6004 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_ENSCXT |
6005 HCR_TTLBIS | HCR_TTLBOS | HCR_TID5);
6006 } else {
6007 ret |= HCR_FMO | HCR_IMO | HCR_AMO;
6009 ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE |
6010 HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR |
6011 HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM |
6012 HCR_TLOR);
6015 return ret;
6018 uint64_t arm_hcr_el2_eff(CPUARMState *env)
6020 if (arm_feature(env, ARM_FEATURE_M)) {
6021 return 0;
6023 return arm_hcr_el2_eff_secstate(env, arm_security_space_below_el3(env));
6027 * Corresponds to ARM pseudocode function ELIsInHost().
6029 bool el_is_in_host(CPUARMState *env, int el)
6031 uint64_t mask;
6034 * Since we only care about E2H and TGE, we can skip arm_hcr_el2_eff().
6035 * Perform the simplest bit tests first, and validate EL2 afterward.
6037 if (el & 1) {
6038 return false; /* EL1 or EL3 */
6042 * Note that hcr_write() checks isar_feature_aa64_vh(),
6043 * aka HaveVirtHostExt(), in allowing HCR_E2H to be set.
6045 mask = el ? HCR_E2H : HCR_E2H | HCR_TGE;
6046 if ((env->cp15.hcr_el2 & mask) != mask) {
6047 return false;
6050 /* TGE and/or E2H set: double check those bits are currently legal. */
6051 return arm_is_el2_enabled(env) && arm_el_is_aa64(env, 2);
6054 static void hcrx_write(CPUARMState *env, const ARMCPRegInfo *ri,
6055 uint64_t value)
6057 uint64_t valid_mask = 0;
6059 /* FEAT_MOPS adds MSCEn and MCE2 */
6060 if (cpu_isar_feature(aa64_mops, env_archcpu(env))) {
6061 valid_mask |= HCRX_MSCEN | HCRX_MCE2;
6064 /* Clear RES0 bits. */
6065 env->cp15.hcrx_el2 = value & valid_mask;
6068 static CPAccessResult access_hxen(CPUARMState *env, const ARMCPRegInfo *ri,
6069 bool isread)
6071 if (arm_current_el(env) == 2
6072 && arm_feature(env, ARM_FEATURE_EL3)
6073 && !(env->cp15.scr_el3 & SCR_HXEN)) {
6074 return CP_ACCESS_TRAP_EL3;
6076 return CP_ACCESS_OK;
6079 static const ARMCPRegInfo hcrx_el2_reginfo = {
6080 .name = "HCRX_EL2", .state = ARM_CP_STATE_AA64,
6081 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 2,
6082 .access = PL2_RW, .writefn = hcrx_write, .accessfn = access_hxen,
6083 .nv2_redirect_offset = 0xa0,
6084 .fieldoffset = offsetof(CPUARMState, cp15.hcrx_el2),
6087 /* Return the effective value of HCRX_EL2. */
6088 uint64_t arm_hcrx_el2_eff(CPUARMState *env)
6091 * The bits in this register behave as 0 for all purposes other than
6092 * direct reads of the register if SCR_EL3.HXEn is 0.
6093 * If EL2 is not enabled in the current security state, then the
6094 * bit may behave as if 0, or as if 1, depending on the bit.
6095 * For the moment, we treat the EL2-disabled case as taking
6096 * priority over the HXEn-disabled case. This is true for the only
6097 * bit for a feature which we implement where the answer is different
6098 * for the two cases (MSCEn for FEAT_MOPS).
6099 * This may need to be revisited for future bits.
6101 if (!arm_is_el2_enabled(env)) {
6102 uint64_t hcrx = 0;
6103 if (cpu_isar_feature(aa64_mops, env_archcpu(env))) {
6104 /* MSCEn behaves as 1 if EL2 is not enabled */
6105 hcrx |= HCRX_MSCEN;
6107 return hcrx;
6109 if (arm_feature(env, ARM_FEATURE_EL3) && !(env->cp15.scr_el3 & SCR_HXEN)) {
6110 return 0;
6112 return env->cp15.hcrx_el2;
6115 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
6116 uint64_t value)
6119 * For A-profile AArch32 EL3, if NSACR.CP10
6120 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
6122 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
6123 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
6124 uint64_t mask = R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK;
6125 value = (value & ~mask) | (env->cp15.cptr_el[2] & mask);
6127 env->cp15.cptr_el[2] = value;
6130 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri)
6133 * For A-profile AArch32 EL3, if NSACR.CP10
6134 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
6136 uint64_t value = env->cp15.cptr_el[2];
6138 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
6139 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
6140 value |= R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK;
6142 return value;
6145 static const ARMCPRegInfo el2_cp_reginfo[] = {
6146 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
6147 .type = ARM_CP_IO,
6148 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
6149 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
6150 .nv2_redirect_offset = 0x78,
6151 .writefn = hcr_write, .raw_writefn = raw_write },
6152 { .name = "HCR", .state = ARM_CP_STATE_AA32,
6153 .type = ARM_CP_ALIAS | ARM_CP_IO,
6154 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
6155 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
6156 .writefn = hcr_writelow },
6157 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
6158 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
6159 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
6160 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
6161 .type = ARM_CP_ALIAS | ARM_CP_NV2_REDIRECT,
6162 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
6163 .access = PL2_RW,
6164 .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
6165 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
6166 .type = ARM_CP_NV2_REDIRECT,
6167 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
6168 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
6169 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
6170 .type = ARM_CP_NV2_REDIRECT,
6171 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
6172 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
6173 { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
6174 .type = ARM_CP_ALIAS,
6175 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
6176 .access = PL2_RW,
6177 .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) },
6178 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
6179 .type = ARM_CP_ALIAS | ARM_CP_NV2_REDIRECT,
6180 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
6181 .access = PL2_RW,
6182 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
6183 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
6184 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
6185 .access = PL2_RW, .writefn = vbar_write,
6186 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
6187 .resetvalue = 0 },
6188 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
6189 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
6190 .access = PL3_RW, .type = ARM_CP_ALIAS,
6191 .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
6192 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
6193 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
6194 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
6195 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]),
6196 .readfn = cptr_el2_read, .writefn = cptr_el2_write },
6197 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
6198 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
6199 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
6200 .resetvalue = 0 },
6201 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
6202 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
6203 .access = PL2_RW, .type = ARM_CP_ALIAS,
6204 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
6205 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
6206 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
6207 .access = PL2_RW, .type = ARM_CP_CONST,
6208 .resetvalue = 0 },
6209 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
6210 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
6211 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
6212 .access = PL2_RW, .type = ARM_CP_CONST,
6213 .resetvalue = 0 },
6214 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
6215 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
6216 .access = PL2_RW, .type = ARM_CP_CONST,
6217 .resetvalue = 0 },
6218 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
6219 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
6220 .access = PL2_RW, .type = ARM_CP_CONST,
6221 .resetvalue = 0 },
6222 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
6223 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
6224 .access = PL2_RW, .writefn = vmsa_tcr_el12_write,
6225 .raw_writefn = raw_write,
6226 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
6227 { .name = "VTCR", .state = ARM_CP_STATE_AA32,
6228 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
6229 .type = ARM_CP_ALIAS,
6230 .access = PL2_RW, .accessfn = access_el3_aa32ns,
6231 .fieldoffset = offsetoflow32(CPUARMState, cp15.vtcr_el2) },
6232 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
6233 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
6234 .access = PL2_RW,
6235 .nv2_redirect_offset = 0x40,
6236 /* no .writefn needed as this can't cause an ASID change */
6237 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
6238 { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
6239 .cp = 15, .opc1 = 6, .crm = 2,
6240 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
6241 .access = PL2_RW, .accessfn = access_el3_aa32ns,
6242 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
6243 .writefn = vttbr_write, .raw_writefn = raw_write },
6244 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
6245 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
6246 .access = PL2_RW, .writefn = vttbr_write, .raw_writefn = raw_write,
6247 .nv2_redirect_offset = 0x20,
6248 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
6249 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
6250 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
6251 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
6252 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
6253 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
6254 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
6255 .access = PL2_RW, .resetvalue = 0,
6256 .nv2_redirect_offset = 0x90,
6257 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
6258 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
6259 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
6260 .access = PL2_RW, .resetvalue = 0,
6261 .writefn = vmsa_tcr_ttbr_el2_write, .raw_writefn = raw_write,
6262 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
6263 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
6264 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
6265 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
6266 { .name = "TLBIALLNSNH",
6267 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
6268 .type = ARM_CP_NO_RAW, .access = PL2_W,
6269 .writefn = tlbiall_nsnh_write },
6270 { .name = "TLBIALLNSNHIS",
6271 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
6272 .type = ARM_CP_NO_RAW, .access = PL2_W,
6273 .writefn = tlbiall_nsnh_is_write },
6274 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
6275 .type = ARM_CP_NO_RAW, .access = PL2_W,
6276 .writefn = tlbiall_hyp_write },
6277 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
6278 .type = ARM_CP_NO_RAW, .access = PL2_W,
6279 .writefn = tlbiall_hyp_is_write },
6280 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
6281 .type = ARM_CP_NO_RAW, .access = PL2_W,
6282 .writefn = tlbimva_hyp_write },
6283 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
6284 .type = ARM_CP_NO_RAW, .access = PL2_W,
6285 .writefn = tlbimva_hyp_is_write },
6286 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
6287 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
6288 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6289 .writefn = tlbi_aa64_alle2_write },
6290 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
6291 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
6292 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6293 .writefn = tlbi_aa64_vae2_write },
6294 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
6295 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
6296 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6297 .writefn = tlbi_aa64_vae2_write },
6298 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
6299 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
6300 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6301 .writefn = tlbi_aa64_alle2is_write },
6302 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
6303 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
6304 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6305 .writefn = tlbi_aa64_vae2is_write },
6306 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
6307 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
6308 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6309 .writefn = tlbi_aa64_vae2is_write },
6310 #ifndef CONFIG_USER_ONLY
6312 * Unlike the other EL2-related AT operations, these must
6313 * UNDEF from EL3 if EL2 is not implemented, which is why we
6314 * define them here rather than with the rest of the AT ops.
6316 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
6317 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
6318 .access = PL2_W, .accessfn = at_s1e2_access,
6319 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF,
6320 .writefn = ats_write64 },
6321 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
6322 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
6323 .access = PL2_W, .accessfn = at_s1e2_access,
6324 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF,
6325 .writefn = ats_write64 },
6327 * The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
6328 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
6329 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
6330 * to behave as if SCR.NS was 1.
6332 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
6333 .access = PL2_W,
6334 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
6335 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
6336 .access = PL2_W,
6337 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
6338 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
6339 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
6341 * ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
6342 * reset values as IMPDEF. We choose to reset to 3 to comply with
6343 * both ARMv7 and ARMv8.
6345 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 3,
6346 .writefn = gt_cnthctl_write, .raw_writefn = raw_write,
6347 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
6348 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
6349 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
6350 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
6351 .writefn = gt_cntvoff_write,
6352 .nv2_redirect_offset = 0x60,
6353 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
6354 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
6355 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
6356 .writefn = gt_cntvoff_write,
6357 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
6358 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
6359 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
6360 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
6361 .type = ARM_CP_IO, .access = PL2_RW,
6362 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
6363 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
6364 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
6365 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
6366 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
6367 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
6368 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
6369 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
6370 .resetfn = gt_hyp_timer_reset,
6371 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
6372 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
6373 .type = ARM_CP_IO,
6374 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
6375 .access = PL2_RW,
6376 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
6377 .resetvalue = 0,
6378 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
6379 #endif
6380 { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
6381 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
6382 .access = PL2_RW, .accessfn = access_el3_aa32ns,
6383 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
6384 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
6385 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
6386 .access = PL2_RW,
6387 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
6388 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
6389 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
6390 .access = PL2_RW,
6391 .nv2_redirect_offset = 0x80,
6392 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) },
6395 static const ARMCPRegInfo el2_v8_cp_reginfo[] = {
6396 { .name = "HCR2", .state = ARM_CP_STATE_AA32,
6397 .type = ARM_CP_ALIAS | ARM_CP_IO,
6398 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
6399 .access = PL2_RW,
6400 .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2),
6401 .writefn = hcr_writehigh },
6404 static CPAccessResult sel2_access(CPUARMState *env, const ARMCPRegInfo *ri,
6405 bool isread)
6407 if (arm_current_el(env) == 3 || arm_is_secure_below_el3(env)) {
6408 return CP_ACCESS_OK;
6410 return CP_ACCESS_TRAP_UNCATEGORIZED;
6413 static const ARMCPRegInfo el2_sec_cp_reginfo[] = {
6414 { .name = "VSTTBR_EL2", .state = ARM_CP_STATE_AA64,
6415 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 0,
6416 .access = PL2_RW, .accessfn = sel2_access,
6417 .nv2_redirect_offset = 0x30,
6418 .fieldoffset = offsetof(CPUARMState, cp15.vsttbr_el2) },
6419 { .name = "VSTCR_EL2", .state = ARM_CP_STATE_AA64,
6420 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 2,
6421 .access = PL2_RW, .accessfn = sel2_access,
6422 .nv2_redirect_offset = 0x48,
6423 .fieldoffset = offsetof(CPUARMState, cp15.vstcr_el2) },
6426 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
6427 bool isread)
6430 * The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
6431 * At Secure EL1 it traps to EL3 or EL2.
6433 if (arm_current_el(env) == 3) {
6434 return CP_ACCESS_OK;
6436 if (arm_is_secure_below_el3(env)) {
6437 if (env->cp15.scr_el3 & SCR_EEL2) {
6438 return CP_ACCESS_TRAP_EL2;
6440 return CP_ACCESS_TRAP_EL3;
6442 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
6443 if (isread) {
6444 return CP_ACCESS_OK;
6446 return CP_ACCESS_TRAP_UNCATEGORIZED;
6449 static const ARMCPRegInfo el3_cp_reginfo[] = {
6450 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
6451 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
6452 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
6453 .resetfn = scr_reset, .writefn = scr_write, .raw_writefn = raw_write },
6454 { .name = "SCR", .type = ARM_CP_ALIAS | ARM_CP_NEWEL,
6455 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
6456 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
6457 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
6458 .writefn = scr_write, .raw_writefn = raw_write },
6459 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
6460 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
6461 .access = PL3_RW, .resetvalue = 0,
6462 .fieldoffset = offsetof(CPUARMState, cp15.sder) },
6463 { .name = "SDER",
6464 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
6465 .access = PL3_RW, .resetvalue = 0,
6466 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
6467 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
6468 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
6469 .writefn = vbar_write, .resetvalue = 0,
6470 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
6471 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
6472 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
6473 .access = PL3_RW, .resetvalue = 0,
6474 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
6475 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
6476 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
6477 .access = PL3_RW,
6478 /* no .writefn needed as this can't cause an ASID change */
6479 .resetvalue = 0,
6480 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
6481 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
6482 .type = ARM_CP_ALIAS,
6483 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
6484 .access = PL3_RW,
6485 .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
6486 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
6487 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
6488 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
6489 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
6490 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
6491 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
6492 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
6493 .type = ARM_CP_ALIAS,
6494 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
6495 .access = PL3_RW,
6496 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
6497 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
6498 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
6499 .access = PL3_RW, .writefn = vbar_write,
6500 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
6501 .resetvalue = 0 },
6502 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
6503 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
6504 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
6505 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
6506 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
6507 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
6508 .access = PL3_RW, .resetvalue = 0,
6509 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
6510 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
6511 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
6512 .access = PL3_RW, .type = ARM_CP_CONST,
6513 .resetvalue = 0 },
6514 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
6515 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
6516 .access = PL3_RW, .type = ARM_CP_CONST,
6517 .resetvalue = 0 },
6518 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
6519 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
6520 .access = PL3_RW, .type = ARM_CP_CONST,
6521 .resetvalue = 0 },
6522 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
6523 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
6524 .access = PL3_W, .type = ARM_CP_NO_RAW,
6525 .writefn = tlbi_aa64_alle3is_write },
6526 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
6527 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
6528 .access = PL3_W, .type = ARM_CP_NO_RAW,
6529 .writefn = tlbi_aa64_vae3is_write },
6530 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
6531 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
6532 .access = PL3_W, .type = ARM_CP_NO_RAW,
6533 .writefn = tlbi_aa64_vae3is_write },
6534 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
6535 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
6536 .access = PL3_W, .type = ARM_CP_NO_RAW,
6537 .writefn = tlbi_aa64_alle3_write },
6538 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
6539 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
6540 .access = PL3_W, .type = ARM_CP_NO_RAW,
6541 .writefn = tlbi_aa64_vae3_write },
6542 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
6543 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
6544 .access = PL3_W, .type = ARM_CP_NO_RAW,
6545 .writefn = tlbi_aa64_vae3_write },
6548 #ifndef CONFIG_USER_ONLY
6549 /* Test if system register redirection is to occur in the current state. */
6550 static bool redirect_for_e2h(CPUARMState *env)
6552 return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H);
6555 static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri)
6557 CPReadFn *readfn;
6559 if (redirect_for_e2h(env)) {
6560 /* Switch to the saved EL2 version of the register. */
6561 ri = ri->opaque;
6562 readfn = ri->readfn;
6563 } else {
6564 readfn = ri->orig_readfn;
6566 if (readfn == NULL) {
6567 readfn = raw_read;
6569 return readfn(env, ri);
6572 static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri,
6573 uint64_t value)
6575 CPWriteFn *writefn;
6577 if (redirect_for_e2h(env)) {
6578 /* Switch to the saved EL2 version of the register. */
6579 ri = ri->opaque;
6580 writefn = ri->writefn;
6581 } else {
6582 writefn = ri->orig_writefn;
6584 if (writefn == NULL) {
6585 writefn = raw_write;
6587 writefn(env, ri, value);
6590 static uint64_t el2_e2h_e12_read(CPUARMState *env, const ARMCPRegInfo *ri)
6592 /* Pass the EL1 register accessor its ri, not the EL12 alias ri */
6593 return ri->orig_readfn(env, ri->opaque);
6596 static void el2_e2h_e12_write(CPUARMState *env, const ARMCPRegInfo *ri,
6597 uint64_t value)
6599 /* Pass the EL1 register accessor its ri, not the EL12 alias ri */
6600 return ri->orig_writefn(env, ri->opaque, value);
6603 static CPAccessResult el2_e2h_e12_access(CPUARMState *env,
6604 const ARMCPRegInfo *ri,
6605 bool isread)
6607 if (arm_current_el(env) == 1) {
6609 * This must be a FEAT_NV access (will either trap or redirect
6610 * to memory). None of the registers with _EL12 aliases want to
6611 * apply their trap controls for this kind of access, so don't
6612 * call the orig_accessfn or do the "UNDEF when E2H is 0" check.
6614 return CP_ACCESS_OK;
6616 /* FOO_EL12 aliases only exist when E2H is 1; otherwise they UNDEF */
6617 if (!(arm_hcr_el2_eff(env) & HCR_E2H)) {
6618 return CP_ACCESS_TRAP_UNCATEGORIZED;
6620 if (ri->orig_accessfn) {
6621 return ri->orig_accessfn(env, ri->opaque, isread);
6623 return CP_ACCESS_OK;
6626 static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu)
6628 struct E2HAlias {
6629 uint32_t src_key, dst_key, new_key;
6630 const char *src_name, *dst_name, *new_name;
6631 bool (*feature)(const ARMISARegisters *id);
6634 #define K(op0, op1, crn, crm, op2) \
6635 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2)
6637 static const struct E2HAlias aliases[] = {
6638 { K(3, 0, 1, 0, 0), K(3, 4, 1, 0, 0), K(3, 5, 1, 0, 0),
6639 "SCTLR", "SCTLR_EL2", "SCTLR_EL12" },
6640 { K(3, 0, 1, 0, 2), K(3, 4, 1, 1, 2), K(3, 5, 1, 0, 2),
6641 "CPACR", "CPTR_EL2", "CPACR_EL12" },
6642 { K(3, 0, 2, 0, 0), K(3, 4, 2, 0, 0), K(3, 5, 2, 0, 0),
6643 "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" },
6644 { K(3, 0, 2, 0, 1), K(3, 4, 2, 0, 1), K(3, 5, 2, 0, 1),
6645 "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" },
6646 { K(3, 0, 2, 0, 2), K(3, 4, 2, 0, 2), K(3, 5, 2, 0, 2),
6647 "TCR_EL1", "TCR_EL2", "TCR_EL12" },
6648 { K(3, 0, 4, 0, 0), K(3, 4, 4, 0, 0), K(3, 5, 4, 0, 0),
6649 "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" },
6650 { K(3, 0, 4, 0, 1), K(3, 4, 4, 0, 1), K(3, 5, 4, 0, 1),
6651 "ELR_EL1", "ELR_EL2", "ELR_EL12" },
6652 { K(3, 0, 5, 1, 0), K(3, 4, 5, 1, 0), K(3, 5, 5, 1, 0),
6653 "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" },
6654 { K(3, 0, 5, 1, 1), K(3, 4, 5, 1, 1), K(3, 5, 5, 1, 1),
6655 "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" },
6656 { K(3, 0, 5, 2, 0), K(3, 4, 5, 2, 0), K(3, 5, 5, 2, 0),
6657 "ESR_EL1", "ESR_EL2", "ESR_EL12" },
6658 { K(3, 0, 6, 0, 0), K(3, 4, 6, 0, 0), K(3, 5, 6, 0, 0),
6659 "FAR_EL1", "FAR_EL2", "FAR_EL12" },
6660 { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0),
6661 "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" },
6662 { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0),
6663 "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" },
6664 { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0),
6665 "VBAR", "VBAR_EL2", "VBAR_EL12" },
6666 { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1),
6667 "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" },
6668 { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0),
6669 "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" },
6672 * Note that redirection of ZCR is mentioned in the description
6673 * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but
6674 * not in the summary table.
6676 { K(3, 0, 1, 2, 0), K(3, 4, 1, 2, 0), K(3, 5, 1, 2, 0),
6677 "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve },
6678 { K(3, 0, 1, 2, 6), K(3, 4, 1, 2, 6), K(3, 5, 1, 2, 6),
6679 "SMCR_EL1", "SMCR_EL2", "SMCR_EL12", isar_feature_aa64_sme },
6681 { K(3, 0, 5, 6, 0), K(3, 4, 5, 6, 0), K(3, 5, 5, 6, 0),
6682 "TFSR_EL1", "TFSR_EL2", "TFSR_EL12", isar_feature_aa64_mte },
6684 { K(3, 0, 13, 0, 7), K(3, 4, 13, 0, 7), K(3, 5, 13, 0, 7),
6685 "SCXTNUM_EL1", "SCXTNUM_EL2", "SCXTNUM_EL12",
6686 isar_feature_aa64_scxtnum },
6688 /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */
6689 /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */
6691 #undef K
6693 size_t i;
6695 for (i = 0; i < ARRAY_SIZE(aliases); i++) {
6696 const struct E2HAlias *a = &aliases[i];
6697 ARMCPRegInfo *src_reg, *dst_reg, *new_reg;
6698 bool ok;
6700 if (a->feature && !a->feature(&cpu->isar)) {
6701 continue;
6704 src_reg = g_hash_table_lookup(cpu->cp_regs,
6705 (gpointer)(uintptr_t)a->src_key);
6706 dst_reg = g_hash_table_lookup(cpu->cp_regs,
6707 (gpointer)(uintptr_t)a->dst_key);
6708 g_assert(src_reg != NULL);
6709 g_assert(dst_reg != NULL);
6711 /* Cross-compare names to detect typos in the keys. */
6712 g_assert(strcmp(src_reg->name, a->src_name) == 0);
6713 g_assert(strcmp(dst_reg->name, a->dst_name) == 0);
6715 /* None of the core system registers use opaque; we will. */
6716 g_assert(src_reg->opaque == NULL);
6718 /* Create alias before redirection so we dup the right data. */
6719 new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo));
6721 new_reg->name = a->new_name;
6722 new_reg->type |= ARM_CP_ALIAS;
6723 /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place. */
6724 new_reg->access &= PL2_RW | PL3_RW;
6725 /* The new_reg op fields are as per new_key, not the target reg */
6726 new_reg->crn = (a->new_key & CP_REG_ARM64_SYSREG_CRN_MASK)
6727 >> CP_REG_ARM64_SYSREG_CRN_SHIFT;
6728 new_reg->crm = (a->new_key & CP_REG_ARM64_SYSREG_CRM_MASK)
6729 >> CP_REG_ARM64_SYSREG_CRM_SHIFT;
6730 new_reg->opc0 = (a->new_key & CP_REG_ARM64_SYSREG_OP0_MASK)
6731 >> CP_REG_ARM64_SYSREG_OP0_SHIFT;
6732 new_reg->opc1 = (a->new_key & CP_REG_ARM64_SYSREG_OP1_MASK)
6733 >> CP_REG_ARM64_SYSREG_OP1_SHIFT;
6734 new_reg->opc2 = (a->new_key & CP_REG_ARM64_SYSREG_OP2_MASK)
6735 >> CP_REG_ARM64_SYSREG_OP2_SHIFT;
6736 new_reg->opaque = src_reg;
6737 new_reg->orig_readfn = src_reg->readfn ?: raw_read;
6738 new_reg->orig_writefn = src_reg->writefn ?: raw_write;
6739 new_reg->orig_accessfn = src_reg->accessfn;
6740 if (!new_reg->raw_readfn) {
6741 new_reg->raw_readfn = raw_read;
6743 if (!new_reg->raw_writefn) {
6744 new_reg->raw_writefn = raw_write;
6746 new_reg->readfn = el2_e2h_e12_read;
6747 new_reg->writefn = el2_e2h_e12_write;
6748 new_reg->accessfn = el2_e2h_e12_access;
6751 * If the _EL1 register is redirected to memory by FEAT_NV2,
6752 * then it shares the offset with the _EL12 register,
6753 * and which one is redirected depends on HCR_EL2.NV1.
6755 if (new_reg->nv2_redirect_offset) {
6756 assert(new_reg->nv2_redirect_offset & NV2_REDIR_NV1);
6757 new_reg->nv2_redirect_offset &= ~NV2_REDIR_NV1;
6758 new_reg->nv2_redirect_offset |= NV2_REDIR_NO_NV1;
6761 ok = g_hash_table_insert(cpu->cp_regs,
6762 (gpointer)(uintptr_t)a->new_key, new_reg);
6763 g_assert(ok);
6765 src_reg->opaque = dst_reg;
6766 src_reg->orig_readfn = src_reg->readfn ?: raw_read;
6767 src_reg->orig_writefn = src_reg->writefn ?: raw_write;
6768 if (!src_reg->raw_readfn) {
6769 src_reg->raw_readfn = raw_read;
6771 if (!src_reg->raw_writefn) {
6772 src_reg->raw_writefn = raw_write;
6774 src_reg->readfn = el2_e2h_read;
6775 src_reg->writefn = el2_e2h_write;
6778 #endif
6780 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
6781 bool isread)
6783 int cur_el = arm_current_el(env);
6785 if (cur_el < 2) {
6786 uint64_t hcr = arm_hcr_el2_eff(env);
6788 if (cur_el == 0) {
6789 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
6790 if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) {
6791 return CP_ACCESS_TRAP_EL2;
6793 } else {
6794 if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
6795 return CP_ACCESS_TRAP;
6797 if (hcr & HCR_TID2) {
6798 return CP_ACCESS_TRAP_EL2;
6801 } else if (hcr & HCR_TID2) {
6802 return CP_ACCESS_TRAP_EL2;
6806 if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) {
6807 return CP_ACCESS_TRAP_EL2;
6810 return CP_ACCESS_OK;
6814 * Check for traps to RAS registers, which are controlled
6815 * by HCR_EL2.TERR and SCR_EL3.TERR.
6817 static CPAccessResult access_terr(CPUARMState *env, const ARMCPRegInfo *ri,
6818 bool isread)
6820 int el = arm_current_el(env);
6822 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TERR)) {
6823 return CP_ACCESS_TRAP_EL2;
6825 if (el < 3 && (env->cp15.scr_el3 & SCR_TERR)) {
6826 return CP_ACCESS_TRAP_EL3;
6828 return CP_ACCESS_OK;
6831 static uint64_t disr_read(CPUARMState *env, const ARMCPRegInfo *ri)
6833 int el = arm_current_el(env);
6835 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) {
6836 return env->cp15.vdisr_el2;
6838 if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) {
6839 return 0; /* RAZ/WI */
6841 return env->cp15.disr_el1;
6844 static void disr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
6846 int el = arm_current_el(env);
6848 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) {
6849 env->cp15.vdisr_el2 = val;
6850 return;
6852 if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) {
6853 return; /* RAZ/WI */
6855 env->cp15.disr_el1 = val;
6859 * Minimal RAS implementation with no Error Records.
6860 * Which means that all of the Error Record registers:
6861 * ERXADDR_EL1
6862 * ERXCTLR_EL1
6863 * ERXFR_EL1
6864 * ERXMISC0_EL1
6865 * ERXMISC1_EL1
6866 * ERXMISC2_EL1
6867 * ERXMISC3_EL1
6868 * ERXPFGCDN_EL1 (RASv1p1)
6869 * ERXPFGCTL_EL1 (RASv1p1)
6870 * ERXPFGF_EL1 (RASv1p1)
6871 * ERXSTATUS_EL1
6872 * and
6873 * ERRSELR_EL1
6874 * may generate UNDEFINED, which is the effect we get by not
6875 * listing them at all.
6877 * These registers have fine-grained trap bits, but UNDEF-to-EL1
6878 * is higher priority than FGT-to-EL2 so we do not need to list them
6879 * in order to check for an FGT.
6881 static const ARMCPRegInfo minimal_ras_reginfo[] = {
6882 { .name = "DISR_EL1", .state = ARM_CP_STATE_BOTH,
6883 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 1,
6884 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.disr_el1),
6885 .readfn = disr_read, .writefn = disr_write, .raw_writefn = raw_write },
6886 { .name = "ERRIDR_EL1", .state = ARM_CP_STATE_BOTH,
6887 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 3, .opc2 = 0,
6888 .access = PL1_R, .accessfn = access_terr,
6889 .fgt = FGT_ERRIDR_EL1,
6890 .type = ARM_CP_CONST, .resetvalue = 0 },
6891 { .name = "VDISR_EL2", .state = ARM_CP_STATE_BOTH,
6892 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 1, .opc2 = 1,
6893 .nv2_redirect_offset = 0x500,
6894 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vdisr_el2) },
6895 { .name = "VSESR_EL2", .state = ARM_CP_STATE_BOTH,
6896 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 3,
6897 .nv2_redirect_offset = 0x508,
6898 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vsesr_el2) },
6902 * Return the exception level to which exceptions should be taken
6903 * via SVEAccessTrap. This excludes the check for whether the exception
6904 * should be routed through AArch64.AdvSIMDFPAccessTrap. That can easily
6905 * be found by testing 0 < fp_exception_el < sve_exception_el.
6907 * C.f. the ARM pseudocode function CheckSVEEnabled. Note that the
6908 * pseudocode does *not* separate out the FP trap checks, but has them
6909 * all in one function.
6911 int sve_exception_el(CPUARMState *env, int el)
6913 #ifndef CONFIG_USER_ONLY
6914 if (el <= 1 && !el_is_in_host(env, el)) {
6915 switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, ZEN)) {
6916 case 1:
6917 if (el != 0) {
6918 break;
6920 /* fall through */
6921 case 0:
6922 case 2:
6923 return 1;
6927 if (el <= 2 && arm_is_el2_enabled(env)) {
6928 /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */
6929 if (env->cp15.hcr_el2 & HCR_E2H) {
6930 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, ZEN)) {
6931 case 1:
6932 if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) {
6933 break;
6935 /* fall through */
6936 case 0:
6937 case 2:
6938 return 2;
6940 } else {
6941 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TZ)) {
6942 return 2;
6947 /* CPTR_EL3. Since EZ is negative we must check for EL3. */
6948 if (arm_feature(env, ARM_FEATURE_EL3)
6949 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, EZ)) {
6950 return 3;
6952 #endif
6953 return 0;
6957 * Return the exception level to which exceptions should be taken for SME.
6958 * C.f. the ARM pseudocode function CheckSMEAccess.
6960 int sme_exception_el(CPUARMState *env, int el)
6962 #ifndef CONFIG_USER_ONLY
6963 if (el <= 1 && !el_is_in_host(env, el)) {
6964 switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, SMEN)) {
6965 case 1:
6966 if (el != 0) {
6967 break;
6969 /* fall through */
6970 case 0:
6971 case 2:
6972 return 1;
6976 if (el <= 2 && arm_is_el2_enabled(env)) {
6977 /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */
6978 if (env->cp15.hcr_el2 & HCR_E2H) {
6979 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, SMEN)) {
6980 case 1:
6981 if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) {
6982 break;
6984 /* fall through */
6985 case 0:
6986 case 2:
6987 return 2;
6989 } else {
6990 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TSM)) {
6991 return 2;
6996 /* CPTR_EL3. Since ESM is negative we must check for EL3. */
6997 if (arm_feature(env, ARM_FEATURE_EL3)
6998 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) {
6999 return 3;
7001 #endif
7002 return 0;
7006 * Given that SVE is enabled, return the vector length for EL.
7008 uint32_t sve_vqm1_for_el_sm(CPUARMState *env, int el, bool sm)
7010 ARMCPU *cpu = env_archcpu(env);
7011 uint64_t *cr = env->vfp.zcr_el;
7012 uint32_t map = cpu->sve_vq.map;
7013 uint32_t len = ARM_MAX_VQ - 1;
7015 if (sm) {
7016 cr = env->vfp.smcr_el;
7017 map = cpu->sme_vq.map;
7020 if (el <= 1 && !el_is_in_host(env, el)) {
7021 len = MIN(len, 0xf & (uint32_t)cr[1]);
7023 if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) {
7024 len = MIN(len, 0xf & (uint32_t)cr[2]);
7026 if (arm_feature(env, ARM_FEATURE_EL3)) {
7027 len = MIN(len, 0xf & (uint32_t)cr[3]);
7030 map &= MAKE_64BIT_MASK(0, len + 1);
7031 if (map != 0) {
7032 return 31 - clz32(map);
7035 /* Bit 0 is always set for Normal SVE -- not so for Streaming SVE. */
7036 assert(sm);
7037 return ctz32(cpu->sme_vq.map);
7040 uint32_t sve_vqm1_for_el(CPUARMState *env, int el)
7042 return sve_vqm1_for_el_sm(env, el, FIELD_EX64(env->svcr, SVCR, SM));
7045 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
7046 uint64_t value)
7048 int cur_el = arm_current_el(env);
7049 int old_len = sve_vqm1_for_el(env, cur_el);
7050 int new_len;
7052 /* Bits other than [3:0] are RAZ/WI. */
7053 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16);
7054 raw_write(env, ri, value & 0xf);
7057 * Because we arrived here, we know both FP and SVE are enabled;
7058 * otherwise we would have trapped access to the ZCR_ELn register.
7060 new_len = sve_vqm1_for_el(env, cur_el);
7061 if (new_len < old_len) {
7062 aarch64_sve_narrow_vq(env, new_len + 1);
7066 static const ARMCPRegInfo zcr_reginfo[] = {
7067 { .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64,
7068 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0,
7069 .nv2_redirect_offset = 0x1e0 | NV2_REDIR_NV1,
7070 .access = PL1_RW, .type = ARM_CP_SVE,
7071 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]),
7072 .writefn = zcr_write, .raw_writefn = raw_write },
7073 { .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
7074 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
7075 .access = PL2_RW, .type = ARM_CP_SVE,
7076 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]),
7077 .writefn = zcr_write, .raw_writefn = raw_write },
7078 { .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64,
7079 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0,
7080 .access = PL3_RW, .type = ARM_CP_SVE,
7081 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]),
7082 .writefn = zcr_write, .raw_writefn = raw_write },
7085 #ifdef TARGET_AARCH64
7086 static CPAccessResult access_tpidr2(CPUARMState *env, const ARMCPRegInfo *ri,
7087 bool isread)
7089 int el = arm_current_el(env);
7091 if (el == 0) {
7092 uint64_t sctlr = arm_sctlr(env, el);
7093 if (!(sctlr & SCTLR_EnTP2)) {
7094 return CP_ACCESS_TRAP;
7097 /* TODO: FEAT_FGT */
7098 if (el < 3
7099 && arm_feature(env, ARM_FEATURE_EL3)
7100 && !(env->cp15.scr_el3 & SCR_ENTP2)) {
7101 return CP_ACCESS_TRAP_EL3;
7103 return CP_ACCESS_OK;
7106 static CPAccessResult access_smprimap(CPUARMState *env, const ARMCPRegInfo *ri,
7107 bool isread)
7109 /* If EL1 this is a FEAT_NV access and CPTR_EL3.ESM doesn't apply */
7110 if (arm_current_el(env) == 2
7111 && arm_feature(env, ARM_FEATURE_EL3)
7112 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) {
7113 return CP_ACCESS_TRAP_EL3;
7115 return CP_ACCESS_OK;
7118 static CPAccessResult access_smpri(CPUARMState *env, const ARMCPRegInfo *ri,
7119 bool isread)
7121 if (arm_current_el(env) < 3
7122 && arm_feature(env, ARM_FEATURE_EL3)
7123 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) {
7124 return CP_ACCESS_TRAP_EL3;
7126 return CP_ACCESS_OK;
7129 /* ResetSVEState */
7130 static void arm_reset_sve_state(CPUARMState *env)
7132 memset(env->vfp.zregs, 0, sizeof(env->vfp.zregs));
7133 /* Recall that FFR is stored as pregs[16]. */
7134 memset(env->vfp.pregs, 0, sizeof(env->vfp.pregs));
7135 vfp_set_fpcr(env, 0x0800009f);
7138 void aarch64_set_svcr(CPUARMState *env, uint64_t new, uint64_t mask)
7140 uint64_t change = (env->svcr ^ new) & mask;
7142 if (change == 0) {
7143 return;
7145 env->svcr ^= change;
7147 if (change & R_SVCR_SM_MASK) {
7148 arm_reset_sve_state(env);
7152 * ResetSMEState.
7154 * SetPSTATE_ZA zeros on enable and disable. We can zero this only
7155 * on enable: while disabled, the storage is inaccessible and the
7156 * value does not matter. We're not saving the storage in vmstate
7157 * when disabled either.
7159 if (change & new & R_SVCR_ZA_MASK) {
7160 memset(env->zarray, 0, sizeof(env->zarray));
7163 if (tcg_enabled()) {
7164 arm_rebuild_hflags(env);
7168 static void svcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
7169 uint64_t value)
7171 aarch64_set_svcr(env, value, -1);
7174 static void smcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
7175 uint64_t value)
7177 int cur_el = arm_current_el(env);
7178 int old_len = sve_vqm1_for_el(env, cur_el);
7179 int new_len;
7181 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > R_SMCR_LEN_MASK + 1);
7182 value &= R_SMCR_LEN_MASK | R_SMCR_FA64_MASK;
7183 raw_write(env, ri, value);
7186 * Note that it is CONSTRAINED UNPREDICTABLE what happens to ZA storage
7187 * when SVL is widened (old values kept, or zeros). Choose to keep the
7188 * current values for simplicity. But for QEMU internals, we must still
7189 * apply the narrower SVL to the Zregs and Pregs -- see the comment
7190 * above aarch64_sve_narrow_vq.
7192 new_len = sve_vqm1_for_el(env, cur_el);
7193 if (new_len < old_len) {
7194 aarch64_sve_narrow_vq(env, new_len + 1);
7198 static const ARMCPRegInfo sme_reginfo[] = {
7199 { .name = "TPIDR2_EL0", .state = ARM_CP_STATE_AA64,
7200 .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 5,
7201 .access = PL0_RW, .accessfn = access_tpidr2,
7202 .fgt = FGT_NTPIDR2_EL0,
7203 .fieldoffset = offsetof(CPUARMState, cp15.tpidr2_el0) },
7204 { .name = "SVCR", .state = ARM_CP_STATE_AA64,
7205 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 2,
7206 .access = PL0_RW, .type = ARM_CP_SME,
7207 .fieldoffset = offsetof(CPUARMState, svcr),
7208 .writefn = svcr_write, .raw_writefn = raw_write },
7209 { .name = "SMCR_EL1", .state = ARM_CP_STATE_AA64,
7210 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 6,
7211 .nv2_redirect_offset = 0x1f0 | NV2_REDIR_NV1,
7212 .access = PL1_RW, .type = ARM_CP_SME,
7213 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[1]),
7214 .writefn = smcr_write, .raw_writefn = raw_write },
7215 { .name = "SMCR_EL2", .state = ARM_CP_STATE_AA64,
7216 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 6,
7217 .access = PL2_RW, .type = ARM_CP_SME,
7218 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[2]),
7219 .writefn = smcr_write, .raw_writefn = raw_write },
7220 { .name = "SMCR_EL3", .state = ARM_CP_STATE_AA64,
7221 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 6,
7222 .access = PL3_RW, .type = ARM_CP_SME,
7223 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[3]),
7224 .writefn = smcr_write, .raw_writefn = raw_write },
7225 { .name = "SMIDR_EL1", .state = ARM_CP_STATE_AA64,
7226 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 6,
7227 .access = PL1_R, .accessfn = access_aa64_tid1,
7229 * IMPLEMENTOR = 0 (software)
7230 * REVISION = 0 (implementation defined)
7231 * SMPS = 0 (no streaming execution priority in QEMU)
7232 * AFFINITY = 0 (streaming sve mode not shared with other PEs)
7234 .type = ARM_CP_CONST, .resetvalue = 0, },
7236 * Because SMIDR_EL1.SMPS is 0, SMPRI_EL1 and SMPRIMAP_EL2 are RES 0.
7238 { .name = "SMPRI_EL1", .state = ARM_CP_STATE_AA64,
7239 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 4,
7240 .access = PL1_RW, .accessfn = access_smpri,
7241 .fgt = FGT_NSMPRI_EL1,
7242 .type = ARM_CP_CONST, .resetvalue = 0 },
7243 { .name = "SMPRIMAP_EL2", .state = ARM_CP_STATE_AA64,
7244 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 5,
7245 .nv2_redirect_offset = 0x1f8,
7246 .access = PL2_RW, .accessfn = access_smprimap,
7247 .type = ARM_CP_CONST, .resetvalue = 0 },
7250 static void tlbi_aa64_paall_write(CPUARMState *env, const ARMCPRegInfo *ri,
7251 uint64_t value)
7253 CPUState *cs = env_cpu(env);
7255 tlb_flush(cs);
7258 static void gpccr_write(CPUARMState *env, const ARMCPRegInfo *ri,
7259 uint64_t value)
7261 /* L0GPTSZ is RO; other bits not mentioned are RES0. */
7262 uint64_t rw_mask = R_GPCCR_PPS_MASK | R_GPCCR_IRGN_MASK |
7263 R_GPCCR_ORGN_MASK | R_GPCCR_SH_MASK | R_GPCCR_PGS_MASK |
7264 R_GPCCR_GPC_MASK | R_GPCCR_GPCP_MASK;
7266 env->cp15.gpccr_el3 = (value & rw_mask) | (env->cp15.gpccr_el3 & ~rw_mask);
7269 static void gpccr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
7271 env->cp15.gpccr_el3 = FIELD_DP64(0, GPCCR, L0GPTSZ,
7272 env_archcpu(env)->reset_l0gptsz);
7275 static void tlbi_aa64_paallos_write(CPUARMState *env, const ARMCPRegInfo *ri,
7276 uint64_t value)
7278 CPUState *cs = env_cpu(env);
7280 tlb_flush_all_cpus_synced(cs);
7283 static const ARMCPRegInfo rme_reginfo[] = {
7284 { .name = "GPCCR_EL3", .state = ARM_CP_STATE_AA64,
7285 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 1, .opc2 = 6,
7286 .access = PL3_RW, .writefn = gpccr_write, .resetfn = gpccr_reset,
7287 .fieldoffset = offsetof(CPUARMState, cp15.gpccr_el3) },
7288 { .name = "GPTBR_EL3", .state = ARM_CP_STATE_AA64,
7289 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 1, .opc2 = 4,
7290 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.gptbr_el3) },
7291 { .name = "MFAR_EL3", .state = ARM_CP_STATE_AA64,
7292 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 5,
7293 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mfar_el3) },
7294 { .name = "TLBI_PAALL", .state = ARM_CP_STATE_AA64,
7295 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 4,
7296 .access = PL3_W, .type = ARM_CP_NO_RAW,
7297 .writefn = tlbi_aa64_paall_write },
7298 { .name = "TLBI_PAALLOS", .state = ARM_CP_STATE_AA64,
7299 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 4,
7300 .access = PL3_W, .type = ARM_CP_NO_RAW,
7301 .writefn = tlbi_aa64_paallos_write },
7303 * QEMU does not have a way to invalidate by physical address, thus
7304 * invalidating a range of physical addresses is accomplished by
7305 * flushing all tlb entries in the outer shareable domain,
7306 * just like PAALLOS.
7308 { .name = "TLBI_RPALOS", .state = ARM_CP_STATE_AA64,
7309 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 4, .opc2 = 7,
7310 .access = PL3_W, .type = ARM_CP_NO_RAW,
7311 .writefn = tlbi_aa64_paallos_write },
7312 { .name = "TLBI_RPAOS", .state = ARM_CP_STATE_AA64,
7313 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 4, .opc2 = 3,
7314 .access = PL3_W, .type = ARM_CP_NO_RAW,
7315 .writefn = tlbi_aa64_paallos_write },
7316 { .name = "DC_CIPAPA", .state = ARM_CP_STATE_AA64,
7317 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 14, .opc2 = 1,
7318 .access = PL3_W, .type = ARM_CP_NOP },
7321 static const ARMCPRegInfo rme_mte_reginfo[] = {
7322 { .name = "DC_CIGDPAPA", .state = ARM_CP_STATE_AA64,
7323 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 14, .opc2 = 5,
7324 .access = PL3_W, .type = ARM_CP_NOP },
7326 #endif /* TARGET_AARCH64 */
7328 static void define_pmu_regs(ARMCPU *cpu)
7331 * v7 performance monitor control register: same implementor
7332 * field as main ID register, and we implement four counters in
7333 * addition to the cycle count register.
7335 unsigned int i, pmcrn = pmu_num_counters(&cpu->env);
7336 ARMCPRegInfo pmcr = {
7337 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
7338 .access = PL0_RW,
7339 .fgt = FGT_PMCR_EL0,
7340 .type = ARM_CP_IO | ARM_CP_ALIAS,
7341 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
7342 .accessfn = pmreg_access,
7343 .readfn = pmcr_read, .raw_readfn = raw_read,
7344 .writefn = pmcr_write, .raw_writefn = raw_write,
7346 ARMCPRegInfo pmcr64 = {
7347 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
7348 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
7349 .access = PL0_RW, .accessfn = pmreg_access,
7350 .fgt = FGT_PMCR_EL0,
7351 .type = ARM_CP_IO,
7352 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
7353 .resetvalue = cpu->isar.reset_pmcr_el0,
7354 .readfn = pmcr_read, .raw_readfn = raw_read,
7355 .writefn = pmcr_write, .raw_writefn = raw_write,
7358 define_one_arm_cp_reg(cpu, &pmcr);
7359 define_one_arm_cp_reg(cpu, &pmcr64);
7360 for (i = 0; i < pmcrn; i++) {
7361 char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i);
7362 char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i);
7363 char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i);
7364 char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i);
7365 ARMCPRegInfo pmev_regs[] = {
7366 { .name = pmevcntr_name, .cp = 15, .crn = 14,
7367 .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
7368 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
7369 .fgt = FGT_PMEVCNTRN_EL0,
7370 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
7371 .accessfn = pmreg_access_xevcntr },
7372 { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64,
7373 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)),
7374 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access_xevcntr,
7375 .type = ARM_CP_IO,
7376 .fgt = FGT_PMEVCNTRN_EL0,
7377 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
7378 .raw_readfn = pmevcntr_rawread,
7379 .raw_writefn = pmevcntr_rawwrite },
7380 { .name = pmevtyper_name, .cp = 15, .crn = 14,
7381 .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
7382 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
7383 .fgt = FGT_PMEVTYPERN_EL0,
7384 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
7385 .accessfn = pmreg_access },
7386 { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64,
7387 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)),
7388 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
7389 .fgt = FGT_PMEVTYPERN_EL0,
7390 .type = ARM_CP_IO,
7391 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
7392 .raw_writefn = pmevtyper_rawwrite },
7394 define_arm_cp_regs(cpu, pmev_regs);
7395 g_free(pmevcntr_name);
7396 g_free(pmevcntr_el0_name);
7397 g_free(pmevtyper_name);
7398 g_free(pmevtyper_el0_name);
7400 if (cpu_isar_feature(aa32_pmuv3p1, cpu)) {
7401 ARMCPRegInfo v81_pmu_regs[] = {
7402 { .name = "PMCEID2", .state = ARM_CP_STATE_AA32,
7403 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4,
7404 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7405 .fgt = FGT_PMCEIDN_EL0,
7406 .resetvalue = extract64(cpu->pmceid0, 32, 32) },
7407 { .name = "PMCEID3", .state = ARM_CP_STATE_AA32,
7408 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5,
7409 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7410 .fgt = FGT_PMCEIDN_EL0,
7411 .resetvalue = extract64(cpu->pmceid1, 32, 32) },
7413 define_arm_cp_regs(cpu, v81_pmu_regs);
7415 if (cpu_isar_feature(any_pmuv3p4, cpu)) {
7416 static const ARMCPRegInfo v84_pmmir = {
7417 .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH,
7418 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6,
7419 .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7420 .fgt = FGT_PMMIR_EL1,
7421 .resetvalue = 0
7423 define_one_arm_cp_reg(cpu, &v84_pmmir);
7427 #ifndef CONFIG_USER_ONLY
7429 * We don't know until after realize whether there's a GICv3
7430 * attached, and that is what registers the gicv3 sysregs.
7431 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1
7432 * at runtime.
7434 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri)
7436 ARMCPU *cpu = env_archcpu(env);
7437 uint64_t pfr1 = cpu->isar.id_pfr1;
7439 if (env->gicv3state) {
7440 pfr1 |= 1 << 28;
7442 return pfr1;
7445 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri)
7447 ARMCPU *cpu = env_archcpu(env);
7448 uint64_t pfr0 = cpu->isar.id_aa64pfr0;
7450 if (env->gicv3state) {
7451 pfr0 |= 1 << 24;
7453 return pfr0;
7455 #endif
7458 * Shared logic between LORID and the rest of the LOR* registers.
7459 * Secure state exclusion has already been dealt with.
7461 static CPAccessResult access_lor_ns(CPUARMState *env,
7462 const ARMCPRegInfo *ri, bool isread)
7464 int el = arm_current_el(env);
7466 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) {
7467 return CP_ACCESS_TRAP_EL2;
7469 if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) {
7470 return CP_ACCESS_TRAP_EL3;
7472 return CP_ACCESS_OK;
7475 static CPAccessResult access_lor_other(CPUARMState *env,
7476 const ARMCPRegInfo *ri, bool isread)
7478 if (arm_is_secure_below_el3(env)) {
7479 /* Access denied in secure mode. */
7480 return CP_ACCESS_TRAP;
7482 return access_lor_ns(env, ri, isread);
7486 * A trivial implementation of ARMv8.1-LOR leaves all of these
7487 * registers fixed at 0, which indicates that there are zero
7488 * supported Limited Ordering regions.
7490 static const ARMCPRegInfo lor_reginfo[] = {
7491 { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64,
7492 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0,
7493 .access = PL1_RW, .accessfn = access_lor_other,
7494 .fgt = FGT_LORSA_EL1,
7495 .type = ARM_CP_CONST, .resetvalue = 0 },
7496 { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64,
7497 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1,
7498 .access = PL1_RW, .accessfn = access_lor_other,
7499 .fgt = FGT_LOREA_EL1,
7500 .type = ARM_CP_CONST, .resetvalue = 0 },
7501 { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64,
7502 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2,
7503 .access = PL1_RW, .accessfn = access_lor_other,
7504 .fgt = FGT_LORN_EL1,
7505 .type = ARM_CP_CONST, .resetvalue = 0 },
7506 { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64,
7507 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3,
7508 .access = PL1_RW, .accessfn = access_lor_other,
7509 .fgt = FGT_LORC_EL1,
7510 .type = ARM_CP_CONST, .resetvalue = 0 },
7511 { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64,
7512 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7,
7513 .access = PL1_R, .accessfn = access_lor_ns,
7514 .fgt = FGT_LORID_EL1,
7515 .type = ARM_CP_CONST, .resetvalue = 0 },
7518 #ifdef TARGET_AARCH64
7519 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri,
7520 bool isread)
7522 int el = arm_current_el(env);
7524 if (el < 2 &&
7525 arm_is_el2_enabled(env) &&
7526 !(arm_hcr_el2_eff(env) & HCR_APK)) {
7527 return CP_ACCESS_TRAP_EL2;
7529 if (el < 3 &&
7530 arm_feature(env, ARM_FEATURE_EL3) &&
7531 !(env->cp15.scr_el3 & SCR_APK)) {
7532 return CP_ACCESS_TRAP_EL3;
7534 return CP_ACCESS_OK;
7537 static const ARMCPRegInfo pauth_reginfo[] = {
7538 { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7539 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0,
7540 .access = PL1_RW, .accessfn = access_pauth,
7541 .fgt = FGT_APDAKEY,
7542 .fieldoffset = offsetof(CPUARMState, keys.apda.lo) },
7543 { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7544 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1,
7545 .access = PL1_RW, .accessfn = access_pauth,
7546 .fgt = FGT_APDAKEY,
7547 .fieldoffset = offsetof(CPUARMState, keys.apda.hi) },
7548 { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7549 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2,
7550 .access = PL1_RW, .accessfn = access_pauth,
7551 .fgt = FGT_APDBKEY,
7552 .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) },
7553 { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7554 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3,
7555 .access = PL1_RW, .accessfn = access_pauth,
7556 .fgt = FGT_APDBKEY,
7557 .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) },
7558 { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7559 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0,
7560 .access = PL1_RW, .accessfn = access_pauth,
7561 .fgt = FGT_APGAKEY,
7562 .fieldoffset = offsetof(CPUARMState, keys.apga.lo) },
7563 { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7564 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1,
7565 .access = PL1_RW, .accessfn = access_pauth,
7566 .fgt = FGT_APGAKEY,
7567 .fieldoffset = offsetof(CPUARMState, keys.apga.hi) },
7568 { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7569 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0,
7570 .access = PL1_RW, .accessfn = access_pauth,
7571 .fgt = FGT_APIAKEY,
7572 .fieldoffset = offsetof(CPUARMState, keys.apia.lo) },
7573 { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7574 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1,
7575 .access = PL1_RW, .accessfn = access_pauth,
7576 .fgt = FGT_APIAKEY,
7577 .fieldoffset = offsetof(CPUARMState, keys.apia.hi) },
7578 { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7579 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2,
7580 .access = PL1_RW, .accessfn = access_pauth,
7581 .fgt = FGT_APIBKEY,
7582 .fieldoffset = offsetof(CPUARMState, keys.apib.lo) },
7583 { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7584 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3,
7585 .access = PL1_RW, .accessfn = access_pauth,
7586 .fgt = FGT_APIBKEY,
7587 .fieldoffset = offsetof(CPUARMState, keys.apib.hi) },
7590 static const ARMCPRegInfo tlbirange_reginfo[] = {
7591 { .name = "TLBI_RVAE1IS", .state = ARM_CP_STATE_AA64,
7592 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 1,
7593 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
7594 .fgt = FGT_TLBIRVAE1IS,
7595 .writefn = tlbi_aa64_rvae1is_write },
7596 { .name = "TLBI_RVAAE1IS", .state = ARM_CP_STATE_AA64,
7597 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 3,
7598 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
7599 .fgt = FGT_TLBIRVAAE1IS,
7600 .writefn = tlbi_aa64_rvae1is_write },
7601 { .name = "TLBI_RVALE1IS", .state = ARM_CP_STATE_AA64,
7602 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 5,
7603 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
7604 .fgt = FGT_TLBIRVALE1IS,
7605 .writefn = tlbi_aa64_rvae1is_write },
7606 { .name = "TLBI_RVAALE1IS", .state = ARM_CP_STATE_AA64,
7607 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 7,
7608 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
7609 .fgt = FGT_TLBIRVAALE1IS,
7610 .writefn = tlbi_aa64_rvae1is_write },
7611 { .name = "TLBI_RVAE1OS", .state = ARM_CP_STATE_AA64,
7612 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
7613 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7614 .fgt = FGT_TLBIRVAE1OS,
7615 .writefn = tlbi_aa64_rvae1is_write },
7616 { .name = "TLBI_RVAAE1OS", .state = ARM_CP_STATE_AA64,
7617 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 3,
7618 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7619 .fgt = FGT_TLBIRVAAE1OS,
7620 .writefn = tlbi_aa64_rvae1is_write },
7621 { .name = "TLBI_RVALE1OS", .state = ARM_CP_STATE_AA64,
7622 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 5,
7623 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7624 .fgt = FGT_TLBIRVALE1OS,
7625 .writefn = tlbi_aa64_rvae1is_write },
7626 { .name = "TLBI_RVAALE1OS", .state = ARM_CP_STATE_AA64,
7627 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 7,
7628 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7629 .fgt = FGT_TLBIRVAALE1OS,
7630 .writefn = tlbi_aa64_rvae1is_write },
7631 { .name = "TLBI_RVAE1", .state = ARM_CP_STATE_AA64,
7632 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
7633 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
7634 .fgt = FGT_TLBIRVAE1,
7635 .writefn = tlbi_aa64_rvae1_write },
7636 { .name = "TLBI_RVAAE1", .state = ARM_CP_STATE_AA64,
7637 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 3,
7638 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
7639 .fgt = FGT_TLBIRVAAE1,
7640 .writefn = tlbi_aa64_rvae1_write },
7641 { .name = "TLBI_RVALE1", .state = ARM_CP_STATE_AA64,
7642 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 5,
7643 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
7644 .fgt = FGT_TLBIRVALE1,
7645 .writefn = tlbi_aa64_rvae1_write },
7646 { .name = "TLBI_RVAALE1", .state = ARM_CP_STATE_AA64,
7647 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 7,
7648 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
7649 .fgt = FGT_TLBIRVAALE1,
7650 .writefn = tlbi_aa64_rvae1_write },
7651 { .name = "TLBI_RIPAS2E1IS", .state = ARM_CP_STATE_AA64,
7652 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 2,
7653 .access = PL2_W, .type = ARM_CP_NO_RAW,
7654 .writefn = tlbi_aa64_ripas2e1is_write },
7655 { .name = "TLBI_RIPAS2LE1IS", .state = ARM_CP_STATE_AA64,
7656 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 6,
7657 .access = PL2_W, .type = ARM_CP_NO_RAW,
7658 .writefn = tlbi_aa64_ripas2e1is_write },
7659 { .name = "TLBI_RVAE2IS", .state = ARM_CP_STATE_AA64,
7660 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 1,
7661 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7662 .writefn = tlbi_aa64_rvae2is_write },
7663 { .name = "TLBI_RVALE2IS", .state = ARM_CP_STATE_AA64,
7664 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 5,
7665 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7666 .writefn = tlbi_aa64_rvae2is_write },
7667 { .name = "TLBI_RIPAS2E1", .state = ARM_CP_STATE_AA64,
7668 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 2,
7669 .access = PL2_W, .type = ARM_CP_NO_RAW,
7670 .writefn = tlbi_aa64_ripas2e1_write },
7671 { .name = "TLBI_RIPAS2LE1", .state = ARM_CP_STATE_AA64,
7672 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 6,
7673 .access = PL2_W, .type = ARM_CP_NO_RAW,
7674 .writefn = tlbi_aa64_ripas2e1_write },
7675 { .name = "TLBI_RVAE2OS", .state = ARM_CP_STATE_AA64,
7676 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 1,
7677 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7678 .writefn = tlbi_aa64_rvae2is_write },
7679 { .name = "TLBI_RVALE2OS", .state = ARM_CP_STATE_AA64,
7680 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 5,
7681 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7682 .writefn = tlbi_aa64_rvae2is_write },
7683 { .name = "TLBI_RVAE2", .state = ARM_CP_STATE_AA64,
7684 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 1,
7685 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7686 .writefn = tlbi_aa64_rvae2_write },
7687 { .name = "TLBI_RVALE2", .state = ARM_CP_STATE_AA64,
7688 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 5,
7689 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7690 .writefn = tlbi_aa64_rvae2_write },
7691 { .name = "TLBI_RVAE3IS", .state = ARM_CP_STATE_AA64,
7692 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 1,
7693 .access = PL3_W, .type = ARM_CP_NO_RAW,
7694 .writefn = tlbi_aa64_rvae3is_write },
7695 { .name = "TLBI_RVALE3IS", .state = ARM_CP_STATE_AA64,
7696 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 5,
7697 .access = PL3_W, .type = ARM_CP_NO_RAW,
7698 .writefn = tlbi_aa64_rvae3is_write },
7699 { .name = "TLBI_RVAE3OS", .state = ARM_CP_STATE_AA64,
7700 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 1,
7701 .access = PL3_W, .type = ARM_CP_NO_RAW,
7702 .writefn = tlbi_aa64_rvae3is_write },
7703 { .name = "TLBI_RVALE3OS", .state = ARM_CP_STATE_AA64,
7704 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 5,
7705 .access = PL3_W, .type = ARM_CP_NO_RAW,
7706 .writefn = tlbi_aa64_rvae3is_write },
7707 { .name = "TLBI_RVAE3", .state = ARM_CP_STATE_AA64,
7708 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 1,
7709 .access = PL3_W, .type = ARM_CP_NO_RAW,
7710 .writefn = tlbi_aa64_rvae3_write },
7711 { .name = "TLBI_RVALE3", .state = ARM_CP_STATE_AA64,
7712 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 5,
7713 .access = PL3_W, .type = ARM_CP_NO_RAW,
7714 .writefn = tlbi_aa64_rvae3_write },
7717 static const ARMCPRegInfo tlbios_reginfo[] = {
7718 { .name = "TLBI_VMALLE1OS", .state = ARM_CP_STATE_AA64,
7719 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 0,
7720 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7721 .fgt = FGT_TLBIVMALLE1OS,
7722 .writefn = tlbi_aa64_vmalle1is_write },
7723 { .name = "TLBI_VAE1OS", .state = ARM_CP_STATE_AA64,
7724 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 1,
7725 .fgt = FGT_TLBIVAE1OS,
7726 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7727 .writefn = tlbi_aa64_vae1is_write },
7728 { .name = "TLBI_ASIDE1OS", .state = ARM_CP_STATE_AA64,
7729 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 2,
7730 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7731 .fgt = FGT_TLBIASIDE1OS,
7732 .writefn = tlbi_aa64_vmalle1is_write },
7733 { .name = "TLBI_VAAE1OS", .state = ARM_CP_STATE_AA64,
7734 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 3,
7735 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7736 .fgt = FGT_TLBIVAAE1OS,
7737 .writefn = tlbi_aa64_vae1is_write },
7738 { .name = "TLBI_VALE1OS", .state = ARM_CP_STATE_AA64,
7739 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 5,
7740 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7741 .fgt = FGT_TLBIVALE1OS,
7742 .writefn = tlbi_aa64_vae1is_write },
7743 { .name = "TLBI_VAALE1OS", .state = ARM_CP_STATE_AA64,
7744 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 7,
7745 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7746 .fgt = FGT_TLBIVAALE1OS,
7747 .writefn = tlbi_aa64_vae1is_write },
7748 { .name = "TLBI_ALLE2OS", .state = ARM_CP_STATE_AA64,
7749 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 0,
7750 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7751 .writefn = tlbi_aa64_alle2is_write },
7752 { .name = "TLBI_VAE2OS", .state = ARM_CP_STATE_AA64,
7753 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 1,
7754 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7755 .writefn = tlbi_aa64_vae2is_write },
7756 { .name = "TLBI_ALLE1OS", .state = ARM_CP_STATE_AA64,
7757 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 4,
7758 .access = PL2_W, .type = ARM_CP_NO_RAW,
7759 .writefn = tlbi_aa64_alle1is_write },
7760 { .name = "TLBI_VALE2OS", .state = ARM_CP_STATE_AA64,
7761 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 5,
7762 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7763 .writefn = tlbi_aa64_vae2is_write },
7764 { .name = "TLBI_VMALLS12E1OS", .state = ARM_CP_STATE_AA64,
7765 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 6,
7766 .access = PL2_W, .type = ARM_CP_NO_RAW,
7767 .writefn = tlbi_aa64_alle1is_write },
7768 { .name = "TLBI_IPAS2E1OS", .state = ARM_CP_STATE_AA64,
7769 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 0,
7770 .access = PL2_W, .type = ARM_CP_NOP },
7771 { .name = "TLBI_RIPAS2E1OS", .state = ARM_CP_STATE_AA64,
7772 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 3,
7773 .access = PL2_W, .type = ARM_CP_NOP },
7774 { .name = "TLBI_IPAS2LE1OS", .state = ARM_CP_STATE_AA64,
7775 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 4,
7776 .access = PL2_W, .type = ARM_CP_NOP },
7777 { .name = "TLBI_RIPAS2LE1OS", .state = ARM_CP_STATE_AA64,
7778 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 7,
7779 .access = PL2_W, .type = ARM_CP_NOP },
7780 { .name = "TLBI_ALLE3OS", .state = ARM_CP_STATE_AA64,
7781 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 0,
7782 .access = PL3_W, .type = ARM_CP_NO_RAW,
7783 .writefn = tlbi_aa64_alle3is_write },
7784 { .name = "TLBI_VAE3OS", .state = ARM_CP_STATE_AA64,
7785 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 1,
7786 .access = PL3_W, .type = ARM_CP_NO_RAW,
7787 .writefn = tlbi_aa64_vae3is_write },
7788 { .name = "TLBI_VALE3OS", .state = ARM_CP_STATE_AA64,
7789 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 5,
7790 .access = PL3_W, .type = ARM_CP_NO_RAW,
7791 .writefn = tlbi_aa64_vae3is_write },
7794 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
7796 Error *err = NULL;
7797 uint64_t ret;
7799 /* Success sets NZCV = 0000. */
7800 env->NF = env->CF = env->VF = 0, env->ZF = 1;
7802 if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) {
7804 * ??? Failed, for unknown reasons in the crypto subsystem.
7805 * The best we can do is log the reason and return the
7806 * timed-out indication to the guest. There is no reason
7807 * we know to expect this failure to be transitory, so the
7808 * guest may well hang retrying the operation.
7810 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s",
7811 ri->name, error_get_pretty(err));
7812 error_free(err);
7814 env->ZF = 0; /* NZCF = 0100 */
7815 return 0;
7817 return ret;
7820 /* We do not support re-seeding, so the two registers operate the same. */
7821 static const ARMCPRegInfo rndr_reginfo[] = {
7822 { .name = "RNDR", .state = ARM_CP_STATE_AA64,
7823 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
7824 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0,
7825 .access = PL0_R, .readfn = rndr_readfn },
7826 { .name = "RNDRRS", .state = ARM_CP_STATE_AA64,
7827 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
7828 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1,
7829 .access = PL0_R, .readfn = rndr_readfn },
7832 static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque,
7833 uint64_t value)
7835 #ifdef CONFIG_TCG
7836 ARMCPU *cpu = env_archcpu(env);
7837 /* CTR_EL0 System register -> DminLine, bits [19:16] */
7838 uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF);
7839 uint64_t vaddr_in = (uint64_t) value;
7840 uint64_t vaddr = vaddr_in & ~(dline_size - 1);
7841 void *haddr;
7842 int mem_idx = cpu_mmu_index(env, false);
7844 /* This won't be crossing page boundaries */
7845 haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC());
7846 if (haddr) {
7847 #ifndef CONFIG_USER_ONLY
7849 ram_addr_t offset;
7850 MemoryRegion *mr;
7852 /* RCU lock is already being held */
7853 mr = memory_region_from_host(haddr, &offset);
7855 if (mr) {
7856 memory_region_writeback(mr, offset, dline_size);
7858 #endif /*CONFIG_USER_ONLY*/
7860 #else
7861 /* Handled by hardware accelerator. */
7862 g_assert_not_reached();
7863 #endif /* CONFIG_TCG */
7866 static const ARMCPRegInfo dcpop_reg[] = {
7867 { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64,
7868 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1,
7869 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
7870 .fgt = FGT_DCCVAP,
7871 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
7874 static const ARMCPRegInfo dcpodp_reg[] = {
7875 { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64,
7876 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1,
7877 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
7878 .fgt = FGT_DCCVADP,
7879 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
7882 static CPAccessResult access_aa64_tid5(CPUARMState *env, const ARMCPRegInfo *ri,
7883 bool isread)
7885 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID5)) {
7886 return CP_ACCESS_TRAP_EL2;
7889 return CP_ACCESS_OK;
7892 static CPAccessResult access_mte(CPUARMState *env, const ARMCPRegInfo *ri,
7893 bool isread)
7895 int el = arm_current_el(env);
7896 if (el < 2 && arm_is_el2_enabled(env)) {
7897 uint64_t hcr = arm_hcr_el2_eff(env);
7898 if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) {
7899 return CP_ACCESS_TRAP_EL2;
7902 if (el < 3 &&
7903 arm_feature(env, ARM_FEATURE_EL3) &&
7904 !(env->cp15.scr_el3 & SCR_ATA)) {
7905 return CP_ACCESS_TRAP_EL3;
7907 return CP_ACCESS_OK;
7910 static CPAccessResult access_tfsr_el1(CPUARMState *env, const ARMCPRegInfo *ri,
7911 bool isread)
7913 CPAccessResult nv1 = access_nv1(env, ri, isread);
7915 if (nv1 != CP_ACCESS_OK) {
7916 return nv1;
7918 return access_mte(env, ri, isread);
7921 static CPAccessResult access_tfsr_el2(CPUARMState *env, const ARMCPRegInfo *ri,
7922 bool isread)
7925 * TFSR_EL2: similar to generic access_mte(), but we need to
7926 * account for FEAT_NV. At EL1 this must be a FEAT_NV access;
7927 * if NV2 is enabled then we will redirect this to TFSR_EL1
7928 * after doing the HCR and SCR ATA traps; otherwise this will
7929 * be a trap to EL2 and the HCR/SCR traps do not apply.
7931 int el = arm_current_el(env);
7933 if (el == 1 && (arm_hcr_el2_eff(env) & HCR_NV2)) {
7934 return CP_ACCESS_OK;
7936 if (el < 2 && arm_is_el2_enabled(env)) {
7937 uint64_t hcr = arm_hcr_el2_eff(env);
7938 if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) {
7939 return CP_ACCESS_TRAP_EL2;
7942 if (el < 3 &&
7943 arm_feature(env, ARM_FEATURE_EL3) &&
7944 !(env->cp15.scr_el3 & SCR_ATA)) {
7945 return CP_ACCESS_TRAP_EL3;
7947 return CP_ACCESS_OK;
7950 static uint64_t tco_read(CPUARMState *env, const ARMCPRegInfo *ri)
7952 return env->pstate & PSTATE_TCO;
7955 static void tco_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
7957 env->pstate = (env->pstate & ~PSTATE_TCO) | (val & PSTATE_TCO);
7960 static const ARMCPRegInfo mte_reginfo[] = {
7961 { .name = "TFSRE0_EL1", .state = ARM_CP_STATE_AA64,
7962 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 1,
7963 .access = PL1_RW, .accessfn = access_mte,
7964 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[0]) },
7965 { .name = "TFSR_EL1", .state = ARM_CP_STATE_AA64,
7966 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 0,
7967 .access = PL1_RW, .accessfn = access_tfsr_el1,
7968 .nv2_redirect_offset = 0x190 | NV2_REDIR_NV1,
7969 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[1]) },
7970 { .name = "TFSR_EL2", .state = ARM_CP_STATE_AA64,
7971 .type = ARM_CP_NV2_REDIRECT,
7972 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 6, .opc2 = 0,
7973 .access = PL2_RW, .accessfn = access_tfsr_el2,
7974 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[2]) },
7975 { .name = "TFSR_EL3", .state = ARM_CP_STATE_AA64,
7976 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 6, .opc2 = 0,
7977 .access = PL3_RW,
7978 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[3]) },
7979 { .name = "RGSR_EL1", .state = ARM_CP_STATE_AA64,
7980 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 5,
7981 .access = PL1_RW, .accessfn = access_mte,
7982 .fieldoffset = offsetof(CPUARMState, cp15.rgsr_el1) },
7983 { .name = "GCR_EL1", .state = ARM_CP_STATE_AA64,
7984 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 6,
7985 .access = PL1_RW, .accessfn = access_mte,
7986 .fieldoffset = offsetof(CPUARMState, cp15.gcr_el1) },
7987 { .name = "TCO", .state = ARM_CP_STATE_AA64,
7988 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7,
7989 .type = ARM_CP_NO_RAW,
7990 .access = PL0_RW, .readfn = tco_read, .writefn = tco_write },
7991 { .name = "DC_IGVAC", .state = ARM_CP_STATE_AA64,
7992 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 3,
7993 .type = ARM_CP_NOP, .access = PL1_W,
7994 .fgt = FGT_DCIVAC,
7995 .accessfn = aa64_cacheop_poc_access },
7996 { .name = "DC_IGSW", .state = ARM_CP_STATE_AA64,
7997 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 4,
7998 .fgt = FGT_DCISW,
7999 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
8000 { .name = "DC_IGDVAC", .state = ARM_CP_STATE_AA64,
8001 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 5,
8002 .type = ARM_CP_NOP, .access = PL1_W,
8003 .fgt = FGT_DCIVAC,
8004 .accessfn = aa64_cacheop_poc_access },
8005 { .name = "DC_IGDSW", .state = ARM_CP_STATE_AA64,
8006 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 6,
8007 .fgt = FGT_DCISW,
8008 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
8009 { .name = "DC_CGSW", .state = ARM_CP_STATE_AA64,
8010 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 4,
8011 .fgt = FGT_DCCSW,
8012 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
8013 { .name = "DC_CGDSW", .state = ARM_CP_STATE_AA64,
8014 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 6,
8015 .fgt = FGT_DCCSW,
8016 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
8017 { .name = "DC_CIGSW", .state = ARM_CP_STATE_AA64,
8018 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 4,
8019 .fgt = FGT_DCCISW,
8020 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
8021 { .name = "DC_CIGDSW", .state = ARM_CP_STATE_AA64,
8022 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 6,
8023 .fgt = FGT_DCCISW,
8024 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
8027 static const ARMCPRegInfo mte_tco_ro_reginfo[] = {
8028 { .name = "TCO", .state = ARM_CP_STATE_AA64,
8029 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7,
8030 .type = ARM_CP_CONST, .access = PL0_RW, },
8033 static const ARMCPRegInfo mte_el0_cacheop_reginfo[] = {
8034 { .name = "DC_CGVAC", .state = ARM_CP_STATE_AA64,
8035 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 3,
8036 .type = ARM_CP_NOP, .access = PL0_W,
8037 .fgt = FGT_DCCVAC,
8038 .accessfn = aa64_cacheop_poc_access },
8039 { .name = "DC_CGDVAC", .state = ARM_CP_STATE_AA64,
8040 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 5,
8041 .type = ARM_CP_NOP, .access = PL0_W,
8042 .fgt = FGT_DCCVAC,
8043 .accessfn = aa64_cacheop_poc_access },
8044 { .name = "DC_CGVAP", .state = ARM_CP_STATE_AA64,
8045 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 3,
8046 .type = ARM_CP_NOP, .access = PL0_W,
8047 .fgt = FGT_DCCVAP,
8048 .accessfn = aa64_cacheop_poc_access },
8049 { .name = "DC_CGDVAP", .state = ARM_CP_STATE_AA64,
8050 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 5,
8051 .type = ARM_CP_NOP, .access = PL0_W,
8052 .fgt = FGT_DCCVAP,
8053 .accessfn = aa64_cacheop_poc_access },
8054 { .name = "DC_CGVADP", .state = ARM_CP_STATE_AA64,
8055 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 3,
8056 .type = ARM_CP_NOP, .access = PL0_W,
8057 .fgt = FGT_DCCVADP,
8058 .accessfn = aa64_cacheop_poc_access },
8059 { .name = "DC_CGDVADP", .state = ARM_CP_STATE_AA64,
8060 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 5,
8061 .type = ARM_CP_NOP, .access = PL0_W,
8062 .fgt = FGT_DCCVADP,
8063 .accessfn = aa64_cacheop_poc_access },
8064 { .name = "DC_CIGVAC", .state = ARM_CP_STATE_AA64,
8065 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 3,
8066 .type = ARM_CP_NOP, .access = PL0_W,
8067 .fgt = FGT_DCCIVAC,
8068 .accessfn = aa64_cacheop_poc_access },
8069 { .name = "DC_CIGDVAC", .state = ARM_CP_STATE_AA64,
8070 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 5,
8071 .type = ARM_CP_NOP, .access = PL0_W,
8072 .fgt = FGT_DCCIVAC,
8073 .accessfn = aa64_cacheop_poc_access },
8074 { .name = "DC_GVA", .state = ARM_CP_STATE_AA64,
8075 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 3,
8076 .access = PL0_W, .type = ARM_CP_DC_GVA,
8077 #ifndef CONFIG_USER_ONLY
8078 /* Avoid overhead of an access check that always passes in user-mode */
8079 .accessfn = aa64_zva_access,
8080 .fgt = FGT_DCZVA,
8081 #endif
8083 { .name = "DC_GZVA", .state = ARM_CP_STATE_AA64,
8084 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 4,
8085 .access = PL0_W, .type = ARM_CP_DC_GZVA,
8086 #ifndef CONFIG_USER_ONLY
8087 /* Avoid overhead of an access check that always passes in user-mode */
8088 .accessfn = aa64_zva_access,
8089 .fgt = FGT_DCZVA,
8090 #endif
8094 static CPAccessResult access_scxtnum(CPUARMState *env, const ARMCPRegInfo *ri,
8095 bool isread)
8097 uint64_t hcr = arm_hcr_el2_eff(env);
8098 int el = arm_current_el(env);
8100 if (el == 0 && !((hcr & HCR_E2H) && (hcr & HCR_TGE))) {
8101 if (env->cp15.sctlr_el[1] & SCTLR_TSCXT) {
8102 if (hcr & HCR_TGE) {
8103 return CP_ACCESS_TRAP_EL2;
8105 return CP_ACCESS_TRAP;
8107 } else if (el < 2 && (env->cp15.sctlr_el[2] & SCTLR_TSCXT)) {
8108 return CP_ACCESS_TRAP_EL2;
8110 if (el < 2 && arm_is_el2_enabled(env) && !(hcr & HCR_ENSCXT)) {
8111 return CP_ACCESS_TRAP_EL2;
8113 if (el < 3
8114 && arm_feature(env, ARM_FEATURE_EL3)
8115 && !(env->cp15.scr_el3 & SCR_ENSCXT)) {
8116 return CP_ACCESS_TRAP_EL3;
8118 return CP_ACCESS_OK;
8121 static CPAccessResult access_scxtnum_el1(CPUARMState *env,
8122 const ARMCPRegInfo *ri,
8123 bool isread)
8125 CPAccessResult nv1 = access_nv1(env, ri, isread);
8127 if (nv1 != CP_ACCESS_OK) {
8128 return nv1;
8130 return access_scxtnum(env, ri, isread);
8133 static const ARMCPRegInfo scxtnum_reginfo[] = {
8134 { .name = "SCXTNUM_EL0", .state = ARM_CP_STATE_AA64,
8135 .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 7,
8136 .access = PL0_RW, .accessfn = access_scxtnum,
8137 .fgt = FGT_SCXTNUM_EL0,
8138 .fieldoffset = offsetof(CPUARMState, scxtnum_el[0]) },
8139 { .name = "SCXTNUM_EL1", .state = ARM_CP_STATE_AA64,
8140 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 7,
8141 .access = PL1_RW, .accessfn = access_scxtnum_el1,
8142 .fgt = FGT_SCXTNUM_EL1,
8143 .nv2_redirect_offset = 0x188 | NV2_REDIR_NV1,
8144 .fieldoffset = offsetof(CPUARMState, scxtnum_el[1]) },
8145 { .name = "SCXTNUM_EL2", .state = ARM_CP_STATE_AA64,
8146 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 7,
8147 .access = PL2_RW, .accessfn = access_scxtnum,
8148 .fieldoffset = offsetof(CPUARMState, scxtnum_el[2]) },
8149 { .name = "SCXTNUM_EL3", .state = ARM_CP_STATE_AA64,
8150 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 7,
8151 .access = PL3_RW,
8152 .fieldoffset = offsetof(CPUARMState, scxtnum_el[3]) },
8155 static CPAccessResult access_fgt(CPUARMState *env, const ARMCPRegInfo *ri,
8156 bool isread)
8158 if (arm_current_el(env) == 2 &&
8159 arm_feature(env, ARM_FEATURE_EL3) && !(env->cp15.scr_el3 & SCR_FGTEN)) {
8160 return CP_ACCESS_TRAP_EL3;
8162 return CP_ACCESS_OK;
8165 static const ARMCPRegInfo fgt_reginfo[] = {
8166 { .name = "HFGRTR_EL2", .state = ARM_CP_STATE_AA64,
8167 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
8168 .nv2_redirect_offset = 0x1b8,
8169 .access = PL2_RW, .accessfn = access_fgt,
8170 .fieldoffset = offsetof(CPUARMState, cp15.fgt_read[FGTREG_HFGRTR]) },
8171 { .name = "HFGWTR_EL2", .state = ARM_CP_STATE_AA64,
8172 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 5,
8173 .nv2_redirect_offset = 0x1c0,
8174 .access = PL2_RW, .accessfn = access_fgt,
8175 .fieldoffset = offsetof(CPUARMState, cp15.fgt_write[FGTREG_HFGWTR]) },
8176 { .name = "HDFGRTR_EL2", .state = ARM_CP_STATE_AA64,
8177 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 1, .opc2 = 4,
8178 .nv2_redirect_offset = 0x1d0,
8179 .access = PL2_RW, .accessfn = access_fgt,
8180 .fieldoffset = offsetof(CPUARMState, cp15.fgt_read[FGTREG_HDFGRTR]) },
8181 { .name = "HDFGWTR_EL2", .state = ARM_CP_STATE_AA64,
8182 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 1, .opc2 = 5,
8183 .nv2_redirect_offset = 0x1d8,
8184 .access = PL2_RW, .accessfn = access_fgt,
8185 .fieldoffset = offsetof(CPUARMState, cp15.fgt_write[FGTREG_HDFGWTR]) },
8186 { .name = "HFGITR_EL2", .state = ARM_CP_STATE_AA64,
8187 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 6,
8188 .nv2_redirect_offset = 0x1c8,
8189 .access = PL2_RW, .accessfn = access_fgt,
8190 .fieldoffset = offsetof(CPUARMState, cp15.fgt_exec[FGTREG_HFGITR]) },
8193 static void vncr_write(CPUARMState *env, const ARMCPRegInfo *ri,
8194 uint64_t value)
8197 * Clear the RES0 bottom 12 bits; this means at runtime we can guarantee
8198 * that VNCR_EL2 + offset is 64-bit aligned. We don't need to do anything
8199 * about the RESS bits at the top -- we choose the "generate an EL2
8200 * translation abort on use" CONSTRAINED UNPREDICTABLE option (i.e. let
8201 * the ptw.c code detect the resulting invalid address).
8203 env->cp15.vncr_el2 = value & ~0xfffULL;
8206 static const ARMCPRegInfo nv2_reginfo[] = {
8207 { .name = "VNCR_EL2", .state = ARM_CP_STATE_AA64,
8208 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 2, .opc2 = 0,
8209 .access = PL2_RW,
8210 .writefn = vncr_write,
8211 .nv2_redirect_offset = 0xb0,
8212 .fieldoffset = offsetof(CPUARMState, cp15.vncr_el2) },
8215 #endif /* TARGET_AARCH64 */
8217 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri,
8218 bool isread)
8220 int el = arm_current_el(env);
8222 if (el == 0) {
8223 uint64_t sctlr = arm_sctlr(env, el);
8224 if (!(sctlr & SCTLR_EnRCTX)) {
8225 return CP_ACCESS_TRAP;
8227 } else if (el == 1) {
8228 uint64_t hcr = arm_hcr_el2_eff(env);
8229 if (hcr & HCR_NV) {
8230 return CP_ACCESS_TRAP_EL2;
8233 return CP_ACCESS_OK;
8236 static const ARMCPRegInfo predinv_reginfo[] = {
8237 { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64,
8238 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4,
8239 .fgt = FGT_CFPRCTX,
8240 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
8241 { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64,
8242 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5,
8243 .fgt = FGT_DVPRCTX,
8244 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
8245 { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64,
8246 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7,
8247 .fgt = FGT_CPPRCTX,
8248 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
8250 * Note the AArch32 opcodes have a different OPC1.
8252 { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32,
8253 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4,
8254 .fgt = FGT_CFPRCTX,
8255 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
8256 { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32,
8257 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5,
8258 .fgt = FGT_DVPRCTX,
8259 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
8260 { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32,
8261 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7,
8262 .fgt = FGT_CPPRCTX,
8263 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
8266 static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri)
8268 /* Read the high 32 bits of the current CCSIDR */
8269 return extract64(ccsidr_read(env, ri), 32, 32);
8272 static const ARMCPRegInfo ccsidr2_reginfo[] = {
8273 { .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH,
8274 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2,
8275 .access = PL1_R,
8276 .accessfn = access_tid4,
8277 .readfn = ccsidr2_read, .type = ARM_CP_NO_RAW },
8280 static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
8281 bool isread)
8283 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) {
8284 return CP_ACCESS_TRAP_EL2;
8287 return CP_ACCESS_OK;
8290 static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
8291 bool isread)
8293 if (arm_feature(env, ARM_FEATURE_V8)) {
8294 return access_aa64_tid3(env, ri, isread);
8297 return CP_ACCESS_OK;
8300 static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri,
8301 bool isread)
8303 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) {
8304 return CP_ACCESS_TRAP_EL2;
8307 return CP_ACCESS_OK;
8310 static CPAccessResult access_joscr_jmcr(CPUARMState *env,
8311 const ARMCPRegInfo *ri, bool isread)
8314 * HSTR.TJDBX traps JOSCR and JMCR accesses, but it exists only
8315 * in v7A, not in v8A.
8317 if (!arm_feature(env, ARM_FEATURE_V8) &&
8318 arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) &&
8319 (env->cp15.hstr_el2 & HSTR_TJDBX)) {
8320 return CP_ACCESS_TRAP_EL2;
8322 return CP_ACCESS_OK;
8325 static const ARMCPRegInfo jazelle_regs[] = {
8326 { .name = "JIDR",
8327 .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0,
8328 .access = PL1_R, .accessfn = access_jazelle,
8329 .type = ARM_CP_CONST, .resetvalue = 0 },
8330 { .name = "JOSCR",
8331 .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0,
8332 .accessfn = access_joscr_jmcr,
8333 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
8334 { .name = "JMCR",
8335 .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0,
8336 .accessfn = access_joscr_jmcr,
8337 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
8340 static const ARMCPRegInfo contextidr_el2 = {
8341 .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64,
8342 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1,
8343 .access = PL2_RW,
8344 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2])
8347 static const ARMCPRegInfo vhe_reginfo[] = {
8348 { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64,
8349 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1,
8350 .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write,
8351 .raw_writefn = raw_write,
8352 .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) },
8353 #ifndef CONFIG_USER_ONLY
8354 { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64,
8355 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2,
8356 .fieldoffset =
8357 offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval),
8358 .type = ARM_CP_IO, .access = PL2_RW,
8359 .writefn = gt_hv_cval_write, .raw_writefn = raw_write },
8360 { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
8361 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0,
8362 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
8363 .resetfn = gt_hv_timer_reset,
8364 .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write },
8365 { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH,
8366 .type = ARM_CP_IO,
8367 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1,
8368 .access = PL2_RW,
8369 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl),
8370 .writefn = gt_hv_ctl_write, .raw_writefn = raw_write },
8371 { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64,
8372 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1,
8373 .type = ARM_CP_IO | ARM_CP_ALIAS,
8374 .access = PL2_RW, .accessfn = e2h_access,
8375 .nv2_redirect_offset = 0x180 | NV2_REDIR_NO_NV1,
8376 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
8377 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write },
8378 { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64,
8379 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1,
8380 .type = ARM_CP_IO | ARM_CP_ALIAS,
8381 .access = PL2_RW, .accessfn = e2h_access,
8382 .nv2_redirect_offset = 0x170 | NV2_REDIR_NO_NV1,
8383 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
8384 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write },
8385 { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64,
8386 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0,
8387 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
8388 .access = PL2_RW, .accessfn = e2h_access,
8389 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write },
8390 { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64,
8391 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0,
8392 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
8393 .access = PL2_RW, .accessfn = e2h_access,
8394 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write },
8395 { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64,
8396 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2,
8397 .type = ARM_CP_IO | ARM_CP_ALIAS,
8398 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
8399 .nv2_redirect_offset = 0x178 | NV2_REDIR_NO_NV1,
8400 .access = PL2_RW, .accessfn = e2h_access,
8401 .writefn = gt_phys_cval_write, .raw_writefn = raw_write },
8402 { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64,
8403 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2,
8404 .type = ARM_CP_IO | ARM_CP_ALIAS,
8405 .nv2_redirect_offset = 0x168 | NV2_REDIR_NO_NV1,
8406 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
8407 .access = PL2_RW, .accessfn = e2h_access,
8408 .writefn = gt_virt_cval_write, .raw_writefn = raw_write },
8409 #endif
8412 #ifndef CONFIG_USER_ONLY
8413 static const ARMCPRegInfo ats1e1_reginfo[] = {
8414 { .name = "AT_S1E1RP", .state = ARM_CP_STATE_AA64,
8415 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
8416 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
8417 .fgt = FGT_ATS1E1RP,
8418 .accessfn = at_s1e01_access, .writefn = ats_write64 },
8419 { .name = "AT_S1E1WP", .state = ARM_CP_STATE_AA64,
8420 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
8421 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
8422 .fgt = FGT_ATS1E1WP,
8423 .accessfn = at_s1e01_access, .writefn = ats_write64 },
8426 static const ARMCPRegInfo ats1cp_reginfo[] = {
8427 { .name = "ATS1CPRP",
8428 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
8429 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
8430 .writefn = ats_write },
8431 { .name = "ATS1CPWP",
8432 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
8433 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
8434 .writefn = ats_write },
8436 #endif
8439 * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and
8440 * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field
8441 * is non-zero, which is never for ARMv7, optionally in ARMv8
8442 * and mandatorily for ARMv8.2 and up.
8443 * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's
8444 * implementation is RAZ/WI we can ignore this detail, as we
8445 * do for ACTLR.
8447 static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = {
8448 { .name = "ACTLR2", .state = ARM_CP_STATE_AA32,
8449 .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3,
8450 .access = PL1_RW, .accessfn = access_tacr,
8451 .type = ARM_CP_CONST, .resetvalue = 0 },
8452 { .name = "HACTLR2", .state = ARM_CP_STATE_AA32,
8453 .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3,
8454 .access = PL2_RW, .type = ARM_CP_CONST,
8455 .resetvalue = 0 },
8458 void register_cp_regs_for_features(ARMCPU *cpu)
8460 /* Register all the coprocessor registers based on feature bits */
8461 CPUARMState *env = &cpu->env;
8462 if (arm_feature(env, ARM_FEATURE_M)) {
8463 /* M profile has no coprocessor registers */
8464 return;
8467 define_arm_cp_regs(cpu, cp_reginfo);
8468 if (!arm_feature(env, ARM_FEATURE_V8)) {
8470 * Must go early as it is full of wildcards that may be
8471 * overridden by later definitions.
8473 define_arm_cp_regs(cpu, not_v8_cp_reginfo);
8476 if (arm_feature(env, ARM_FEATURE_V6)) {
8477 /* The ID registers all have impdef reset values */
8478 ARMCPRegInfo v6_idregs[] = {
8479 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
8480 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
8481 .access = PL1_R, .type = ARM_CP_CONST,
8482 .accessfn = access_aa32_tid3,
8483 .resetvalue = cpu->isar.id_pfr0 },
8485 * ID_PFR1 is not a plain ARM_CP_CONST because we don't know
8486 * the value of the GIC field until after we define these regs.
8488 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
8489 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
8490 .access = PL1_R, .type = ARM_CP_NO_RAW,
8491 .accessfn = access_aa32_tid3,
8492 #ifdef CONFIG_USER_ONLY
8493 .type = ARM_CP_CONST,
8494 .resetvalue = cpu->isar.id_pfr1,
8495 #else
8496 .type = ARM_CP_NO_RAW,
8497 .accessfn = access_aa32_tid3,
8498 .readfn = id_pfr1_read,
8499 .writefn = arm_cp_write_ignore
8500 #endif
8502 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
8503 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
8504 .access = PL1_R, .type = ARM_CP_CONST,
8505 .accessfn = access_aa32_tid3,
8506 .resetvalue = cpu->isar.id_dfr0 },
8507 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
8508 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
8509 .access = PL1_R, .type = ARM_CP_CONST,
8510 .accessfn = access_aa32_tid3,
8511 .resetvalue = cpu->id_afr0 },
8512 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
8513 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
8514 .access = PL1_R, .type = ARM_CP_CONST,
8515 .accessfn = access_aa32_tid3,
8516 .resetvalue = cpu->isar.id_mmfr0 },
8517 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
8518 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
8519 .access = PL1_R, .type = ARM_CP_CONST,
8520 .accessfn = access_aa32_tid3,
8521 .resetvalue = cpu->isar.id_mmfr1 },
8522 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
8523 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
8524 .access = PL1_R, .type = ARM_CP_CONST,
8525 .accessfn = access_aa32_tid3,
8526 .resetvalue = cpu->isar.id_mmfr2 },
8527 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
8528 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
8529 .access = PL1_R, .type = ARM_CP_CONST,
8530 .accessfn = access_aa32_tid3,
8531 .resetvalue = cpu->isar.id_mmfr3 },
8532 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
8533 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
8534 .access = PL1_R, .type = ARM_CP_CONST,
8535 .accessfn = access_aa32_tid3,
8536 .resetvalue = cpu->isar.id_isar0 },
8537 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
8538 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
8539 .access = PL1_R, .type = ARM_CP_CONST,
8540 .accessfn = access_aa32_tid3,
8541 .resetvalue = cpu->isar.id_isar1 },
8542 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
8543 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
8544 .access = PL1_R, .type = ARM_CP_CONST,
8545 .accessfn = access_aa32_tid3,
8546 .resetvalue = cpu->isar.id_isar2 },
8547 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
8548 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
8549 .access = PL1_R, .type = ARM_CP_CONST,
8550 .accessfn = access_aa32_tid3,
8551 .resetvalue = cpu->isar.id_isar3 },
8552 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
8553 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
8554 .access = PL1_R, .type = ARM_CP_CONST,
8555 .accessfn = access_aa32_tid3,
8556 .resetvalue = cpu->isar.id_isar4 },
8557 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
8558 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
8559 .access = PL1_R, .type = ARM_CP_CONST,
8560 .accessfn = access_aa32_tid3,
8561 .resetvalue = cpu->isar.id_isar5 },
8562 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
8563 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
8564 .access = PL1_R, .type = ARM_CP_CONST,
8565 .accessfn = access_aa32_tid3,
8566 .resetvalue = cpu->isar.id_mmfr4 },
8567 { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH,
8568 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
8569 .access = PL1_R, .type = ARM_CP_CONST,
8570 .accessfn = access_aa32_tid3,
8571 .resetvalue = cpu->isar.id_isar6 },
8573 define_arm_cp_regs(cpu, v6_idregs);
8574 define_arm_cp_regs(cpu, v6_cp_reginfo);
8575 } else {
8576 define_arm_cp_regs(cpu, not_v6_cp_reginfo);
8578 if (arm_feature(env, ARM_FEATURE_V6K)) {
8579 define_arm_cp_regs(cpu, v6k_cp_reginfo);
8581 if (arm_feature(env, ARM_FEATURE_V7MP) &&
8582 !arm_feature(env, ARM_FEATURE_PMSA)) {
8583 define_arm_cp_regs(cpu, v7mp_cp_reginfo);
8585 if (arm_feature(env, ARM_FEATURE_V7VE)) {
8586 define_arm_cp_regs(cpu, pmovsset_cp_reginfo);
8588 if (arm_feature(env, ARM_FEATURE_V7)) {
8589 ARMCPRegInfo clidr = {
8590 .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
8591 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
8592 .access = PL1_R, .type = ARM_CP_CONST,
8593 .accessfn = access_tid4,
8594 .fgt = FGT_CLIDR_EL1,
8595 .resetvalue = cpu->clidr
8597 define_one_arm_cp_reg(cpu, &clidr);
8598 define_arm_cp_regs(cpu, v7_cp_reginfo);
8599 define_debug_regs(cpu);
8600 define_pmu_regs(cpu);
8601 } else {
8602 define_arm_cp_regs(cpu, not_v7_cp_reginfo);
8604 if (arm_feature(env, ARM_FEATURE_V8)) {
8606 * v8 ID registers, which all have impdef reset values.
8607 * Note that within the ID register ranges the unused slots
8608 * must all RAZ, not UNDEF; future architecture versions may
8609 * define new registers here.
8610 * ID registers which are AArch64 views of the AArch32 ID registers
8611 * which already existed in v6 and v7 are handled elsewhere,
8612 * in v6_idregs[].
8614 int i;
8615 ARMCPRegInfo v8_idregs[] = {
8617 * ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system
8618 * emulation because we don't know the right value for the
8619 * GIC field until after we define these regs.
8621 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
8622 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
8623 .access = PL1_R,
8624 #ifdef CONFIG_USER_ONLY
8625 .type = ARM_CP_CONST,
8626 .resetvalue = cpu->isar.id_aa64pfr0
8627 #else
8628 .type = ARM_CP_NO_RAW,
8629 .accessfn = access_aa64_tid3,
8630 .readfn = id_aa64pfr0_read,
8631 .writefn = arm_cp_write_ignore
8632 #endif
8634 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
8635 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
8636 .access = PL1_R, .type = ARM_CP_CONST,
8637 .accessfn = access_aa64_tid3,
8638 .resetvalue = cpu->isar.id_aa64pfr1},
8639 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8640 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
8641 .access = PL1_R, .type = ARM_CP_CONST,
8642 .accessfn = access_aa64_tid3,
8643 .resetvalue = 0 },
8644 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8645 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
8646 .access = PL1_R, .type = ARM_CP_CONST,
8647 .accessfn = access_aa64_tid3,
8648 .resetvalue = 0 },
8649 { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64,
8650 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
8651 .access = PL1_R, .type = ARM_CP_CONST,
8652 .accessfn = access_aa64_tid3,
8653 .resetvalue = cpu->isar.id_aa64zfr0 },
8654 { .name = "ID_AA64SMFR0_EL1", .state = ARM_CP_STATE_AA64,
8655 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
8656 .access = PL1_R, .type = ARM_CP_CONST,
8657 .accessfn = access_aa64_tid3,
8658 .resetvalue = cpu->isar.id_aa64smfr0 },
8659 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8660 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
8661 .access = PL1_R, .type = ARM_CP_CONST,
8662 .accessfn = access_aa64_tid3,
8663 .resetvalue = 0 },
8664 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8665 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
8666 .access = PL1_R, .type = ARM_CP_CONST,
8667 .accessfn = access_aa64_tid3,
8668 .resetvalue = 0 },
8669 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
8670 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
8671 .access = PL1_R, .type = ARM_CP_CONST,
8672 .accessfn = access_aa64_tid3,
8673 .resetvalue = cpu->isar.id_aa64dfr0 },
8674 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
8675 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
8676 .access = PL1_R, .type = ARM_CP_CONST,
8677 .accessfn = access_aa64_tid3,
8678 .resetvalue = cpu->isar.id_aa64dfr1 },
8679 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8680 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
8681 .access = PL1_R, .type = ARM_CP_CONST,
8682 .accessfn = access_aa64_tid3,
8683 .resetvalue = 0 },
8684 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8685 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
8686 .access = PL1_R, .type = ARM_CP_CONST,
8687 .accessfn = access_aa64_tid3,
8688 .resetvalue = 0 },
8689 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
8690 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
8691 .access = PL1_R, .type = ARM_CP_CONST,
8692 .accessfn = access_aa64_tid3,
8693 .resetvalue = cpu->id_aa64afr0 },
8694 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
8695 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
8696 .access = PL1_R, .type = ARM_CP_CONST,
8697 .accessfn = access_aa64_tid3,
8698 .resetvalue = cpu->id_aa64afr1 },
8699 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8700 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
8701 .access = PL1_R, .type = ARM_CP_CONST,
8702 .accessfn = access_aa64_tid3,
8703 .resetvalue = 0 },
8704 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8705 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
8706 .access = PL1_R, .type = ARM_CP_CONST,
8707 .accessfn = access_aa64_tid3,
8708 .resetvalue = 0 },
8709 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
8710 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
8711 .access = PL1_R, .type = ARM_CP_CONST,
8712 .accessfn = access_aa64_tid3,
8713 .resetvalue = cpu->isar.id_aa64isar0 },
8714 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
8715 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
8716 .access = PL1_R, .type = ARM_CP_CONST,
8717 .accessfn = access_aa64_tid3,
8718 .resetvalue = cpu->isar.id_aa64isar1 },
8719 { .name = "ID_AA64ISAR2_EL1", .state = ARM_CP_STATE_AA64,
8720 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
8721 .access = PL1_R, .type = ARM_CP_CONST,
8722 .accessfn = access_aa64_tid3,
8723 .resetvalue = cpu->isar.id_aa64isar2 },
8724 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8725 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
8726 .access = PL1_R, .type = ARM_CP_CONST,
8727 .accessfn = access_aa64_tid3,
8728 .resetvalue = 0 },
8729 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8730 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
8731 .access = PL1_R, .type = ARM_CP_CONST,
8732 .accessfn = access_aa64_tid3,
8733 .resetvalue = 0 },
8734 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8735 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
8736 .access = PL1_R, .type = ARM_CP_CONST,
8737 .accessfn = access_aa64_tid3,
8738 .resetvalue = 0 },
8739 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8740 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
8741 .access = PL1_R, .type = ARM_CP_CONST,
8742 .accessfn = access_aa64_tid3,
8743 .resetvalue = 0 },
8744 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8745 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
8746 .access = PL1_R, .type = ARM_CP_CONST,
8747 .accessfn = access_aa64_tid3,
8748 .resetvalue = 0 },
8749 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
8750 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
8751 .access = PL1_R, .type = ARM_CP_CONST,
8752 .accessfn = access_aa64_tid3,
8753 .resetvalue = cpu->isar.id_aa64mmfr0 },
8754 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
8755 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
8756 .access = PL1_R, .type = ARM_CP_CONST,
8757 .accessfn = access_aa64_tid3,
8758 .resetvalue = cpu->isar.id_aa64mmfr1 },
8759 { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64,
8760 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
8761 .access = PL1_R, .type = ARM_CP_CONST,
8762 .accessfn = access_aa64_tid3,
8763 .resetvalue = cpu->isar.id_aa64mmfr2 },
8764 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8765 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
8766 .access = PL1_R, .type = ARM_CP_CONST,
8767 .accessfn = access_aa64_tid3,
8768 .resetvalue = 0 },
8769 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8770 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
8771 .access = PL1_R, .type = ARM_CP_CONST,
8772 .accessfn = access_aa64_tid3,
8773 .resetvalue = 0 },
8774 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8775 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
8776 .access = PL1_R, .type = ARM_CP_CONST,
8777 .accessfn = access_aa64_tid3,
8778 .resetvalue = 0 },
8779 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8780 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
8781 .access = PL1_R, .type = ARM_CP_CONST,
8782 .accessfn = access_aa64_tid3,
8783 .resetvalue = 0 },
8784 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8785 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
8786 .access = PL1_R, .type = ARM_CP_CONST,
8787 .accessfn = access_aa64_tid3,
8788 .resetvalue = 0 },
8789 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
8790 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
8791 .access = PL1_R, .type = ARM_CP_CONST,
8792 .accessfn = access_aa64_tid3,
8793 .resetvalue = cpu->isar.mvfr0 },
8794 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
8795 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
8796 .access = PL1_R, .type = ARM_CP_CONST,
8797 .accessfn = access_aa64_tid3,
8798 .resetvalue = cpu->isar.mvfr1 },
8799 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
8800 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
8801 .access = PL1_R, .type = ARM_CP_CONST,
8802 .accessfn = access_aa64_tid3,
8803 .resetvalue = cpu->isar.mvfr2 },
8805 * "0, c0, c3, {0,1,2}" are the encodings corresponding to
8806 * AArch64 MVFR[012]_EL1. Define the STATE_AA32 encoding
8807 * as RAZ, since it is in the "reserved for future ID
8808 * registers, RAZ" part of the AArch32 encoding space.
8810 { .name = "RES_0_C0_C3_0", .state = ARM_CP_STATE_AA32,
8811 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
8812 .access = PL1_R, .type = ARM_CP_CONST,
8813 .accessfn = access_aa64_tid3,
8814 .resetvalue = 0 },
8815 { .name = "RES_0_C0_C3_1", .state = ARM_CP_STATE_AA32,
8816 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
8817 .access = PL1_R, .type = ARM_CP_CONST,
8818 .accessfn = access_aa64_tid3,
8819 .resetvalue = 0 },
8820 { .name = "RES_0_C0_C3_2", .state = ARM_CP_STATE_AA32,
8821 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
8822 .access = PL1_R, .type = ARM_CP_CONST,
8823 .accessfn = access_aa64_tid3,
8824 .resetvalue = 0 },
8826 * Other encodings in "0, c0, c3, ..." are STATE_BOTH because
8827 * they're also RAZ for AArch64, and in v8 are gradually
8828 * being filled with AArch64-view-of-AArch32-ID-register
8829 * for new ID registers.
8831 { .name = "RES_0_C0_C3_3", .state = ARM_CP_STATE_BOTH,
8832 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
8833 .access = PL1_R, .type = ARM_CP_CONST,
8834 .accessfn = access_aa64_tid3,
8835 .resetvalue = 0 },
8836 { .name = "ID_PFR2", .state = ARM_CP_STATE_BOTH,
8837 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
8838 .access = PL1_R, .type = ARM_CP_CONST,
8839 .accessfn = access_aa64_tid3,
8840 .resetvalue = cpu->isar.id_pfr2 },
8841 { .name = "ID_DFR1", .state = ARM_CP_STATE_BOTH,
8842 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
8843 .access = PL1_R, .type = ARM_CP_CONST,
8844 .accessfn = access_aa64_tid3,
8845 .resetvalue = cpu->isar.id_dfr1 },
8846 { .name = "ID_MMFR5", .state = ARM_CP_STATE_BOTH,
8847 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
8848 .access = PL1_R, .type = ARM_CP_CONST,
8849 .accessfn = access_aa64_tid3,
8850 .resetvalue = cpu->isar.id_mmfr5 },
8851 { .name = "RES_0_C0_C3_7", .state = ARM_CP_STATE_BOTH,
8852 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
8853 .access = PL1_R, .type = ARM_CP_CONST,
8854 .accessfn = access_aa64_tid3,
8855 .resetvalue = 0 },
8856 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
8857 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
8858 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
8859 .fgt = FGT_PMCEIDN_EL0,
8860 .resetvalue = extract64(cpu->pmceid0, 0, 32) },
8861 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
8862 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
8863 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
8864 .fgt = FGT_PMCEIDN_EL0,
8865 .resetvalue = cpu->pmceid0 },
8866 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
8867 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
8868 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
8869 .fgt = FGT_PMCEIDN_EL0,
8870 .resetvalue = extract64(cpu->pmceid1, 0, 32) },
8871 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
8872 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
8873 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
8874 .fgt = FGT_PMCEIDN_EL0,
8875 .resetvalue = cpu->pmceid1 },
8877 #ifdef CONFIG_USER_ONLY
8878 static const ARMCPRegUserSpaceInfo v8_user_idregs[] = {
8879 { .name = "ID_AA64PFR0_EL1",
8880 .exported_bits = R_ID_AA64PFR0_FP_MASK |
8881 R_ID_AA64PFR0_ADVSIMD_MASK |
8882 R_ID_AA64PFR0_SVE_MASK |
8883 R_ID_AA64PFR0_DIT_MASK,
8884 .fixed_bits = (0x1u << R_ID_AA64PFR0_EL0_SHIFT) |
8885 (0x1u << R_ID_AA64PFR0_EL1_SHIFT) },
8886 { .name = "ID_AA64PFR1_EL1",
8887 .exported_bits = R_ID_AA64PFR1_BT_MASK |
8888 R_ID_AA64PFR1_SSBS_MASK |
8889 R_ID_AA64PFR1_MTE_MASK |
8890 R_ID_AA64PFR1_SME_MASK },
8891 { .name = "ID_AA64PFR*_EL1_RESERVED",
8892 .is_glob = true },
8893 { .name = "ID_AA64ZFR0_EL1",
8894 .exported_bits = R_ID_AA64ZFR0_SVEVER_MASK |
8895 R_ID_AA64ZFR0_AES_MASK |
8896 R_ID_AA64ZFR0_BITPERM_MASK |
8897 R_ID_AA64ZFR0_BFLOAT16_MASK |
8898 R_ID_AA64ZFR0_SHA3_MASK |
8899 R_ID_AA64ZFR0_SM4_MASK |
8900 R_ID_AA64ZFR0_I8MM_MASK |
8901 R_ID_AA64ZFR0_F32MM_MASK |
8902 R_ID_AA64ZFR0_F64MM_MASK },
8903 { .name = "ID_AA64SMFR0_EL1",
8904 .exported_bits = R_ID_AA64SMFR0_F32F32_MASK |
8905 R_ID_AA64SMFR0_BI32I32_MASK |
8906 R_ID_AA64SMFR0_B16F32_MASK |
8907 R_ID_AA64SMFR0_F16F32_MASK |
8908 R_ID_AA64SMFR0_I8I32_MASK |
8909 R_ID_AA64SMFR0_F16F16_MASK |
8910 R_ID_AA64SMFR0_B16B16_MASK |
8911 R_ID_AA64SMFR0_I16I32_MASK |
8912 R_ID_AA64SMFR0_F64F64_MASK |
8913 R_ID_AA64SMFR0_I16I64_MASK |
8914 R_ID_AA64SMFR0_SMEVER_MASK |
8915 R_ID_AA64SMFR0_FA64_MASK },
8916 { .name = "ID_AA64MMFR0_EL1",
8917 .exported_bits = R_ID_AA64MMFR0_ECV_MASK,
8918 .fixed_bits = (0xfu << R_ID_AA64MMFR0_TGRAN64_SHIFT) |
8919 (0xfu << R_ID_AA64MMFR0_TGRAN4_SHIFT) },
8920 { .name = "ID_AA64MMFR1_EL1",
8921 .exported_bits = R_ID_AA64MMFR1_AFP_MASK },
8922 { .name = "ID_AA64MMFR2_EL1",
8923 .exported_bits = R_ID_AA64MMFR2_AT_MASK },
8924 { .name = "ID_AA64MMFR*_EL1_RESERVED",
8925 .is_glob = true },
8926 { .name = "ID_AA64DFR0_EL1",
8927 .fixed_bits = (0x6u << R_ID_AA64DFR0_DEBUGVER_SHIFT) },
8928 { .name = "ID_AA64DFR1_EL1" },
8929 { .name = "ID_AA64DFR*_EL1_RESERVED",
8930 .is_glob = true },
8931 { .name = "ID_AA64AFR*",
8932 .is_glob = true },
8933 { .name = "ID_AA64ISAR0_EL1",
8934 .exported_bits = R_ID_AA64ISAR0_AES_MASK |
8935 R_ID_AA64ISAR0_SHA1_MASK |
8936 R_ID_AA64ISAR0_SHA2_MASK |
8937 R_ID_AA64ISAR0_CRC32_MASK |
8938 R_ID_AA64ISAR0_ATOMIC_MASK |
8939 R_ID_AA64ISAR0_RDM_MASK |
8940 R_ID_AA64ISAR0_SHA3_MASK |
8941 R_ID_AA64ISAR0_SM3_MASK |
8942 R_ID_AA64ISAR0_SM4_MASK |
8943 R_ID_AA64ISAR0_DP_MASK |
8944 R_ID_AA64ISAR0_FHM_MASK |
8945 R_ID_AA64ISAR0_TS_MASK |
8946 R_ID_AA64ISAR0_RNDR_MASK },
8947 { .name = "ID_AA64ISAR1_EL1",
8948 .exported_bits = R_ID_AA64ISAR1_DPB_MASK |
8949 R_ID_AA64ISAR1_APA_MASK |
8950 R_ID_AA64ISAR1_API_MASK |
8951 R_ID_AA64ISAR1_JSCVT_MASK |
8952 R_ID_AA64ISAR1_FCMA_MASK |
8953 R_ID_AA64ISAR1_LRCPC_MASK |
8954 R_ID_AA64ISAR1_GPA_MASK |
8955 R_ID_AA64ISAR1_GPI_MASK |
8956 R_ID_AA64ISAR1_FRINTTS_MASK |
8957 R_ID_AA64ISAR1_SB_MASK |
8958 R_ID_AA64ISAR1_BF16_MASK |
8959 R_ID_AA64ISAR1_DGH_MASK |
8960 R_ID_AA64ISAR1_I8MM_MASK },
8961 { .name = "ID_AA64ISAR2_EL1",
8962 .exported_bits = R_ID_AA64ISAR2_WFXT_MASK |
8963 R_ID_AA64ISAR2_RPRES_MASK |
8964 R_ID_AA64ISAR2_GPA3_MASK |
8965 R_ID_AA64ISAR2_APA3_MASK |
8966 R_ID_AA64ISAR2_MOPS_MASK |
8967 R_ID_AA64ISAR2_BC_MASK |
8968 R_ID_AA64ISAR2_RPRFM_MASK |
8969 R_ID_AA64ISAR2_CSSC_MASK },
8970 { .name = "ID_AA64ISAR*_EL1_RESERVED",
8971 .is_glob = true },
8973 modify_arm_cp_regs(v8_idregs, v8_user_idregs);
8974 #endif
8976 * RVBAR_EL1 and RMR_EL1 only implemented if EL1 is the highest EL.
8977 * TODO: For RMR, a write with bit 1 set should do something with
8978 * cpu_reset(). In the meantime, "the bit is strictly a request",
8979 * so we are in spec just ignoring writes.
8981 if (!arm_feature(env, ARM_FEATURE_EL3) &&
8982 !arm_feature(env, ARM_FEATURE_EL2)) {
8983 ARMCPRegInfo el1_reset_regs[] = {
8984 { .name = "RVBAR_EL1", .state = ARM_CP_STATE_BOTH,
8985 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
8986 .access = PL1_R,
8987 .fieldoffset = offsetof(CPUARMState, cp15.rvbar) },
8988 { .name = "RMR_EL1", .state = ARM_CP_STATE_BOTH,
8989 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 2,
8990 .access = PL1_RW, .type = ARM_CP_CONST,
8991 .resetvalue = arm_feature(env, ARM_FEATURE_AARCH64) }
8993 define_arm_cp_regs(cpu, el1_reset_regs);
8995 define_arm_cp_regs(cpu, v8_idregs);
8996 define_arm_cp_regs(cpu, v8_cp_reginfo);
8997 if (cpu_isar_feature(aa64_aa32_el1, cpu)) {
8998 define_arm_cp_regs(cpu, v8_aa32_el1_reginfo);
9001 for (i = 4; i < 16; i++) {
9003 * Encodings in "0, c0, {c4-c7}, {0-7}" are RAZ for AArch32.
9004 * For pre-v8 cores there are RAZ patterns for these in
9005 * id_pre_v8_midr_cp_reginfo[]; for v8 we do that here.
9006 * v8 extends the "must RAZ" part of the ID register space
9007 * to also cover c0, 0, c{8-15}, {0-7}.
9008 * These are STATE_AA32 because in the AArch64 sysreg space
9009 * c4-c7 is where the AArch64 ID registers live (and we've
9010 * already defined those in v8_idregs[]), and c8-c15 are not
9011 * "must RAZ" for AArch64.
9013 g_autofree char *name = g_strdup_printf("RES_0_C0_C%d_X", i);
9014 ARMCPRegInfo v8_aa32_raz_idregs = {
9015 .name = name,
9016 .state = ARM_CP_STATE_AA32,
9017 .cp = 15, .opc1 = 0, .crn = 0, .crm = i, .opc2 = CP_ANY,
9018 .access = PL1_R, .type = ARM_CP_CONST,
9019 .accessfn = access_aa64_tid3,
9020 .resetvalue = 0 };
9021 define_one_arm_cp_reg(cpu, &v8_aa32_raz_idregs);
9026 * Register the base EL2 cpregs.
9027 * Pre v8, these registers are implemented only as part of the
9028 * Virtualization Extensions (EL2 present). Beginning with v8,
9029 * if EL2 is missing but EL3 is enabled, mostly these become
9030 * RES0 from EL3, with some specific exceptions.
9032 if (arm_feature(env, ARM_FEATURE_EL2)
9033 || (arm_feature(env, ARM_FEATURE_EL3)
9034 && arm_feature(env, ARM_FEATURE_V8))) {
9035 uint64_t vmpidr_def = mpidr_read_val(env);
9036 ARMCPRegInfo vpidr_regs[] = {
9037 { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
9038 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
9039 .access = PL2_RW, .accessfn = access_el3_aa32ns,
9040 .resetvalue = cpu->midr,
9041 .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ,
9042 .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) },
9043 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
9044 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
9045 .access = PL2_RW, .resetvalue = cpu->midr,
9046 .type = ARM_CP_EL3_NO_EL2_C_NZ,
9047 .nv2_redirect_offset = 0x88,
9048 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
9049 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
9050 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
9051 .access = PL2_RW, .accessfn = access_el3_aa32ns,
9052 .resetvalue = vmpidr_def,
9053 .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ,
9054 .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) },
9055 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
9056 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
9057 .access = PL2_RW, .resetvalue = vmpidr_def,
9058 .type = ARM_CP_EL3_NO_EL2_C_NZ,
9059 .nv2_redirect_offset = 0x50,
9060 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
9063 * The only field of MDCR_EL2 that has a defined architectural reset
9064 * value is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N.
9066 ARMCPRegInfo mdcr_el2 = {
9067 .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, .type = ARM_CP_IO,
9068 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
9069 .writefn = mdcr_el2_write,
9070 .access = PL2_RW, .resetvalue = pmu_num_counters(env),
9071 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2),
9073 define_one_arm_cp_reg(cpu, &mdcr_el2);
9074 define_arm_cp_regs(cpu, vpidr_regs);
9075 define_arm_cp_regs(cpu, el2_cp_reginfo);
9076 if (arm_feature(env, ARM_FEATURE_V8)) {
9077 define_arm_cp_regs(cpu, el2_v8_cp_reginfo);
9079 if (cpu_isar_feature(aa64_sel2, cpu)) {
9080 define_arm_cp_regs(cpu, el2_sec_cp_reginfo);
9083 * RVBAR_EL2 and RMR_EL2 only implemented if EL2 is the highest EL.
9084 * See commentary near RMR_EL1.
9086 if (!arm_feature(env, ARM_FEATURE_EL3)) {
9087 static const ARMCPRegInfo el2_reset_regs[] = {
9088 { .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
9089 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
9090 .access = PL2_R,
9091 .fieldoffset = offsetof(CPUARMState, cp15.rvbar) },
9092 { .name = "RVBAR", .type = ARM_CP_ALIAS,
9093 .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
9094 .access = PL2_R,
9095 .fieldoffset = offsetof(CPUARMState, cp15.rvbar) },
9096 { .name = "RMR_EL2", .state = ARM_CP_STATE_AA64,
9097 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 2,
9098 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 1 },
9100 define_arm_cp_regs(cpu, el2_reset_regs);
9104 /* Register the base EL3 cpregs. */
9105 if (arm_feature(env, ARM_FEATURE_EL3)) {
9106 define_arm_cp_regs(cpu, el3_cp_reginfo);
9107 ARMCPRegInfo el3_regs[] = {
9108 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
9109 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
9110 .access = PL3_R,
9111 .fieldoffset = offsetof(CPUARMState, cp15.rvbar), },
9112 { .name = "RMR_EL3", .state = ARM_CP_STATE_AA64,
9113 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 2,
9114 .access = PL3_RW, .type = ARM_CP_CONST, .resetvalue = 1 },
9115 { .name = "RMR", .state = ARM_CP_STATE_AA32,
9116 .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 2,
9117 .access = PL3_RW, .type = ARM_CP_CONST,
9118 .resetvalue = arm_feature(env, ARM_FEATURE_AARCH64) },
9119 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
9120 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
9121 .access = PL3_RW,
9122 .raw_writefn = raw_write, .writefn = sctlr_write,
9123 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]),
9124 .resetvalue = cpu->reset_sctlr },
9127 define_arm_cp_regs(cpu, el3_regs);
9130 * The behaviour of NSACR is sufficiently various that we don't
9131 * try to describe it in a single reginfo:
9132 * if EL3 is 64 bit, then trap to EL3 from S EL1,
9133 * reads as constant 0xc00 from NS EL1 and NS EL2
9134 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
9135 * if v7 without EL3, register doesn't exist
9136 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
9138 if (arm_feature(env, ARM_FEATURE_EL3)) {
9139 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
9140 static const ARMCPRegInfo nsacr = {
9141 .name = "NSACR", .type = ARM_CP_CONST,
9142 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
9143 .access = PL1_RW, .accessfn = nsacr_access,
9144 .resetvalue = 0xc00
9146 define_one_arm_cp_reg(cpu, &nsacr);
9147 } else {
9148 static const ARMCPRegInfo nsacr = {
9149 .name = "NSACR",
9150 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
9151 .access = PL3_RW | PL1_R,
9152 .resetvalue = 0,
9153 .fieldoffset = offsetof(CPUARMState, cp15.nsacr)
9155 define_one_arm_cp_reg(cpu, &nsacr);
9157 } else {
9158 if (arm_feature(env, ARM_FEATURE_V8)) {
9159 static const ARMCPRegInfo nsacr = {
9160 .name = "NSACR", .type = ARM_CP_CONST,
9161 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
9162 .access = PL1_R,
9163 .resetvalue = 0xc00
9165 define_one_arm_cp_reg(cpu, &nsacr);
9169 if (arm_feature(env, ARM_FEATURE_PMSA)) {
9170 if (arm_feature(env, ARM_FEATURE_V6)) {
9171 /* PMSAv6 not implemented */
9172 assert(arm_feature(env, ARM_FEATURE_V7));
9173 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
9174 define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
9175 } else {
9176 define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
9178 } else {
9179 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
9180 define_arm_cp_regs(cpu, vmsa_cp_reginfo);
9181 /* TTCBR2 is introduced with ARMv8.2-AA32HPD. */
9182 if (cpu_isar_feature(aa32_hpd, cpu)) {
9183 define_one_arm_cp_reg(cpu, &ttbcr2_reginfo);
9186 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
9187 define_arm_cp_regs(cpu, t2ee_cp_reginfo);
9189 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
9190 define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
9192 if (arm_feature(env, ARM_FEATURE_VAPA)) {
9193 ARMCPRegInfo vapa_cp_reginfo[] = {
9194 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
9195 .access = PL1_RW, .resetvalue = 0,
9196 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
9197 offsetoflow32(CPUARMState, cp15.par_ns) },
9198 .writefn = par_write},
9199 #ifndef CONFIG_USER_ONLY
9200 /* This underdecoding is safe because the reginfo is NO_RAW. */
9201 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
9202 .access = PL1_W, .accessfn = ats_access,
9203 .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
9204 #endif
9208 * When LPAE exists this 32-bit PAR register is an alias of the
9209 * 64-bit AArch32 PAR register defined in lpae_cp_reginfo[]
9211 if (arm_feature(env, ARM_FEATURE_LPAE)) {
9212 vapa_cp_reginfo[0].type = ARM_CP_ALIAS | ARM_CP_NO_GDB;
9214 define_arm_cp_regs(cpu, vapa_cp_reginfo);
9216 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
9217 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
9219 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
9220 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
9222 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
9223 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
9225 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
9226 define_arm_cp_regs(cpu, omap_cp_reginfo);
9228 if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
9229 define_arm_cp_regs(cpu, strongarm_cp_reginfo);
9231 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
9232 define_arm_cp_regs(cpu, xscale_cp_reginfo);
9234 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
9235 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
9237 if (arm_feature(env, ARM_FEATURE_LPAE)) {
9238 define_arm_cp_regs(cpu, lpae_cp_reginfo);
9240 if (cpu_isar_feature(aa32_jazelle, cpu)) {
9241 define_arm_cp_regs(cpu, jazelle_regs);
9244 * Slightly awkwardly, the OMAP and StrongARM cores need all of
9245 * cp15 crn=0 to be writes-ignored, whereas for other cores they should
9246 * be read-only (ie write causes UNDEF exception).
9249 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
9251 * Pre-v8 MIDR space.
9252 * Note that the MIDR isn't a simple constant register because
9253 * of the TI925 behaviour where writes to another register can
9254 * cause the MIDR value to change.
9256 * Unimplemented registers in the c15 0 0 0 space default to
9257 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
9258 * and friends override accordingly.
9260 { .name = "MIDR",
9261 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
9262 .access = PL1_R, .resetvalue = cpu->midr,
9263 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
9264 .readfn = midr_read,
9265 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
9266 .type = ARM_CP_OVERRIDE },
9267 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
9268 { .name = "DUMMY",
9269 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
9270 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
9271 { .name = "DUMMY",
9272 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
9273 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
9274 { .name = "DUMMY",
9275 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
9276 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
9277 { .name = "DUMMY",
9278 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
9279 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
9280 { .name = "DUMMY",
9281 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
9282 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
9284 ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
9285 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
9286 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
9287 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
9288 .fgt = FGT_MIDR_EL1,
9289 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
9290 .readfn = midr_read },
9291 /* crn = 0 op1 = 0 crm = 0 op2 = 7 : AArch32 aliases of MIDR */
9292 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
9293 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
9294 .access = PL1_R, .resetvalue = cpu->midr },
9295 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
9296 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
9297 .access = PL1_R,
9298 .accessfn = access_aa64_tid1,
9299 .fgt = FGT_REVIDR_EL1,
9300 .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
9302 ARMCPRegInfo id_v8_midr_alias_cp_reginfo = {
9303 .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST | ARM_CP_NO_GDB,
9304 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
9305 .access = PL1_R, .resetvalue = cpu->midr
9307 ARMCPRegInfo id_cp_reginfo[] = {
9308 /* These are common to v8 and pre-v8 */
9309 { .name = "CTR",
9310 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
9311 .access = PL1_R, .accessfn = ctr_el0_access,
9312 .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
9313 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
9314 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
9315 .access = PL0_R, .accessfn = ctr_el0_access,
9316 .fgt = FGT_CTR_EL0,
9317 .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
9318 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
9319 { .name = "TCMTR",
9320 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
9321 .access = PL1_R,
9322 .accessfn = access_aa32_tid1,
9323 .type = ARM_CP_CONST, .resetvalue = 0 },
9325 /* TLBTR is specific to VMSA */
9326 ARMCPRegInfo id_tlbtr_reginfo = {
9327 .name = "TLBTR",
9328 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
9329 .access = PL1_R,
9330 .accessfn = access_aa32_tid1,
9331 .type = ARM_CP_CONST, .resetvalue = 0,
9333 /* MPUIR is specific to PMSA V6+ */
9334 ARMCPRegInfo id_mpuir_reginfo = {
9335 .name = "MPUIR",
9336 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
9337 .access = PL1_R, .type = ARM_CP_CONST,
9338 .resetvalue = cpu->pmsav7_dregion << 8
9340 /* HMPUIR is specific to PMSA V8 */
9341 ARMCPRegInfo id_hmpuir_reginfo = {
9342 .name = "HMPUIR",
9343 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 4,
9344 .access = PL2_R, .type = ARM_CP_CONST,
9345 .resetvalue = cpu->pmsav8r_hdregion
9347 static const ARMCPRegInfo crn0_wi_reginfo = {
9348 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
9349 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
9350 .type = ARM_CP_NOP | ARM_CP_OVERRIDE
9352 #ifdef CONFIG_USER_ONLY
9353 static const ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = {
9354 { .name = "MIDR_EL1",
9355 .exported_bits = R_MIDR_EL1_REVISION_MASK |
9356 R_MIDR_EL1_PARTNUM_MASK |
9357 R_MIDR_EL1_ARCHITECTURE_MASK |
9358 R_MIDR_EL1_VARIANT_MASK |
9359 R_MIDR_EL1_IMPLEMENTER_MASK },
9360 { .name = "REVIDR_EL1" },
9362 modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo);
9363 #endif
9364 if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
9365 arm_feature(env, ARM_FEATURE_STRONGARM)) {
9366 size_t i;
9368 * Register the blanket "writes ignored" value first to cover the
9369 * whole space. Then update the specific ID registers to allow write
9370 * access, so that they ignore writes rather than causing them to
9371 * UNDEF.
9373 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
9374 for (i = 0; i < ARRAY_SIZE(id_pre_v8_midr_cp_reginfo); ++i) {
9375 id_pre_v8_midr_cp_reginfo[i].access = PL1_RW;
9377 for (i = 0; i < ARRAY_SIZE(id_cp_reginfo); ++i) {
9378 id_cp_reginfo[i].access = PL1_RW;
9380 id_mpuir_reginfo.access = PL1_RW;
9381 id_tlbtr_reginfo.access = PL1_RW;
9383 if (arm_feature(env, ARM_FEATURE_V8)) {
9384 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
9385 if (!arm_feature(env, ARM_FEATURE_PMSA)) {
9386 define_one_arm_cp_reg(cpu, &id_v8_midr_alias_cp_reginfo);
9388 } else {
9389 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
9391 define_arm_cp_regs(cpu, id_cp_reginfo);
9392 if (!arm_feature(env, ARM_FEATURE_PMSA)) {
9393 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
9394 } else if (arm_feature(env, ARM_FEATURE_PMSA) &&
9395 arm_feature(env, ARM_FEATURE_V8)) {
9396 uint32_t i = 0;
9397 char *tmp_string;
9399 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
9400 define_one_arm_cp_reg(cpu, &id_hmpuir_reginfo);
9401 define_arm_cp_regs(cpu, pmsav8r_cp_reginfo);
9403 /* Register alias is only valid for first 32 indexes */
9404 for (i = 0; i < MIN(cpu->pmsav7_dregion, 32); ++i) {
9405 uint8_t crm = 0b1000 | extract32(i, 1, 3);
9406 uint8_t opc1 = extract32(i, 4, 1);
9407 uint8_t opc2 = extract32(i, 0, 1) << 2;
9409 tmp_string = g_strdup_printf("PRBAR%u", i);
9410 ARMCPRegInfo tmp_prbarn_reginfo = {
9411 .name = tmp_string, .type = ARM_CP_ALIAS | ARM_CP_NO_RAW,
9412 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
9413 .access = PL1_RW, .resetvalue = 0,
9414 .accessfn = access_tvm_trvm,
9415 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
9417 define_one_arm_cp_reg(cpu, &tmp_prbarn_reginfo);
9418 g_free(tmp_string);
9420 opc2 = extract32(i, 0, 1) << 2 | 0x1;
9421 tmp_string = g_strdup_printf("PRLAR%u", i);
9422 ARMCPRegInfo tmp_prlarn_reginfo = {
9423 .name = tmp_string, .type = ARM_CP_ALIAS | ARM_CP_NO_RAW,
9424 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
9425 .access = PL1_RW, .resetvalue = 0,
9426 .accessfn = access_tvm_trvm,
9427 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
9429 define_one_arm_cp_reg(cpu, &tmp_prlarn_reginfo);
9430 g_free(tmp_string);
9433 /* Register alias is only valid for first 32 indexes */
9434 for (i = 0; i < MIN(cpu->pmsav8r_hdregion, 32); ++i) {
9435 uint8_t crm = 0b1000 | extract32(i, 1, 3);
9436 uint8_t opc1 = 0b100 | extract32(i, 4, 1);
9437 uint8_t opc2 = extract32(i, 0, 1) << 2;
9439 tmp_string = g_strdup_printf("HPRBAR%u", i);
9440 ARMCPRegInfo tmp_hprbarn_reginfo = {
9441 .name = tmp_string,
9442 .type = ARM_CP_NO_RAW,
9443 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
9444 .access = PL2_RW, .resetvalue = 0,
9445 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
9447 define_one_arm_cp_reg(cpu, &tmp_hprbarn_reginfo);
9448 g_free(tmp_string);
9450 opc2 = extract32(i, 0, 1) << 2 | 0x1;
9451 tmp_string = g_strdup_printf("HPRLAR%u", i);
9452 ARMCPRegInfo tmp_hprlarn_reginfo = {
9453 .name = tmp_string,
9454 .type = ARM_CP_NO_RAW,
9455 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
9456 .access = PL2_RW, .resetvalue = 0,
9457 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
9459 define_one_arm_cp_reg(cpu, &tmp_hprlarn_reginfo);
9460 g_free(tmp_string);
9462 } else if (arm_feature(env, ARM_FEATURE_V7)) {
9463 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
9467 if (arm_feature(env, ARM_FEATURE_MPIDR)) {
9468 ARMCPRegInfo mpidr_cp_reginfo[] = {
9469 { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH,
9470 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
9471 .fgt = FGT_MPIDR_EL1,
9472 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
9474 #ifdef CONFIG_USER_ONLY
9475 static const ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = {
9476 { .name = "MPIDR_EL1",
9477 .fixed_bits = 0x0000000080000000 },
9479 modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo);
9480 #endif
9481 define_arm_cp_regs(cpu, mpidr_cp_reginfo);
9484 if (arm_feature(env, ARM_FEATURE_AUXCR)) {
9485 ARMCPRegInfo auxcr_reginfo[] = {
9486 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
9487 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
9488 .access = PL1_RW, .accessfn = access_tacr,
9489 .nv2_redirect_offset = 0x118,
9490 .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr },
9491 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
9492 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
9493 .access = PL2_RW, .type = ARM_CP_CONST,
9494 .resetvalue = 0 },
9495 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
9496 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
9497 .access = PL3_RW, .type = ARM_CP_CONST,
9498 .resetvalue = 0 },
9500 define_arm_cp_regs(cpu, auxcr_reginfo);
9501 if (cpu_isar_feature(aa32_ac2, cpu)) {
9502 define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo);
9506 if (arm_feature(env, ARM_FEATURE_CBAR)) {
9508 * CBAR is IMPDEF, but common on Arm Cortex-A implementations.
9509 * There are two flavours:
9510 * (1) older 32-bit only cores have a simple 32-bit CBAR
9511 * (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a
9512 * 32-bit register visible to AArch32 at a different encoding
9513 * to the "flavour 1" register and with the bits rearranged to
9514 * be able to squash a 64-bit address into the 32-bit view.
9515 * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but
9516 * in future if we support AArch32-only configs of some of the
9517 * AArch64 cores we might need to add a specific feature flag
9518 * to indicate cores with "flavour 2" CBAR.
9520 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
9521 /* 32 bit view is [31:18] 0...0 [43:32]. */
9522 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
9523 | extract64(cpu->reset_cbar, 32, 12);
9524 ARMCPRegInfo cbar_reginfo[] = {
9525 { .name = "CBAR",
9526 .type = ARM_CP_CONST,
9527 .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0,
9528 .access = PL1_R, .resetvalue = cbar32 },
9529 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
9530 .type = ARM_CP_CONST,
9531 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
9532 .access = PL1_R, .resetvalue = cpu->reset_cbar },
9534 /* We don't implement a r/w 64 bit CBAR currently */
9535 assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
9536 define_arm_cp_regs(cpu, cbar_reginfo);
9537 } else {
9538 ARMCPRegInfo cbar = {
9539 .name = "CBAR",
9540 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
9541 .access = PL1_R | PL3_W, .resetvalue = cpu->reset_cbar,
9542 .fieldoffset = offsetof(CPUARMState,
9543 cp15.c15_config_base_address)
9545 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
9546 cbar.access = PL1_R;
9547 cbar.fieldoffset = 0;
9548 cbar.type = ARM_CP_CONST;
9550 define_one_arm_cp_reg(cpu, &cbar);
9554 if (arm_feature(env, ARM_FEATURE_VBAR)) {
9555 static const ARMCPRegInfo vbar_cp_reginfo[] = {
9556 { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
9557 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
9558 .access = PL1_RW, .writefn = vbar_write,
9559 .accessfn = access_nv1,
9560 .fgt = FGT_VBAR_EL1,
9561 .nv2_redirect_offset = 0x250 | NV2_REDIR_NV1,
9562 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
9563 offsetof(CPUARMState, cp15.vbar_ns) },
9564 .resetvalue = 0 },
9566 define_arm_cp_regs(cpu, vbar_cp_reginfo);
9569 /* Generic registers whose values depend on the implementation */
9571 ARMCPRegInfo sctlr = {
9572 .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
9573 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
9574 .access = PL1_RW, .accessfn = access_tvm_trvm,
9575 .fgt = FGT_SCTLR_EL1,
9576 .nv2_redirect_offset = 0x110 | NV2_REDIR_NV1,
9577 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
9578 offsetof(CPUARMState, cp15.sctlr_ns) },
9579 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
9580 .raw_writefn = raw_write,
9582 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
9584 * Normally we would always end the TB on an SCTLR write, but Linux
9585 * arch/arm/mach-pxa/sleep.S expects two instructions following
9586 * an MMU enable to execute from cache. Imitate this behaviour.
9588 sctlr.type |= ARM_CP_SUPPRESS_TB_END;
9590 define_one_arm_cp_reg(cpu, &sctlr);
9592 if (arm_feature(env, ARM_FEATURE_PMSA) &&
9593 arm_feature(env, ARM_FEATURE_V8)) {
9594 ARMCPRegInfo vsctlr = {
9595 .name = "VSCTLR", .state = ARM_CP_STATE_AA32,
9596 .cp = 15, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
9597 .access = PL2_RW, .resetvalue = 0x0,
9598 .fieldoffset = offsetoflow32(CPUARMState, cp15.vsctlr),
9600 define_one_arm_cp_reg(cpu, &vsctlr);
9604 if (cpu_isar_feature(aa64_lor, cpu)) {
9605 define_arm_cp_regs(cpu, lor_reginfo);
9607 if (cpu_isar_feature(aa64_pan, cpu)) {
9608 define_one_arm_cp_reg(cpu, &pan_reginfo);
9610 #ifndef CONFIG_USER_ONLY
9611 if (cpu_isar_feature(aa64_ats1e1, cpu)) {
9612 define_arm_cp_regs(cpu, ats1e1_reginfo);
9614 if (cpu_isar_feature(aa32_ats1e1, cpu)) {
9615 define_arm_cp_regs(cpu, ats1cp_reginfo);
9617 #endif
9618 if (cpu_isar_feature(aa64_uao, cpu)) {
9619 define_one_arm_cp_reg(cpu, &uao_reginfo);
9622 if (cpu_isar_feature(aa64_dit, cpu)) {
9623 define_one_arm_cp_reg(cpu, &dit_reginfo);
9625 if (cpu_isar_feature(aa64_ssbs, cpu)) {
9626 define_one_arm_cp_reg(cpu, &ssbs_reginfo);
9628 if (cpu_isar_feature(any_ras, cpu)) {
9629 define_arm_cp_regs(cpu, minimal_ras_reginfo);
9632 if (cpu_isar_feature(aa64_vh, cpu) ||
9633 cpu_isar_feature(aa64_debugv8p2, cpu)) {
9634 define_one_arm_cp_reg(cpu, &contextidr_el2);
9636 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
9637 define_arm_cp_regs(cpu, vhe_reginfo);
9640 if (cpu_isar_feature(aa64_sve, cpu)) {
9641 define_arm_cp_regs(cpu, zcr_reginfo);
9644 if (cpu_isar_feature(aa64_hcx, cpu)) {
9645 define_one_arm_cp_reg(cpu, &hcrx_el2_reginfo);
9648 #ifdef TARGET_AARCH64
9649 if (cpu_isar_feature(aa64_sme, cpu)) {
9650 define_arm_cp_regs(cpu, sme_reginfo);
9652 if (cpu_isar_feature(aa64_pauth, cpu)) {
9653 define_arm_cp_regs(cpu, pauth_reginfo);
9655 if (cpu_isar_feature(aa64_rndr, cpu)) {
9656 define_arm_cp_regs(cpu, rndr_reginfo);
9658 if (cpu_isar_feature(aa64_tlbirange, cpu)) {
9659 define_arm_cp_regs(cpu, tlbirange_reginfo);
9661 if (cpu_isar_feature(aa64_tlbios, cpu)) {
9662 define_arm_cp_regs(cpu, tlbios_reginfo);
9664 /* Data Cache clean instructions up to PoP */
9665 if (cpu_isar_feature(aa64_dcpop, cpu)) {
9666 define_one_arm_cp_reg(cpu, dcpop_reg);
9668 if (cpu_isar_feature(aa64_dcpodp, cpu)) {
9669 define_one_arm_cp_reg(cpu, dcpodp_reg);
9674 * If full MTE is enabled, add all of the system registers.
9675 * If only "instructions available at EL0" are enabled,
9676 * then define only a RAZ/WI version of PSTATE.TCO.
9678 if (cpu_isar_feature(aa64_mte, cpu)) {
9679 ARMCPRegInfo gmid_reginfo = {
9680 .name = "GMID_EL1", .state = ARM_CP_STATE_AA64,
9681 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 4,
9682 .access = PL1_R, .accessfn = access_aa64_tid5,
9683 .type = ARM_CP_CONST, .resetvalue = cpu->gm_blocksize,
9685 define_one_arm_cp_reg(cpu, &gmid_reginfo);
9686 define_arm_cp_regs(cpu, mte_reginfo);
9687 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo);
9688 } else if (cpu_isar_feature(aa64_mte_insn_reg, cpu)) {
9689 define_arm_cp_regs(cpu, mte_tco_ro_reginfo);
9690 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo);
9693 if (cpu_isar_feature(aa64_scxtnum, cpu)) {
9694 define_arm_cp_regs(cpu, scxtnum_reginfo);
9697 if (cpu_isar_feature(aa64_fgt, cpu)) {
9698 define_arm_cp_regs(cpu, fgt_reginfo);
9701 if (cpu_isar_feature(aa64_rme, cpu)) {
9702 define_arm_cp_regs(cpu, rme_reginfo);
9703 if (cpu_isar_feature(aa64_mte, cpu)) {
9704 define_arm_cp_regs(cpu, rme_mte_reginfo);
9708 if (cpu_isar_feature(aa64_nv2, cpu)) {
9709 define_arm_cp_regs(cpu, nv2_reginfo);
9711 #endif
9713 if (cpu_isar_feature(any_predinv, cpu)) {
9714 define_arm_cp_regs(cpu, predinv_reginfo);
9717 if (cpu_isar_feature(any_ccidx, cpu)) {
9718 define_arm_cp_regs(cpu, ccsidr2_reginfo);
9721 #ifndef CONFIG_USER_ONLY
9723 * Register redirections and aliases must be done last,
9724 * after the registers from the other extensions have been defined.
9726 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
9727 define_arm_vh_e2h_redirects_aliases(cpu);
9729 #endif
9733 * Private utility function for define_one_arm_cp_reg_with_opaque():
9734 * add a single reginfo struct to the hash table.
9736 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
9737 void *opaque, CPState state,
9738 CPSecureState secstate,
9739 int crm, int opc1, int opc2,
9740 const char *name)
9742 CPUARMState *env = &cpu->env;
9743 uint32_t key;
9744 ARMCPRegInfo *r2;
9745 bool is64 = r->type & ARM_CP_64BIT;
9746 bool ns = secstate & ARM_CP_SECSTATE_NS;
9747 int cp = r->cp;
9748 size_t name_len;
9749 bool make_const;
9751 switch (state) {
9752 case ARM_CP_STATE_AA32:
9753 /* We assume it is a cp15 register if the .cp field is left unset. */
9754 if (cp == 0 && r->state == ARM_CP_STATE_BOTH) {
9755 cp = 15;
9757 key = ENCODE_CP_REG(cp, is64, ns, r->crn, crm, opc1, opc2);
9758 break;
9759 case ARM_CP_STATE_AA64:
9761 * To allow abbreviation of ARMCPRegInfo definitions, we treat
9762 * cp == 0 as equivalent to the value for "standard guest-visible
9763 * sysreg". STATE_BOTH definitions are also always "standard sysreg"
9764 * in their AArch64 view (the .cp value may be non-zero for the
9765 * benefit of the AArch32 view).
9767 if (cp == 0 || r->state == ARM_CP_STATE_BOTH) {
9768 cp = CP_REG_ARM64_SYSREG_CP;
9770 key = ENCODE_AA64_CP_REG(cp, r->crn, crm, r->opc0, opc1, opc2);
9771 break;
9772 default:
9773 g_assert_not_reached();
9776 /* Overriding of an existing definition must be explicitly requested. */
9777 if (!(r->type & ARM_CP_OVERRIDE)) {
9778 const ARMCPRegInfo *oldreg = get_arm_cp_reginfo(cpu->cp_regs, key);
9779 if (oldreg) {
9780 assert(oldreg->type & ARM_CP_OVERRIDE);
9785 * Eliminate registers that are not present because the EL is missing.
9786 * Doing this here makes it easier to put all registers for a given
9787 * feature into the same ARMCPRegInfo array and define them all at once.
9789 make_const = false;
9790 if (arm_feature(env, ARM_FEATURE_EL3)) {
9792 * An EL2 register without EL2 but with EL3 is (usually) RES0.
9793 * See rule RJFFP in section D1.1.3 of DDI0487H.a.
9795 int min_el = ctz32(r->access) / 2;
9796 if (min_el == 2 && !arm_feature(env, ARM_FEATURE_EL2)) {
9797 if (r->type & ARM_CP_EL3_NO_EL2_UNDEF) {
9798 return;
9800 make_const = !(r->type & ARM_CP_EL3_NO_EL2_KEEP);
9802 } else {
9803 CPAccessRights max_el = (arm_feature(env, ARM_FEATURE_EL2)
9804 ? PL2_RW : PL1_RW);
9805 if ((r->access & max_el) == 0) {
9806 return;
9810 /* Combine cpreg and name into one allocation. */
9811 name_len = strlen(name) + 1;
9812 r2 = g_malloc(sizeof(*r2) + name_len);
9813 *r2 = *r;
9814 r2->name = memcpy(r2 + 1, name, name_len);
9817 * Update fields to match the instantiation, overwiting wildcards
9818 * such as CP_ANY, ARM_CP_STATE_BOTH, or ARM_CP_SECSTATE_BOTH.
9820 r2->cp = cp;
9821 r2->crm = crm;
9822 r2->opc1 = opc1;
9823 r2->opc2 = opc2;
9824 r2->state = state;
9825 r2->secure = secstate;
9826 if (opaque) {
9827 r2->opaque = opaque;
9830 if (make_const) {
9831 /* This should not have been a very special register to begin. */
9832 int old_special = r2->type & ARM_CP_SPECIAL_MASK;
9833 assert(old_special == 0 || old_special == ARM_CP_NOP);
9835 * Set the special function to CONST, retaining the other flags.
9836 * This is important for e.g. ARM_CP_SVE so that we still
9837 * take the SVE trap if CPTR_EL3.EZ == 0.
9839 r2->type = (r2->type & ~ARM_CP_SPECIAL_MASK) | ARM_CP_CONST;
9841 * Usually, these registers become RES0, but there are a few
9842 * special cases like VPIDR_EL2 which have a constant non-zero
9843 * value with writes ignored.
9845 if (!(r->type & ARM_CP_EL3_NO_EL2_C_NZ)) {
9846 r2->resetvalue = 0;
9849 * ARM_CP_CONST has precedence, so removing the callbacks and
9850 * offsets are not strictly necessary, but it is potentially
9851 * less confusing to debug later.
9853 r2->readfn = NULL;
9854 r2->writefn = NULL;
9855 r2->raw_readfn = NULL;
9856 r2->raw_writefn = NULL;
9857 r2->resetfn = NULL;
9858 r2->fieldoffset = 0;
9859 r2->bank_fieldoffsets[0] = 0;
9860 r2->bank_fieldoffsets[1] = 0;
9861 } else {
9862 bool isbanked = r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1];
9864 if (isbanked) {
9866 * Register is banked (using both entries in array).
9867 * Overwriting fieldoffset as the array is only used to define
9868 * banked registers but later only fieldoffset is used.
9870 r2->fieldoffset = r->bank_fieldoffsets[ns];
9872 if (state == ARM_CP_STATE_AA32) {
9873 if (isbanked) {
9875 * If the register is banked then we don't need to migrate or
9876 * reset the 32-bit instance in certain cases:
9878 * 1) If the register has both 32-bit and 64-bit instances
9879 * then we can count on the 64-bit instance taking care
9880 * of the non-secure bank.
9881 * 2) If ARMv8 is enabled then we can count on a 64-bit
9882 * version taking care of the secure bank. This requires
9883 * that separate 32 and 64-bit definitions are provided.
9885 if ((r->state == ARM_CP_STATE_BOTH && ns) ||
9886 (arm_feature(env, ARM_FEATURE_V8) && !ns)) {
9887 r2->type |= ARM_CP_ALIAS;
9889 } else if ((secstate != r->secure) && !ns) {
9891 * The register is not banked so we only want to allow
9892 * migration of the non-secure instance.
9894 r2->type |= ARM_CP_ALIAS;
9897 if (HOST_BIG_ENDIAN &&
9898 r->state == ARM_CP_STATE_BOTH && r2->fieldoffset) {
9899 r2->fieldoffset += sizeof(uint32_t);
9905 * By convention, for wildcarded registers only the first
9906 * entry is used for migration; the others are marked as
9907 * ALIAS so we don't try to transfer the register
9908 * multiple times. Special registers (ie NOP/WFI) are
9909 * never migratable and not even raw-accessible.
9911 if (r2->type & ARM_CP_SPECIAL_MASK) {
9912 r2->type |= ARM_CP_NO_RAW;
9914 if (((r->crm == CP_ANY) && crm != 0) ||
9915 ((r->opc1 == CP_ANY) && opc1 != 0) ||
9916 ((r->opc2 == CP_ANY) && opc2 != 0)) {
9917 r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB;
9921 * Check that raw accesses are either forbidden or handled. Note that
9922 * we can't assert this earlier because the setup of fieldoffset for
9923 * banked registers has to be done first.
9925 if (!(r2->type & ARM_CP_NO_RAW)) {
9926 assert(!raw_accessors_invalid(r2));
9929 g_hash_table_insert(cpu->cp_regs, (gpointer)(uintptr_t)key, r2);
9933 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
9934 const ARMCPRegInfo *r, void *opaque)
9937 * Define implementations of coprocessor registers.
9938 * We store these in a hashtable because typically
9939 * there are less than 150 registers in a space which
9940 * is 16*16*16*8*8 = 262144 in size.
9941 * Wildcarding is supported for the crm, opc1 and opc2 fields.
9942 * If a register is defined twice then the second definition is
9943 * used, so this can be used to define some generic registers and
9944 * then override them with implementation specific variations.
9945 * At least one of the original and the second definition should
9946 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
9947 * against accidental use.
9949 * The state field defines whether the register is to be
9950 * visible in the AArch32 or AArch64 execution state. If the
9951 * state is set to ARM_CP_STATE_BOTH then we synthesise a
9952 * reginfo structure for the AArch32 view, which sees the lower
9953 * 32 bits of the 64 bit register.
9955 * Only registers visible in AArch64 may set r->opc0; opc0 cannot
9956 * be wildcarded. AArch64 registers are always considered to be 64
9957 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
9958 * the register, if any.
9960 int crm, opc1, opc2;
9961 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
9962 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
9963 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
9964 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
9965 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
9966 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
9967 CPState state;
9969 /* 64 bit registers have only CRm and Opc1 fields */
9970 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
9971 /* op0 only exists in the AArch64 encodings */
9972 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
9973 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
9974 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
9976 * This API is only for Arm's system coprocessors (14 and 15) or
9977 * (M-profile or v7A-and-earlier only) for implementation defined
9978 * coprocessors in the range 0..7. Our decode assumes this, since
9979 * 8..13 can be used for other insns including VFP and Neon. See
9980 * valid_cp() in translate.c. Assert here that we haven't tried
9981 * to use an invalid coprocessor number.
9983 switch (r->state) {
9984 case ARM_CP_STATE_BOTH:
9985 /* 0 has a special meaning, but otherwise the same rules as AA32. */
9986 if (r->cp == 0) {
9987 break;
9989 /* fall through */
9990 case ARM_CP_STATE_AA32:
9991 if (arm_feature(&cpu->env, ARM_FEATURE_V8) &&
9992 !arm_feature(&cpu->env, ARM_FEATURE_M)) {
9993 assert(r->cp >= 14 && r->cp <= 15);
9994 } else {
9995 assert(r->cp < 8 || (r->cp >= 14 && r->cp <= 15));
9997 break;
9998 case ARM_CP_STATE_AA64:
9999 assert(r->cp == 0 || r->cp == CP_REG_ARM64_SYSREG_CP);
10000 break;
10001 default:
10002 g_assert_not_reached();
10005 * The AArch64 pseudocode CheckSystemAccess() specifies that op1
10006 * encodes a minimum access level for the register. We roll this
10007 * runtime check into our general permission check code, so check
10008 * here that the reginfo's specified permissions are strict enough
10009 * to encompass the generic architectural permission check.
10011 if (r->state != ARM_CP_STATE_AA32) {
10012 CPAccessRights mask;
10013 switch (r->opc1) {
10014 case 0:
10015 /* min_EL EL1, but some accessible to EL0 via kernel ABI */
10016 mask = PL0U_R | PL1_RW;
10017 break;
10018 case 1: case 2:
10019 /* min_EL EL1 */
10020 mask = PL1_RW;
10021 break;
10022 case 3:
10023 /* min_EL EL0 */
10024 mask = PL0_RW;
10025 break;
10026 case 4:
10027 case 5:
10028 /* min_EL EL2 */
10029 mask = PL2_RW;
10030 break;
10031 case 6:
10032 /* min_EL EL3 */
10033 mask = PL3_RW;
10034 break;
10035 case 7:
10036 /* min_EL EL1, secure mode only (we don't check the latter) */
10037 mask = PL1_RW;
10038 break;
10039 default:
10040 /* broken reginfo with out-of-range opc1 */
10041 g_assert_not_reached();
10043 /* assert our permissions are not too lax (stricter is fine) */
10044 assert((r->access & ~mask) == 0);
10048 * Check that the register definition has enough info to handle
10049 * reads and writes if they are permitted.
10051 if (!(r->type & (ARM_CP_SPECIAL_MASK | ARM_CP_CONST))) {
10052 if (r->access & PL3_R) {
10053 assert((r->fieldoffset ||
10054 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
10055 r->readfn);
10057 if (r->access & PL3_W) {
10058 assert((r->fieldoffset ||
10059 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
10060 r->writefn);
10064 for (crm = crmmin; crm <= crmmax; crm++) {
10065 for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
10066 for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
10067 for (state = ARM_CP_STATE_AA32;
10068 state <= ARM_CP_STATE_AA64; state++) {
10069 if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
10070 continue;
10072 if (state == ARM_CP_STATE_AA32) {
10074 * Under AArch32 CP registers can be common
10075 * (same for secure and non-secure world) or banked.
10077 char *name;
10079 switch (r->secure) {
10080 case ARM_CP_SECSTATE_S:
10081 case ARM_CP_SECSTATE_NS:
10082 add_cpreg_to_hashtable(cpu, r, opaque, state,
10083 r->secure, crm, opc1, opc2,
10084 r->name);
10085 break;
10086 case ARM_CP_SECSTATE_BOTH:
10087 name = g_strdup_printf("%s_S", r->name);
10088 add_cpreg_to_hashtable(cpu, r, opaque, state,
10089 ARM_CP_SECSTATE_S,
10090 crm, opc1, opc2, name);
10091 g_free(name);
10092 add_cpreg_to_hashtable(cpu, r, opaque, state,
10093 ARM_CP_SECSTATE_NS,
10094 crm, opc1, opc2, r->name);
10095 break;
10096 default:
10097 g_assert_not_reached();
10099 } else {
10101 * AArch64 registers get mapped to non-secure instance
10102 * of AArch32
10104 add_cpreg_to_hashtable(cpu, r, opaque, state,
10105 ARM_CP_SECSTATE_NS,
10106 crm, opc1, opc2, r->name);
10114 /* Define a whole list of registers */
10115 void define_arm_cp_regs_with_opaque_len(ARMCPU *cpu, const ARMCPRegInfo *regs,
10116 void *opaque, size_t len)
10118 size_t i;
10119 for (i = 0; i < len; ++i) {
10120 define_one_arm_cp_reg_with_opaque(cpu, regs + i, opaque);
10125 * Modify ARMCPRegInfo for access from userspace.
10127 * This is a data driven modification directed by
10128 * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as
10129 * user-space cannot alter any values and dynamic values pertaining to
10130 * execution state are hidden from user space view anyway.
10132 void modify_arm_cp_regs_with_len(ARMCPRegInfo *regs, size_t regs_len,
10133 const ARMCPRegUserSpaceInfo *mods,
10134 size_t mods_len)
10136 for (size_t mi = 0; mi < mods_len; ++mi) {
10137 const ARMCPRegUserSpaceInfo *m = mods + mi;
10138 GPatternSpec *pat = NULL;
10140 if (m->is_glob) {
10141 pat = g_pattern_spec_new(m->name);
10143 for (size_t ri = 0; ri < regs_len; ++ri) {
10144 ARMCPRegInfo *r = regs + ri;
10146 if (pat && g_pattern_match_string(pat, r->name)) {
10147 r->type = ARM_CP_CONST;
10148 r->access = PL0U_R;
10149 r->resetvalue = 0;
10150 /* continue */
10151 } else if (strcmp(r->name, m->name) == 0) {
10152 r->type = ARM_CP_CONST;
10153 r->access = PL0U_R;
10154 r->resetvalue &= m->exported_bits;
10155 r->resetvalue |= m->fixed_bits;
10156 break;
10159 if (pat) {
10160 g_pattern_spec_free(pat);
10165 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
10167 return g_hash_table_lookup(cpregs, (gpointer)(uintptr_t)encoded_cp);
10170 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
10171 uint64_t value)
10173 /* Helper coprocessor write function for write-ignore registers */
10176 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
10178 /* Helper coprocessor write function for read-as-zero registers */
10179 return 0;
10182 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
10184 /* Helper coprocessor reset function for do-nothing-on-reset registers */
10187 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
10190 * Return true if it is not valid for us to switch to
10191 * this CPU mode (ie all the UNPREDICTABLE cases in
10192 * the ARM ARM CPSRWriteByInstr pseudocode).
10195 /* Changes to or from Hyp via MSR and CPS are illegal. */
10196 if (write_type == CPSRWriteByInstr &&
10197 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP ||
10198 mode == ARM_CPU_MODE_HYP)) {
10199 return 1;
10202 switch (mode) {
10203 case ARM_CPU_MODE_USR:
10204 return 0;
10205 case ARM_CPU_MODE_SYS:
10206 case ARM_CPU_MODE_SVC:
10207 case ARM_CPU_MODE_ABT:
10208 case ARM_CPU_MODE_UND:
10209 case ARM_CPU_MODE_IRQ:
10210 case ARM_CPU_MODE_FIQ:
10212 * Note that we don't implement the IMPDEF NSACR.RFR which in v7
10213 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
10216 * If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
10217 * and CPS are treated as illegal mode changes.
10219 if (write_type == CPSRWriteByInstr &&
10220 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON &&
10221 (arm_hcr_el2_eff(env) & HCR_TGE)) {
10222 return 1;
10224 return 0;
10225 case ARM_CPU_MODE_HYP:
10226 return !arm_is_el2_enabled(env) || arm_current_el(env) < 2;
10227 case ARM_CPU_MODE_MON:
10228 return arm_current_el(env) < 3;
10229 default:
10230 return 1;
10234 uint32_t cpsr_read(CPUARMState *env)
10236 int ZF;
10237 ZF = (env->ZF == 0);
10238 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
10239 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
10240 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
10241 | ((env->condexec_bits & 0xfc) << 8)
10242 | (env->GE << 16) | (env->daif & CPSR_AIF);
10245 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
10246 CPSRWriteType write_type)
10248 uint32_t changed_daif;
10249 bool rebuild_hflags = (write_type != CPSRWriteRaw) &&
10250 (mask & (CPSR_M | CPSR_E | CPSR_IL));
10252 if (mask & CPSR_NZCV) {
10253 env->ZF = (~val) & CPSR_Z;
10254 env->NF = val;
10255 env->CF = (val >> 29) & 1;
10256 env->VF = (val << 3) & 0x80000000;
10258 if (mask & CPSR_Q) {
10259 env->QF = ((val & CPSR_Q) != 0);
10261 if (mask & CPSR_T) {
10262 env->thumb = ((val & CPSR_T) != 0);
10264 if (mask & CPSR_IT_0_1) {
10265 env->condexec_bits &= ~3;
10266 env->condexec_bits |= (val >> 25) & 3;
10268 if (mask & CPSR_IT_2_7) {
10269 env->condexec_bits &= 3;
10270 env->condexec_bits |= (val >> 8) & 0xfc;
10272 if (mask & CPSR_GE) {
10273 env->GE = (val >> 16) & 0xf;
10277 * In a V7 implementation that includes the security extensions but does
10278 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
10279 * whether non-secure software is allowed to change the CPSR_F and CPSR_A
10280 * bits respectively.
10282 * In a V8 implementation, it is permitted for privileged software to
10283 * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
10285 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) &&
10286 arm_feature(env, ARM_FEATURE_EL3) &&
10287 !arm_feature(env, ARM_FEATURE_EL2) &&
10288 !arm_is_secure(env)) {
10290 changed_daif = (env->daif ^ val) & mask;
10292 if (changed_daif & CPSR_A) {
10294 * Check to see if we are allowed to change the masking of async
10295 * abort exceptions from a non-secure state.
10297 if (!(env->cp15.scr_el3 & SCR_AW)) {
10298 qemu_log_mask(LOG_GUEST_ERROR,
10299 "Ignoring attempt to switch CPSR_A flag from "
10300 "non-secure world with SCR.AW bit clear\n");
10301 mask &= ~CPSR_A;
10305 if (changed_daif & CPSR_F) {
10307 * Check to see if we are allowed to change the masking of FIQ
10308 * exceptions from a non-secure state.
10310 if (!(env->cp15.scr_el3 & SCR_FW)) {
10311 qemu_log_mask(LOG_GUEST_ERROR,
10312 "Ignoring attempt to switch CPSR_F flag from "
10313 "non-secure world with SCR.FW bit clear\n");
10314 mask &= ~CPSR_F;
10318 * Check whether non-maskable FIQ (NMFI) support is enabled.
10319 * If this bit is set software is not allowed to mask
10320 * FIQs, but is allowed to set CPSR_F to 0.
10322 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
10323 (val & CPSR_F)) {
10324 qemu_log_mask(LOG_GUEST_ERROR,
10325 "Ignoring attempt to enable CPSR_F flag "
10326 "(non-maskable FIQ [NMFI] support enabled)\n");
10327 mask &= ~CPSR_F;
10332 env->daif &= ~(CPSR_AIF & mask);
10333 env->daif |= val & CPSR_AIF & mask;
10335 if (write_type != CPSRWriteRaw &&
10336 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
10337 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
10339 * Note that we can only get here in USR mode if this is a
10340 * gdb stub write; for this case we follow the architectural
10341 * behaviour for guest writes in USR mode of ignoring an attempt
10342 * to switch mode. (Those are caught by translate.c for writes
10343 * triggered by guest instructions.)
10345 mask &= ~CPSR_M;
10346 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) {
10348 * Attempt to switch to an invalid mode: this is UNPREDICTABLE in
10349 * v7, and has defined behaviour in v8:
10350 * + leave CPSR.M untouched
10351 * + allow changes to the other CPSR fields
10352 * + set PSTATE.IL
10353 * For user changes via the GDB stub, we don't set PSTATE.IL,
10354 * as this would be unnecessarily harsh for a user error.
10356 mask &= ~CPSR_M;
10357 if (write_type != CPSRWriteByGDBStub &&
10358 arm_feature(env, ARM_FEATURE_V8)) {
10359 mask |= CPSR_IL;
10360 val |= CPSR_IL;
10362 qemu_log_mask(LOG_GUEST_ERROR,
10363 "Illegal AArch32 mode switch attempt from %s to %s\n",
10364 aarch32_mode_name(env->uncached_cpsr),
10365 aarch32_mode_name(val));
10366 } else {
10367 qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n",
10368 write_type == CPSRWriteExceptionReturn ?
10369 "Exception return from AArch32" :
10370 "AArch32 mode switch from",
10371 aarch32_mode_name(env->uncached_cpsr),
10372 aarch32_mode_name(val), env->regs[15]);
10373 switch_mode(env, val & CPSR_M);
10376 mask &= ~CACHED_CPSR_BITS;
10377 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
10378 if (tcg_enabled() && rebuild_hflags) {
10379 arm_rebuild_hflags(env);
10383 #ifdef CONFIG_USER_ONLY
10385 static void switch_mode(CPUARMState *env, int mode)
10387 ARMCPU *cpu = env_archcpu(env);
10389 if (mode != ARM_CPU_MODE_USR) {
10390 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
10394 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
10395 uint32_t cur_el, bool secure)
10397 return 1;
10400 void aarch64_sync_64_to_32(CPUARMState *env)
10402 g_assert_not_reached();
10405 #else
10407 static void switch_mode(CPUARMState *env, int mode)
10409 int old_mode;
10410 int i;
10412 old_mode = env->uncached_cpsr & CPSR_M;
10413 if (mode == old_mode) {
10414 return;
10417 if (old_mode == ARM_CPU_MODE_FIQ) {
10418 memcpy(env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
10419 memcpy(env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
10420 } else if (mode == ARM_CPU_MODE_FIQ) {
10421 memcpy(env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
10422 memcpy(env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
10425 i = bank_number(old_mode);
10426 env->banked_r13[i] = env->regs[13];
10427 env->banked_spsr[i] = env->spsr;
10429 i = bank_number(mode);
10430 env->regs[13] = env->banked_r13[i];
10431 env->spsr = env->banked_spsr[i];
10433 env->banked_r14[r14_bank_number(old_mode)] = env->regs[14];
10434 env->regs[14] = env->banked_r14[r14_bank_number(mode)];
10438 * Physical Interrupt Target EL Lookup Table
10440 * [ From ARM ARM section G1.13.4 (Table G1-15) ]
10442 * The below multi-dimensional table is used for looking up the target
10443 * exception level given numerous condition criteria. Specifically, the
10444 * target EL is based on SCR and HCR routing controls as well as the
10445 * currently executing EL and secure state.
10447 * Dimensions:
10448 * target_el_table[2][2][2][2][2][4]
10449 * | | | | | +--- Current EL
10450 * | | | | +------ Non-secure(0)/Secure(1)
10451 * | | | +--------- HCR mask override
10452 * | | +------------ SCR exec state control
10453 * | +--------------- SCR mask override
10454 * +------------------ 32-bit(0)/64-bit(1) EL3
10456 * The table values are as such:
10457 * 0-3 = EL0-EL3
10458 * -1 = Cannot occur
10460 * The ARM ARM target EL table includes entries indicating that an "exception
10461 * is not taken". The two cases where this is applicable are:
10462 * 1) An exception is taken from EL3 but the SCR does not have the exception
10463 * routed to EL3.
10464 * 2) An exception is taken from EL2 but the HCR does not have the exception
10465 * routed to EL2.
10466 * In these two cases, the below table contain a target of EL1. This value is
10467 * returned as it is expected that the consumer of the table data will check
10468 * for "target EL >= current EL" to ensure the exception is not taken.
10470 * SCR HCR
10471 * 64 EA AMO From
10472 * BIT IRQ IMO Non-secure Secure
10473 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3
10475 static const int8_t target_el_table[2][2][2][2][2][4] = {
10476 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
10477 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},
10478 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
10479 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},},
10480 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
10481 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},
10482 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
10483 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},},
10484 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },},
10485 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 2, 2, -1, 1 },},},
10486 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, 1, 1 },},
10487 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 2, 2, 2, 1 },},},},
10488 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
10489 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},
10490 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },},
10491 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },},},},},
10495 * Determine the target EL for physical exceptions
10497 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
10498 uint32_t cur_el, bool secure)
10500 CPUARMState *env = cpu_env(cs);
10501 bool rw;
10502 bool scr;
10503 bool hcr;
10504 int target_el;
10505 /* Is the highest EL AArch64? */
10506 bool is64 = arm_feature(env, ARM_FEATURE_AARCH64);
10507 uint64_t hcr_el2;
10509 if (arm_feature(env, ARM_FEATURE_EL3)) {
10510 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
10511 } else {
10513 * Either EL2 is the highest EL (and so the EL2 register width
10514 * is given by is64); or there is no EL2 or EL3, in which case
10515 * the value of 'rw' does not affect the table lookup anyway.
10517 rw = is64;
10520 hcr_el2 = arm_hcr_el2_eff(env);
10521 switch (excp_idx) {
10522 case EXCP_IRQ:
10523 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
10524 hcr = hcr_el2 & HCR_IMO;
10525 break;
10526 case EXCP_FIQ:
10527 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
10528 hcr = hcr_el2 & HCR_FMO;
10529 break;
10530 default:
10531 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
10532 hcr = hcr_el2 & HCR_AMO;
10533 break;
10537 * For these purposes, TGE and AMO/IMO/FMO both force the
10538 * interrupt to EL2. Fold TGE into the bit extracted above.
10540 hcr |= (hcr_el2 & HCR_TGE) != 0;
10542 /* Perform a table-lookup for the target EL given the current state */
10543 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
10545 assert(target_el > 0);
10547 return target_el;
10550 void arm_log_exception(CPUState *cs)
10552 int idx = cs->exception_index;
10554 if (qemu_loglevel_mask(CPU_LOG_INT)) {
10555 const char *exc = NULL;
10556 static const char * const excnames[] = {
10557 [EXCP_UDEF] = "Undefined Instruction",
10558 [EXCP_SWI] = "SVC",
10559 [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
10560 [EXCP_DATA_ABORT] = "Data Abort",
10561 [EXCP_IRQ] = "IRQ",
10562 [EXCP_FIQ] = "FIQ",
10563 [EXCP_BKPT] = "Breakpoint",
10564 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
10565 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
10566 [EXCP_HVC] = "Hypervisor Call",
10567 [EXCP_HYP_TRAP] = "Hypervisor Trap",
10568 [EXCP_SMC] = "Secure Monitor Call",
10569 [EXCP_VIRQ] = "Virtual IRQ",
10570 [EXCP_VFIQ] = "Virtual FIQ",
10571 [EXCP_SEMIHOST] = "Semihosting call",
10572 [EXCP_NOCP] = "v7M NOCP UsageFault",
10573 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault",
10574 [EXCP_STKOF] = "v8M STKOF UsageFault",
10575 [EXCP_LAZYFP] = "v7M exception during lazy FP stacking",
10576 [EXCP_LSERR] = "v8M LSERR UsageFault",
10577 [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault",
10578 [EXCP_DIVBYZERO] = "v7M DIVBYZERO UsageFault",
10579 [EXCP_VSERR] = "Virtual SERR",
10580 [EXCP_GPC] = "Granule Protection Check",
10583 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
10584 exc = excnames[idx];
10586 if (!exc) {
10587 exc = "unknown";
10589 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s] on CPU %d\n",
10590 idx, exc, cs->cpu_index);
10595 * Function used to synchronize QEMU's AArch64 register set with AArch32
10596 * register set. This is necessary when switching between AArch32 and AArch64
10597 * execution state.
10599 void aarch64_sync_32_to_64(CPUARMState *env)
10601 int i;
10602 uint32_t mode = env->uncached_cpsr & CPSR_M;
10604 /* We can blanket copy R[0:7] to X[0:7] */
10605 for (i = 0; i < 8; i++) {
10606 env->xregs[i] = env->regs[i];
10610 * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
10611 * Otherwise, they come from the banked user regs.
10613 if (mode == ARM_CPU_MODE_FIQ) {
10614 for (i = 8; i < 13; i++) {
10615 env->xregs[i] = env->usr_regs[i - 8];
10617 } else {
10618 for (i = 8; i < 13; i++) {
10619 env->xregs[i] = env->regs[i];
10624 * Registers x13-x23 are the various mode SP and FP registers. Registers
10625 * r13 and r14 are only copied if we are in that mode, otherwise we copy
10626 * from the mode banked register.
10628 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
10629 env->xregs[13] = env->regs[13];
10630 env->xregs[14] = env->regs[14];
10631 } else {
10632 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
10633 /* HYP is an exception in that it is copied from r14 */
10634 if (mode == ARM_CPU_MODE_HYP) {
10635 env->xregs[14] = env->regs[14];
10636 } else {
10637 env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)];
10641 if (mode == ARM_CPU_MODE_HYP) {
10642 env->xregs[15] = env->regs[13];
10643 } else {
10644 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
10647 if (mode == ARM_CPU_MODE_IRQ) {
10648 env->xregs[16] = env->regs[14];
10649 env->xregs[17] = env->regs[13];
10650 } else {
10651 env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)];
10652 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
10655 if (mode == ARM_CPU_MODE_SVC) {
10656 env->xregs[18] = env->regs[14];
10657 env->xregs[19] = env->regs[13];
10658 } else {
10659 env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)];
10660 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
10663 if (mode == ARM_CPU_MODE_ABT) {
10664 env->xregs[20] = env->regs[14];
10665 env->xregs[21] = env->regs[13];
10666 } else {
10667 env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)];
10668 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
10671 if (mode == ARM_CPU_MODE_UND) {
10672 env->xregs[22] = env->regs[14];
10673 env->xregs[23] = env->regs[13];
10674 } else {
10675 env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)];
10676 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
10680 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
10681 * mode, then we can copy from r8-r14. Otherwise, we copy from the
10682 * FIQ bank for r8-r14.
10684 if (mode == ARM_CPU_MODE_FIQ) {
10685 for (i = 24; i < 31; i++) {
10686 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */
10688 } else {
10689 for (i = 24; i < 29; i++) {
10690 env->xregs[i] = env->fiq_regs[i - 24];
10692 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
10693 env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)];
10696 env->pc = env->regs[15];
10700 * Function used to synchronize QEMU's AArch32 register set with AArch64
10701 * register set. This is necessary when switching between AArch32 and AArch64
10702 * execution state.
10704 void aarch64_sync_64_to_32(CPUARMState *env)
10706 int i;
10707 uint32_t mode = env->uncached_cpsr & CPSR_M;
10709 /* We can blanket copy X[0:7] to R[0:7] */
10710 for (i = 0; i < 8; i++) {
10711 env->regs[i] = env->xregs[i];
10715 * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
10716 * Otherwise, we copy x8-x12 into the banked user regs.
10718 if (mode == ARM_CPU_MODE_FIQ) {
10719 for (i = 8; i < 13; i++) {
10720 env->usr_regs[i - 8] = env->xregs[i];
10722 } else {
10723 for (i = 8; i < 13; i++) {
10724 env->regs[i] = env->xregs[i];
10729 * Registers r13 & r14 depend on the current mode.
10730 * If we are in a given mode, we copy the corresponding x registers to r13
10731 * and r14. Otherwise, we copy the x register to the banked r13 and r14
10732 * for the mode.
10734 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
10735 env->regs[13] = env->xregs[13];
10736 env->regs[14] = env->xregs[14];
10737 } else {
10738 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
10741 * HYP is an exception in that it does not have its own banked r14 but
10742 * shares the USR r14
10744 if (mode == ARM_CPU_MODE_HYP) {
10745 env->regs[14] = env->xregs[14];
10746 } else {
10747 env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
10751 if (mode == ARM_CPU_MODE_HYP) {
10752 env->regs[13] = env->xregs[15];
10753 } else {
10754 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
10757 if (mode == ARM_CPU_MODE_IRQ) {
10758 env->regs[14] = env->xregs[16];
10759 env->regs[13] = env->xregs[17];
10760 } else {
10761 env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
10762 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
10765 if (mode == ARM_CPU_MODE_SVC) {
10766 env->regs[14] = env->xregs[18];
10767 env->regs[13] = env->xregs[19];
10768 } else {
10769 env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
10770 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
10773 if (mode == ARM_CPU_MODE_ABT) {
10774 env->regs[14] = env->xregs[20];
10775 env->regs[13] = env->xregs[21];
10776 } else {
10777 env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
10778 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
10781 if (mode == ARM_CPU_MODE_UND) {
10782 env->regs[14] = env->xregs[22];
10783 env->regs[13] = env->xregs[23];
10784 } else {
10785 env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
10786 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
10790 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
10791 * mode, then we can copy to r8-r14. Otherwise, we copy to the
10792 * FIQ bank for r8-r14.
10794 if (mode == ARM_CPU_MODE_FIQ) {
10795 for (i = 24; i < 31; i++) {
10796 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */
10798 } else {
10799 for (i = 24; i < 29; i++) {
10800 env->fiq_regs[i - 24] = env->xregs[i];
10802 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
10803 env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
10806 env->regs[15] = env->pc;
10809 static void take_aarch32_exception(CPUARMState *env, int new_mode,
10810 uint32_t mask, uint32_t offset,
10811 uint32_t newpc)
10813 int new_el;
10815 /* Change the CPU state so as to actually take the exception. */
10816 switch_mode(env, new_mode);
10819 * For exceptions taken to AArch32 we must clear the SS bit in both
10820 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
10822 env->pstate &= ~PSTATE_SS;
10823 env->spsr = cpsr_read(env);
10824 /* Clear IT bits. */
10825 env->condexec_bits = 0;
10826 /* Switch to the new mode, and to the correct instruction set. */
10827 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
10829 /* This must be after mode switching. */
10830 new_el = arm_current_el(env);
10832 /* Set new mode endianness */
10833 env->uncached_cpsr &= ~CPSR_E;
10834 if (env->cp15.sctlr_el[new_el] & SCTLR_EE) {
10835 env->uncached_cpsr |= CPSR_E;
10837 /* J and IL must always be cleared for exception entry */
10838 env->uncached_cpsr &= ~(CPSR_IL | CPSR_J);
10839 env->daif |= mask;
10841 if (cpu_isar_feature(aa32_ssbs, env_archcpu(env))) {
10842 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_32) {
10843 env->uncached_cpsr |= CPSR_SSBS;
10844 } else {
10845 env->uncached_cpsr &= ~CPSR_SSBS;
10849 if (new_mode == ARM_CPU_MODE_HYP) {
10850 env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0;
10851 env->elr_el[2] = env->regs[15];
10852 } else {
10853 /* CPSR.PAN is normally preserved preserved unless... */
10854 if (cpu_isar_feature(aa32_pan, env_archcpu(env))) {
10855 switch (new_el) {
10856 case 3:
10857 if (!arm_is_secure_below_el3(env)) {
10858 /* ... the target is EL3, from non-secure state. */
10859 env->uncached_cpsr &= ~CPSR_PAN;
10860 break;
10862 /* ... the target is EL3, from secure state ... */
10863 /* fall through */
10864 case 1:
10865 /* ... the target is EL1 and SCTLR.SPAN is 0. */
10866 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPAN)) {
10867 env->uncached_cpsr |= CPSR_PAN;
10869 break;
10873 * this is a lie, as there was no c1_sys on V4T/V5, but who cares
10874 * and we should just guard the thumb mode on V4
10876 if (arm_feature(env, ARM_FEATURE_V4T)) {
10877 env->thumb =
10878 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
10880 env->regs[14] = env->regs[15] + offset;
10882 env->regs[15] = newpc;
10884 if (tcg_enabled()) {
10885 arm_rebuild_hflags(env);
10889 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs)
10892 * Handle exception entry to Hyp mode; this is sufficiently
10893 * different to entry to other AArch32 modes that we handle it
10894 * separately here.
10896 * The vector table entry used is always the 0x14 Hyp mode entry point,
10897 * unless this is an UNDEF/SVC/HVC/abort taken from Hyp to Hyp.
10898 * The offset applied to the preferred return address is always zero
10899 * (see DDI0487C.a section G1.12.3).
10900 * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values.
10902 uint32_t addr, mask;
10903 ARMCPU *cpu = ARM_CPU(cs);
10904 CPUARMState *env = &cpu->env;
10906 switch (cs->exception_index) {
10907 case EXCP_UDEF:
10908 addr = 0x04;
10909 break;
10910 case EXCP_SWI:
10911 addr = 0x08;
10912 break;
10913 case EXCP_BKPT:
10914 /* Fall through to prefetch abort. */
10915 case EXCP_PREFETCH_ABORT:
10916 env->cp15.ifar_s = env->exception.vaddress;
10917 qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n",
10918 (uint32_t)env->exception.vaddress);
10919 addr = 0x0c;
10920 break;
10921 case EXCP_DATA_ABORT:
10922 env->cp15.dfar_s = env->exception.vaddress;
10923 qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n",
10924 (uint32_t)env->exception.vaddress);
10925 addr = 0x10;
10926 break;
10927 case EXCP_IRQ:
10928 addr = 0x18;
10929 break;
10930 case EXCP_FIQ:
10931 addr = 0x1c;
10932 break;
10933 case EXCP_HVC:
10934 addr = 0x08;
10935 break;
10936 case EXCP_HYP_TRAP:
10937 addr = 0x14;
10938 break;
10939 default:
10940 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
10943 if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) {
10944 if (!arm_feature(env, ARM_FEATURE_V8)) {
10946 * QEMU syndrome values are v8-style. v7 has the IL bit
10947 * UNK/SBZP for "field not valid" cases, where v8 uses RES1.
10948 * If this is a v7 CPU, squash the IL bit in those cases.
10950 if (cs->exception_index == EXCP_PREFETCH_ABORT ||
10951 (cs->exception_index == EXCP_DATA_ABORT &&
10952 !(env->exception.syndrome & ARM_EL_ISV)) ||
10953 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) {
10954 env->exception.syndrome &= ~ARM_EL_IL;
10957 env->cp15.esr_el[2] = env->exception.syndrome;
10960 if (arm_current_el(env) != 2 && addr < 0x14) {
10961 addr = 0x14;
10964 mask = 0;
10965 if (!(env->cp15.scr_el3 & SCR_EA)) {
10966 mask |= CPSR_A;
10968 if (!(env->cp15.scr_el3 & SCR_IRQ)) {
10969 mask |= CPSR_I;
10971 if (!(env->cp15.scr_el3 & SCR_FIQ)) {
10972 mask |= CPSR_F;
10975 addr += env->cp15.hvbar;
10977 take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr);
10980 static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
10982 ARMCPU *cpu = ARM_CPU(cs);
10983 CPUARMState *env = &cpu->env;
10984 uint32_t addr;
10985 uint32_t mask;
10986 int new_mode;
10987 uint32_t offset;
10988 uint32_t moe;
10990 /* If this is a debug exception we must update the DBGDSCR.MOE bits */
10991 switch (syn_get_ec(env->exception.syndrome)) {
10992 case EC_BREAKPOINT:
10993 case EC_BREAKPOINT_SAME_EL:
10994 moe = 1;
10995 break;
10996 case EC_WATCHPOINT:
10997 case EC_WATCHPOINT_SAME_EL:
10998 moe = 10;
10999 break;
11000 case EC_AA32_BKPT:
11001 moe = 3;
11002 break;
11003 case EC_VECTORCATCH:
11004 moe = 5;
11005 break;
11006 default:
11007 moe = 0;
11008 break;
11011 if (moe) {
11012 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
11015 if (env->exception.target_el == 2) {
11016 arm_cpu_do_interrupt_aarch32_hyp(cs);
11017 return;
11020 switch (cs->exception_index) {
11021 case EXCP_UDEF:
11022 new_mode = ARM_CPU_MODE_UND;
11023 addr = 0x04;
11024 mask = CPSR_I;
11025 if (env->thumb) {
11026 offset = 2;
11027 } else {
11028 offset = 4;
11030 break;
11031 case EXCP_SWI:
11032 new_mode = ARM_CPU_MODE_SVC;
11033 addr = 0x08;
11034 mask = CPSR_I;
11035 /* The PC already points to the next instruction. */
11036 offset = 0;
11037 break;
11038 case EXCP_BKPT:
11039 /* Fall through to prefetch abort. */
11040 case EXCP_PREFETCH_ABORT:
11041 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
11042 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
11043 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
11044 env->exception.fsr, (uint32_t)env->exception.vaddress);
11045 new_mode = ARM_CPU_MODE_ABT;
11046 addr = 0x0c;
11047 mask = CPSR_A | CPSR_I;
11048 offset = 4;
11049 break;
11050 case EXCP_DATA_ABORT:
11051 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
11052 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
11053 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
11054 env->exception.fsr,
11055 (uint32_t)env->exception.vaddress);
11056 new_mode = ARM_CPU_MODE_ABT;
11057 addr = 0x10;
11058 mask = CPSR_A | CPSR_I;
11059 offset = 8;
11060 break;
11061 case EXCP_IRQ:
11062 new_mode = ARM_CPU_MODE_IRQ;
11063 addr = 0x18;
11064 /* Disable IRQ and imprecise data aborts. */
11065 mask = CPSR_A | CPSR_I;
11066 offset = 4;
11067 if (env->cp15.scr_el3 & SCR_IRQ) {
11068 /* IRQ routed to monitor mode */
11069 new_mode = ARM_CPU_MODE_MON;
11070 mask |= CPSR_F;
11072 break;
11073 case EXCP_FIQ:
11074 new_mode = ARM_CPU_MODE_FIQ;
11075 addr = 0x1c;
11076 /* Disable FIQ, IRQ and imprecise data aborts. */
11077 mask = CPSR_A | CPSR_I | CPSR_F;
11078 if (env->cp15.scr_el3 & SCR_FIQ) {
11079 /* FIQ routed to monitor mode */
11080 new_mode = ARM_CPU_MODE_MON;
11082 offset = 4;
11083 break;
11084 case EXCP_VIRQ:
11085 new_mode = ARM_CPU_MODE_IRQ;
11086 addr = 0x18;
11087 /* Disable IRQ and imprecise data aborts. */
11088 mask = CPSR_A | CPSR_I;
11089 offset = 4;
11090 break;
11091 case EXCP_VFIQ:
11092 new_mode = ARM_CPU_MODE_FIQ;
11093 addr = 0x1c;
11094 /* Disable FIQ, IRQ and imprecise data aborts. */
11095 mask = CPSR_A | CPSR_I | CPSR_F;
11096 offset = 4;
11097 break;
11098 case EXCP_VSERR:
11101 * Note that this is reported as a data abort, but the DFAR
11102 * has an UNKNOWN value. Construct the SError syndrome from
11103 * AET and ExT fields.
11105 ARMMMUFaultInfo fi = { .type = ARMFault_AsyncExternal, };
11107 if (extended_addresses_enabled(env)) {
11108 env->exception.fsr = arm_fi_to_lfsc(&fi);
11109 } else {
11110 env->exception.fsr = arm_fi_to_sfsc(&fi);
11112 env->exception.fsr |= env->cp15.vsesr_el2 & 0xd000;
11113 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
11114 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x\n",
11115 env->exception.fsr);
11117 new_mode = ARM_CPU_MODE_ABT;
11118 addr = 0x10;
11119 mask = CPSR_A | CPSR_I;
11120 offset = 8;
11122 break;
11123 case EXCP_SMC:
11124 new_mode = ARM_CPU_MODE_MON;
11125 addr = 0x08;
11126 mask = CPSR_A | CPSR_I | CPSR_F;
11127 offset = 0;
11128 break;
11129 default:
11130 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
11131 return; /* Never happens. Keep compiler happy. */
11134 if (new_mode == ARM_CPU_MODE_MON) {
11135 addr += env->cp15.mvbar;
11136 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
11137 /* High vectors. When enabled, base address cannot be remapped. */
11138 addr += 0xffff0000;
11139 } else {
11141 * ARM v7 architectures provide a vector base address register to remap
11142 * the interrupt vector table.
11143 * This register is only followed in non-monitor mode, and is banked.
11144 * Note: only bits 31:5 are valid.
11146 addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
11149 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
11150 env->cp15.scr_el3 &= ~SCR_NS;
11153 take_aarch32_exception(env, new_mode, mask, offset, addr);
11156 static int aarch64_regnum(CPUARMState *env, int aarch32_reg)
11159 * Return the register number of the AArch64 view of the AArch32
11160 * register @aarch32_reg. The CPUARMState CPSR is assumed to still
11161 * be that of the AArch32 mode the exception came from.
11163 int mode = env->uncached_cpsr & CPSR_M;
11165 switch (aarch32_reg) {
11166 case 0 ... 7:
11167 return aarch32_reg;
11168 case 8 ... 12:
11169 return mode == ARM_CPU_MODE_FIQ ? aarch32_reg + 16 : aarch32_reg;
11170 case 13:
11171 switch (mode) {
11172 case ARM_CPU_MODE_USR:
11173 case ARM_CPU_MODE_SYS:
11174 return 13;
11175 case ARM_CPU_MODE_HYP:
11176 return 15;
11177 case ARM_CPU_MODE_IRQ:
11178 return 17;
11179 case ARM_CPU_MODE_SVC:
11180 return 19;
11181 case ARM_CPU_MODE_ABT:
11182 return 21;
11183 case ARM_CPU_MODE_UND:
11184 return 23;
11185 case ARM_CPU_MODE_FIQ:
11186 return 29;
11187 default:
11188 g_assert_not_reached();
11190 case 14:
11191 switch (mode) {
11192 case ARM_CPU_MODE_USR:
11193 case ARM_CPU_MODE_SYS:
11194 case ARM_CPU_MODE_HYP:
11195 return 14;
11196 case ARM_CPU_MODE_IRQ:
11197 return 16;
11198 case ARM_CPU_MODE_SVC:
11199 return 18;
11200 case ARM_CPU_MODE_ABT:
11201 return 20;
11202 case ARM_CPU_MODE_UND:
11203 return 22;
11204 case ARM_CPU_MODE_FIQ:
11205 return 30;
11206 default:
11207 g_assert_not_reached();
11209 case 15:
11210 return 31;
11211 default:
11212 g_assert_not_reached();
11216 static uint32_t cpsr_read_for_spsr_elx(CPUARMState *env)
11218 uint32_t ret = cpsr_read(env);
11220 /* Move DIT to the correct location for SPSR_ELx */
11221 if (ret & CPSR_DIT) {
11222 ret &= ~CPSR_DIT;
11223 ret |= PSTATE_DIT;
11225 /* Merge PSTATE.SS into SPSR_ELx */
11226 ret |= env->pstate & PSTATE_SS;
11228 return ret;
11231 static bool syndrome_is_sync_extabt(uint32_t syndrome)
11233 /* Return true if this syndrome value is a synchronous external abort */
11234 switch (syn_get_ec(syndrome)) {
11235 case EC_INSNABORT:
11236 case EC_INSNABORT_SAME_EL:
11237 case EC_DATAABORT:
11238 case EC_DATAABORT_SAME_EL:
11239 /* Look at fault status code for all the synchronous ext abort cases */
11240 switch (syndrome & 0x3f) {
11241 case 0x10:
11242 case 0x13:
11243 case 0x14:
11244 case 0x15:
11245 case 0x16:
11246 case 0x17:
11247 return true;
11248 default:
11249 return false;
11251 default:
11252 return false;
11256 /* Handle exception entry to a target EL which is using AArch64 */
11257 static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
11259 ARMCPU *cpu = ARM_CPU(cs);
11260 CPUARMState *env = &cpu->env;
11261 unsigned int new_el = env->exception.target_el;
11262 target_ulong addr = env->cp15.vbar_el[new_el];
11263 unsigned int new_mode = aarch64_pstate_mode(new_el, true);
11264 unsigned int old_mode;
11265 unsigned int cur_el = arm_current_el(env);
11266 int rt;
11268 if (tcg_enabled()) {
11270 * Note that new_el can never be 0. If cur_el is 0, then
11271 * el0_a64 is is_a64(), else el0_a64 is ignored.
11273 aarch64_sve_change_el(env, cur_el, new_el, is_a64(env));
11276 if (cur_el < new_el) {
11278 * Entry vector offset depends on whether the implemented EL
11279 * immediately lower than the target level is using AArch32 or AArch64
11281 bool is_aa64;
11282 uint64_t hcr;
11284 switch (new_el) {
11285 case 3:
11286 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0;
11287 break;
11288 case 2:
11289 hcr = arm_hcr_el2_eff(env);
11290 if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
11291 is_aa64 = (hcr & HCR_RW) != 0;
11292 break;
11294 /* fall through */
11295 case 1:
11296 is_aa64 = is_a64(env);
11297 break;
11298 default:
11299 g_assert_not_reached();
11302 if (is_aa64) {
11303 addr += 0x400;
11304 } else {
11305 addr += 0x600;
11307 } else if (pstate_read(env) & PSTATE_SP) {
11308 addr += 0x200;
11311 switch (cs->exception_index) {
11312 case EXCP_GPC:
11313 qemu_log_mask(CPU_LOG_INT, "...with MFAR 0x%" PRIx64 "\n",
11314 env->cp15.mfar_el3);
11315 /* fall through */
11316 case EXCP_PREFETCH_ABORT:
11317 case EXCP_DATA_ABORT:
11319 * FEAT_DoubleFault allows synchronous external aborts taken to EL3
11320 * to be taken to the SError vector entrypoint.
11322 if (new_el == 3 && (env->cp15.scr_el3 & SCR_EASE) &&
11323 syndrome_is_sync_extabt(env->exception.syndrome)) {
11324 addr += 0x180;
11326 env->cp15.far_el[new_el] = env->exception.vaddress;
11327 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
11328 env->cp15.far_el[new_el]);
11329 /* fall through */
11330 case EXCP_BKPT:
11331 case EXCP_UDEF:
11332 case EXCP_SWI:
11333 case EXCP_HVC:
11334 case EXCP_HYP_TRAP:
11335 case EXCP_SMC:
11336 switch (syn_get_ec(env->exception.syndrome)) {
11337 case EC_ADVSIMDFPACCESSTRAP:
11339 * QEMU internal FP/SIMD syndromes from AArch32 include the
11340 * TA and coproc fields which are only exposed if the exception
11341 * is taken to AArch32 Hyp mode. Mask them out to get a valid
11342 * AArch64 format syndrome.
11344 env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20);
11345 break;
11346 case EC_CP14RTTRAP:
11347 case EC_CP15RTTRAP:
11348 case EC_CP14DTTRAP:
11350 * For a trap on AArch32 MRC/MCR/LDC/STC the Rt field is currently
11351 * the raw register field from the insn; when taking this to
11352 * AArch64 we must convert it to the AArch64 view of the register
11353 * number. Notice that we read a 4-bit AArch32 register number and
11354 * write back a 5-bit AArch64 one.
11356 rt = extract32(env->exception.syndrome, 5, 4);
11357 rt = aarch64_regnum(env, rt);
11358 env->exception.syndrome = deposit32(env->exception.syndrome,
11359 5, 5, rt);
11360 break;
11361 case EC_CP15RRTTRAP:
11362 case EC_CP14RRTTRAP:
11363 /* Similarly for MRRC/MCRR traps for Rt and Rt2 fields */
11364 rt = extract32(env->exception.syndrome, 5, 4);
11365 rt = aarch64_regnum(env, rt);
11366 env->exception.syndrome = deposit32(env->exception.syndrome,
11367 5, 5, rt);
11368 rt = extract32(env->exception.syndrome, 10, 4);
11369 rt = aarch64_regnum(env, rt);
11370 env->exception.syndrome = deposit32(env->exception.syndrome,
11371 10, 5, rt);
11372 break;
11374 env->cp15.esr_el[new_el] = env->exception.syndrome;
11375 break;
11376 case EXCP_IRQ:
11377 case EXCP_VIRQ:
11378 addr += 0x80;
11379 break;
11380 case EXCP_FIQ:
11381 case EXCP_VFIQ:
11382 addr += 0x100;
11383 break;
11384 case EXCP_VSERR:
11385 addr += 0x180;
11386 /* Construct the SError syndrome from IDS and ISS fields. */
11387 env->exception.syndrome = syn_serror(env->cp15.vsesr_el2 & 0x1ffffff);
11388 env->cp15.esr_el[new_el] = env->exception.syndrome;
11389 break;
11390 default:
11391 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
11394 if (is_a64(env)) {
11395 old_mode = pstate_read(env);
11396 aarch64_save_sp(env, arm_current_el(env));
11397 env->elr_el[new_el] = env->pc;
11399 if (cur_el == 1 && new_el == 1) {
11400 uint64_t hcr = arm_hcr_el2_eff(env);
11401 if ((hcr & (HCR_NV | HCR_NV1 | HCR_NV2)) == HCR_NV ||
11402 (hcr & (HCR_NV | HCR_NV2)) == (HCR_NV | HCR_NV2)) {
11404 * FEAT_NV, FEAT_NV2 may need to report EL2 in the SPSR
11405 * by setting M[3:2] to 0b10.
11406 * If NV2 is disabled, change SPSR when NV,NV1 == 1,0 (I_ZJRNN)
11407 * If NV2 is enabled, change SPSR when NV is 1 (I_DBTLM)
11409 old_mode = deposit32(old_mode, 2, 2, 2);
11412 } else {
11413 old_mode = cpsr_read_for_spsr_elx(env);
11414 env->elr_el[new_el] = env->regs[15];
11416 aarch64_sync_32_to_64(env);
11418 env->condexec_bits = 0;
11420 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode;
11422 qemu_log_mask(CPU_LOG_INT, "...with SPSR 0x%x\n", old_mode);
11423 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
11424 env->elr_el[new_el]);
11426 if (cpu_isar_feature(aa64_pan, cpu)) {
11427 /* The value of PSTATE.PAN is normally preserved, except when ... */
11428 new_mode |= old_mode & PSTATE_PAN;
11429 switch (new_el) {
11430 case 2:
11431 /* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ... */
11432 if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE))
11433 != (HCR_E2H | HCR_TGE)) {
11434 break;
11436 /* fall through */
11437 case 1:
11438 /* ... the target is EL1 ... */
11439 /* ... and SCTLR_ELx.SPAN == 0, then set to 1. */
11440 if ((env->cp15.sctlr_el[new_el] & SCTLR_SPAN) == 0) {
11441 new_mode |= PSTATE_PAN;
11443 break;
11446 if (cpu_isar_feature(aa64_mte, cpu)) {
11447 new_mode |= PSTATE_TCO;
11450 if (cpu_isar_feature(aa64_ssbs, cpu)) {
11451 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_64) {
11452 new_mode |= PSTATE_SSBS;
11453 } else {
11454 new_mode &= ~PSTATE_SSBS;
11458 pstate_write(env, PSTATE_DAIF | new_mode);
11459 env->aarch64 = true;
11460 aarch64_restore_sp(env, new_el);
11462 if (tcg_enabled()) {
11463 helper_rebuild_hflags_a64(env, new_el);
11466 env->pc = addr;
11468 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
11469 new_el, env->pc, pstate_read(env));
11473 * Do semihosting call and set the appropriate return value. All the
11474 * permission and validity checks have been done at translate time.
11476 * We only see semihosting exceptions in TCG only as they are not
11477 * trapped to the hypervisor in KVM.
11479 #ifdef CONFIG_TCG
11480 static void tcg_handle_semihosting(CPUState *cs)
11482 ARMCPU *cpu = ARM_CPU(cs);
11483 CPUARMState *env = &cpu->env;
11485 if (is_a64(env)) {
11486 qemu_log_mask(CPU_LOG_INT,
11487 "...handling as semihosting call 0x%" PRIx64 "\n",
11488 env->xregs[0]);
11489 do_common_semihosting(cs);
11490 env->pc += 4;
11491 } else {
11492 qemu_log_mask(CPU_LOG_INT,
11493 "...handling as semihosting call 0x%x\n",
11494 env->regs[0]);
11495 do_common_semihosting(cs);
11496 env->regs[15] += env->thumb ? 2 : 4;
11499 #endif
11502 * Handle a CPU exception for A and R profile CPUs.
11503 * Do any appropriate logging, handle PSCI calls, and then hand off
11504 * to the AArch64-entry or AArch32-entry function depending on the
11505 * target exception level's register width.
11507 * Note: this is used for both TCG (as the do_interrupt tcg op),
11508 * and KVM to re-inject guest debug exceptions, and to
11509 * inject a Synchronous-External-Abort.
11511 void arm_cpu_do_interrupt(CPUState *cs)
11513 ARMCPU *cpu = ARM_CPU(cs);
11514 CPUARMState *env = &cpu->env;
11515 unsigned int new_el = env->exception.target_el;
11517 assert(!arm_feature(env, ARM_FEATURE_M));
11519 arm_log_exception(cs);
11520 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
11521 new_el);
11522 if (qemu_loglevel_mask(CPU_LOG_INT)
11523 && !excp_is_internal(cs->exception_index)) {
11524 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n",
11525 syn_get_ec(env->exception.syndrome),
11526 env->exception.syndrome);
11529 if (tcg_enabled() && arm_is_psci_call(cpu, cs->exception_index)) {
11530 arm_handle_psci_call(cpu);
11531 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
11532 return;
11536 * Semihosting semantics depend on the register width of the code
11537 * that caused the exception, not the target exception level, so
11538 * must be handled here.
11540 #ifdef CONFIG_TCG
11541 if (cs->exception_index == EXCP_SEMIHOST) {
11542 tcg_handle_semihosting(cs);
11543 return;
11545 #endif
11548 * Hooks may change global state so BQL should be held, also the
11549 * BQL needs to be held for any modification of
11550 * cs->interrupt_request.
11552 g_assert(bql_locked());
11554 arm_call_pre_el_change_hook(cpu);
11556 assert(!excp_is_internal(cs->exception_index));
11557 if (arm_el_is_aa64(env, new_el)) {
11558 arm_cpu_do_interrupt_aarch64(cs);
11559 } else {
11560 arm_cpu_do_interrupt_aarch32(cs);
11563 arm_call_el_change_hook(cpu);
11565 if (!kvm_enabled()) {
11566 cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
11569 #endif /* !CONFIG_USER_ONLY */
11571 uint64_t arm_sctlr(CPUARMState *env, int el)
11573 /* Only EL0 needs to be adjusted for EL1&0 or EL2&0. */
11574 if (el == 0) {
11575 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0);
11576 el = mmu_idx == ARMMMUIdx_E20_0 ? 2 : 1;
11578 return env->cp15.sctlr_el[el];
11581 int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx)
11583 if (regime_has_2_ranges(mmu_idx)) {
11584 return extract64(tcr, 37, 2);
11585 } else if (regime_is_stage2(mmu_idx)) {
11586 return 0; /* VTCR_EL2 */
11587 } else {
11588 /* Replicate the single TBI bit so we always have 2 bits. */
11589 return extract32(tcr, 20, 1) * 3;
11593 int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx)
11595 if (regime_has_2_ranges(mmu_idx)) {
11596 return extract64(tcr, 51, 2);
11597 } else if (regime_is_stage2(mmu_idx)) {
11598 return 0; /* VTCR_EL2 */
11599 } else {
11600 /* Replicate the single TBID bit so we always have 2 bits. */
11601 return extract32(tcr, 29, 1) * 3;
11605 int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx)
11607 if (regime_has_2_ranges(mmu_idx)) {
11608 return extract64(tcr, 57, 2);
11609 } else {
11610 /* Replicate the single TCMA bit so we always have 2 bits. */
11611 return extract32(tcr, 30, 1) * 3;
11615 static ARMGranuleSize tg0_to_gran_size(int tg)
11617 switch (tg) {
11618 case 0:
11619 return Gran4K;
11620 case 1:
11621 return Gran64K;
11622 case 2:
11623 return Gran16K;
11624 default:
11625 return GranInvalid;
11629 static ARMGranuleSize tg1_to_gran_size(int tg)
11631 switch (tg) {
11632 case 1:
11633 return Gran16K;
11634 case 2:
11635 return Gran4K;
11636 case 3:
11637 return Gran64K;
11638 default:
11639 return GranInvalid;
11643 static inline bool have4k(ARMCPU *cpu, bool stage2)
11645 return stage2 ? cpu_isar_feature(aa64_tgran4_2, cpu)
11646 : cpu_isar_feature(aa64_tgran4, cpu);
11649 static inline bool have16k(ARMCPU *cpu, bool stage2)
11651 return stage2 ? cpu_isar_feature(aa64_tgran16_2, cpu)
11652 : cpu_isar_feature(aa64_tgran16, cpu);
11655 static inline bool have64k(ARMCPU *cpu, bool stage2)
11657 return stage2 ? cpu_isar_feature(aa64_tgran64_2, cpu)
11658 : cpu_isar_feature(aa64_tgran64, cpu);
11661 static ARMGranuleSize sanitize_gran_size(ARMCPU *cpu, ARMGranuleSize gran,
11662 bool stage2)
11664 switch (gran) {
11665 case Gran4K:
11666 if (have4k(cpu, stage2)) {
11667 return gran;
11669 break;
11670 case Gran16K:
11671 if (have16k(cpu, stage2)) {
11672 return gran;
11674 break;
11675 case Gran64K:
11676 if (have64k(cpu, stage2)) {
11677 return gran;
11679 break;
11680 case GranInvalid:
11681 break;
11684 * If the guest selects a granule size that isn't implemented,
11685 * the architecture requires that we behave as if it selected one
11686 * that is (with an IMPDEF choice of which one to pick). We choose
11687 * to implement the smallest supported granule size.
11689 if (have4k(cpu, stage2)) {
11690 return Gran4K;
11692 if (have16k(cpu, stage2)) {
11693 return Gran16K;
11695 assert(have64k(cpu, stage2));
11696 return Gran64K;
11699 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
11700 ARMMMUIdx mmu_idx, bool data,
11701 bool el1_is_aa32)
11703 uint64_t tcr = regime_tcr(env, mmu_idx);
11704 bool epd, hpd, tsz_oob, ds, ha, hd;
11705 int select, tsz, tbi, max_tsz, min_tsz, ps, sh;
11706 ARMGranuleSize gran;
11707 ARMCPU *cpu = env_archcpu(env);
11708 bool stage2 = regime_is_stage2(mmu_idx);
11710 if (!regime_has_2_ranges(mmu_idx)) {
11711 select = 0;
11712 tsz = extract32(tcr, 0, 6);
11713 gran = tg0_to_gran_size(extract32(tcr, 14, 2));
11714 if (stage2) {
11715 /* VTCR_EL2 */
11716 hpd = false;
11717 } else {
11718 hpd = extract32(tcr, 24, 1);
11720 epd = false;
11721 sh = extract32(tcr, 12, 2);
11722 ps = extract32(tcr, 16, 3);
11723 ha = extract32(tcr, 21, 1) && cpu_isar_feature(aa64_hafs, cpu);
11724 hd = extract32(tcr, 22, 1) && cpu_isar_feature(aa64_hdbs, cpu);
11725 ds = extract64(tcr, 32, 1);
11726 } else {
11727 bool e0pd;
11730 * Bit 55 is always between the two regions, and is canonical for
11731 * determining if address tagging is enabled.
11733 select = extract64(va, 55, 1);
11734 if (!select) {
11735 tsz = extract32(tcr, 0, 6);
11736 gran = tg0_to_gran_size(extract32(tcr, 14, 2));
11737 epd = extract32(tcr, 7, 1);
11738 sh = extract32(tcr, 12, 2);
11739 hpd = extract64(tcr, 41, 1);
11740 e0pd = extract64(tcr, 55, 1);
11741 } else {
11742 tsz = extract32(tcr, 16, 6);
11743 gran = tg1_to_gran_size(extract32(tcr, 30, 2));
11744 epd = extract32(tcr, 23, 1);
11745 sh = extract32(tcr, 28, 2);
11746 hpd = extract64(tcr, 42, 1);
11747 e0pd = extract64(tcr, 56, 1);
11749 ps = extract64(tcr, 32, 3);
11750 ha = extract64(tcr, 39, 1) && cpu_isar_feature(aa64_hafs, cpu);
11751 hd = extract64(tcr, 40, 1) && cpu_isar_feature(aa64_hdbs, cpu);
11752 ds = extract64(tcr, 59, 1);
11754 if (e0pd && cpu_isar_feature(aa64_e0pd, cpu) &&
11755 regime_is_user(env, mmu_idx)) {
11756 epd = true;
11760 gran = sanitize_gran_size(cpu, gran, stage2);
11762 if (cpu_isar_feature(aa64_st, cpu)) {
11763 max_tsz = 48 - (gran == Gran64K);
11764 } else {
11765 max_tsz = 39;
11769 * DS is RES0 unless FEAT_LPA2 is supported for the given page size;
11770 * adjust the effective value of DS, as documented.
11772 min_tsz = 16;
11773 if (gran == Gran64K) {
11774 if (cpu_isar_feature(aa64_lva, cpu)) {
11775 min_tsz = 12;
11777 ds = false;
11778 } else if (ds) {
11779 if (regime_is_stage2(mmu_idx)) {
11780 if (gran == Gran16K) {
11781 ds = cpu_isar_feature(aa64_tgran16_2_lpa2, cpu);
11782 } else {
11783 ds = cpu_isar_feature(aa64_tgran4_2_lpa2, cpu);
11785 } else {
11786 if (gran == Gran16K) {
11787 ds = cpu_isar_feature(aa64_tgran16_lpa2, cpu);
11788 } else {
11789 ds = cpu_isar_feature(aa64_tgran4_lpa2, cpu);
11792 if (ds) {
11793 min_tsz = 12;
11797 if (stage2 && el1_is_aa32) {
11799 * For AArch32 EL1 the min txsz (and thus max IPA size) requirements
11800 * are loosened: a configured IPA of 40 bits is permitted even if
11801 * the implemented PA is less than that (and so a 40 bit IPA would
11802 * fault for an AArch64 EL1). See R_DTLMN.
11804 min_tsz = MIN(min_tsz, 24);
11807 if (tsz > max_tsz) {
11808 tsz = max_tsz;
11809 tsz_oob = true;
11810 } else if (tsz < min_tsz) {
11811 tsz = min_tsz;
11812 tsz_oob = true;
11813 } else {
11814 tsz_oob = false;
11817 /* Present TBI as a composite with TBID. */
11818 tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
11819 if (!data) {
11820 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx);
11822 tbi = (tbi >> select) & 1;
11824 return (ARMVAParameters) {
11825 .tsz = tsz,
11826 .ps = ps,
11827 .sh = sh,
11828 .select = select,
11829 .tbi = tbi,
11830 .epd = epd,
11831 .hpd = hpd,
11832 .tsz_oob = tsz_oob,
11833 .ds = ds,
11834 .ha = ha,
11835 .hd = ha && hd,
11836 .gran = gran,
11841 * Note that signed overflow is undefined in C. The following routines are
11842 * careful to use unsigned types where modulo arithmetic is required.
11843 * Failure to do so _will_ break on newer gcc.
11846 /* Signed saturating arithmetic. */
11848 /* Perform 16-bit signed saturating addition. */
11849 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
11851 uint16_t res;
11853 res = a + b;
11854 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
11855 if (a & 0x8000) {
11856 res = 0x8000;
11857 } else {
11858 res = 0x7fff;
11861 return res;
11864 /* Perform 8-bit signed saturating addition. */
11865 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
11867 uint8_t res;
11869 res = a + b;
11870 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
11871 if (a & 0x80) {
11872 res = 0x80;
11873 } else {
11874 res = 0x7f;
11877 return res;
11880 /* Perform 16-bit signed saturating subtraction. */
11881 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
11883 uint16_t res;
11885 res = a - b;
11886 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
11887 if (a & 0x8000) {
11888 res = 0x8000;
11889 } else {
11890 res = 0x7fff;
11893 return res;
11896 /* Perform 8-bit signed saturating subtraction. */
11897 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
11899 uint8_t res;
11901 res = a - b;
11902 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
11903 if (a & 0x80) {
11904 res = 0x80;
11905 } else {
11906 res = 0x7f;
11909 return res;
11912 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
11913 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
11914 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
11915 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
11916 #define PFX q
11918 #include "op_addsub.h"
11920 /* Unsigned saturating arithmetic. */
11921 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
11923 uint16_t res;
11924 res = a + b;
11925 if (res < a) {
11926 res = 0xffff;
11928 return res;
11931 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
11933 if (a > b) {
11934 return a - b;
11935 } else {
11936 return 0;
11940 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
11942 uint8_t res;
11943 res = a + b;
11944 if (res < a) {
11945 res = 0xff;
11947 return res;
11950 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
11952 if (a > b) {
11953 return a - b;
11954 } else {
11955 return 0;
11959 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
11960 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
11961 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
11962 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
11963 #define PFX uq
11965 #include "op_addsub.h"
11967 /* Signed modulo arithmetic. */
11968 #define SARITH16(a, b, n, op) do { \
11969 int32_t sum; \
11970 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
11971 RESULT(sum, n, 16); \
11972 if (sum >= 0) \
11973 ge |= 3 << (n * 2); \
11974 } while (0)
11976 #define SARITH8(a, b, n, op) do { \
11977 int32_t sum; \
11978 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
11979 RESULT(sum, n, 8); \
11980 if (sum >= 0) \
11981 ge |= 1 << n; \
11982 } while (0)
11985 #define ADD16(a, b, n) SARITH16(a, b, n, +)
11986 #define SUB16(a, b, n) SARITH16(a, b, n, -)
11987 #define ADD8(a, b, n) SARITH8(a, b, n, +)
11988 #define SUB8(a, b, n) SARITH8(a, b, n, -)
11989 #define PFX s
11990 #define ARITH_GE
11992 #include "op_addsub.h"
11994 /* Unsigned modulo arithmetic. */
11995 #define ADD16(a, b, n) do { \
11996 uint32_t sum; \
11997 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
11998 RESULT(sum, n, 16); \
11999 if ((sum >> 16) == 1) \
12000 ge |= 3 << (n * 2); \
12001 } while (0)
12003 #define ADD8(a, b, n) do { \
12004 uint32_t sum; \
12005 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
12006 RESULT(sum, n, 8); \
12007 if ((sum >> 8) == 1) \
12008 ge |= 1 << n; \
12009 } while (0)
12011 #define SUB16(a, b, n) do { \
12012 uint32_t sum; \
12013 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
12014 RESULT(sum, n, 16); \
12015 if ((sum >> 16) == 0) \
12016 ge |= 3 << (n * 2); \
12017 } while (0)
12019 #define SUB8(a, b, n) do { \
12020 uint32_t sum; \
12021 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
12022 RESULT(sum, n, 8); \
12023 if ((sum >> 8) == 0) \
12024 ge |= 1 << n; \
12025 } while (0)
12027 #define PFX u
12028 #define ARITH_GE
12030 #include "op_addsub.h"
12032 /* Halved signed arithmetic. */
12033 #define ADD16(a, b, n) \
12034 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
12035 #define SUB16(a, b, n) \
12036 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
12037 #define ADD8(a, b, n) \
12038 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
12039 #define SUB8(a, b, n) \
12040 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
12041 #define PFX sh
12043 #include "op_addsub.h"
12045 /* Halved unsigned arithmetic. */
12046 #define ADD16(a, b, n) \
12047 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
12048 #define SUB16(a, b, n) \
12049 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
12050 #define ADD8(a, b, n) \
12051 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
12052 #define SUB8(a, b, n) \
12053 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
12054 #define PFX uh
12056 #include "op_addsub.h"
12058 static inline uint8_t do_usad(uint8_t a, uint8_t b)
12060 if (a > b) {
12061 return a - b;
12062 } else {
12063 return b - a;
12067 /* Unsigned sum of absolute byte differences. */
12068 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
12070 uint32_t sum;
12071 sum = do_usad(a, b);
12072 sum += do_usad(a >> 8, b >> 8);
12073 sum += do_usad(a >> 16, b >> 16);
12074 sum += do_usad(a >> 24, b >> 24);
12075 return sum;
12078 /* For ARMv6 SEL instruction. */
12079 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
12081 uint32_t mask;
12083 mask = 0;
12084 if (flags & 1) {
12085 mask |= 0xff;
12087 if (flags & 2) {
12088 mask |= 0xff00;
12090 if (flags & 4) {
12091 mask |= 0xff0000;
12093 if (flags & 8) {
12094 mask |= 0xff000000;
12096 return (a & mask) | (b & ~mask);
12100 * CRC helpers.
12101 * The upper bytes of val (above the number specified by 'bytes') must have
12102 * been zeroed out by the caller.
12104 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
12106 uint8_t buf[4];
12108 stl_le_p(buf, val);
12110 /* zlib crc32 converts the accumulator and output to one's complement. */
12111 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
12114 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
12116 uint8_t buf[4];
12118 stl_le_p(buf, val);
12120 /* Linux crc32c converts the output to one's complement. */
12121 return crc32c(acc, buf, bytes) ^ 0xffffffff;
12125 * Return the exception level to which FP-disabled exceptions should
12126 * be taken, or 0 if FP is enabled.
12128 int fp_exception_el(CPUARMState *env, int cur_el)
12130 #ifndef CONFIG_USER_ONLY
12131 uint64_t hcr_el2;
12134 * CPACR and the CPTR registers don't exist before v6, so FP is
12135 * always accessible
12137 if (!arm_feature(env, ARM_FEATURE_V6)) {
12138 return 0;
12141 if (arm_feature(env, ARM_FEATURE_M)) {
12142 /* CPACR can cause a NOCP UsageFault taken to current security state */
12143 if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) {
12144 return 1;
12147 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) {
12148 if (!extract32(env->v7m.nsacr, 10, 1)) {
12149 /* FP insns cause a NOCP UsageFault taken to Secure */
12150 return 3;
12154 return 0;
12157 hcr_el2 = arm_hcr_el2_eff(env);
12160 * The CPACR controls traps to EL1, or PL1 if we're 32 bit:
12161 * 0, 2 : trap EL0 and EL1/PL1 accesses
12162 * 1 : trap only EL0 accesses
12163 * 3 : trap no accesses
12164 * This register is ignored if E2H+TGE are both set.
12166 if ((hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
12167 int fpen = FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, FPEN);
12169 switch (fpen) {
12170 case 1:
12171 if (cur_el != 0) {
12172 break;
12174 /* fall through */
12175 case 0:
12176 case 2:
12177 /* Trap from Secure PL0 or PL1 to Secure PL1. */
12178 if (!arm_el_is_aa64(env, 3)
12179 && (cur_el == 3 || arm_is_secure_below_el3(env))) {
12180 return 3;
12182 if (cur_el <= 1) {
12183 return 1;
12185 break;
12190 * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode
12191 * to control non-secure access to the FPU. It doesn't have any
12192 * effect if EL3 is AArch64 or if EL3 doesn't exist at all.
12194 if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
12195 cur_el <= 2 && !arm_is_secure_below_el3(env))) {
12196 if (!extract32(env->cp15.nsacr, 10, 1)) {
12197 /* FP insns act as UNDEF */
12198 return cur_el == 2 ? 2 : 1;
12203 * CPTR_EL2 is present in v7VE or v8, and changes format
12204 * with HCR_EL2.E2H (regardless of TGE).
12206 if (cur_el <= 2) {
12207 if (hcr_el2 & HCR_E2H) {
12208 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, FPEN)) {
12209 case 1:
12210 if (cur_el != 0 || !(hcr_el2 & HCR_TGE)) {
12211 break;
12213 /* fall through */
12214 case 0:
12215 case 2:
12216 return 2;
12218 } else if (arm_is_el2_enabled(env)) {
12219 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TFP)) {
12220 return 2;
12225 /* CPTR_EL3 : present in v8 */
12226 if (FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TFP)) {
12227 /* Trap all FP ops to EL3 */
12228 return 3;
12230 #endif
12231 return 0;
12234 /* Return the exception level we're running at if this is our mmu_idx */
12235 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
12237 if (mmu_idx & ARM_MMU_IDX_M) {
12238 return mmu_idx & ARM_MMU_IDX_M_PRIV;
12241 switch (mmu_idx) {
12242 case ARMMMUIdx_E10_0:
12243 case ARMMMUIdx_E20_0:
12244 return 0;
12245 case ARMMMUIdx_E10_1:
12246 case ARMMMUIdx_E10_1_PAN:
12247 return 1;
12248 case ARMMMUIdx_E2:
12249 case ARMMMUIdx_E20_2:
12250 case ARMMMUIdx_E20_2_PAN:
12251 return 2;
12252 case ARMMMUIdx_E3:
12253 return 3;
12254 default:
12255 g_assert_not_reached();
12259 #ifndef CONFIG_TCG
12260 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate)
12262 g_assert_not_reached();
12264 #endif
12266 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el)
12268 ARMMMUIdx idx;
12269 uint64_t hcr;
12271 if (arm_feature(env, ARM_FEATURE_M)) {
12272 return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure);
12275 /* See ARM pseudo-function ELIsInHost. */
12276 switch (el) {
12277 case 0:
12278 hcr = arm_hcr_el2_eff(env);
12279 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
12280 idx = ARMMMUIdx_E20_0;
12281 } else {
12282 idx = ARMMMUIdx_E10_0;
12284 break;
12285 case 1:
12286 if (arm_pan_enabled(env)) {
12287 idx = ARMMMUIdx_E10_1_PAN;
12288 } else {
12289 idx = ARMMMUIdx_E10_1;
12291 break;
12292 case 2:
12293 /* Note that TGE does not apply at EL2. */
12294 if (arm_hcr_el2_eff(env) & HCR_E2H) {
12295 if (arm_pan_enabled(env)) {
12296 idx = ARMMMUIdx_E20_2_PAN;
12297 } else {
12298 idx = ARMMMUIdx_E20_2;
12300 } else {
12301 idx = ARMMMUIdx_E2;
12303 break;
12304 case 3:
12305 return ARMMMUIdx_E3;
12306 default:
12307 g_assert_not_reached();
12310 return idx;
12313 ARMMMUIdx arm_mmu_idx(CPUARMState *env)
12315 return arm_mmu_idx_el(env, arm_current_el(env));
12318 static bool mve_no_pred(CPUARMState *env)
12321 * Return true if there is definitely no predication of MVE
12322 * instructions by VPR or LTPSIZE. (Returning false even if there
12323 * isn't any predication is OK; generated code will just be
12324 * a little worse.)
12325 * If the CPU does not implement MVE then this TB flag is always 0.
12327 * NOTE: if you change this logic, the "recalculate s->mve_no_pred"
12328 * logic in gen_update_fp_context() needs to be updated to match.
12330 * We do not include the effect of the ECI bits here -- they are
12331 * tracked in other TB flags. This simplifies the logic for
12332 * "when did we emit code that changes the MVE_NO_PRED TB flag
12333 * and thus need to end the TB?".
12335 if (cpu_isar_feature(aa32_mve, env_archcpu(env))) {
12336 return false;
12338 if (env->v7m.vpr) {
12339 return false;
12341 if (env->v7m.ltpsize < 4) {
12342 return false;
12344 return true;
12347 void cpu_get_tb_cpu_state(CPUARMState *env, vaddr *pc,
12348 uint64_t *cs_base, uint32_t *pflags)
12350 CPUARMTBFlags flags;
12352 assert_hflags_rebuild_correctly(env);
12353 flags = env->hflags;
12355 if (EX_TBFLAG_ANY(flags, AARCH64_STATE)) {
12356 *pc = env->pc;
12357 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) {
12358 DP_TBFLAG_A64(flags, BTYPE, env->btype);
12360 } else {
12361 *pc = env->regs[15];
12363 if (arm_feature(env, ARM_FEATURE_M)) {
12364 if (arm_feature(env, ARM_FEATURE_M_SECURITY) &&
12365 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S)
12366 != env->v7m.secure) {
12367 DP_TBFLAG_M32(flags, FPCCR_S_WRONG, 1);
12370 if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) &&
12371 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) ||
12372 (env->v7m.secure &&
12373 !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) {
12375 * ASPEN is set, but FPCA/SFPA indicate that there is no
12376 * active FP context; we must create a new FP context before
12377 * executing any FP insn.
12379 DP_TBFLAG_M32(flags, NEW_FP_CTXT_NEEDED, 1);
12382 bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK;
12383 if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) {
12384 DP_TBFLAG_M32(flags, LSPACT, 1);
12387 if (mve_no_pred(env)) {
12388 DP_TBFLAG_M32(flags, MVE_NO_PRED, 1);
12390 } else {
12392 * Note that XSCALE_CPAR shares bits with VECSTRIDE.
12393 * Note that VECLEN+VECSTRIDE are RES0 for M-profile.
12395 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
12396 DP_TBFLAG_A32(flags, XSCALE_CPAR, env->cp15.c15_cpar);
12397 } else {
12398 DP_TBFLAG_A32(flags, VECLEN, env->vfp.vec_len);
12399 DP_TBFLAG_A32(flags, VECSTRIDE, env->vfp.vec_stride);
12401 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) {
12402 DP_TBFLAG_A32(flags, VFPEN, 1);
12406 DP_TBFLAG_AM32(flags, THUMB, env->thumb);
12407 DP_TBFLAG_AM32(flags, CONDEXEC, env->condexec_bits);
12411 * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
12412 * states defined in the ARM ARM for software singlestep:
12413 * SS_ACTIVE PSTATE.SS State
12414 * 0 x Inactive (the TB flag for SS is always 0)
12415 * 1 0 Active-pending
12416 * 1 1 Active-not-pending
12417 * SS_ACTIVE is set in hflags; PSTATE__SS is computed every TB.
12419 if (EX_TBFLAG_ANY(flags, SS_ACTIVE) && (env->pstate & PSTATE_SS)) {
12420 DP_TBFLAG_ANY(flags, PSTATE__SS, 1);
12423 *pflags = flags.flags;
12424 *cs_base = flags.flags2;
12427 #ifdef TARGET_AARCH64
12429 * The manual says that when SVE is enabled and VQ is widened the
12430 * implementation is allowed to zero the previously inaccessible
12431 * portion of the registers. The corollary to that is that when
12432 * SVE is enabled and VQ is narrowed we are also allowed to zero
12433 * the now inaccessible portion of the registers.
12435 * The intent of this is that no predicate bit beyond VQ is ever set.
12436 * Which means that some operations on predicate registers themselves
12437 * may operate on full uint64_t or even unrolled across the maximum
12438 * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally
12439 * may well be cheaper than conditionals to restrict the operation
12440 * to the relevant portion of a uint16_t[16].
12442 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq)
12444 int i, j;
12445 uint64_t pmask;
12447 assert(vq >= 1 && vq <= ARM_MAX_VQ);
12448 assert(vq <= env_archcpu(env)->sve_max_vq);
12450 /* Zap the high bits of the zregs. */
12451 for (i = 0; i < 32; i++) {
12452 memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq));
12455 /* Zap the high bits of the pregs and ffr. */
12456 pmask = 0;
12457 if (vq & 3) {
12458 pmask = ~(-1ULL << (16 * (vq & 3)));
12460 for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) {
12461 for (i = 0; i < 17; ++i) {
12462 env->vfp.pregs[i].p[j] &= pmask;
12464 pmask = 0;
12468 static uint32_t sve_vqm1_for_el_sm_ena(CPUARMState *env, int el, bool sm)
12470 int exc_el;
12472 if (sm) {
12473 exc_el = sme_exception_el(env, el);
12474 } else {
12475 exc_el = sve_exception_el(env, el);
12477 if (exc_el) {
12478 return 0; /* disabled */
12480 return sve_vqm1_for_el_sm(env, el, sm);
12484 * Notice a change in SVE vector size when changing EL.
12486 void aarch64_sve_change_el(CPUARMState *env, int old_el,
12487 int new_el, bool el0_a64)
12489 ARMCPU *cpu = env_archcpu(env);
12490 int old_len, new_len;
12491 bool old_a64, new_a64, sm;
12493 /* Nothing to do if no SVE. */
12494 if (!cpu_isar_feature(aa64_sve, cpu)) {
12495 return;
12498 /* Nothing to do if FP is disabled in either EL. */
12499 if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) {
12500 return;
12503 old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64;
12504 new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64;
12507 * Both AArch64.TakeException and AArch64.ExceptionReturn
12508 * invoke ResetSVEState when taking an exception from, or
12509 * returning to, AArch32 state when PSTATE.SM is enabled.
12511 sm = FIELD_EX64(env->svcr, SVCR, SM);
12512 if (old_a64 != new_a64 && sm) {
12513 arm_reset_sve_state(env);
12514 return;
12518 * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped
12519 * at ELx, or not available because the EL is in AArch32 state, then
12520 * for all purposes other than a direct read, the ZCR_ELx.LEN field
12521 * has an effective value of 0".
12523 * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0).
12524 * If we ignore aa32 state, we would fail to see the vq4->vq0 transition
12525 * from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that
12526 * we already have the correct register contents when encountering the
12527 * vq0->vq0 transition between EL0->EL1.
12529 old_len = new_len = 0;
12530 if (old_a64) {
12531 old_len = sve_vqm1_for_el_sm_ena(env, old_el, sm);
12533 if (new_a64) {
12534 new_len = sve_vqm1_for_el_sm_ena(env, new_el, sm);
12537 /* When changing vector length, clear inaccessible state. */
12538 if (new_len < old_len) {
12539 aarch64_sve_narrow_vq(env, new_len + 1);
12542 #endif
12544 #ifndef CONFIG_USER_ONLY
12545 ARMSecuritySpace arm_security_space(CPUARMState *env)
12547 if (arm_feature(env, ARM_FEATURE_M)) {
12548 return arm_secure_to_space(env->v7m.secure);
12552 * If EL3 is not supported then the secure state is implementation
12553 * defined, in which case QEMU defaults to non-secure.
12555 if (!arm_feature(env, ARM_FEATURE_EL3)) {
12556 return ARMSS_NonSecure;
12559 /* Check for AArch64 EL3 or AArch32 Mon. */
12560 if (is_a64(env)) {
12561 if (extract32(env->pstate, 2, 2) == 3) {
12562 if (cpu_isar_feature(aa64_rme, env_archcpu(env))) {
12563 return ARMSS_Root;
12564 } else {
12565 return ARMSS_Secure;
12568 } else {
12569 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
12570 return ARMSS_Secure;
12574 return arm_security_space_below_el3(env);
12577 ARMSecuritySpace arm_security_space_below_el3(CPUARMState *env)
12579 assert(!arm_feature(env, ARM_FEATURE_M));
12582 * If EL3 is not supported then the secure state is implementation
12583 * defined, in which case QEMU defaults to non-secure.
12585 if (!arm_feature(env, ARM_FEATURE_EL3)) {
12586 return ARMSS_NonSecure;
12590 * Note NSE cannot be set without RME, and NSE & !NS is Reserved.
12591 * Ignoring NSE when !NS retains consistency without having to
12592 * modify other predicates.
12594 if (!(env->cp15.scr_el3 & SCR_NS)) {
12595 return ARMSS_Secure;
12596 } else if (env->cp15.scr_el3 & SCR_NSE) {
12597 return ARMSS_Realm;
12598 } else {
12599 return ARMSS_NonSecure;
12602 #endif /* !CONFIG_USER_ONLY */