virtio-gpu: add iommu support
[qemu/kevin.git] / hw / ppc / spapr.c
blob4edb6c7d163785b575c616d37f35a3144ec356df
1 /*
2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 * THE SOFTWARE.
27 #include "qemu/osdep.h"
28 #include "qapi/error.h"
29 #include "qapi/visitor.h"
30 #include "sysemu/sysemu.h"
31 #include "sysemu/numa.h"
32 #include "hw/hw.h"
33 #include "qemu/log.h"
34 #include "hw/fw-path-provider.h"
35 #include "elf.h"
36 #include "net/net.h"
37 #include "sysemu/device_tree.h"
38 #include "sysemu/cpus.h"
39 #include "sysemu/hw_accel.h"
40 #include "kvm_ppc.h"
41 #include "migration/misc.h"
42 #include "migration/global_state.h"
43 #include "migration/register.h"
44 #include "mmu-hash64.h"
45 #include "mmu-book3s-v3.h"
46 #include "cpu-models.h"
47 #include "qom/cpu.h"
49 #include "hw/boards.h"
50 #include "hw/ppc/ppc.h"
51 #include "hw/loader.h"
53 #include "hw/ppc/fdt.h"
54 #include "hw/ppc/spapr.h"
55 #include "hw/ppc/spapr_vio.h"
56 #include "hw/pci-host/spapr.h"
57 #include "hw/pci/msi.h"
59 #include "hw/pci/pci.h"
60 #include "hw/scsi/scsi.h"
61 #include "hw/virtio/virtio-scsi.h"
62 #include "hw/virtio/vhost-scsi-common.h"
64 #include "exec/address-spaces.h"
65 #include "exec/ram_addr.h"
66 #include "hw/usb.h"
67 #include "qemu/config-file.h"
68 #include "qemu/error-report.h"
69 #include "trace.h"
70 #include "hw/nmi.h"
71 #include "hw/intc/intc.h"
73 #include "hw/compat.h"
74 #include "qemu/cutils.h"
75 #include "hw/ppc/spapr_cpu_core.h"
76 #include "hw/mem/memory-device.h"
78 #include <libfdt.h>
80 /* SLOF memory layout:
82 * SLOF raw image loaded at 0, copies its romfs right below the flat
83 * device-tree, then position SLOF itself 31M below that
85 * So we set FW_OVERHEAD to 40MB which should account for all of that
86 * and more
88 * We load our kernel at 4M, leaving space for SLOF initial image
90 #define FDT_MAX_SIZE 0x100000
91 #define RTAS_MAX_SIZE 0x10000
92 #define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */
93 #define FW_MAX_SIZE 0x400000
94 #define FW_FILE_NAME "slof.bin"
95 #define FW_OVERHEAD 0x2800000
96 #define KERNEL_LOAD_ADDR FW_MAX_SIZE
98 #define MIN_RMA_SLOF 128UL
100 #define PHANDLE_XICP 0x00001111
102 /* These two functions implement the VCPU id numbering: one to compute them
103 * all and one to identify thread 0 of a VCORE. Any change to the first one
104 * is likely to have an impact on the second one, so let's keep them close.
106 static int spapr_vcpu_id(sPAPRMachineState *spapr, int cpu_index)
108 assert(spapr->vsmt);
109 return
110 (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads;
112 static bool spapr_is_thread0_in_vcore(sPAPRMachineState *spapr,
113 PowerPCCPU *cpu)
115 assert(spapr->vsmt);
116 return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0;
119 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque)
121 /* Dummy entries correspond to unused ICPState objects in older QEMUs,
122 * and newer QEMUs don't even have them. In both cases, we don't want
123 * to send anything on the wire.
125 return false;
128 static const VMStateDescription pre_2_10_vmstate_dummy_icp = {
129 .name = "icp/server",
130 .version_id = 1,
131 .minimum_version_id = 1,
132 .needed = pre_2_10_vmstate_dummy_icp_needed,
133 .fields = (VMStateField[]) {
134 VMSTATE_UNUSED(4), /* uint32_t xirr */
135 VMSTATE_UNUSED(1), /* uint8_t pending_priority */
136 VMSTATE_UNUSED(1), /* uint8_t mfrr */
137 VMSTATE_END_OF_LIST()
141 static void pre_2_10_vmstate_register_dummy_icp(int i)
143 vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp,
144 (void *)(uintptr_t) i);
147 static void pre_2_10_vmstate_unregister_dummy_icp(int i)
149 vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp,
150 (void *)(uintptr_t) i);
153 static int xics_max_server_number(sPAPRMachineState *spapr)
155 assert(spapr->vsmt);
156 return DIV_ROUND_UP(max_cpus * spapr->vsmt, smp_threads);
159 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
160 int smt_threads)
162 int i, ret = 0;
163 uint32_t servers_prop[smt_threads];
164 uint32_t gservers_prop[smt_threads * 2];
165 int index = spapr_get_vcpu_id(cpu);
167 if (cpu->compat_pvr) {
168 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
169 if (ret < 0) {
170 return ret;
174 /* Build interrupt servers and gservers properties */
175 for (i = 0; i < smt_threads; i++) {
176 servers_prop[i] = cpu_to_be32(index + i);
177 /* Hack, direct the group queues back to cpu 0 */
178 gservers_prop[i*2] = cpu_to_be32(index + i);
179 gservers_prop[i*2 + 1] = 0;
181 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
182 servers_prop, sizeof(servers_prop));
183 if (ret < 0) {
184 return ret;
186 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
187 gservers_prop, sizeof(gservers_prop));
189 return ret;
192 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, PowerPCCPU *cpu)
194 int index = spapr_get_vcpu_id(cpu);
195 uint32_t associativity[] = {cpu_to_be32(0x5),
196 cpu_to_be32(0x0),
197 cpu_to_be32(0x0),
198 cpu_to_be32(0x0),
199 cpu_to_be32(cpu->node_id),
200 cpu_to_be32(index)};
202 /* Advertise NUMA via ibm,associativity */
203 return fdt_setprop(fdt, offset, "ibm,associativity", associativity,
204 sizeof(associativity));
207 /* Populate the "ibm,pa-features" property */
208 static void spapr_populate_pa_features(sPAPRMachineState *spapr,
209 PowerPCCPU *cpu,
210 void *fdt, int offset,
211 bool legacy_guest)
213 uint8_t pa_features_206[] = { 6, 0,
214 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
215 uint8_t pa_features_207[] = { 24, 0,
216 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
217 0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
218 0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
219 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
220 uint8_t pa_features_300[] = { 66, 0,
221 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
222 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
223 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
224 /* 6: DS207 */
225 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
226 /* 16: Vector */
227 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
228 /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
229 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
230 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
231 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
232 /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
233 0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
234 /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
235 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
236 /* 42: PM, 44: PC RA, 46: SC vec'd */
237 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
238 /* 48: SIMD, 50: QP BFP, 52: String */
239 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
240 /* 54: DecFP, 56: DecI, 58: SHA */
241 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
242 /* 60: NM atomic, 62: RNG */
243 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
245 uint8_t *pa_features = NULL;
246 size_t pa_size;
248 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) {
249 pa_features = pa_features_206;
250 pa_size = sizeof(pa_features_206);
252 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) {
253 pa_features = pa_features_207;
254 pa_size = sizeof(pa_features_207);
256 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) {
257 pa_features = pa_features_300;
258 pa_size = sizeof(pa_features_300);
260 if (!pa_features) {
261 return;
264 if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
266 * Note: we keep CI large pages off by default because a 64K capable
267 * guest provisioned with large pages might otherwise try to map a qemu
268 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
269 * even if that qemu runs on a 4k host.
270 * We dd this bit back here if we are confident this is not an issue
272 pa_features[3] |= 0x20;
274 if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) {
275 pa_features[24] |= 0x80; /* Transactional memory support */
277 if (legacy_guest && pa_size > 40) {
278 /* Workaround for broken kernels that attempt (guest) radix
279 * mode when they can't handle it, if they see the radix bit set
280 * in pa-features. So hide it from them. */
281 pa_features[40 + 2] &= ~0x80; /* Radix MMU */
284 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
287 static int spapr_fixup_cpu_dt(void *fdt, sPAPRMachineState *spapr)
289 int ret = 0, offset, cpus_offset;
290 CPUState *cs;
291 char cpu_model[32];
292 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
294 CPU_FOREACH(cs) {
295 PowerPCCPU *cpu = POWERPC_CPU(cs);
296 DeviceClass *dc = DEVICE_GET_CLASS(cs);
297 int index = spapr_get_vcpu_id(cpu);
298 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
300 if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
301 continue;
304 snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
306 cpus_offset = fdt_path_offset(fdt, "/cpus");
307 if (cpus_offset < 0) {
308 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
309 if (cpus_offset < 0) {
310 return cpus_offset;
313 offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
314 if (offset < 0) {
315 offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
316 if (offset < 0) {
317 return offset;
321 ret = fdt_setprop(fdt, offset, "ibm,pft-size",
322 pft_size_prop, sizeof(pft_size_prop));
323 if (ret < 0) {
324 return ret;
327 if (nb_numa_nodes > 1) {
328 ret = spapr_fixup_cpu_numa_dt(fdt, offset, cpu);
329 if (ret < 0) {
330 return ret;
334 ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt);
335 if (ret < 0) {
336 return ret;
339 spapr_populate_pa_features(spapr, cpu, fdt, offset,
340 spapr->cas_legacy_guest_workaround);
342 return ret;
345 static hwaddr spapr_node0_size(MachineState *machine)
347 if (nb_numa_nodes) {
348 int i;
349 for (i = 0; i < nb_numa_nodes; ++i) {
350 if (numa_info[i].node_mem) {
351 return MIN(pow2floor(numa_info[i].node_mem),
352 machine->ram_size);
356 return machine->ram_size;
359 static void add_str(GString *s, const gchar *s1)
361 g_string_append_len(s, s1, strlen(s1) + 1);
364 static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
365 hwaddr size)
367 uint32_t associativity[] = {
368 cpu_to_be32(0x4), /* length */
369 cpu_to_be32(0x0), cpu_to_be32(0x0),
370 cpu_to_be32(0x0), cpu_to_be32(nodeid)
372 char mem_name[32];
373 uint64_t mem_reg_property[2];
374 int off;
376 mem_reg_property[0] = cpu_to_be64(start);
377 mem_reg_property[1] = cpu_to_be64(size);
379 sprintf(mem_name, "memory@" TARGET_FMT_lx, start);
380 off = fdt_add_subnode(fdt, 0, mem_name);
381 _FDT(off);
382 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
383 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
384 sizeof(mem_reg_property))));
385 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
386 sizeof(associativity))));
387 return off;
390 static int spapr_populate_memory(sPAPRMachineState *spapr, void *fdt)
392 MachineState *machine = MACHINE(spapr);
393 hwaddr mem_start, node_size;
394 int i, nb_nodes = nb_numa_nodes;
395 NodeInfo *nodes = numa_info;
396 NodeInfo ramnode;
398 /* No NUMA nodes, assume there is just one node with whole RAM */
399 if (!nb_numa_nodes) {
400 nb_nodes = 1;
401 ramnode.node_mem = machine->ram_size;
402 nodes = &ramnode;
405 for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
406 if (!nodes[i].node_mem) {
407 continue;
409 if (mem_start >= machine->ram_size) {
410 node_size = 0;
411 } else {
412 node_size = nodes[i].node_mem;
413 if (node_size > machine->ram_size - mem_start) {
414 node_size = machine->ram_size - mem_start;
417 if (!mem_start) {
418 /* spapr_machine_init() checks for rma_size <= node0_size
419 * already */
420 spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
421 mem_start += spapr->rma_size;
422 node_size -= spapr->rma_size;
424 for ( ; node_size; ) {
425 hwaddr sizetmp = pow2floor(node_size);
427 /* mem_start != 0 here */
428 if (ctzl(mem_start) < ctzl(sizetmp)) {
429 sizetmp = 1ULL << ctzl(mem_start);
432 spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
433 node_size -= sizetmp;
434 mem_start += sizetmp;
438 return 0;
441 static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset,
442 sPAPRMachineState *spapr)
444 PowerPCCPU *cpu = POWERPC_CPU(cs);
445 CPUPPCState *env = &cpu->env;
446 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
447 int index = spapr_get_vcpu_id(cpu);
448 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
449 0xffffffff, 0xffffffff};
450 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
451 : SPAPR_TIMEBASE_FREQ;
452 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
453 uint32_t page_sizes_prop[64];
454 size_t page_sizes_prop_size;
455 uint32_t vcpus_per_socket = smp_threads * smp_cores;
456 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
457 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
458 sPAPRDRConnector *drc;
459 int drc_index;
460 uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
461 int i;
463 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
464 if (drc) {
465 drc_index = spapr_drc_index(drc);
466 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
469 _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
470 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
472 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
473 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
474 env->dcache_line_size)));
475 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
476 env->dcache_line_size)));
477 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
478 env->icache_line_size)));
479 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
480 env->icache_line_size)));
482 if (pcc->l1_dcache_size) {
483 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
484 pcc->l1_dcache_size)));
485 } else {
486 warn_report("Unknown L1 dcache size for cpu");
488 if (pcc->l1_icache_size) {
489 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
490 pcc->l1_icache_size)));
491 } else {
492 warn_report("Unknown L1 icache size for cpu");
495 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
496 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
497 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size)));
498 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size)));
499 _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
500 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
502 if (env->spr_cb[SPR_PURR].oea_read) {
503 _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
506 if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
507 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
508 segs, sizeof(segs))));
511 /* Advertise VSX (vector extensions) if available
512 * 1 == VMX / Altivec available
513 * 2 == VSX available
515 * Only CPUs for which we create core types in spapr_cpu_core.c
516 * are possible, and all of those have VMX */
517 if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) {
518 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2)));
519 } else {
520 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1)));
523 /* Advertise DFP (Decimal Floating Point) if available
524 * 0 / no property == no DFP
525 * 1 == DFP available */
526 if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) {
527 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
530 page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
531 sizeof(page_sizes_prop));
532 if (page_sizes_prop_size) {
533 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
534 page_sizes_prop, page_sizes_prop_size)));
537 spapr_populate_pa_features(spapr, cpu, fdt, offset, false);
539 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
540 cs->cpu_index / vcpus_per_socket)));
542 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
543 pft_size_prop, sizeof(pft_size_prop))));
545 if (nb_numa_nodes > 1) {
546 _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cpu));
549 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
551 if (pcc->radix_page_info) {
552 for (i = 0; i < pcc->radix_page_info->count; i++) {
553 radix_AP_encodings[i] =
554 cpu_to_be32(pcc->radix_page_info->entries[i]);
556 _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
557 radix_AP_encodings,
558 pcc->radix_page_info->count *
559 sizeof(radix_AP_encodings[0]))));
563 static void spapr_populate_cpus_dt_node(void *fdt, sPAPRMachineState *spapr)
565 CPUState **rev;
566 CPUState *cs;
567 int n_cpus;
568 int cpus_offset;
569 char *nodename;
570 int i;
572 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
573 _FDT(cpus_offset);
574 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
575 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
578 * We walk the CPUs in reverse order to ensure that CPU DT nodes
579 * created by fdt_add_subnode() end up in the right order in FDT
580 * for the guest kernel the enumerate the CPUs correctly.
582 * The CPU list cannot be traversed in reverse order, so we need
583 * to do extra work.
585 n_cpus = 0;
586 rev = NULL;
587 CPU_FOREACH(cs) {
588 rev = g_renew(CPUState *, rev, n_cpus + 1);
589 rev[n_cpus++] = cs;
592 for (i = n_cpus - 1; i >= 0; i--) {
593 CPUState *cs = rev[i];
594 PowerPCCPU *cpu = POWERPC_CPU(cs);
595 int index = spapr_get_vcpu_id(cpu);
596 DeviceClass *dc = DEVICE_GET_CLASS(cs);
597 int offset;
599 if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
600 continue;
603 nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
604 offset = fdt_add_subnode(fdt, cpus_offset, nodename);
605 g_free(nodename);
606 _FDT(offset);
607 spapr_populate_cpu_dt(cs, fdt, offset, spapr);
612 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr)
614 MemoryDeviceInfoList *info;
616 for (info = list; info; info = info->next) {
617 MemoryDeviceInfo *value = info->value;
619 if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) {
620 PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data;
622 if (addr >= pcdimm_info->addr &&
623 addr < (pcdimm_info->addr + pcdimm_info->size)) {
624 return pcdimm_info->node;
629 return -1;
632 struct sPAPRDrconfCellV2 {
633 uint32_t seq_lmbs;
634 uint64_t base_addr;
635 uint32_t drc_index;
636 uint32_t aa_index;
637 uint32_t flags;
638 } QEMU_PACKED;
640 typedef struct DrconfCellQueue {
641 struct sPAPRDrconfCellV2 cell;
642 QSIMPLEQ_ENTRY(DrconfCellQueue) entry;
643 } DrconfCellQueue;
645 static DrconfCellQueue *
646 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr,
647 uint32_t drc_index, uint32_t aa_index,
648 uint32_t flags)
650 DrconfCellQueue *elem;
652 elem = g_malloc0(sizeof(*elem));
653 elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs);
654 elem->cell.base_addr = cpu_to_be64(base_addr);
655 elem->cell.drc_index = cpu_to_be32(drc_index);
656 elem->cell.aa_index = cpu_to_be32(aa_index);
657 elem->cell.flags = cpu_to_be32(flags);
659 return elem;
662 /* ibm,dynamic-memory-v2 */
663 static int spapr_populate_drmem_v2(sPAPRMachineState *spapr, void *fdt,
664 int offset, MemoryDeviceInfoList *dimms)
666 MachineState *machine = MACHINE(spapr);
667 uint8_t *int_buf, *cur_index, buf_len;
668 int ret;
669 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
670 uint64_t addr, cur_addr, size;
671 uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size);
672 uint64_t mem_end = machine->device_memory->base +
673 memory_region_size(&machine->device_memory->mr);
674 uint32_t node, nr_entries = 0;
675 sPAPRDRConnector *drc;
676 DrconfCellQueue *elem, *next;
677 MemoryDeviceInfoList *info;
678 QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue
679 = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue);
681 /* Entry to cover RAM and the gap area */
682 elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1,
683 SPAPR_LMB_FLAGS_RESERVED |
684 SPAPR_LMB_FLAGS_DRC_INVALID);
685 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
686 nr_entries++;
688 cur_addr = machine->device_memory->base;
689 for (info = dimms; info; info = info->next) {
690 PCDIMMDeviceInfo *di = info->value->u.dimm.data;
692 addr = di->addr;
693 size = di->size;
694 node = di->node;
696 /* Entry for hot-pluggable area */
697 if (cur_addr < addr) {
698 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
699 g_assert(drc);
700 elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size,
701 cur_addr, spapr_drc_index(drc), -1, 0);
702 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
703 nr_entries++;
706 /* Entry for DIMM */
707 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size);
708 g_assert(drc);
709 elem = spapr_get_drconf_cell(size / lmb_size, addr,
710 spapr_drc_index(drc), node,
711 SPAPR_LMB_FLAGS_ASSIGNED);
712 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
713 nr_entries++;
714 cur_addr = addr + size;
717 /* Entry for remaining hotpluggable area */
718 if (cur_addr < mem_end) {
719 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
720 g_assert(drc);
721 elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size,
722 cur_addr, spapr_drc_index(drc), -1, 0);
723 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
724 nr_entries++;
727 buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t);
728 int_buf = cur_index = g_malloc0(buf_len);
729 *(uint32_t *)int_buf = cpu_to_be32(nr_entries);
730 cur_index += sizeof(nr_entries);
732 QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) {
733 memcpy(cur_index, &elem->cell, sizeof(elem->cell));
734 cur_index += sizeof(elem->cell);
735 QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry);
736 g_free(elem);
739 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len);
740 g_free(int_buf);
741 if (ret < 0) {
742 return -1;
744 return 0;
747 /* ibm,dynamic-memory */
748 static int spapr_populate_drmem_v1(sPAPRMachineState *spapr, void *fdt,
749 int offset, MemoryDeviceInfoList *dimms)
751 MachineState *machine = MACHINE(spapr);
752 int i, ret;
753 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
754 uint32_t device_lmb_start = machine->device_memory->base / lmb_size;
755 uint32_t nr_lmbs = (machine->device_memory->base +
756 memory_region_size(&machine->device_memory->mr)) /
757 lmb_size;
758 uint32_t *int_buf, *cur_index, buf_len;
761 * Allocate enough buffer size to fit in ibm,dynamic-memory
763 buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t);
764 cur_index = int_buf = g_malloc0(buf_len);
765 int_buf[0] = cpu_to_be32(nr_lmbs);
766 cur_index++;
767 for (i = 0; i < nr_lmbs; i++) {
768 uint64_t addr = i * lmb_size;
769 uint32_t *dynamic_memory = cur_index;
771 if (i >= device_lmb_start) {
772 sPAPRDRConnector *drc;
774 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
775 g_assert(drc);
777 dynamic_memory[0] = cpu_to_be32(addr >> 32);
778 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
779 dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
780 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
781 dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr));
782 if (memory_region_present(get_system_memory(), addr)) {
783 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
784 } else {
785 dynamic_memory[5] = cpu_to_be32(0);
787 } else {
789 * LMB information for RMA, boot time RAM and gap b/n RAM and
790 * device memory region -- all these are marked as reserved
791 * and as having no valid DRC.
793 dynamic_memory[0] = cpu_to_be32(addr >> 32);
794 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
795 dynamic_memory[2] = cpu_to_be32(0);
796 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
797 dynamic_memory[4] = cpu_to_be32(-1);
798 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
799 SPAPR_LMB_FLAGS_DRC_INVALID);
802 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
804 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
805 g_free(int_buf);
806 if (ret < 0) {
807 return -1;
809 return 0;
813 * Adds ibm,dynamic-reconfiguration-memory node.
814 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
815 * of this device tree node.
817 static int spapr_populate_drconf_memory(sPAPRMachineState *spapr, void *fdt)
819 MachineState *machine = MACHINE(spapr);
820 int ret, i, offset;
821 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
822 uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)};
823 uint32_t *int_buf, *cur_index, buf_len;
824 int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
825 MemoryDeviceInfoList *dimms = NULL;
828 * Don't create the node if there is no device memory
830 if (machine->ram_size == machine->maxram_size) {
831 return 0;
834 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
836 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
837 sizeof(prop_lmb_size));
838 if (ret < 0) {
839 return ret;
842 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
843 if (ret < 0) {
844 return ret;
847 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
848 if (ret < 0) {
849 return ret;
852 /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */
853 dimms = qmp_memory_device_list();
854 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) {
855 ret = spapr_populate_drmem_v2(spapr, fdt, offset, dimms);
856 } else {
857 ret = spapr_populate_drmem_v1(spapr, fdt, offset, dimms);
859 qapi_free_MemoryDeviceInfoList(dimms);
861 if (ret < 0) {
862 return ret;
865 /* ibm,associativity-lookup-arrays */
866 buf_len = (nr_nodes * 4 + 2) * sizeof(uint32_t);
867 cur_index = int_buf = g_malloc0(buf_len);
869 cur_index = int_buf;
870 int_buf[0] = cpu_to_be32(nr_nodes);
871 int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
872 cur_index += 2;
873 for (i = 0; i < nr_nodes; i++) {
874 uint32_t associativity[] = {
875 cpu_to_be32(0x0),
876 cpu_to_be32(0x0),
877 cpu_to_be32(0x0),
878 cpu_to_be32(i)
880 memcpy(cur_index, associativity, sizeof(associativity));
881 cur_index += 4;
883 ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
884 (cur_index - int_buf) * sizeof(uint32_t));
885 g_free(int_buf);
887 return ret;
890 static int spapr_dt_cas_updates(sPAPRMachineState *spapr, void *fdt,
891 sPAPROptionVector *ov5_updates)
893 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
894 int ret = 0, offset;
896 /* Generate ibm,dynamic-reconfiguration-memory node if required */
897 if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) {
898 g_assert(smc->dr_lmb_enabled);
899 ret = spapr_populate_drconf_memory(spapr, fdt);
900 if (ret) {
901 goto out;
905 offset = fdt_path_offset(fdt, "/chosen");
906 if (offset < 0) {
907 offset = fdt_add_subnode(fdt, 0, "chosen");
908 if (offset < 0) {
909 return offset;
912 ret = spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas,
913 "ibm,architecture-vec-5");
915 out:
916 return ret;
919 static bool spapr_hotplugged_dev_before_cas(void)
921 Object *drc_container, *obj;
922 ObjectProperty *prop;
923 ObjectPropertyIterator iter;
925 drc_container = container_get(object_get_root(), "/dr-connector");
926 object_property_iter_init(&iter, drc_container);
927 while ((prop = object_property_iter_next(&iter))) {
928 if (!strstart(prop->type, "link<", NULL)) {
929 continue;
931 obj = object_property_get_link(drc_container, prop->name, NULL);
932 if (spapr_drc_needed(obj)) {
933 return true;
936 return false;
939 int spapr_h_cas_compose_response(sPAPRMachineState *spapr,
940 target_ulong addr, target_ulong size,
941 sPAPROptionVector *ov5_updates)
943 void *fdt, *fdt_skel;
944 sPAPRDeviceTreeUpdateHeader hdr = { .version_id = 1 };
946 if (spapr_hotplugged_dev_before_cas()) {
947 return 1;
950 if (size < sizeof(hdr) || size > FW_MAX_SIZE) {
951 error_report("SLOF provided an unexpected CAS buffer size "
952 TARGET_FMT_lu " (min: %zu, max: %u)",
953 size, sizeof(hdr), FW_MAX_SIZE);
954 exit(EXIT_FAILURE);
957 size -= sizeof(hdr);
959 /* Create skeleton */
960 fdt_skel = g_malloc0(size);
961 _FDT((fdt_create(fdt_skel, size)));
962 _FDT((fdt_finish_reservemap(fdt_skel)));
963 _FDT((fdt_begin_node(fdt_skel, "")));
964 _FDT((fdt_end_node(fdt_skel)));
965 _FDT((fdt_finish(fdt_skel)));
966 fdt = g_malloc0(size);
967 _FDT((fdt_open_into(fdt_skel, fdt, size)));
968 g_free(fdt_skel);
970 /* Fixup cpu nodes */
971 _FDT((spapr_fixup_cpu_dt(fdt, spapr)));
973 if (spapr_dt_cas_updates(spapr, fdt, ov5_updates)) {
974 return -1;
977 /* Pack resulting tree */
978 _FDT((fdt_pack(fdt)));
980 if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
981 trace_spapr_cas_failed(size);
982 return -1;
985 cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
986 cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
987 trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
988 g_free(fdt);
990 return 0;
993 static void spapr_dt_rtas(sPAPRMachineState *spapr, void *fdt)
995 int rtas;
996 GString *hypertas = g_string_sized_new(256);
997 GString *qemu_hypertas = g_string_sized_new(256);
998 uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) };
999 uint64_t max_device_addr = MACHINE(spapr)->device_memory->base +
1000 memory_region_size(&MACHINE(spapr)->device_memory->mr);
1001 uint32_t lrdr_capacity[] = {
1002 cpu_to_be32(max_device_addr >> 32),
1003 cpu_to_be32(max_device_addr & 0xffffffff),
1004 0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE),
1005 cpu_to_be32(max_cpus / smp_threads),
1007 uint32_t maxdomains[] = {
1008 cpu_to_be32(4),
1009 cpu_to_be32(0),
1010 cpu_to_be32(0),
1011 cpu_to_be32(0),
1012 cpu_to_be32(nb_numa_nodes ? nb_numa_nodes - 1 : 0),
1015 _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
1017 /* hypertas */
1018 add_str(hypertas, "hcall-pft");
1019 add_str(hypertas, "hcall-term");
1020 add_str(hypertas, "hcall-dabr");
1021 add_str(hypertas, "hcall-interrupt");
1022 add_str(hypertas, "hcall-tce");
1023 add_str(hypertas, "hcall-vio");
1024 add_str(hypertas, "hcall-splpar");
1025 add_str(hypertas, "hcall-bulk");
1026 add_str(hypertas, "hcall-set-mode");
1027 add_str(hypertas, "hcall-sprg0");
1028 add_str(hypertas, "hcall-copy");
1029 add_str(hypertas, "hcall-debug");
1030 add_str(qemu_hypertas, "hcall-memop1");
1032 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
1033 add_str(hypertas, "hcall-multi-tce");
1036 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
1037 add_str(hypertas, "hcall-hpt-resize");
1040 _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
1041 hypertas->str, hypertas->len));
1042 g_string_free(hypertas, TRUE);
1043 _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
1044 qemu_hypertas->str, qemu_hypertas->len));
1045 g_string_free(qemu_hypertas, TRUE);
1047 _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
1048 refpoints, sizeof(refpoints)));
1050 _FDT(fdt_setprop(fdt, rtas, "ibm,max-associativity-domains",
1051 maxdomains, sizeof(maxdomains)));
1053 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
1054 RTAS_ERROR_LOG_MAX));
1055 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
1056 RTAS_EVENT_SCAN_RATE));
1058 g_assert(msi_nonbroken);
1059 _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
1062 * According to PAPR, rtas ibm,os-term does not guarantee a return
1063 * back to the guest cpu.
1065 * While an additional ibm,extended-os-term property indicates
1066 * that rtas call return will always occur. Set this property.
1068 _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
1070 _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
1071 lrdr_capacity, sizeof(lrdr_capacity)));
1073 spapr_dt_rtas_tokens(fdt, rtas);
1076 /* Prepare ibm,arch-vec-5-platform-support, which indicates the MMU features
1077 * that the guest may request and thus the valid values for bytes 24..26 of
1078 * option vector 5: */
1079 static void spapr_dt_ov5_platform_support(void *fdt, int chosen)
1081 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
1083 char val[2 * 4] = {
1084 23, 0x00, /* Xive mode, filled in below. */
1085 24, 0x00, /* Hash/Radix, filled in below. */
1086 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
1087 26, 0x40, /* Radix options: GTSE == yes. */
1090 if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
1091 first_ppc_cpu->compat_pvr)) {
1092 /* If we're in a pre POWER9 compat mode then the guest should do hash */
1093 val[3] = 0x00; /* Hash */
1094 } else if (kvm_enabled()) {
1095 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
1096 val[3] = 0x80; /* OV5_MMU_BOTH */
1097 } else if (kvmppc_has_cap_mmu_radix()) {
1098 val[3] = 0x40; /* OV5_MMU_RADIX_300 */
1099 } else {
1100 val[3] = 0x00; /* Hash */
1102 } else {
1103 /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */
1104 val[3] = 0xC0;
1106 _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
1107 val, sizeof(val)));
1110 static void spapr_dt_chosen(sPAPRMachineState *spapr, void *fdt)
1112 MachineState *machine = MACHINE(spapr);
1113 int chosen;
1114 const char *boot_device = machine->boot_order;
1115 char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
1116 size_t cb = 0;
1117 char *bootlist = get_boot_devices_list(&cb);
1119 _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
1121 _FDT(fdt_setprop_string(fdt, chosen, "bootargs", machine->kernel_cmdline));
1122 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
1123 spapr->initrd_base));
1124 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
1125 spapr->initrd_base + spapr->initrd_size));
1127 if (spapr->kernel_size) {
1128 uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
1129 cpu_to_be64(spapr->kernel_size) };
1131 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
1132 &kprop, sizeof(kprop)));
1133 if (spapr->kernel_le) {
1134 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
1137 if (boot_menu) {
1138 _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu)));
1140 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
1141 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
1142 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
1144 if (cb && bootlist) {
1145 int i;
1147 for (i = 0; i < cb; i++) {
1148 if (bootlist[i] == '\n') {
1149 bootlist[i] = ' ';
1152 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
1155 if (boot_device && strlen(boot_device)) {
1156 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
1159 if (!spapr->has_graphics && stdout_path) {
1161 * "linux,stdout-path" and "stdout" properties are deprecated by linux
1162 * kernel. New platforms should only use the "stdout-path" property. Set
1163 * the new property and continue using older property to remain
1164 * compatible with the existing firmware.
1166 _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
1167 _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path));
1170 spapr_dt_ov5_platform_support(fdt, chosen);
1172 g_free(stdout_path);
1173 g_free(bootlist);
1176 static void spapr_dt_hypervisor(sPAPRMachineState *spapr, void *fdt)
1178 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1179 * KVM to work under pHyp with some guest co-operation */
1180 int hypervisor;
1181 uint8_t hypercall[16];
1183 _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
1184 /* indicate KVM hypercall interface */
1185 _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
1186 if (kvmppc_has_cap_fixup_hcalls()) {
1188 * Older KVM versions with older guest kernels were broken
1189 * with the magic page, don't allow the guest to map it.
1191 if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
1192 sizeof(hypercall))) {
1193 _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
1194 hypercall, sizeof(hypercall)));
1199 static void *spapr_build_fdt(sPAPRMachineState *spapr,
1200 hwaddr rtas_addr,
1201 hwaddr rtas_size)
1203 MachineState *machine = MACHINE(spapr);
1204 MachineClass *mc = MACHINE_GET_CLASS(machine);
1205 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1206 int ret;
1207 void *fdt;
1208 sPAPRPHBState *phb;
1209 char *buf;
1211 fdt = g_malloc0(FDT_MAX_SIZE);
1212 _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
1214 /* Root node */
1215 _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
1216 _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
1217 _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
1220 * Add info to guest to indentify which host is it being run on
1221 * and what is the uuid of the guest
1223 if (kvmppc_get_host_model(&buf)) {
1224 _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
1225 g_free(buf);
1227 if (kvmppc_get_host_serial(&buf)) {
1228 _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1229 g_free(buf);
1232 buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1234 _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1235 if (qemu_uuid_set) {
1236 _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1238 g_free(buf);
1240 if (qemu_get_vm_name()) {
1241 _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1242 qemu_get_vm_name()));
1245 _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1246 _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
1248 /* /interrupt controller */
1249 spapr_dt_xics(xics_max_server_number(spapr), fdt, PHANDLE_XICP);
1251 ret = spapr_populate_memory(spapr, fdt);
1252 if (ret < 0) {
1253 error_report("couldn't setup memory nodes in fdt");
1254 exit(1);
1257 /* /vdevice */
1258 spapr_dt_vdevice(spapr->vio_bus, fdt);
1260 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1261 ret = spapr_rng_populate_dt(fdt);
1262 if (ret < 0) {
1263 error_report("could not set up rng device in the fdt");
1264 exit(1);
1268 QLIST_FOREACH(phb, &spapr->phbs, list) {
1269 ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt);
1270 if (ret < 0) {
1271 error_report("couldn't setup PCI devices in fdt");
1272 exit(1);
1276 /* cpus */
1277 spapr_populate_cpus_dt_node(fdt, spapr);
1279 if (smc->dr_lmb_enabled) {
1280 _FDT(spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
1283 if (mc->has_hotpluggable_cpus) {
1284 int offset = fdt_path_offset(fdt, "/cpus");
1285 ret = spapr_drc_populate_dt(fdt, offset, NULL,
1286 SPAPR_DR_CONNECTOR_TYPE_CPU);
1287 if (ret < 0) {
1288 error_report("Couldn't set up CPU DR device tree properties");
1289 exit(1);
1293 /* /event-sources */
1294 spapr_dt_events(spapr, fdt);
1296 /* /rtas */
1297 spapr_dt_rtas(spapr, fdt);
1299 /* /chosen */
1300 spapr_dt_chosen(spapr, fdt);
1302 /* /hypervisor */
1303 if (kvm_enabled()) {
1304 spapr_dt_hypervisor(spapr, fdt);
1307 /* Build memory reserve map */
1308 if (spapr->kernel_size) {
1309 _FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size)));
1311 if (spapr->initrd_size) {
1312 _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, spapr->initrd_size)));
1315 /* ibm,client-architecture-support updates */
1316 ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas);
1317 if (ret < 0) {
1318 error_report("couldn't setup CAS properties fdt");
1319 exit(1);
1322 return fdt;
1325 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1327 return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
1330 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1331 PowerPCCPU *cpu)
1333 CPUPPCState *env = &cpu->env;
1335 /* The TCG path should also be holding the BQL at this point */
1336 g_assert(qemu_mutex_iothread_locked());
1338 if (msr_pr) {
1339 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1340 env->gpr[3] = H_PRIVILEGE;
1341 } else {
1342 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1346 static uint64_t spapr_get_patbe(PPCVirtualHypervisor *vhyp)
1348 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1350 return spapr->patb_entry;
1353 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1354 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1355 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1356 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1357 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1360 * Get the fd to access the kernel htab, re-opening it if necessary
1362 static int get_htab_fd(sPAPRMachineState *spapr)
1364 Error *local_err = NULL;
1366 if (spapr->htab_fd >= 0) {
1367 return spapr->htab_fd;
1370 spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err);
1371 if (spapr->htab_fd < 0) {
1372 error_report_err(local_err);
1375 return spapr->htab_fd;
1378 void close_htab_fd(sPAPRMachineState *spapr)
1380 if (spapr->htab_fd >= 0) {
1381 close(spapr->htab_fd);
1383 spapr->htab_fd = -1;
1386 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1388 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1390 return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1393 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp)
1395 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1397 assert(kvm_enabled());
1399 if (!spapr->htab) {
1400 return 0;
1403 return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18);
1406 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1407 hwaddr ptex, int n)
1409 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1410 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1412 if (!spapr->htab) {
1414 * HTAB is controlled by KVM. Fetch into temporary buffer
1416 ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1417 kvmppc_read_hptes(hptes, ptex, n);
1418 return hptes;
1422 * HTAB is controlled by QEMU. Just point to the internally
1423 * accessible PTEG.
1425 return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1428 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1429 const ppc_hash_pte64_t *hptes,
1430 hwaddr ptex, int n)
1432 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1434 if (!spapr->htab) {
1435 g_free((void *)hptes);
1438 /* Nothing to do for qemu managed HPT */
1441 static void spapr_store_hpte(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1442 uint64_t pte0, uint64_t pte1)
1444 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1445 hwaddr offset = ptex * HASH_PTE_SIZE_64;
1447 if (!spapr->htab) {
1448 kvmppc_write_hpte(ptex, pte0, pte1);
1449 } else {
1450 stq_p(spapr->htab + offset, pte0);
1451 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1455 int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1457 int shift;
1459 /* We aim for a hash table of size 1/128 the size of RAM (rounded
1460 * up). The PAPR recommendation is actually 1/64 of RAM size, but
1461 * that's much more than is needed for Linux guests */
1462 shift = ctz64(pow2ceil(ramsize)) - 7;
1463 shift = MAX(shift, 18); /* Minimum architected size */
1464 shift = MIN(shift, 46); /* Maximum architected size */
1465 return shift;
1468 void spapr_free_hpt(sPAPRMachineState *spapr)
1470 g_free(spapr->htab);
1471 spapr->htab = NULL;
1472 spapr->htab_shift = 0;
1473 close_htab_fd(spapr);
1476 void spapr_reallocate_hpt(sPAPRMachineState *spapr, int shift,
1477 Error **errp)
1479 long rc;
1481 /* Clean up any HPT info from a previous boot */
1482 spapr_free_hpt(spapr);
1484 rc = kvmppc_reset_htab(shift);
1485 if (rc < 0) {
1486 /* kernel-side HPT needed, but couldn't allocate one */
1487 error_setg_errno(errp, errno,
1488 "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
1489 shift);
1490 /* This is almost certainly fatal, but if the caller really
1491 * wants to carry on with shift == 0, it's welcome to try */
1492 } else if (rc > 0) {
1493 /* kernel-side HPT allocated */
1494 if (rc != shift) {
1495 error_setg(errp,
1496 "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
1497 shift, rc);
1500 spapr->htab_shift = shift;
1501 spapr->htab = NULL;
1502 } else {
1503 /* kernel-side HPT not needed, allocate in userspace instead */
1504 size_t size = 1ULL << shift;
1505 int i;
1507 spapr->htab = qemu_memalign(size, size);
1508 if (!spapr->htab) {
1509 error_setg_errno(errp, errno,
1510 "Could not allocate HPT of order %d", shift);
1511 return;
1514 memset(spapr->htab, 0, size);
1515 spapr->htab_shift = shift;
1517 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1518 DIRTY_HPTE(HPTE(spapr->htab, i));
1521 /* We're setting up a hash table, so that means we're not radix */
1522 spapr->patb_entry = 0;
1525 void spapr_setup_hpt_and_vrma(sPAPRMachineState *spapr)
1527 int hpt_shift;
1529 if ((spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED)
1530 || (spapr->cas_reboot
1531 && !spapr_ovec_test(spapr->ov5_cas, OV5_HPT_RESIZE))) {
1532 hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1533 } else {
1534 uint64_t current_ram_size;
1536 current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
1537 hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size);
1539 spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal);
1541 if (spapr->vrma_adjust) {
1542 spapr->rma_size = kvmppc_rma_size(spapr_node0_size(MACHINE(spapr)),
1543 spapr->htab_shift);
1547 static int spapr_reset_drcs(Object *child, void *opaque)
1549 sPAPRDRConnector *drc =
1550 (sPAPRDRConnector *) object_dynamic_cast(child,
1551 TYPE_SPAPR_DR_CONNECTOR);
1553 if (drc) {
1554 spapr_drc_reset(drc);
1557 return 0;
1560 static void spapr_machine_reset(void)
1562 MachineState *machine = MACHINE(qdev_get_machine());
1563 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
1564 PowerPCCPU *first_ppc_cpu;
1565 uint32_t rtas_limit;
1566 hwaddr rtas_addr, fdt_addr;
1567 void *fdt;
1568 int rc;
1570 spapr_caps_apply(spapr);
1572 first_ppc_cpu = POWERPC_CPU(first_cpu);
1573 if (kvm_enabled() && kvmppc_has_cap_mmu_radix() &&
1574 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
1575 spapr->max_compat_pvr)) {
1576 /* If using KVM with radix mode available, VCPUs can be started
1577 * without a HPT because KVM will start them in radix mode.
1578 * Set the GR bit in PATB so that we know there is no HPT. */
1579 spapr->patb_entry = PATBE1_GR;
1580 } else {
1581 spapr_setup_hpt_and_vrma(spapr);
1584 /* if this reset wasn't generated by CAS, we should reset our
1585 * negotiated options and start from scratch */
1586 if (!spapr->cas_reboot) {
1587 spapr_ovec_cleanup(spapr->ov5_cas);
1588 spapr->ov5_cas = spapr_ovec_new();
1590 ppc_set_compat(first_ppc_cpu, spapr->max_compat_pvr, &error_fatal);
1593 if (!SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
1594 spapr_irq_msi_reset(spapr);
1597 qemu_devices_reset();
1599 /* DRC reset may cause a device to be unplugged. This will cause troubles
1600 * if this device is used by another device (eg, a running vhost backend
1601 * will crash QEMU if the DIMM holding the vring goes away). To avoid such
1602 * situations, we reset DRCs after all devices have been reset.
1604 object_child_foreach_recursive(object_get_root(), spapr_reset_drcs, NULL);
1606 spapr_clear_pending_events(spapr);
1609 * We place the device tree and RTAS just below either the top of the RMA,
1610 * or just below 2GB, whichever is lowere, so that it can be
1611 * processed with 32-bit real mode code if necessary
1613 rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR);
1614 rtas_addr = rtas_limit - RTAS_MAX_SIZE;
1615 fdt_addr = rtas_addr - FDT_MAX_SIZE;
1617 fdt = spapr_build_fdt(spapr, rtas_addr, spapr->rtas_size);
1619 spapr_load_rtas(spapr, fdt, rtas_addr);
1621 rc = fdt_pack(fdt);
1623 /* Should only fail if we've built a corrupted tree */
1624 assert(rc == 0);
1626 if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
1627 error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
1628 fdt_totalsize(fdt), FDT_MAX_SIZE);
1629 exit(1);
1632 /* Load the fdt */
1633 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1634 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1635 g_free(fdt);
1637 /* Set up the entry state */
1638 spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT, fdt_addr);
1639 first_ppc_cpu->env.gpr[5] = 0;
1641 spapr->cas_reboot = false;
1644 static void spapr_create_nvram(sPAPRMachineState *spapr)
1646 DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
1647 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1649 if (dinfo) {
1650 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
1651 &error_fatal);
1654 qdev_init_nofail(dev);
1656 spapr->nvram = (struct sPAPRNVRAM *)dev;
1659 static void spapr_rtc_create(sPAPRMachineState *spapr)
1661 object_initialize(&spapr->rtc, sizeof(spapr->rtc), TYPE_SPAPR_RTC);
1662 object_property_add_child(OBJECT(spapr), "rtc", OBJECT(&spapr->rtc),
1663 &error_fatal);
1664 object_property_set_bool(OBJECT(&spapr->rtc), true, "realized",
1665 &error_fatal);
1666 object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1667 "date", &error_fatal);
1670 /* Returns whether we want to use VGA or not */
1671 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1673 switch (vga_interface_type) {
1674 case VGA_NONE:
1675 return false;
1676 case VGA_DEVICE:
1677 return true;
1678 case VGA_STD:
1679 case VGA_VIRTIO:
1680 return pci_vga_init(pci_bus) != NULL;
1681 default:
1682 error_setg(errp,
1683 "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1684 return false;
1688 static int spapr_pre_load(void *opaque)
1690 int rc;
1692 rc = spapr_caps_pre_load(opaque);
1693 if (rc) {
1694 return rc;
1697 return 0;
1700 static int spapr_post_load(void *opaque, int version_id)
1702 sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
1703 int err = 0;
1705 err = spapr_caps_post_migration(spapr);
1706 if (err) {
1707 return err;
1710 if (!object_dynamic_cast(OBJECT(spapr->ics), TYPE_ICS_KVM)) {
1711 CPUState *cs;
1712 CPU_FOREACH(cs) {
1713 PowerPCCPU *cpu = POWERPC_CPU(cs);
1714 icp_resend(ICP(cpu->intc));
1718 /* In earlier versions, there was no separate qdev for the PAPR
1719 * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1720 * So when migrating from those versions, poke the incoming offset
1721 * value into the RTC device */
1722 if (version_id < 3) {
1723 err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
1726 if (kvm_enabled() && spapr->patb_entry) {
1727 PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
1728 bool radix = !!(spapr->patb_entry & PATBE1_GR);
1729 bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE);
1731 err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry);
1732 if (err) {
1733 error_report("Process table config unsupported by the host");
1734 return -EINVAL;
1738 return err;
1741 static int spapr_pre_save(void *opaque)
1743 int rc;
1745 rc = spapr_caps_pre_save(opaque);
1746 if (rc) {
1747 return rc;
1750 return 0;
1753 static bool version_before_3(void *opaque, int version_id)
1755 return version_id < 3;
1758 static bool spapr_pending_events_needed(void *opaque)
1760 sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
1761 return !QTAILQ_EMPTY(&spapr->pending_events);
1764 static const VMStateDescription vmstate_spapr_event_entry = {
1765 .name = "spapr_event_log_entry",
1766 .version_id = 1,
1767 .minimum_version_id = 1,
1768 .fields = (VMStateField[]) {
1769 VMSTATE_UINT32(summary, sPAPREventLogEntry),
1770 VMSTATE_UINT32(extended_length, sPAPREventLogEntry),
1771 VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, sPAPREventLogEntry, 0,
1772 NULL, extended_length),
1773 VMSTATE_END_OF_LIST()
1777 static const VMStateDescription vmstate_spapr_pending_events = {
1778 .name = "spapr_pending_events",
1779 .version_id = 1,
1780 .minimum_version_id = 1,
1781 .needed = spapr_pending_events_needed,
1782 .fields = (VMStateField[]) {
1783 VMSTATE_QTAILQ_V(pending_events, sPAPRMachineState, 1,
1784 vmstate_spapr_event_entry, sPAPREventLogEntry, next),
1785 VMSTATE_END_OF_LIST()
1789 static bool spapr_ov5_cas_needed(void *opaque)
1791 sPAPRMachineState *spapr = opaque;
1792 sPAPROptionVector *ov5_mask = spapr_ovec_new();
1793 sPAPROptionVector *ov5_legacy = spapr_ovec_new();
1794 sPAPROptionVector *ov5_removed = spapr_ovec_new();
1795 bool cas_needed;
1797 /* Prior to the introduction of sPAPROptionVector, we had two option
1798 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1799 * Both of these options encode machine topology into the device-tree
1800 * in such a way that the now-booted OS should still be able to interact
1801 * appropriately with QEMU regardless of what options were actually
1802 * negotiatied on the source side.
1804 * As such, we can avoid migrating the CAS-negotiated options if these
1805 * are the only options available on the current machine/platform.
1806 * Since these are the only options available for pseries-2.7 and
1807 * earlier, this allows us to maintain old->new/new->old migration
1808 * compatibility.
1810 * For QEMU 2.8+, there are additional CAS-negotiatable options available
1811 * via default pseries-2.8 machines and explicit command-line parameters.
1812 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1813 * of the actual CAS-negotiated values to continue working properly. For
1814 * example, availability of memory unplug depends on knowing whether
1815 * OV5_HP_EVT was negotiated via CAS.
1817 * Thus, for any cases where the set of available CAS-negotiatable
1818 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1819 * include the CAS-negotiated options in the migration stream, unless
1820 * if they affect boot time behaviour only.
1822 spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
1823 spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
1824 spapr_ovec_set(ov5_mask, OV5_DRMEM_V2);
1826 /* spapr_ovec_diff returns true if bits were removed. we avoid using
1827 * the mask itself since in the future it's possible "legacy" bits may be
1828 * removed via machine options, which could generate a false positive
1829 * that breaks migration.
1831 spapr_ovec_intersect(ov5_legacy, spapr->ov5, ov5_mask);
1832 cas_needed = spapr_ovec_diff(ov5_removed, spapr->ov5, ov5_legacy);
1834 spapr_ovec_cleanup(ov5_mask);
1835 spapr_ovec_cleanup(ov5_legacy);
1836 spapr_ovec_cleanup(ov5_removed);
1838 return cas_needed;
1841 static const VMStateDescription vmstate_spapr_ov5_cas = {
1842 .name = "spapr_option_vector_ov5_cas",
1843 .version_id = 1,
1844 .minimum_version_id = 1,
1845 .needed = spapr_ov5_cas_needed,
1846 .fields = (VMStateField[]) {
1847 VMSTATE_STRUCT_POINTER_V(ov5_cas, sPAPRMachineState, 1,
1848 vmstate_spapr_ovec, sPAPROptionVector),
1849 VMSTATE_END_OF_LIST()
1853 static bool spapr_patb_entry_needed(void *opaque)
1855 sPAPRMachineState *spapr = opaque;
1857 return !!spapr->patb_entry;
1860 static const VMStateDescription vmstate_spapr_patb_entry = {
1861 .name = "spapr_patb_entry",
1862 .version_id = 1,
1863 .minimum_version_id = 1,
1864 .needed = spapr_patb_entry_needed,
1865 .fields = (VMStateField[]) {
1866 VMSTATE_UINT64(patb_entry, sPAPRMachineState),
1867 VMSTATE_END_OF_LIST()
1871 static bool spapr_irq_map_needed(void *opaque)
1873 sPAPRMachineState *spapr = opaque;
1875 return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr);
1878 static const VMStateDescription vmstate_spapr_irq_map = {
1879 .name = "spapr_irq_map",
1880 .version_id = 1,
1881 .minimum_version_id = 1,
1882 .needed = spapr_irq_map_needed,
1883 .fields = (VMStateField[]) {
1884 VMSTATE_BITMAP(irq_map, sPAPRMachineState, 0, irq_map_nr),
1885 VMSTATE_END_OF_LIST()
1889 static const VMStateDescription vmstate_spapr = {
1890 .name = "spapr",
1891 .version_id = 3,
1892 .minimum_version_id = 1,
1893 .pre_load = spapr_pre_load,
1894 .post_load = spapr_post_load,
1895 .pre_save = spapr_pre_save,
1896 .fields = (VMStateField[]) {
1897 /* used to be @next_irq */
1898 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
1900 /* RTC offset */
1901 VMSTATE_UINT64_TEST(rtc_offset, sPAPRMachineState, version_before_3),
1903 VMSTATE_PPC_TIMEBASE_V(tb, sPAPRMachineState, 2),
1904 VMSTATE_END_OF_LIST()
1906 .subsections = (const VMStateDescription*[]) {
1907 &vmstate_spapr_ov5_cas,
1908 &vmstate_spapr_patb_entry,
1909 &vmstate_spapr_pending_events,
1910 &vmstate_spapr_cap_htm,
1911 &vmstate_spapr_cap_vsx,
1912 &vmstate_spapr_cap_dfp,
1913 &vmstate_spapr_cap_cfpc,
1914 &vmstate_spapr_cap_sbbc,
1915 &vmstate_spapr_cap_ibs,
1916 &vmstate_spapr_irq_map,
1917 NULL
1921 static int htab_save_setup(QEMUFile *f, void *opaque)
1923 sPAPRMachineState *spapr = opaque;
1925 /* "Iteration" header */
1926 if (!spapr->htab_shift) {
1927 qemu_put_be32(f, -1);
1928 } else {
1929 qemu_put_be32(f, spapr->htab_shift);
1932 if (spapr->htab) {
1933 spapr->htab_save_index = 0;
1934 spapr->htab_first_pass = true;
1935 } else {
1936 if (spapr->htab_shift) {
1937 assert(kvm_enabled());
1942 return 0;
1945 static void htab_save_chunk(QEMUFile *f, sPAPRMachineState *spapr,
1946 int chunkstart, int n_valid, int n_invalid)
1948 qemu_put_be32(f, chunkstart);
1949 qemu_put_be16(f, n_valid);
1950 qemu_put_be16(f, n_invalid);
1951 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1952 HASH_PTE_SIZE_64 * n_valid);
1955 static void htab_save_end_marker(QEMUFile *f)
1957 qemu_put_be32(f, 0);
1958 qemu_put_be16(f, 0);
1959 qemu_put_be16(f, 0);
1962 static void htab_save_first_pass(QEMUFile *f, sPAPRMachineState *spapr,
1963 int64_t max_ns)
1965 bool has_timeout = max_ns != -1;
1966 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1967 int index = spapr->htab_save_index;
1968 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1970 assert(spapr->htab_first_pass);
1972 do {
1973 int chunkstart;
1975 /* Consume invalid HPTEs */
1976 while ((index < htabslots)
1977 && !HPTE_VALID(HPTE(spapr->htab, index))) {
1978 CLEAN_HPTE(HPTE(spapr->htab, index));
1979 index++;
1982 /* Consume valid HPTEs */
1983 chunkstart = index;
1984 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
1985 && HPTE_VALID(HPTE(spapr->htab, index))) {
1986 CLEAN_HPTE(HPTE(spapr->htab, index));
1987 index++;
1990 if (index > chunkstart) {
1991 int n_valid = index - chunkstart;
1993 htab_save_chunk(f, spapr, chunkstart, n_valid, 0);
1995 if (has_timeout &&
1996 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1997 break;
2000 } while ((index < htabslots) && !qemu_file_rate_limit(f));
2002 if (index >= htabslots) {
2003 assert(index == htabslots);
2004 index = 0;
2005 spapr->htab_first_pass = false;
2007 spapr->htab_save_index = index;
2010 static int htab_save_later_pass(QEMUFile *f, sPAPRMachineState *spapr,
2011 int64_t max_ns)
2013 bool final = max_ns < 0;
2014 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2015 int examined = 0, sent = 0;
2016 int index = spapr->htab_save_index;
2017 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2019 assert(!spapr->htab_first_pass);
2021 do {
2022 int chunkstart, invalidstart;
2024 /* Consume non-dirty HPTEs */
2025 while ((index < htabslots)
2026 && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
2027 index++;
2028 examined++;
2031 chunkstart = index;
2032 /* Consume valid dirty HPTEs */
2033 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2034 && HPTE_DIRTY(HPTE(spapr->htab, index))
2035 && HPTE_VALID(HPTE(spapr->htab, index))) {
2036 CLEAN_HPTE(HPTE(spapr->htab, index));
2037 index++;
2038 examined++;
2041 invalidstart = index;
2042 /* Consume invalid dirty HPTEs */
2043 while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
2044 && HPTE_DIRTY(HPTE(spapr->htab, index))
2045 && !HPTE_VALID(HPTE(spapr->htab, index))) {
2046 CLEAN_HPTE(HPTE(spapr->htab, index));
2047 index++;
2048 examined++;
2051 if (index > chunkstart) {
2052 int n_valid = invalidstart - chunkstart;
2053 int n_invalid = index - invalidstart;
2055 htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid);
2056 sent += index - chunkstart;
2058 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2059 break;
2063 if (examined >= htabslots) {
2064 break;
2067 if (index >= htabslots) {
2068 assert(index == htabslots);
2069 index = 0;
2071 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
2073 if (index >= htabslots) {
2074 assert(index == htabslots);
2075 index = 0;
2078 spapr->htab_save_index = index;
2080 return (examined >= htabslots) && (sent == 0) ? 1 : 0;
2083 #define MAX_ITERATION_NS 5000000 /* 5 ms */
2084 #define MAX_KVM_BUF_SIZE 2048
2086 static int htab_save_iterate(QEMUFile *f, void *opaque)
2088 sPAPRMachineState *spapr = opaque;
2089 int fd;
2090 int rc = 0;
2092 /* Iteration header */
2093 if (!spapr->htab_shift) {
2094 qemu_put_be32(f, -1);
2095 return 1;
2096 } else {
2097 qemu_put_be32(f, 0);
2100 if (!spapr->htab) {
2101 assert(kvm_enabled());
2103 fd = get_htab_fd(spapr);
2104 if (fd < 0) {
2105 return fd;
2108 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
2109 if (rc < 0) {
2110 return rc;
2112 } else if (spapr->htab_first_pass) {
2113 htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
2114 } else {
2115 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
2118 htab_save_end_marker(f);
2120 return rc;
2123 static int htab_save_complete(QEMUFile *f, void *opaque)
2125 sPAPRMachineState *spapr = opaque;
2126 int fd;
2128 /* Iteration header */
2129 if (!spapr->htab_shift) {
2130 qemu_put_be32(f, -1);
2131 return 0;
2132 } else {
2133 qemu_put_be32(f, 0);
2136 if (!spapr->htab) {
2137 int rc;
2139 assert(kvm_enabled());
2141 fd = get_htab_fd(spapr);
2142 if (fd < 0) {
2143 return fd;
2146 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
2147 if (rc < 0) {
2148 return rc;
2150 } else {
2151 if (spapr->htab_first_pass) {
2152 htab_save_first_pass(f, spapr, -1);
2154 htab_save_later_pass(f, spapr, -1);
2157 /* End marker */
2158 htab_save_end_marker(f);
2160 return 0;
2163 static int htab_load(QEMUFile *f, void *opaque, int version_id)
2165 sPAPRMachineState *spapr = opaque;
2166 uint32_t section_hdr;
2167 int fd = -1;
2168 Error *local_err = NULL;
2170 if (version_id < 1 || version_id > 1) {
2171 error_report("htab_load() bad version");
2172 return -EINVAL;
2175 section_hdr = qemu_get_be32(f);
2177 if (section_hdr == -1) {
2178 spapr_free_hpt(spapr);
2179 return 0;
2182 if (section_hdr) {
2183 /* First section gives the htab size */
2184 spapr_reallocate_hpt(spapr, section_hdr, &local_err);
2185 if (local_err) {
2186 error_report_err(local_err);
2187 return -EINVAL;
2189 return 0;
2192 if (!spapr->htab) {
2193 assert(kvm_enabled());
2195 fd = kvmppc_get_htab_fd(true, 0, &local_err);
2196 if (fd < 0) {
2197 error_report_err(local_err);
2198 return fd;
2202 while (true) {
2203 uint32_t index;
2204 uint16_t n_valid, n_invalid;
2206 index = qemu_get_be32(f);
2207 n_valid = qemu_get_be16(f);
2208 n_invalid = qemu_get_be16(f);
2210 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
2211 /* End of Stream */
2212 break;
2215 if ((index + n_valid + n_invalid) >
2216 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
2217 /* Bad index in stream */
2218 error_report(
2219 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
2220 index, n_valid, n_invalid, spapr->htab_shift);
2221 return -EINVAL;
2224 if (spapr->htab) {
2225 if (n_valid) {
2226 qemu_get_buffer(f, HPTE(spapr->htab, index),
2227 HASH_PTE_SIZE_64 * n_valid);
2229 if (n_invalid) {
2230 memset(HPTE(spapr->htab, index + n_valid), 0,
2231 HASH_PTE_SIZE_64 * n_invalid);
2233 } else {
2234 int rc;
2236 assert(fd >= 0);
2238 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
2239 if (rc < 0) {
2240 return rc;
2245 if (!spapr->htab) {
2246 assert(fd >= 0);
2247 close(fd);
2250 return 0;
2253 static void htab_save_cleanup(void *opaque)
2255 sPAPRMachineState *spapr = opaque;
2257 close_htab_fd(spapr);
2260 static SaveVMHandlers savevm_htab_handlers = {
2261 .save_setup = htab_save_setup,
2262 .save_live_iterate = htab_save_iterate,
2263 .save_live_complete_precopy = htab_save_complete,
2264 .save_cleanup = htab_save_cleanup,
2265 .load_state = htab_load,
2268 static void spapr_boot_set(void *opaque, const char *boot_device,
2269 Error **errp)
2271 MachineState *machine = MACHINE(opaque);
2272 machine->boot_order = g_strdup(boot_device);
2275 static void spapr_create_lmb_dr_connectors(sPAPRMachineState *spapr)
2277 MachineState *machine = MACHINE(spapr);
2278 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
2279 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
2280 int i;
2282 for (i = 0; i < nr_lmbs; i++) {
2283 uint64_t addr;
2285 addr = i * lmb_size + machine->device_memory->base;
2286 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
2287 addr / lmb_size);
2292 * If RAM size, maxmem size and individual node mem sizes aren't aligned
2293 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2294 * since we can't support such unaligned sizes with DRCONF_MEMORY.
2296 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
2298 int i;
2300 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2301 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
2302 " is not aligned to %" PRIu64 " MiB",
2303 machine->ram_size,
2304 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2305 return;
2308 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2309 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
2310 " is not aligned to %" PRIu64 " MiB",
2311 machine->ram_size,
2312 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2313 return;
2316 for (i = 0; i < nb_numa_nodes; i++) {
2317 if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
2318 error_setg(errp,
2319 "Node %d memory size 0x%" PRIx64
2320 " is not aligned to %" PRIu64 " MiB",
2321 i, numa_info[i].node_mem,
2322 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2323 return;
2328 /* find cpu slot in machine->possible_cpus by core_id */
2329 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2331 int index = id / smp_threads;
2333 if (index >= ms->possible_cpus->len) {
2334 return NULL;
2336 if (idx) {
2337 *idx = index;
2339 return &ms->possible_cpus->cpus[index];
2342 static void spapr_set_vsmt_mode(sPAPRMachineState *spapr, Error **errp)
2344 Error *local_err = NULL;
2345 bool vsmt_user = !!spapr->vsmt;
2346 int kvm_smt = kvmppc_smt_threads();
2347 int ret;
2349 if (!kvm_enabled() && (smp_threads > 1)) {
2350 error_setg(&local_err, "TCG cannot support more than 1 thread/core "
2351 "on a pseries machine");
2352 goto out;
2354 if (!is_power_of_2(smp_threads)) {
2355 error_setg(&local_err, "Cannot support %d threads/core on a pseries "
2356 "machine because it must be a power of 2", smp_threads);
2357 goto out;
2360 /* Detemine the VSMT mode to use: */
2361 if (vsmt_user) {
2362 if (spapr->vsmt < smp_threads) {
2363 error_setg(&local_err, "Cannot support VSMT mode %d"
2364 " because it must be >= threads/core (%d)",
2365 spapr->vsmt, smp_threads);
2366 goto out;
2368 /* In this case, spapr->vsmt has been set by the command line */
2369 } else {
2371 * Default VSMT value is tricky, because we need it to be as
2372 * consistent as possible (for migration), but this requires
2373 * changing it for at least some existing cases. We pick 8 as
2374 * the value that we'd get with KVM on POWER8, the
2375 * overwhelmingly common case in production systems.
2377 spapr->vsmt = MAX(8, smp_threads);
2380 /* KVM: If necessary, set the SMT mode: */
2381 if (kvm_enabled() && (spapr->vsmt != kvm_smt)) {
2382 ret = kvmppc_set_smt_threads(spapr->vsmt);
2383 if (ret) {
2384 /* Looks like KVM isn't able to change VSMT mode */
2385 error_setg(&local_err,
2386 "Failed to set KVM's VSMT mode to %d (errno %d)",
2387 spapr->vsmt, ret);
2388 /* We can live with that if the default one is big enough
2389 * for the number of threads, and a submultiple of the one
2390 * we want. In this case we'll waste some vcpu ids, but
2391 * behaviour will be correct */
2392 if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) {
2393 warn_report_err(local_err);
2394 local_err = NULL;
2395 goto out;
2396 } else {
2397 if (!vsmt_user) {
2398 error_append_hint(&local_err,
2399 "On PPC, a VM with %d threads/core"
2400 " on a host with %d threads/core"
2401 " requires the use of VSMT mode %d.\n",
2402 smp_threads, kvm_smt, spapr->vsmt);
2404 kvmppc_hint_smt_possible(&local_err);
2405 goto out;
2409 /* else TCG: nothing to do currently */
2410 out:
2411 error_propagate(errp, local_err);
2414 static void spapr_init_cpus(sPAPRMachineState *spapr)
2416 MachineState *machine = MACHINE(spapr);
2417 MachineClass *mc = MACHINE_GET_CLASS(machine);
2418 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2419 const char *type = spapr_get_cpu_core_type(machine->cpu_type);
2420 const CPUArchIdList *possible_cpus;
2421 int boot_cores_nr = smp_cpus / smp_threads;
2422 int i;
2424 possible_cpus = mc->possible_cpu_arch_ids(machine);
2425 if (mc->has_hotpluggable_cpus) {
2426 if (smp_cpus % smp_threads) {
2427 error_report("smp_cpus (%u) must be multiple of threads (%u)",
2428 smp_cpus, smp_threads);
2429 exit(1);
2431 if (max_cpus % smp_threads) {
2432 error_report("max_cpus (%u) must be multiple of threads (%u)",
2433 max_cpus, smp_threads);
2434 exit(1);
2436 } else {
2437 if (max_cpus != smp_cpus) {
2438 error_report("This machine version does not support CPU hotplug");
2439 exit(1);
2441 boot_cores_nr = possible_cpus->len;
2444 /* VSMT must be set in order to be able to compute VCPU ids, ie to
2445 * call xics_max_server_number() or spapr_vcpu_id().
2447 spapr_set_vsmt_mode(spapr, &error_fatal);
2449 if (smc->pre_2_10_has_unused_icps) {
2450 int i;
2452 for (i = 0; i < xics_max_server_number(spapr); i++) {
2453 /* Dummy entries get deregistered when real ICPState objects
2454 * are registered during CPU core hotplug.
2456 pre_2_10_vmstate_register_dummy_icp(i);
2460 for (i = 0; i < possible_cpus->len; i++) {
2461 int core_id = i * smp_threads;
2463 if (mc->has_hotpluggable_cpus) {
2464 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
2465 spapr_vcpu_id(spapr, core_id));
2468 if (i < boot_cores_nr) {
2469 Object *core = object_new(type);
2470 int nr_threads = smp_threads;
2472 /* Handle the partially filled core for older machine types */
2473 if ((i + 1) * smp_threads >= smp_cpus) {
2474 nr_threads = smp_cpus - i * smp_threads;
2477 object_property_set_int(core, nr_threads, "nr-threads",
2478 &error_fatal);
2479 object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID,
2480 &error_fatal);
2481 object_property_set_bool(core, true, "realized", &error_fatal);
2486 /* pSeries LPAR / sPAPR hardware init */
2487 static void spapr_machine_init(MachineState *machine)
2489 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
2490 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2491 const char *kernel_filename = machine->kernel_filename;
2492 const char *initrd_filename = machine->initrd_filename;
2493 PCIHostState *phb;
2494 int i;
2495 MemoryRegion *sysmem = get_system_memory();
2496 MemoryRegion *ram = g_new(MemoryRegion, 1);
2497 hwaddr node0_size = spapr_node0_size(machine);
2498 long load_limit, fw_size;
2499 char *filename;
2500 Error *resize_hpt_err = NULL;
2502 msi_nonbroken = true;
2504 QLIST_INIT(&spapr->phbs);
2505 QTAILQ_INIT(&spapr->pending_dimm_unplugs);
2507 /* Determine capabilities to run with */
2508 spapr_caps_init(spapr);
2510 kvmppc_check_papr_resize_hpt(&resize_hpt_err);
2511 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) {
2513 * If the user explicitly requested a mode we should either
2514 * supply it, or fail completely (which we do below). But if
2515 * it's not set explicitly, we reset our mode to something
2516 * that works
2518 if (resize_hpt_err) {
2519 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2520 error_free(resize_hpt_err);
2521 resize_hpt_err = NULL;
2522 } else {
2523 spapr->resize_hpt = smc->resize_hpt_default;
2527 assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT);
2529 if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) {
2531 * User requested HPT resize, but this host can't supply it. Bail out
2533 error_report_err(resize_hpt_err);
2534 exit(1);
2537 spapr->rma_size = node0_size;
2539 /* With KVM, we don't actually know whether KVM supports an
2540 * unbounded RMA (PR KVM) or is limited by the hash table size
2541 * (HV KVM using VRMA), so we always assume the latter
2543 * In that case, we also limit the initial allocations for RTAS
2544 * etc... to 256M since we have no way to know what the VRMA size
2545 * is going to be as it depends on the size of the hash table
2546 * which isn't determined yet.
2548 if (kvm_enabled()) {
2549 spapr->vrma_adjust = 1;
2550 spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
2553 /* Actually we don't support unbounded RMA anymore since we added
2554 * proper emulation of HV mode. The max we can get is 16G which
2555 * also happens to be what we configure for PAPR mode so make sure
2556 * we don't do anything bigger than that
2558 spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull);
2560 if (spapr->rma_size > node0_size) {
2561 error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")",
2562 spapr->rma_size);
2563 exit(1);
2566 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2567 load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
2569 /* Set up Interrupt Controller before we create the VCPUs */
2570 smc->irq->init(spapr, &error_fatal);
2572 /* Set up containers for ibm,client-architecture-support negotiated options
2574 spapr->ov5 = spapr_ovec_new();
2575 spapr->ov5_cas = spapr_ovec_new();
2577 if (smc->dr_lmb_enabled) {
2578 spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2579 spapr_validate_node_memory(machine, &error_fatal);
2582 spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2584 /* advertise support for dedicated HP event source to guests */
2585 if (spapr->use_hotplug_event_source) {
2586 spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2589 /* advertise support for HPT resizing */
2590 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
2591 spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE);
2594 /* advertise support for ibm,dyamic-memory-v2 */
2595 spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2);
2597 /* init CPUs */
2598 spapr_init_cpus(spapr);
2600 if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) &&
2601 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
2602 spapr->max_compat_pvr)) {
2603 /* KVM and TCG always allow GTSE with radix... */
2604 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2606 /* ... but not with hash (currently). */
2608 if (kvm_enabled()) {
2609 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2610 kvmppc_enable_logical_ci_hcalls();
2611 kvmppc_enable_set_mode_hcall();
2613 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2614 kvmppc_enable_clear_ref_mod_hcalls();
2617 /* allocate RAM */
2618 memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
2619 machine->ram_size);
2620 memory_region_add_subregion(sysmem, 0, ram);
2622 /* always allocate the device memory information */
2623 machine->device_memory = g_malloc0(sizeof(*machine->device_memory));
2625 /* initialize hotplug memory address space */
2626 if (machine->ram_size < machine->maxram_size) {
2627 ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
2629 * Limit the number of hotpluggable memory slots to half the number
2630 * slots that KVM supports, leaving the other half for PCI and other
2631 * devices. However ensure that number of slots doesn't drop below 32.
2633 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2634 SPAPR_MAX_RAM_SLOTS;
2636 if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2637 max_memslots = SPAPR_MAX_RAM_SLOTS;
2639 if (machine->ram_slots > max_memslots) {
2640 error_report("Specified number of memory slots %"
2641 PRIu64" exceeds max supported %d",
2642 machine->ram_slots, max_memslots);
2643 exit(1);
2646 machine->device_memory->base = ROUND_UP(machine->ram_size,
2647 SPAPR_DEVICE_MEM_ALIGN);
2648 memory_region_init(&machine->device_memory->mr, OBJECT(spapr),
2649 "device-memory", device_mem_size);
2650 memory_region_add_subregion(sysmem, machine->device_memory->base,
2651 &machine->device_memory->mr);
2654 if (smc->dr_lmb_enabled) {
2655 spapr_create_lmb_dr_connectors(spapr);
2658 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
2659 if (!filename) {
2660 error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin");
2661 exit(1);
2663 spapr->rtas_size = get_image_size(filename);
2664 if (spapr->rtas_size < 0) {
2665 error_report("Could not get size of LPAR rtas '%s'", filename);
2666 exit(1);
2668 spapr->rtas_blob = g_malloc(spapr->rtas_size);
2669 if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) {
2670 error_report("Could not load LPAR rtas '%s'", filename);
2671 exit(1);
2673 if (spapr->rtas_size > RTAS_MAX_SIZE) {
2674 error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)",
2675 (size_t)spapr->rtas_size, RTAS_MAX_SIZE);
2676 exit(1);
2678 g_free(filename);
2680 /* Set up RTAS event infrastructure */
2681 spapr_events_init(spapr);
2683 /* Set up the RTC RTAS interfaces */
2684 spapr_rtc_create(spapr);
2686 /* Set up VIO bus */
2687 spapr->vio_bus = spapr_vio_bus_init();
2689 for (i = 0; i < serial_max_hds(); i++) {
2690 if (serial_hd(i)) {
2691 spapr_vty_create(spapr->vio_bus, serial_hd(i));
2695 /* We always have at least the nvram device on VIO */
2696 spapr_create_nvram(spapr);
2698 /* Set up PCI */
2699 spapr_pci_rtas_init();
2701 phb = spapr_create_phb(spapr, 0);
2703 for (i = 0; i < nb_nics; i++) {
2704 NICInfo *nd = &nd_table[i];
2706 if (!nd->model) {
2707 nd->model = g_strdup("spapr-vlan");
2710 if (g_str_equal(nd->model, "spapr-vlan") ||
2711 g_str_equal(nd->model, "ibmveth")) {
2712 spapr_vlan_create(spapr->vio_bus, nd);
2713 } else {
2714 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
2718 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
2719 spapr_vscsi_create(spapr->vio_bus);
2722 /* Graphics */
2723 if (spapr_vga_init(phb->bus, &error_fatal)) {
2724 spapr->has_graphics = true;
2725 machine->usb |= defaults_enabled() && !machine->usb_disabled;
2728 if (machine->usb) {
2729 if (smc->use_ohci_by_default) {
2730 pci_create_simple(phb->bus, -1, "pci-ohci");
2731 } else {
2732 pci_create_simple(phb->bus, -1, "nec-usb-xhci");
2735 if (spapr->has_graphics) {
2736 USBBus *usb_bus = usb_bus_find(-1);
2738 usb_create_simple(usb_bus, "usb-kbd");
2739 usb_create_simple(usb_bus, "usb-mouse");
2743 if (spapr->rma_size < (MIN_RMA_SLOF * MiB)) {
2744 error_report(
2745 "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)",
2746 MIN_RMA_SLOF);
2747 exit(1);
2750 if (kernel_filename) {
2751 uint64_t lowaddr = 0;
2753 spapr->kernel_size = load_elf(kernel_filename, translate_kernel_address,
2754 NULL, NULL, &lowaddr, NULL, 1,
2755 PPC_ELF_MACHINE, 0, 0);
2756 if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
2757 spapr->kernel_size = load_elf(kernel_filename,
2758 translate_kernel_address, NULL, NULL,
2759 &lowaddr, NULL, 0, PPC_ELF_MACHINE,
2760 0, 0);
2761 spapr->kernel_le = spapr->kernel_size > 0;
2763 if (spapr->kernel_size < 0) {
2764 error_report("error loading %s: %s", kernel_filename,
2765 load_elf_strerror(spapr->kernel_size));
2766 exit(1);
2769 /* load initrd */
2770 if (initrd_filename) {
2771 /* Try to locate the initrd in the gap between the kernel
2772 * and the firmware. Add a bit of space just in case
2774 spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size
2775 + 0x1ffff) & ~0xffff;
2776 spapr->initrd_size = load_image_targphys(initrd_filename,
2777 spapr->initrd_base,
2778 load_limit
2779 - spapr->initrd_base);
2780 if (spapr->initrd_size < 0) {
2781 error_report("could not load initial ram disk '%s'",
2782 initrd_filename);
2783 exit(1);
2788 if (bios_name == NULL) {
2789 bios_name = FW_FILE_NAME;
2791 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
2792 if (!filename) {
2793 error_report("Could not find LPAR firmware '%s'", bios_name);
2794 exit(1);
2796 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
2797 if (fw_size <= 0) {
2798 error_report("Could not load LPAR firmware '%s'", filename);
2799 exit(1);
2801 g_free(filename);
2803 /* FIXME: Should register things through the MachineState's qdev
2804 * interface, this is a legacy from the sPAPREnvironment structure
2805 * which predated MachineState but had a similar function */
2806 vmstate_register(NULL, 0, &vmstate_spapr, spapr);
2807 register_savevm_live(NULL, "spapr/htab", -1, 1,
2808 &savevm_htab_handlers, spapr);
2810 qemu_register_boot_set(spapr_boot_set, spapr);
2812 if (kvm_enabled()) {
2813 /* to stop and start vmclock */
2814 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
2815 &spapr->tb);
2817 kvmppc_spapr_enable_inkernel_multitce();
2821 static int spapr_kvm_type(const char *vm_type)
2823 if (!vm_type) {
2824 return 0;
2827 if (!strcmp(vm_type, "HV")) {
2828 return 1;
2831 if (!strcmp(vm_type, "PR")) {
2832 return 2;
2835 error_report("Unknown kvm-type specified '%s'", vm_type);
2836 exit(1);
2840 * Implementation of an interface to adjust firmware path
2841 * for the bootindex property handling.
2843 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
2844 DeviceState *dev)
2846 #define CAST(type, obj, name) \
2847 ((type *)object_dynamic_cast(OBJECT(obj), (name)))
2848 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE);
2849 sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
2850 VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
2852 if (d) {
2853 void *spapr = CAST(void, bus->parent, "spapr-vscsi");
2854 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
2855 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
2857 if (spapr) {
2859 * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
2860 * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun
2861 * in the top 16 bits of the 64-bit LUN
2863 unsigned id = 0x8000 | (d->id << 8) | d->lun;
2864 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2865 (uint64_t)id << 48);
2866 } else if (virtio) {
2868 * We use SRP luns of the form 01000000 | (target << 8) | lun
2869 * in the top 32 bits of the 64-bit LUN
2870 * Note: the quote above is from SLOF and it is wrong,
2871 * the actual binding is:
2872 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
2874 unsigned id = 0x1000000 | (d->id << 16) | d->lun;
2875 if (d->lun >= 256) {
2876 /* Use the LUN "flat space addressing method" */
2877 id |= 0x4000;
2879 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2880 (uint64_t)id << 32);
2881 } else if (usb) {
2883 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
2884 * in the top 32 bits of the 64-bit LUN
2886 unsigned usb_port = atoi(usb->port->path);
2887 unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
2888 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2889 (uint64_t)id << 32);
2894 * SLOF probes the USB devices, and if it recognizes that the device is a
2895 * storage device, it changes its name to "storage" instead of "usb-host",
2896 * and additionally adds a child node for the SCSI LUN, so the correct
2897 * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
2899 if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
2900 USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
2901 if (usb_host_dev_is_scsi_storage(usbdev)) {
2902 return g_strdup_printf("storage@%s/disk", usbdev->port->path);
2906 if (phb) {
2907 /* Replace "pci" with "pci@800000020000000" */
2908 return g_strdup_printf("pci@%"PRIX64, phb->buid);
2911 if (vsc) {
2912 /* Same logic as virtio above */
2913 unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
2914 return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
2917 if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
2918 /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
2919 PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
2920 return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn));
2923 return NULL;
2926 static char *spapr_get_kvm_type(Object *obj, Error **errp)
2928 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2930 return g_strdup(spapr->kvm_type);
2933 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
2935 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2937 g_free(spapr->kvm_type);
2938 spapr->kvm_type = g_strdup(value);
2941 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
2943 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2945 return spapr->use_hotplug_event_source;
2948 static void spapr_set_modern_hotplug_events(Object *obj, bool value,
2949 Error **errp)
2951 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2953 spapr->use_hotplug_event_source = value;
2956 static bool spapr_get_msix_emulation(Object *obj, Error **errp)
2958 return true;
2961 static char *spapr_get_resize_hpt(Object *obj, Error **errp)
2963 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2965 switch (spapr->resize_hpt) {
2966 case SPAPR_RESIZE_HPT_DEFAULT:
2967 return g_strdup("default");
2968 case SPAPR_RESIZE_HPT_DISABLED:
2969 return g_strdup("disabled");
2970 case SPAPR_RESIZE_HPT_ENABLED:
2971 return g_strdup("enabled");
2972 case SPAPR_RESIZE_HPT_REQUIRED:
2973 return g_strdup("required");
2975 g_assert_not_reached();
2978 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp)
2980 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2982 if (strcmp(value, "default") == 0) {
2983 spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT;
2984 } else if (strcmp(value, "disabled") == 0) {
2985 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2986 } else if (strcmp(value, "enabled") == 0) {
2987 spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED;
2988 } else if (strcmp(value, "required") == 0) {
2989 spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED;
2990 } else {
2991 error_setg(errp, "Bad value for \"resize-hpt\" property");
2995 static void spapr_get_vsmt(Object *obj, Visitor *v, const char *name,
2996 void *opaque, Error **errp)
2998 visit_type_uint32(v, name, (uint32_t *)opaque, errp);
3001 static void spapr_set_vsmt(Object *obj, Visitor *v, const char *name,
3002 void *opaque, Error **errp)
3004 visit_type_uint32(v, name, (uint32_t *)opaque, errp);
3007 static void spapr_instance_init(Object *obj)
3009 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3011 spapr->htab_fd = -1;
3012 spapr->use_hotplug_event_source = true;
3013 object_property_add_str(obj, "kvm-type",
3014 spapr_get_kvm_type, spapr_set_kvm_type, NULL);
3015 object_property_set_description(obj, "kvm-type",
3016 "Specifies the KVM virtualization mode (HV, PR)",
3017 NULL);
3018 object_property_add_bool(obj, "modern-hotplug-events",
3019 spapr_get_modern_hotplug_events,
3020 spapr_set_modern_hotplug_events,
3021 NULL);
3022 object_property_set_description(obj, "modern-hotplug-events",
3023 "Use dedicated hotplug event mechanism in"
3024 " place of standard EPOW events when possible"
3025 " (required for memory hot-unplug support)",
3026 NULL);
3027 ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr,
3028 "Maximum permitted CPU compatibility mode",
3029 &error_fatal);
3031 object_property_add_str(obj, "resize-hpt",
3032 spapr_get_resize_hpt, spapr_set_resize_hpt, NULL);
3033 object_property_set_description(obj, "resize-hpt",
3034 "Resizing of the Hash Page Table (enabled, disabled, required)",
3035 NULL);
3036 object_property_add(obj, "vsmt", "uint32", spapr_get_vsmt,
3037 spapr_set_vsmt, NULL, &spapr->vsmt, &error_abort);
3038 object_property_set_description(obj, "vsmt",
3039 "Virtual SMT: KVM behaves as if this were"
3040 " the host's SMT mode", &error_abort);
3041 object_property_add_bool(obj, "vfio-no-msix-emulation",
3042 spapr_get_msix_emulation, NULL, NULL);
3045 static void spapr_machine_finalizefn(Object *obj)
3047 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3049 g_free(spapr->kvm_type);
3052 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
3054 cpu_synchronize_state(cs);
3055 ppc_cpu_do_system_reset(cs);
3058 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
3060 CPUState *cs;
3062 CPU_FOREACH(cs) {
3063 async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
3067 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
3068 uint32_t node, bool dedicated_hp_event_source,
3069 Error **errp)
3071 sPAPRDRConnector *drc;
3072 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
3073 int i, fdt_offset, fdt_size;
3074 void *fdt;
3075 uint64_t addr = addr_start;
3076 bool hotplugged = spapr_drc_hotplugged(dev);
3077 Error *local_err = NULL;
3079 for (i = 0; i < nr_lmbs; i++) {
3080 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3081 addr / SPAPR_MEMORY_BLOCK_SIZE);
3082 g_assert(drc);
3084 fdt = create_device_tree(&fdt_size);
3085 fdt_offset = spapr_populate_memory_node(fdt, node, addr,
3086 SPAPR_MEMORY_BLOCK_SIZE);
3088 spapr_drc_attach(drc, dev, fdt, fdt_offset, &local_err);
3089 if (local_err) {
3090 while (addr > addr_start) {
3091 addr -= SPAPR_MEMORY_BLOCK_SIZE;
3092 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3093 addr / SPAPR_MEMORY_BLOCK_SIZE);
3094 spapr_drc_detach(drc);
3096 g_free(fdt);
3097 error_propagate(errp, local_err);
3098 return;
3100 if (!hotplugged) {
3101 spapr_drc_reset(drc);
3103 addr += SPAPR_MEMORY_BLOCK_SIZE;
3105 /* send hotplug notification to the
3106 * guest only in case of hotplugged memory
3108 if (hotplugged) {
3109 if (dedicated_hp_event_source) {
3110 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3111 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3112 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3113 nr_lmbs,
3114 spapr_drc_index(drc));
3115 } else {
3116 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
3117 nr_lmbs);
3122 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3123 Error **errp)
3125 Error *local_err = NULL;
3126 sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev);
3127 PCDIMMDevice *dimm = PC_DIMM(dev);
3128 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
3129 MemoryRegion *mr = ddc->get_memory_region(dimm, &error_abort);
3130 uint64_t size, addr;
3131 uint32_t node;
3133 size = memory_region_size(mr);
3135 pc_dimm_plug(dev, MACHINE(ms), &local_err);
3136 if (local_err) {
3137 goto out;
3140 addr = object_property_get_uint(OBJECT(dimm),
3141 PC_DIMM_ADDR_PROP, &local_err);
3142 if (local_err) {
3143 goto out_unplug;
3146 node = object_property_get_uint(OBJECT(dev), PC_DIMM_NODE_PROP,
3147 &error_abort);
3148 spapr_add_lmbs(dev, addr, size, node,
3149 spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT),
3150 &local_err);
3151 if (local_err) {
3152 goto out_unplug;
3155 return;
3157 out_unplug:
3158 pc_dimm_unplug(dev, MACHINE(ms));
3159 out:
3160 error_propagate(errp, local_err);
3163 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3164 Error **errp)
3166 const sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev);
3167 sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3168 PCDIMMDevice *dimm = PC_DIMM(dev);
3169 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
3170 Error *local_err = NULL;
3171 MemoryRegion *mr;
3172 uint64_t size;
3173 Object *memdev;
3174 hwaddr pagesize;
3176 if (!smc->dr_lmb_enabled) {
3177 error_setg(errp, "Memory hotplug not supported for this machine");
3178 return;
3181 mr = ddc->get_memory_region(dimm, errp);
3182 if (!mr) {
3183 return;
3185 size = memory_region_size(mr);
3187 if (size % SPAPR_MEMORY_BLOCK_SIZE) {
3188 error_setg(errp, "Hotplugged memory size must be a multiple of "
3189 "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB);
3190 return;
3193 memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP,
3194 &error_abort);
3195 pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev));
3196 spapr_check_pagesize(spapr, pagesize, &local_err);
3197 if (local_err) {
3198 error_propagate(errp, local_err);
3199 return;
3202 pc_dimm_pre_plug(dev, MACHINE(hotplug_dev), NULL, errp);
3205 struct sPAPRDIMMState {
3206 PCDIMMDevice *dimm;
3207 uint32_t nr_lmbs;
3208 QTAILQ_ENTRY(sPAPRDIMMState) next;
3211 static sPAPRDIMMState *spapr_pending_dimm_unplugs_find(sPAPRMachineState *s,
3212 PCDIMMDevice *dimm)
3214 sPAPRDIMMState *dimm_state = NULL;
3216 QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
3217 if (dimm_state->dimm == dimm) {
3218 break;
3221 return dimm_state;
3224 static sPAPRDIMMState *spapr_pending_dimm_unplugs_add(sPAPRMachineState *spapr,
3225 uint32_t nr_lmbs,
3226 PCDIMMDevice *dimm)
3228 sPAPRDIMMState *ds = NULL;
3231 * If this request is for a DIMM whose removal had failed earlier
3232 * (due to guest's refusal to remove the LMBs), we would have this
3233 * dimm already in the pending_dimm_unplugs list. In that
3234 * case don't add again.
3236 ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3237 if (!ds) {
3238 ds = g_malloc0(sizeof(sPAPRDIMMState));
3239 ds->nr_lmbs = nr_lmbs;
3240 ds->dimm = dimm;
3241 QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next);
3243 return ds;
3246 static void spapr_pending_dimm_unplugs_remove(sPAPRMachineState *spapr,
3247 sPAPRDIMMState *dimm_state)
3249 QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
3250 g_free(dimm_state);
3253 static sPAPRDIMMState *spapr_recover_pending_dimm_state(sPAPRMachineState *ms,
3254 PCDIMMDevice *dimm)
3256 sPAPRDRConnector *drc;
3257 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
3258 MemoryRegion *mr = ddc->get_memory_region(dimm, &error_abort);
3259 uint64_t size = memory_region_size(mr);
3260 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3261 uint32_t avail_lmbs = 0;
3262 uint64_t addr_start, addr;
3263 int i;
3265 addr_start = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3266 &error_abort);
3268 addr = addr_start;
3269 for (i = 0; i < nr_lmbs; i++) {
3270 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3271 addr / SPAPR_MEMORY_BLOCK_SIZE);
3272 g_assert(drc);
3273 if (drc->dev) {
3274 avail_lmbs++;
3276 addr += SPAPR_MEMORY_BLOCK_SIZE;
3279 return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm);
3282 /* Callback to be called during DRC release. */
3283 void spapr_lmb_release(DeviceState *dev)
3285 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3286 sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl);
3287 sPAPRDIMMState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3289 /* This information will get lost if a migration occurs
3290 * during the unplug process. In this case recover it. */
3291 if (ds == NULL) {
3292 ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
3293 g_assert(ds);
3294 /* The DRC being examined by the caller at least must be counted */
3295 g_assert(ds->nr_lmbs);
3298 if (--ds->nr_lmbs) {
3299 return;
3303 * Now that all the LMBs have been removed by the guest, call the
3304 * unplug handler chain. This can never fail.
3306 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3309 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3311 sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3312 sPAPRDIMMState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3314 pc_dimm_unplug(dev, MACHINE(hotplug_dev));
3315 object_unparent(OBJECT(dev));
3316 spapr_pending_dimm_unplugs_remove(spapr, ds);
3319 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
3320 DeviceState *dev, Error **errp)
3322 sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3323 Error *local_err = NULL;
3324 PCDIMMDevice *dimm = PC_DIMM(dev);
3325 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
3326 MemoryRegion *mr = ddc->get_memory_region(dimm, &error_abort);
3327 uint32_t nr_lmbs;
3328 uint64_t size, addr_start, addr;
3329 int i;
3330 sPAPRDRConnector *drc;
3332 size = memory_region_size(mr);
3333 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3335 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3336 &local_err);
3337 if (local_err) {
3338 goto out;
3342 * An existing pending dimm state for this DIMM means that there is an
3343 * unplug operation in progress, waiting for the spapr_lmb_release
3344 * callback to complete the job (BQL can't cover that far). In this case,
3345 * bail out to avoid detaching DRCs that were already released.
3347 if (spapr_pending_dimm_unplugs_find(spapr, dimm)) {
3348 error_setg(&local_err,
3349 "Memory unplug already in progress for device %s",
3350 dev->id);
3351 goto out;
3354 spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm);
3356 addr = addr_start;
3357 for (i = 0; i < nr_lmbs; i++) {
3358 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3359 addr / SPAPR_MEMORY_BLOCK_SIZE);
3360 g_assert(drc);
3362 spapr_drc_detach(drc);
3363 addr += SPAPR_MEMORY_BLOCK_SIZE;
3366 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3367 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3368 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3369 nr_lmbs, spapr_drc_index(drc));
3370 out:
3371 error_propagate(errp, local_err);
3374 static void *spapr_populate_hotplug_cpu_dt(CPUState *cs, int *fdt_offset,
3375 sPAPRMachineState *spapr)
3377 PowerPCCPU *cpu = POWERPC_CPU(cs);
3378 DeviceClass *dc = DEVICE_GET_CLASS(cs);
3379 int id = spapr_get_vcpu_id(cpu);
3380 void *fdt;
3381 int offset, fdt_size;
3382 char *nodename;
3384 fdt = create_device_tree(&fdt_size);
3385 nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
3386 offset = fdt_add_subnode(fdt, 0, nodename);
3388 spapr_populate_cpu_dt(cs, fdt, offset, spapr);
3389 g_free(nodename);
3391 *fdt_offset = offset;
3392 return fdt;
3395 /* Callback to be called during DRC release. */
3396 void spapr_core_release(DeviceState *dev)
3398 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3400 /* Call the unplug handler chain. This can never fail. */
3401 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3404 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3406 MachineState *ms = MACHINE(hotplug_dev);
3407 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3408 CPUCore *cc = CPU_CORE(dev);
3409 CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
3411 if (smc->pre_2_10_has_unused_icps) {
3412 sPAPRCPUCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
3413 int i;
3415 for (i = 0; i < cc->nr_threads; i++) {
3416 CPUState *cs = CPU(sc->threads[i]);
3418 pre_2_10_vmstate_register_dummy_icp(cs->cpu_index);
3422 assert(core_slot);
3423 core_slot->cpu = NULL;
3424 object_unparent(OBJECT(dev));
3427 static
3428 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
3429 Error **errp)
3431 sPAPRMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3432 int index;
3433 sPAPRDRConnector *drc;
3434 CPUCore *cc = CPU_CORE(dev);
3436 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
3437 error_setg(errp, "Unable to find CPU core with core-id: %d",
3438 cc->core_id);
3439 return;
3441 if (index == 0) {
3442 error_setg(errp, "Boot CPU core may not be unplugged");
3443 return;
3446 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3447 spapr_vcpu_id(spapr, cc->core_id));
3448 g_assert(drc);
3450 spapr_drc_detach(drc);
3452 spapr_hotplug_req_remove_by_index(drc);
3455 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3456 Error **errp)
3458 sPAPRMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3459 MachineClass *mc = MACHINE_GET_CLASS(spapr);
3460 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3461 sPAPRCPUCore *core = SPAPR_CPU_CORE(OBJECT(dev));
3462 CPUCore *cc = CPU_CORE(dev);
3463 CPUState *cs = CPU(core->threads[0]);
3464 sPAPRDRConnector *drc;
3465 Error *local_err = NULL;
3466 CPUArchId *core_slot;
3467 int index;
3468 bool hotplugged = spapr_drc_hotplugged(dev);
3470 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3471 if (!core_slot) {
3472 error_setg(errp, "Unable to find CPU core with core-id: %d",
3473 cc->core_id);
3474 return;
3476 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3477 spapr_vcpu_id(spapr, cc->core_id));
3479 g_assert(drc || !mc->has_hotpluggable_cpus);
3481 if (drc) {
3482 void *fdt;
3483 int fdt_offset;
3485 fdt = spapr_populate_hotplug_cpu_dt(cs, &fdt_offset, spapr);
3487 spapr_drc_attach(drc, dev, fdt, fdt_offset, &local_err);
3488 if (local_err) {
3489 g_free(fdt);
3490 error_propagate(errp, local_err);
3491 return;
3494 if (hotplugged) {
3496 * Send hotplug notification interrupt to the guest only
3497 * in case of hotplugged CPUs.
3499 spapr_hotplug_req_add_by_index(drc);
3500 } else {
3501 spapr_drc_reset(drc);
3505 core_slot->cpu = OBJECT(dev);
3507 if (smc->pre_2_10_has_unused_icps) {
3508 int i;
3510 for (i = 0; i < cc->nr_threads; i++) {
3511 cs = CPU(core->threads[i]);
3512 pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index);
3517 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3518 Error **errp)
3520 MachineState *machine = MACHINE(OBJECT(hotplug_dev));
3521 MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
3522 Error *local_err = NULL;
3523 CPUCore *cc = CPU_CORE(dev);
3524 const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type);
3525 const char *type = object_get_typename(OBJECT(dev));
3526 CPUArchId *core_slot;
3527 int index;
3529 if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
3530 error_setg(&local_err, "CPU hotplug not supported for this machine");
3531 goto out;
3534 if (strcmp(base_core_type, type)) {
3535 error_setg(&local_err, "CPU core type should be %s", base_core_type);
3536 goto out;
3539 if (cc->core_id % smp_threads) {
3540 error_setg(&local_err, "invalid core id %d", cc->core_id);
3541 goto out;
3545 * In general we should have homogeneous threads-per-core, but old
3546 * (pre hotplug support) machine types allow the last core to have
3547 * reduced threads as a compatibility hack for when we allowed
3548 * total vcpus not a multiple of threads-per-core.
3550 if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
3551 error_setg(&local_err, "invalid nr-threads %d, must be %d",
3552 cc->nr_threads, smp_threads);
3553 goto out;
3556 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3557 if (!core_slot) {
3558 error_setg(&local_err, "core id %d out of range", cc->core_id);
3559 goto out;
3562 if (core_slot->cpu) {
3563 error_setg(&local_err, "core %d already populated", cc->core_id);
3564 goto out;
3567 numa_cpu_pre_plug(core_slot, dev, &local_err);
3569 out:
3570 error_propagate(errp, local_err);
3573 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
3574 DeviceState *dev, Error **errp)
3576 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3577 spapr_memory_plug(hotplug_dev, dev, errp);
3578 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3579 spapr_core_plug(hotplug_dev, dev, errp);
3583 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
3584 DeviceState *dev, Error **errp)
3586 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3587 spapr_memory_unplug(hotplug_dev, dev);
3588 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3589 spapr_core_unplug(hotplug_dev, dev);
3593 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
3594 DeviceState *dev, Error **errp)
3596 sPAPRMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev));
3597 MachineClass *mc = MACHINE_GET_CLASS(sms);
3599 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3600 if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
3601 spapr_memory_unplug_request(hotplug_dev, dev, errp);
3602 } else {
3603 /* NOTE: this means there is a window after guest reset, prior to
3604 * CAS negotiation, where unplug requests will fail due to the
3605 * capability not being detected yet. This is a bit different than
3606 * the case with PCI unplug, where the events will be queued and
3607 * eventually handled by the guest after boot
3609 error_setg(errp, "Memory hot unplug not supported for this guest");
3611 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3612 if (!mc->has_hotpluggable_cpus) {
3613 error_setg(errp, "CPU hot unplug not supported on this machine");
3614 return;
3616 spapr_core_unplug_request(hotplug_dev, dev, errp);
3620 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
3621 DeviceState *dev, Error **errp)
3623 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3624 spapr_memory_pre_plug(hotplug_dev, dev, errp);
3625 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3626 spapr_core_pre_plug(hotplug_dev, dev, errp);
3630 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
3631 DeviceState *dev)
3633 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
3634 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3635 return HOTPLUG_HANDLER(machine);
3637 return NULL;
3640 static CpuInstanceProperties
3641 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
3643 CPUArchId *core_slot;
3644 MachineClass *mc = MACHINE_GET_CLASS(machine);
3646 /* make sure possible_cpu are intialized */
3647 mc->possible_cpu_arch_ids(machine);
3648 /* get CPU core slot containing thread that matches cpu_index */
3649 core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
3650 assert(core_slot);
3651 return core_slot->props;
3654 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx)
3656 return idx / smp_cores % nb_numa_nodes;
3659 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
3661 int i;
3662 const char *core_type;
3663 int spapr_max_cores = max_cpus / smp_threads;
3664 MachineClass *mc = MACHINE_GET_CLASS(machine);
3666 if (!mc->has_hotpluggable_cpus) {
3667 spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
3669 if (machine->possible_cpus) {
3670 assert(machine->possible_cpus->len == spapr_max_cores);
3671 return machine->possible_cpus;
3674 core_type = spapr_get_cpu_core_type(machine->cpu_type);
3675 if (!core_type) {
3676 error_report("Unable to find sPAPR CPU Core definition");
3677 exit(1);
3680 machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
3681 sizeof(CPUArchId) * spapr_max_cores);
3682 machine->possible_cpus->len = spapr_max_cores;
3683 for (i = 0; i < machine->possible_cpus->len; i++) {
3684 int core_id = i * smp_threads;
3686 machine->possible_cpus->cpus[i].type = core_type;
3687 machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
3688 machine->possible_cpus->cpus[i].arch_id = core_id;
3689 machine->possible_cpus->cpus[i].props.has_core_id = true;
3690 machine->possible_cpus->cpus[i].props.core_id = core_id;
3692 return machine->possible_cpus;
3695 static void spapr_phb_placement(sPAPRMachineState *spapr, uint32_t index,
3696 uint64_t *buid, hwaddr *pio,
3697 hwaddr *mmio32, hwaddr *mmio64,
3698 unsigned n_dma, uint32_t *liobns, Error **errp)
3701 * New-style PHB window placement.
3703 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
3704 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
3705 * windows.
3707 * Some guest kernels can't work with MMIO windows above 1<<46
3708 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
3710 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
3711 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the
3712 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the
3713 * 1TiB 64-bit MMIO windows for each PHB.
3715 const uint64_t base_buid = 0x800000020000000ULL;
3716 #define SPAPR_MAX_PHBS ((SPAPR_PCI_LIMIT - SPAPR_PCI_BASE) / \
3717 SPAPR_PCI_MEM64_WIN_SIZE - 1)
3718 int i;
3720 /* Sanity check natural alignments */
3721 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
3722 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
3723 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
3724 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
3725 /* Sanity check bounds */
3726 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
3727 SPAPR_PCI_MEM32_WIN_SIZE);
3728 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
3729 SPAPR_PCI_MEM64_WIN_SIZE);
3731 if (index >= SPAPR_MAX_PHBS) {
3732 error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
3733 SPAPR_MAX_PHBS - 1);
3734 return;
3737 *buid = base_buid + index;
3738 for (i = 0; i < n_dma; ++i) {
3739 liobns[i] = SPAPR_PCI_LIOBN(index, i);
3742 *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
3743 *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
3744 *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
3747 static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
3749 sPAPRMachineState *spapr = SPAPR_MACHINE(dev);
3751 return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
3754 static void spapr_ics_resend(XICSFabric *dev)
3756 sPAPRMachineState *spapr = SPAPR_MACHINE(dev);
3758 ics_resend(spapr->ics);
3761 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id)
3763 PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
3765 return cpu ? ICP(cpu->intc) : NULL;
3768 static void spapr_pic_print_info(InterruptStatsProvider *obj,
3769 Monitor *mon)
3771 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3772 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3774 smc->irq->print_info(spapr, mon);
3777 int spapr_get_vcpu_id(PowerPCCPU *cpu)
3779 return cpu->vcpu_id;
3782 void spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp)
3784 sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
3785 int vcpu_id;
3787 vcpu_id = spapr_vcpu_id(spapr, cpu_index);
3789 if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) {
3790 error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id);
3791 error_append_hint(errp, "Adjust the number of cpus to %d "
3792 "or try to raise the number of threads per core\n",
3793 vcpu_id * smp_threads / spapr->vsmt);
3794 return;
3797 cpu->vcpu_id = vcpu_id;
3800 PowerPCCPU *spapr_find_cpu(int vcpu_id)
3802 CPUState *cs;
3804 CPU_FOREACH(cs) {
3805 PowerPCCPU *cpu = POWERPC_CPU(cs);
3807 if (spapr_get_vcpu_id(cpu) == vcpu_id) {
3808 return cpu;
3812 return NULL;
3815 static void spapr_machine_class_init(ObjectClass *oc, void *data)
3817 MachineClass *mc = MACHINE_CLASS(oc);
3818 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
3819 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
3820 NMIClass *nc = NMI_CLASS(oc);
3821 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
3822 PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
3823 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
3824 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
3826 mc->desc = "pSeries Logical Partition (PAPR compliant)";
3827 mc->ignore_boot_device_suffixes = true;
3830 * We set up the default / latest behaviour here. The class_init
3831 * functions for the specific versioned machine types can override
3832 * these details for backwards compatibility
3834 mc->init = spapr_machine_init;
3835 mc->reset = spapr_machine_reset;
3836 mc->block_default_type = IF_SCSI;
3837 mc->max_cpus = 1024;
3838 mc->no_parallel = 1;
3839 mc->default_boot_order = "";
3840 mc->default_ram_size = 512 * MiB;
3841 mc->default_display = "std";
3842 mc->kvm_type = spapr_kvm_type;
3843 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE);
3844 mc->pci_allow_0_address = true;
3845 assert(!mc->get_hotplug_handler);
3846 mc->get_hotplug_handler = spapr_get_hotplug_handler;
3847 hc->pre_plug = spapr_machine_device_pre_plug;
3848 hc->plug = spapr_machine_device_plug;
3849 mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
3850 mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id;
3851 mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
3852 hc->unplug_request = spapr_machine_device_unplug_request;
3853 hc->unplug = spapr_machine_device_unplug;
3855 smc->dr_lmb_enabled = true;
3856 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
3857 mc->has_hotpluggable_cpus = true;
3858 smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED;
3859 fwc->get_dev_path = spapr_get_fw_dev_path;
3860 nc->nmi_monitor_handler = spapr_nmi;
3861 smc->phb_placement = spapr_phb_placement;
3862 vhc->hypercall = emulate_spapr_hypercall;
3863 vhc->hpt_mask = spapr_hpt_mask;
3864 vhc->map_hptes = spapr_map_hptes;
3865 vhc->unmap_hptes = spapr_unmap_hptes;
3866 vhc->store_hpte = spapr_store_hpte;
3867 vhc->get_patbe = spapr_get_patbe;
3868 vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr;
3869 xic->ics_get = spapr_ics_get;
3870 xic->ics_resend = spapr_ics_resend;
3871 xic->icp_get = spapr_icp_get;
3872 ispc->print_info = spapr_pic_print_info;
3873 /* Force NUMA node memory size to be a multiple of
3874 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
3875 * in which LMBs are represented and hot-added
3877 mc->numa_mem_align_shift = 28;
3879 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF;
3880 smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON;
3881 smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON;
3882 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN;
3883 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN;
3884 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN;
3885 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */
3886 spapr_caps_add_properties(smc, &error_abort);
3887 smc->irq = &spapr_irq_xics;
3890 static const TypeInfo spapr_machine_info = {
3891 .name = TYPE_SPAPR_MACHINE,
3892 .parent = TYPE_MACHINE,
3893 .abstract = true,
3894 .instance_size = sizeof(sPAPRMachineState),
3895 .instance_init = spapr_instance_init,
3896 .instance_finalize = spapr_machine_finalizefn,
3897 .class_size = sizeof(sPAPRMachineClass),
3898 .class_init = spapr_machine_class_init,
3899 .interfaces = (InterfaceInfo[]) {
3900 { TYPE_FW_PATH_PROVIDER },
3901 { TYPE_NMI },
3902 { TYPE_HOTPLUG_HANDLER },
3903 { TYPE_PPC_VIRTUAL_HYPERVISOR },
3904 { TYPE_XICS_FABRIC },
3905 { TYPE_INTERRUPT_STATS_PROVIDER },
3910 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \
3911 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
3912 void *data) \
3914 MachineClass *mc = MACHINE_CLASS(oc); \
3915 spapr_machine_##suffix##_class_options(mc); \
3916 if (latest) { \
3917 mc->alias = "pseries"; \
3918 mc->is_default = 1; \
3921 static void spapr_machine_##suffix##_instance_init(Object *obj) \
3923 MachineState *machine = MACHINE(obj); \
3924 spapr_machine_##suffix##_instance_options(machine); \
3926 static const TypeInfo spapr_machine_##suffix##_info = { \
3927 .name = MACHINE_TYPE_NAME("pseries-" verstr), \
3928 .parent = TYPE_SPAPR_MACHINE, \
3929 .class_init = spapr_machine_##suffix##_class_init, \
3930 .instance_init = spapr_machine_##suffix##_instance_init, \
3931 }; \
3932 static void spapr_machine_register_##suffix(void) \
3934 type_register(&spapr_machine_##suffix##_info); \
3936 type_init(spapr_machine_register_##suffix)
3939 * pseries-3.1
3941 static void spapr_machine_3_1_instance_options(MachineState *machine)
3945 static void spapr_machine_3_1_class_options(MachineClass *mc)
3947 /* Defaults for the latest behaviour inherited from the base class */
3950 DEFINE_SPAPR_MACHINE(3_1, "3.1", true);
3953 * pseries-3.0
3955 #define SPAPR_COMPAT_3_0 \
3956 HW_COMPAT_3_0
3958 static void spapr_machine_3_0_instance_options(MachineState *machine)
3960 spapr_machine_3_1_instance_options(machine);
3963 static void spapr_machine_3_0_class_options(MachineClass *mc)
3965 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3967 spapr_machine_3_1_class_options(mc);
3968 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_3_0);
3970 smc->legacy_irq_allocation = true;
3973 DEFINE_SPAPR_MACHINE(3_0, "3.0", false);
3976 * pseries-2.12
3978 #define SPAPR_COMPAT_2_12 \
3979 HW_COMPAT_2_12 \
3981 .driver = TYPE_POWERPC_CPU, \
3982 .property = "pre-3.0-migration", \
3983 .value = "on", \
3984 }, \
3986 .driver = TYPE_SPAPR_CPU_CORE, \
3987 .property = "pre-3.0-migration", \
3988 .value = "on", \
3991 static void spapr_machine_2_12_instance_options(MachineState *machine)
3993 spapr_machine_3_0_instance_options(machine);
3996 static void spapr_machine_2_12_class_options(MachineClass *mc)
3998 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4000 spapr_machine_3_0_class_options(mc);
4001 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_12);
4003 /* We depend on kvm_enabled() to choose a default value for the
4004 * hpt-max-page-size capability. Of course we can't do it here
4005 * because this is too early and the HW accelerator isn't initialzed
4006 * yet. Postpone this to machine init (see default_caps_with_cpu()).
4008 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0;
4011 DEFINE_SPAPR_MACHINE(2_12, "2.12", false);
4013 static void spapr_machine_2_12_sxxm_instance_options(MachineState *machine)
4015 spapr_machine_2_12_instance_options(machine);
4018 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc)
4020 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4022 spapr_machine_2_12_class_options(mc);
4023 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4024 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4025 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD;
4028 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false);
4031 * pseries-2.11
4033 #define SPAPR_COMPAT_2_11 \
4034 HW_COMPAT_2_11
4036 static void spapr_machine_2_11_instance_options(MachineState *machine)
4038 spapr_machine_2_12_instance_options(machine);
4041 static void spapr_machine_2_11_class_options(MachineClass *mc)
4043 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4045 spapr_machine_2_12_class_options(mc);
4046 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON;
4047 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_11);
4050 DEFINE_SPAPR_MACHINE(2_11, "2.11", false);
4053 * pseries-2.10
4055 #define SPAPR_COMPAT_2_10 \
4056 HW_COMPAT_2_10
4058 static void spapr_machine_2_10_instance_options(MachineState *machine)
4060 spapr_machine_2_11_instance_options(machine);
4063 static void spapr_machine_2_10_class_options(MachineClass *mc)
4065 spapr_machine_2_11_class_options(mc);
4066 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_10);
4069 DEFINE_SPAPR_MACHINE(2_10, "2.10", false);
4072 * pseries-2.9
4074 #define SPAPR_COMPAT_2_9 \
4075 HW_COMPAT_2_9 \
4077 .driver = TYPE_POWERPC_CPU, \
4078 .property = "pre-2.10-migration", \
4079 .value = "on", \
4080 }, \
4082 static void spapr_machine_2_9_instance_options(MachineState *machine)
4084 spapr_machine_2_10_instance_options(machine);
4087 static void spapr_machine_2_9_class_options(MachineClass *mc)
4089 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4091 spapr_machine_2_10_class_options(mc);
4092 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_9);
4093 mc->numa_auto_assign_ram = numa_legacy_auto_assign_ram;
4094 smc->pre_2_10_has_unused_icps = true;
4095 smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED;
4098 DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
4101 * pseries-2.8
4103 #define SPAPR_COMPAT_2_8 \
4104 HW_COMPAT_2_8 \
4106 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
4107 .property = "pcie-extended-configuration-space", \
4108 .value = "off", \
4111 static void spapr_machine_2_8_instance_options(MachineState *machine)
4113 spapr_machine_2_9_instance_options(machine);
4116 static void spapr_machine_2_8_class_options(MachineClass *mc)
4118 spapr_machine_2_9_class_options(mc);
4119 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_8);
4120 mc->numa_mem_align_shift = 23;
4123 DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
4126 * pseries-2.7
4128 #define SPAPR_COMPAT_2_7 \
4129 HW_COMPAT_2_7 \
4131 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
4132 .property = "mem_win_size", \
4133 .value = stringify(SPAPR_PCI_2_7_MMIO_WIN_SIZE),\
4134 }, \
4136 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
4137 .property = "mem64_win_size", \
4138 .value = "0", \
4139 }, \
4141 .driver = TYPE_POWERPC_CPU, \
4142 .property = "pre-2.8-migration", \
4143 .value = "on", \
4144 }, \
4146 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
4147 .property = "pre-2.8-migration", \
4148 .value = "on", \
4151 static void phb_placement_2_7(sPAPRMachineState *spapr, uint32_t index,
4152 uint64_t *buid, hwaddr *pio,
4153 hwaddr *mmio32, hwaddr *mmio64,
4154 unsigned n_dma, uint32_t *liobns, Error **errp)
4156 /* Legacy PHB placement for pseries-2.7 and earlier machine types */
4157 const uint64_t base_buid = 0x800000020000000ULL;
4158 const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
4159 const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
4160 const hwaddr pio_offset = 0x80000000; /* 2 GiB */
4161 const uint32_t max_index = 255;
4162 const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
4164 uint64_t ram_top = MACHINE(spapr)->ram_size;
4165 hwaddr phb0_base, phb_base;
4166 int i;
4168 /* Do we have device memory? */
4169 if (MACHINE(spapr)->maxram_size > ram_top) {
4170 /* Can't just use maxram_size, because there may be an
4171 * alignment gap between normal and device memory regions
4173 ram_top = MACHINE(spapr)->device_memory->base +
4174 memory_region_size(&MACHINE(spapr)->device_memory->mr);
4177 phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
4179 if (index > max_index) {
4180 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
4181 max_index);
4182 return;
4185 *buid = base_buid + index;
4186 for (i = 0; i < n_dma; ++i) {
4187 liobns[i] = SPAPR_PCI_LIOBN(index, i);
4190 phb_base = phb0_base + index * phb_spacing;
4191 *pio = phb_base + pio_offset;
4192 *mmio32 = phb_base + mmio_offset;
4194 * We don't set the 64-bit MMIO window, relying on the PHB's
4195 * fallback behaviour of automatically splitting a large "32-bit"
4196 * window into contiguous 32-bit and 64-bit windows
4200 static void spapr_machine_2_7_instance_options(MachineState *machine)
4202 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
4204 spapr_machine_2_8_instance_options(machine);
4205 spapr->use_hotplug_event_source = false;
4208 static void spapr_machine_2_7_class_options(MachineClass *mc)
4210 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4212 spapr_machine_2_8_class_options(mc);
4213 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3");
4214 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_7);
4215 smc->phb_placement = phb_placement_2_7;
4218 DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
4221 * pseries-2.6
4223 #define SPAPR_COMPAT_2_6 \
4224 HW_COMPAT_2_6 \
4226 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\
4227 .property = "ddw",\
4228 .value = stringify(off),\
4231 static void spapr_machine_2_6_instance_options(MachineState *machine)
4233 spapr_machine_2_7_instance_options(machine);
4236 static void spapr_machine_2_6_class_options(MachineClass *mc)
4238 spapr_machine_2_7_class_options(mc);
4239 mc->has_hotpluggable_cpus = false;
4240 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_6);
4243 DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
4246 * pseries-2.5
4248 #define SPAPR_COMPAT_2_5 \
4249 HW_COMPAT_2_5 \
4251 .driver = "spapr-vlan", \
4252 .property = "use-rx-buffer-pools", \
4253 .value = "off", \
4256 static void spapr_machine_2_5_instance_options(MachineState *machine)
4258 spapr_machine_2_6_instance_options(machine);
4261 static void spapr_machine_2_5_class_options(MachineClass *mc)
4263 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4265 spapr_machine_2_6_class_options(mc);
4266 smc->use_ohci_by_default = true;
4267 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_5);
4270 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
4273 * pseries-2.4
4275 #define SPAPR_COMPAT_2_4 \
4276 HW_COMPAT_2_4
4278 static void spapr_machine_2_4_instance_options(MachineState *machine)
4280 spapr_machine_2_5_instance_options(machine);
4283 static void spapr_machine_2_4_class_options(MachineClass *mc)
4285 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4287 spapr_machine_2_5_class_options(mc);
4288 smc->dr_lmb_enabled = false;
4289 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_4);
4292 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
4295 * pseries-2.3
4297 #define SPAPR_COMPAT_2_3 \
4298 HW_COMPAT_2_3 \
4300 .driver = "spapr-pci-host-bridge",\
4301 .property = "dynamic-reconfiguration",\
4302 .value = "off",\
4305 static void spapr_machine_2_3_instance_options(MachineState *machine)
4307 spapr_machine_2_4_instance_options(machine);
4310 static void spapr_machine_2_3_class_options(MachineClass *mc)
4312 spapr_machine_2_4_class_options(mc);
4313 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_3);
4315 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
4318 * pseries-2.2
4321 #define SPAPR_COMPAT_2_2 \
4322 HW_COMPAT_2_2 \
4324 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\
4325 .property = "mem_win_size",\
4326 .value = "0x20000000",\
4329 static void spapr_machine_2_2_instance_options(MachineState *machine)
4331 spapr_machine_2_3_instance_options(machine);
4332 machine->suppress_vmdesc = true;
4335 static void spapr_machine_2_2_class_options(MachineClass *mc)
4337 spapr_machine_2_3_class_options(mc);
4338 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_2);
4340 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
4343 * pseries-2.1
4345 #define SPAPR_COMPAT_2_1 \
4346 HW_COMPAT_2_1
4348 static void spapr_machine_2_1_instance_options(MachineState *machine)
4350 spapr_machine_2_2_instance_options(machine);
4353 static void spapr_machine_2_1_class_options(MachineClass *mc)
4355 spapr_machine_2_2_class_options(mc);
4356 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_1);
4358 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
4360 static void spapr_machine_register_types(void)
4362 type_register_static(&spapr_machine_info);
4365 type_init(spapr_machine_register_types)