target: Improve error reporting for CpuModelInfo member @props
[qemu/kevin.git] / accel / tcg / cpu-exec.c
blob52239a441fc668ad9f2fe0385babed1877775473
1 /*
2 * emulator main execution loop
4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "qemu/qemu-print.h"
22 #include "qapi/error.h"
23 #include "qapi/type-helpers.h"
24 #include "hw/core/tcg-cpu-ops.h"
25 #include "trace.h"
26 #include "disas/disas.h"
27 #include "exec/exec-all.h"
28 #include "tcg/tcg.h"
29 #include "qemu/atomic.h"
30 #include "qemu/rcu.h"
31 #include "exec/log.h"
32 #include "qemu/main-loop.h"
33 #include "sysemu/cpus.h"
34 #include "exec/cpu-all.h"
35 #include "sysemu/cpu-timers.h"
36 #include "exec/replay-core.h"
37 #include "sysemu/tcg.h"
38 #include "exec/helper-proto-common.h"
39 #include "tb-jmp-cache.h"
40 #include "tb-hash.h"
41 #include "tb-context.h"
42 #include "internal-common.h"
43 #include "internal-target.h"
45 /* -icount align implementation. */
47 typedef struct SyncClocks {
48 int64_t diff_clk;
49 int64_t last_cpu_icount;
50 int64_t realtime_clock;
51 } SyncClocks;
53 #if !defined(CONFIG_USER_ONLY)
54 /* Allow the guest to have a max 3ms advance.
55 * The difference between the 2 clocks could therefore
56 * oscillate around 0.
58 #define VM_CLOCK_ADVANCE 3000000
59 #define THRESHOLD_REDUCE 1.5
60 #define MAX_DELAY_PRINT_RATE 2000000000LL
61 #define MAX_NB_PRINTS 100
63 int64_t max_delay;
64 int64_t max_advance;
66 static void align_clocks(SyncClocks *sc, CPUState *cpu)
68 int64_t cpu_icount;
70 if (!icount_align_option) {
71 return;
74 cpu_icount = cpu->icount_extra + cpu->neg.icount_decr.u16.low;
75 sc->diff_clk += icount_to_ns(sc->last_cpu_icount - cpu_icount);
76 sc->last_cpu_icount = cpu_icount;
78 if (sc->diff_clk > VM_CLOCK_ADVANCE) {
79 #ifndef _WIN32
80 struct timespec sleep_delay, rem_delay;
81 sleep_delay.tv_sec = sc->diff_clk / 1000000000LL;
82 sleep_delay.tv_nsec = sc->diff_clk % 1000000000LL;
83 if (nanosleep(&sleep_delay, &rem_delay) < 0) {
84 sc->diff_clk = rem_delay.tv_sec * 1000000000LL + rem_delay.tv_nsec;
85 } else {
86 sc->diff_clk = 0;
88 #else
89 Sleep(sc->diff_clk / SCALE_MS);
90 sc->diff_clk = 0;
91 #endif
95 static void print_delay(const SyncClocks *sc)
97 static float threshold_delay;
98 static int64_t last_realtime_clock;
99 static int nb_prints;
101 if (icount_align_option &&
102 sc->realtime_clock - last_realtime_clock >= MAX_DELAY_PRINT_RATE &&
103 nb_prints < MAX_NB_PRINTS) {
104 if ((-sc->diff_clk / (float)1000000000LL > threshold_delay) ||
105 (-sc->diff_clk / (float)1000000000LL <
106 (threshold_delay - THRESHOLD_REDUCE))) {
107 threshold_delay = (-sc->diff_clk / 1000000000LL) + 1;
108 qemu_printf("Warning: The guest is now late by %.1f to %.1f seconds\n",
109 threshold_delay - 1,
110 threshold_delay);
111 nb_prints++;
112 last_realtime_clock = sc->realtime_clock;
117 static void init_delay_params(SyncClocks *sc, CPUState *cpu)
119 if (!icount_align_option) {
120 return;
122 sc->realtime_clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT);
123 sc->diff_clk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - sc->realtime_clock;
124 sc->last_cpu_icount
125 = cpu->icount_extra + cpu->neg.icount_decr.u16.low;
126 if (sc->diff_clk < max_delay) {
127 max_delay = sc->diff_clk;
129 if (sc->diff_clk > max_advance) {
130 max_advance = sc->diff_clk;
133 /* Print every 2s max if the guest is late. We limit the number
134 of printed messages to NB_PRINT_MAX(currently 100) */
135 print_delay(sc);
137 #else
138 static void align_clocks(SyncClocks *sc, const CPUState *cpu)
142 static void init_delay_params(SyncClocks *sc, const CPUState *cpu)
145 #endif /* CONFIG USER ONLY */
147 uint32_t curr_cflags(CPUState *cpu)
149 uint32_t cflags = cpu->tcg_cflags;
152 * Record gdb single-step. We should be exiting the TB by raising
153 * EXCP_DEBUG, but to simplify other tests, disable chaining too.
155 * For singlestep and -d nochain, suppress goto_tb so that
156 * we can log -d cpu,exec after every TB.
158 if (unlikely(cpu->singlestep_enabled)) {
159 cflags |= CF_NO_GOTO_TB | CF_NO_GOTO_PTR | CF_SINGLE_STEP | 1;
160 } else if (qatomic_read(&one_insn_per_tb)) {
161 cflags |= CF_NO_GOTO_TB | 1;
162 } else if (qemu_loglevel_mask(CPU_LOG_TB_NOCHAIN)) {
163 cflags |= CF_NO_GOTO_TB;
166 return cflags;
169 struct tb_desc {
170 vaddr pc;
171 uint64_t cs_base;
172 CPUArchState *env;
173 tb_page_addr_t page_addr0;
174 uint32_t flags;
175 uint32_t cflags;
178 static bool tb_lookup_cmp(const void *p, const void *d)
180 const TranslationBlock *tb = p;
181 const struct tb_desc *desc = d;
183 if ((tb_cflags(tb) & CF_PCREL || tb->pc == desc->pc) &&
184 tb_page_addr0(tb) == desc->page_addr0 &&
185 tb->cs_base == desc->cs_base &&
186 tb->flags == desc->flags &&
187 tb_cflags(tb) == desc->cflags) {
188 /* check next page if needed */
189 tb_page_addr_t tb_phys_page1 = tb_page_addr1(tb);
190 if (tb_phys_page1 == -1) {
191 return true;
192 } else {
193 tb_page_addr_t phys_page1;
194 vaddr virt_page1;
197 * We know that the first page matched, and an otherwise valid TB
198 * encountered an incomplete instruction at the end of that page,
199 * therefore we know that generating a new TB from the current PC
200 * must also require reading from the next page -- even if the
201 * second pages do not match, and therefore the resulting insn
202 * is different for the new TB. Therefore any exception raised
203 * here by the faulting lookup is not premature.
205 virt_page1 = TARGET_PAGE_ALIGN(desc->pc);
206 phys_page1 = get_page_addr_code(desc->env, virt_page1);
207 if (tb_phys_page1 == phys_page1) {
208 return true;
212 return false;
215 static TranslationBlock *tb_htable_lookup(CPUState *cpu, vaddr pc,
216 uint64_t cs_base, uint32_t flags,
217 uint32_t cflags)
219 tb_page_addr_t phys_pc;
220 struct tb_desc desc;
221 uint32_t h;
223 desc.env = cpu_env(cpu);
224 desc.cs_base = cs_base;
225 desc.flags = flags;
226 desc.cflags = cflags;
227 desc.pc = pc;
228 phys_pc = get_page_addr_code(desc.env, pc);
229 if (phys_pc == -1) {
230 return NULL;
232 desc.page_addr0 = phys_pc;
233 h = tb_hash_func(phys_pc, (cflags & CF_PCREL ? 0 : pc),
234 flags, cs_base, cflags);
235 return qht_lookup_custom(&tb_ctx.htable, &desc, h, tb_lookup_cmp);
238 /* Might cause an exception, so have a longjmp destination ready */
239 static inline TranslationBlock *tb_lookup(CPUState *cpu, vaddr pc,
240 uint64_t cs_base, uint32_t flags,
241 uint32_t cflags)
243 TranslationBlock *tb;
244 CPUJumpCache *jc;
245 uint32_t hash;
247 /* we should never be trying to look up an INVALID tb */
248 tcg_debug_assert(!(cflags & CF_INVALID));
250 hash = tb_jmp_cache_hash_func(pc);
251 jc = cpu->tb_jmp_cache;
253 tb = qatomic_read(&jc->array[hash].tb);
254 if (likely(tb &&
255 jc->array[hash].pc == pc &&
256 tb->cs_base == cs_base &&
257 tb->flags == flags &&
258 tb_cflags(tb) == cflags)) {
259 goto hit;
262 tb = tb_htable_lookup(cpu, pc, cs_base, flags, cflags);
263 if (tb == NULL) {
264 return NULL;
267 jc->array[hash].pc = pc;
268 qatomic_set(&jc->array[hash].tb, tb);
270 hit:
272 * As long as tb is not NULL, the contents are consistent. Therefore,
273 * the virtual PC has to match for non-CF_PCREL translations.
275 assert((tb_cflags(tb) & CF_PCREL) || tb->pc == pc);
276 return tb;
279 static void log_cpu_exec(vaddr pc, CPUState *cpu,
280 const TranslationBlock *tb)
282 if (qemu_log_in_addr_range(pc)) {
283 qemu_log_mask(CPU_LOG_EXEC,
284 "Trace %d: %p [%08" PRIx64
285 "/%016" VADDR_PRIx "/%08x/%08x] %s\n",
286 cpu->cpu_index, tb->tc.ptr, tb->cs_base, pc,
287 tb->flags, tb->cflags, lookup_symbol(pc));
289 if (qemu_loglevel_mask(CPU_LOG_TB_CPU)) {
290 FILE *logfile = qemu_log_trylock();
291 if (logfile) {
292 int flags = 0;
294 if (qemu_loglevel_mask(CPU_LOG_TB_FPU)) {
295 flags |= CPU_DUMP_FPU;
297 #if defined(TARGET_I386)
298 flags |= CPU_DUMP_CCOP;
299 #endif
300 if (qemu_loglevel_mask(CPU_LOG_TB_VPU)) {
301 flags |= CPU_DUMP_VPU;
303 cpu_dump_state(cpu, logfile, flags);
304 qemu_log_unlock(logfile);
310 static bool check_for_breakpoints_slow(CPUState *cpu, vaddr pc,
311 uint32_t *cflags)
313 CPUBreakpoint *bp;
314 bool match_page = false;
317 * Singlestep overrides breakpoints.
318 * This requirement is visible in the record-replay tests, where
319 * we would fail to make forward progress in reverse-continue.
321 * TODO: gdb singlestep should only override gdb breakpoints,
322 * so that one could (gdb) singlestep into the guest kernel's
323 * architectural breakpoint handler.
325 if (cpu->singlestep_enabled) {
326 return false;
329 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
331 * If we have an exact pc match, trigger the breakpoint.
332 * Otherwise, note matches within the page.
334 if (pc == bp->pc) {
335 bool match_bp = false;
337 if (bp->flags & BP_GDB) {
338 match_bp = true;
339 } else if (bp->flags & BP_CPU) {
340 #ifdef CONFIG_USER_ONLY
341 g_assert_not_reached();
342 #else
343 const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops;
344 assert(tcg_ops->debug_check_breakpoint);
345 match_bp = tcg_ops->debug_check_breakpoint(cpu);
346 #endif
349 if (match_bp) {
350 cpu->exception_index = EXCP_DEBUG;
351 return true;
353 } else if (((pc ^ bp->pc) & TARGET_PAGE_MASK) == 0) {
354 match_page = true;
359 * Within the same page as a breakpoint, single-step,
360 * returning to helper_lookup_tb_ptr after each insn looking
361 * for the actual breakpoint.
363 * TODO: Perhaps better to record all of the TBs associated
364 * with a given virtual page that contains a breakpoint, and
365 * then invalidate them when a new overlapping breakpoint is
366 * set on the page. Non-overlapping TBs would not be
367 * invalidated, nor would any TB need to be invalidated as
368 * breakpoints are removed.
370 if (match_page) {
371 *cflags = (*cflags & ~CF_COUNT_MASK) | CF_NO_GOTO_TB | 1;
373 return false;
376 static inline bool check_for_breakpoints(CPUState *cpu, vaddr pc,
377 uint32_t *cflags)
379 return unlikely(!QTAILQ_EMPTY(&cpu->breakpoints)) &&
380 check_for_breakpoints_slow(cpu, pc, cflags);
384 * helper_lookup_tb_ptr: quick check for next tb
385 * @env: current cpu state
387 * Look for an existing TB matching the current cpu state.
388 * If found, return the code pointer. If not found, return
389 * the tcg epilogue so that we return into cpu_tb_exec.
391 const void *HELPER(lookup_tb_ptr)(CPUArchState *env)
393 CPUState *cpu = env_cpu(env);
394 TranslationBlock *tb;
395 vaddr pc;
396 uint64_t cs_base;
397 uint32_t flags, cflags;
400 * By definition we've just finished a TB, so I/O is OK.
401 * Avoid the possibility of calling cpu_io_recompile() if
402 * a page table walk triggered by tb_lookup() calling
403 * probe_access_internal() happens to touch an MMIO device.
404 * The next TB, if we chain to it, will clear the flag again.
406 cpu->neg.can_do_io = true;
407 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
409 cflags = curr_cflags(cpu);
410 if (check_for_breakpoints(cpu, pc, &cflags)) {
411 cpu_loop_exit(cpu);
414 tb = tb_lookup(cpu, pc, cs_base, flags, cflags);
415 if (tb == NULL) {
416 return tcg_code_gen_epilogue;
419 if (qemu_loglevel_mask(CPU_LOG_TB_CPU | CPU_LOG_EXEC)) {
420 log_cpu_exec(pc, cpu, tb);
423 return tb->tc.ptr;
426 /* Execute a TB, and fix up the CPU state afterwards if necessary */
428 * Disable CFI checks.
429 * TCG creates binary blobs at runtime, with the transformed code.
430 * A TB is a blob of binary code, created at runtime and called with an
431 * indirect function call. Since such function did not exist at compile time,
432 * the CFI runtime has no way to verify its signature and would fail.
433 * TCG is not considered a security-sensitive part of QEMU so this does not
434 * affect the impact of CFI in environment with high security requirements
436 static inline TranslationBlock * QEMU_DISABLE_CFI
437 cpu_tb_exec(CPUState *cpu, TranslationBlock *itb, int *tb_exit)
439 CPUArchState *env = cpu_env(cpu);
440 uintptr_t ret;
441 TranslationBlock *last_tb;
442 const void *tb_ptr = itb->tc.ptr;
444 if (qemu_loglevel_mask(CPU_LOG_TB_CPU | CPU_LOG_EXEC)) {
445 log_cpu_exec(log_pc(cpu, itb), cpu, itb);
448 qemu_thread_jit_execute();
449 ret = tcg_qemu_tb_exec(env, tb_ptr);
450 cpu->neg.can_do_io = true;
451 qemu_plugin_disable_mem_helpers(cpu);
453 * TODO: Delay swapping back to the read-write region of the TB
454 * until we actually need to modify the TB. The read-only copy,
455 * coming from the rx region, shares the same host TLB entry as
456 * the code that executed the exit_tb opcode that arrived here.
457 * If we insist on touching both the RX and the RW pages, we
458 * double the host TLB pressure.
460 last_tb = tcg_splitwx_to_rw((void *)(ret & ~TB_EXIT_MASK));
461 *tb_exit = ret & TB_EXIT_MASK;
463 trace_exec_tb_exit(last_tb, *tb_exit);
465 if (*tb_exit > TB_EXIT_IDX1) {
466 /* We didn't start executing this TB (eg because the instruction
467 * counter hit zero); we must restore the guest PC to the address
468 * of the start of the TB.
470 CPUClass *cc = cpu->cc;
471 const TCGCPUOps *tcg_ops = cc->tcg_ops;
473 if (tcg_ops->synchronize_from_tb) {
474 tcg_ops->synchronize_from_tb(cpu, last_tb);
475 } else {
476 tcg_debug_assert(!(tb_cflags(last_tb) & CF_PCREL));
477 assert(cc->set_pc);
478 cc->set_pc(cpu, last_tb->pc);
480 if (qemu_loglevel_mask(CPU_LOG_EXEC)) {
481 vaddr pc = log_pc(cpu, last_tb);
482 if (qemu_log_in_addr_range(pc)) {
483 qemu_log("Stopped execution of TB chain before %p [%016"
484 VADDR_PRIx "] %s\n",
485 last_tb->tc.ptr, pc, lookup_symbol(pc));
491 * If gdb single-step, and we haven't raised another exception,
492 * raise a debug exception. Single-step with another exception
493 * is handled in cpu_handle_exception.
495 if (unlikely(cpu->singlestep_enabled) && cpu->exception_index == -1) {
496 cpu->exception_index = EXCP_DEBUG;
497 cpu_loop_exit(cpu);
500 return last_tb;
504 static void cpu_exec_enter(CPUState *cpu)
506 const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops;
508 if (tcg_ops->cpu_exec_enter) {
509 tcg_ops->cpu_exec_enter(cpu);
513 static void cpu_exec_exit(CPUState *cpu)
515 const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops;
517 if (tcg_ops->cpu_exec_exit) {
518 tcg_ops->cpu_exec_exit(cpu);
522 static void cpu_exec_longjmp_cleanup(CPUState *cpu)
524 /* Non-buggy compilers preserve this; assert the correct value. */
525 g_assert(cpu == current_cpu);
527 #ifdef CONFIG_USER_ONLY
528 clear_helper_retaddr();
529 if (have_mmap_lock()) {
530 mmap_unlock();
532 #else
534 * For softmmu, a tlb_fill fault during translation will land here,
535 * and we need to release any page locks held. In system mode we
536 * have one tcg_ctx per thread, so we know it was this cpu doing
537 * the translation.
539 * Alternative 1: Install a cleanup to be called via an exception
540 * handling safe longjmp. It seems plausible that all our hosts
541 * support such a thing. We'd have to properly register unwind info
542 * for the JIT for EH, rather that just for GDB.
544 * Alternative 2: Set and restore cpu->jmp_env in tb_gen_code to
545 * capture the cpu_loop_exit longjmp, perform the cleanup, and
546 * jump again to arrive here.
548 if (tcg_ctx->gen_tb) {
549 tb_unlock_pages(tcg_ctx->gen_tb);
550 tcg_ctx->gen_tb = NULL;
552 #endif
553 if (bql_locked()) {
554 bql_unlock();
556 assert_no_pages_locked();
559 void cpu_exec_step_atomic(CPUState *cpu)
561 CPUArchState *env = cpu_env(cpu);
562 TranslationBlock *tb;
563 vaddr pc;
564 uint64_t cs_base;
565 uint32_t flags, cflags;
566 int tb_exit;
568 if (sigsetjmp(cpu->jmp_env, 0) == 0) {
569 start_exclusive();
570 g_assert(cpu == current_cpu);
571 g_assert(!cpu->running);
572 cpu->running = true;
574 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
576 cflags = curr_cflags(cpu);
577 /* Execute in a serial context. */
578 cflags &= ~CF_PARALLEL;
579 /* After 1 insn, return and release the exclusive lock. */
580 cflags |= CF_NO_GOTO_TB | CF_NO_GOTO_PTR | 1;
582 * No need to check_for_breakpoints here.
583 * We only arrive in cpu_exec_step_atomic after beginning execution
584 * of an insn that includes an atomic operation we can't handle.
585 * Any breakpoint for this insn will have been recognized earlier.
588 tb = tb_lookup(cpu, pc, cs_base, flags, cflags);
589 if (tb == NULL) {
590 mmap_lock();
591 tb = tb_gen_code(cpu, pc, cs_base, flags, cflags);
592 mmap_unlock();
595 cpu_exec_enter(cpu);
596 /* execute the generated code */
597 trace_exec_tb(tb, pc);
598 cpu_tb_exec(cpu, tb, &tb_exit);
599 cpu_exec_exit(cpu);
600 } else {
601 cpu_exec_longjmp_cleanup(cpu);
605 * As we start the exclusive region before codegen we must still
606 * be in the region if we longjump out of either the codegen or
607 * the execution.
609 g_assert(cpu_in_exclusive_context(cpu));
610 cpu->running = false;
611 end_exclusive();
614 void tb_set_jmp_target(TranslationBlock *tb, int n, uintptr_t addr)
617 * Get the rx view of the structure, from which we find the
618 * executable code address, and tb_target_set_jmp_target can
619 * produce a pc-relative displacement to jmp_target_addr[n].
621 const TranslationBlock *c_tb = tcg_splitwx_to_rx(tb);
622 uintptr_t offset = tb->jmp_insn_offset[n];
623 uintptr_t jmp_rx = (uintptr_t)tb->tc.ptr + offset;
624 uintptr_t jmp_rw = jmp_rx - tcg_splitwx_diff;
626 tb->jmp_target_addr[n] = addr;
627 tb_target_set_jmp_target(c_tb, n, jmp_rx, jmp_rw);
630 static inline void tb_add_jump(TranslationBlock *tb, int n,
631 TranslationBlock *tb_next)
633 uintptr_t old;
635 qemu_thread_jit_write();
636 assert(n < ARRAY_SIZE(tb->jmp_list_next));
637 qemu_spin_lock(&tb_next->jmp_lock);
639 /* make sure the destination TB is valid */
640 if (tb_next->cflags & CF_INVALID) {
641 goto out_unlock_next;
643 /* Atomically claim the jump destination slot only if it was NULL */
644 old = qatomic_cmpxchg(&tb->jmp_dest[n], (uintptr_t)NULL,
645 (uintptr_t)tb_next);
646 if (old) {
647 goto out_unlock_next;
650 /* patch the native jump address */
651 tb_set_jmp_target(tb, n, (uintptr_t)tb_next->tc.ptr);
653 /* add in TB jmp list */
654 tb->jmp_list_next[n] = tb_next->jmp_list_head;
655 tb_next->jmp_list_head = (uintptr_t)tb | n;
657 qemu_spin_unlock(&tb_next->jmp_lock);
659 qemu_log_mask(CPU_LOG_EXEC, "Linking TBs %p index %d -> %p\n",
660 tb->tc.ptr, n, tb_next->tc.ptr);
661 return;
663 out_unlock_next:
664 qemu_spin_unlock(&tb_next->jmp_lock);
665 return;
668 static inline bool cpu_handle_halt(CPUState *cpu)
670 #ifndef CONFIG_USER_ONLY
671 if (cpu->halted) {
672 const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops;
674 if (tcg_ops->cpu_exec_halt) {
675 tcg_ops->cpu_exec_halt(cpu);
677 if (!cpu_has_work(cpu)) {
678 return true;
681 cpu->halted = 0;
683 #endif /* !CONFIG_USER_ONLY */
685 return false;
688 static inline void cpu_handle_debug_exception(CPUState *cpu)
690 const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops;
691 CPUWatchpoint *wp;
693 if (!cpu->watchpoint_hit) {
694 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
695 wp->flags &= ~BP_WATCHPOINT_HIT;
699 if (tcg_ops->debug_excp_handler) {
700 tcg_ops->debug_excp_handler(cpu);
704 static inline bool cpu_handle_exception(CPUState *cpu, int *ret)
706 if (cpu->exception_index < 0) {
707 #ifndef CONFIG_USER_ONLY
708 if (replay_has_exception()
709 && cpu->neg.icount_decr.u16.low + cpu->icount_extra == 0) {
710 /* Execute just one insn to trigger exception pending in the log */
711 cpu->cflags_next_tb = (curr_cflags(cpu) & ~CF_USE_ICOUNT)
712 | CF_NOIRQ | 1;
714 #endif
715 return false;
718 if (cpu->exception_index >= EXCP_INTERRUPT) {
719 /* exit request from the cpu execution loop */
720 *ret = cpu->exception_index;
721 if (*ret == EXCP_DEBUG) {
722 cpu_handle_debug_exception(cpu);
724 cpu->exception_index = -1;
725 return true;
728 #if defined(CONFIG_USER_ONLY)
730 * If user mode only, we simulate a fake exception which will be
731 * handled outside the cpu execution loop.
733 #if defined(TARGET_I386)
734 const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops;
735 tcg_ops->fake_user_interrupt(cpu);
736 #endif /* TARGET_I386 */
737 *ret = cpu->exception_index;
738 cpu->exception_index = -1;
739 return true;
740 #else
741 if (replay_exception()) {
742 const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops;
744 bql_lock();
745 tcg_ops->do_interrupt(cpu);
746 bql_unlock();
747 cpu->exception_index = -1;
749 if (unlikely(cpu->singlestep_enabled)) {
751 * After processing the exception, ensure an EXCP_DEBUG is
752 * raised when single-stepping so that GDB doesn't miss the
753 * next instruction.
755 *ret = EXCP_DEBUG;
756 cpu_handle_debug_exception(cpu);
757 return true;
759 } else if (!replay_has_interrupt()) {
760 /* give a chance to iothread in replay mode */
761 *ret = EXCP_INTERRUPT;
762 return true;
764 #endif
766 return false;
769 static inline bool icount_exit_request(CPUState *cpu)
771 if (!icount_enabled()) {
772 return false;
774 if (cpu->cflags_next_tb != -1 && !(cpu->cflags_next_tb & CF_USE_ICOUNT)) {
775 return false;
777 return cpu->neg.icount_decr.u16.low + cpu->icount_extra == 0;
780 static inline bool cpu_handle_interrupt(CPUState *cpu,
781 TranslationBlock **last_tb)
784 * If we have requested custom cflags with CF_NOIRQ we should
785 * skip checking here. Any pending interrupts will get picked up
786 * by the next TB we execute under normal cflags.
788 if (cpu->cflags_next_tb != -1 && cpu->cflags_next_tb & CF_NOIRQ) {
789 return false;
792 /* Clear the interrupt flag now since we're processing
793 * cpu->interrupt_request and cpu->exit_request.
794 * Ensure zeroing happens before reading cpu->exit_request or
795 * cpu->interrupt_request (see also smp_wmb in cpu_exit())
797 qatomic_set_mb(&cpu->neg.icount_decr.u16.high, 0);
799 if (unlikely(qatomic_read(&cpu->interrupt_request))) {
800 int interrupt_request;
801 bql_lock();
802 interrupt_request = cpu->interrupt_request;
803 if (unlikely(cpu->singlestep_enabled & SSTEP_NOIRQ)) {
804 /* Mask out external interrupts for this step. */
805 interrupt_request &= ~CPU_INTERRUPT_SSTEP_MASK;
807 if (interrupt_request & CPU_INTERRUPT_DEBUG) {
808 cpu->interrupt_request &= ~CPU_INTERRUPT_DEBUG;
809 cpu->exception_index = EXCP_DEBUG;
810 bql_unlock();
811 return true;
813 #if !defined(CONFIG_USER_ONLY)
814 if (replay_mode == REPLAY_MODE_PLAY && !replay_has_interrupt()) {
815 /* Do nothing */
816 } else if (interrupt_request & CPU_INTERRUPT_HALT) {
817 replay_interrupt();
818 cpu->interrupt_request &= ~CPU_INTERRUPT_HALT;
819 cpu->halted = 1;
820 cpu->exception_index = EXCP_HLT;
821 bql_unlock();
822 return true;
824 #if defined(TARGET_I386)
825 else if (interrupt_request & CPU_INTERRUPT_INIT) {
826 X86CPU *x86_cpu = X86_CPU(cpu);
827 CPUArchState *env = &x86_cpu->env;
828 replay_interrupt();
829 cpu_svm_check_intercept_param(env, SVM_EXIT_INIT, 0, 0);
830 do_cpu_init(x86_cpu);
831 cpu->exception_index = EXCP_HALTED;
832 bql_unlock();
833 return true;
835 #else
836 else if (interrupt_request & CPU_INTERRUPT_RESET) {
837 replay_interrupt();
838 cpu_reset(cpu);
839 bql_unlock();
840 return true;
842 #endif /* !TARGET_I386 */
843 /* The target hook has 3 exit conditions:
844 False when the interrupt isn't processed,
845 True when it is, and we should restart on a new TB,
846 and via longjmp via cpu_loop_exit. */
847 else {
848 const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops;
850 if (tcg_ops->cpu_exec_interrupt &&
851 tcg_ops->cpu_exec_interrupt(cpu, interrupt_request)) {
852 if (!tcg_ops->need_replay_interrupt ||
853 tcg_ops->need_replay_interrupt(interrupt_request)) {
854 replay_interrupt();
857 * After processing the interrupt, ensure an EXCP_DEBUG is
858 * raised when single-stepping so that GDB doesn't miss the
859 * next instruction.
861 if (unlikely(cpu->singlestep_enabled)) {
862 cpu->exception_index = EXCP_DEBUG;
863 bql_unlock();
864 return true;
866 cpu->exception_index = -1;
867 *last_tb = NULL;
869 /* The target hook may have updated the 'cpu->interrupt_request';
870 * reload the 'interrupt_request' value */
871 interrupt_request = cpu->interrupt_request;
873 #endif /* !CONFIG_USER_ONLY */
874 if (interrupt_request & CPU_INTERRUPT_EXITTB) {
875 cpu->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
876 /* ensure that no TB jump will be modified as
877 the program flow was changed */
878 *last_tb = NULL;
881 /* If we exit via cpu_loop_exit/longjmp it is reset in cpu_exec */
882 bql_unlock();
885 /* Finally, check if we need to exit to the main loop. */
886 if (unlikely(qatomic_read(&cpu->exit_request)) || icount_exit_request(cpu)) {
887 qatomic_set(&cpu->exit_request, 0);
888 if (cpu->exception_index == -1) {
889 cpu->exception_index = EXCP_INTERRUPT;
891 return true;
894 return false;
897 static inline void cpu_loop_exec_tb(CPUState *cpu, TranslationBlock *tb,
898 vaddr pc, TranslationBlock **last_tb,
899 int *tb_exit)
901 int32_t insns_left;
903 trace_exec_tb(tb, pc);
904 tb = cpu_tb_exec(cpu, tb, tb_exit);
905 if (*tb_exit != TB_EXIT_REQUESTED) {
906 *last_tb = tb;
907 return;
910 *last_tb = NULL;
911 insns_left = qatomic_read(&cpu->neg.icount_decr.u32);
912 if (insns_left < 0) {
913 /* Something asked us to stop executing chained TBs; just
914 * continue round the main loop. Whatever requested the exit
915 * will also have set something else (eg exit_request or
916 * interrupt_request) which will be handled by
917 * cpu_handle_interrupt. cpu_handle_interrupt will also
918 * clear cpu->icount_decr.u16.high.
920 return;
923 /* Instruction counter expired. */
924 assert(icount_enabled());
925 #ifndef CONFIG_USER_ONLY
926 /* Ensure global icount has gone forward */
927 icount_update(cpu);
928 /* Refill decrementer and continue execution. */
929 insns_left = MIN(0xffff, cpu->icount_budget);
930 cpu->neg.icount_decr.u16.low = insns_left;
931 cpu->icount_extra = cpu->icount_budget - insns_left;
934 * If the next tb has more instructions than we have left to
935 * execute we need to ensure we find/generate a TB with exactly
936 * insns_left instructions in it.
938 if (insns_left > 0 && insns_left < tb->icount) {
939 assert(insns_left <= CF_COUNT_MASK);
940 assert(cpu->icount_extra == 0);
941 cpu->cflags_next_tb = (tb->cflags & ~CF_COUNT_MASK) | insns_left;
943 #endif
946 /* main execution loop */
948 static int __attribute__((noinline))
949 cpu_exec_loop(CPUState *cpu, SyncClocks *sc)
951 int ret;
953 /* if an exception is pending, we execute it here */
954 while (!cpu_handle_exception(cpu, &ret)) {
955 TranslationBlock *last_tb = NULL;
956 int tb_exit = 0;
958 while (!cpu_handle_interrupt(cpu, &last_tb)) {
959 TranslationBlock *tb;
960 vaddr pc;
961 uint64_t cs_base;
962 uint32_t flags, cflags;
964 cpu_get_tb_cpu_state(cpu_env(cpu), &pc, &cs_base, &flags);
967 * When requested, use an exact setting for cflags for the next
968 * execution. This is used for icount, precise smc, and stop-
969 * after-access watchpoints. Since this request should never
970 * have CF_INVALID set, -1 is a convenient invalid value that
971 * does not require tcg headers for cpu_common_reset.
973 cflags = cpu->cflags_next_tb;
974 if (cflags == -1) {
975 cflags = curr_cflags(cpu);
976 } else {
977 cpu->cflags_next_tb = -1;
980 if (check_for_breakpoints(cpu, pc, &cflags)) {
981 break;
984 tb = tb_lookup(cpu, pc, cs_base, flags, cflags);
985 if (tb == NULL) {
986 CPUJumpCache *jc;
987 uint32_t h;
989 mmap_lock();
990 tb = tb_gen_code(cpu, pc, cs_base, flags, cflags);
991 mmap_unlock();
994 * We add the TB in the virtual pc hash table
995 * for the fast lookup
997 h = tb_jmp_cache_hash_func(pc);
998 jc = cpu->tb_jmp_cache;
999 jc->array[h].pc = pc;
1000 qatomic_set(&jc->array[h].tb, tb);
1003 #ifndef CONFIG_USER_ONLY
1005 * We don't take care of direct jumps when address mapping
1006 * changes in system emulation. So it's not safe to make a
1007 * direct jump to a TB spanning two pages because the mapping
1008 * for the second page can change.
1010 if (tb_page_addr1(tb) != -1) {
1011 last_tb = NULL;
1013 #endif
1014 /* See if we can patch the calling TB. */
1015 if (last_tb) {
1016 tb_add_jump(last_tb, tb_exit, tb);
1019 cpu_loop_exec_tb(cpu, tb, pc, &last_tb, &tb_exit);
1021 /* Try to align the host and virtual clocks
1022 if the guest is in advance */
1023 align_clocks(sc, cpu);
1026 return ret;
1029 static int cpu_exec_setjmp(CPUState *cpu, SyncClocks *sc)
1031 /* Prepare setjmp context for exception handling. */
1032 if (unlikely(sigsetjmp(cpu->jmp_env, 0) != 0)) {
1033 cpu_exec_longjmp_cleanup(cpu);
1036 return cpu_exec_loop(cpu, sc);
1039 int cpu_exec(CPUState *cpu)
1041 int ret;
1042 SyncClocks sc = { 0 };
1044 /* replay_interrupt may need current_cpu */
1045 current_cpu = cpu;
1047 if (cpu_handle_halt(cpu)) {
1048 return EXCP_HALTED;
1051 RCU_READ_LOCK_GUARD();
1052 cpu_exec_enter(cpu);
1055 * Calculate difference between guest clock and host clock.
1056 * This delay includes the delay of the last cycle, so
1057 * what we have to do is sleep until it is 0. As for the
1058 * advance/delay we gain here, we try to fix it next time.
1060 init_delay_params(&sc, cpu);
1062 ret = cpu_exec_setjmp(cpu, &sc);
1064 cpu_exec_exit(cpu);
1065 return ret;
1068 bool tcg_exec_realizefn(CPUState *cpu, Error **errp)
1070 static bool tcg_target_initialized;
1072 if (!tcg_target_initialized) {
1073 cpu->cc->tcg_ops->initialize();
1074 tcg_target_initialized = true;
1077 cpu->tb_jmp_cache = g_new0(CPUJumpCache, 1);
1078 tlb_init(cpu);
1079 #ifndef CONFIG_USER_ONLY
1080 tcg_iommu_init_notifier_list(cpu);
1081 #endif /* !CONFIG_USER_ONLY */
1082 /* qemu_plugin_vcpu_init_hook delayed until cpu_index assigned. */
1084 return true;
1087 /* undo the initializations in reverse order */
1088 void tcg_exec_unrealizefn(CPUState *cpu)
1090 #ifndef CONFIG_USER_ONLY
1091 tcg_iommu_free_notifier_list(cpu);
1092 #endif /* !CONFIG_USER_ONLY */
1094 tlb_destroy(cpu);
1095 g_free_rcu(cpu->tb_jmp_cache, rcu);