target: Improve error reporting for CpuModelInfo member @props
[qemu/kevin.git] / accel / kvm / kvm-all.c
bloba8cecd040ebc9cbdafe22a180b14a3dcd1bcfd31
1 /*
2 * QEMU KVM support
4 * Copyright IBM, Corp. 2008
5 * Red Hat, Inc. 2008
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include "qemu/osdep.h"
17 #include <sys/ioctl.h>
18 #include <poll.h>
20 #include <linux/kvm.h>
22 #include "qemu/atomic.h"
23 #include "qemu/option.h"
24 #include "qemu/config-file.h"
25 #include "qemu/error-report.h"
26 #include "qapi/error.h"
27 #include "hw/pci/msi.h"
28 #include "hw/pci/msix.h"
29 #include "hw/s390x/adapter.h"
30 #include "exec/gdbstub.h"
31 #include "sysemu/kvm_int.h"
32 #include "sysemu/runstate.h"
33 #include "sysemu/cpus.h"
34 #include "sysemu/accel-blocker.h"
35 #include "qemu/bswap.h"
36 #include "exec/memory.h"
37 #include "exec/ram_addr.h"
38 #include "qemu/event_notifier.h"
39 #include "qemu/main-loop.h"
40 #include "trace.h"
41 #include "hw/irq.h"
42 #include "qapi/visitor.h"
43 #include "qapi/qapi-types-common.h"
44 #include "qapi/qapi-visit-common.h"
45 #include "sysemu/reset.h"
46 #include "qemu/guest-random.h"
47 #include "sysemu/hw_accel.h"
48 #include "kvm-cpus.h"
49 #include "sysemu/dirtylimit.h"
50 #include "qemu/range.h"
52 #include "hw/boards.h"
53 #include "sysemu/stats.h"
55 /* This check must be after config-host.h is included */
56 #ifdef CONFIG_EVENTFD
57 #include <sys/eventfd.h>
58 #endif
60 /* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We
61 * need to use the real host PAGE_SIZE, as that's what KVM will use.
63 #ifdef PAGE_SIZE
64 #undef PAGE_SIZE
65 #endif
66 #define PAGE_SIZE qemu_real_host_page_size()
68 #ifndef KVM_GUESTDBG_BLOCKIRQ
69 #define KVM_GUESTDBG_BLOCKIRQ 0
70 #endif
72 struct KVMParkedVcpu {
73 unsigned long vcpu_id;
74 int kvm_fd;
75 QLIST_ENTRY(KVMParkedVcpu) node;
78 KVMState *kvm_state;
79 bool kvm_kernel_irqchip;
80 bool kvm_split_irqchip;
81 bool kvm_async_interrupts_allowed;
82 bool kvm_halt_in_kernel_allowed;
83 bool kvm_resamplefds_allowed;
84 bool kvm_msi_via_irqfd_allowed;
85 bool kvm_gsi_routing_allowed;
86 bool kvm_gsi_direct_mapping;
87 bool kvm_allowed;
88 bool kvm_readonly_mem_allowed;
89 bool kvm_vm_attributes_allowed;
90 bool kvm_msi_use_devid;
91 static bool kvm_has_guest_debug;
92 static int kvm_sstep_flags;
93 static bool kvm_immediate_exit;
94 static hwaddr kvm_max_slot_size = ~0;
96 static const KVMCapabilityInfo kvm_required_capabilites[] = {
97 KVM_CAP_INFO(USER_MEMORY),
98 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
99 KVM_CAP_INFO(JOIN_MEMORY_REGIONS_WORKS),
100 KVM_CAP_INFO(INTERNAL_ERROR_DATA),
101 KVM_CAP_INFO(IOEVENTFD),
102 KVM_CAP_INFO(IOEVENTFD_ANY_LENGTH),
103 KVM_CAP_LAST_INFO
106 static NotifierList kvm_irqchip_change_notifiers =
107 NOTIFIER_LIST_INITIALIZER(kvm_irqchip_change_notifiers);
109 struct KVMResampleFd {
110 int gsi;
111 EventNotifier *resample_event;
112 QLIST_ENTRY(KVMResampleFd) node;
114 typedef struct KVMResampleFd KVMResampleFd;
117 * Only used with split irqchip where we need to do the resample fd
118 * kick for the kernel from userspace.
120 static QLIST_HEAD(, KVMResampleFd) kvm_resample_fd_list =
121 QLIST_HEAD_INITIALIZER(kvm_resample_fd_list);
123 static QemuMutex kml_slots_lock;
125 #define kvm_slots_lock() qemu_mutex_lock(&kml_slots_lock)
126 #define kvm_slots_unlock() qemu_mutex_unlock(&kml_slots_lock)
128 static void kvm_slot_init_dirty_bitmap(KVMSlot *mem);
130 static inline void kvm_resample_fd_remove(int gsi)
132 KVMResampleFd *rfd;
134 QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) {
135 if (rfd->gsi == gsi) {
136 QLIST_REMOVE(rfd, node);
137 g_free(rfd);
138 break;
143 static inline void kvm_resample_fd_insert(int gsi, EventNotifier *event)
145 KVMResampleFd *rfd = g_new0(KVMResampleFd, 1);
147 rfd->gsi = gsi;
148 rfd->resample_event = event;
150 QLIST_INSERT_HEAD(&kvm_resample_fd_list, rfd, node);
153 void kvm_resample_fd_notify(int gsi)
155 KVMResampleFd *rfd;
157 QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) {
158 if (rfd->gsi == gsi) {
159 event_notifier_set(rfd->resample_event);
160 trace_kvm_resample_fd_notify(gsi);
161 return;
166 unsigned int kvm_get_max_memslots(void)
168 KVMState *s = KVM_STATE(current_accel());
170 return s->nr_slots;
173 unsigned int kvm_get_free_memslots(void)
175 unsigned int used_slots = 0;
176 KVMState *s = kvm_state;
177 int i;
179 kvm_slots_lock();
180 for (i = 0; i < s->nr_as; i++) {
181 if (!s->as[i].ml) {
182 continue;
184 used_slots = MAX(used_slots, s->as[i].ml->nr_used_slots);
186 kvm_slots_unlock();
188 return s->nr_slots - used_slots;
191 /* Called with KVMMemoryListener.slots_lock held */
192 static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml)
194 KVMState *s = kvm_state;
195 int i;
197 for (i = 0; i < s->nr_slots; i++) {
198 if (kml->slots[i].memory_size == 0) {
199 return &kml->slots[i];
203 return NULL;
206 /* Called with KVMMemoryListener.slots_lock held */
207 static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml)
209 KVMSlot *slot = kvm_get_free_slot(kml);
211 if (slot) {
212 return slot;
215 fprintf(stderr, "%s: no free slot available\n", __func__);
216 abort();
219 static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml,
220 hwaddr start_addr,
221 hwaddr size)
223 KVMState *s = kvm_state;
224 int i;
226 for (i = 0; i < s->nr_slots; i++) {
227 KVMSlot *mem = &kml->slots[i];
229 if (start_addr == mem->start_addr && size == mem->memory_size) {
230 return mem;
234 return NULL;
238 * Calculate and align the start address and the size of the section.
239 * Return the size. If the size is 0, the aligned section is empty.
241 static hwaddr kvm_align_section(MemoryRegionSection *section,
242 hwaddr *start)
244 hwaddr size = int128_get64(section->size);
245 hwaddr delta, aligned;
247 /* kvm works in page size chunks, but the function may be called
248 with sub-page size and unaligned start address. Pad the start
249 address to next and truncate size to previous page boundary. */
250 aligned = ROUND_UP(section->offset_within_address_space,
251 qemu_real_host_page_size());
252 delta = aligned - section->offset_within_address_space;
253 *start = aligned;
254 if (delta > size) {
255 return 0;
258 return (size - delta) & qemu_real_host_page_mask();
261 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
262 hwaddr *phys_addr)
264 KVMMemoryListener *kml = &s->memory_listener;
265 int i, ret = 0;
267 kvm_slots_lock();
268 for (i = 0; i < s->nr_slots; i++) {
269 KVMSlot *mem = &kml->slots[i];
271 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
272 *phys_addr = mem->start_addr + (ram - mem->ram);
273 ret = 1;
274 break;
277 kvm_slots_unlock();
279 return ret;
282 static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot, bool new)
284 KVMState *s = kvm_state;
285 struct kvm_userspace_memory_region mem;
286 int ret;
288 mem.slot = slot->slot | (kml->as_id << 16);
289 mem.guest_phys_addr = slot->start_addr;
290 mem.userspace_addr = (unsigned long)slot->ram;
291 mem.flags = slot->flags;
293 if (slot->memory_size && !new && (mem.flags ^ slot->old_flags) & KVM_MEM_READONLY) {
294 /* Set the slot size to 0 before setting the slot to the desired
295 * value. This is needed based on KVM commit 75d61fbc. */
296 mem.memory_size = 0;
297 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
298 if (ret < 0) {
299 goto err;
302 mem.memory_size = slot->memory_size;
303 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
304 slot->old_flags = mem.flags;
305 err:
306 trace_kvm_set_user_memory(mem.slot, mem.flags, mem.guest_phys_addr,
307 mem.memory_size, mem.userspace_addr, ret);
308 if (ret < 0) {
309 error_report("%s: KVM_SET_USER_MEMORY_REGION failed, slot=%d,"
310 " start=0x%" PRIx64 ", size=0x%" PRIx64 ": %s",
311 __func__, mem.slot, slot->start_addr,
312 (uint64_t)mem.memory_size, strerror(errno));
314 return ret;
317 static int do_kvm_destroy_vcpu(CPUState *cpu)
319 KVMState *s = kvm_state;
320 long mmap_size;
321 struct KVMParkedVcpu *vcpu = NULL;
322 int ret = 0;
324 trace_kvm_destroy_vcpu();
326 ret = kvm_arch_destroy_vcpu(cpu);
327 if (ret < 0) {
328 goto err;
331 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
332 if (mmap_size < 0) {
333 ret = mmap_size;
334 trace_kvm_failed_get_vcpu_mmap_size();
335 goto err;
338 ret = munmap(cpu->kvm_run, mmap_size);
339 if (ret < 0) {
340 goto err;
343 if (cpu->kvm_dirty_gfns) {
344 ret = munmap(cpu->kvm_dirty_gfns, s->kvm_dirty_ring_bytes);
345 if (ret < 0) {
346 goto err;
350 vcpu = g_malloc0(sizeof(*vcpu));
351 vcpu->vcpu_id = kvm_arch_vcpu_id(cpu);
352 vcpu->kvm_fd = cpu->kvm_fd;
353 QLIST_INSERT_HEAD(&kvm_state->kvm_parked_vcpus, vcpu, node);
354 err:
355 return ret;
358 void kvm_destroy_vcpu(CPUState *cpu)
360 if (do_kvm_destroy_vcpu(cpu) < 0) {
361 error_report("kvm_destroy_vcpu failed");
362 exit(EXIT_FAILURE);
366 static int kvm_get_vcpu(KVMState *s, unsigned long vcpu_id)
368 struct KVMParkedVcpu *cpu;
370 QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) {
371 if (cpu->vcpu_id == vcpu_id) {
372 int kvm_fd;
374 QLIST_REMOVE(cpu, node);
375 kvm_fd = cpu->kvm_fd;
376 g_free(cpu);
377 return kvm_fd;
381 return kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)vcpu_id);
384 int kvm_init_vcpu(CPUState *cpu, Error **errp)
386 KVMState *s = kvm_state;
387 long mmap_size;
388 int ret;
390 trace_kvm_init_vcpu(cpu->cpu_index, kvm_arch_vcpu_id(cpu));
392 ret = kvm_get_vcpu(s, kvm_arch_vcpu_id(cpu));
393 if (ret < 0) {
394 error_setg_errno(errp, -ret, "kvm_init_vcpu: kvm_get_vcpu failed (%lu)",
395 kvm_arch_vcpu_id(cpu));
396 goto err;
399 cpu->kvm_fd = ret;
400 cpu->kvm_state = s;
401 cpu->vcpu_dirty = true;
402 cpu->dirty_pages = 0;
403 cpu->throttle_us_per_full = 0;
405 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
406 if (mmap_size < 0) {
407 ret = mmap_size;
408 error_setg_errno(errp, -mmap_size,
409 "kvm_init_vcpu: KVM_GET_VCPU_MMAP_SIZE failed");
410 goto err;
413 cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
414 cpu->kvm_fd, 0);
415 if (cpu->kvm_run == MAP_FAILED) {
416 ret = -errno;
417 error_setg_errno(errp, ret,
418 "kvm_init_vcpu: mmap'ing vcpu state failed (%lu)",
419 kvm_arch_vcpu_id(cpu));
420 goto err;
423 if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
424 s->coalesced_mmio_ring =
425 (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE;
428 if (s->kvm_dirty_ring_size) {
429 /* Use MAP_SHARED to share pages with the kernel */
430 cpu->kvm_dirty_gfns = mmap(NULL, s->kvm_dirty_ring_bytes,
431 PROT_READ | PROT_WRITE, MAP_SHARED,
432 cpu->kvm_fd,
433 PAGE_SIZE * KVM_DIRTY_LOG_PAGE_OFFSET);
434 if (cpu->kvm_dirty_gfns == MAP_FAILED) {
435 ret = -errno;
436 goto err;
440 ret = kvm_arch_init_vcpu(cpu);
441 if (ret < 0) {
442 error_setg_errno(errp, -ret,
443 "kvm_init_vcpu: kvm_arch_init_vcpu failed (%lu)",
444 kvm_arch_vcpu_id(cpu));
446 cpu->kvm_vcpu_stats_fd = kvm_vcpu_ioctl(cpu, KVM_GET_STATS_FD, NULL);
448 err:
449 return ret;
453 * dirty pages logging control
456 static int kvm_mem_flags(MemoryRegion *mr)
458 bool readonly = mr->readonly || memory_region_is_romd(mr);
459 int flags = 0;
461 if (memory_region_get_dirty_log_mask(mr) != 0) {
462 flags |= KVM_MEM_LOG_DIRTY_PAGES;
464 if (readonly && kvm_readonly_mem_allowed) {
465 flags |= KVM_MEM_READONLY;
467 return flags;
470 /* Called with KVMMemoryListener.slots_lock held */
471 static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem,
472 MemoryRegion *mr)
474 mem->flags = kvm_mem_flags(mr);
476 /* If nothing changed effectively, no need to issue ioctl */
477 if (mem->flags == mem->old_flags) {
478 return 0;
481 kvm_slot_init_dirty_bitmap(mem);
482 return kvm_set_user_memory_region(kml, mem, false);
485 static int kvm_section_update_flags(KVMMemoryListener *kml,
486 MemoryRegionSection *section)
488 hwaddr start_addr, size, slot_size;
489 KVMSlot *mem;
490 int ret = 0;
492 size = kvm_align_section(section, &start_addr);
493 if (!size) {
494 return 0;
497 kvm_slots_lock();
499 while (size && !ret) {
500 slot_size = MIN(kvm_max_slot_size, size);
501 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
502 if (!mem) {
503 /* We don't have a slot if we want to trap every access. */
504 goto out;
507 ret = kvm_slot_update_flags(kml, mem, section->mr);
508 start_addr += slot_size;
509 size -= slot_size;
512 out:
513 kvm_slots_unlock();
514 return ret;
517 static void kvm_log_start(MemoryListener *listener,
518 MemoryRegionSection *section,
519 int old, int new)
521 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
522 int r;
524 if (old != 0) {
525 return;
528 r = kvm_section_update_flags(kml, section);
529 if (r < 0) {
530 abort();
534 static void kvm_log_stop(MemoryListener *listener,
535 MemoryRegionSection *section,
536 int old, int new)
538 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
539 int r;
541 if (new != 0) {
542 return;
545 r = kvm_section_update_flags(kml, section);
546 if (r < 0) {
547 abort();
551 /* get kvm's dirty pages bitmap and update qemu's */
552 static void kvm_slot_sync_dirty_pages(KVMSlot *slot)
554 ram_addr_t start = slot->ram_start_offset;
555 ram_addr_t pages = slot->memory_size / qemu_real_host_page_size();
557 cpu_physical_memory_set_dirty_lebitmap(slot->dirty_bmap, start, pages);
560 static void kvm_slot_reset_dirty_pages(KVMSlot *slot)
562 memset(slot->dirty_bmap, 0, slot->dirty_bmap_size);
565 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
567 /* Allocate the dirty bitmap for a slot */
568 static void kvm_slot_init_dirty_bitmap(KVMSlot *mem)
570 if (!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) || mem->dirty_bmap) {
571 return;
575 * XXX bad kernel interface alert
576 * For dirty bitmap, kernel allocates array of size aligned to
577 * bits-per-long. But for case when the kernel is 64bits and
578 * the userspace is 32bits, userspace can't align to the same
579 * bits-per-long, since sizeof(long) is different between kernel
580 * and user space. This way, userspace will provide buffer which
581 * may be 4 bytes less than the kernel will use, resulting in
582 * userspace memory corruption (which is not detectable by valgrind
583 * too, in most cases).
584 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
585 * a hope that sizeof(long) won't become >8 any time soon.
587 * Note: the granule of kvm dirty log is qemu_real_host_page_size.
588 * And mem->memory_size is aligned to it (otherwise this mem can't
589 * be registered to KVM).
591 hwaddr bitmap_size = ALIGN(mem->memory_size / qemu_real_host_page_size(),
592 /*HOST_LONG_BITS*/ 64) / 8;
593 mem->dirty_bmap = g_malloc0(bitmap_size);
594 mem->dirty_bmap_size = bitmap_size;
598 * Sync dirty bitmap from kernel to KVMSlot.dirty_bmap, return true if
599 * succeeded, false otherwise
601 static bool kvm_slot_get_dirty_log(KVMState *s, KVMSlot *slot)
603 struct kvm_dirty_log d = {};
604 int ret;
606 d.dirty_bitmap = slot->dirty_bmap;
607 d.slot = slot->slot | (slot->as_id << 16);
608 ret = kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d);
610 if (ret == -ENOENT) {
611 /* kernel does not have dirty bitmap in this slot */
612 ret = 0;
614 if (ret) {
615 error_report_once("%s: KVM_GET_DIRTY_LOG failed with %d",
616 __func__, ret);
618 return ret == 0;
621 /* Should be with all slots_lock held for the address spaces. */
622 static void kvm_dirty_ring_mark_page(KVMState *s, uint32_t as_id,
623 uint32_t slot_id, uint64_t offset)
625 KVMMemoryListener *kml;
626 KVMSlot *mem;
628 if (as_id >= s->nr_as) {
629 return;
632 kml = s->as[as_id].ml;
633 mem = &kml->slots[slot_id];
635 if (!mem->memory_size || offset >=
636 (mem->memory_size / qemu_real_host_page_size())) {
637 return;
640 set_bit(offset, mem->dirty_bmap);
643 static bool dirty_gfn_is_dirtied(struct kvm_dirty_gfn *gfn)
646 * Read the flags before the value. Pairs with barrier in
647 * KVM's kvm_dirty_ring_push() function.
649 return qatomic_load_acquire(&gfn->flags) == KVM_DIRTY_GFN_F_DIRTY;
652 static void dirty_gfn_set_collected(struct kvm_dirty_gfn *gfn)
655 * Use a store-release so that the CPU that executes KVM_RESET_DIRTY_RINGS
656 * sees the full content of the ring:
658 * CPU0 CPU1 CPU2
659 * ------------------------------------------------------------------------------
660 * fill gfn0
661 * store-rel flags for gfn0
662 * load-acq flags for gfn0
663 * store-rel RESET for gfn0
664 * ioctl(RESET_RINGS)
665 * load-acq flags for gfn0
666 * check if flags have RESET
668 * The synchronization goes from CPU2 to CPU0 to CPU1.
670 qatomic_store_release(&gfn->flags, KVM_DIRTY_GFN_F_RESET);
674 * Should be with all slots_lock held for the address spaces. It returns the
675 * dirty page we've collected on this dirty ring.
677 static uint32_t kvm_dirty_ring_reap_one(KVMState *s, CPUState *cpu)
679 struct kvm_dirty_gfn *dirty_gfns = cpu->kvm_dirty_gfns, *cur;
680 uint32_t ring_size = s->kvm_dirty_ring_size;
681 uint32_t count = 0, fetch = cpu->kvm_fetch_index;
684 * It's possible that we race with vcpu creation code where the vcpu is
685 * put onto the vcpus list but not yet initialized the dirty ring
686 * structures. If so, skip it.
688 if (!cpu->created) {
689 return 0;
692 assert(dirty_gfns && ring_size);
693 trace_kvm_dirty_ring_reap_vcpu(cpu->cpu_index);
695 while (true) {
696 cur = &dirty_gfns[fetch % ring_size];
697 if (!dirty_gfn_is_dirtied(cur)) {
698 break;
700 kvm_dirty_ring_mark_page(s, cur->slot >> 16, cur->slot & 0xffff,
701 cur->offset);
702 dirty_gfn_set_collected(cur);
703 trace_kvm_dirty_ring_page(cpu->cpu_index, fetch, cur->offset);
704 fetch++;
705 count++;
707 cpu->kvm_fetch_index = fetch;
708 cpu->dirty_pages += count;
710 return count;
713 /* Must be with slots_lock held */
714 static uint64_t kvm_dirty_ring_reap_locked(KVMState *s, CPUState* cpu)
716 int ret;
717 uint64_t total = 0;
718 int64_t stamp;
720 stamp = get_clock();
722 if (cpu) {
723 total = kvm_dirty_ring_reap_one(s, cpu);
724 } else {
725 CPU_FOREACH(cpu) {
726 total += kvm_dirty_ring_reap_one(s, cpu);
730 if (total) {
731 ret = kvm_vm_ioctl(s, KVM_RESET_DIRTY_RINGS);
732 assert(ret == total);
735 stamp = get_clock() - stamp;
737 if (total) {
738 trace_kvm_dirty_ring_reap(total, stamp / 1000);
741 return total;
745 * Currently for simplicity, we must hold BQL before calling this. We can
746 * consider to drop the BQL if we're clear with all the race conditions.
748 static uint64_t kvm_dirty_ring_reap(KVMState *s, CPUState *cpu)
750 uint64_t total;
753 * We need to lock all kvm slots for all address spaces here,
754 * because:
756 * (1) We need to mark dirty for dirty bitmaps in multiple slots
757 * and for tons of pages, so it's better to take the lock here
758 * once rather than once per page. And more importantly,
760 * (2) We must _NOT_ publish dirty bits to the other threads
761 * (e.g., the migration thread) via the kvm memory slot dirty
762 * bitmaps before correctly re-protect those dirtied pages.
763 * Otherwise we can have potential risk of data corruption if
764 * the page data is read in the other thread before we do
765 * reset below.
767 kvm_slots_lock();
768 total = kvm_dirty_ring_reap_locked(s, cpu);
769 kvm_slots_unlock();
771 return total;
774 static void do_kvm_cpu_synchronize_kick(CPUState *cpu, run_on_cpu_data arg)
776 /* No need to do anything */
780 * Kick all vcpus out in a synchronized way. When returned, we
781 * guarantee that every vcpu has been kicked and at least returned to
782 * userspace once.
784 static void kvm_cpu_synchronize_kick_all(void)
786 CPUState *cpu;
788 CPU_FOREACH(cpu) {
789 run_on_cpu(cpu, do_kvm_cpu_synchronize_kick, RUN_ON_CPU_NULL);
794 * Flush all the existing dirty pages to the KVM slot buffers. When
795 * this call returns, we guarantee that all the touched dirty pages
796 * before calling this function have been put into the per-kvmslot
797 * dirty bitmap.
799 * This function must be called with BQL held.
801 static void kvm_dirty_ring_flush(void)
803 trace_kvm_dirty_ring_flush(0);
805 * The function needs to be serialized. Since this function
806 * should always be with BQL held, serialization is guaranteed.
807 * However, let's be sure of it.
809 assert(bql_locked());
811 * First make sure to flush the hardware buffers by kicking all
812 * vcpus out in a synchronous way.
814 kvm_cpu_synchronize_kick_all();
815 kvm_dirty_ring_reap(kvm_state, NULL);
816 trace_kvm_dirty_ring_flush(1);
820 * kvm_physical_sync_dirty_bitmap - Sync dirty bitmap from kernel space
822 * This function will first try to fetch dirty bitmap from the kernel,
823 * and then updates qemu's dirty bitmap.
825 * NOTE: caller must be with kml->slots_lock held.
827 * @kml: the KVM memory listener object
828 * @section: the memory section to sync the dirty bitmap with
830 static void kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml,
831 MemoryRegionSection *section)
833 KVMState *s = kvm_state;
834 KVMSlot *mem;
835 hwaddr start_addr, size;
836 hwaddr slot_size;
838 size = kvm_align_section(section, &start_addr);
839 while (size) {
840 slot_size = MIN(kvm_max_slot_size, size);
841 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
842 if (!mem) {
843 /* We don't have a slot if we want to trap every access. */
844 return;
846 if (kvm_slot_get_dirty_log(s, mem)) {
847 kvm_slot_sync_dirty_pages(mem);
849 start_addr += slot_size;
850 size -= slot_size;
854 /* Alignment requirement for KVM_CLEAR_DIRTY_LOG - 64 pages */
855 #define KVM_CLEAR_LOG_SHIFT 6
856 #define KVM_CLEAR_LOG_ALIGN (qemu_real_host_page_size() << KVM_CLEAR_LOG_SHIFT)
857 #define KVM_CLEAR_LOG_MASK (-KVM_CLEAR_LOG_ALIGN)
859 static int kvm_log_clear_one_slot(KVMSlot *mem, int as_id, uint64_t start,
860 uint64_t size)
862 KVMState *s = kvm_state;
863 uint64_t end, bmap_start, start_delta, bmap_npages;
864 struct kvm_clear_dirty_log d;
865 unsigned long *bmap_clear = NULL, psize = qemu_real_host_page_size();
866 int ret;
869 * We need to extend either the start or the size or both to
870 * satisfy the KVM interface requirement. Firstly, do the start
871 * page alignment on 64 host pages
873 bmap_start = start & KVM_CLEAR_LOG_MASK;
874 start_delta = start - bmap_start;
875 bmap_start /= psize;
878 * The kernel interface has restriction on the size too, that either:
880 * (1) the size is 64 host pages aligned (just like the start), or
881 * (2) the size fills up until the end of the KVM memslot.
883 bmap_npages = DIV_ROUND_UP(size + start_delta, KVM_CLEAR_LOG_ALIGN)
884 << KVM_CLEAR_LOG_SHIFT;
885 end = mem->memory_size / psize;
886 if (bmap_npages > end - bmap_start) {
887 bmap_npages = end - bmap_start;
889 start_delta /= psize;
892 * Prepare the bitmap to clear dirty bits. Here we must guarantee
893 * that we won't clear any unknown dirty bits otherwise we might
894 * accidentally clear some set bits which are not yet synced from
895 * the kernel into QEMU's bitmap, then we'll lose track of the
896 * guest modifications upon those pages (which can directly lead
897 * to guest data loss or panic after migration).
899 * Layout of the KVMSlot.dirty_bmap:
901 * |<-------- bmap_npages -----------..>|
902 * [1]
903 * start_delta size
904 * |----------------|-------------|------------------|------------|
905 * ^ ^ ^ ^
906 * | | | |
907 * start bmap_start (start) end
908 * of memslot of memslot
910 * [1] bmap_npages can be aligned to either 64 pages or the end of slot
913 assert(bmap_start % BITS_PER_LONG == 0);
914 /* We should never do log_clear before log_sync */
915 assert(mem->dirty_bmap);
916 if (start_delta || bmap_npages - size / psize) {
917 /* Slow path - we need to manipulate a temp bitmap */
918 bmap_clear = bitmap_new(bmap_npages);
919 bitmap_copy_with_src_offset(bmap_clear, mem->dirty_bmap,
920 bmap_start, start_delta + size / psize);
922 * We need to fill the holes at start because that was not
923 * specified by the caller and we extended the bitmap only for
924 * 64 pages alignment
926 bitmap_clear(bmap_clear, 0, start_delta);
927 d.dirty_bitmap = bmap_clear;
928 } else {
930 * Fast path - both start and size align well with BITS_PER_LONG
931 * (or the end of memory slot)
933 d.dirty_bitmap = mem->dirty_bmap + BIT_WORD(bmap_start);
936 d.first_page = bmap_start;
937 /* It should never overflow. If it happens, say something */
938 assert(bmap_npages <= UINT32_MAX);
939 d.num_pages = bmap_npages;
940 d.slot = mem->slot | (as_id << 16);
942 ret = kvm_vm_ioctl(s, KVM_CLEAR_DIRTY_LOG, &d);
943 if (ret < 0 && ret != -ENOENT) {
944 error_report("%s: KVM_CLEAR_DIRTY_LOG failed, slot=%d, "
945 "start=0x%"PRIx64", size=0x%"PRIx32", errno=%d",
946 __func__, d.slot, (uint64_t)d.first_page,
947 (uint32_t)d.num_pages, ret);
948 } else {
949 ret = 0;
950 trace_kvm_clear_dirty_log(d.slot, d.first_page, d.num_pages);
954 * After we have updated the remote dirty bitmap, we update the
955 * cached bitmap as well for the memslot, then if another user
956 * clears the same region we know we shouldn't clear it again on
957 * the remote otherwise it's data loss as well.
959 bitmap_clear(mem->dirty_bmap, bmap_start + start_delta,
960 size / psize);
961 /* This handles the NULL case well */
962 g_free(bmap_clear);
963 return ret;
968 * kvm_physical_log_clear - Clear the kernel's dirty bitmap for range
970 * NOTE: this will be a no-op if we haven't enabled manual dirty log
971 * protection in the host kernel because in that case this operation
972 * will be done within log_sync().
974 * @kml: the kvm memory listener
975 * @section: the memory range to clear dirty bitmap
977 static int kvm_physical_log_clear(KVMMemoryListener *kml,
978 MemoryRegionSection *section)
980 KVMState *s = kvm_state;
981 uint64_t start, size, offset, count;
982 KVMSlot *mem;
983 int ret = 0, i;
985 if (!s->manual_dirty_log_protect) {
986 /* No need to do explicit clear */
987 return ret;
990 start = section->offset_within_address_space;
991 size = int128_get64(section->size);
993 if (!size) {
994 /* Nothing more we can do... */
995 return ret;
998 kvm_slots_lock();
1000 for (i = 0; i < s->nr_slots; i++) {
1001 mem = &kml->slots[i];
1002 /* Discard slots that are empty or do not overlap the section */
1003 if (!mem->memory_size ||
1004 mem->start_addr > start + size - 1 ||
1005 start > mem->start_addr + mem->memory_size - 1) {
1006 continue;
1009 if (start >= mem->start_addr) {
1010 /* The slot starts before section or is aligned to it. */
1011 offset = start - mem->start_addr;
1012 count = MIN(mem->memory_size - offset, size);
1013 } else {
1014 /* The slot starts after section. */
1015 offset = 0;
1016 count = MIN(mem->memory_size, size - (mem->start_addr - start));
1018 ret = kvm_log_clear_one_slot(mem, kml->as_id, offset, count);
1019 if (ret < 0) {
1020 break;
1024 kvm_slots_unlock();
1026 return ret;
1029 static void kvm_coalesce_mmio_region(MemoryListener *listener,
1030 MemoryRegionSection *secion,
1031 hwaddr start, hwaddr size)
1033 KVMState *s = kvm_state;
1035 if (s->coalesced_mmio) {
1036 struct kvm_coalesced_mmio_zone zone;
1038 zone.addr = start;
1039 zone.size = size;
1040 zone.pad = 0;
1042 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
1046 static void kvm_uncoalesce_mmio_region(MemoryListener *listener,
1047 MemoryRegionSection *secion,
1048 hwaddr start, hwaddr size)
1050 KVMState *s = kvm_state;
1052 if (s->coalesced_mmio) {
1053 struct kvm_coalesced_mmio_zone zone;
1055 zone.addr = start;
1056 zone.size = size;
1057 zone.pad = 0;
1059 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
1063 static void kvm_coalesce_pio_add(MemoryListener *listener,
1064 MemoryRegionSection *section,
1065 hwaddr start, hwaddr size)
1067 KVMState *s = kvm_state;
1069 if (s->coalesced_pio) {
1070 struct kvm_coalesced_mmio_zone zone;
1072 zone.addr = start;
1073 zone.size = size;
1074 zone.pio = 1;
1076 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
1080 static void kvm_coalesce_pio_del(MemoryListener *listener,
1081 MemoryRegionSection *section,
1082 hwaddr start, hwaddr size)
1084 KVMState *s = kvm_state;
1086 if (s->coalesced_pio) {
1087 struct kvm_coalesced_mmio_zone zone;
1089 zone.addr = start;
1090 zone.size = size;
1091 zone.pio = 1;
1093 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
1097 int kvm_check_extension(KVMState *s, unsigned int extension)
1099 int ret;
1101 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
1102 if (ret < 0) {
1103 ret = 0;
1106 return ret;
1109 int kvm_vm_check_extension(KVMState *s, unsigned int extension)
1111 int ret;
1113 ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension);
1114 if (ret < 0) {
1115 /* VM wide version not implemented, use global one instead */
1116 ret = kvm_check_extension(s, extension);
1119 return ret;
1123 * We track the poisoned pages to be able to:
1124 * - replace them on VM reset
1125 * - block a migration for a VM with a poisoned page
1127 typedef struct HWPoisonPage {
1128 ram_addr_t ram_addr;
1129 QLIST_ENTRY(HWPoisonPage) list;
1130 } HWPoisonPage;
1132 static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list =
1133 QLIST_HEAD_INITIALIZER(hwpoison_page_list);
1135 static void kvm_unpoison_all(void *param)
1137 HWPoisonPage *page, *next_page;
1139 QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) {
1140 QLIST_REMOVE(page, list);
1141 qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE);
1142 g_free(page);
1146 void kvm_hwpoison_page_add(ram_addr_t ram_addr)
1148 HWPoisonPage *page;
1150 QLIST_FOREACH(page, &hwpoison_page_list, list) {
1151 if (page->ram_addr == ram_addr) {
1152 return;
1155 page = g_new(HWPoisonPage, 1);
1156 page->ram_addr = ram_addr;
1157 QLIST_INSERT_HEAD(&hwpoison_page_list, page, list);
1160 bool kvm_hwpoisoned_mem(void)
1162 return !QLIST_EMPTY(&hwpoison_page_list);
1165 static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size)
1167 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN
1168 /* The kernel expects ioeventfd values in HOST_BIG_ENDIAN
1169 * endianness, but the memory core hands them in target endianness.
1170 * For example, PPC is always treated as big-endian even if running
1171 * on KVM and on PPC64LE. Correct here.
1173 switch (size) {
1174 case 2:
1175 val = bswap16(val);
1176 break;
1177 case 4:
1178 val = bswap32(val);
1179 break;
1181 #endif
1182 return val;
1185 static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val,
1186 bool assign, uint32_t size, bool datamatch)
1188 int ret;
1189 struct kvm_ioeventfd iofd = {
1190 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
1191 .addr = addr,
1192 .len = size,
1193 .flags = 0,
1194 .fd = fd,
1197 trace_kvm_set_ioeventfd_mmio(fd, (uint64_t)addr, val, assign, size,
1198 datamatch);
1199 if (!kvm_enabled()) {
1200 return -ENOSYS;
1203 if (datamatch) {
1204 iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
1206 if (!assign) {
1207 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1210 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
1212 if (ret < 0) {
1213 return -errno;
1216 return 0;
1219 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val,
1220 bool assign, uint32_t size, bool datamatch)
1222 struct kvm_ioeventfd kick = {
1223 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
1224 .addr = addr,
1225 .flags = KVM_IOEVENTFD_FLAG_PIO,
1226 .len = size,
1227 .fd = fd,
1229 int r;
1230 trace_kvm_set_ioeventfd_pio(fd, addr, val, assign, size, datamatch);
1231 if (!kvm_enabled()) {
1232 return -ENOSYS;
1234 if (datamatch) {
1235 kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
1237 if (!assign) {
1238 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1240 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
1241 if (r < 0) {
1242 return r;
1244 return 0;
1248 static const KVMCapabilityInfo *
1249 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
1251 while (list->name) {
1252 if (!kvm_check_extension(s, list->value)) {
1253 return list;
1255 list++;
1257 return NULL;
1260 void kvm_set_max_memslot_size(hwaddr max_slot_size)
1262 g_assert(
1263 ROUND_UP(max_slot_size, qemu_real_host_page_size()) == max_slot_size
1265 kvm_max_slot_size = max_slot_size;
1268 /* Called with KVMMemoryListener.slots_lock held */
1269 static void kvm_set_phys_mem(KVMMemoryListener *kml,
1270 MemoryRegionSection *section, bool add)
1272 KVMSlot *mem;
1273 int err;
1274 MemoryRegion *mr = section->mr;
1275 bool writable = !mr->readonly && !mr->rom_device;
1276 hwaddr start_addr, size, slot_size, mr_offset;
1277 ram_addr_t ram_start_offset;
1278 void *ram;
1280 if (!memory_region_is_ram(mr)) {
1281 if (writable || !kvm_readonly_mem_allowed) {
1282 return;
1283 } else if (!mr->romd_mode) {
1284 /* If the memory device is not in romd_mode, then we actually want
1285 * to remove the kvm memory slot so all accesses will trap. */
1286 add = false;
1290 size = kvm_align_section(section, &start_addr);
1291 if (!size) {
1292 return;
1295 /* The offset of the kvmslot within the memory region */
1296 mr_offset = section->offset_within_region + start_addr -
1297 section->offset_within_address_space;
1299 /* use aligned delta to align the ram address and offset */
1300 ram = memory_region_get_ram_ptr(mr) + mr_offset;
1301 ram_start_offset = memory_region_get_ram_addr(mr) + mr_offset;
1303 if (!add) {
1304 do {
1305 slot_size = MIN(kvm_max_slot_size, size);
1306 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
1307 if (!mem) {
1308 return;
1310 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1312 * NOTE: We should be aware of the fact that here we're only
1313 * doing a best effort to sync dirty bits. No matter whether
1314 * we're using dirty log or dirty ring, we ignored two facts:
1316 * (1) dirty bits can reside in hardware buffers (PML)
1318 * (2) after we collected dirty bits here, pages can be dirtied
1319 * again before we do the final KVM_SET_USER_MEMORY_REGION to
1320 * remove the slot.
1322 * Not easy. Let's cross the fingers until it's fixed.
1324 if (kvm_state->kvm_dirty_ring_size) {
1325 kvm_dirty_ring_reap_locked(kvm_state, NULL);
1326 if (kvm_state->kvm_dirty_ring_with_bitmap) {
1327 kvm_slot_sync_dirty_pages(mem);
1328 kvm_slot_get_dirty_log(kvm_state, mem);
1330 } else {
1331 kvm_slot_get_dirty_log(kvm_state, mem);
1333 kvm_slot_sync_dirty_pages(mem);
1336 /* unregister the slot */
1337 g_free(mem->dirty_bmap);
1338 mem->dirty_bmap = NULL;
1339 mem->memory_size = 0;
1340 mem->flags = 0;
1341 err = kvm_set_user_memory_region(kml, mem, false);
1342 if (err) {
1343 fprintf(stderr, "%s: error unregistering slot: %s\n",
1344 __func__, strerror(-err));
1345 abort();
1347 start_addr += slot_size;
1348 size -= slot_size;
1349 kml->nr_used_slots--;
1350 } while (size);
1351 return;
1354 /* register the new slot */
1355 do {
1356 slot_size = MIN(kvm_max_slot_size, size);
1357 mem = kvm_alloc_slot(kml);
1358 mem->as_id = kml->as_id;
1359 mem->memory_size = slot_size;
1360 mem->start_addr = start_addr;
1361 mem->ram_start_offset = ram_start_offset;
1362 mem->ram = ram;
1363 mem->flags = kvm_mem_flags(mr);
1364 kvm_slot_init_dirty_bitmap(mem);
1365 err = kvm_set_user_memory_region(kml, mem, true);
1366 if (err) {
1367 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
1368 strerror(-err));
1369 abort();
1371 start_addr += slot_size;
1372 ram_start_offset += slot_size;
1373 ram += slot_size;
1374 size -= slot_size;
1375 kml->nr_used_slots++;
1376 } while (size);
1379 static void *kvm_dirty_ring_reaper_thread(void *data)
1381 KVMState *s = data;
1382 struct KVMDirtyRingReaper *r = &s->reaper;
1384 rcu_register_thread();
1386 trace_kvm_dirty_ring_reaper("init");
1388 while (true) {
1389 r->reaper_state = KVM_DIRTY_RING_REAPER_WAIT;
1390 trace_kvm_dirty_ring_reaper("wait");
1392 * TODO: provide a smarter timeout rather than a constant?
1394 sleep(1);
1396 /* keep sleeping so that dirtylimit not be interfered by reaper */
1397 if (dirtylimit_in_service()) {
1398 continue;
1401 trace_kvm_dirty_ring_reaper("wakeup");
1402 r->reaper_state = KVM_DIRTY_RING_REAPER_REAPING;
1404 bql_lock();
1405 kvm_dirty_ring_reap(s, NULL);
1406 bql_unlock();
1408 r->reaper_iteration++;
1411 trace_kvm_dirty_ring_reaper("exit");
1413 rcu_unregister_thread();
1415 return NULL;
1418 static void kvm_dirty_ring_reaper_init(KVMState *s)
1420 struct KVMDirtyRingReaper *r = &s->reaper;
1422 qemu_thread_create(&r->reaper_thr, "kvm-reaper",
1423 kvm_dirty_ring_reaper_thread,
1424 s, QEMU_THREAD_JOINABLE);
1427 static int kvm_dirty_ring_init(KVMState *s)
1429 uint32_t ring_size = s->kvm_dirty_ring_size;
1430 uint64_t ring_bytes = ring_size * sizeof(struct kvm_dirty_gfn);
1431 unsigned int capability = KVM_CAP_DIRTY_LOG_RING;
1432 int ret;
1434 s->kvm_dirty_ring_size = 0;
1435 s->kvm_dirty_ring_bytes = 0;
1437 /* Bail if the dirty ring size isn't specified */
1438 if (!ring_size) {
1439 return 0;
1443 * Read the max supported pages. Fall back to dirty logging mode
1444 * if the dirty ring isn't supported.
1446 ret = kvm_vm_check_extension(s, capability);
1447 if (ret <= 0) {
1448 capability = KVM_CAP_DIRTY_LOG_RING_ACQ_REL;
1449 ret = kvm_vm_check_extension(s, capability);
1452 if (ret <= 0) {
1453 warn_report("KVM dirty ring not available, using bitmap method");
1454 return 0;
1457 if (ring_bytes > ret) {
1458 error_report("KVM dirty ring size %" PRIu32 " too big "
1459 "(maximum is %ld). Please use a smaller value.",
1460 ring_size, (long)ret / sizeof(struct kvm_dirty_gfn));
1461 return -EINVAL;
1464 ret = kvm_vm_enable_cap(s, capability, 0, ring_bytes);
1465 if (ret) {
1466 error_report("Enabling of KVM dirty ring failed: %s. "
1467 "Suggested minimum value is 1024.", strerror(-ret));
1468 return -EIO;
1471 /* Enable the backup bitmap if it is supported */
1472 ret = kvm_vm_check_extension(s, KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP);
1473 if (ret > 0) {
1474 ret = kvm_vm_enable_cap(s, KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP, 0);
1475 if (ret) {
1476 error_report("Enabling of KVM dirty ring's backup bitmap failed: "
1477 "%s. ", strerror(-ret));
1478 return -EIO;
1481 s->kvm_dirty_ring_with_bitmap = true;
1484 s->kvm_dirty_ring_size = ring_size;
1485 s->kvm_dirty_ring_bytes = ring_bytes;
1487 return 0;
1490 static void kvm_region_add(MemoryListener *listener,
1491 MemoryRegionSection *section)
1493 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1494 KVMMemoryUpdate *update;
1496 update = g_new0(KVMMemoryUpdate, 1);
1497 update->section = *section;
1499 QSIMPLEQ_INSERT_TAIL(&kml->transaction_add, update, next);
1502 static void kvm_region_del(MemoryListener *listener,
1503 MemoryRegionSection *section)
1505 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1506 KVMMemoryUpdate *update;
1508 update = g_new0(KVMMemoryUpdate, 1);
1509 update->section = *section;
1511 QSIMPLEQ_INSERT_TAIL(&kml->transaction_del, update, next);
1514 static void kvm_region_commit(MemoryListener *listener)
1516 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener,
1517 listener);
1518 KVMMemoryUpdate *u1, *u2;
1519 bool need_inhibit = false;
1521 if (QSIMPLEQ_EMPTY(&kml->transaction_add) &&
1522 QSIMPLEQ_EMPTY(&kml->transaction_del)) {
1523 return;
1527 * We have to be careful when regions to add overlap with ranges to remove.
1528 * We have to simulate atomic KVM memslot updates by making sure no ioctl()
1529 * is currently active.
1531 * The lists are order by addresses, so it's easy to find overlaps.
1533 u1 = QSIMPLEQ_FIRST(&kml->transaction_del);
1534 u2 = QSIMPLEQ_FIRST(&kml->transaction_add);
1535 while (u1 && u2) {
1536 Range r1, r2;
1538 range_init_nofail(&r1, u1->section.offset_within_address_space,
1539 int128_get64(u1->section.size));
1540 range_init_nofail(&r2, u2->section.offset_within_address_space,
1541 int128_get64(u2->section.size));
1543 if (range_overlaps_range(&r1, &r2)) {
1544 need_inhibit = true;
1545 break;
1547 if (range_lob(&r1) < range_lob(&r2)) {
1548 u1 = QSIMPLEQ_NEXT(u1, next);
1549 } else {
1550 u2 = QSIMPLEQ_NEXT(u2, next);
1554 kvm_slots_lock();
1555 if (need_inhibit) {
1556 accel_ioctl_inhibit_begin();
1559 /* Remove all memslots before adding the new ones. */
1560 while (!QSIMPLEQ_EMPTY(&kml->transaction_del)) {
1561 u1 = QSIMPLEQ_FIRST(&kml->transaction_del);
1562 QSIMPLEQ_REMOVE_HEAD(&kml->transaction_del, next);
1564 kvm_set_phys_mem(kml, &u1->section, false);
1565 memory_region_unref(u1->section.mr);
1567 g_free(u1);
1569 while (!QSIMPLEQ_EMPTY(&kml->transaction_add)) {
1570 u1 = QSIMPLEQ_FIRST(&kml->transaction_add);
1571 QSIMPLEQ_REMOVE_HEAD(&kml->transaction_add, next);
1573 memory_region_ref(u1->section.mr);
1574 kvm_set_phys_mem(kml, &u1->section, true);
1576 g_free(u1);
1579 if (need_inhibit) {
1580 accel_ioctl_inhibit_end();
1582 kvm_slots_unlock();
1585 static void kvm_log_sync(MemoryListener *listener,
1586 MemoryRegionSection *section)
1588 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1590 kvm_slots_lock();
1591 kvm_physical_sync_dirty_bitmap(kml, section);
1592 kvm_slots_unlock();
1595 static void kvm_log_sync_global(MemoryListener *l, bool last_stage)
1597 KVMMemoryListener *kml = container_of(l, KVMMemoryListener, listener);
1598 KVMState *s = kvm_state;
1599 KVMSlot *mem;
1600 int i;
1602 /* Flush all kernel dirty addresses into KVMSlot dirty bitmap */
1603 kvm_dirty_ring_flush();
1606 * TODO: make this faster when nr_slots is big while there are
1607 * only a few used slots (small VMs).
1609 kvm_slots_lock();
1610 for (i = 0; i < s->nr_slots; i++) {
1611 mem = &kml->slots[i];
1612 if (mem->memory_size && mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1613 kvm_slot_sync_dirty_pages(mem);
1615 if (s->kvm_dirty_ring_with_bitmap && last_stage &&
1616 kvm_slot_get_dirty_log(s, mem)) {
1617 kvm_slot_sync_dirty_pages(mem);
1621 * This is not needed by KVM_GET_DIRTY_LOG because the
1622 * ioctl will unconditionally overwrite the whole region.
1623 * However kvm dirty ring has no such side effect.
1625 kvm_slot_reset_dirty_pages(mem);
1628 kvm_slots_unlock();
1631 static void kvm_log_clear(MemoryListener *listener,
1632 MemoryRegionSection *section)
1634 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1635 int r;
1637 r = kvm_physical_log_clear(kml, section);
1638 if (r < 0) {
1639 error_report_once("%s: kvm log clear failed: mr=%s "
1640 "offset=%"HWADDR_PRIx" size=%"PRIx64, __func__,
1641 section->mr->name, section->offset_within_region,
1642 int128_get64(section->size));
1643 abort();
1647 static void kvm_mem_ioeventfd_add(MemoryListener *listener,
1648 MemoryRegionSection *section,
1649 bool match_data, uint64_t data,
1650 EventNotifier *e)
1652 int fd = event_notifier_get_fd(e);
1653 int r;
1655 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
1656 data, true, int128_get64(section->size),
1657 match_data);
1658 if (r < 0) {
1659 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n",
1660 __func__, strerror(-r), -r);
1661 abort();
1665 static void kvm_mem_ioeventfd_del(MemoryListener *listener,
1666 MemoryRegionSection *section,
1667 bool match_data, uint64_t data,
1668 EventNotifier *e)
1670 int fd = event_notifier_get_fd(e);
1671 int r;
1673 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
1674 data, false, int128_get64(section->size),
1675 match_data);
1676 if (r < 0) {
1677 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n",
1678 __func__, strerror(-r), -r);
1679 abort();
1683 static void kvm_io_ioeventfd_add(MemoryListener *listener,
1684 MemoryRegionSection *section,
1685 bool match_data, uint64_t data,
1686 EventNotifier *e)
1688 int fd = event_notifier_get_fd(e);
1689 int r;
1691 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
1692 data, true, int128_get64(section->size),
1693 match_data);
1694 if (r < 0) {
1695 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n",
1696 __func__, strerror(-r), -r);
1697 abort();
1701 static void kvm_io_ioeventfd_del(MemoryListener *listener,
1702 MemoryRegionSection *section,
1703 bool match_data, uint64_t data,
1704 EventNotifier *e)
1707 int fd = event_notifier_get_fd(e);
1708 int r;
1710 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
1711 data, false, int128_get64(section->size),
1712 match_data);
1713 if (r < 0) {
1714 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n",
1715 __func__, strerror(-r), -r);
1716 abort();
1720 void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml,
1721 AddressSpace *as, int as_id, const char *name)
1723 int i;
1725 kml->slots = g_new0(KVMSlot, s->nr_slots);
1726 kml->as_id = as_id;
1728 for (i = 0; i < s->nr_slots; i++) {
1729 kml->slots[i].slot = i;
1732 QSIMPLEQ_INIT(&kml->transaction_add);
1733 QSIMPLEQ_INIT(&kml->transaction_del);
1735 kml->listener.region_add = kvm_region_add;
1736 kml->listener.region_del = kvm_region_del;
1737 kml->listener.commit = kvm_region_commit;
1738 kml->listener.log_start = kvm_log_start;
1739 kml->listener.log_stop = kvm_log_stop;
1740 kml->listener.priority = MEMORY_LISTENER_PRIORITY_ACCEL;
1741 kml->listener.name = name;
1743 if (s->kvm_dirty_ring_size) {
1744 kml->listener.log_sync_global = kvm_log_sync_global;
1745 } else {
1746 kml->listener.log_sync = kvm_log_sync;
1747 kml->listener.log_clear = kvm_log_clear;
1750 memory_listener_register(&kml->listener, as);
1752 for (i = 0; i < s->nr_as; ++i) {
1753 if (!s->as[i].as) {
1754 s->as[i].as = as;
1755 s->as[i].ml = kml;
1756 break;
1761 static MemoryListener kvm_io_listener = {
1762 .name = "kvm-io",
1763 .coalesced_io_add = kvm_coalesce_pio_add,
1764 .coalesced_io_del = kvm_coalesce_pio_del,
1765 .eventfd_add = kvm_io_ioeventfd_add,
1766 .eventfd_del = kvm_io_ioeventfd_del,
1767 .priority = MEMORY_LISTENER_PRIORITY_DEV_BACKEND,
1770 int kvm_set_irq(KVMState *s, int irq, int level)
1772 struct kvm_irq_level event;
1773 int ret;
1775 assert(kvm_async_interrupts_enabled());
1777 event.level = level;
1778 event.irq = irq;
1779 ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event);
1780 if (ret < 0) {
1781 perror("kvm_set_irq");
1782 abort();
1785 return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
1788 #ifdef KVM_CAP_IRQ_ROUTING
1789 typedef struct KVMMSIRoute {
1790 struct kvm_irq_routing_entry kroute;
1791 QTAILQ_ENTRY(KVMMSIRoute) entry;
1792 } KVMMSIRoute;
1794 static void set_gsi(KVMState *s, unsigned int gsi)
1796 set_bit(gsi, s->used_gsi_bitmap);
1799 static void clear_gsi(KVMState *s, unsigned int gsi)
1801 clear_bit(gsi, s->used_gsi_bitmap);
1804 void kvm_init_irq_routing(KVMState *s)
1806 int gsi_count;
1808 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1;
1809 if (gsi_count > 0) {
1810 /* Round up so we can search ints using ffs */
1811 s->used_gsi_bitmap = bitmap_new(gsi_count);
1812 s->gsi_count = gsi_count;
1815 s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
1816 s->nr_allocated_irq_routes = 0;
1818 kvm_arch_init_irq_routing(s);
1821 void kvm_irqchip_commit_routes(KVMState *s)
1823 int ret;
1825 if (kvm_gsi_direct_mapping()) {
1826 return;
1829 if (!kvm_gsi_routing_enabled()) {
1830 return;
1833 s->irq_routes->flags = 0;
1834 trace_kvm_irqchip_commit_routes();
1835 ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
1836 assert(ret == 0);
1839 static void kvm_add_routing_entry(KVMState *s,
1840 struct kvm_irq_routing_entry *entry)
1842 struct kvm_irq_routing_entry *new;
1843 int n, size;
1845 if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
1846 n = s->nr_allocated_irq_routes * 2;
1847 if (n < 64) {
1848 n = 64;
1850 size = sizeof(struct kvm_irq_routing);
1851 size += n * sizeof(*new);
1852 s->irq_routes = g_realloc(s->irq_routes, size);
1853 s->nr_allocated_irq_routes = n;
1855 n = s->irq_routes->nr++;
1856 new = &s->irq_routes->entries[n];
1858 *new = *entry;
1860 set_gsi(s, entry->gsi);
1863 static int kvm_update_routing_entry(KVMState *s,
1864 struct kvm_irq_routing_entry *new_entry)
1866 struct kvm_irq_routing_entry *entry;
1867 int n;
1869 for (n = 0; n < s->irq_routes->nr; n++) {
1870 entry = &s->irq_routes->entries[n];
1871 if (entry->gsi != new_entry->gsi) {
1872 continue;
1875 if(!memcmp(entry, new_entry, sizeof *entry)) {
1876 return 0;
1879 *entry = *new_entry;
1881 return 0;
1884 return -ESRCH;
1887 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin)
1889 struct kvm_irq_routing_entry e = {};
1891 assert(pin < s->gsi_count);
1893 e.gsi = irq;
1894 e.type = KVM_IRQ_ROUTING_IRQCHIP;
1895 e.flags = 0;
1896 e.u.irqchip.irqchip = irqchip;
1897 e.u.irqchip.pin = pin;
1898 kvm_add_routing_entry(s, &e);
1901 void kvm_irqchip_release_virq(KVMState *s, int virq)
1903 struct kvm_irq_routing_entry *e;
1904 int i;
1906 if (kvm_gsi_direct_mapping()) {
1907 return;
1910 for (i = 0; i < s->irq_routes->nr; i++) {
1911 e = &s->irq_routes->entries[i];
1912 if (e->gsi == virq) {
1913 s->irq_routes->nr--;
1914 *e = s->irq_routes->entries[s->irq_routes->nr];
1917 clear_gsi(s, virq);
1918 kvm_arch_release_virq_post(virq);
1919 trace_kvm_irqchip_release_virq(virq);
1922 void kvm_irqchip_add_change_notifier(Notifier *n)
1924 notifier_list_add(&kvm_irqchip_change_notifiers, n);
1927 void kvm_irqchip_remove_change_notifier(Notifier *n)
1929 notifier_remove(n);
1932 void kvm_irqchip_change_notify(void)
1934 notifier_list_notify(&kvm_irqchip_change_notifiers, NULL);
1937 static int kvm_irqchip_get_virq(KVMState *s)
1939 int next_virq;
1941 /* Return the lowest unused GSI in the bitmap */
1942 next_virq = find_first_zero_bit(s->used_gsi_bitmap, s->gsi_count);
1943 if (next_virq >= s->gsi_count) {
1944 return -ENOSPC;
1945 } else {
1946 return next_virq;
1950 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1952 struct kvm_msi msi;
1954 msi.address_lo = (uint32_t)msg.address;
1955 msi.address_hi = msg.address >> 32;
1956 msi.data = le32_to_cpu(msg.data);
1957 msi.flags = 0;
1958 memset(msi.pad, 0, sizeof(msi.pad));
1960 return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi);
1963 int kvm_irqchip_add_msi_route(KVMRouteChange *c, int vector, PCIDevice *dev)
1965 struct kvm_irq_routing_entry kroute = {};
1966 int virq;
1967 KVMState *s = c->s;
1968 MSIMessage msg = {0, 0};
1970 if (pci_available && dev) {
1971 msg = pci_get_msi_message(dev, vector);
1974 if (kvm_gsi_direct_mapping()) {
1975 return kvm_arch_msi_data_to_gsi(msg.data);
1978 if (!kvm_gsi_routing_enabled()) {
1979 return -ENOSYS;
1982 virq = kvm_irqchip_get_virq(s);
1983 if (virq < 0) {
1984 return virq;
1987 kroute.gsi = virq;
1988 kroute.type = KVM_IRQ_ROUTING_MSI;
1989 kroute.flags = 0;
1990 kroute.u.msi.address_lo = (uint32_t)msg.address;
1991 kroute.u.msi.address_hi = msg.address >> 32;
1992 kroute.u.msi.data = le32_to_cpu(msg.data);
1993 if (pci_available && kvm_msi_devid_required()) {
1994 kroute.flags = KVM_MSI_VALID_DEVID;
1995 kroute.u.msi.devid = pci_requester_id(dev);
1997 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
1998 kvm_irqchip_release_virq(s, virq);
1999 return -EINVAL;
2002 trace_kvm_irqchip_add_msi_route(dev ? dev->name : (char *)"N/A",
2003 vector, virq);
2005 kvm_add_routing_entry(s, &kroute);
2006 kvm_arch_add_msi_route_post(&kroute, vector, dev);
2007 c->changes++;
2009 return virq;
2012 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg,
2013 PCIDevice *dev)
2015 struct kvm_irq_routing_entry kroute = {};
2017 if (kvm_gsi_direct_mapping()) {
2018 return 0;
2021 if (!kvm_irqchip_in_kernel()) {
2022 return -ENOSYS;
2025 kroute.gsi = virq;
2026 kroute.type = KVM_IRQ_ROUTING_MSI;
2027 kroute.flags = 0;
2028 kroute.u.msi.address_lo = (uint32_t)msg.address;
2029 kroute.u.msi.address_hi = msg.address >> 32;
2030 kroute.u.msi.data = le32_to_cpu(msg.data);
2031 if (pci_available && kvm_msi_devid_required()) {
2032 kroute.flags = KVM_MSI_VALID_DEVID;
2033 kroute.u.msi.devid = pci_requester_id(dev);
2035 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
2036 return -EINVAL;
2039 trace_kvm_irqchip_update_msi_route(virq);
2041 return kvm_update_routing_entry(s, &kroute);
2044 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event,
2045 EventNotifier *resample, int virq,
2046 bool assign)
2048 int fd = event_notifier_get_fd(event);
2049 int rfd = resample ? event_notifier_get_fd(resample) : -1;
2051 struct kvm_irqfd irqfd = {
2052 .fd = fd,
2053 .gsi = virq,
2054 .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
2057 if (rfd != -1) {
2058 assert(assign);
2059 if (kvm_irqchip_is_split()) {
2061 * When the slow irqchip (e.g. IOAPIC) is in the
2062 * userspace, KVM kernel resamplefd will not work because
2063 * the EOI of the interrupt will be delivered to userspace
2064 * instead, so the KVM kernel resamplefd kick will be
2065 * skipped. The userspace here mimics what the kernel
2066 * provides with resamplefd, remember the resamplefd and
2067 * kick it when we receive EOI of this IRQ.
2069 * This is hackery because IOAPIC is mostly bypassed
2070 * (except EOI broadcasts) when irqfd is used. However
2071 * this can bring much performance back for split irqchip
2072 * with INTx IRQs (for VFIO, this gives 93% perf of the
2073 * full fast path, which is 46% perf boost comparing to
2074 * the INTx slow path).
2076 kvm_resample_fd_insert(virq, resample);
2077 } else {
2078 irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE;
2079 irqfd.resamplefd = rfd;
2081 } else if (!assign) {
2082 if (kvm_irqchip_is_split()) {
2083 kvm_resample_fd_remove(virq);
2087 return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd);
2090 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
2092 struct kvm_irq_routing_entry kroute = {};
2093 int virq;
2095 if (!kvm_gsi_routing_enabled()) {
2096 return -ENOSYS;
2099 virq = kvm_irqchip_get_virq(s);
2100 if (virq < 0) {
2101 return virq;
2104 kroute.gsi = virq;
2105 kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER;
2106 kroute.flags = 0;
2107 kroute.u.adapter.summary_addr = adapter->summary_addr;
2108 kroute.u.adapter.ind_addr = adapter->ind_addr;
2109 kroute.u.adapter.summary_offset = adapter->summary_offset;
2110 kroute.u.adapter.ind_offset = adapter->ind_offset;
2111 kroute.u.adapter.adapter_id = adapter->adapter_id;
2113 kvm_add_routing_entry(s, &kroute);
2115 return virq;
2118 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint)
2120 struct kvm_irq_routing_entry kroute = {};
2121 int virq;
2123 if (!kvm_gsi_routing_enabled()) {
2124 return -ENOSYS;
2126 if (!kvm_check_extension(s, KVM_CAP_HYPERV_SYNIC)) {
2127 return -ENOSYS;
2129 virq = kvm_irqchip_get_virq(s);
2130 if (virq < 0) {
2131 return virq;
2134 kroute.gsi = virq;
2135 kroute.type = KVM_IRQ_ROUTING_HV_SINT;
2136 kroute.flags = 0;
2137 kroute.u.hv_sint.vcpu = vcpu;
2138 kroute.u.hv_sint.sint = sint;
2140 kvm_add_routing_entry(s, &kroute);
2141 kvm_irqchip_commit_routes(s);
2143 return virq;
2146 #else /* !KVM_CAP_IRQ_ROUTING */
2148 void kvm_init_irq_routing(KVMState *s)
2152 void kvm_irqchip_release_virq(KVMState *s, int virq)
2156 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
2158 abort();
2161 int kvm_irqchip_add_msi_route(KVMRouteChange *c, int vector, PCIDevice *dev)
2163 return -ENOSYS;
2166 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
2168 return -ENOSYS;
2171 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint)
2173 return -ENOSYS;
2176 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event,
2177 EventNotifier *resample, int virq,
2178 bool assign)
2180 abort();
2183 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
2185 return -ENOSYS;
2187 #endif /* !KVM_CAP_IRQ_ROUTING */
2189 int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
2190 EventNotifier *rn, int virq)
2192 return kvm_irqchip_assign_irqfd(s, n, rn, virq, true);
2195 int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
2196 int virq)
2198 return kvm_irqchip_assign_irqfd(s, n, NULL, virq, false);
2201 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n,
2202 EventNotifier *rn, qemu_irq irq)
2204 gpointer key, gsi;
2205 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
2207 if (!found) {
2208 return -ENXIO;
2210 return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi));
2213 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n,
2214 qemu_irq irq)
2216 gpointer key, gsi;
2217 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
2219 if (!found) {
2220 return -ENXIO;
2222 return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi));
2225 void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi)
2227 g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi));
2230 static void kvm_irqchip_create(KVMState *s)
2232 int ret;
2234 assert(s->kernel_irqchip_split != ON_OFF_AUTO_AUTO);
2235 if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) {
2237 } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) {
2238 ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0);
2239 if (ret < 0) {
2240 fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret));
2241 exit(1);
2243 } else {
2244 return;
2247 if (kvm_check_extension(s, KVM_CAP_IRQFD) <= 0) {
2248 fprintf(stderr, "kvm: irqfd not implemented\n");
2249 exit(1);
2252 /* First probe and see if there's a arch-specific hook to create the
2253 * in-kernel irqchip for us */
2254 ret = kvm_arch_irqchip_create(s);
2255 if (ret == 0) {
2256 if (s->kernel_irqchip_split == ON_OFF_AUTO_ON) {
2257 error_report("Split IRQ chip mode not supported.");
2258 exit(1);
2259 } else {
2260 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
2263 if (ret < 0) {
2264 fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret));
2265 exit(1);
2268 kvm_kernel_irqchip = true;
2269 /* If we have an in-kernel IRQ chip then we must have asynchronous
2270 * interrupt delivery (though the reverse is not necessarily true)
2272 kvm_async_interrupts_allowed = true;
2273 kvm_halt_in_kernel_allowed = true;
2275 kvm_init_irq_routing(s);
2277 s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal);
2280 /* Find number of supported CPUs using the recommended
2281 * procedure from the kernel API documentation to cope with
2282 * older kernels that may be missing capabilities.
2284 static int kvm_recommended_vcpus(KVMState *s)
2286 int ret = kvm_vm_check_extension(s, KVM_CAP_NR_VCPUS);
2287 return (ret) ? ret : 4;
2290 static int kvm_max_vcpus(KVMState *s)
2292 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS);
2293 return (ret) ? ret : kvm_recommended_vcpus(s);
2296 static int kvm_max_vcpu_id(KVMState *s)
2298 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPU_ID);
2299 return (ret) ? ret : kvm_max_vcpus(s);
2302 bool kvm_vcpu_id_is_valid(int vcpu_id)
2304 KVMState *s = KVM_STATE(current_accel());
2305 return vcpu_id >= 0 && vcpu_id < kvm_max_vcpu_id(s);
2308 bool kvm_dirty_ring_enabled(void)
2310 return kvm_state->kvm_dirty_ring_size ? true : false;
2313 static void query_stats_cb(StatsResultList **result, StatsTarget target,
2314 strList *names, strList *targets, Error **errp);
2315 static void query_stats_schemas_cb(StatsSchemaList **result, Error **errp);
2317 uint32_t kvm_dirty_ring_size(void)
2319 return kvm_state->kvm_dirty_ring_size;
2322 static int kvm_init(MachineState *ms)
2324 MachineClass *mc = MACHINE_GET_CLASS(ms);
2325 static const char upgrade_note[] =
2326 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
2327 "(see http://sourceforge.net/projects/kvm).\n";
2328 const struct {
2329 const char *name;
2330 int num;
2331 } num_cpus[] = {
2332 { "SMP", ms->smp.cpus },
2333 { "hotpluggable", ms->smp.max_cpus },
2334 { /* end of list */ }
2335 }, *nc = num_cpus;
2336 int soft_vcpus_limit, hard_vcpus_limit;
2337 KVMState *s;
2338 const KVMCapabilityInfo *missing_cap;
2339 int ret;
2340 int type;
2341 uint64_t dirty_log_manual_caps;
2343 qemu_mutex_init(&kml_slots_lock);
2345 s = KVM_STATE(ms->accelerator);
2348 * On systems where the kernel can support different base page
2349 * sizes, host page size may be different from TARGET_PAGE_SIZE,
2350 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum
2351 * page size for the system though.
2353 assert(TARGET_PAGE_SIZE <= qemu_real_host_page_size());
2355 s->sigmask_len = 8;
2356 accel_blocker_init();
2358 #ifdef KVM_CAP_SET_GUEST_DEBUG
2359 QTAILQ_INIT(&s->kvm_sw_breakpoints);
2360 #endif
2361 QLIST_INIT(&s->kvm_parked_vcpus);
2362 s->fd = qemu_open_old(s->device ?: "/dev/kvm", O_RDWR);
2363 if (s->fd == -1) {
2364 fprintf(stderr, "Could not access KVM kernel module: %m\n");
2365 ret = -errno;
2366 goto err;
2369 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
2370 if (ret < KVM_API_VERSION) {
2371 if (ret >= 0) {
2372 ret = -EINVAL;
2374 fprintf(stderr, "kvm version too old\n");
2375 goto err;
2378 if (ret > KVM_API_VERSION) {
2379 ret = -EINVAL;
2380 fprintf(stderr, "kvm version not supported\n");
2381 goto err;
2384 kvm_immediate_exit = kvm_check_extension(s, KVM_CAP_IMMEDIATE_EXIT);
2385 s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS);
2387 /* If unspecified, use the default value */
2388 if (!s->nr_slots) {
2389 s->nr_slots = 32;
2392 s->nr_as = kvm_check_extension(s, KVM_CAP_MULTI_ADDRESS_SPACE);
2393 if (s->nr_as <= 1) {
2394 s->nr_as = 1;
2396 s->as = g_new0(struct KVMAs, s->nr_as);
2398 if (object_property_find(OBJECT(current_machine), "kvm-type")) {
2399 g_autofree char *kvm_type = object_property_get_str(OBJECT(current_machine),
2400 "kvm-type",
2401 &error_abort);
2402 type = mc->kvm_type(ms, kvm_type);
2403 } else if (mc->kvm_type) {
2404 type = mc->kvm_type(ms, NULL);
2405 } else {
2406 type = kvm_arch_get_default_type(ms);
2409 if (type < 0) {
2410 ret = -EINVAL;
2411 goto err;
2414 do {
2415 ret = kvm_ioctl(s, KVM_CREATE_VM, type);
2416 } while (ret == -EINTR);
2418 if (ret < 0) {
2419 fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret,
2420 strerror(-ret));
2422 #ifdef TARGET_S390X
2423 if (ret == -EINVAL) {
2424 fprintf(stderr,
2425 "Host kernel setup problem detected. Please verify:\n");
2426 fprintf(stderr, "- for kernels supporting the switch_amode or"
2427 " user_mode parameters, whether\n");
2428 fprintf(stderr,
2429 " user space is running in primary address space\n");
2430 fprintf(stderr,
2431 "- for kernels supporting the vm.allocate_pgste sysctl, "
2432 "whether it is enabled\n");
2434 #elif defined(TARGET_PPC)
2435 if (ret == -EINVAL) {
2436 fprintf(stderr,
2437 "PPC KVM module is not loaded. Try modprobe kvm_%s.\n",
2438 (type == 2) ? "pr" : "hv");
2440 #endif
2441 goto err;
2444 s->vmfd = ret;
2446 /* check the vcpu limits */
2447 soft_vcpus_limit = kvm_recommended_vcpus(s);
2448 hard_vcpus_limit = kvm_max_vcpus(s);
2450 while (nc->name) {
2451 if (nc->num > soft_vcpus_limit) {
2452 warn_report("Number of %s cpus requested (%d) exceeds "
2453 "the recommended cpus supported by KVM (%d)",
2454 nc->name, nc->num, soft_vcpus_limit);
2456 if (nc->num > hard_vcpus_limit) {
2457 fprintf(stderr, "Number of %s cpus requested (%d) exceeds "
2458 "the maximum cpus supported by KVM (%d)\n",
2459 nc->name, nc->num, hard_vcpus_limit);
2460 exit(1);
2463 nc++;
2466 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
2467 if (!missing_cap) {
2468 missing_cap =
2469 kvm_check_extension_list(s, kvm_arch_required_capabilities);
2471 if (missing_cap) {
2472 ret = -EINVAL;
2473 fprintf(stderr, "kvm does not support %s\n%s",
2474 missing_cap->name, upgrade_note);
2475 goto err;
2478 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
2479 s->coalesced_pio = s->coalesced_mmio &&
2480 kvm_check_extension(s, KVM_CAP_COALESCED_PIO);
2483 * Enable KVM dirty ring if supported, otherwise fall back to
2484 * dirty logging mode
2486 ret = kvm_dirty_ring_init(s);
2487 if (ret < 0) {
2488 goto err;
2492 * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 is not needed when dirty ring is
2493 * enabled. More importantly, KVM_DIRTY_LOG_INITIALLY_SET will assume no
2494 * page is wr-protected initially, which is against how kvm dirty ring is
2495 * usage - kvm dirty ring requires all pages are wr-protected at the very
2496 * beginning. Enabling this feature for dirty ring causes data corruption.
2498 * TODO: Without KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 and kvm clear dirty log,
2499 * we may expect a higher stall time when starting the migration. In the
2500 * future we can enable KVM_CLEAR_DIRTY_LOG to work with dirty ring too:
2501 * instead of clearing dirty bit, it can be a way to explicitly wr-protect
2502 * guest pages.
2504 if (!s->kvm_dirty_ring_size) {
2505 dirty_log_manual_caps =
2506 kvm_check_extension(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2);
2507 dirty_log_manual_caps &= (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE |
2508 KVM_DIRTY_LOG_INITIALLY_SET);
2509 s->manual_dirty_log_protect = dirty_log_manual_caps;
2510 if (dirty_log_manual_caps) {
2511 ret = kvm_vm_enable_cap(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2, 0,
2512 dirty_log_manual_caps);
2513 if (ret) {
2514 warn_report("Trying to enable capability %"PRIu64" of "
2515 "KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 but failed. "
2516 "Falling back to the legacy mode. ",
2517 dirty_log_manual_caps);
2518 s->manual_dirty_log_protect = 0;
2523 #ifdef KVM_CAP_VCPU_EVENTS
2524 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
2525 #endif
2526 s->max_nested_state_len = kvm_check_extension(s, KVM_CAP_NESTED_STATE);
2528 s->irq_set_ioctl = KVM_IRQ_LINE;
2529 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
2530 s->irq_set_ioctl = KVM_IRQ_LINE_STATUS;
2533 kvm_readonly_mem_allowed =
2534 (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0);
2536 kvm_resamplefds_allowed =
2537 (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0);
2539 kvm_vm_attributes_allowed =
2540 (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0);
2542 #ifdef KVM_CAP_SET_GUEST_DEBUG
2543 kvm_has_guest_debug =
2544 (kvm_check_extension(s, KVM_CAP_SET_GUEST_DEBUG) > 0);
2545 #endif
2547 kvm_sstep_flags = 0;
2548 if (kvm_has_guest_debug) {
2549 kvm_sstep_flags = SSTEP_ENABLE;
2551 #if defined KVM_CAP_SET_GUEST_DEBUG2
2552 int guest_debug_flags =
2553 kvm_check_extension(s, KVM_CAP_SET_GUEST_DEBUG2);
2555 if (guest_debug_flags & KVM_GUESTDBG_BLOCKIRQ) {
2556 kvm_sstep_flags |= SSTEP_NOIRQ;
2558 #endif
2561 kvm_state = s;
2563 ret = kvm_arch_init(ms, s);
2564 if (ret < 0) {
2565 goto err;
2568 if (s->kernel_irqchip_split == ON_OFF_AUTO_AUTO) {
2569 s->kernel_irqchip_split = mc->default_kernel_irqchip_split ? ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
2572 qemu_register_reset(kvm_unpoison_all, NULL);
2574 if (s->kernel_irqchip_allowed) {
2575 kvm_irqchip_create(s);
2578 s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add;
2579 s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del;
2580 s->memory_listener.listener.coalesced_io_add = kvm_coalesce_mmio_region;
2581 s->memory_listener.listener.coalesced_io_del = kvm_uncoalesce_mmio_region;
2583 kvm_memory_listener_register(s, &s->memory_listener,
2584 &address_space_memory, 0, "kvm-memory");
2585 memory_listener_register(&kvm_io_listener,
2586 &address_space_io);
2588 s->sync_mmu = !!kvm_vm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
2589 if (!s->sync_mmu) {
2590 ret = ram_block_discard_disable(true);
2591 assert(!ret);
2594 if (s->kvm_dirty_ring_size) {
2595 kvm_dirty_ring_reaper_init(s);
2598 if (kvm_check_extension(kvm_state, KVM_CAP_BINARY_STATS_FD)) {
2599 add_stats_callbacks(STATS_PROVIDER_KVM, query_stats_cb,
2600 query_stats_schemas_cb);
2603 return 0;
2605 err:
2606 assert(ret < 0);
2607 if (s->vmfd >= 0) {
2608 close(s->vmfd);
2610 if (s->fd != -1) {
2611 close(s->fd);
2613 g_free(s->as);
2614 g_free(s->memory_listener.slots);
2616 return ret;
2619 void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len)
2621 s->sigmask_len = sigmask_len;
2624 static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction,
2625 int size, uint32_t count)
2627 int i;
2628 uint8_t *ptr = data;
2630 for (i = 0; i < count; i++) {
2631 address_space_rw(&address_space_io, port, attrs,
2632 ptr, size,
2633 direction == KVM_EXIT_IO_OUT);
2634 ptr += size;
2638 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run)
2640 int i;
2642 fprintf(stderr, "KVM internal error. Suberror: %d\n",
2643 run->internal.suberror);
2645 for (i = 0; i < run->internal.ndata; ++i) {
2646 fprintf(stderr, "extra data[%d]: 0x%016"PRIx64"\n",
2647 i, (uint64_t)run->internal.data[i]);
2649 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
2650 fprintf(stderr, "emulation failure\n");
2651 if (!kvm_arch_stop_on_emulation_error(cpu)) {
2652 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
2653 return EXCP_INTERRUPT;
2656 /* FIXME: Should trigger a qmp message to let management know
2657 * something went wrong.
2659 return -1;
2662 void kvm_flush_coalesced_mmio_buffer(void)
2664 KVMState *s = kvm_state;
2666 if (!s || s->coalesced_flush_in_progress) {
2667 return;
2670 s->coalesced_flush_in_progress = true;
2672 if (s->coalesced_mmio_ring) {
2673 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
2674 while (ring->first != ring->last) {
2675 struct kvm_coalesced_mmio *ent;
2677 ent = &ring->coalesced_mmio[ring->first];
2679 if (ent->pio == 1) {
2680 address_space_write(&address_space_io, ent->phys_addr,
2681 MEMTXATTRS_UNSPECIFIED, ent->data,
2682 ent->len);
2683 } else {
2684 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
2686 smp_wmb();
2687 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
2691 s->coalesced_flush_in_progress = false;
2694 bool kvm_cpu_check_are_resettable(void)
2696 return kvm_arch_cpu_check_are_resettable();
2699 static void do_kvm_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg)
2701 if (!cpu->vcpu_dirty) {
2702 int ret = kvm_arch_get_registers(cpu);
2703 if (ret) {
2704 error_report("Failed to get registers: %s", strerror(-ret));
2705 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
2706 vm_stop(RUN_STATE_INTERNAL_ERROR);
2709 cpu->vcpu_dirty = true;
2713 void kvm_cpu_synchronize_state(CPUState *cpu)
2715 if (!cpu->vcpu_dirty) {
2716 run_on_cpu(cpu, do_kvm_cpu_synchronize_state, RUN_ON_CPU_NULL);
2720 static void do_kvm_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg)
2722 int ret = kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE);
2723 if (ret) {
2724 error_report("Failed to put registers after reset: %s", strerror(-ret));
2725 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
2726 vm_stop(RUN_STATE_INTERNAL_ERROR);
2729 cpu->vcpu_dirty = false;
2732 void kvm_cpu_synchronize_post_reset(CPUState *cpu)
2734 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, RUN_ON_CPU_NULL);
2737 static void do_kvm_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg)
2739 int ret = kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE);
2740 if (ret) {
2741 error_report("Failed to put registers after init: %s", strerror(-ret));
2742 exit(1);
2745 cpu->vcpu_dirty = false;
2748 void kvm_cpu_synchronize_post_init(CPUState *cpu)
2750 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, RUN_ON_CPU_NULL);
2753 static void do_kvm_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg)
2755 cpu->vcpu_dirty = true;
2758 void kvm_cpu_synchronize_pre_loadvm(CPUState *cpu)
2760 run_on_cpu(cpu, do_kvm_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL);
2763 #ifdef KVM_HAVE_MCE_INJECTION
2764 static __thread void *pending_sigbus_addr;
2765 static __thread int pending_sigbus_code;
2766 static __thread bool have_sigbus_pending;
2767 #endif
2769 static void kvm_cpu_kick(CPUState *cpu)
2771 qatomic_set(&cpu->kvm_run->immediate_exit, 1);
2774 static void kvm_cpu_kick_self(void)
2776 if (kvm_immediate_exit) {
2777 kvm_cpu_kick(current_cpu);
2778 } else {
2779 qemu_cpu_kick_self();
2783 static void kvm_eat_signals(CPUState *cpu)
2785 struct timespec ts = { 0, 0 };
2786 siginfo_t siginfo;
2787 sigset_t waitset;
2788 sigset_t chkset;
2789 int r;
2791 if (kvm_immediate_exit) {
2792 qatomic_set(&cpu->kvm_run->immediate_exit, 0);
2793 /* Write kvm_run->immediate_exit before the cpu->exit_request
2794 * write in kvm_cpu_exec.
2796 smp_wmb();
2797 return;
2800 sigemptyset(&waitset);
2801 sigaddset(&waitset, SIG_IPI);
2803 do {
2804 r = sigtimedwait(&waitset, &siginfo, &ts);
2805 if (r == -1 && !(errno == EAGAIN || errno == EINTR)) {
2806 perror("sigtimedwait");
2807 exit(1);
2810 r = sigpending(&chkset);
2811 if (r == -1) {
2812 perror("sigpending");
2813 exit(1);
2815 } while (sigismember(&chkset, SIG_IPI));
2818 int kvm_cpu_exec(CPUState *cpu)
2820 struct kvm_run *run = cpu->kvm_run;
2821 int ret, run_ret;
2823 trace_kvm_cpu_exec();
2825 if (kvm_arch_process_async_events(cpu)) {
2826 qatomic_set(&cpu->exit_request, 0);
2827 return EXCP_HLT;
2830 bql_unlock();
2831 cpu_exec_start(cpu);
2833 do {
2834 MemTxAttrs attrs;
2836 if (cpu->vcpu_dirty) {
2837 ret = kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE);
2838 if (ret) {
2839 error_report("Failed to put registers after init: %s",
2840 strerror(-ret));
2841 ret = -1;
2842 break;
2845 cpu->vcpu_dirty = false;
2848 kvm_arch_pre_run(cpu, run);
2849 if (qatomic_read(&cpu->exit_request)) {
2850 trace_kvm_interrupt_exit_request();
2852 * KVM requires us to reenter the kernel after IO exits to complete
2853 * instruction emulation. This self-signal will ensure that we
2854 * leave ASAP again.
2856 kvm_cpu_kick_self();
2859 /* Read cpu->exit_request before KVM_RUN reads run->immediate_exit.
2860 * Matching barrier in kvm_eat_signals.
2862 smp_rmb();
2864 run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0);
2866 attrs = kvm_arch_post_run(cpu, run);
2868 #ifdef KVM_HAVE_MCE_INJECTION
2869 if (unlikely(have_sigbus_pending)) {
2870 bql_lock();
2871 kvm_arch_on_sigbus_vcpu(cpu, pending_sigbus_code,
2872 pending_sigbus_addr);
2873 have_sigbus_pending = false;
2874 bql_unlock();
2876 #endif
2878 if (run_ret < 0) {
2879 if (run_ret == -EINTR || run_ret == -EAGAIN) {
2880 trace_kvm_io_window_exit();
2881 kvm_eat_signals(cpu);
2882 ret = EXCP_INTERRUPT;
2883 break;
2885 fprintf(stderr, "error: kvm run failed %s\n",
2886 strerror(-run_ret));
2887 #ifdef TARGET_PPC
2888 if (run_ret == -EBUSY) {
2889 fprintf(stderr,
2890 "This is probably because your SMT is enabled.\n"
2891 "VCPU can only run on primary threads with all "
2892 "secondary threads offline.\n");
2894 #endif
2895 ret = -1;
2896 break;
2899 trace_kvm_run_exit(cpu->cpu_index, run->exit_reason);
2900 switch (run->exit_reason) {
2901 case KVM_EXIT_IO:
2902 /* Called outside BQL */
2903 kvm_handle_io(run->io.port, attrs,
2904 (uint8_t *)run + run->io.data_offset,
2905 run->io.direction,
2906 run->io.size,
2907 run->io.count);
2908 ret = 0;
2909 break;
2910 case KVM_EXIT_MMIO:
2911 /* Called outside BQL */
2912 address_space_rw(&address_space_memory,
2913 run->mmio.phys_addr, attrs,
2914 run->mmio.data,
2915 run->mmio.len,
2916 run->mmio.is_write);
2917 ret = 0;
2918 break;
2919 case KVM_EXIT_IRQ_WINDOW_OPEN:
2920 ret = EXCP_INTERRUPT;
2921 break;
2922 case KVM_EXIT_SHUTDOWN:
2923 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
2924 ret = EXCP_INTERRUPT;
2925 break;
2926 case KVM_EXIT_UNKNOWN:
2927 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
2928 (uint64_t)run->hw.hardware_exit_reason);
2929 ret = -1;
2930 break;
2931 case KVM_EXIT_INTERNAL_ERROR:
2932 ret = kvm_handle_internal_error(cpu, run);
2933 break;
2934 case KVM_EXIT_DIRTY_RING_FULL:
2936 * We shouldn't continue if the dirty ring of this vcpu is
2937 * still full. Got kicked by KVM_RESET_DIRTY_RINGS.
2939 trace_kvm_dirty_ring_full(cpu->cpu_index);
2940 bql_lock();
2942 * We throttle vCPU by making it sleep once it exit from kernel
2943 * due to dirty ring full. In the dirtylimit scenario, reaping
2944 * all vCPUs after a single vCPU dirty ring get full result in
2945 * the miss of sleep, so just reap the ring-fulled vCPU.
2947 if (dirtylimit_in_service()) {
2948 kvm_dirty_ring_reap(kvm_state, cpu);
2949 } else {
2950 kvm_dirty_ring_reap(kvm_state, NULL);
2952 bql_unlock();
2953 dirtylimit_vcpu_execute(cpu);
2954 ret = 0;
2955 break;
2956 case KVM_EXIT_SYSTEM_EVENT:
2957 trace_kvm_run_exit_system_event(cpu->cpu_index, run->system_event.type);
2958 switch (run->system_event.type) {
2959 case KVM_SYSTEM_EVENT_SHUTDOWN:
2960 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
2961 ret = EXCP_INTERRUPT;
2962 break;
2963 case KVM_SYSTEM_EVENT_RESET:
2964 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
2965 ret = EXCP_INTERRUPT;
2966 break;
2967 case KVM_SYSTEM_EVENT_CRASH:
2968 kvm_cpu_synchronize_state(cpu);
2969 bql_lock();
2970 qemu_system_guest_panicked(cpu_get_crash_info(cpu));
2971 bql_unlock();
2972 ret = 0;
2973 break;
2974 default:
2975 ret = kvm_arch_handle_exit(cpu, run);
2976 break;
2978 break;
2979 default:
2980 ret = kvm_arch_handle_exit(cpu, run);
2981 break;
2983 } while (ret == 0);
2985 cpu_exec_end(cpu);
2986 bql_lock();
2988 if (ret < 0) {
2989 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
2990 vm_stop(RUN_STATE_INTERNAL_ERROR);
2993 qatomic_set(&cpu->exit_request, 0);
2994 return ret;
2997 int kvm_ioctl(KVMState *s, int type, ...)
2999 int ret;
3000 void *arg;
3001 va_list ap;
3003 va_start(ap, type);
3004 arg = va_arg(ap, void *);
3005 va_end(ap);
3007 trace_kvm_ioctl(type, arg);
3008 ret = ioctl(s->fd, type, arg);
3009 if (ret == -1) {
3010 ret = -errno;
3012 return ret;
3015 int kvm_vm_ioctl(KVMState *s, int type, ...)
3017 int ret;
3018 void *arg;
3019 va_list ap;
3021 va_start(ap, type);
3022 arg = va_arg(ap, void *);
3023 va_end(ap);
3025 trace_kvm_vm_ioctl(type, arg);
3026 accel_ioctl_begin();
3027 ret = ioctl(s->vmfd, type, arg);
3028 accel_ioctl_end();
3029 if (ret == -1) {
3030 ret = -errno;
3032 return ret;
3035 int kvm_vcpu_ioctl(CPUState *cpu, int type, ...)
3037 int ret;
3038 void *arg;
3039 va_list ap;
3041 va_start(ap, type);
3042 arg = va_arg(ap, void *);
3043 va_end(ap);
3045 trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg);
3046 accel_cpu_ioctl_begin(cpu);
3047 ret = ioctl(cpu->kvm_fd, type, arg);
3048 accel_cpu_ioctl_end(cpu);
3049 if (ret == -1) {
3050 ret = -errno;
3052 return ret;
3055 int kvm_device_ioctl(int fd, int type, ...)
3057 int ret;
3058 void *arg;
3059 va_list ap;
3061 va_start(ap, type);
3062 arg = va_arg(ap, void *);
3063 va_end(ap);
3065 trace_kvm_device_ioctl(fd, type, arg);
3066 accel_ioctl_begin();
3067 ret = ioctl(fd, type, arg);
3068 accel_ioctl_end();
3069 if (ret == -1) {
3070 ret = -errno;
3072 return ret;
3075 int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr)
3077 int ret;
3078 struct kvm_device_attr attribute = {
3079 .group = group,
3080 .attr = attr,
3083 if (!kvm_vm_attributes_allowed) {
3084 return 0;
3087 ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute);
3088 /* kvm returns 0 on success for HAS_DEVICE_ATTR */
3089 return ret ? 0 : 1;
3092 int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr)
3094 struct kvm_device_attr attribute = {
3095 .group = group,
3096 .attr = attr,
3097 .flags = 0,
3100 return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1;
3103 int kvm_device_access(int fd, int group, uint64_t attr,
3104 void *val, bool write, Error **errp)
3106 struct kvm_device_attr kvmattr;
3107 int err;
3109 kvmattr.flags = 0;
3110 kvmattr.group = group;
3111 kvmattr.attr = attr;
3112 kvmattr.addr = (uintptr_t)val;
3114 err = kvm_device_ioctl(fd,
3115 write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR,
3116 &kvmattr);
3117 if (err < 0) {
3118 error_setg_errno(errp, -err,
3119 "KVM_%s_DEVICE_ATTR failed: Group %d "
3120 "attr 0x%016" PRIx64,
3121 write ? "SET" : "GET", group, attr);
3123 return err;
3126 bool kvm_has_sync_mmu(void)
3128 return kvm_state->sync_mmu;
3131 int kvm_has_vcpu_events(void)
3133 return kvm_state->vcpu_events;
3136 int kvm_max_nested_state_length(void)
3138 return kvm_state->max_nested_state_len;
3141 int kvm_has_gsi_routing(void)
3143 #ifdef KVM_CAP_IRQ_ROUTING
3144 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
3145 #else
3146 return false;
3147 #endif
3150 bool kvm_arm_supports_user_irq(void)
3152 return kvm_check_extension(kvm_state, KVM_CAP_ARM_USER_IRQ);
3155 #ifdef KVM_CAP_SET_GUEST_DEBUG
3156 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu, vaddr pc)
3158 struct kvm_sw_breakpoint *bp;
3160 QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) {
3161 if (bp->pc == pc) {
3162 return bp;
3165 return NULL;
3168 int kvm_sw_breakpoints_active(CPUState *cpu)
3170 return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints);
3173 struct kvm_set_guest_debug_data {
3174 struct kvm_guest_debug dbg;
3175 int err;
3178 static void kvm_invoke_set_guest_debug(CPUState *cpu, run_on_cpu_data data)
3180 struct kvm_set_guest_debug_data *dbg_data =
3181 (struct kvm_set_guest_debug_data *) data.host_ptr;
3183 dbg_data->err = kvm_vcpu_ioctl(cpu, KVM_SET_GUEST_DEBUG,
3184 &dbg_data->dbg);
3187 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
3189 struct kvm_set_guest_debug_data data;
3191 data.dbg.control = reinject_trap;
3193 if (cpu->singlestep_enabled) {
3194 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
3196 if (cpu->singlestep_enabled & SSTEP_NOIRQ) {
3197 data.dbg.control |= KVM_GUESTDBG_BLOCKIRQ;
3200 kvm_arch_update_guest_debug(cpu, &data.dbg);
3202 run_on_cpu(cpu, kvm_invoke_set_guest_debug,
3203 RUN_ON_CPU_HOST_PTR(&data));
3204 return data.err;
3207 bool kvm_supports_guest_debug(void)
3209 /* probed during kvm_init() */
3210 return kvm_has_guest_debug;
3213 int kvm_insert_breakpoint(CPUState *cpu, int type, vaddr addr, vaddr len)
3215 struct kvm_sw_breakpoint *bp;
3216 int err;
3218 if (type == GDB_BREAKPOINT_SW) {
3219 bp = kvm_find_sw_breakpoint(cpu, addr);
3220 if (bp) {
3221 bp->use_count++;
3222 return 0;
3225 bp = g_new(struct kvm_sw_breakpoint, 1);
3226 bp->pc = addr;
3227 bp->use_count = 1;
3228 err = kvm_arch_insert_sw_breakpoint(cpu, bp);
3229 if (err) {
3230 g_free(bp);
3231 return err;
3234 QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
3235 } else {
3236 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
3237 if (err) {
3238 return err;
3242 CPU_FOREACH(cpu) {
3243 err = kvm_update_guest_debug(cpu, 0);
3244 if (err) {
3245 return err;
3248 return 0;
3251 int kvm_remove_breakpoint(CPUState *cpu, int type, vaddr addr, vaddr len)
3253 struct kvm_sw_breakpoint *bp;
3254 int err;
3256 if (type == GDB_BREAKPOINT_SW) {
3257 bp = kvm_find_sw_breakpoint(cpu, addr);
3258 if (!bp) {
3259 return -ENOENT;
3262 if (bp->use_count > 1) {
3263 bp->use_count--;
3264 return 0;
3267 err = kvm_arch_remove_sw_breakpoint(cpu, bp);
3268 if (err) {
3269 return err;
3272 QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
3273 g_free(bp);
3274 } else {
3275 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
3276 if (err) {
3277 return err;
3281 CPU_FOREACH(cpu) {
3282 err = kvm_update_guest_debug(cpu, 0);
3283 if (err) {
3284 return err;
3287 return 0;
3290 void kvm_remove_all_breakpoints(CPUState *cpu)
3292 struct kvm_sw_breakpoint *bp, *next;
3293 KVMState *s = cpu->kvm_state;
3294 CPUState *tmpcpu;
3296 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
3297 if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) {
3298 /* Try harder to find a CPU that currently sees the breakpoint. */
3299 CPU_FOREACH(tmpcpu) {
3300 if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) {
3301 break;
3305 QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry);
3306 g_free(bp);
3308 kvm_arch_remove_all_hw_breakpoints();
3310 CPU_FOREACH(cpu) {
3311 kvm_update_guest_debug(cpu, 0);
3315 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
3317 static int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset)
3319 KVMState *s = kvm_state;
3320 struct kvm_signal_mask *sigmask;
3321 int r;
3323 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
3325 sigmask->len = s->sigmask_len;
3326 memcpy(sigmask->sigset, sigset, sizeof(*sigset));
3327 r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask);
3328 g_free(sigmask);
3330 return r;
3333 static void kvm_ipi_signal(int sig)
3335 if (current_cpu) {
3336 assert(kvm_immediate_exit);
3337 kvm_cpu_kick(current_cpu);
3341 void kvm_init_cpu_signals(CPUState *cpu)
3343 int r;
3344 sigset_t set;
3345 struct sigaction sigact;
3347 memset(&sigact, 0, sizeof(sigact));
3348 sigact.sa_handler = kvm_ipi_signal;
3349 sigaction(SIG_IPI, &sigact, NULL);
3351 pthread_sigmask(SIG_BLOCK, NULL, &set);
3352 #if defined KVM_HAVE_MCE_INJECTION
3353 sigdelset(&set, SIGBUS);
3354 pthread_sigmask(SIG_SETMASK, &set, NULL);
3355 #endif
3356 sigdelset(&set, SIG_IPI);
3357 if (kvm_immediate_exit) {
3358 r = pthread_sigmask(SIG_SETMASK, &set, NULL);
3359 } else {
3360 r = kvm_set_signal_mask(cpu, &set);
3362 if (r) {
3363 fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r));
3364 exit(1);
3368 /* Called asynchronously in VCPU thread. */
3369 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr)
3371 #ifdef KVM_HAVE_MCE_INJECTION
3372 if (have_sigbus_pending) {
3373 return 1;
3375 have_sigbus_pending = true;
3376 pending_sigbus_addr = addr;
3377 pending_sigbus_code = code;
3378 qatomic_set(&cpu->exit_request, 1);
3379 return 0;
3380 #else
3381 return 1;
3382 #endif
3385 /* Called synchronously (via signalfd) in main thread. */
3386 int kvm_on_sigbus(int code, void *addr)
3388 #ifdef KVM_HAVE_MCE_INJECTION
3389 /* Action required MCE kills the process if SIGBUS is blocked. Because
3390 * that's what happens in the I/O thread, where we handle MCE via signalfd,
3391 * we can only get action optional here.
3393 assert(code != BUS_MCEERR_AR);
3394 kvm_arch_on_sigbus_vcpu(first_cpu, code, addr);
3395 return 0;
3396 #else
3397 return 1;
3398 #endif
3401 int kvm_create_device(KVMState *s, uint64_t type, bool test)
3403 int ret;
3404 struct kvm_create_device create_dev;
3406 create_dev.type = type;
3407 create_dev.fd = -1;
3408 create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0;
3410 if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) {
3411 return -ENOTSUP;
3414 ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev);
3415 if (ret) {
3416 return ret;
3419 return test ? 0 : create_dev.fd;
3422 bool kvm_device_supported(int vmfd, uint64_t type)
3424 struct kvm_create_device create_dev = {
3425 .type = type,
3426 .fd = -1,
3427 .flags = KVM_CREATE_DEVICE_TEST,
3430 if (ioctl(vmfd, KVM_CHECK_EXTENSION, KVM_CAP_DEVICE_CTRL) <= 0) {
3431 return false;
3434 return (ioctl(vmfd, KVM_CREATE_DEVICE, &create_dev) >= 0);
3437 int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source)
3439 struct kvm_one_reg reg;
3440 int r;
3442 reg.id = id;
3443 reg.addr = (uintptr_t) source;
3444 r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
3445 if (r) {
3446 trace_kvm_failed_reg_set(id, strerror(-r));
3448 return r;
3451 int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target)
3453 struct kvm_one_reg reg;
3454 int r;
3456 reg.id = id;
3457 reg.addr = (uintptr_t) target;
3458 r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
3459 if (r) {
3460 trace_kvm_failed_reg_get(id, strerror(-r));
3462 return r;
3465 static bool kvm_accel_has_memory(MachineState *ms, AddressSpace *as,
3466 hwaddr start_addr, hwaddr size)
3468 KVMState *kvm = KVM_STATE(ms->accelerator);
3469 int i;
3471 for (i = 0; i < kvm->nr_as; ++i) {
3472 if (kvm->as[i].as == as && kvm->as[i].ml) {
3473 size = MIN(kvm_max_slot_size, size);
3474 return NULL != kvm_lookup_matching_slot(kvm->as[i].ml,
3475 start_addr, size);
3479 return false;
3482 static void kvm_get_kvm_shadow_mem(Object *obj, Visitor *v,
3483 const char *name, void *opaque,
3484 Error **errp)
3486 KVMState *s = KVM_STATE(obj);
3487 int64_t value = s->kvm_shadow_mem;
3489 visit_type_int(v, name, &value, errp);
3492 static void kvm_set_kvm_shadow_mem(Object *obj, Visitor *v,
3493 const char *name, void *opaque,
3494 Error **errp)
3496 KVMState *s = KVM_STATE(obj);
3497 int64_t value;
3499 if (s->fd != -1) {
3500 error_setg(errp, "Cannot set properties after the accelerator has been initialized");
3501 return;
3504 if (!visit_type_int(v, name, &value, errp)) {
3505 return;
3508 s->kvm_shadow_mem = value;
3511 static void kvm_set_kernel_irqchip(Object *obj, Visitor *v,
3512 const char *name, void *opaque,
3513 Error **errp)
3515 KVMState *s = KVM_STATE(obj);
3516 OnOffSplit mode;
3518 if (s->fd != -1) {
3519 error_setg(errp, "Cannot set properties after the accelerator has been initialized");
3520 return;
3523 if (!visit_type_OnOffSplit(v, name, &mode, errp)) {
3524 return;
3526 switch (mode) {
3527 case ON_OFF_SPLIT_ON:
3528 s->kernel_irqchip_allowed = true;
3529 s->kernel_irqchip_required = true;
3530 s->kernel_irqchip_split = ON_OFF_AUTO_OFF;
3531 break;
3532 case ON_OFF_SPLIT_OFF:
3533 s->kernel_irqchip_allowed = false;
3534 s->kernel_irqchip_required = false;
3535 s->kernel_irqchip_split = ON_OFF_AUTO_OFF;
3536 break;
3537 case ON_OFF_SPLIT_SPLIT:
3538 s->kernel_irqchip_allowed = true;
3539 s->kernel_irqchip_required = true;
3540 s->kernel_irqchip_split = ON_OFF_AUTO_ON;
3541 break;
3542 default:
3543 /* The value was checked in visit_type_OnOffSplit() above. If
3544 * we get here, then something is wrong in QEMU.
3546 abort();
3550 bool kvm_kernel_irqchip_allowed(void)
3552 return kvm_state->kernel_irqchip_allowed;
3555 bool kvm_kernel_irqchip_required(void)
3557 return kvm_state->kernel_irqchip_required;
3560 bool kvm_kernel_irqchip_split(void)
3562 return kvm_state->kernel_irqchip_split == ON_OFF_AUTO_ON;
3565 static void kvm_get_dirty_ring_size(Object *obj, Visitor *v,
3566 const char *name, void *opaque,
3567 Error **errp)
3569 KVMState *s = KVM_STATE(obj);
3570 uint32_t value = s->kvm_dirty_ring_size;
3572 visit_type_uint32(v, name, &value, errp);
3575 static void kvm_set_dirty_ring_size(Object *obj, Visitor *v,
3576 const char *name, void *opaque,
3577 Error **errp)
3579 KVMState *s = KVM_STATE(obj);
3580 uint32_t value;
3582 if (s->fd != -1) {
3583 error_setg(errp, "Cannot set properties after the accelerator has been initialized");
3584 return;
3587 if (!visit_type_uint32(v, name, &value, errp)) {
3588 return;
3590 if (value & (value - 1)) {
3591 error_setg(errp, "dirty-ring-size must be a power of two.");
3592 return;
3595 s->kvm_dirty_ring_size = value;
3598 static char *kvm_get_device(Object *obj,
3599 Error **errp G_GNUC_UNUSED)
3601 KVMState *s = KVM_STATE(obj);
3603 return g_strdup(s->device);
3606 static void kvm_set_device(Object *obj,
3607 const char *value,
3608 Error **errp G_GNUC_UNUSED)
3610 KVMState *s = KVM_STATE(obj);
3612 g_free(s->device);
3613 s->device = g_strdup(value);
3616 static void kvm_accel_instance_init(Object *obj)
3618 KVMState *s = KVM_STATE(obj);
3620 s->fd = -1;
3621 s->vmfd = -1;
3622 s->kvm_shadow_mem = -1;
3623 s->kernel_irqchip_allowed = true;
3624 s->kernel_irqchip_split = ON_OFF_AUTO_AUTO;
3625 /* KVM dirty ring is by default off */
3626 s->kvm_dirty_ring_size = 0;
3627 s->kvm_dirty_ring_with_bitmap = false;
3628 s->kvm_eager_split_size = 0;
3629 s->notify_vmexit = NOTIFY_VMEXIT_OPTION_RUN;
3630 s->notify_window = 0;
3631 s->xen_version = 0;
3632 s->xen_gnttab_max_frames = 64;
3633 s->xen_evtchn_max_pirq = 256;
3634 s->device = NULL;
3638 * kvm_gdbstub_sstep_flags():
3640 * Returns: SSTEP_* flags that KVM supports for guest debug. The
3641 * support is probed during kvm_init()
3643 static int kvm_gdbstub_sstep_flags(void)
3645 return kvm_sstep_flags;
3648 static void kvm_accel_class_init(ObjectClass *oc, void *data)
3650 AccelClass *ac = ACCEL_CLASS(oc);
3651 ac->name = "KVM";
3652 ac->init_machine = kvm_init;
3653 ac->has_memory = kvm_accel_has_memory;
3654 ac->allowed = &kvm_allowed;
3655 ac->gdbstub_supported_sstep_flags = kvm_gdbstub_sstep_flags;
3657 object_class_property_add(oc, "kernel-irqchip", "on|off|split",
3658 NULL, kvm_set_kernel_irqchip,
3659 NULL, NULL);
3660 object_class_property_set_description(oc, "kernel-irqchip",
3661 "Configure KVM in-kernel irqchip");
3663 object_class_property_add(oc, "kvm-shadow-mem", "int",
3664 kvm_get_kvm_shadow_mem, kvm_set_kvm_shadow_mem,
3665 NULL, NULL);
3666 object_class_property_set_description(oc, "kvm-shadow-mem",
3667 "KVM shadow MMU size");
3669 object_class_property_add(oc, "dirty-ring-size", "uint32",
3670 kvm_get_dirty_ring_size, kvm_set_dirty_ring_size,
3671 NULL, NULL);
3672 object_class_property_set_description(oc, "dirty-ring-size",
3673 "Size of KVM dirty page ring buffer (default: 0, i.e. use bitmap)");
3675 object_class_property_add_str(oc, "device", kvm_get_device, kvm_set_device);
3676 object_class_property_set_description(oc, "device",
3677 "Path to the device node to use (default: /dev/kvm)");
3679 kvm_arch_accel_class_init(oc);
3682 static const TypeInfo kvm_accel_type = {
3683 .name = TYPE_KVM_ACCEL,
3684 .parent = TYPE_ACCEL,
3685 .instance_init = kvm_accel_instance_init,
3686 .class_init = kvm_accel_class_init,
3687 .instance_size = sizeof(KVMState),
3690 static void kvm_type_init(void)
3692 type_register_static(&kvm_accel_type);
3695 type_init(kvm_type_init);
3697 typedef struct StatsArgs {
3698 union StatsResultsType {
3699 StatsResultList **stats;
3700 StatsSchemaList **schema;
3701 } result;
3702 strList *names;
3703 Error **errp;
3704 } StatsArgs;
3706 static StatsList *add_kvmstat_entry(struct kvm_stats_desc *pdesc,
3707 uint64_t *stats_data,
3708 StatsList *stats_list,
3709 Error **errp)
3712 Stats *stats;
3713 uint64List *val_list = NULL;
3715 /* Only add stats that we understand. */
3716 switch (pdesc->flags & KVM_STATS_TYPE_MASK) {
3717 case KVM_STATS_TYPE_CUMULATIVE:
3718 case KVM_STATS_TYPE_INSTANT:
3719 case KVM_STATS_TYPE_PEAK:
3720 case KVM_STATS_TYPE_LINEAR_HIST:
3721 case KVM_STATS_TYPE_LOG_HIST:
3722 break;
3723 default:
3724 return stats_list;
3727 switch (pdesc->flags & KVM_STATS_UNIT_MASK) {
3728 case KVM_STATS_UNIT_NONE:
3729 case KVM_STATS_UNIT_BYTES:
3730 case KVM_STATS_UNIT_CYCLES:
3731 case KVM_STATS_UNIT_SECONDS:
3732 case KVM_STATS_UNIT_BOOLEAN:
3733 break;
3734 default:
3735 return stats_list;
3738 switch (pdesc->flags & KVM_STATS_BASE_MASK) {
3739 case KVM_STATS_BASE_POW10:
3740 case KVM_STATS_BASE_POW2:
3741 break;
3742 default:
3743 return stats_list;
3746 /* Alloc and populate data list */
3747 stats = g_new0(Stats, 1);
3748 stats->name = g_strdup(pdesc->name);
3749 stats->value = g_new0(StatsValue, 1);;
3751 if ((pdesc->flags & KVM_STATS_UNIT_MASK) == KVM_STATS_UNIT_BOOLEAN) {
3752 stats->value->u.boolean = *stats_data;
3753 stats->value->type = QTYPE_QBOOL;
3754 } else if (pdesc->size == 1) {
3755 stats->value->u.scalar = *stats_data;
3756 stats->value->type = QTYPE_QNUM;
3757 } else {
3758 int i;
3759 for (i = 0; i < pdesc->size; i++) {
3760 QAPI_LIST_PREPEND(val_list, stats_data[i]);
3762 stats->value->u.list = val_list;
3763 stats->value->type = QTYPE_QLIST;
3766 QAPI_LIST_PREPEND(stats_list, stats);
3767 return stats_list;
3770 static StatsSchemaValueList *add_kvmschema_entry(struct kvm_stats_desc *pdesc,
3771 StatsSchemaValueList *list,
3772 Error **errp)
3774 StatsSchemaValueList *schema_entry = g_new0(StatsSchemaValueList, 1);
3775 schema_entry->value = g_new0(StatsSchemaValue, 1);
3777 switch (pdesc->flags & KVM_STATS_TYPE_MASK) {
3778 case KVM_STATS_TYPE_CUMULATIVE:
3779 schema_entry->value->type = STATS_TYPE_CUMULATIVE;
3780 break;
3781 case KVM_STATS_TYPE_INSTANT:
3782 schema_entry->value->type = STATS_TYPE_INSTANT;
3783 break;
3784 case KVM_STATS_TYPE_PEAK:
3785 schema_entry->value->type = STATS_TYPE_PEAK;
3786 break;
3787 case KVM_STATS_TYPE_LINEAR_HIST:
3788 schema_entry->value->type = STATS_TYPE_LINEAR_HISTOGRAM;
3789 schema_entry->value->bucket_size = pdesc->bucket_size;
3790 schema_entry->value->has_bucket_size = true;
3791 break;
3792 case KVM_STATS_TYPE_LOG_HIST:
3793 schema_entry->value->type = STATS_TYPE_LOG2_HISTOGRAM;
3794 break;
3795 default:
3796 goto exit;
3799 switch (pdesc->flags & KVM_STATS_UNIT_MASK) {
3800 case KVM_STATS_UNIT_NONE:
3801 break;
3802 case KVM_STATS_UNIT_BOOLEAN:
3803 schema_entry->value->has_unit = true;
3804 schema_entry->value->unit = STATS_UNIT_BOOLEAN;
3805 break;
3806 case KVM_STATS_UNIT_BYTES:
3807 schema_entry->value->has_unit = true;
3808 schema_entry->value->unit = STATS_UNIT_BYTES;
3809 break;
3810 case KVM_STATS_UNIT_CYCLES:
3811 schema_entry->value->has_unit = true;
3812 schema_entry->value->unit = STATS_UNIT_CYCLES;
3813 break;
3814 case KVM_STATS_UNIT_SECONDS:
3815 schema_entry->value->has_unit = true;
3816 schema_entry->value->unit = STATS_UNIT_SECONDS;
3817 break;
3818 default:
3819 goto exit;
3822 schema_entry->value->exponent = pdesc->exponent;
3823 if (pdesc->exponent) {
3824 switch (pdesc->flags & KVM_STATS_BASE_MASK) {
3825 case KVM_STATS_BASE_POW10:
3826 schema_entry->value->has_base = true;
3827 schema_entry->value->base = 10;
3828 break;
3829 case KVM_STATS_BASE_POW2:
3830 schema_entry->value->has_base = true;
3831 schema_entry->value->base = 2;
3832 break;
3833 default:
3834 goto exit;
3838 schema_entry->value->name = g_strdup(pdesc->name);
3839 schema_entry->next = list;
3840 return schema_entry;
3841 exit:
3842 g_free(schema_entry->value);
3843 g_free(schema_entry);
3844 return list;
3847 /* Cached stats descriptors */
3848 typedef struct StatsDescriptors {
3849 const char *ident; /* cache key, currently the StatsTarget */
3850 struct kvm_stats_desc *kvm_stats_desc;
3851 struct kvm_stats_header kvm_stats_header;
3852 QTAILQ_ENTRY(StatsDescriptors) next;
3853 } StatsDescriptors;
3855 static QTAILQ_HEAD(, StatsDescriptors) stats_descriptors =
3856 QTAILQ_HEAD_INITIALIZER(stats_descriptors);
3859 * Return the descriptors for 'target', that either have already been read
3860 * or are retrieved from 'stats_fd'.
3862 static StatsDescriptors *find_stats_descriptors(StatsTarget target, int stats_fd,
3863 Error **errp)
3865 StatsDescriptors *descriptors;
3866 const char *ident;
3867 struct kvm_stats_desc *kvm_stats_desc;
3868 struct kvm_stats_header *kvm_stats_header;
3869 size_t size_desc;
3870 ssize_t ret;
3872 ident = StatsTarget_str(target);
3873 QTAILQ_FOREACH(descriptors, &stats_descriptors, next) {
3874 if (g_str_equal(descriptors->ident, ident)) {
3875 return descriptors;
3879 descriptors = g_new0(StatsDescriptors, 1);
3881 /* Read stats header */
3882 kvm_stats_header = &descriptors->kvm_stats_header;
3883 ret = pread(stats_fd, kvm_stats_header, sizeof(*kvm_stats_header), 0);
3884 if (ret != sizeof(*kvm_stats_header)) {
3885 error_setg(errp, "KVM stats: failed to read stats header: "
3886 "expected %zu actual %zu",
3887 sizeof(*kvm_stats_header), ret);
3888 g_free(descriptors);
3889 return NULL;
3891 size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size;
3893 /* Read stats descriptors */
3894 kvm_stats_desc = g_malloc0_n(kvm_stats_header->num_desc, size_desc);
3895 ret = pread(stats_fd, kvm_stats_desc,
3896 size_desc * kvm_stats_header->num_desc,
3897 kvm_stats_header->desc_offset);
3899 if (ret != size_desc * kvm_stats_header->num_desc) {
3900 error_setg(errp, "KVM stats: failed to read stats descriptors: "
3901 "expected %zu actual %zu",
3902 size_desc * kvm_stats_header->num_desc, ret);
3903 g_free(descriptors);
3904 g_free(kvm_stats_desc);
3905 return NULL;
3907 descriptors->kvm_stats_desc = kvm_stats_desc;
3908 descriptors->ident = ident;
3909 QTAILQ_INSERT_TAIL(&stats_descriptors, descriptors, next);
3910 return descriptors;
3913 static void query_stats(StatsResultList **result, StatsTarget target,
3914 strList *names, int stats_fd, CPUState *cpu,
3915 Error **errp)
3917 struct kvm_stats_desc *kvm_stats_desc;
3918 struct kvm_stats_header *kvm_stats_header;
3919 StatsDescriptors *descriptors;
3920 g_autofree uint64_t *stats_data = NULL;
3921 struct kvm_stats_desc *pdesc;
3922 StatsList *stats_list = NULL;
3923 size_t size_desc, size_data = 0;
3924 ssize_t ret;
3925 int i;
3927 descriptors = find_stats_descriptors(target, stats_fd, errp);
3928 if (!descriptors) {
3929 return;
3932 kvm_stats_header = &descriptors->kvm_stats_header;
3933 kvm_stats_desc = descriptors->kvm_stats_desc;
3934 size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size;
3936 /* Tally the total data size; read schema data */
3937 for (i = 0; i < kvm_stats_header->num_desc; ++i) {
3938 pdesc = (void *)kvm_stats_desc + i * size_desc;
3939 size_data += pdesc->size * sizeof(*stats_data);
3942 stats_data = g_malloc0(size_data);
3943 ret = pread(stats_fd, stats_data, size_data, kvm_stats_header->data_offset);
3945 if (ret != size_data) {
3946 error_setg(errp, "KVM stats: failed to read data: "
3947 "expected %zu actual %zu", size_data, ret);
3948 return;
3951 for (i = 0; i < kvm_stats_header->num_desc; ++i) {
3952 uint64_t *stats;
3953 pdesc = (void *)kvm_stats_desc + i * size_desc;
3955 /* Add entry to the list */
3956 stats = (void *)stats_data + pdesc->offset;
3957 if (!apply_str_list_filter(pdesc->name, names)) {
3958 continue;
3960 stats_list = add_kvmstat_entry(pdesc, stats, stats_list, errp);
3963 if (!stats_list) {
3964 return;
3967 switch (target) {
3968 case STATS_TARGET_VM:
3969 add_stats_entry(result, STATS_PROVIDER_KVM, NULL, stats_list);
3970 break;
3971 case STATS_TARGET_VCPU:
3972 add_stats_entry(result, STATS_PROVIDER_KVM,
3973 cpu->parent_obj.canonical_path,
3974 stats_list);
3975 break;
3976 default:
3977 g_assert_not_reached();
3981 static void query_stats_schema(StatsSchemaList **result, StatsTarget target,
3982 int stats_fd, Error **errp)
3984 struct kvm_stats_desc *kvm_stats_desc;
3985 struct kvm_stats_header *kvm_stats_header;
3986 StatsDescriptors *descriptors;
3987 struct kvm_stats_desc *pdesc;
3988 StatsSchemaValueList *stats_list = NULL;
3989 size_t size_desc;
3990 int i;
3992 descriptors = find_stats_descriptors(target, stats_fd, errp);
3993 if (!descriptors) {
3994 return;
3997 kvm_stats_header = &descriptors->kvm_stats_header;
3998 kvm_stats_desc = descriptors->kvm_stats_desc;
3999 size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size;
4001 /* Tally the total data size; read schema data */
4002 for (i = 0; i < kvm_stats_header->num_desc; ++i) {
4003 pdesc = (void *)kvm_stats_desc + i * size_desc;
4004 stats_list = add_kvmschema_entry(pdesc, stats_list, errp);
4007 add_stats_schema(result, STATS_PROVIDER_KVM, target, stats_list);
4010 static void query_stats_vcpu(CPUState *cpu, StatsArgs *kvm_stats_args)
4012 int stats_fd = cpu->kvm_vcpu_stats_fd;
4013 Error *local_err = NULL;
4015 if (stats_fd == -1) {
4016 error_setg_errno(&local_err, errno, "KVM stats: ioctl failed");
4017 error_propagate(kvm_stats_args->errp, local_err);
4018 return;
4020 query_stats(kvm_stats_args->result.stats, STATS_TARGET_VCPU,
4021 kvm_stats_args->names, stats_fd, cpu,
4022 kvm_stats_args->errp);
4025 static void query_stats_schema_vcpu(CPUState *cpu, StatsArgs *kvm_stats_args)
4027 int stats_fd = cpu->kvm_vcpu_stats_fd;
4028 Error *local_err = NULL;
4030 if (stats_fd == -1) {
4031 error_setg_errno(&local_err, errno, "KVM stats: ioctl failed");
4032 error_propagate(kvm_stats_args->errp, local_err);
4033 return;
4035 query_stats_schema(kvm_stats_args->result.schema, STATS_TARGET_VCPU, stats_fd,
4036 kvm_stats_args->errp);
4039 static void query_stats_cb(StatsResultList **result, StatsTarget target,
4040 strList *names, strList *targets, Error **errp)
4042 KVMState *s = kvm_state;
4043 CPUState *cpu;
4044 int stats_fd;
4046 switch (target) {
4047 case STATS_TARGET_VM:
4049 stats_fd = kvm_vm_ioctl(s, KVM_GET_STATS_FD, NULL);
4050 if (stats_fd == -1) {
4051 error_setg_errno(errp, errno, "KVM stats: ioctl failed");
4052 return;
4054 query_stats(result, target, names, stats_fd, NULL, errp);
4055 close(stats_fd);
4056 break;
4058 case STATS_TARGET_VCPU:
4060 StatsArgs stats_args;
4061 stats_args.result.stats = result;
4062 stats_args.names = names;
4063 stats_args.errp = errp;
4064 CPU_FOREACH(cpu) {
4065 if (!apply_str_list_filter(cpu->parent_obj.canonical_path, targets)) {
4066 continue;
4068 query_stats_vcpu(cpu, &stats_args);
4070 break;
4072 default:
4073 break;
4077 void query_stats_schemas_cb(StatsSchemaList **result, Error **errp)
4079 StatsArgs stats_args;
4080 KVMState *s = kvm_state;
4081 int stats_fd;
4083 stats_fd = kvm_vm_ioctl(s, KVM_GET_STATS_FD, NULL);
4084 if (stats_fd == -1) {
4085 error_setg_errno(errp, errno, "KVM stats: ioctl failed");
4086 return;
4088 query_stats_schema(result, STATS_TARGET_VM, stats_fd, errp);
4089 close(stats_fd);
4091 if (first_cpu) {
4092 stats_args.result.schema = result;
4093 stats_args.errp = errp;
4094 query_stats_schema_vcpu(first_cpu, &stats_args);