nvdimm acpi: cleanup nvdimm_build_fit
[qemu/kevin.git] / hw / acpi / nvdimm.c
blob148999ee7a26fdacd5c61be692c9c8599d3829b8
1 /*
2 * NVDIMM ACPI Implementation
4 * Copyright(C) 2015 Intel Corporation.
6 * Author:
7 * Xiao Guangrong <guangrong.xiao@linux.intel.com>
9 * NFIT is defined in ACPI 6.0: 5.2.25 NVDIMM Firmware Interface Table (NFIT)
10 * and the DSM specification can be found at:
11 * http://pmem.io/documents/NVDIMM_DSM_Interface_Example.pdf
13 * Currently, it only supports PMEM Virtualization.
15 * This library is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU Lesser General Public
17 * License as published by the Free Software Foundation; either
18 * version 2 of the License, or (at your option) any later version.
20 * This library is distributed in the hope that it will be useful,
21 * but WITHOUT ANY WARRANTY; without even the implied warranty of
22 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
23 * Lesser General Public License for more details.
25 * You should have received a copy of the GNU Lesser General Public
26 * License along with this library; if not, see <http://www.gnu.org/licenses/>
29 #include "qemu/osdep.h"
30 #include "hw/acpi/acpi.h"
31 #include "hw/acpi/aml-build.h"
32 #include "hw/acpi/bios-linker-loader.h"
33 #include "hw/nvram/fw_cfg.h"
34 #include "hw/mem/nvdimm.h"
36 static int nvdimm_device_list(Object *obj, void *opaque)
38 GSList **list = opaque;
40 if (object_dynamic_cast(obj, TYPE_NVDIMM)) {
41 *list = g_slist_append(*list, DEVICE(obj));
44 object_child_foreach(obj, nvdimm_device_list, opaque);
45 return 0;
49 * inquire NVDIMM devices and link them into the list which is
50 * returned to the caller.
52 * Note: it is the caller's responsibility to free the list to avoid
53 * memory leak.
55 static GSList *nvdimm_get_device_list(void)
57 GSList *list = NULL;
59 object_child_foreach(qdev_get_machine(), nvdimm_device_list, &list);
60 return list;
63 #define NVDIMM_UUID_LE(a, b, c, d0, d1, d2, d3, d4, d5, d6, d7) \
64 { (a) & 0xff, ((a) >> 8) & 0xff, ((a) >> 16) & 0xff, ((a) >> 24) & 0xff, \
65 (b) & 0xff, ((b) >> 8) & 0xff, (c) & 0xff, ((c) >> 8) & 0xff, \
66 (d0), (d1), (d2), (d3), (d4), (d5), (d6), (d7) }
69 * define Byte Addressable Persistent Memory (PM) Region according to
70 * ACPI 6.0: 5.2.25.1 System Physical Address Range Structure.
72 static const uint8_t nvdimm_nfit_spa_uuid[] =
73 NVDIMM_UUID_LE(0x66f0d379, 0xb4f3, 0x4074, 0xac, 0x43, 0x0d, 0x33,
74 0x18, 0xb7, 0x8c, 0xdb);
77 * NVDIMM Firmware Interface Table
78 * @signature: "NFIT"
80 * It provides information that allows OSPM to enumerate NVDIMM present in
81 * the platform and associate system physical address ranges created by the
82 * NVDIMMs.
84 * It is defined in ACPI 6.0: 5.2.25 NVDIMM Firmware Interface Table (NFIT)
86 struct NvdimmNfitHeader {
87 ACPI_TABLE_HEADER_DEF
88 uint32_t reserved;
89 } QEMU_PACKED;
90 typedef struct NvdimmNfitHeader NvdimmNfitHeader;
93 * define NFIT structures according to ACPI 6.0: 5.2.25 NVDIMM Firmware
94 * Interface Table (NFIT).
98 * System Physical Address Range Structure
100 * It describes the system physical address ranges occupied by NVDIMMs and
101 * the types of the regions.
103 struct NvdimmNfitSpa {
104 uint16_t type;
105 uint16_t length;
106 uint16_t spa_index;
107 uint16_t flags;
108 uint32_t reserved;
109 uint32_t proximity_domain;
110 uint8_t type_guid[16];
111 uint64_t spa_base;
112 uint64_t spa_length;
113 uint64_t mem_attr;
114 } QEMU_PACKED;
115 typedef struct NvdimmNfitSpa NvdimmNfitSpa;
118 * Memory Device to System Physical Address Range Mapping Structure
120 * It enables identifying each NVDIMM region and the corresponding SPA
121 * describing the memory interleave
123 struct NvdimmNfitMemDev {
124 uint16_t type;
125 uint16_t length;
126 uint32_t nfit_handle;
127 uint16_t phys_id;
128 uint16_t region_id;
129 uint16_t spa_index;
130 uint16_t dcr_index;
131 uint64_t region_len;
132 uint64_t region_offset;
133 uint64_t region_dpa;
134 uint16_t interleave_index;
135 uint16_t interleave_ways;
136 uint16_t flags;
137 uint16_t reserved;
138 } QEMU_PACKED;
139 typedef struct NvdimmNfitMemDev NvdimmNfitMemDev;
142 * NVDIMM Control Region Structure
144 * It describes the NVDIMM and if applicable, Block Control Window.
146 struct NvdimmNfitControlRegion {
147 uint16_t type;
148 uint16_t length;
149 uint16_t dcr_index;
150 uint16_t vendor_id;
151 uint16_t device_id;
152 uint16_t revision_id;
153 uint16_t sub_vendor_id;
154 uint16_t sub_device_id;
155 uint16_t sub_revision_id;
156 uint8_t reserved[6];
157 uint32_t serial_number;
158 uint16_t fic;
159 uint16_t num_bcw;
160 uint64_t bcw_size;
161 uint64_t cmd_offset;
162 uint64_t cmd_size;
163 uint64_t status_offset;
164 uint64_t status_size;
165 uint16_t flags;
166 uint8_t reserved2[6];
167 } QEMU_PACKED;
168 typedef struct NvdimmNfitControlRegion NvdimmNfitControlRegion;
171 * Module serial number is a unique number for each device. We use the
172 * slot id of NVDIMM device to generate this number so that each device
173 * associates with a different number.
175 * 0x123456 is a magic number we arbitrarily chose.
177 static uint32_t nvdimm_slot_to_sn(int slot)
179 return 0x123456 + slot;
183 * handle is used to uniquely associate nfit_memdev structure with NVDIMM
184 * ACPI device - nfit_memdev.nfit_handle matches with the value returned
185 * by ACPI device _ADR method.
187 * We generate the handle with the slot id of NVDIMM device and reserve
188 * 0 for NVDIMM root device.
190 static uint32_t nvdimm_slot_to_handle(int slot)
192 return slot + 1;
196 * index uniquely identifies the structure, 0 is reserved which indicates
197 * that the structure is not valid or the associated structure is not
198 * present.
200 * Each NVDIMM device needs two indexes, one for nfit_spa and another for
201 * nfit_dc which are generated by the slot id of NVDIMM device.
203 static uint16_t nvdimm_slot_to_spa_index(int slot)
205 return (slot + 1) << 1;
208 /* See the comments of nvdimm_slot_to_spa_index(). */
209 static uint32_t nvdimm_slot_to_dcr_index(int slot)
211 return nvdimm_slot_to_spa_index(slot) + 1;
214 static NVDIMMDevice *nvdimm_get_device_by_handle(uint32_t handle)
216 NVDIMMDevice *nvdimm = NULL;
217 GSList *list, *device_list = nvdimm_get_device_list();
219 for (list = device_list; list; list = list->next) {
220 NVDIMMDevice *nvd = list->data;
221 int slot = object_property_get_int(OBJECT(nvd), PC_DIMM_SLOT_PROP,
222 NULL);
224 if (nvdimm_slot_to_handle(slot) == handle) {
225 nvdimm = nvd;
226 break;
230 g_slist_free(device_list);
231 return nvdimm;
234 /* ACPI 6.0: 5.2.25.1 System Physical Address Range Structure */
235 static void
236 nvdimm_build_structure_spa(GArray *structures, DeviceState *dev)
238 NvdimmNfitSpa *nfit_spa;
239 uint64_t addr = object_property_get_int(OBJECT(dev), PC_DIMM_ADDR_PROP,
240 NULL);
241 uint64_t size = object_property_get_int(OBJECT(dev), PC_DIMM_SIZE_PROP,
242 NULL);
243 uint32_t node = object_property_get_int(OBJECT(dev), PC_DIMM_NODE_PROP,
244 NULL);
245 int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP,
246 NULL);
248 nfit_spa = acpi_data_push(structures, sizeof(*nfit_spa));
250 nfit_spa->type = cpu_to_le16(0 /* System Physical Address Range
251 Structure */);
252 nfit_spa->length = cpu_to_le16(sizeof(*nfit_spa));
253 nfit_spa->spa_index = cpu_to_le16(nvdimm_slot_to_spa_index(slot));
256 * Control region is strict as all the device info, such as SN, index,
257 * is associated with slot id.
259 nfit_spa->flags = cpu_to_le16(1 /* Control region is strictly for
260 management during hot add/online
261 operation */ |
262 2 /* Data in Proximity Domain field is
263 valid*/);
265 /* NUMA node. */
266 nfit_spa->proximity_domain = cpu_to_le32(node);
267 /* the region reported as PMEM. */
268 memcpy(nfit_spa->type_guid, nvdimm_nfit_spa_uuid,
269 sizeof(nvdimm_nfit_spa_uuid));
271 nfit_spa->spa_base = cpu_to_le64(addr);
272 nfit_spa->spa_length = cpu_to_le64(size);
274 /* It is the PMEM and can be cached as writeback. */
275 nfit_spa->mem_attr = cpu_to_le64(0x8ULL /* EFI_MEMORY_WB */ |
276 0x8000ULL /* EFI_MEMORY_NV */);
280 * ACPI 6.0: 5.2.25.2 Memory Device to System Physical Address Range Mapping
281 * Structure
283 static void
284 nvdimm_build_structure_memdev(GArray *structures, DeviceState *dev)
286 NvdimmNfitMemDev *nfit_memdev;
287 uint64_t size = object_property_get_int(OBJECT(dev), PC_DIMM_SIZE_PROP,
288 NULL);
289 int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP,
290 NULL);
291 uint32_t handle = nvdimm_slot_to_handle(slot);
293 nfit_memdev = acpi_data_push(structures, sizeof(*nfit_memdev));
295 nfit_memdev->type = cpu_to_le16(1 /* Memory Device to System Address
296 Range Map Structure*/);
297 nfit_memdev->length = cpu_to_le16(sizeof(*nfit_memdev));
298 nfit_memdev->nfit_handle = cpu_to_le32(handle);
301 * associate memory device with System Physical Address Range
302 * Structure.
304 nfit_memdev->spa_index = cpu_to_le16(nvdimm_slot_to_spa_index(slot));
305 /* associate memory device with Control Region Structure. */
306 nfit_memdev->dcr_index = cpu_to_le16(nvdimm_slot_to_dcr_index(slot));
308 /* The memory region on the device. */
309 nfit_memdev->region_len = cpu_to_le64(size);
310 /* The device address starts from 0. */
311 nfit_memdev->region_dpa = cpu_to_le64(0);
313 /* Only one interleave for PMEM. */
314 nfit_memdev->interleave_ways = cpu_to_le16(1);
318 * ACPI 6.0: 5.2.25.5 NVDIMM Control Region Structure.
320 static void nvdimm_build_structure_dcr(GArray *structures, DeviceState *dev)
322 NvdimmNfitControlRegion *nfit_dcr;
323 int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP,
324 NULL);
325 uint32_t sn = nvdimm_slot_to_sn(slot);
327 nfit_dcr = acpi_data_push(structures, sizeof(*nfit_dcr));
329 nfit_dcr->type = cpu_to_le16(4 /* NVDIMM Control Region Structure */);
330 nfit_dcr->length = cpu_to_le16(sizeof(*nfit_dcr));
331 nfit_dcr->dcr_index = cpu_to_le16(nvdimm_slot_to_dcr_index(slot));
333 /* vendor: Intel. */
334 nfit_dcr->vendor_id = cpu_to_le16(0x8086);
335 nfit_dcr->device_id = cpu_to_le16(1);
337 /* The _DSM method is following Intel's DSM specification. */
338 nfit_dcr->revision_id = cpu_to_le16(1 /* Current Revision supported
339 in ACPI 6.0 is 1. */);
340 nfit_dcr->serial_number = cpu_to_le32(sn);
341 nfit_dcr->fic = cpu_to_le16(0x201 /* Format Interface Code. See Chapter
342 2: NVDIMM Device Specific Method
343 (DSM) in DSM Spec Rev1.*/);
346 static GArray *nvdimm_build_device_structure(void)
348 GSList *device_list = nvdimm_get_device_list();
349 GArray *structures = g_array_new(false, true /* clear */, 1);
351 for (; device_list; device_list = device_list->next) {
352 DeviceState *dev = device_list->data;
354 /* build System Physical Address Range Structure. */
355 nvdimm_build_structure_spa(structures, dev);
358 * build Memory Device to System Physical Address Range Mapping
359 * Structure.
361 nvdimm_build_structure_memdev(structures, dev);
363 /* build NVDIMM Control Region Structure. */
364 nvdimm_build_structure_dcr(structures, dev);
366 g_slist_free(device_list);
368 return structures;
371 static void nvdimm_init_fit_buffer(NvdimmFitBuffer *fit_buf)
373 fit_buf->fit = g_array_new(false, true /* clear */, 1);
376 static void nvdimm_build_fit_buffer(NvdimmFitBuffer *fit_buf)
378 g_array_free(fit_buf->fit, true);
379 fit_buf->fit = nvdimm_build_device_structure();
380 fit_buf->dirty = true;
383 void nvdimm_acpi_hotplug(AcpiNVDIMMState *state)
385 nvdimm_build_fit_buffer(&state->fit_buf);
388 static void nvdimm_build_nfit(AcpiNVDIMMState *state, GArray *table_offsets,
389 GArray *table_data, BIOSLinker *linker)
391 NvdimmFitBuffer *fit_buf = &state->fit_buf;
392 unsigned int header;
394 acpi_add_table(table_offsets, table_data);
396 /* NFIT header. */
397 header = table_data->len;
398 acpi_data_push(table_data, sizeof(NvdimmNfitHeader));
399 /* NVDIMM device structures. */
400 g_array_append_vals(table_data, fit_buf->fit->data, fit_buf->fit->len);
402 build_header(linker, table_data,
403 (void *)(table_data->data + header), "NFIT",
404 sizeof(NvdimmNfitHeader) + fit_buf->fit->len, 1, NULL, NULL);
407 struct NvdimmDsmIn {
408 uint32_t handle;
409 uint32_t revision;
410 uint32_t function;
411 /* the remaining size in the page is used by arg3. */
412 union {
413 uint8_t arg3[4084];
415 } QEMU_PACKED;
416 typedef struct NvdimmDsmIn NvdimmDsmIn;
417 QEMU_BUILD_BUG_ON(sizeof(NvdimmDsmIn) != 4096);
419 struct NvdimmDsmOut {
420 /* the size of buffer filled by QEMU. */
421 uint32_t len;
422 uint8_t data[4092];
423 } QEMU_PACKED;
424 typedef struct NvdimmDsmOut NvdimmDsmOut;
425 QEMU_BUILD_BUG_ON(sizeof(NvdimmDsmOut) != 4096);
427 struct NvdimmDsmFunc0Out {
428 /* the size of buffer filled by QEMU. */
429 uint32_t len;
430 uint32_t supported_func;
431 } QEMU_PACKED;
432 typedef struct NvdimmDsmFunc0Out NvdimmDsmFunc0Out;
434 struct NvdimmDsmFuncNoPayloadOut {
435 /* the size of buffer filled by QEMU. */
436 uint32_t len;
437 uint32_t func_ret_status;
438 } QEMU_PACKED;
439 typedef struct NvdimmDsmFuncNoPayloadOut NvdimmDsmFuncNoPayloadOut;
441 struct NvdimmFuncGetLabelSizeOut {
442 /* the size of buffer filled by QEMU. */
443 uint32_t len;
444 uint32_t func_ret_status; /* return status code. */
445 uint32_t label_size; /* the size of label data area. */
447 * Maximum size of the namespace label data length supported by
448 * the platform in Get/Set Namespace Label Data functions.
450 uint32_t max_xfer;
451 } QEMU_PACKED;
452 typedef struct NvdimmFuncGetLabelSizeOut NvdimmFuncGetLabelSizeOut;
453 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncGetLabelSizeOut) > 4096);
455 struct NvdimmFuncGetLabelDataIn {
456 uint32_t offset; /* the offset in the namespace label data area. */
457 uint32_t length; /* the size of data is to be read via the function. */
458 } QEMU_PACKED;
459 typedef struct NvdimmFuncGetLabelDataIn NvdimmFuncGetLabelDataIn;
460 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncGetLabelDataIn) +
461 offsetof(NvdimmDsmIn, arg3) > 4096);
463 struct NvdimmFuncGetLabelDataOut {
464 /* the size of buffer filled by QEMU. */
465 uint32_t len;
466 uint32_t func_ret_status; /* return status code. */
467 uint8_t out_buf[0]; /* the data got via Get Namesapce Label function. */
468 } QEMU_PACKED;
469 typedef struct NvdimmFuncGetLabelDataOut NvdimmFuncGetLabelDataOut;
470 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncGetLabelDataOut) > 4096);
472 struct NvdimmFuncSetLabelDataIn {
473 uint32_t offset; /* the offset in the namespace label data area. */
474 uint32_t length; /* the size of data is to be written via the function. */
475 uint8_t in_buf[0]; /* the data written to label data area. */
476 } QEMU_PACKED;
477 typedef struct NvdimmFuncSetLabelDataIn NvdimmFuncSetLabelDataIn;
478 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncSetLabelDataIn) +
479 offsetof(NvdimmDsmIn, arg3) > 4096);
481 struct NvdimmFuncReadFITIn {
482 uint32_t offset; /* the offset of FIT buffer. */
483 } QEMU_PACKED;
484 typedef struct NvdimmFuncReadFITIn NvdimmFuncReadFITIn;
485 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncReadFITIn) +
486 offsetof(NvdimmDsmIn, arg3) > 4096);
488 struct NvdimmFuncReadFITOut {
489 /* the size of buffer filled by QEMU. */
490 uint32_t len;
491 uint32_t func_ret_status; /* return status code. */
492 uint8_t fit[0]; /* the FIT data. */
493 } QEMU_PACKED;
494 typedef struct NvdimmFuncReadFITOut NvdimmFuncReadFITOut;
495 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncReadFITOut) > 4096);
497 static void
498 nvdimm_dsm_function0(uint32_t supported_func, hwaddr dsm_mem_addr)
500 NvdimmDsmFunc0Out func0 = {
501 .len = cpu_to_le32(sizeof(func0)),
502 .supported_func = cpu_to_le32(supported_func),
504 cpu_physical_memory_write(dsm_mem_addr, &func0, sizeof(func0));
507 static void
508 nvdimm_dsm_no_payload(uint32_t func_ret_status, hwaddr dsm_mem_addr)
510 NvdimmDsmFuncNoPayloadOut out = {
511 .len = cpu_to_le32(sizeof(out)),
512 .func_ret_status = cpu_to_le32(func_ret_status),
514 cpu_physical_memory_write(dsm_mem_addr, &out, sizeof(out));
517 #define NVDIMM_QEMU_RSVD_HANDLE_ROOT 0x10000
519 /* Read FIT data, defined in docs/specs/acpi_nvdimm.txt. */
520 static void nvdimm_dsm_func_read_fit(AcpiNVDIMMState *state, NvdimmDsmIn *in,
521 hwaddr dsm_mem_addr)
523 NvdimmFitBuffer *fit_buf = &state->fit_buf;
524 NvdimmFuncReadFITIn *read_fit;
525 NvdimmFuncReadFITOut *read_fit_out;
526 GArray *fit;
527 uint32_t read_len = 0, func_ret_status;
528 int size;
530 read_fit = (NvdimmFuncReadFITIn *)in->arg3;
531 le32_to_cpus(&read_fit->offset);
533 fit = fit_buf->fit;
535 nvdimm_debug("Read FIT: offset %#x FIT size %#x Dirty %s.\n",
536 read_fit->offset, fit->len, fit_buf->dirty ? "Yes" : "No");
538 if (read_fit->offset > fit->len) {
539 func_ret_status = 3 /* Invalid Input Parameters */;
540 goto exit;
543 /* It is the first time to read FIT. */
544 if (!read_fit->offset) {
545 fit_buf->dirty = false;
546 } else if (fit_buf->dirty) { /* FIT has been changed during RFIT. */
547 func_ret_status = 0x100 /* fit changed */;
548 goto exit;
551 func_ret_status = 0 /* Success */;
552 read_len = MIN(fit->len - read_fit->offset,
553 4096 - sizeof(NvdimmFuncReadFITOut));
555 exit:
556 size = sizeof(NvdimmFuncReadFITOut) + read_len;
557 read_fit_out = g_malloc(size);
559 read_fit_out->len = cpu_to_le32(size);
560 read_fit_out->func_ret_status = cpu_to_le32(func_ret_status);
561 memcpy(read_fit_out->fit, fit->data + read_fit->offset, read_len);
563 cpu_physical_memory_write(dsm_mem_addr, read_fit_out, size);
565 g_free(read_fit_out);
568 static void nvdimm_dsm_reserved_root(AcpiNVDIMMState *state, NvdimmDsmIn *in,
569 hwaddr dsm_mem_addr)
571 switch (in->function) {
572 case 0x0:
573 nvdimm_dsm_function0(0x1 | 1 << 1 /* Read FIT */, dsm_mem_addr);
574 return;
575 case 0x1 /*Read FIT */:
576 nvdimm_dsm_func_read_fit(state, in, dsm_mem_addr);
577 return;
580 nvdimm_dsm_no_payload(1 /* Not Supported */, dsm_mem_addr);
583 static void nvdimm_dsm_root(NvdimmDsmIn *in, hwaddr dsm_mem_addr)
586 * function 0 is called to inquire which functions are supported by
587 * OSPM
589 if (!in->function) {
590 nvdimm_dsm_function0(0 /* No function supported other than
591 function 0 */, dsm_mem_addr);
592 return;
595 /* No function except function 0 is supported yet. */
596 nvdimm_dsm_no_payload(1 /* Not Supported */, dsm_mem_addr);
600 * the max transfer size is the max size transferred by both a
601 * 'Get Namespace Label Data' function and a 'Set Namespace Label Data'
602 * function.
604 static uint32_t nvdimm_get_max_xfer_label_size(void)
606 uint32_t max_get_size, max_set_size, dsm_memory_size = 4096;
609 * the max data ACPI can read one time which is transferred by
610 * the response of 'Get Namespace Label Data' function.
612 max_get_size = dsm_memory_size - sizeof(NvdimmFuncGetLabelDataOut);
615 * the max data ACPI can write one time which is transferred by
616 * 'Set Namespace Label Data' function.
618 max_set_size = dsm_memory_size - offsetof(NvdimmDsmIn, arg3) -
619 sizeof(NvdimmFuncSetLabelDataIn);
621 return MIN(max_get_size, max_set_size);
625 * DSM Spec Rev1 4.4 Get Namespace Label Size (Function Index 4).
627 * It gets the size of Namespace Label data area and the max data size
628 * that Get/Set Namespace Label Data functions can transfer.
630 static void nvdimm_dsm_label_size(NVDIMMDevice *nvdimm, hwaddr dsm_mem_addr)
632 NvdimmFuncGetLabelSizeOut label_size_out = {
633 .len = cpu_to_le32(sizeof(label_size_out)),
635 uint32_t label_size, mxfer;
637 label_size = nvdimm->label_size;
638 mxfer = nvdimm_get_max_xfer_label_size();
640 nvdimm_debug("label_size %#x, max_xfer %#x.\n", label_size, mxfer);
642 label_size_out.func_ret_status = cpu_to_le32(0 /* Success */);
643 label_size_out.label_size = cpu_to_le32(label_size);
644 label_size_out.max_xfer = cpu_to_le32(mxfer);
646 cpu_physical_memory_write(dsm_mem_addr, &label_size_out,
647 sizeof(label_size_out));
650 static uint32_t nvdimm_rw_label_data_check(NVDIMMDevice *nvdimm,
651 uint32_t offset, uint32_t length)
653 uint32_t ret = 3 /* Invalid Input Parameters */;
655 if (offset + length < offset) {
656 nvdimm_debug("offset %#x + length %#x is overflow.\n", offset,
657 length);
658 return ret;
661 if (nvdimm->label_size < offset + length) {
662 nvdimm_debug("position %#x is beyond label data (len = %" PRIx64 ").\n",
663 offset + length, nvdimm->label_size);
664 return ret;
667 if (length > nvdimm_get_max_xfer_label_size()) {
668 nvdimm_debug("length (%#x) is larger than max_xfer (%#x).\n",
669 length, nvdimm_get_max_xfer_label_size());
670 return ret;
673 return 0 /* Success */;
677 * DSM Spec Rev1 4.5 Get Namespace Label Data (Function Index 5).
679 static void nvdimm_dsm_get_label_data(NVDIMMDevice *nvdimm, NvdimmDsmIn *in,
680 hwaddr dsm_mem_addr)
682 NVDIMMClass *nvc = NVDIMM_GET_CLASS(nvdimm);
683 NvdimmFuncGetLabelDataIn *get_label_data;
684 NvdimmFuncGetLabelDataOut *get_label_data_out;
685 uint32_t status;
686 int size;
688 get_label_data = (NvdimmFuncGetLabelDataIn *)in->arg3;
689 le32_to_cpus(&get_label_data->offset);
690 le32_to_cpus(&get_label_data->length);
692 nvdimm_debug("Read Label Data: offset %#x length %#x.\n",
693 get_label_data->offset, get_label_data->length);
695 status = nvdimm_rw_label_data_check(nvdimm, get_label_data->offset,
696 get_label_data->length);
697 if (status != 0 /* Success */) {
698 nvdimm_dsm_no_payload(status, dsm_mem_addr);
699 return;
702 size = sizeof(*get_label_data_out) + get_label_data->length;
703 assert(size <= 4096);
704 get_label_data_out = g_malloc(size);
706 get_label_data_out->len = cpu_to_le32(size);
707 get_label_data_out->func_ret_status = cpu_to_le32(0 /* Success */);
708 nvc->read_label_data(nvdimm, get_label_data_out->out_buf,
709 get_label_data->length, get_label_data->offset);
711 cpu_physical_memory_write(dsm_mem_addr, get_label_data_out, size);
712 g_free(get_label_data_out);
716 * DSM Spec Rev1 4.6 Set Namespace Label Data (Function Index 6).
718 static void nvdimm_dsm_set_label_data(NVDIMMDevice *nvdimm, NvdimmDsmIn *in,
719 hwaddr dsm_mem_addr)
721 NVDIMMClass *nvc = NVDIMM_GET_CLASS(nvdimm);
722 NvdimmFuncSetLabelDataIn *set_label_data;
723 uint32_t status;
725 set_label_data = (NvdimmFuncSetLabelDataIn *)in->arg3;
727 le32_to_cpus(&set_label_data->offset);
728 le32_to_cpus(&set_label_data->length);
730 nvdimm_debug("Write Label Data: offset %#x length %#x.\n",
731 set_label_data->offset, set_label_data->length);
733 status = nvdimm_rw_label_data_check(nvdimm, set_label_data->offset,
734 set_label_data->length);
735 if (status != 0 /* Success */) {
736 nvdimm_dsm_no_payload(status, dsm_mem_addr);
737 return;
740 assert(offsetof(NvdimmDsmIn, arg3) +
741 sizeof(*set_label_data) + set_label_data->length <= 4096);
743 nvc->write_label_data(nvdimm, set_label_data->in_buf,
744 set_label_data->length, set_label_data->offset);
745 nvdimm_dsm_no_payload(0 /* Success */, dsm_mem_addr);
748 static void nvdimm_dsm_device(NvdimmDsmIn *in, hwaddr dsm_mem_addr)
750 NVDIMMDevice *nvdimm = nvdimm_get_device_by_handle(in->handle);
752 /* See the comments in nvdimm_dsm_root(). */
753 if (!in->function) {
754 uint32_t supported_func = 0;
756 if (nvdimm && nvdimm->label_size) {
757 supported_func |= 0x1 /* Bit 0 indicates whether there is
758 support for any functions other
759 than function 0. */ |
760 1 << 4 /* Get Namespace Label Size */ |
761 1 << 5 /* Get Namespace Label Data */ |
762 1 << 6 /* Set Namespace Label Data */;
764 nvdimm_dsm_function0(supported_func, dsm_mem_addr);
765 return;
768 if (!nvdimm) {
769 nvdimm_dsm_no_payload(2 /* Non-Existing Memory Device */,
770 dsm_mem_addr);
771 return;
774 /* Encode DSM function according to DSM Spec Rev1. */
775 switch (in->function) {
776 case 4 /* Get Namespace Label Size */:
777 if (nvdimm->label_size) {
778 nvdimm_dsm_label_size(nvdimm, dsm_mem_addr);
779 return;
781 break;
782 case 5 /* Get Namespace Label Data */:
783 if (nvdimm->label_size) {
784 nvdimm_dsm_get_label_data(nvdimm, in, dsm_mem_addr);
785 return;
787 break;
788 case 0x6 /* Set Namespace Label Data */:
789 if (nvdimm->label_size) {
790 nvdimm_dsm_set_label_data(nvdimm, in, dsm_mem_addr);
791 return;
793 break;
796 nvdimm_dsm_no_payload(1 /* Not Supported */, dsm_mem_addr);
799 static uint64_t
800 nvdimm_dsm_read(void *opaque, hwaddr addr, unsigned size)
802 nvdimm_debug("BUG: we never read _DSM IO Port.\n");
803 return 0;
806 static void
807 nvdimm_dsm_write(void *opaque, hwaddr addr, uint64_t val, unsigned size)
809 AcpiNVDIMMState *state = opaque;
810 NvdimmDsmIn *in;
811 hwaddr dsm_mem_addr = val;
813 nvdimm_debug("dsm memory address %#" HWADDR_PRIx ".\n", dsm_mem_addr);
816 * The DSM memory is mapped to guest address space so an evil guest
817 * can change its content while we are doing DSM emulation. Avoid
818 * this by copying DSM memory to QEMU local memory.
820 in = g_new(NvdimmDsmIn, 1);
821 cpu_physical_memory_read(dsm_mem_addr, in, sizeof(*in));
823 le32_to_cpus(&in->revision);
824 le32_to_cpus(&in->function);
825 le32_to_cpus(&in->handle);
827 nvdimm_debug("Revision %#x Handler %#x Function %#x.\n", in->revision,
828 in->handle, in->function);
830 if (in->revision != 0x1 /* Currently we only support DSM Spec Rev1. */) {
831 nvdimm_debug("Revision %#x is not supported, expect %#x.\n",
832 in->revision, 0x1);
833 nvdimm_dsm_no_payload(1 /* Not Supported */, dsm_mem_addr);
834 goto exit;
837 if (in->handle == NVDIMM_QEMU_RSVD_HANDLE_ROOT) {
838 nvdimm_dsm_reserved_root(state, in, dsm_mem_addr);
839 goto exit;
842 /* Handle 0 is reserved for NVDIMM Root Device. */
843 if (!in->handle) {
844 nvdimm_dsm_root(in, dsm_mem_addr);
845 goto exit;
848 nvdimm_dsm_device(in, dsm_mem_addr);
850 exit:
851 g_free(in);
854 static const MemoryRegionOps nvdimm_dsm_ops = {
855 .read = nvdimm_dsm_read,
856 .write = nvdimm_dsm_write,
857 .endianness = DEVICE_LITTLE_ENDIAN,
858 .valid = {
859 .min_access_size = 4,
860 .max_access_size = 4,
864 void nvdimm_acpi_plug_cb(HotplugHandler *hotplug_dev, DeviceState *dev)
866 if (dev->hotplugged) {
867 acpi_send_event(DEVICE(hotplug_dev), ACPI_NVDIMM_HOTPLUG_STATUS);
871 void nvdimm_init_acpi_state(AcpiNVDIMMState *state, MemoryRegion *io,
872 FWCfgState *fw_cfg, Object *owner)
874 memory_region_init_io(&state->io_mr, owner, &nvdimm_dsm_ops, state,
875 "nvdimm-acpi-io", NVDIMM_ACPI_IO_LEN);
876 memory_region_add_subregion(io, NVDIMM_ACPI_IO_BASE, &state->io_mr);
878 state->dsm_mem = g_array_new(false, true /* clear */, 1);
879 acpi_data_push(state->dsm_mem, sizeof(NvdimmDsmIn));
880 fw_cfg_add_file(fw_cfg, NVDIMM_DSM_MEM_FILE, state->dsm_mem->data,
881 state->dsm_mem->len);
883 nvdimm_init_fit_buffer(&state->fit_buf);
886 #define NVDIMM_COMMON_DSM "NCAL"
887 #define NVDIMM_ACPI_MEM_ADDR "MEMA"
889 #define NVDIMM_DSM_MEMORY "NRAM"
890 #define NVDIMM_DSM_IOPORT "NPIO"
892 #define NVDIMM_DSM_NOTIFY "NTFI"
893 #define NVDIMM_DSM_HANDLE "HDLE"
894 #define NVDIMM_DSM_REVISION "REVS"
895 #define NVDIMM_DSM_FUNCTION "FUNC"
896 #define NVDIMM_DSM_ARG3 "FARG"
898 #define NVDIMM_DSM_OUT_BUF_SIZE "RLEN"
899 #define NVDIMM_DSM_OUT_BUF "ODAT"
901 #define NVDIMM_DSM_RFIT_STATUS "RSTA"
903 #define NVDIMM_QEMU_RSVD_UUID "648B9CF2-CDA1-4312-8AD9-49C4AF32BD62"
905 static void nvdimm_build_common_dsm(Aml *dev)
907 Aml *method, *ifctx, *function, *handle, *uuid, *dsm_mem, *elsectx2;
908 Aml *elsectx, *unsupport, *unpatched, *expected_uuid, *uuid_invalid;
909 Aml *pckg, *pckg_index, *pckg_buf, *field, *dsm_out_buf, *dsm_out_buf_size;
910 uint8_t byte_list[1];
912 method = aml_method(NVDIMM_COMMON_DSM, 5, AML_SERIALIZED);
913 uuid = aml_arg(0);
914 function = aml_arg(2);
915 handle = aml_arg(4);
916 dsm_mem = aml_local(6);
917 dsm_out_buf = aml_local(7);
919 aml_append(method, aml_store(aml_name(NVDIMM_ACPI_MEM_ADDR), dsm_mem));
921 /* map DSM memory and IO into ACPI namespace. */
922 aml_append(method, aml_operation_region(NVDIMM_DSM_IOPORT, AML_SYSTEM_IO,
923 aml_int(NVDIMM_ACPI_IO_BASE), NVDIMM_ACPI_IO_LEN));
924 aml_append(method, aml_operation_region(NVDIMM_DSM_MEMORY,
925 AML_SYSTEM_MEMORY, dsm_mem, sizeof(NvdimmDsmIn)));
928 * DSM notifier:
929 * NVDIMM_DSM_NOTIFY: write the address of DSM memory and notify QEMU to
930 * emulate the access.
932 * It is the IO port so that accessing them will cause VM-exit, the
933 * control will be transferred to QEMU.
935 field = aml_field(NVDIMM_DSM_IOPORT, AML_DWORD_ACC, AML_NOLOCK,
936 AML_PRESERVE);
937 aml_append(field, aml_named_field(NVDIMM_DSM_NOTIFY,
938 sizeof(uint32_t) * BITS_PER_BYTE));
939 aml_append(method, field);
942 * DSM input:
943 * NVDIMM_DSM_HANDLE: store device's handle, it's zero if the _DSM call
944 * happens on NVDIMM Root Device.
945 * NVDIMM_DSM_REVISION: store the Arg1 of _DSM call.
946 * NVDIMM_DSM_FUNCTION: store the Arg2 of _DSM call.
947 * NVDIMM_DSM_ARG3: store the Arg3 of _DSM call which is a Package
948 * containing function-specific arguments.
950 * They are RAM mapping on host so that these accesses never cause
951 * VM-EXIT.
953 field = aml_field(NVDIMM_DSM_MEMORY, AML_DWORD_ACC, AML_NOLOCK,
954 AML_PRESERVE);
955 aml_append(field, aml_named_field(NVDIMM_DSM_HANDLE,
956 sizeof(typeof_field(NvdimmDsmIn, handle)) * BITS_PER_BYTE));
957 aml_append(field, aml_named_field(NVDIMM_DSM_REVISION,
958 sizeof(typeof_field(NvdimmDsmIn, revision)) * BITS_PER_BYTE));
959 aml_append(field, aml_named_field(NVDIMM_DSM_FUNCTION,
960 sizeof(typeof_field(NvdimmDsmIn, function)) * BITS_PER_BYTE));
961 aml_append(field, aml_named_field(NVDIMM_DSM_ARG3,
962 (sizeof(NvdimmDsmIn) - offsetof(NvdimmDsmIn, arg3)) * BITS_PER_BYTE));
963 aml_append(method, field);
966 * DSM output:
967 * NVDIMM_DSM_OUT_BUF_SIZE: the size of the buffer filled by QEMU.
968 * NVDIMM_DSM_OUT_BUF: the buffer QEMU uses to store the result.
970 * Since the page is reused by both input and out, the input data
971 * will be lost after storing new result into ODAT so we should fetch
972 * all the input data before writing the result.
974 field = aml_field(NVDIMM_DSM_MEMORY, AML_DWORD_ACC, AML_NOLOCK,
975 AML_PRESERVE);
976 aml_append(field, aml_named_field(NVDIMM_DSM_OUT_BUF_SIZE,
977 sizeof(typeof_field(NvdimmDsmOut, len)) * BITS_PER_BYTE));
978 aml_append(field, aml_named_field(NVDIMM_DSM_OUT_BUF,
979 (sizeof(NvdimmDsmOut) - offsetof(NvdimmDsmOut, data)) * BITS_PER_BYTE));
980 aml_append(method, field);
983 * do not support any method if DSM memory address has not been
984 * patched.
986 unpatched = aml_equal(dsm_mem, aml_int(0x0));
988 expected_uuid = aml_local(0);
990 ifctx = aml_if(aml_equal(handle, aml_int(0x0)));
991 aml_append(ifctx, aml_store(
992 aml_touuid("2F10E7A4-9E91-11E4-89D3-123B93F75CBA")
993 /* UUID for NVDIMM Root Device */, expected_uuid));
994 aml_append(method, ifctx);
995 elsectx = aml_else();
996 ifctx = aml_if(aml_equal(handle, aml_int(NVDIMM_QEMU_RSVD_HANDLE_ROOT)));
997 aml_append(ifctx, aml_store(aml_touuid(NVDIMM_QEMU_RSVD_UUID
998 /* UUID for QEMU internal use */), expected_uuid));
999 aml_append(elsectx, ifctx);
1000 elsectx2 = aml_else();
1001 aml_append(elsectx2, aml_store(
1002 aml_touuid("4309AC30-0D11-11E4-9191-0800200C9A66")
1003 /* UUID for NVDIMM Devices */, expected_uuid));
1004 aml_append(elsectx, elsectx2);
1005 aml_append(method, elsectx);
1007 uuid_invalid = aml_lnot(aml_equal(uuid, expected_uuid));
1009 unsupport = aml_if(aml_or(unpatched, uuid_invalid, NULL));
1012 * function 0 is called to inquire what functions are supported by
1013 * OSPM
1015 ifctx = aml_if(aml_equal(function, aml_int(0)));
1016 byte_list[0] = 0 /* No function Supported */;
1017 aml_append(ifctx, aml_return(aml_buffer(1, byte_list)));
1018 aml_append(unsupport, ifctx);
1020 /* No function is supported yet. */
1021 byte_list[0] = 1 /* Not Supported */;
1022 aml_append(unsupport, aml_return(aml_buffer(1, byte_list)));
1023 aml_append(method, unsupport);
1026 * The HDLE indicates the DSM function is issued from which device,
1027 * it reserves 0 for root device and is the handle for NVDIMM devices.
1028 * See the comments in nvdimm_slot_to_handle().
1030 aml_append(method, aml_store(handle, aml_name(NVDIMM_DSM_HANDLE)));
1031 aml_append(method, aml_store(aml_arg(1), aml_name(NVDIMM_DSM_REVISION)));
1032 aml_append(method, aml_store(aml_arg(2), aml_name(NVDIMM_DSM_FUNCTION)));
1035 * The fourth parameter (Arg3) of _DSM is a package which contains
1036 * a buffer, the layout of the buffer is specified by UUID (Arg0),
1037 * Revision ID (Arg1) and Function Index (Arg2) which are documented
1038 * in the DSM Spec.
1040 pckg = aml_arg(3);
1041 ifctx = aml_if(aml_and(aml_equal(aml_object_type(pckg),
1042 aml_int(4 /* Package */)) /* It is a Package? */,
1043 aml_equal(aml_sizeof(pckg), aml_int(1)) /* 1 element? */,
1044 NULL));
1046 pckg_index = aml_local(2);
1047 pckg_buf = aml_local(3);
1048 aml_append(ifctx, aml_store(aml_index(pckg, aml_int(0)), pckg_index));
1049 aml_append(ifctx, aml_store(aml_derefof(pckg_index), pckg_buf));
1050 aml_append(ifctx, aml_store(pckg_buf, aml_name(NVDIMM_DSM_ARG3)));
1051 aml_append(method, ifctx);
1054 * tell QEMU about the real address of DSM memory, then QEMU
1055 * gets the control and fills the result in DSM memory.
1057 aml_append(method, aml_store(dsm_mem, aml_name(NVDIMM_DSM_NOTIFY)));
1059 dsm_out_buf_size = aml_local(1);
1060 /* RLEN is not included in the payload returned to guest. */
1061 aml_append(method, aml_subtract(aml_name(NVDIMM_DSM_OUT_BUF_SIZE),
1062 aml_int(4), dsm_out_buf_size));
1063 aml_append(method, aml_store(aml_shiftleft(dsm_out_buf_size, aml_int(3)),
1064 dsm_out_buf_size));
1065 aml_append(method, aml_create_field(aml_name(NVDIMM_DSM_OUT_BUF),
1066 aml_int(0), dsm_out_buf_size, "OBUF"));
1067 aml_append(method, aml_concatenate(aml_buffer(0, NULL), aml_name("OBUF"),
1068 dsm_out_buf));
1069 aml_append(method, aml_return(dsm_out_buf));
1070 aml_append(dev, method);
1073 static void nvdimm_build_device_dsm(Aml *dev, uint32_t handle)
1075 Aml *method;
1077 method = aml_method("_DSM", 4, AML_NOTSERIALIZED);
1078 aml_append(method, aml_return(aml_call5(NVDIMM_COMMON_DSM, aml_arg(0),
1079 aml_arg(1), aml_arg(2), aml_arg(3),
1080 aml_int(handle))));
1081 aml_append(dev, method);
1084 static void nvdimm_build_fit(Aml *dev)
1086 Aml *method, *pkg, *buf, *buf_size, *offset, *call_result;
1087 Aml *whilectx, *ifcond, *ifctx, *elsectx, *fit;
1089 buf = aml_local(0);
1090 buf_size = aml_local(1);
1091 fit = aml_local(2);
1093 aml_append(dev, aml_create_dword_field(aml_buffer(4, NULL),
1094 aml_int(0), NVDIMM_DSM_RFIT_STATUS));
1096 /* build helper function, RFIT. */
1097 method = aml_method("RFIT", 1, AML_SERIALIZED);
1098 aml_append(method, aml_create_dword_field(aml_buffer(4, NULL),
1099 aml_int(0), "OFST"));
1101 /* prepare input package. */
1102 pkg = aml_package(1);
1103 aml_append(method, aml_store(aml_arg(0), aml_name("OFST")));
1104 aml_append(pkg, aml_name("OFST"));
1106 /* call Read_FIT function. */
1107 call_result = aml_call5(NVDIMM_COMMON_DSM,
1108 aml_touuid(NVDIMM_QEMU_RSVD_UUID),
1109 aml_int(1) /* Revision 1 */,
1110 aml_int(0x1) /* Read FIT */,
1111 pkg, aml_int(NVDIMM_QEMU_RSVD_HANDLE_ROOT));
1112 aml_append(method, aml_store(call_result, buf));
1114 /* handle _DSM result. */
1115 aml_append(method, aml_create_dword_field(buf,
1116 aml_int(0) /* offset at byte 0 */, "STAU"));
1118 aml_append(method, aml_store(aml_name("STAU"),
1119 aml_name(NVDIMM_DSM_RFIT_STATUS)));
1121 /* if something is wrong during _DSM. */
1122 ifcond = aml_equal(aml_int(0 /* Success */), aml_name("STAU"));
1123 ifctx = aml_if(aml_lnot(ifcond));
1124 aml_append(ifctx, aml_return(aml_buffer(0, NULL)));
1125 aml_append(method, ifctx);
1127 aml_append(method, aml_store(aml_sizeof(buf), buf_size));
1128 aml_append(method, aml_subtract(buf_size,
1129 aml_int(4) /* the size of "STAU" */,
1130 buf_size));
1132 /* if we read the end of fit. */
1133 ifctx = aml_if(aml_equal(buf_size, aml_int(0)));
1134 aml_append(ifctx, aml_return(aml_buffer(0, NULL)));
1135 aml_append(method, ifctx);
1137 aml_append(method, aml_create_field(buf,
1138 aml_int(4 * BITS_PER_BYTE), /* offset at byte 4.*/
1139 aml_shiftleft(buf_size, aml_int(3)), "BUFF"));
1140 aml_append(method, aml_return(aml_name("BUFF")));
1141 aml_append(dev, method);
1143 /* build _FIT. */
1144 method = aml_method("_FIT", 0, AML_SERIALIZED);
1145 offset = aml_local(3);
1147 aml_append(method, aml_store(aml_buffer(0, NULL), fit));
1148 aml_append(method, aml_store(aml_int(0), offset));
1150 whilectx = aml_while(aml_int(1));
1151 aml_append(whilectx, aml_store(aml_call1("RFIT", offset), buf));
1152 aml_append(whilectx, aml_store(aml_sizeof(buf), buf_size));
1155 * if fit buffer was changed during RFIT, read from the beginning
1156 * again.
1158 ifctx = aml_if(aml_equal(aml_name(NVDIMM_DSM_RFIT_STATUS),
1159 aml_int(0x100 /* fit changed */)));
1160 aml_append(ifctx, aml_store(aml_buffer(0, NULL), fit));
1161 aml_append(ifctx, aml_store(aml_int(0), offset));
1162 aml_append(whilectx, ifctx);
1164 elsectx = aml_else();
1166 /* finish fit read if no data is read out. */
1167 ifctx = aml_if(aml_equal(buf_size, aml_int(0)));
1168 aml_append(ifctx, aml_return(fit));
1169 aml_append(elsectx, ifctx);
1171 /* update the offset. */
1172 aml_append(elsectx, aml_add(offset, buf_size, offset));
1173 /* append the data we read out to the fit buffer. */
1174 aml_append(elsectx, aml_concatenate(fit, buf, fit));
1175 aml_append(whilectx, elsectx);
1176 aml_append(method, whilectx);
1178 aml_append(dev, method);
1181 static void nvdimm_build_nvdimm_devices(Aml *root_dev, uint32_t ram_slots)
1183 uint32_t slot;
1185 for (slot = 0; slot < ram_slots; slot++) {
1186 uint32_t handle = nvdimm_slot_to_handle(slot);
1187 Aml *nvdimm_dev;
1189 nvdimm_dev = aml_device("NV%02X", slot);
1192 * ACPI 6.0: 9.20 NVDIMM Devices:
1194 * _ADR object that is used to supply OSPM with unique address
1195 * of the NVDIMM device. This is done by returning the NFIT Device
1196 * handle that is used to identify the associated entries in ACPI
1197 * table NFIT or _FIT.
1199 aml_append(nvdimm_dev, aml_name_decl("_ADR", aml_int(handle)));
1201 nvdimm_build_device_dsm(nvdimm_dev, handle);
1202 aml_append(root_dev, nvdimm_dev);
1206 static void nvdimm_build_ssdt(GArray *table_offsets, GArray *table_data,
1207 BIOSLinker *linker, GArray *dsm_dma_arrea,
1208 uint32_t ram_slots)
1210 Aml *ssdt, *sb_scope, *dev;
1211 int mem_addr_offset, nvdimm_ssdt;
1213 acpi_add_table(table_offsets, table_data);
1215 ssdt = init_aml_allocator();
1216 acpi_data_push(ssdt->buf, sizeof(AcpiTableHeader));
1218 sb_scope = aml_scope("\\_SB");
1220 dev = aml_device("NVDR");
1223 * ACPI 6.0: 9.20 NVDIMM Devices:
1225 * The ACPI Name Space device uses _HID of ACPI0012 to identify the root
1226 * NVDIMM interface device. Platform firmware is required to contain one
1227 * such device in _SB scope if NVDIMMs support is exposed by platform to
1228 * OSPM.
1229 * For each NVDIMM present or intended to be supported by platform,
1230 * platform firmware also exposes an ACPI Namespace Device under the
1231 * root device.
1233 aml_append(dev, aml_name_decl("_HID", aml_string("ACPI0012")));
1235 nvdimm_build_common_dsm(dev);
1237 /* 0 is reserved for root device. */
1238 nvdimm_build_device_dsm(dev, 0);
1239 nvdimm_build_fit(dev);
1241 nvdimm_build_nvdimm_devices(dev, ram_slots);
1243 aml_append(sb_scope, dev);
1244 aml_append(ssdt, sb_scope);
1246 nvdimm_ssdt = table_data->len;
1248 /* copy AML table into ACPI tables blob and patch header there */
1249 g_array_append_vals(table_data, ssdt->buf->data, ssdt->buf->len);
1250 mem_addr_offset = build_append_named_dword(table_data,
1251 NVDIMM_ACPI_MEM_ADDR);
1253 bios_linker_loader_alloc(linker,
1254 NVDIMM_DSM_MEM_FILE, dsm_dma_arrea,
1255 sizeof(NvdimmDsmIn), false /* high memory */);
1256 bios_linker_loader_add_pointer(linker,
1257 ACPI_BUILD_TABLE_FILE, mem_addr_offset, sizeof(uint32_t),
1258 NVDIMM_DSM_MEM_FILE, 0);
1259 build_header(linker, table_data,
1260 (void *)(table_data->data + nvdimm_ssdt),
1261 "SSDT", table_data->len - nvdimm_ssdt, 1, NULL, "NVDIMM");
1262 free_aml_allocator();
1265 void nvdimm_build_acpi(GArray *table_offsets, GArray *table_data,
1266 BIOSLinker *linker, AcpiNVDIMMState *state,
1267 uint32_t ram_slots)
1269 GSList *device_list;
1271 /* no nvdimm device can be plugged. */
1272 if (!ram_slots) {
1273 return;
1276 nvdimm_build_ssdt(table_offsets, table_data, linker, state->dsm_mem,
1277 ram_slots);
1279 device_list = nvdimm_get_device_list();
1280 /* no NVDIMM device is plugged. */
1281 if (!device_list) {
1282 return;
1285 nvdimm_build_nfit(state, table_offsets, table_data, linker);
1286 g_slist_free(device_list);