migration/rdma: Drop qemu_rdma_search_ram_block() error handling
[qemu/kevin.git] / migration / ram.c
blobe4bfd39f0883565a820cbc86760b18d8786cb294
1 /*
2 * QEMU System Emulator
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 * Copyright (c) 2011-2015 Red Hat Inc
7 * Authors:
8 * Juan Quintela <quintela@redhat.com>
10 * Permission is hereby granted, free of charge, to any person obtaining a copy
11 * of this software and associated documentation files (the "Software"), to deal
12 * in the Software without restriction, including without limitation the rights
13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
14 * copies of the Software, and to permit persons to whom the Software is
15 * furnished to do so, subject to the following conditions:
17 * The above copyright notice and this permission notice shall be included in
18 * all copies or substantial portions of the Software.
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
26 * THE SOFTWARE.
29 #include "qemu/osdep.h"
30 #include "qemu/cutils.h"
31 #include "qemu/bitops.h"
32 #include "qemu/bitmap.h"
33 #include "qemu/madvise.h"
34 #include "qemu/main-loop.h"
35 #include "xbzrle.h"
36 #include "ram-compress.h"
37 #include "ram.h"
38 #include "migration.h"
39 #include "migration-stats.h"
40 #include "migration/register.h"
41 #include "migration/misc.h"
42 #include "qemu-file.h"
43 #include "postcopy-ram.h"
44 #include "page_cache.h"
45 #include "qemu/error-report.h"
46 #include "qapi/error.h"
47 #include "qapi/qapi-types-migration.h"
48 #include "qapi/qapi-events-migration.h"
49 #include "qapi/qapi-commands-migration.h"
50 #include "qapi/qmp/qerror.h"
51 #include "trace.h"
52 #include "exec/ram_addr.h"
53 #include "exec/target_page.h"
54 #include "qemu/rcu_queue.h"
55 #include "migration/colo.h"
56 #include "block.h"
57 #include "sysemu/cpu-throttle.h"
58 #include "savevm.h"
59 #include "qemu/iov.h"
60 #include "multifd.h"
61 #include "sysemu/runstate.h"
62 #include "options.h"
63 #include "sysemu/dirtylimit.h"
64 #include "sysemu/kvm.h"
66 #include "hw/boards.h" /* for machine_dump_guest_core() */
68 #if defined(__linux__)
69 #include "qemu/userfaultfd.h"
70 #endif /* defined(__linux__) */
72 /***********************************************************/
73 /* ram save/restore */
76 * RAM_SAVE_FLAG_ZERO used to be named RAM_SAVE_FLAG_COMPRESS, it
77 * worked for pages that were filled with the same char. We switched
78 * it to only search for the zero value. And to avoid confusion with
79 * RAM_SAVE_FLAG_COMPRESS_PAGE just rename it.
82 * RAM_SAVE_FLAG_FULL was obsoleted in 2009, it can be reused now
84 #define RAM_SAVE_FLAG_FULL 0x01
85 #define RAM_SAVE_FLAG_ZERO 0x02
86 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
87 #define RAM_SAVE_FLAG_PAGE 0x08
88 #define RAM_SAVE_FLAG_EOS 0x10
89 #define RAM_SAVE_FLAG_CONTINUE 0x20
90 #define RAM_SAVE_FLAG_XBZRLE 0x40
91 /* 0x80 is reserved in qemu-file.h for RAM_SAVE_FLAG_HOOK */
92 #define RAM_SAVE_FLAG_COMPRESS_PAGE 0x100
93 #define RAM_SAVE_FLAG_MULTIFD_FLUSH 0x200
94 /* We can't use any flag that is bigger than 0x200 */
96 XBZRLECacheStats xbzrle_counters;
98 /* used by the search for pages to send */
99 struct PageSearchStatus {
100 /* The migration channel used for a specific host page */
101 QEMUFile *pss_channel;
102 /* Last block from where we have sent data */
103 RAMBlock *last_sent_block;
104 /* Current block being searched */
105 RAMBlock *block;
106 /* Current page to search from */
107 unsigned long page;
108 /* Set once we wrap around */
109 bool complete_round;
110 /* Whether we're sending a host page */
111 bool host_page_sending;
112 /* The start/end of current host page. Invalid if host_page_sending==false */
113 unsigned long host_page_start;
114 unsigned long host_page_end;
116 typedef struct PageSearchStatus PageSearchStatus;
118 /* struct contains XBZRLE cache and a static page
119 used by the compression */
120 static struct {
121 /* buffer used for XBZRLE encoding */
122 uint8_t *encoded_buf;
123 /* buffer for storing page content */
124 uint8_t *current_buf;
125 /* Cache for XBZRLE, Protected by lock. */
126 PageCache *cache;
127 QemuMutex lock;
128 /* it will store a page full of zeros */
129 uint8_t *zero_target_page;
130 /* buffer used for XBZRLE decoding */
131 uint8_t *decoded_buf;
132 } XBZRLE;
134 static void XBZRLE_cache_lock(void)
136 if (migrate_xbzrle()) {
137 qemu_mutex_lock(&XBZRLE.lock);
141 static void XBZRLE_cache_unlock(void)
143 if (migrate_xbzrle()) {
144 qemu_mutex_unlock(&XBZRLE.lock);
149 * xbzrle_cache_resize: resize the xbzrle cache
151 * This function is called from migrate_params_apply in main
152 * thread, possibly while a migration is in progress. A running
153 * migration may be using the cache and might finish during this call,
154 * hence changes to the cache are protected by XBZRLE.lock().
156 * Returns 0 for success or -1 for error
158 * @new_size: new cache size
159 * @errp: set *errp if the check failed, with reason
161 int xbzrle_cache_resize(uint64_t new_size, Error **errp)
163 PageCache *new_cache;
164 int64_t ret = 0;
166 /* Check for truncation */
167 if (new_size != (size_t)new_size) {
168 error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "cache size",
169 "exceeding address space");
170 return -1;
173 if (new_size == migrate_xbzrle_cache_size()) {
174 /* nothing to do */
175 return 0;
178 XBZRLE_cache_lock();
180 if (XBZRLE.cache != NULL) {
181 new_cache = cache_init(new_size, TARGET_PAGE_SIZE, errp);
182 if (!new_cache) {
183 ret = -1;
184 goto out;
187 cache_fini(XBZRLE.cache);
188 XBZRLE.cache = new_cache;
190 out:
191 XBZRLE_cache_unlock();
192 return ret;
195 static bool postcopy_preempt_active(void)
197 return migrate_postcopy_preempt() && migration_in_postcopy();
200 bool migrate_ram_is_ignored(RAMBlock *block)
202 return !qemu_ram_is_migratable(block) ||
203 (migrate_ignore_shared() && qemu_ram_is_shared(block)
204 && qemu_ram_is_named_file(block));
207 #undef RAMBLOCK_FOREACH
209 int foreach_not_ignored_block(RAMBlockIterFunc func, void *opaque)
211 RAMBlock *block;
212 int ret = 0;
214 RCU_READ_LOCK_GUARD();
216 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
217 ret = func(block, opaque);
218 if (ret) {
219 break;
222 return ret;
225 static void ramblock_recv_map_init(void)
227 RAMBlock *rb;
229 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
230 assert(!rb->receivedmap);
231 rb->receivedmap = bitmap_new(rb->max_length >> qemu_target_page_bits());
235 int ramblock_recv_bitmap_test(RAMBlock *rb, void *host_addr)
237 return test_bit(ramblock_recv_bitmap_offset(host_addr, rb),
238 rb->receivedmap);
241 bool ramblock_recv_bitmap_test_byte_offset(RAMBlock *rb, uint64_t byte_offset)
243 return test_bit(byte_offset >> TARGET_PAGE_BITS, rb->receivedmap);
246 void ramblock_recv_bitmap_set(RAMBlock *rb, void *host_addr)
248 set_bit_atomic(ramblock_recv_bitmap_offset(host_addr, rb), rb->receivedmap);
251 void ramblock_recv_bitmap_set_range(RAMBlock *rb, void *host_addr,
252 size_t nr)
254 bitmap_set_atomic(rb->receivedmap,
255 ramblock_recv_bitmap_offset(host_addr, rb),
256 nr);
259 #define RAMBLOCK_RECV_BITMAP_ENDING (0x0123456789abcdefULL)
262 * Format: bitmap_size (8 bytes) + whole_bitmap (N bytes).
264 * Returns >0 if success with sent bytes, or <0 if error.
266 int64_t ramblock_recv_bitmap_send(QEMUFile *file,
267 const char *block_name)
269 RAMBlock *block = qemu_ram_block_by_name(block_name);
270 unsigned long *le_bitmap, nbits;
271 uint64_t size;
273 if (!block) {
274 error_report("%s: invalid block name: %s", __func__, block_name);
275 return -1;
278 nbits = block->postcopy_length >> TARGET_PAGE_BITS;
281 * Make sure the tmp bitmap buffer is big enough, e.g., on 32bit
282 * machines we may need 4 more bytes for padding (see below
283 * comment). So extend it a bit before hand.
285 le_bitmap = bitmap_new(nbits + BITS_PER_LONG);
288 * Always use little endian when sending the bitmap. This is
289 * required that when source and destination VMs are not using the
290 * same endianness. (Note: big endian won't work.)
292 bitmap_to_le(le_bitmap, block->receivedmap, nbits);
294 /* Size of the bitmap, in bytes */
295 size = DIV_ROUND_UP(nbits, 8);
298 * size is always aligned to 8 bytes for 64bit machines, but it
299 * may not be true for 32bit machines. We need this padding to
300 * make sure the migration can survive even between 32bit and
301 * 64bit machines.
303 size = ROUND_UP(size, 8);
305 qemu_put_be64(file, size);
306 qemu_put_buffer(file, (const uint8_t *)le_bitmap, size);
308 * Mark as an end, in case the middle part is screwed up due to
309 * some "mysterious" reason.
311 qemu_put_be64(file, RAMBLOCK_RECV_BITMAP_ENDING);
312 qemu_fflush(file);
314 g_free(le_bitmap);
316 if (qemu_file_get_error(file)) {
317 return qemu_file_get_error(file);
320 return size + sizeof(size);
324 * An outstanding page request, on the source, having been received
325 * and queued
327 struct RAMSrcPageRequest {
328 RAMBlock *rb;
329 hwaddr offset;
330 hwaddr len;
332 QSIMPLEQ_ENTRY(RAMSrcPageRequest) next_req;
335 /* State of RAM for migration */
336 struct RAMState {
338 * PageSearchStatus structures for the channels when send pages.
339 * Protected by the bitmap_mutex.
341 PageSearchStatus pss[RAM_CHANNEL_MAX];
342 /* UFFD file descriptor, used in 'write-tracking' migration */
343 int uffdio_fd;
344 /* total ram size in bytes */
345 uint64_t ram_bytes_total;
346 /* Last block that we have visited searching for dirty pages */
347 RAMBlock *last_seen_block;
348 /* Last dirty target page we have sent */
349 ram_addr_t last_page;
350 /* last ram version we have seen */
351 uint32_t last_version;
352 /* How many times we have dirty too many pages */
353 int dirty_rate_high_cnt;
354 /* these variables are used for bitmap sync */
355 /* last time we did a full bitmap_sync */
356 int64_t time_last_bitmap_sync;
357 /* bytes transferred at start_time */
358 uint64_t bytes_xfer_prev;
359 /* number of dirty pages since start_time */
360 uint64_t num_dirty_pages_period;
361 /* xbzrle misses since the beginning of the period */
362 uint64_t xbzrle_cache_miss_prev;
363 /* Amount of xbzrle pages since the beginning of the period */
364 uint64_t xbzrle_pages_prev;
365 /* Amount of xbzrle encoded bytes since the beginning of the period */
366 uint64_t xbzrle_bytes_prev;
367 /* Are we really using XBZRLE (e.g., after the first round). */
368 bool xbzrle_started;
369 /* Are we on the last stage of migration */
370 bool last_stage;
371 /* compression statistics since the beginning of the period */
372 /* amount of count that no free thread to compress data */
373 uint64_t compress_thread_busy_prev;
374 /* amount bytes after compression */
375 uint64_t compressed_size_prev;
376 /* amount of compressed pages */
377 uint64_t compress_pages_prev;
379 /* total handled target pages at the beginning of period */
380 uint64_t target_page_count_prev;
381 /* total handled target pages since start */
382 uint64_t target_page_count;
383 /* number of dirty bits in the bitmap */
384 uint64_t migration_dirty_pages;
386 * Protects:
387 * - dirty/clear bitmap
388 * - migration_dirty_pages
389 * - pss structures
391 QemuMutex bitmap_mutex;
392 /* The RAMBlock used in the last src_page_requests */
393 RAMBlock *last_req_rb;
394 /* Queue of outstanding page requests from the destination */
395 QemuMutex src_page_req_mutex;
396 QSIMPLEQ_HEAD(, RAMSrcPageRequest) src_page_requests;
398 typedef struct RAMState RAMState;
400 static RAMState *ram_state;
402 static NotifierWithReturnList precopy_notifier_list;
404 /* Whether postcopy has queued requests? */
405 static bool postcopy_has_request(RAMState *rs)
407 return !QSIMPLEQ_EMPTY_ATOMIC(&rs->src_page_requests);
410 void precopy_infrastructure_init(void)
412 notifier_with_return_list_init(&precopy_notifier_list);
415 void precopy_add_notifier(NotifierWithReturn *n)
417 notifier_with_return_list_add(&precopy_notifier_list, n);
420 void precopy_remove_notifier(NotifierWithReturn *n)
422 notifier_with_return_remove(n);
425 int precopy_notify(PrecopyNotifyReason reason, Error **errp)
427 PrecopyNotifyData pnd;
428 pnd.reason = reason;
429 pnd.errp = errp;
431 return notifier_with_return_list_notify(&precopy_notifier_list, &pnd);
434 uint64_t ram_bytes_remaining(void)
436 return ram_state ? (ram_state->migration_dirty_pages * TARGET_PAGE_SIZE) :
440 void ram_transferred_add(uint64_t bytes)
442 if (runstate_is_running()) {
443 stat64_add(&mig_stats.precopy_bytes, bytes);
444 } else if (migration_in_postcopy()) {
445 stat64_add(&mig_stats.postcopy_bytes, bytes);
446 } else {
447 stat64_add(&mig_stats.downtime_bytes, bytes);
449 stat64_add(&mig_stats.transferred, bytes);
452 struct MigrationOps {
453 int (*ram_save_target_page)(RAMState *rs, PageSearchStatus *pss);
455 typedef struct MigrationOps MigrationOps;
457 MigrationOps *migration_ops;
459 static int ram_save_host_page_urgent(PageSearchStatus *pss);
461 /* NOTE: page is the PFN not real ram_addr_t. */
462 static void pss_init(PageSearchStatus *pss, RAMBlock *rb, ram_addr_t page)
464 pss->block = rb;
465 pss->page = page;
466 pss->complete_round = false;
470 * Check whether two PSSs are actively sending the same page. Return true
471 * if it is, false otherwise.
473 static bool pss_overlap(PageSearchStatus *pss1, PageSearchStatus *pss2)
475 return pss1->host_page_sending && pss2->host_page_sending &&
476 (pss1->host_page_start == pss2->host_page_start);
480 * save_page_header: write page header to wire
482 * If this is the 1st block, it also writes the block identification
484 * Returns the number of bytes written
486 * @pss: current PSS channel status
487 * @block: block that contains the page we want to send
488 * @offset: offset inside the block for the page
489 * in the lower bits, it contains flags
491 static size_t save_page_header(PageSearchStatus *pss, QEMUFile *f,
492 RAMBlock *block, ram_addr_t offset)
494 size_t size, len;
495 bool same_block = (block == pss->last_sent_block);
497 if (same_block) {
498 offset |= RAM_SAVE_FLAG_CONTINUE;
500 qemu_put_be64(f, offset);
501 size = 8;
503 if (!same_block) {
504 len = strlen(block->idstr);
505 qemu_put_byte(f, len);
506 qemu_put_buffer(f, (uint8_t *)block->idstr, len);
507 size += 1 + len;
508 pss->last_sent_block = block;
510 return size;
514 * mig_throttle_guest_down: throttle down the guest
516 * Reduce amount of guest cpu execution to hopefully slow down memory
517 * writes. If guest dirty memory rate is reduced below the rate at
518 * which we can transfer pages to the destination then we should be
519 * able to complete migration. Some workloads dirty memory way too
520 * fast and will not effectively converge, even with auto-converge.
522 static void mig_throttle_guest_down(uint64_t bytes_dirty_period,
523 uint64_t bytes_dirty_threshold)
525 uint64_t pct_initial = migrate_cpu_throttle_initial();
526 uint64_t pct_increment = migrate_cpu_throttle_increment();
527 bool pct_tailslow = migrate_cpu_throttle_tailslow();
528 int pct_max = migrate_max_cpu_throttle();
530 uint64_t throttle_now = cpu_throttle_get_percentage();
531 uint64_t cpu_now, cpu_ideal, throttle_inc;
533 /* We have not started throttling yet. Let's start it. */
534 if (!cpu_throttle_active()) {
535 cpu_throttle_set(pct_initial);
536 } else {
537 /* Throttling already on, just increase the rate */
538 if (!pct_tailslow) {
539 throttle_inc = pct_increment;
540 } else {
541 /* Compute the ideal CPU percentage used by Guest, which may
542 * make the dirty rate match the dirty rate threshold. */
543 cpu_now = 100 - throttle_now;
544 cpu_ideal = cpu_now * (bytes_dirty_threshold * 1.0 /
545 bytes_dirty_period);
546 throttle_inc = MIN(cpu_now - cpu_ideal, pct_increment);
548 cpu_throttle_set(MIN(throttle_now + throttle_inc, pct_max));
552 void mig_throttle_counter_reset(void)
554 RAMState *rs = ram_state;
556 rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
557 rs->num_dirty_pages_period = 0;
558 rs->bytes_xfer_prev = stat64_get(&mig_stats.transferred);
562 * xbzrle_cache_zero_page: insert a zero page in the XBZRLE cache
564 * @rs: current RAM state
565 * @current_addr: address for the zero page
567 * Update the xbzrle cache to reflect a page that's been sent as all 0.
568 * The important thing is that a stale (not-yet-0'd) page be replaced
569 * by the new data.
570 * As a bonus, if the page wasn't in the cache it gets added so that
571 * when a small write is made into the 0'd page it gets XBZRLE sent.
573 static void xbzrle_cache_zero_page(RAMState *rs, ram_addr_t current_addr)
575 /* We don't care if this fails to allocate a new cache page
576 * as long as it updated an old one */
577 cache_insert(XBZRLE.cache, current_addr, XBZRLE.zero_target_page,
578 stat64_get(&mig_stats.dirty_sync_count));
581 #define ENCODING_FLAG_XBZRLE 0x1
584 * save_xbzrle_page: compress and send current page
586 * Returns: 1 means that we wrote the page
587 * 0 means that page is identical to the one already sent
588 * -1 means that xbzrle would be longer than normal
590 * @rs: current RAM state
591 * @pss: current PSS channel
592 * @current_data: pointer to the address of the page contents
593 * @current_addr: addr of the page
594 * @block: block that contains the page we want to send
595 * @offset: offset inside the block for the page
597 static int save_xbzrle_page(RAMState *rs, PageSearchStatus *pss,
598 uint8_t **current_data, ram_addr_t current_addr,
599 RAMBlock *block, ram_addr_t offset)
601 int encoded_len = 0, bytes_xbzrle;
602 uint8_t *prev_cached_page;
603 QEMUFile *file = pss->pss_channel;
604 uint64_t generation = stat64_get(&mig_stats.dirty_sync_count);
606 if (!cache_is_cached(XBZRLE.cache, current_addr, generation)) {
607 xbzrle_counters.cache_miss++;
608 if (!rs->last_stage) {
609 if (cache_insert(XBZRLE.cache, current_addr, *current_data,
610 generation) == -1) {
611 return -1;
612 } else {
613 /* update *current_data when the page has been
614 inserted into cache */
615 *current_data = get_cached_data(XBZRLE.cache, current_addr);
618 return -1;
622 * Reaching here means the page has hit the xbzrle cache, no matter what
623 * encoding result it is (normal encoding, overflow or skipping the page),
624 * count the page as encoded. This is used to calculate the encoding rate.
626 * Example: 2 pages (8KB) being encoded, first page encoding generates 2KB,
627 * 2nd page turns out to be skipped (i.e. no new bytes written to the
628 * page), the overall encoding rate will be 8KB / 2KB = 4, which has the
629 * skipped page included. In this way, the encoding rate can tell if the
630 * guest page is good for xbzrle encoding.
632 xbzrle_counters.pages++;
633 prev_cached_page = get_cached_data(XBZRLE.cache, current_addr);
635 /* save current buffer into memory */
636 memcpy(XBZRLE.current_buf, *current_data, TARGET_PAGE_SIZE);
638 /* XBZRLE encoding (if there is no overflow) */
639 encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf,
640 TARGET_PAGE_SIZE, XBZRLE.encoded_buf,
641 TARGET_PAGE_SIZE);
644 * Update the cache contents, so that it corresponds to the data
645 * sent, in all cases except where we skip the page.
647 if (!rs->last_stage && encoded_len != 0) {
648 memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE);
650 * In the case where we couldn't compress, ensure that the caller
651 * sends the data from the cache, since the guest might have
652 * changed the RAM since we copied it.
654 *current_data = prev_cached_page;
657 if (encoded_len == 0) {
658 trace_save_xbzrle_page_skipping();
659 return 0;
660 } else if (encoded_len == -1) {
661 trace_save_xbzrle_page_overflow();
662 xbzrle_counters.overflow++;
663 xbzrle_counters.bytes += TARGET_PAGE_SIZE;
664 return -1;
667 /* Send XBZRLE based compressed page */
668 bytes_xbzrle = save_page_header(pss, pss->pss_channel, block,
669 offset | RAM_SAVE_FLAG_XBZRLE);
670 qemu_put_byte(file, ENCODING_FLAG_XBZRLE);
671 qemu_put_be16(file, encoded_len);
672 qemu_put_buffer(file, XBZRLE.encoded_buf, encoded_len);
673 bytes_xbzrle += encoded_len + 1 + 2;
675 * Like compressed_size (please see update_compress_thread_counts),
676 * the xbzrle encoded bytes don't count the 8 byte header with
677 * RAM_SAVE_FLAG_CONTINUE.
679 xbzrle_counters.bytes += bytes_xbzrle - 8;
680 ram_transferred_add(bytes_xbzrle);
682 return 1;
686 * pss_find_next_dirty: find the next dirty page of current ramblock
688 * This function updates pss->page to point to the next dirty page index
689 * within the ramblock to migrate, or the end of ramblock when nothing
690 * found. Note that when pss->host_page_sending==true it means we're
691 * during sending a host page, so we won't look for dirty page that is
692 * outside the host page boundary.
694 * @pss: the current page search status
696 static void pss_find_next_dirty(PageSearchStatus *pss)
698 RAMBlock *rb = pss->block;
699 unsigned long size = rb->used_length >> TARGET_PAGE_BITS;
700 unsigned long *bitmap = rb->bmap;
702 if (migrate_ram_is_ignored(rb)) {
703 /* Points directly to the end, so we know no dirty page */
704 pss->page = size;
705 return;
709 * If during sending a host page, only look for dirty pages within the
710 * current host page being send.
712 if (pss->host_page_sending) {
713 assert(pss->host_page_end);
714 size = MIN(size, pss->host_page_end);
717 pss->page = find_next_bit(bitmap, size, pss->page);
720 static void migration_clear_memory_region_dirty_bitmap(RAMBlock *rb,
721 unsigned long page)
723 uint8_t shift;
724 hwaddr size, start;
726 if (!rb->clear_bmap || !clear_bmap_test_and_clear(rb, page)) {
727 return;
730 shift = rb->clear_bmap_shift;
732 * CLEAR_BITMAP_SHIFT_MIN should always guarantee this... this
733 * can make things easier sometimes since then start address
734 * of the small chunk will always be 64 pages aligned so the
735 * bitmap will always be aligned to unsigned long. We should
736 * even be able to remove this restriction but I'm simply
737 * keeping it.
739 assert(shift >= 6);
741 size = 1ULL << (TARGET_PAGE_BITS + shift);
742 start = QEMU_ALIGN_DOWN((ram_addr_t)page << TARGET_PAGE_BITS, size);
743 trace_migration_bitmap_clear_dirty(rb->idstr, start, size, page);
744 memory_region_clear_dirty_bitmap(rb->mr, start, size);
747 static void
748 migration_clear_memory_region_dirty_bitmap_range(RAMBlock *rb,
749 unsigned long start,
750 unsigned long npages)
752 unsigned long i, chunk_pages = 1UL << rb->clear_bmap_shift;
753 unsigned long chunk_start = QEMU_ALIGN_DOWN(start, chunk_pages);
754 unsigned long chunk_end = QEMU_ALIGN_UP(start + npages, chunk_pages);
757 * Clear pages from start to start + npages - 1, so the end boundary is
758 * exclusive.
760 for (i = chunk_start; i < chunk_end; i += chunk_pages) {
761 migration_clear_memory_region_dirty_bitmap(rb, i);
766 * colo_bitmap_find_diry:find contiguous dirty pages from start
768 * Returns the page offset within memory region of the start of the contiguout
769 * dirty page
771 * @rs: current RAM state
772 * @rb: RAMBlock where to search for dirty pages
773 * @start: page where we start the search
774 * @num: the number of contiguous dirty pages
776 static inline
777 unsigned long colo_bitmap_find_dirty(RAMState *rs, RAMBlock *rb,
778 unsigned long start, unsigned long *num)
780 unsigned long size = rb->used_length >> TARGET_PAGE_BITS;
781 unsigned long *bitmap = rb->bmap;
782 unsigned long first, next;
784 *num = 0;
786 if (migrate_ram_is_ignored(rb)) {
787 return size;
790 first = find_next_bit(bitmap, size, start);
791 if (first >= size) {
792 return first;
794 next = find_next_zero_bit(bitmap, size, first + 1);
795 assert(next >= first);
796 *num = next - first;
797 return first;
800 static inline bool migration_bitmap_clear_dirty(RAMState *rs,
801 RAMBlock *rb,
802 unsigned long page)
804 bool ret;
807 * Clear dirty bitmap if needed. This _must_ be called before we
808 * send any of the page in the chunk because we need to make sure
809 * we can capture further page content changes when we sync dirty
810 * log the next time. So as long as we are going to send any of
811 * the page in the chunk we clear the remote dirty bitmap for all.
812 * Clearing it earlier won't be a problem, but too late will.
814 migration_clear_memory_region_dirty_bitmap(rb, page);
816 ret = test_and_clear_bit(page, rb->bmap);
817 if (ret) {
818 rs->migration_dirty_pages--;
821 return ret;
824 static void dirty_bitmap_clear_section(MemoryRegionSection *section,
825 void *opaque)
827 const hwaddr offset = section->offset_within_region;
828 const hwaddr size = int128_get64(section->size);
829 const unsigned long start = offset >> TARGET_PAGE_BITS;
830 const unsigned long npages = size >> TARGET_PAGE_BITS;
831 RAMBlock *rb = section->mr->ram_block;
832 uint64_t *cleared_bits = opaque;
835 * We don't grab ram_state->bitmap_mutex because we expect to run
836 * only when starting migration or during postcopy recovery where
837 * we don't have concurrent access.
839 if (!migration_in_postcopy() && !migrate_background_snapshot()) {
840 migration_clear_memory_region_dirty_bitmap_range(rb, start, npages);
842 *cleared_bits += bitmap_count_one_with_offset(rb->bmap, start, npages);
843 bitmap_clear(rb->bmap, start, npages);
847 * Exclude all dirty pages from migration that fall into a discarded range as
848 * managed by a RamDiscardManager responsible for the mapped memory region of
849 * the RAMBlock. Clear the corresponding bits in the dirty bitmaps.
851 * Discarded pages ("logically unplugged") have undefined content and must
852 * not get migrated, because even reading these pages for migration might
853 * result in undesired behavior.
855 * Returns the number of cleared bits in the RAMBlock dirty bitmap.
857 * Note: The result is only stable while migrating (precopy/postcopy).
859 static uint64_t ramblock_dirty_bitmap_clear_discarded_pages(RAMBlock *rb)
861 uint64_t cleared_bits = 0;
863 if (rb->mr && rb->bmap && memory_region_has_ram_discard_manager(rb->mr)) {
864 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr);
865 MemoryRegionSection section = {
866 .mr = rb->mr,
867 .offset_within_region = 0,
868 .size = int128_make64(qemu_ram_get_used_length(rb)),
871 ram_discard_manager_replay_discarded(rdm, &section,
872 dirty_bitmap_clear_section,
873 &cleared_bits);
875 return cleared_bits;
879 * Check if a host-page aligned page falls into a discarded range as managed by
880 * a RamDiscardManager responsible for the mapped memory region of the RAMBlock.
882 * Note: The result is only stable while migrating (precopy/postcopy).
884 bool ramblock_page_is_discarded(RAMBlock *rb, ram_addr_t start)
886 if (rb->mr && memory_region_has_ram_discard_manager(rb->mr)) {
887 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr);
888 MemoryRegionSection section = {
889 .mr = rb->mr,
890 .offset_within_region = start,
891 .size = int128_make64(qemu_ram_pagesize(rb)),
894 return !ram_discard_manager_is_populated(rdm, &section);
896 return false;
899 /* Called with RCU critical section */
900 static void ramblock_sync_dirty_bitmap(RAMState *rs, RAMBlock *rb)
902 uint64_t new_dirty_pages =
903 cpu_physical_memory_sync_dirty_bitmap(rb, 0, rb->used_length);
905 rs->migration_dirty_pages += new_dirty_pages;
906 rs->num_dirty_pages_period += new_dirty_pages;
910 * ram_pagesize_summary: calculate all the pagesizes of a VM
912 * Returns a summary bitmap of the page sizes of all RAMBlocks
914 * For VMs with just normal pages this is equivalent to the host page
915 * size. If it's got some huge pages then it's the OR of all the
916 * different page sizes.
918 uint64_t ram_pagesize_summary(void)
920 RAMBlock *block;
921 uint64_t summary = 0;
923 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
924 summary |= block->page_size;
927 return summary;
930 uint64_t ram_get_total_transferred_pages(void)
932 return stat64_get(&mig_stats.normal_pages) +
933 stat64_get(&mig_stats.zero_pages) +
934 compression_counters.pages + xbzrle_counters.pages;
937 static void migration_update_rates(RAMState *rs, int64_t end_time)
939 uint64_t page_count = rs->target_page_count - rs->target_page_count_prev;
940 double compressed_size;
942 /* calculate period counters */
943 stat64_set(&mig_stats.dirty_pages_rate,
944 rs->num_dirty_pages_period * 1000 /
945 (end_time - rs->time_last_bitmap_sync));
947 if (!page_count) {
948 return;
951 if (migrate_xbzrle()) {
952 double encoded_size, unencoded_size;
954 xbzrle_counters.cache_miss_rate = (double)(xbzrle_counters.cache_miss -
955 rs->xbzrle_cache_miss_prev) / page_count;
956 rs->xbzrle_cache_miss_prev = xbzrle_counters.cache_miss;
957 unencoded_size = (xbzrle_counters.pages - rs->xbzrle_pages_prev) *
958 TARGET_PAGE_SIZE;
959 encoded_size = xbzrle_counters.bytes - rs->xbzrle_bytes_prev;
960 if (xbzrle_counters.pages == rs->xbzrle_pages_prev || !encoded_size) {
961 xbzrle_counters.encoding_rate = 0;
962 } else {
963 xbzrle_counters.encoding_rate = unencoded_size / encoded_size;
965 rs->xbzrle_pages_prev = xbzrle_counters.pages;
966 rs->xbzrle_bytes_prev = xbzrle_counters.bytes;
969 if (migrate_compress()) {
970 compression_counters.busy_rate = (double)(compression_counters.busy -
971 rs->compress_thread_busy_prev) / page_count;
972 rs->compress_thread_busy_prev = compression_counters.busy;
974 compressed_size = compression_counters.compressed_size -
975 rs->compressed_size_prev;
976 if (compressed_size) {
977 double uncompressed_size = (compression_counters.pages -
978 rs->compress_pages_prev) * TARGET_PAGE_SIZE;
980 /* Compression-Ratio = Uncompressed-size / Compressed-size */
981 compression_counters.compression_rate =
982 uncompressed_size / compressed_size;
984 rs->compress_pages_prev = compression_counters.pages;
985 rs->compressed_size_prev = compression_counters.compressed_size;
991 * Enable dirty-limit to throttle down the guest
993 static void migration_dirty_limit_guest(void)
996 * dirty page rate quota for all vCPUs fetched from
997 * migration parameter 'vcpu_dirty_limit'
999 static int64_t quota_dirtyrate;
1000 MigrationState *s = migrate_get_current();
1003 * If dirty limit already enabled and migration parameter
1004 * vcpu-dirty-limit untouched.
1006 if (dirtylimit_in_service() &&
1007 quota_dirtyrate == s->parameters.vcpu_dirty_limit) {
1008 return;
1011 quota_dirtyrate = s->parameters.vcpu_dirty_limit;
1014 * Set all vCPU a quota dirtyrate, note that the second
1015 * parameter will be ignored if setting all vCPU for the vm
1017 qmp_set_vcpu_dirty_limit(false, -1, quota_dirtyrate, NULL);
1018 trace_migration_dirty_limit_guest(quota_dirtyrate);
1021 static void migration_trigger_throttle(RAMState *rs)
1023 uint64_t threshold = migrate_throttle_trigger_threshold();
1024 uint64_t bytes_xfer_period =
1025 stat64_get(&mig_stats.transferred) - rs->bytes_xfer_prev;
1026 uint64_t bytes_dirty_period = rs->num_dirty_pages_period * TARGET_PAGE_SIZE;
1027 uint64_t bytes_dirty_threshold = bytes_xfer_period * threshold / 100;
1029 /* During block migration the auto-converge logic incorrectly detects
1030 * that ram migration makes no progress. Avoid this by disabling the
1031 * throttling logic during the bulk phase of block migration. */
1032 if (blk_mig_bulk_active()) {
1033 return;
1037 * The following detection logic can be refined later. For now:
1038 * Check to see if the ratio between dirtied bytes and the approx.
1039 * amount of bytes that just got transferred since the last time
1040 * we were in this routine reaches the threshold. If that happens
1041 * twice, start or increase throttling.
1043 if ((bytes_dirty_period > bytes_dirty_threshold) &&
1044 (++rs->dirty_rate_high_cnt >= 2)) {
1045 rs->dirty_rate_high_cnt = 0;
1046 if (migrate_auto_converge()) {
1047 trace_migration_throttle();
1048 mig_throttle_guest_down(bytes_dirty_period,
1049 bytes_dirty_threshold);
1050 } else if (migrate_dirty_limit()) {
1051 migration_dirty_limit_guest();
1056 static void migration_bitmap_sync(RAMState *rs, bool last_stage)
1058 RAMBlock *block;
1059 int64_t end_time;
1061 stat64_add(&mig_stats.dirty_sync_count, 1);
1063 if (!rs->time_last_bitmap_sync) {
1064 rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
1067 trace_migration_bitmap_sync_start();
1068 memory_global_dirty_log_sync(last_stage);
1070 qemu_mutex_lock(&rs->bitmap_mutex);
1071 WITH_RCU_READ_LOCK_GUARD() {
1072 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1073 ramblock_sync_dirty_bitmap(rs, block);
1075 stat64_set(&mig_stats.dirty_bytes_last_sync, ram_bytes_remaining());
1077 qemu_mutex_unlock(&rs->bitmap_mutex);
1079 memory_global_after_dirty_log_sync();
1080 trace_migration_bitmap_sync_end(rs->num_dirty_pages_period);
1082 end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
1084 /* more than 1 second = 1000 millisecons */
1085 if (end_time > rs->time_last_bitmap_sync + 1000) {
1086 migration_trigger_throttle(rs);
1088 migration_update_rates(rs, end_time);
1090 rs->target_page_count_prev = rs->target_page_count;
1092 /* reset period counters */
1093 rs->time_last_bitmap_sync = end_time;
1094 rs->num_dirty_pages_period = 0;
1095 rs->bytes_xfer_prev = stat64_get(&mig_stats.transferred);
1097 if (migrate_events()) {
1098 uint64_t generation = stat64_get(&mig_stats.dirty_sync_count);
1099 qapi_event_send_migration_pass(generation);
1103 static void migration_bitmap_sync_precopy(RAMState *rs, bool last_stage)
1105 Error *local_err = NULL;
1108 * The current notifier usage is just an optimization to migration, so we
1109 * don't stop the normal migration process in the error case.
1111 if (precopy_notify(PRECOPY_NOTIFY_BEFORE_BITMAP_SYNC, &local_err)) {
1112 error_report_err(local_err);
1113 local_err = NULL;
1116 migration_bitmap_sync(rs, last_stage);
1118 if (precopy_notify(PRECOPY_NOTIFY_AFTER_BITMAP_SYNC, &local_err)) {
1119 error_report_err(local_err);
1123 void ram_release_page(const char *rbname, uint64_t offset)
1125 if (!migrate_release_ram() || !migration_in_postcopy()) {
1126 return;
1129 ram_discard_range(rbname, offset, TARGET_PAGE_SIZE);
1133 * save_zero_page_to_file: send the zero page to the file
1135 * Returns the size of data written to the file, 0 means the page is not
1136 * a zero page
1138 * @pss: current PSS channel
1139 * @block: block that contains the page we want to send
1140 * @offset: offset inside the block for the page
1142 static int save_zero_page_to_file(PageSearchStatus *pss, QEMUFile *file,
1143 RAMBlock *block, ram_addr_t offset)
1145 uint8_t *p = block->host + offset;
1146 int len = 0;
1148 if (buffer_is_zero(p, TARGET_PAGE_SIZE)) {
1149 len += save_page_header(pss, file, block, offset | RAM_SAVE_FLAG_ZERO);
1150 qemu_put_byte(file, 0);
1151 len += 1;
1152 ram_release_page(block->idstr, offset);
1154 return len;
1158 * save_zero_page: send the zero page to the stream
1160 * Returns the number of pages written.
1162 * @pss: current PSS channel
1163 * @block: block that contains the page we want to send
1164 * @offset: offset inside the block for the page
1166 static int save_zero_page(PageSearchStatus *pss, QEMUFile *f, RAMBlock *block,
1167 ram_addr_t offset)
1169 int len = save_zero_page_to_file(pss, f, block, offset);
1171 if (len) {
1172 stat64_add(&mig_stats.zero_pages, 1);
1173 ram_transferred_add(len);
1174 return 1;
1176 return -1;
1180 * @pages: the number of pages written by the control path,
1181 * < 0 - error
1182 * > 0 - number of pages written
1184 * Return true if the pages has been saved, otherwise false is returned.
1186 static bool control_save_page(PageSearchStatus *pss, RAMBlock *block,
1187 ram_addr_t offset, int *pages)
1189 int ret;
1191 ret = ram_control_save_page(pss->pss_channel, block->offset, offset,
1192 TARGET_PAGE_SIZE);
1193 if (ret == RAM_SAVE_CONTROL_NOT_SUPP) {
1194 return false;
1197 if (ret == RAM_SAVE_CONTROL_DELAYED) {
1198 *pages = 1;
1199 return true;
1201 *pages = ret;
1202 return true;
1206 * directly send the page to the stream
1208 * Returns the number of pages written.
1210 * @pss: current PSS channel
1211 * @block: block that contains the page we want to send
1212 * @offset: offset inside the block for the page
1213 * @buf: the page to be sent
1214 * @async: send to page asyncly
1216 static int save_normal_page(PageSearchStatus *pss, RAMBlock *block,
1217 ram_addr_t offset, uint8_t *buf, bool async)
1219 QEMUFile *file = pss->pss_channel;
1221 ram_transferred_add(save_page_header(pss, pss->pss_channel, block,
1222 offset | RAM_SAVE_FLAG_PAGE));
1223 if (async) {
1224 qemu_put_buffer_async(file, buf, TARGET_PAGE_SIZE,
1225 migrate_release_ram() &&
1226 migration_in_postcopy());
1227 } else {
1228 qemu_put_buffer(file, buf, TARGET_PAGE_SIZE);
1230 ram_transferred_add(TARGET_PAGE_SIZE);
1231 stat64_add(&mig_stats.normal_pages, 1);
1232 return 1;
1236 * ram_save_page: send the given page to the stream
1238 * Returns the number of pages written.
1239 * < 0 - error
1240 * >=0 - Number of pages written - this might legally be 0
1241 * if xbzrle noticed the page was the same.
1243 * @rs: current RAM state
1244 * @block: block that contains the page we want to send
1245 * @offset: offset inside the block for the page
1247 static int ram_save_page(RAMState *rs, PageSearchStatus *pss)
1249 int pages = -1;
1250 uint8_t *p;
1251 bool send_async = true;
1252 RAMBlock *block = pss->block;
1253 ram_addr_t offset = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS;
1254 ram_addr_t current_addr = block->offset + offset;
1256 p = block->host + offset;
1257 trace_ram_save_page(block->idstr, (uint64_t)offset, p);
1259 XBZRLE_cache_lock();
1260 if (rs->xbzrle_started && !migration_in_postcopy()) {
1261 pages = save_xbzrle_page(rs, pss, &p, current_addr,
1262 block, offset);
1263 if (!rs->last_stage) {
1264 /* Can't send this cached data async, since the cache page
1265 * might get updated before it gets to the wire
1267 send_async = false;
1271 /* XBZRLE overflow or normal page */
1272 if (pages == -1) {
1273 pages = save_normal_page(pss, block, offset, p, send_async);
1276 XBZRLE_cache_unlock();
1278 return pages;
1281 static int ram_save_multifd_page(QEMUFile *file, RAMBlock *block,
1282 ram_addr_t offset)
1284 if (multifd_queue_page(file, block, offset) < 0) {
1285 return -1;
1287 stat64_add(&mig_stats.normal_pages, 1);
1289 return 1;
1292 static void
1293 update_compress_thread_counts(const CompressParam *param, int bytes_xmit)
1295 ram_transferred_add(bytes_xmit);
1297 if (param->result == RES_ZEROPAGE) {
1298 stat64_add(&mig_stats.zero_pages, 1);
1299 return;
1302 /* 8 means a header with RAM_SAVE_FLAG_CONTINUE. */
1303 compression_counters.compressed_size += bytes_xmit - 8;
1304 compression_counters.pages++;
1307 static bool save_page_use_compression(RAMState *rs);
1309 static int send_queued_data(CompressParam *param)
1311 PageSearchStatus *pss = &ram_state->pss[RAM_CHANNEL_PRECOPY];
1312 MigrationState *ms = migrate_get_current();
1313 QEMUFile *file = ms->to_dst_file;
1314 int len = 0;
1316 RAMBlock *block = param->block;
1317 ram_addr_t offset = param->offset;
1319 if (param->result == RES_NONE) {
1320 return 0;
1323 assert(block == pss->last_sent_block);
1325 if (param->result == RES_ZEROPAGE) {
1326 assert(qemu_file_buffer_empty(param->file));
1327 len += save_page_header(pss, file, block, offset | RAM_SAVE_FLAG_ZERO);
1328 qemu_put_byte(file, 0);
1329 len += 1;
1330 ram_release_page(block->idstr, offset);
1331 } else if (param->result == RES_COMPRESS) {
1332 assert(!qemu_file_buffer_empty(param->file));
1333 len += save_page_header(pss, file, block,
1334 offset | RAM_SAVE_FLAG_COMPRESS_PAGE);
1335 len += qemu_put_qemu_file(file, param->file);
1336 } else {
1337 abort();
1340 update_compress_thread_counts(param, len);
1342 return len;
1345 static void ram_flush_compressed_data(RAMState *rs)
1347 if (!save_page_use_compression(rs)) {
1348 return;
1351 flush_compressed_data(send_queued_data);
1354 #define PAGE_ALL_CLEAN 0
1355 #define PAGE_TRY_AGAIN 1
1356 #define PAGE_DIRTY_FOUND 2
1358 * find_dirty_block: find the next dirty page and update any state
1359 * associated with the search process.
1361 * Returns:
1362 * <0: An error happened
1363 * PAGE_ALL_CLEAN: no dirty page found, give up
1364 * PAGE_TRY_AGAIN: no dirty page found, retry for next block
1365 * PAGE_DIRTY_FOUND: dirty page found
1367 * @rs: current RAM state
1368 * @pss: data about the state of the current dirty page scan
1369 * @again: set to false if the search has scanned the whole of RAM
1371 static int find_dirty_block(RAMState *rs, PageSearchStatus *pss)
1373 /* Update pss->page for the next dirty bit in ramblock */
1374 pss_find_next_dirty(pss);
1376 if (pss->complete_round && pss->block == rs->last_seen_block &&
1377 pss->page >= rs->last_page) {
1379 * We've been once around the RAM and haven't found anything.
1380 * Give up.
1382 return PAGE_ALL_CLEAN;
1384 if (!offset_in_ramblock(pss->block,
1385 ((ram_addr_t)pss->page) << TARGET_PAGE_BITS)) {
1386 /* Didn't find anything in this RAM Block */
1387 pss->page = 0;
1388 pss->block = QLIST_NEXT_RCU(pss->block, next);
1389 if (!pss->block) {
1390 if (!migrate_multifd_flush_after_each_section()) {
1391 QEMUFile *f = rs->pss[RAM_CHANNEL_PRECOPY].pss_channel;
1392 int ret = multifd_send_sync_main(f);
1393 if (ret < 0) {
1394 return ret;
1396 qemu_put_be64(f, RAM_SAVE_FLAG_MULTIFD_FLUSH);
1397 qemu_fflush(f);
1400 * If memory migration starts over, we will meet a dirtied page
1401 * which may still exists in compression threads's ring, so we
1402 * should flush the compressed data to make sure the new page
1403 * is not overwritten by the old one in the destination.
1405 * Also If xbzrle is on, stop using the data compression at this
1406 * point. In theory, xbzrle can do better than compression.
1408 ram_flush_compressed_data(rs);
1410 /* Hit the end of the list */
1411 pss->block = QLIST_FIRST_RCU(&ram_list.blocks);
1412 /* Flag that we've looped */
1413 pss->complete_round = true;
1414 /* After the first round, enable XBZRLE. */
1415 if (migrate_xbzrle()) {
1416 rs->xbzrle_started = true;
1419 /* Didn't find anything this time, but try again on the new block */
1420 return PAGE_TRY_AGAIN;
1421 } else {
1422 /* We've found something */
1423 return PAGE_DIRTY_FOUND;
1428 * unqueue_page: gets a page of the queue
1430 * Helper for 'get_queued_page' - gets a page off the queue
1432 * Returns the block of the page (or NULL if none available)
1434 * @rs: current RAM state
1435 * @offset: used to return the offset within the RAMBlock
1437 static RAMBlock *unqueue_page(RAMState *rs, ram_addr_t *offset)
1439 struct RAMSrcPageRequest *entry;
1440 RAMBlock *block = NULL;
1442 if (!postcopy_has_request(rs)) {
1443 return NULL;
1446 QEMU_LOCK_GUARD(&rs->src_page_req_mutex);
1449 * This should _never_ change even after we take the lock, because no one
1450 * should be taking anything off the request list other than us.
1452 assert(postcopy_has_request(rs));
1454 entry = QSIMPLEQ_FIRST(&rs->src_page_requests);
1455 block = entry->rb;
1456 *offset = entry->offset;
1458 if (entry->len > TARGET_PAGE_SIZE) {
1459 entry->len -= TARGET_PAGE_SIZE;
1460 entry->offset += TARGET_PAGE_SIZE;
1461 } else {
1462 memory_region_unref(block->mr);
1463 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
1464 g_free(entry);
1465 migration_consume_urgent_request();
1468 return block;
1471 #if defined(__linux__)
1473 * poll_fault_page: try to get next UFFD write fault page and, if pending fault
1474 * is found, return RAM block pointer and page offset
1476 * Returns pointer to the RAMBlock containing faulting page,
1477 * NULL if no write faults are pending
1479 * @rs: current RAM state
1480 * @offset: page offset from the beginning of the block
1482 static RAMBlock *poll_fault_page(RAMState *rs, ram_addr_t *offset)
1484 struct uffd_msg uffd_msg;
1485 void *page_address;
1486 RAMBlock *block;
1487 int res;
1489 if (!migrate_background_snapshot()) {
1490 return NULL;
1493 res = uffd_read_events(rs->uffdio_fd, &uffd_msg, 1);
1494 if (res <= 0) {
1495 return NULL;
1498 page_address = (void *)(uintptr_t) uffd_msg.arg.pagefault.address;
1499 block = qemu_ram_block_from_host(page_address, false, offset);
1500 assert(block && (block->flags & RAM_UF_WRITEPROTECT) != 0);
1501 return block;
1505 * ram_save_release_protection: release UFFD write protection after
1506 * a range of pages has been saved
1508 * @rs: current RAM state
1509 * @pss: page-search-status structure
1510 * @start_page: index of the first page in the range relative to pss->block
1512 * Returns 0 on success, negative value in case of an error
1514 static int ram_save_release_protection(RAMState *rs, PageSearchStatus *pss,
1515 unsigned long start_page)
1517 int res = 0;
1519 /* Check if page is from UFFD-managed region. */
1520 if (pss->block->flags & RAM_UF_WRITEPROTECT) {
1521 void *page_address = pss->block->host + (start_page << TARGET_PAGE_BITS);
1522 uint64_t run_length = (pss->page - start_page) << TARGET_PAGE_BITS;
1524 /* Flush async buffers before un-protect. */
1525 qemu_fflush(pss->pss_channel);
1526 /* Un-protect memory range. */
1527 res = uffd_change_protection(rs->uffdio_fd, page_address, run_length,
1528 false, false);
1531 return res;
1534 /* ram_write_tracking_available: check if kernel supports required UFFD features
1536 * Returns true if supports, false otherwise
1538 bool ram_write_tracking_available(void)
1540 uint64_t uffd_features;
1541 int res;
1543 res = uffd_query_features(&uffd_features);
1544 return (res == 0 &&
1545 (uffd_features & UFFD_FEATURE_PAGEFAULT_FLAG_WP) != 0);
1548 /* ram_write_tracking_compatible: check if guest configuration is
1549 * compatible with 'write-tracking'
1551 * Returns true if compatible, false otherwise
1553 bool ram_write_tracking_compatible(void)
1555 const uint64_t uffd_ioctls_mask = BIT(_UFFDIO_WRITEPROTECT);
1556 int uffd_fd;
1557 RAMBlock *block;
1558 bool ret = false;
1560 /* Open UFFD file descriptor */
1561 uffd_fd = uffd_create_fd(UFFD_FEATURE_PAGEFAULT_FLAG_WP, false);
1562 if (uffd_fd < 0) {
1563 return false;
1566 RCU_READ_LOCK_GUARD();
1568 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1569 uint64_t uffd_ioctls;
1571 /* Nothing to do with read-only and MMIO-writable regions */
1572 if (block->mr->readonly || block->mr->rom_device) {
1573 continue;
1575 /* Try to register block memory via UFFD-IO to track writes */
1576 if (uffd_register_memory(uffd_fd, block->host, block->max_length,
1577 UFFDIO_REGISTER_MODE_WP, &uffd_ioctls)) {
1578 goto out;
1580 if ((uffd_ioctls & uffd_ioctls_mask) != uffd_ioctls_mask) {
1581 goto out;
1584 ret = true;
1586 out:
1587 uffd_close_fd(uffd_fd);
1588 return ret;
1591 static inline void populate_read_range(RAMBlock *block, ram_addr_t offset,
1592 ram_addr_t size)
1594 const ram_addr_t end = offset + size;
1597 * We read one byte of each page; this will preallocate page tables if
1598 * required and populate the shared zeropage on MAP_PRIVATE anonymous memory
1599 * where no page was populated yet. This might require adaption when
1600 * supporting other mappings, like shmem.
1602 for (; offset < end; offset += block->page_size) {
1603 char tmp = *((char *)block->host + offset);
1605 /* Don't optimize the read out */
1606 asm volatile("" : "+r" (tmp));
1610 static inline int populate_read_section(MemoryRegionSection *section,
1611 void *opaque)
1613 const hwaddr size = int128_get64(section->size);
1614 hwaddr offset = section->offset_within_region;
1615 RAMBlock *block = section->mr->ram_block;
1617 populate_read_range(block, offset, size);
1618 return 0;
1622 * ram_block_populate_read: preallocate page tables and populate pages in the
1623 * RAM block by reading a byte of each page.
1625 * Since it's solely used for userfault_fd WP feature, here we just
1626 * hardcode page size to qemu_real_host_page_size.
1628 * @block: RAM block to populate
1630 static void ram_block_populate_read(RAMBlock *rb)
1633 * Skip populating all pages that fall into a discarded range as managed by
1634 * a RamDiscardManager responsible for the mapped memory region of the
1635 * RAMBlock. Such discarded ("logically unplugged") parts of a RAMBlock
1636 * must not get populated automatically. We don't have to track
1637 * modifications via userfaultfd WP reliably, because these pages will
1638 * not be part of the migration stream either way -- see
1639 * ramblock_dirty_bitmap_exclude_discarded_pages().
1641 * Note: The result is only stable while migrating (precopy/postcopy).
1643 if (rb->mr && memory_region_has_ram_discard_manager(rb->mr)) {
1644 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr);
1645 MemoryRegionSection section = {
1646 .mr = rb->mr,
1647 .offset_within_region = 0,
1648 .size = rb->mr->size,
1651 ram_discard_manager_replay_populated(rdm, &section,
1652 populate_read_section, NULL);
1653 } else {
1654 populate_read_range(rb, 0, rb->used_length);
1659 * ram_write_tracking_prepare: prepare for UFFD-WP memory tracking
1661 void ram_write_tracking_prepare(void)
1663 RAMBlock *block;
1665 RCU_READ_LOCK_GUARD();
1667 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1668 /* Nothing to do with read-only and MMIO-writable regions */
1669 if (block->mr->readonly || block->mr->rom_device) {
1670 continue;
1674 * Populate pages of the RAM block before enabling userfault_fd
1675 * write protection.
1677 * This stage is required since ioctl(UFFDIO_WRITEPROTECT) with
1678 * UFFDIO_WRITEPROTECT_MODE_WP mode setting would silently skip
1679 * pages with pte_none() entries in page table.
1681 ram_block_populate_read(block);
1685 static inline int uffd_protect_section(MemoryRegionSection *section,
1686 void *opaque)
1688 const hwaddr size = int128_get64(section->size);
1689 const hwaddr offset = section->offset_within_region;
1690 RAMBlock *rb = section->mr->ram_block;
1691 int uffd_fd = (uintptr_t)opaque;
1693 return uffd_change_protection(uffd_fd, rb->host + offset, size, true,
1694 false);
1697 static int ram_block_uffd_protect(RAMBlock *rb, int uffd_fd)
1699 assert(rb->flags & RAM_UF_WRITEPROTECT);
1701 /* See ram_block_populate_read() */
1702 if (rb->mr && memory_region_has_ram_discard_manager(rb->mr)) {
1703 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr);
1704 MemoryRegionSection section = {
1705 .mr = rb->mr,
1706 .offset_within_region = 0,
1707 .size = rb->mr->size,
1710 return ram_discard_manager_replay_populated(rdm, &section,
1711 uffd_protect_section,
1712 (void *)(uintptr_t)uffd_fd);
1714 return uffd_change_protection(uffd_fd, rb->host,
1715 rb->used_length, true, false);
1719 * ram_write_tracking_start: start UFFD-WP memory tracking
1721 * Returns 0 for success or negative value in case of error
1723 int ram_write_tracking_start(void)
1725 int uffd_fd;
1726 RAMState *rs = ram_state;
1727 RAMBlock *block;
1729 /* Open UFFD file descriptor */
1730 uffd_fd = uffd_create_fd(UFFD_FEATURE_PAGEFAULT_FLAG_WP, true);
1731 if (uffd_fd < 0) {
1732 return uffd_fd;
1734 rs->uffdio_fd = uffd_fd;
1736 RCU_READ_LOCK_GUARD();
1738 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1739 /* Nothing to do with read-only and MMIO-writable regions */
1740 if (block->mr->readonly || block->mr->rom_device) {
1741 continue;
1744 /* Register block memory with UFFD to track writes */
1745 if (uffd_register_memory(rs->uffdio_fd, block->host,
1746 block->max_length, UFFDIO_REGISTER_MODE_WP, NULL)) {
1747 goto fail;
1749 block->flags |= RAM_UF_WRITEPROTECT;
1750 memory_region_ref(block->mr);
1752 /* Apply UFFD write protection to the block memory range */
1753 if (ram_block_uffd_protect(block, uffd_fd)) {
1754 goto fail;
1757 trace_ram_write_tracking_ramblock_start(block->idstr, block->page_size,
1758 block->host, block->max_length);
1761 return 0;
1763 fail:
1764 error_report("ram_write_tracking_start() failed: restoring initial memory state");
1766 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1767 if ((block->flags & RAM_UF_WRITEPROTECT) == 0) {
1768 continue;
1770 uffd_unregister_memory(rs->uffdio_fd, block->host, block->max_length);
1771 /* Cleanup flags and remove reference */
1772 block->flags &= ~RAM_UF_WRITEPROTECT;
1773 memory_region_unref(block->mr);
1776 uffd_close_fd(uffd_fd);
1777 rs->uffdio_fd = -1;
1778 return -1;
1782 * ram_write_tracking_stop: stop UFFD-WP memory tracking and remove protection
1784 void ram_write_tracking_stop(void)
1786 RAMState *rs = ram_state;
1787 RAMBlock *block;
1789 RCU_READ_LOCK_GUARD();
1791 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1792 if ((block->flags & RAM_UF_WRITEPROTECT) == 0) {
1793 continue;
1795 uffd_unregister_memory(rs->uffdio_fd, block->host, block->max_length);
1797 trace_ram_write_tracking_ramblock_stop(block->idstr, block->page_size,
1798 block->host, block->max_length);
1800 /* Cleanup flags and remove reference */
1801 block->flags &= ~RAM_UF_WRITEPROTECT;
1802 memory_region_unref(block->mr);
1805 /* Finally close UFFD file descriptor */
1806 uffd_close_fd(rs->uffdio_fd);
1807 rs->uffdio_fd = -1;
1810 #else
1811 /* No target OS support, stubs just fail or ignore */
1813 static RAMBlock *poll_fault_page(RAMState *rs, ram_addr_t *offset)
1815 (void) rs;
1816 (void) offset;
1818 return NULL;
1821 static int ram_save_release_protection(RAMState *rs, PageSearchStatus *pss,
1822 unsigned long start_page)
1824 (void) rs;
1825 (void) pss;
1826 (void) start_page;
1828 return 0;
1831 bool ram_write_tracking_available(void)
1833 return false;
1836 bool ram_write_tracking_compatible(void)
1838 assert(0);
1839 return false;
1842 int ram_write_tracking_start(void)
1844 assert(0);
1845 return -1;
1848 void ram_write_tracking_stop(void)
1850 assert(0);
1852 #endif /* defined(__linux__) */
1855 * get_queued_page: unqueue a page from the postcopy requests
1857 * Skips pages that are already sent (!dirty)
1859 * Returns true if a queued page is found
1861 * @rs: current RAM state
1862 * @pss: data about the state of the current dirty page scan
1864 static bool get_queued_page(RAMState *rs, PageSearchStatus *pss)
1866 RAMBlock *block;
1867 ram_addr_t offset;
1868 bool dirty;
1870 do {
1871 block = unqueue_page(rs, &offset);
1873 * We're sending this page, and since it's postcopy nothing else
1874 * will dirty it, and we must make sure it doesn't get sent again
1875 * even if this queue request was received after the background
1876 * search already sent it.
1878 if (block) {
1879 unsigned long page;
1881 page = offset >> TARGET_PAGE_BITS;
1882 dirty = test_bit(page, block->bmap);
1883 if (!dirty) {
1884 trace_get_queued_page_not_dirty(block->idstr, (uint64_t)offset,
1885 page);
1886 } else {
1887 trace_get_queued_page(block->idstr, (uint64_t)offset, page);
1891 } while (block && !dirty);
1893 if (!block) {
1895 * Poll write faults too if background snapshot is enabled; that's
1896 * when we have vcpus got blocked by the write protected pages.
1898 block = poll_fault_page(rs, &offset);
1901 if (block) {
1903 * We want the background search to continue from the queued page
1904 * since the guest is likely to want other pages near to the page
1905 * it just requested.
1907 pss->block = block;
1908 pss->page = offset >> TARGET_PAGE_BITS;
1911 * This unqueued page would break the "one round" check, even is
1912 * really rare.
1914 pss->complete_round = false;
1917 return !!block;
1921 * migration_page_queue_free: drop any remaining pages in the ram
1922 * request queue
1924 * It should be empty at the end anyway, but in error cases there may
1925 * be some left. in case that there is any page left, we drop it.
1928 static void migration_page_queue_free(RAMState *rs)
1930 struct RAMSrcPageRequest *mspr, *next_mspr;
1931 /* This queue generally should be empty - but in the case of a failed
1932 * migration might have some droppings in.
1934 RCU_READ_LOCK_GUARD();
1935 QSIMPLEQ_FOREACH_SAFE(mspr, &rs->src_page_requests, next_req, next_mspr) {
1936 memory_region_unref(mspr->rb->mr);
1937 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
1938 g_free(mspr);
1943 * ram_save_queue_pages: queue the page for transmission
1945 * A request from postcopy destination for example.
1947 * Returns zero on success or negative on error
1949 * @rbname: Name of the RAMBLock of the request. NULL means the
1950 * same that last one.
1951 * @start: starting address from the start of the RAMBlock
1952 * @len: length (in bytes) to send
1954 int ram_save_queue_pages(const char *rbname, ram_addr_t start, ram_addr_t len)
1956 RAMBlock *ramblock;
1957 RAMState *rs = ram_state;
1959 stat64_add(&mig_stats.postcopy_requests, 1);
1960 RCU_READ_LOCK_GUARD();
1962 if (!rbname) {
1963 /* Reuse last RAMBlock */
1964 ramblock = rs->last_req_rb;
1966 if (!ramblock) {
1968 * Shouldn't happen, we can't reuse the last RAMBlock if
1969 * it's the 1st request.
1971 error_report("ram_save_queue_pages no previous block");
1972 return -1;
1974 } else {
1975 ramblock = qemu_ram_block_by_name(rbname);
1977 if (!ramblock) {
1978 /* We shouldn't be asked for a non-existent RAMBlock */
1979 error_report("ram_save_queue_pages no block '%s'", rbname);
1980 return -1;
1982 rs->last_req_rb = ramblock;
1984 trace_ram_save_queue_pages(ramblock->idstr, start, len);
1985 if (!offset_in_ramblock(ramblock, start + len - 1)) {
1986 error_report("%s request overrun start=" RAM_ADDR_FMT " len="
1987 RAM_ADDR_FMT " blocklen=" RAM_ADDR_FMT,
1988 __func__, start, len, ramblock->used_length);
1989 return -1;
1993 * When with postcopy preempt, we send back the page directly in the
1994 * rp-return thread.
1996 if (postcopy_preempt_active()) {
1997 ram_addr_t page_start = start >> TARGET_PAGE_BITS;
1998 size_t page_size = qemu_ram_pagesize(ramblock);
1999 PageSearchStatus *pss = &ram_state->pss[RAM_CHANNEL_POSTCOPY];
2000 int ret = 0;
2002 qemu_mutex_lock(&rs->bitmap_mutex);
2004 pss_init(pss, ramblock, page_start);
2006 * Always use the preempt channel, and make sure it's there. It's
2007 * safe to access without lock, because when rp-thread is running
2008 * we should be the only one who operates on the qemufile
2010 pss->pss_channel = migrate_get_current()->postcopy_qemufile_src;
2011 assert(pss->pss_channel);
2014 * It must be either one or multiple of host page size. Just
2015 * assert; if something wrong we're mostly split brain anyway.
2017 assert(len % page_size == 0);
2018 while (len) {
2019 if (ram_save_host_page_urgent(pss)) {
2020 error_report("%s: ram_save_host_page_urgent() failed: "
2021 "ramblock=%s, start_addr=0x"RAM_ADDR_FMT,
2022 __func__, ramblock->idstr, start);
2023 ret = -1;
2024 break;
2027 * NOTE: after ram_save_host_page_urgent() succeeded, pss->page
2028 * will automatically be moved and point to the next host page
2029 * we're going to send, so no need to update here.
2031 * Normally QEMU never sends >1 host page in requests, so
2032 * logically we don't even need that as the loop should only
2033 * run once, but just to be consistent.
2035 len -= page_size;
2037 qemu_mutex_unlock(&rs->bitmap_mutex);
2039 return ret;
2042 struct RAMSrcPageRequest *new_entry =
2043 g_new0(struct RAMSrcPageRequest, 1);
2044 new_entry->rb = ramblock;
2045 new_entry->offset = start;
2046 new_entry->len = len;
2048 memory_region_ref(ramblock->mr);
2049 qemu_mutex_lock(&rs->src_page_req_mutex);
2050 QSIMPLEQ_INSERT_TAIL(&rs->src_page_requests, new_entry, next_req);
2051 migration_make_urgent_request();
2052 qemu_mutex_unlock(&rs->src_page_req_mutex);
2054 return 0;
2057 static bool save_page_use_compression(RAMState *rs)
2059 if (!migrate_compress()) {
2060 return false;
2064 * If xbzrle is enabled (e.g., after first round of migration), stop
2065 * using the data compression. In theory, xbzrle can do better than
2066 * compression.
2068 if (rs->xbzrle_started) {
2069 return false;
2072 return true;
2076 * try to compress the page before posting it out, return true if the page
2077 * has been properly handled by compression, otherwise needs other
2078 * paths to handle it
2080 static bool save_compress_page(RAMState *rs, PageSearchStatus *pss,
2081 RAMBlock *block, ram_addr_t offset)
2083 if (!save_page_use_compression(rs)) {
2084 return false;
2088 * When starting the process of a new block, the first page of
2089 * the block should be sent out before other pages in the same
2090 * block, and all the pages in last block should have been sent
2091 * out, keeping this order is important, because the 'cont' flag
2092 * is used to avoid resending the block name.
2094 * We post the fist page as normal page as compression will take
2095 * much CPU resource.
2097 if (block != pss->last_sent_block) {
2098 ram_flush_compressed_data(rs);
2099 return false;
2102 if (compress_page_with_multi_thread(block, offset, send_queued_data) > 0) {
2103 return true;
2106 compression_counters.busy++;
2107 return false;
2111 * ram_save_target_page_legacy: save one target page
2113 * Returns the number of pages written
2115 * @rs: current RAM state
2116 * @pss: data about the page we want to send
2118 static int ram_save_target_page_legacy(RAMState *rs, PageSearchStatus *pss)
2120 RAMBlock *block = pss->block;
2121 ram_addr_t offset = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS;
2122 int res;
2124 if (control_save_page(pss, block, offset, &res)) {
2125 return res;
2128 if (save_compress_page(rs, pss, block, offset)) {
2129 return 1;
2132 res = save_zero_page(pss, pss->pss_channel, block, offset);
2133 if (res > 0) {
2134 /* Must let xbzrle know, otherwise a previous (now 0'd) cached
2135 * page would be stale
2137 if (rs->xbzrle_started) {
2138 XBZRLE_cache_lock();
2139 xbzrle_cache_zero_page(rs, block->offset + offset);
2140 XBZRLE_cache_unlock();
2142 return res;
2146 * Do not use multifd in postcopy as one whole host page should be
2147 * placed. Meanwhile postcopy requires atomic update of pages, so even
2148 * if host page size == guest page size the dest guest during run may
2149 * still see partially copied pages which is data corruption.
2151 if (migrate_multifd() && !migration_in_postcopy()) {
2152 return ram_save_multifd_page(pss->pss_channel, block, offset);
2155 return ram_save_page(rs, pss);
2158 /* Should be called before sending a host page */
2159 static void pss_host_page_prepare(PageSearchStatus *pss)
2161 /* How many guest pages are there in one host page? */
2162 size_t guest_pfns = qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS;
2164 pss->host_page_sending = true;
2165 if (guest_pfns <= 1) {
2167 * This covers both when guest psize == host psize, or when guest
2168 * has larger psize than the host (guest_pfns==0).
2170 * For the latter, we always send one whole guest page per
2171 * iteration of the host page (example: an Alpha VM on x86 host
2172 * will have guest psize 8K while host psize 4K).
2174 pss->host_page_start = pss->page;
2175 pss->host_page_end = pss->page + 1;
2176 } else {
2178 * The host page spans over multiple guest pages, we send them
2179 * within the same host page iteration.
2181 pss->host_page_start = ROUND_DOWN(pss->page, guest_pfns);
2182 pss->host_page_end = ROUND_UP(pss->page + 1, guest_pfns);
2187 * Whether the page pointed by PSS is within the host page being sent.
2188 * Must be called after a previous pss_host_page_prepare().
2190 static bool pss_within_range(PageSearchStatus *pss)
2192 ram_addr_t ram_addr;
2194 assert(pss->host_page_sending);
2196 /* Over host-page boundary? */
2197 if (pss->page >= pss->host_page_end) {
2198 return false;
2201 ram_addr = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS;
2203 return offset_in_ramblock(pss->block, ram_addr);
2206 static void pss_host_page_finish(PageSearchStatus *pss)
2208 pss->host_page_sending = false;
2209 /* This is not needed, but just to reset it */
2210 pss->host_page_start = pss->host_page_end = 0;
2214 * Send an urgent host page specified by `pss'. Need to be called with
2215 * bitmap_mutex held.
2217 * Returns 0 if save host page succeeded, false otherwise.
2219 static int ram_save_host_page_urgent(PageSearchStatus *pss)
2221 bool page_dirty, sent = false;
2222 RAMState *rs = ram_state;
2223 int ret = 0;
2225 trace_postcopy_preempt_send_host_page(pss->block->idstr, pss->page);
2226 pss_host_page_prepare(pss);
2229 * If precopy is sending the same page, let it be done in precopy, or
2230 * we could send the same page in two channels and none of them will
2231 * receive the whole page.
2233 if (pss_overlap(pss, &ram_state->pss[RAM_CHANNEL_PRECOPY])) {
2234 trace_postcopy_preempt_hit(pss->block->idstr,
2235 pss->page << TARGET_PAGE_BITS);
2236 return 0;
2239 do {
2240 page_dirty = migration_bitmap_clear_dirty(rs, pss->block, pss->page);
2242 if (page_dirty) {
2243 /* Be strict to return code; it must be 1, or what else? */
2244 if (migration_ops->ram_save_target_page(rs, pss) != 1) {
2245 error_report_once("%s: ram_save_target_page failed", __func__);
2246 ret = -1;
2247 goto out;
2249 sent = true;
2251 pss_find_next_dirty(pss);
2252 } while (pss_within_range(pss));
2253 out:
2254 pss_host_page_finish(pss);
2255 /* For urgent requests, flush immediately if sent */
2256 if (sent) {
2257 qemu_fflush(pss->pss_channel);
2259 return ret;
2263 * ram_save_host_page: save a whole host page
2265 * Starting at *offset send pages up to the end of the current host
2266 * page. It's valid for the initial offset to point into the middle of
2267 * a host page in which case the remainder of the hostpage is sent.
2268 * Only dirty target pages are sent. Note that the host page size may
2269 * be a huge page for this block.
2271 * The saving stops at the boundary of the used_length of the block
2272 * if the RAMBlock isn't a multiple of the host page size.
2274 * The caller must be with ram_state.bitmap_mutex held to call this
2275 * function. Note that this function can temporarily release the lock, but
2276 * when the function is returned it'll make sure the lock is still held.
2278 * Returns the number of pages written or negative on error
2280 * @rs: current RAM state
2281 * @pss: data about the page we want to send
2283 static int ram_save_host_page(RAMState *rs, PageSearchStatus *pss)
2285 bool page_dirty, preempt_active = postcopy_preempt_active();
2286 int tmppages, pages = 0;
2287 size_t pagesize_bits =
2288 qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS;
2289 unsigned long start_page = pss->page;
2290 int res;
2292 if (migrate_ram_is_ignored(pss->block)) {
2293 error_report("block %s should not be migrated !", pss->block->idstr);
2294 return 0;
2297 /* Update host page boundary information */
2298 pss_host_page_prepare(pss);
2300 do {
2301 page_dirty = migration_bitmap_clear_dirty(rs, pss->block, pss->page);
2303 /* Check the pages is dirty and if it is send it */
2304 if (page_dirty) {
2306 * Properly yield the lock only in postcopy preempt mode
2307 * because both migration thread and rp-return thread can
2308 * operate on the bitmaps.
2310 if (preempt_active) {
2311 qemu_mutex_unlock(&rs->bitmap_mutex);
2313 tmppages = migration_ops->ram_save_target_page(rs, pss);
2314 if (tmppages >= 0) {
2315 pages += tmppages;
2317 * Allow rate limiting to happen in the middle of huge pages if
2318 * something is sent in the current iteration.
2320 if (pagesize_bits > 1 && tmppages > 0) {
2321 migration_rate_limit();
2324 if (preempt_active) {
2325 qemu_mutex_lock(&rs->bitmap_mutex);
2327 } else {
2328 tmppages = 0;
2331 if (tmppages < 0) {
2332 pss_host_page_finish(pss);
2333 return tmppages;
2336 pss_find_next_dirty(pss);
2337 } while (pss_within_range(pss));
2339 pss_host_page_finish(pss);
2341 res = ram_save_release_protection(rs, pss, start_page);
2342 return (res < 0 ? res : pages);
2346 * ram_find_and_save_block: finds a dirty page and sends it to f
2348 * Called within an RCU critical section.
2350 * Returns the number of pages written where zero means no dirty pages,
2351 * or negative on error
2353 * @rs: current RAM state
2355 * On systems where host-page-size > target-page-size it will send all the
2356 * pages in a host page that are dirty.
2358 static int ram_find_and_save_block(RAMState *rs)
2360 PageSearchStatus *pss = &rs->pss[RAM_CHANNEL_PRECOPY];
2361 int pages = 0;
2363 /* No dirty page as there is zero RAM */
2364 if (!rs->ram_bytes_total) {
2365 return pages;
2369 * Always keep last_seen_block/last_page valid during this procedure,
2370 * because find_dirty_block() relies on these values (e.g., we compare
2371 * last_seen_block with pss.block to see whether we searched all the
2372 * ramblocks) to detect the completion of migration. Having NULL value
2373 * of last_seen_block can conditionally cause below loop to run forever.
2375 if (!rs->last_seen_block) {
2376 rs->last_seen_block = QLIST_FIRST_RCU(&ram_list.blocks);
2377 rs->last_page = 0;
2380 pss_init(pss, rs->last_seen_block, rs->last_page);
2382 while (true){
2383 if (!get_queued_page(rs, pss)) {
2384 /* priority queue empty, so just search for something dirty */
2385 int res = find_dirty_block(rs, pss);
2386 if (res != PAGE_DIRTY_FOUND) {
2387 if (res == PAGE_ALL_CLEAN) {
2388 break;
2389 } else if (res == PAGE_TRY_AGAIN) {
2390 continue;
2391 } else if (res < 0) {
2392 pages = res;
2393 break;
2397 pages = ram_save_host_page(rs, pss);
2398 if (pages) {
2399 break;
2403 rs->last_seen_block = pss->block;
2404 rs->last_page = pss->page;
2406 return pages;
2409 static uint64_t ram_bytes_total_with_ignored(void)
2411 RAMBlock *block;
2412 uint64_t total = 0;
2414 RCU_READ_LOCK_GUARD();
2416 RAMBLOCK_FOREACH_MIGRATABLE(block) {
2417 total += block->used_length;
2419 return total;
2422 uint64_t ram_bytes_total(void)
2424 RAMBlock *block;
2425 uint64_t total = 0;
2427 RCU_READ_LOCK_GUARD();
2429 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2430 total += block->used_length;
2432 return total;
2435 static void xbzrle_load_setup(void)
2437 XBZRLE.decoded_buf = g_malloc(TARGET_PAGE_SIZE);
2440 static void xbzrle_load_cleanup(void)
2442 g_free(XBZRLE.decoded_buf);
2443 XBZRLE.decoded_buf = NULL;
2446 static void ram_state_cleanup(RAMState **rsp)
2448 if (*rsp) {
2449 migration_page_queue_free(*rsp);
2450 qemu_mutex_destroy(&(*rsp)->bitmap_mutex);
2451 qemu_mutex_destroy(&(*rsp)->src_page_req_mutex);
2452 g_free(*rsp);
2453 *rsp = NULL;
2457 static void xbzrle_cleanup(void)
2459 XBZRLE_cache_lock();
2460 if (XBZRLE.cache) {
2461 cache_fini(XBZRLE.cache);
2462 g_free(XBZRLE.encoded_buf);
2463 g_free(XBZRLE.current_buf);
2464 g_free(XBZRLE.zero_target_page);
2465 XBZRLE.cache = NULL;
2466 XBZRLE.encoded_buf = NULL;
2467 XBZRLE.current_buf = NULL;
2468 XBZRLE.zero_target_page = NULL;
2470 XBZRLE_cache_unlock();
2473 static void ram_save_cleanup(void *opaque)
2475 RAMState **rsp = opaque;
2476 RAMBlock *block;
2478 /* We don't use dirty log with background snapshots */
2479 if (!migrate_background_snapshot()) {
2480 /* caller have hold iothread lock or is in a bh, so there is
2481 * no writing race against the migration bitmap
2483 if (global_dirty_tracking & GLOBAL_DIRTY_MIGRATION) {
2485 * do not stop dirty log without starting it, since
2486 * memory_global_dirty_log_stop will assert that
2487 * memory_global_dirty_log_start/stop used in pairs
2489 memory_global_dirty_log_stop(GLOBAL_DIRTY_MIGRATION);
2493 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2494 g_free(block->clear_bmap);
2495 block->clear_bmap = NULL;
2496 g_free(block->bmap);
2497 block->bmap = NULL;
2500 xbzrle_cleanup();
2501 compress_threads_save_cleanup();
2502 ram_state_cleanup(rsp);
2503 g_free(migration_ops);
2504 migration_ops = NULL;
2507 static void ram_state_reset(RAMState *rs)
2509 int i;
2511 for (i = 0; i < RAM_CHANNEL_MAX; i++) {
2512 rs->pss[i].last_sent_block = NULL;
2515 rs->last_seen_block = NULL;
2516 rs->last_page = 0;
2517 rs->last_version = ram_list.version;
2518 rs->xbzrle_started = false;
2521 #define MAX_WAIT 50 /* ms, half buffered_file limit */
2523 /* **** functions for postcopy ***** */
2525 void ram_postcopy_migrated_memory_release(MigrationState *ms)
2527 struct RAMBlock *block;
2529 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2530 unsigned long *bitmap = block->bmap;
2531 unsigned long range = block->used_length >> TARGET_PAGE_BITS;
2532 unsigned long run_start = find_next_zero_bit(bitmap, range, 0);
2534 while (run_start < range) {
2535 unsigned long run_end = find_next_bit(bitmap, range, run_start + 1);
2536 ram_discard_range(block->idstr,
2537 ((ram_addr_t)run_start) << TARGET_PAGE_BITS,
2538 ((ram_addr_t)(run_end - run_start))
2539 << TARGET_PAGE_BITS);
2540 run_start = find_next_zero_bit(bitmap, range, run_end + 1);
2546 * postcopy_send_discard_bm_ram: discard a RAMBlock
2548 * Callback from postcopy_each_ram_send_discard for each RAMBlock
2550 * @ms: current migration state
2551 * @block: RAMBlock to discard
2553 static void postcopy_send_discard_bm_ram(MigrationState *ms, RAMBlock *block)
2555 unsigned long end = block->used_length >> TARGET_PAGE_BITS;
2556 unsigned long current;
2557 unsigned long *bitmap = block->bmap;
2559 for (current = 0; current < end; ) {
2560 unsigned long one = find_next_bit(bitmap, end, current);
2561 unsigned long zero, discard_length;
2563 if (one >= end) {
2564 break;
2567 zero = find_next_zero_bit(bitmap, end, one + 1);
2569 if (zero >= end) {
2570 discard_length = end - one;
2571 } else {
2572 discard_length = zero - one;
2574 postcopy_discard_send_range(ms, one, discard_length);
2575 current = one + discard_length;
2579 static void postcopy_chunk_hostpages_pass(MigrationState *ms, RAMBlock *block);
2582 * postcopy_each_ram_send_discard: discard all RAMBlocks
2584 * Utility for the outgoing postcopy code.
2585 * Calls postcopy_send_discard_bm_ram for each RAMBlock
2586 * passing it bitmap indexes and name.
2587 * (qemu_ram_foreach_block ends up passing unscaled lengths
2588 * which would mean postcopy code would have to deal with target page)
2590 * @ms: current migration state
2592 static void postcopy_each_ram_send_discard(MigrationState *ms)
2594 struct RAMBlock *block;
2596 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2597 postcopy_discard_send_init(ms, block->idstr);
2600 * Deal with TPS != HPS and huge pages. It discard any partially sent
2601 * host-page size chunks, mark any partially dirty host-page size
2602 * chunks as all dirty. In this case the host-page is the host-page
2603 * for the particular RAMBlock, i.e. it might be a huge page.
2605 postcopy_chunk_hostpages_pass(ms, block);
2608 * Postcopy sends chunks of bitmap over the wire, but it
2609 * just needs indexes at this point, avoids it having
2610 * target page specific code.
2612 postcopy_send_discard_bm_ram(ms, block);
2613 postcopy_discard_send_finish(ms);
2618 * postcopy_chunk_hostpages_pass: canonicalize bitmap in hostpages
2620 * Helper for postcopy_chunk_hostpages; it's called twice to
2621 * canonicalize the two bitmaps, that are similar, but one is
2622 * inverted.
2624 * Postcopy requires that all target pages in a hostpage are dirty or
2625 * clean, not a mix. This function canonicalizes the bitmaps.
2627 * @ms: current migration state
2628 * @block: block that contains the page we want to canonicalize
2630 static void postcopy_chunk_hostpages_pass(MigrationState *ms, RAMBlock *block)
2632 RAMState *rs = ram_state;
2633 unsigned long *bitmap = block->bmap;
2634 unsigned int host_ratio = block->page_size / TARGET_PAGE_SIZE;
2635 unsigned long pages = block->used_length >> TARGET_PAGE_BITS;
2636 unsigned long run_start;
2638 if (block->page_size == TARGET_PAGE_SIZE) {
2639 /* Easy case - TPS==HPS for a non-huge page RAMBlock */
2640 return;
2643 /* Find a dirty page */
2644 run_start = find_next_bit(bitmap, pages, 0);
2646 while (run_start < pages) {
2649 * If the start of this run of pages is in the middle of a host
2650 * page, then we need to fixup this host page.
2652 if (QEMU_IS_ALIGNED(run_start, host_ratio)) {
2653 /* Find the end of this run */
2654 run_start = find_next_zero_bit(bitmap, pages, run_start + 1);
2656 * If the end isn't at the start of a host page, then the
2657 * run doesn't finish at the end of a host page
2658 * and we need to discard.
2662 if (!QEMU_IS_ALIGNED(run_start, host_ratio)) {
2663 unsigned long page;
2664 unsigned long fixup_start_addr = QEMU_ALIGN_DOWN(run_start,
2665 host_ratio);
2666 run_start = QEMU_ALIGN_UP(run_start, host_ratio);
2668 /* Clean up the bitmap */
2669 for (page = fixup_start_addr;
2670 page < fixup_start_addr + host_ratio; page++) {
2672 * Remark them as dirty, updating the count for any pages
2673 * that weren't previously dirty.
2675 rs->migration_dirty_pages += !test_and_set_bit(page, bitmap);
2679 /* Find the next dirty page for the next iteration */
2680 run_start = find_next_bit(bitmap, pages, run_start);
2685 * ram_postcopy_send_discard_bitmap: transmit the discard bitmap
2687 * Transmit the set of pages to be discarded after precopy to the target
2688 * these are pages that:
2689 * a) Have been previously transmitted but are now dirty again
2690 * b) Pages that have never been transmitted, this ensures that
2691 * any pages on the destination that have been mapped by background
2692 * tasks get discarded (transparent huge pages is the specific concern)
2693 * Hopefully this is pretty sparse
2695 * @ms: current migration state
2697 void ram_postcopy_send_discard_bitmap(MigrationState *ms)
2699 RAMState *rs = ram_state;
2701 RCU_READ_LOCK_GUARD();
2703 /* This should be our last sync, the src is now paused */
2704 migration_bitmap_sync(rs, false);
2706 /* Easiest way to make sure we don't resume in the middle of a host-page */
2707 rs->pss[RAM_CHANNEL_PRECOPY].last_sent_block = NULL;
2708 rs->last_seen_block = NULL;
2709 rs->last_page = 0;
2711 postcopy_each_ram_send_discard(ms);
2713 trace_ram_postcopy_send_discard_bitmap();
2717 * ram_discard_range: discard dirtied pages at the beginning of postcopy
2719 * Returns zero on success
2721 * @rbname: name of the RAMBlock of the request. NULL means the
2722 * same that last one.
2723 * @start: RAMBlock starting page
2724 * @length: RAMBlock size
2726 int ram_discard_range(const char *rbname, uint64_t start, size_t length)
2728 trace_ram_discard_range(rbname, start, length);
2730 RCU_READ_LOCK_GUARD();
2731 RAMBlock *rb = qemu_ram_block_by_name(rbname);
2733 if (!rb) {
2734 error_report("ram_discard_range: Failed to find block '%s'", rbname);
2735 return -1;
2739 * On source VM, we don't need to update the received bitmap since
2740 * we don't even have one.
2742 if (rb->receivedmap) {
2743 bitmap_clear(rb->receivedmap, start >> qemu_target_page_bits(),
2744 length >> qemu_target_page_bits());
2747 return ram_block_discard_range(rb, start, length);
2751 * For every allocation, we will try not to crash the VM if the
2752 * allocation failed.
2754 static int xbzrle_init(void)
2756 Error *local_err = NULL;
2758 if (!migrate_xbzrle()) {
2759 return 0;
2762 XBZRLE_cache_lock();
2764 XBZRLE.zero_target_page = g_try_malloc0(TARGET_PAGE_SIZE);
2765 if (!XBZRLE.zero_target_page) {
2766 error_report("%s: Error allocating zero page", __func__);
2767 goto err_out;
2770 XBZRLE.cache = cache_init(migrate_xbzrle_cache_size(),
2771 TARGET_PAGE_SIZE, &local_err);
2772 if (!XBZRLE.cache) {
2773 error_report_err(local_err);
2774 goto free_zero_page;
2777 XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE);
2778 if (!XBZRLE.encoded_buf) {
2779 error_report("%s: Error allocating encoded_buf", __func__);
2780 goto free_cache;
2783 XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE);
2784 if (!XBZRLE.current_buf) {
2785 error_report("%s: Error allocating current_buf", __func__);
2786 goto free_encoded_buf;
2789 /* We are all good */
2790 XBZRLE_cache_unlock();
2791 return 0;
2793 free_encoded_buf:
2794 g_free(XBZRLE.encoded_buf);
2795 XBZRLE.encoded_buf = NULL;
2796 free_cache:
2797 cache_fini(XBZRLE.cache);
2798 XBZRLE.cache = NULL;
2799 free_zero_page:
2800 g_free(XBZRLE.zero_target_page);
2801 XBZRLE.zero_target_page = NULL;
2802 err_out:
2803 XBZRLE_cache_unlock();
2804 return -ENOMEM;
2807 static int ram_state_init(RAMState **rsp)
2809 *rsp = g_try_new0(RAMState, 1);
2811 if (!*rsp) {
2812 error_report("%s: Init ramstate fail", __func__);
2813 return -1;
2816 qemu_mutex_init(&(*rsp)->bitmap_mutex);
2817 qemu_mutex_init(&(*rsp)->src_page_req_mutex);
2818 QSIMPLEQ_INIT(&(*rsp)->src_page_requests);
2819 (*rsp)->ram_bytes_total = ram_bytes_total();
2822 * Count the total number of pages used by ram blocks not including any
2823 * gaps due to alignment or unplugs.
2824 * This must match with the initial values of dirty bitmap.
2826 (*rsp)->migration_dirty_pages = (*rsp)->ram_bytes_total >> TARGET_PAGE_BITS;
2827 ram_state_reset(*rsp);
2829 return 0;
2832 static void ram_list_init_bitmaps(void)
2834 MigrationState *ms = migrate_get_current();
2835 RAMBlock *block;
2836 unsigned long pages;
2837 uint8_t shift;
2839 /* Skip setting bitmap if there is no RAM */
2840 if (ram_bytes_total()) {
2841 shift = ms->clear_bitmap_shift;
2842 if (shift > CLEAR_BITMAP_SHIFT_MAX) {
2843 error_report("clear_bitmap_shift (%u) too big, using "
2844 "max value (%u)", shift, CLEAR_BITMAP_SHIFT_MAX);
2845 shift = CLEAR_BITMAP_SHIFT_MAX;
2846 } else if (shift < CLEAR_BITMAP_SHIFT_MIN) {
2847 error_report("clear_bitmap_shift (%u) too small, using "
2848 "min value (%u)", shift, CLEAR_BITMAP_SHIFT_MIN);
2849 shift = CLEAR_BITMAP_SHIFT_MIN;
2852 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2853 pages = block->max_length >> TARGET_PAGE_BITS;
2855 * The initial dirty bitmap for migration must be set with all
2856 * ones to make sure we'll migrate every guest RAM page to
2857 * destination.
2858 * Here we set RAMBlock.bmap all to 1 because when rebegin a
2859 * new migration after a failed migration, ram_list.
2860 * dirty_memory[DIRTY_MEMORY_MIGRATION] don't include the whole
2861 * guest memory.
2863 block->bmap = bitmap_new(pages);
2864 bitmap_set(block->bmap, 0, pages);
2865 block->clear_bmap_shift = shift;
2866 block->clear_bmap = bitmap_new(clear_bmap_size(pages, shift));
2871 static void migration_bitmap_clear_discarded_pages(RAMState *rs)
2873 unsigned long pages;
2874 RAMBlock *rb;
2876 RCU_READ_LOCK_GUARD();
2878 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
2879 pages = ramblock_dirty_bitmap_clear_discarded_pages(rb);
2880 rs->migration_dirty_pages -= pages;
2884 static void ram_init_bitmaps(RAMState *rs)
2886 /* For memory_global_dirty_log_start below. */
2887 qemu_mutex_lock_iothread();
2888 qemu_mutex_lock_ramlist();
2890 WITH_RCU_READ_LOCK_GUARD() {
2891 ram_list_init_bitmaps();
2892 /* We don't use dirty log with background snapshots */
2893 if (!migrate_background_snapshot()) {
2894 memory_global_dirty_log_start(GLOBAL_DIRTY_MIGRATION);
2895 migration_bitmap_sync_precopy(rs, false);
2898 qemu_mutex_unlock_ramlist();
2899 qemu_mutex_unlock_iothread();
2902 * After an eventual first bitmap sync, fixup the initial bitmap
2903 * containing all 1s to exclude any discarded pages from migration.
2905 migration_bitmap_clear_discarded_pages(rs);
2908 static int ram_init_all(RAMState **rsp)
2910 if (ram_state_init(rsp)) {
2911 return -1;
2914 if (xbzrle_init()) {
2915 ram_state_cleanup(rsp);
2916 return -1;
2919 ram_init_bitmaps(*rsp);
2921 return 0;
2924 static void ram_state_resume_prepare(RAMState *rs, QEMUFile *out)
2926 RAMBlock *block;
2927 uint64_t pages = 0;
2930 * Postcopy is not using xbzrle/compression, so no need for that.
2931 * Also, since source are already halted, we don't need to care
2932 * about dirty page logging as well.
2935 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2936 pages += bitmap_count_one(block->bmap,
2937 block->used_length >> TARGET_PAGE_BITS);
2940 /* This may not be aligned with current bitmaps. Recalculate. */
2941 rs->migration_dirty_pages = pages;
2943 ram_state_reset(rs);
2945 /* Update RAMState cache of output QEMUFile */
2946 rs->pss[RAM_CHANNEL_PRECOPY].pss_channel = out;
2948 trace_ram_state_resume_prepare(pages);
2952 * This function clears bits of the free pages reported by the caller from the
2953 * migration dirty bitmap. @addr is the host address corresponding to the
2954 * start of the continuous guest free pages, and @len is the total bytes of
2955 * those pages.
2957 void qemu_guest_free_page_hint(void *addr, size_t len)
2959 RAMBlock *block;
2960 ram_addr_t offset;
2961 size_t used_len, start, npages;
2962 MigrationState *s = migrate_get_current();
2964 /* This function is currently expected to be used during live migration */
2965 if (!migration_is_setup_or_active(s->state)) {
2966 return;
2969 for (; len > 0; len -= used_len, addr += used_len) {
2970 block = qemu_ram_block_from_host(addr, false, &offset);
2971 if (unlikely(!block || offset >= block->used_length)) {
2973 * The implementation might not support RAMBlock resize during
2974 * live migration, but it could happen in theory with future
2975 * updates. So we add a check here to capture that case.
2977 error_report_once("%s unexpected error", __func__);
2978 return;
2981 if (len <= block->used_length - offset) {
2982 used_len = len;
2983 } else {
2984 used_len = block->used_length - offset;
2987 start = offset >> TARGET_PAGE_BITS;
2988 npages = used_len >> TARGET_PAGE_BITS;
2990 qemu_mutex_lock(&ram_state->bitmap_mutex);
2992 * The skipped free pages are equavalent to be sent from clear_bmap's
2993 * perspective, so clear the bits from the memory region bitmap which
2994 * are initially set. Otherwise those skipped pages will be sent in
2995 * the next round after syncing from the memory region bitmap.
2997 migration_clear_memory_region_dirty_bitmap_range(block, start, npages);
2998 ram_state->migration_dirty_pages -=
2999 bitmap_count_one_with_offset(block->bmap, start, npages);
3000 bitmap_clear(block->bmap, start, npages);
3001 qemu_mutex_unlock(&ram_state->bitmap_mutex);
3006 * Each of ram_save_setup, ram_save_iterate and ram_save_complete has
3007 * long-running RCU critical section. When rcu-reclaims in the code
3008 * start to become numerous it will be necessary to reduce the
3009 * granularity of these critical sections.
3013 * ram_save_setup: Setup RAM for migration
3015 * Returns zero to indicate success and negative for error
3017 * @f: QEMUFile where to send the data
3018 * @opaque: RAMState pointer
3020 static int ram_save_setup(QEMUFile *f, void *opaque)
3022 RAMState **rsp = opaque;
3023 RAMBlock *block;
3024 int ret;
3026 if (compress_threads_save_setup()) {
3027 return -1;
3030 /* migration has already setup the bitmap, reuse it. */
3031 if (!migration_in_colo_state()) {
3032 if (ram_init_all(rsp) != 0) {
3033 compress_threads_save_cleanup();
3034 return -1;
3037 (*rsp)->pss[RAM_CHANNEL_PRECOPY].pss_channel = f;
3039 WITH_RCU_READ_LOCK_GUARD() {
3040 qemu_put_be64(f, ram_bytes_total_with_ignored()
3041 | RAM_SAVE_FLAG_MEM_SIZE);
3043 RAMBLOCK_FOREACH_MIGRATABLE(block) {
3044 qemu_put_byte(f, strlen(block->idstr));
3045 qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr));
3046 qemu_put_be64(f, block->used_length);
3047 if (migrate_postcopy_ram() && block->page_size !=
3048 qemu_host_page_size) {
3049 qemu_put_be64(f, block->page_size);
3051 if (migrate_ignore_shared()) {
3052 qemu_put_be64(f, block->mr->addr);
3057 ram_control_before_iterate(f, RAM_CONTROL_SETUP);
3058 ram_control_after_iterate(f, RAM_CONTROL_SETUP);
3060 migration_ops = g_malloc0(sizeof(MigrationOps));
3061 migration_ops->ram_save_target_page = ram_save_target_page_legacy;
3062 ret = multifd_send_sync_main(f);
3063 if (ret < 0) {
3064 return ret;
3067 if (!migrate_multifd_flush_after_each_section()) {
3068 qemu_put_be64(f, RAM_SAVE_FLAG_MULTIFD_FLUSH);
3071 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3072 qemu_fflush(f);
3074 return 0;
3078 * ram_save_iterate: iterative stage for migration
3080 * Returns zero to indicate success and negative for error
3082 * @f: QEMUFile where to send the data
3083 * @opaque: RAMState pointer
3085 static int ram_save_iterate(QEMUFile *f, void *opaque)
3087 RAMState **temp = opaque;
3088 RAMState *rs = *temp;
3089 int ret = 0;
3090 int i;
3091 int64_t t0;
3092 int done = 0;
3094 if (blk_mig_bulk_active()) {
3095 /* Avoid transferring ram during bulk phase of block migration as
3096 * the bulk phase will usually take a long time and transferring
3097 * ram updates during that time is pointless. */
3098 goto out;
3102 * We'll take this lock a little bit long, but it's okay for two reasons.
3103 * Firstly, the only possible other thread to take it is who calls
3104 * qemu_guest_free_page_hint(), which should be rare; secondly, see
3105 * MAX_WAIT (if curious, further see commit 4508bd9ed8053ce) below, which
3106 * guarantees that we'll at least released it in a regular basis.
3108 qemu_mutex_lock(&rs->bitmap_mutex);
3109 WITH_RCU_READ_LOCK_GUARD() {
3110 if (ram_list.version != rs->last_version) {
3111 ram_state_reset(rs);
3114 /* Read version before ram_list.blocks */
3115 smp_rmb();
3117 ram_control_before_iterate(f, RAM_CONTROL_ROUND);
3119 t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
3120 i = 0;
3121 while ((ret = migration_rate_exceeded(f)) == 0 ||
3122 postcopy_has_request(rs)) {
3123 int pages;
3125 if (qemu_file_get_error(f)) {
3126 break;
3129 pages = ram_find_and_save_block(rs);
3130 /* no more pages to sent */
3131 if (pages == 0) {
3132 done = 1;
3133 break;
3136 if (pages < 0) {
3137 qemu_file_set_error(f, pages);
3138 break;
3141 rs->target_page_count += pages;
3144 * During postcopy, it is necessary to make sure one whole host
3145 * page is sent in one chunk.
3147 if (migrate_postcopy_ram()) {
3148 ram_flush_compressed_data(rs);
3152 * we want to check in the 1st loop, just in case it was the 1st
3153 * time and we had to sync the dirty bitmap.
3154 * qemu_clock_get_ns() is a bit expensive, so we only check each
3155 * some iterations
3157 if ((i & 63) == 0) {
3158 uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) /
3159 1000000;
3160 if (t1 > MAX_WAIT) {
3161 trace_ram_save_iterate_big_wait(t1, i);
3162 break;
3165 i++;
3168 qemu_mutex_unlock(&rs->bitmap_mutex);
3171 * Must occur before EOS (or any QEMUFile operation)
3172 * because of RDMA protocol.
3174 ram_control_after_iterate(f, RAM_CONTROL_ROUND);
3176 out:
3177 if (ret >= 0
3178 && migration_is_setup_or_active(migrate_get_current()->state)) {
3179 if (migrate_multifd_flush_after_each_section()) {
3180 ret = multifd_send_sync_main(rs->pss[RAM_CHANNEL_PRECOPY].pss_channel);
3181 if (ret < 0) {
3182 return ret;
3186 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3187 qemu_fflush(f);
3188 ram_transferred_add(8);
3190 ret = qemu_file_get_error(f);
3192 if (ret < 0) {
3193 return ret;
3196 return done;
3200 * ram_save_complete: function called to send the remaining amount of ram
3202 * Returns zero to indicate success or negative on error
3204 * Called with iothread lock
3206 * @f: QEMUFile where to send the data
3207 * @opaque: RAMState pointer
3209 static int ram_save_complete(QEMUFile *f, void *opaque)
3211 RAMState **temp = opaque;
3212 RAMState *rs = *temp;
3213 int ret = 0;
3215 rs->last_stage = !migration_in_colo_state();
3217 WITH_RCU_READ_LOCK_GUARD() {
3218 if (!migration_in_postcopy()) {
3219 migration_bitmap_sync_precopy(rs, true);
3222 ram_control_before_iterate(f, RAM_CONTROL_FINISH);
3224 /* try transferring iterative blocks of memory */
3226 /* flush all remaining blocks regardless of rate limiting */
3227 qemu_mutex_lock(&rs->bitmap_mutex);
3228 while (true) {
3229 int pages;
3231 pages = ram_find_and_save_block(rs);
3232 /* no more blocks to sent */
3233 if (pages == 0) {
3234 break;
3236 if (pages < 0) {
3237 ret = pages;
3238 break;
3241 qemu_mutex_unlock(&rs->bitmap_mutex);
3243 ram_flush_compressed_data(rs);
3244 ram_control_after_iterate(f, RAM_CONTROL_FINISH);
3247 if (ret < 0) {
3248 return ret;
3251 ret = multifd_send_sync_main(rs->pss[RAM_CHANNEL_PRECOPY].pss_channel);
3252 if (ret < 0) {
3253 return ret;
3256 if (!migrate_multifd_flush_after_each_section()) {
3257 qemu_put_be64(f, RAM_SAVE_FLAG_MULTIFD_FLUSH);
3259 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3260 qemu_fflush(f);
3262 return 0;
3265 static void ram_state_pending_estimate(void *opaque, uint64_t *must_precopy,
3266 uint64_t *can_postcopy)
3268 RAMState **temp = opaque;
3269 RAMState *rs = *temp;
3271 uint64_t remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
3273 if (migrate_postcopy_ram()) {
3274 /* We can do postcopy, and all the data is postcopiable */
3275 *can_postcopy += remaining_size;
3276 } else {
3277 *must_precopy += remaining_size;
3281 static void ram_state_pending_exact(void *opaque, uint64_t *must_precopy,
3282 uint64_t *can_postcopy)
3284 MigrationState *s = migrate_get_current();
3285 RAMState **temp = opaque;
3286 RAMState *rs = *temp;
3288 uint64_t remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
3290 if (!migration_in_postcopy() && remaining_size < s->threshold_size) {
3291 qemu_mutex_lock_iothread();
3292 WITH_RCU_READ_LOCK_GUARD() {
3293 migration_bitmap_sync_precopy(rs, false);
3295 qemu_mutex_unlock_iothread();
3296 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
3299 if (migrate_postcopy_ram()) {
3300 /* We can do postcopy, and all the data is postcopiable */
3301 *can_postcopy += remaining_size;
3302 } else {
3303 *must_precopy += remaining_size;
3307 static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host)
3309 unsigned int xh_len;
3310 int xh_flags;
3311 uint8_t *loaded_data;
3313 /* extract RLE header */
3314 xh_flags = qemu_get_byte(f);
3315 xh_len = qemu_get_be16(f);
3317 if (xh_flags != ENCODING_FLAG_XBZRLE) {
3318 error_report("Failed to load XBZRLE page - wrong compression!");
3319 return -1;
3322 if (xh_len > TARGET_PAGE_SIZE) {
3323 error_report("Failed to load XBZRLE page - len overflow!");
3324 return -1;
3326 loaded_data = XBZRLE.decoded_buf;
3327 /* load data and decode */
3328 /* it can change loaded_data to point to an internal buffer */
3329 qemu_get_buffer_in_place(f, &loaded_data, xh_len);
3331 /* decode RLE */
3332 if (xbzrle_decode_buffer(loaded_data, xh_len, host,
3333 TARGET_PAGE_SIZE) == -1) {
3334 error_report("Failed to load XBZRLE page - decode error!");
3335 return -1;
3338 return 0;
3342 * ram_block_from_stream: read a RAMBlock id from the migration stream
3344 * Must be called from within a rcu critical section.
3346 * Returns a pointer from within the RCU-protected ram_list.
3348 * @mis: the migration incoming state pointer
3349 * @f: QEMUFile where to read the data from
3350 * @flags: Page flags (mostly to see if it's a continuation of previous block)
3351 * @channel: the channel we're using
3353 static inline RAMBlock *ram_block_from_stream(MigrationIncomingState *mis,
3354 QEMUFile *f, int flags,
3355 int channel)
3357 RAMBlock *block = mis->last_recv_block[channel];
3358 char id[256];
3359 uint8_t len;
3361 if (flags & RAM_SAVE_FLAG_CONTINUE) {
3362 if (!block) {
3363 error_report("Ack, bad migration stream!");
3364 return NULL;
3366 return block;
3369 len = qemu_get_byte(f);
3370 qemu_get_buffer(f, (uint8_t *)id, len);
3371 id[len] = 0;
3373 block = qemu_ram_block_by_name(id);
3374 if (!block) {
3375 error_report("Can't find block %s", id);
3376 return NULL;
3379 if (migrate_ram_is_ignored(block)) {
3380 error_report("block %s should not be migrated !", id);
3381 return NULL;
3384 mis->last_recv_block[channel] = block;
3386 return block;
3389 static inline void *host_from_ram_block_offset(RAMBlock *block,
3390 ram_addr_t offset)
3392 if (!offset_in_ramblock(block, offset)) {
3393 return NULL;
3396 return block->host + offset;
3399 static void *host_page_from_ram_block_offset(RAMBlock *block,
3400 ram_addr_t offset)
3402 /* Note: Explicitly no check against offset_in_ramblock(). */
3403 return (void *)QEMU_ALIGN_DOWN((uintptr_t)(block->host + offset),
3404 block->page_size);
3407 static ram_addr_t host_page_offset_from_ram_block_offset(RAMBlock *block,
3408 ram_addr_t offset)
3410 return ((uintptr_t)block->host + offset) & (block->page_size - 1);
3413 void colo_record_bitmap(RAMBlock *block, ram_addr_t *normal, uint32_t pages)
3415 qemu_mutex_lock(&ram_state->bitmap_mutex);
3416 for (int i = 0; i < pages; i++) {
3417 ram_addr_t offset = normal[i];
3418 ram_state->migration_dirty_pages += !test_and_set_bit(
3419 offset >> TARGET_PAGE_BITS,
3420 block->bmap);
3422 qemu_mutex_unlock(&ram_state->bitmap_mutex);
3425 static inline void *colo_cache_from_block_offset(RAMBlock *block,
3426 ram_addr_t offset, bool record_bitmap)
3428 if (!offset_in_ramblock(block, offset)) {
3429 return NULL;
3431 if (!block->colo_cache) {
3432 error_report("%s: colo_cache is NULL in block :%s",
3433 __func__, block->idstr);
3434 return NULL;
3438 * During colo checkpoint, we need bitmap of these migrated pages.
3439 * It help us to decide which pages in ram cache should be flushed
3440 * into VM's RAM later.
3442 if (record_bitmap) {
3443 colo_record_bitmap(block, &offset, 1);
3445 return block->colo_cache + offset;
3449 * ram_handle_compressed: handle the zero page case
3451 * If a page (or a whole RDMA chunk) has been
3452 * determined to be zero, then zap it.
3454 * @host: host address for the zero page
3455 * @ch: what the page is filled from. We only support zero
3456 * @size: size of the zero page
3458 void ram_handle_compressed(void *host, uint8_t ch, uint64_t size)
3460 if (ch != 0 || !buffer_is_zero(host, size)) {
3461 memset(host, ch, size);
3465 static void colo_init_ram_state(void)
3467 ram_state_init(&ram_state);
3471 * colo cache: this is for secondary VM, we cache the whole
3472 * memory of the secondary VM, it is need to hold the global lock
3473 * to call this helper.
3475 int colo_init_ram_cache(void)
3477 RAMBlock *block;
3479 WITH_RCU_READ_LOCK_GUARD() {
3480 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3481 block->colo_cache = qemu_anon_ram_alloc(block->used_length,
3482 NULL, false, false);
3483 if (!block->colo_cache) {
3484 error_report("%s: Can't alloc memory for COLO cache of block %s,"
3485 "size 0x" RAM_ADDR_FMT, __func__, block->idstr,
3486 block->used_length);
3487 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3488 if (block->colo_cache) {
3489 qemu_anon_ram_free(block->colo_cache, block->used_length);
3490 block->colo_cache = NULL;
3493 return -errno;
3495 if (!machine_dump_guest_core(current_machine)) {
3496 qemu_madvise(block->colo_cache, block->used_length,
3497 QEMU_MADV_DONTDUMP);
3503 * Record the dirty pages that sent by PVM, we use this dirty bitmap together
3504 * with to decide which page in cache should be flushed into SVM's RAM. Here
3505 * we use the same name 'ram_bitmap' as for migration.
3507 if (ram_bytes_total()) {
3508 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3509 unsigned long pages = block->max_length >> TARGET_PAGE_BITS;
3510 block->bmap = bitmap_new(pages);
3514 colo_init_ram_state();
3515 return 0;
3518 /* TODO: duplicated with ram_init_bitmaps */
3519 void colo_incoming_start_dirty_log(void)
3521 RAMBlock *block = NULL;
3522 /* For memory_global_dirty_log_start below. */
3523 qemu_mutex_lock_iothread();
3524 qemu_mutex_lock_ramlist();
3526 memory_global_dirty_log_sync(false);
3527 WITH_RCU_READ_LOCK_GUARD() {
3528 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3529 ramblock_sync_dirty_bitmap(ram_state, block);
3530 /* Discard this dirty bitmap record */
3531 bitmap_zero(block->bmap, block->max_length >> TARGET_PAGE_BITS);
3533 memory_global_dirty_log_start(GLOBAL_DIRTY_MIGRATION);
3535 ram_state->migration_dirty_pages = 0;
3536 qemu_mutex_unlock_ramlist();
3537 qemu_mutex_unlock_iothread();
3540 /* It is need to hold the global lock to call this helper */
3541 void colo_release_ram_cache(void)
3543 RAMBlock *block;
3545 memory_global_dirty_log_stop(GLOBAL_DIRTY_MIGRATION);
3546 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3547 g_free(block->bmap);
3548 block->bmap = NULL;
3551 WITH_RCU_READ_LOCK_GUARD() {
3552 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3553 if (block->colo_cache) {
3554 qemu_anon_ram_free(block->colo_cache, block->used_length);
3555 block->colo_cache = NULL;
3559 ram_state_cleanup(&ram_state);
3563 * ram_load_setup: Setup RAM for migration incoming side
3565 * Returns zero to indicate success and negative for error
3567 * @f: QEMUFile where to receive the data
3568 * @opaque: RAMState pointer
3570 static int ram_load_setup(QEMUFile *f, void *opaque)
3572 xbzrle_load_setup();
3573 ramblock_recv_map_init();
3575 return 0;
3578 static int ram_load_cleanup(void *opaque)
3580 RAMBlock *rb;
3582 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
3583 qemu_ram_block_writeback(rb);
3586 xbzrle_load_cleanup();
3588 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
3589 g_free(rb->receivedmap);
3590 rb->receivedmap = NULL;
3593 return 0;
3597 * ram_postcopy_incoming_init: allocate postcopy data structures
3599 * Returns 0 for success and negative if there was one error
3601 * @mis: current migration incoming state
3603 * Allocate data structures etc needed by incoming migration with
3604 * postcopy-ram. postcopy-ram's similarly names
3605 * postcopy_ram_incoming_init does the work.
3607 int ram_postcopy_incoming_init(MigrationIncomingState *mis)
3609 return postcopy_ram_incoming_init(mis);
3613 * ram_load_postcopy: load a page in postcopy case
3615 * Returns 0 for success or -errno in case of error
3617 * Called in postcopy mode by ram_load().
3618 * rcu_read_lock is taken prior to this being called.
3620 * @f: QEMUFile where to send the data
3621 * @channel: the channel to use for loading
3623 int ram_load_postcopy(QEMUFile *f, int channel)
3625 int flags = 0, ret = 0;
3626 bool place_needed = false;
3627 bool matches_target_page_size = false;
3628 MigrationIncomingState *mis = migration_incoming_get_current();
3629 PostcopyTmpPage *tmp_page = &mis->postcopy_tmp_pages[channel];
3631 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) {
3632 ram_addr_t addr;
3633 void *page_buffer = NULL;
3634 void *place_source = NULL;
3635 RAMBlock *block = NULL;
3636 uint8_t ch;
3637 int len;
3639 addr = qemu_get_be64(f);
3642 * If qemu file error, we should stop here, and then "addr"
3643 * may be invalid
3645 ret = qemu_file_get_error(f);
3646 if (ret) {
3647 break;
3650 flags = addr & ~TARGET_PAGE_MASK;
3651 addr &= TARGET_PAGE_MASK;
3653 trace_ram_load_postcopy_loop(channel, (uint64_t)addr, flags);
3654 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE |
3655 RAM_SAVE_FLAG_COMPRESS_PAGE)) {
3656 block = ram_block_from_stream(mis, f, flags, channel);
3657 if (!block) {
3658 ret = -EINVAL;
3659 break;
3663 * Relying on used_length is racy and can result in false positives.
3664 * We might place pages beyond used_length in case RAM was shrunk
3665 * while in postcopy, which is fine - trying to place via
3666 * UFFDIO_COPY/UFFDIO_ZEROPAGE will never segfault.
3668 if (!block->host || addr >= block->postcopy_length) {
3669 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
3670 ret = -EINVAL;
3671 break;
3673 tmp_page->target_pages++;
3674 matches_target_page_size = block->page_size == TARGET_PAGE_SIZE;
3676 * Postcopy requires that we place whole host pages atomically;
3677 * these may be huge pages for RAMBlocks that are backed by
3678 * hugetlbfs.
3679 * To make it atomic, the data is read into a temporary page
3680 * that's moved into place later.
3681 * The migration protocol uses, possibly smaller, target-pages
3682 * however the source ensures it always sends all the components
3683 * of a host page in one chunk.
3685 page_buffer = tmp_page->tmp_huge_page +
3686 host_page_offset_from_ram_block_offset(block, addr);
3687 /* If all TP are zero then we can optimise the place */
3688 if (tmp_page->target_pages == 1) {
3689 tmp_page->host_addr =
3690 host_page_from_ram_block_offset(block, addr);
3691 } else if (tmp_page->host_addr !=
3692 host_page_from_ram_block_offset(block, addr)) {
3693 /* not the 1st TP within the HP */
3694 error_report("Non-same host page detected on channel %d: "
3695 "Target host page %p, received host page %p "
3696 "(rb %s offset 0x"RAM_ADDR_FMT" target_pages %d)",
3697 channel, tmp_page->host_addr,
3698 host_page_from_ram_block_offset(block, addr),
3699 block->idstr, addr, tmp_page->target_pages);
3700 ret = -EINVAL;
3701 break;
3705 * If it's the last part of a host page then we place the host
3706 * page
3708 if (tmp_page->target_pages ==
3709 (block->page_size / TARGET_PAGE_SIZE)) {
3710 place_needed = true;
3712 place_source = tmp_page->tmp_huge_page;
3715 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
3716 case RAM_SAVE_FLAG_ZERO:
3717 ch = qemu_get_byte(f);
3719 * Can skip to set page_buffer when
3720 * this is a zero page and (block->page_size == TARGET_PAGE_SIZE).
3722 if (ch || !matches_target_page_size) {
3723 memset(page_buffer, ch, TARGET_PAGE_SIZE);
3725 if (ch) {
3726 tmp_page->all_zero = false;
3728 break;
3730 case RAM_SAVE_FLAG_PAGE:
3731 tmp_page->all_zero = false;
3732 if (!matches_target_page_size) {
3733 /* For huge pages, we always use temporary buffer */
3734 qemu_get_buffer(f, page_buffer, TARGET_PAGE_SIZE);
3735 } else {
3737 * For small pages that matches target page size, we
3738 * avoid the qemu_file copy. Instead we directly use
3739 * the buffer of QEMUFile to place the page. Note: we
3740 * cannot do any QEMUFile operation before using that
3741 * buffer to make sure the buffer is valid when
3742 * placing the page.
3744 qemu_get_buffer_in_place(f, (uint8_t **)&place_source,
3745 TARGET_PAGE_SIZE);
3747 break;
3748 case RAM_SAVE_FLAG_COMPRESS_PAGE:
3749 tmp_page->all_zero = false;
3750 len = qemu_get_be32(f);
3751 if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) {
3752 error_report("Invalid compressed data length: %d", len);
3753 ret = -EINVAL;
3754 break;
3756 decompress_data_with_multi_threads(f, page_buffer, len);
3757 break;
3758 case RAM_SAVE_FLAG_MULTIFD_FLUSH:
3759 multifd_recv_sync_main();
3760 break;
3761 case RAM_SAVE_FLAG_EOS:
3762 /* normal exit */
3763 if (migrate_multifd_flush_after_each_section()) {
3764 multifd_recv_sync_main();
3766 break;
3767 default:
3768 error_report("Unknown combination of migration flags: 0x%x"
3769 " (postcopy mode)", flags);
3770 ret = -EINVAL;
3771 break;
3774 /* Got the whole host page, wait for decompress before placing. */
3775 if (place_needed) {
3776 ret |= wait_for_decompress_done();
3779 /* Detect for any possible file errors */
3780 if (!ret && qemu_file_get_error(f)) {
3781 ret = qemu_file_get_error(f);
3784 if (!ret && place_needed) {
3785 if (tmp_page->all_zero) {
3786 ret = postcopy_place_page_zero(mis, tmp_page->host_addr, block);
3787 } else {
3788 ret = postcopy_place_page(mis, tmp_page->host_addr,
3789 place_source, block);
3791 place_needed = false;
3792 postcopy_temp_page_reset(tmp_page);
3796 return ret;
3799 static bool postcopy_is_running(void)
3801 PostcopyState ps = postcopy_state_get();
3802 return ps >= POSTCOPY_INCOMING_LISTENING && ps < POSTCOPY_INCOMING_END;
3806 * Flush content of RAM cache into SVM's memory.
3807 * Only flush the pages that be dirtied by PVM or SVM or both.
3809 void colo_flush_ram_cache(void)
3811 RAMBlock *block = NULL;
3812 void *dst_host;
3813 void *src_host;
3814 unsigned long offset = 0;
3816 memory_global_dirty_log_sync(false);
3817 qemu_mutex_lock(&ram_state->bitmap_mutex);
3818 WITH_RCU_READ_LOCK_GUARD() {
3819 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3820 ramblock_sync_dirty_bitmap(ram_state, block);
3824 trace_colo_flush_ram_cache_begin(ram_state->migration_dirty_pages);
3825 WITH_RCU_READ_LOCK_GUARD() {
3826 block = QLIST_FIRST_RCU(&ram_list.blocks);
3828 while (block) {
3829 unsigned long num = 0;
3831 offset = colo_bitmap_find_dirty(ram_state, block, offset, &num);
3832 if (!offset_in_ramblock(block,
3833 ((ram_addr_t)offset) << TARGET_PAGE_BITS)) {
3834 offset = 0;
3835 num = 0;
3836 block = QLIST_NEXT_RCU(block, next);
3837 } else {
3838 unsigned long i = 0;
3840 for (i = 0; i < num; i++) {
3841 migration_bitmap_clear_dirty(ram_state, block, offset + i);
3843 dst_host = block->host
3844 + (((ram_addr_t)offset) << TARGET_PAGE_BITS);
3845 src_host = block->colo_cache
3846 + (((ram_addr_t)offset) << TARGET_PAGE_BITS);
3847 memcpy(dst_host, src_host, TARGET_PAGE_SIZE * num);
3848 offset += num;
3852 qemu_mutex_unlock(&ram_state->bitmap_mutex);
3853 trace_colo_flush_ram_cache_end();
3857 * ram_load_precopy: load pages in precopy case
3859 * Returns 0 for success or -errno in case of error
3861 * Called in precopy mode by ram_load().
3862 * rcu_read_lock is taken prior to this being called.
3864 * @f: QEMUFile where to send the data
3866 static int ram_load_precopy(QEMUFile *f)
3868 MigrationIncomingState *mis = migration_incoming_get_current();
3869 int flags = 0, ret = 0, invalid_flags = 0, len = 0, i = 0;
3870 /* ADVISE is earlier, it shows the source has the postcopy capability on */
3871 bool postcopy_advised = migration_incoming_postcopy_advised();
3872 if (!migrate_compress()) {
3873 invalid_flags |= RAM_SAVE_FLAG_COMPRESS_PAGE;
3876 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) {
3877 ram_addr_t addr, total_ram_bytes;
3878 void *host = NULL, *host_bak = NULL;
3879 uint8_t ch;
3882 * Yield periodically to let main loop run, but an iteration of
3883 * the main loop is expensive, so do it each some iterations
3885 if ((i & 32767) == 0 && qemu_in_coroutine()) {
3886 aio_co_schedule(qemu_get_current_aio_context(),
3887 qemu_coroutine_self());
3888 qemu_coroutine_yield();
3890 i++;
3892 addr = qemu_get_be64(f);
3893 flags = addr & ~TARGET_PAGE_MASK;
3894 addr &= TARGET_PAGE_MASK;
3896 if (flags & invalid_flags) {
3897 if (flags & invalid_flags & RAM_SAVE_FLAG_COMPRESS_PAGE) {
3898 error_report("Received an unexpected compressed page");
3901 ret = -EINVAL;
3902 break;
3905 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE |
3906 RAM_SAVE_FLAG_COMPRESS_PAGE | RAM_SAVE_FLAG_XBZRLE)) {
3907 RAMBlock *block = ram_block_from_stream(mis, f, flags,
3908 RAM_CHANNEL_PRECOPY);
3910 host = host_from_ram_block_offset(block, addr);
3912 * After going into COLO stage, we should not load the page
3913 * into SVM's memory directly, we put them into colo_cache firstly.
3914 * NOTE: We need to keep a copy of SVM's ram in colo_cache.
3915 * Previously, we copied all these memory in preparing stage of COLO
3916 * while we need to stop VM, which is a time-consuming process.
3917 * Here we optimize it by a trick, back-up every page while in
3918 * migration process while COLO is enabled, though it affects the
3919 * speed of the migration, but it obviously reduce the downtime of
3920 * back-up all SVM'S memory in COLO preparing stage.
3922 if (migration_incoming_colo_enabled()) {
3923 if (migration_incoming_in_colo_state()) {
3924 /* In COLO stage, put all pages into cache temporarily */
3925 host = colo_cache_from_block_offset(block, addr, true);
3926 } else {
3928 * In migration stage but before COLO stage,
3929 * Put all pages into both cache and SVM's memory.
3931 host_bak = colo_cache_from_block_offset(block, addr, false);
3934 if (!host) {
3935 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
3936 ret = -EINVAL;
3937 break;
3939 if (!migration_incoming_in_colo_state()) {
3940 ramblock_recv_bitmap_set(block, host);
3943 trace_ram_load_loop(block->idstr, (uint64_t)addr, flags, host);
3946 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
3947 case RAM_SAVE_FLAG_MEM_SIZE:
3948 /* Synchronize RAM block list */
3949 total_ram_bytes = addr;
3950 while (!ret && total_ram_bytes) {
3951 RAMBlock *block;
3952 char id[256];
3953 ram_addr_t length;
3955 len = qemu_get_byte(f);
3956 qemu_get_buffer(f, (uint8_t *)id, len);
3957 id[len] = 0;
3958 length = qemu_get_be64(f);
3960 block = qemu_ram_block_by_name(id);
3961 if (block && !qemu_ram_is_migratable(block)) {
3962 error_report("block %s should not be migrated !", id);
3963 ret = -EINVAL;
3964 } else if (block) {
3965 if (length != block->used_length) {
3966 Error *local_err = NULL;
3968 ret = qemu_ram_resize(block, length,
3969 &local_err);
3970 if (local_err) {
3971 error_report_err(local_err);
3974 /* For postcopy we need to check hugepage sizes match */
3975 if (postcopy_advised && migrate_postcopy_ram() &&
3976 block->page_size != qemu_host_page_size) {
3977 uint64_t remote_page_size = qemu_get_be64(f);
3978 if (remote_page_size != block->page_size) {
3979 error_report("Mismatched RAM page size %s "
3980 "(local) %zd != %" PRId64,
3981 id, block->page_size,
3982 remote_page_size);
3983 ret = -EINVAL;
3986 if (migrate_ignore_shared()) {
3987 hwaddr addr2 = qemu_get_be64(f);
3988 if (migrate_ram_is_ignored(block) &&
3989 block->mr->addr != addr2) {
3990 error_report("Mismatched GPAs for block %s "
3991 "%" PRId64 "!= %" PRId64,
3992 id, (uint64_t)addr2,
3993 (uint64_t)block->mr->addr);
3994 ret = -EINVAL;
3997 ram_control_load_hook(f, RAM_CONTROL_BLOCK_REG,
3998 block->idstr);
3999 } else {
4000 error_report("Unknown ramblock \"%s\", cannot "
4001 "accept migration", id);
4002 ret = -EINVAL;
4005 total_ram_bytes -= length;
4007 break;
4009 case RAM_SAVE_FLAG_ZERO:
4010 ch = qemu_get_byte(f);
4011 ram_handle_compressed(host, ch, TARGET_PAGE_SIZE);
4012 break;
4014 case RAM_SAVE_FLAG_PAGE:
4015 qemu_get_buffer(f, host, TARGET_PAGE_SIZE);
4016 break;
4018 case RAM_SAVE_FLAG_COMPRESS_PAGE:
4019 len = qemu_get_be32(f);
4020 if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) {
4021 error_report("Invalid compressed data length: %d", len);
4022 ret = -EINVAL;
4023 break;
4025 decompress_data_with_multi_threads(f, host, len);
4026 break;
4028 case RAM_SAVE_FLAG_XBZRLE:
4029 if (load_xbzrle(f, addr, host) < 0) {
4030 error_report("Failed to decompress XBZRLE page at "
4031 RAM_ADDR_FMT, addr);
4032 ret = -EINVAL;
4033 break;
4035 break;
4036 case RAM_SAVE_FLAG_MULTIFD_FLUSH:
4037 multifd_recv_sync_main();
4038 break;
4039 case RAM_SAVE_FLAG_EOS:
4040 /* normal exit */
4041 if (migrate_multifd_flush_after_each_section()) {
4042 multifd_recv_sync_main();
4044 break;
4045 case RAM_SAVE_FLAG_HOOK:
4046 ram_control_load_hook(f, RAM_CONTROL_HOOK, NULL);
4047 break;
4048 default:
4049 error_report("Unknown combination of migration flags: 0x%x", flags);
4050 ret = -EINVAL;
4052 if (!ret) {
4053 ret = qemu_file_get_error(f);
4055 if (!ret && host_bak) {
4056 memcpy(host_bak, host, TARGET_PAGE_SIZE);
4060 ret |= wait_for_decompress_done();
4061 return ret;
4064 static int ram_load(QEMUFile *f, void *opaque, int version_id)
4066 int ret = 0;
4067 static uint64_t seq_iter;
4069 * If system is running in postcopy mode, page inserts to host memory must
4070 * be atomic
4072 bool postcopy_running = postcopy_is_running();
4074 seq_iter++;
4076 if (version_id != 4) {
4077 return -EINVAL;
4081 * This RCU critical section can be very long running.
4082 * When RCU reclaims in the code start to become numerous,
4083 * it will be necessary to reduce the granularity of this
4084 * critical section.
4086 WITH_RCU_READ_LOCK_GUARD() {
4087 if (postcopy_running) {
4089 * Note! Here RAM_CHANNEL_PRECOPY is the precopy channel of
4090 * postcopy migration, we have another RAM_CHANNEL_POSTCOPY to
4091 * service fast page faults.
4093 ret = ram_load_postcopy(f, RAM_CHANNEL_PRECOPY);
4094 } else {
4095 ret = ram_load_precopy(f);
4098 trace_ram_load_complete(ret, seq_iter);
4100 return ret;
4103 static bool ram_has_postcopy(void *opaque)
4105 RAMBlock *rb;
4106 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
4107 if (ramblock_is_pmem(rb)) {
4108 info_report("Block: %s, host: %p is a nvdimm memory, postcopy"
4109 "is not supported now!", rb->idstr, rb->host);
4110 return false;
4114 return migrate_postcopy_ram();
4117 /* Sync all the dirty bitmap with destination VM. */
4118 static int ram_dirty_bitmap_sync_all(MigrationState *s, RAMState *rs)
4120 RAMBlock *block;
4121 QEMUFile *file = s->to_dst_file;
4122 int ramblock_count = 0;
4124 trace_ram_dirty_bitmap_sync_start();
4126 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
4127 qemu_savevm_send_recv_bitmap(file, block->idstr);
4128 trace_ram_dirty_bitmap_request(block->idstr);
4129 ramblock_count++;
4132 trace_ram_dirty_bitmap_sync_wait();
4134 /* Wait until all the ramblocks' dirty bitmap synced */
4135 while (ramblock_count--) {
4136 qemu_sem_wait(&s->rp_state.rp_sem);
4139 trace_ram_dirty_bitmap_sync_complete();
4141 return 0;
4144 static void ram_dirty_bitmap_reload_notify(MigrationState *s)
4146 qemu_sem_post(&s->rp_state.rp_sem);
4150 * Read the received bitmap, revert it as the initial dirty bitmap.
4151 * This is only used when the postcopy migration is paused but wants
4152 * to resume from a middle point.
4154 int ram_dirty_bitmap_reload(MigrationState *s, RAMBlock *block)
4156 int ret = -EINVAL;
4157 /* from_dst_file is always valid because we're within rp_thread */
4158 QEMUFile *file = s->rp_state.from_dst_file;
4159 unsigned long *le_bitmap, nbits = block->used_length >> TARGET_PAGE_BITS;
4160 uint64_t local_size = DIV_ROUND_UP(nbits, 8);
4161 uint64_t size, end_mark;
4163 trace_ram_dirty_bitmap_reload_begin(block->idstr);
4165 if (s->state != MIGRATION_STATUS_POSTCOPY_RECOVER) {
4166 error_report("%s: incorrect state %s", __func__,
4167 MigrationStatus_str(s->state));
4168 return -EINVAL;
4172 * Note: see comments in ramblock_recv_bitmap_send() on why we
4173 * need the endianness conversion, and the paddings.
4175 local_size = ROUND_UP(local_size, 8);
4177 /* Add paddings */
4178 le_bitmap = bitmap_new(nbits + BITS_PER_LONG);
4180 size = qemu_get_be64(file);
4182 /* The size of the bitmap should match with our ramblock */
4183 if (size != local_size) {
4184 error_report("%s: ramblock '%s' bitmap size mismatch "
4185 "(0x%"PRIx64" != 0x%"PRIx64")", __func__,
4186 block->idstr, size, local_size);
4187 ret = -EINVAL;
4188 goto out;
4191 size = qemu_get_buffer(file, (uint8_t *)le_bitmap, local_size);
4192 end_mark = qemu_get_be64(file);
4194 ret = qemu_file_get_error(file);
4195 if (ret || size != local_size) {
4196 error_report("%s: read bitmap failed for ramblock '%s': %d"
4197 " (size 0x%"PRIx64", got: 0x%"PRIx64")",
4198 __func__, block->idstr, ret, local_size, size);
4199 ret = -EIO;
4200 goto out;
4203 if (end_mark != RAMBLOCK_RECV_BITMAP_ENDING) {
4204 error_report("%s: ramblock '%s' end mark incorrect: 0x%"PRIx64,
4205 __func__, block->idstr, end_mark);
4206 ret = -EINVAL;
4207 goto out;
4211 * Endianness conversion. We are during postcopy (though paused).
4212 * The dirty bitmap won't change. We can directly modify it.
4214 bitmap_from_le(block->bmap, le_bitmap, nbits);
4217 * What we received is "received bitmap". Revert it as the initial
4218 * dirty bitmap for this ramblock.
4220 bitmap_complement(block->bmap, block->bmap, nbits);
4222 /* Clear dirty bits of discarded ranges that we don't want to migrate. */
4223 ramblock_dirty_bitmap_clear_discarded_pages(block);
4225 /* We'll recalculate migration_dirty_pages in ram_state_resume_prepare(). */
4226 trace_ram_dirty_bitmap_reload_complete(block->idstr);
4229 * We succeeded to sync bitmap for current ramblock. If this is
4230 * the last one to sync, we need to notify the main send thread.
4232 ram_dirty_bitmap_reload_notify(s);
4234 ret = 0;
4235 out:
4236 g_free(le_bitmap);
4237 return ret;
4240 static int ram_resume_prepare(MigrationState *s, void *opaque)
4242 RAMState *rs = *(RAMState **)opaque;
4243 int ret;
4245 ret = ram_dirty_bitmap_sync_all(s, rs);
4246 if (ret) {
4247 return ret;
4250 ram_state_resume_prepare(rs, s->to_dst_file);
4252 return 0;
4255 void postcopy_preempt_shutdown_file(MigrationState *s)
4257 qemu_put_be64(s->postcopy_qemufile_src, RAM_SAVE_FLAG_EOS);
4258 qemu_fflush(s->postcopy_qemufile_src);
4261 static SaveVMHandlers savevm_ram_handlers = {
4262 .save_setup = ram_save_setup,
4263 .save_live_iterate = ram_save_iterate,
4264 .save_live_complete_postcopy = ram_save_complete,
4265 .save_live_complete_precopy = ram_save_complete,
4266 .has_postcopy = ram_has_postcopy,
4267 .state_pending_exact = ram_state_pending_exact,
4268 .state_pending_estimate = ram_state_pending_estimate,
4269 .load_state = ram_load,
4270 .save_cleanup = ram_save_cleanup,
4271 .load_setup = ram_load_setup,
4272 .load_cleanup = ram_load_cleanup,
4273 .resume_prepare = ram_resume_prepare,
4276 static void ram_mig_ram_block_resized(RAMBlockNotifier *n, void *host,
4277 size_t old_size, size_t new_size)
4279 PostcopyState ps = postcopy_state_get();
4280 ram_addr_t offset;
4281 RAMBlock *rb = qemu_ram_block_from_host(host, false, &offset);
4282 Error *err = NULL;
4284 if (migrate_ram_is_ignored(rb)) {
4285 return;
4288 if (!migration_is_idle()) {
4290 * Precopy code on the source cannot deal with the size of RAM blocks
4291 * changing at random points in time - especially after sending the
4292 * RAM block sizes in the migration stream, they must no longer change.
4293 * Abort and indicate a proper reason.
4295 error_setg(&err, "RAM block '%s' resized during precopy.", rb->idstr);
4296 migration_cancel(err);
4297 error_free(err);
4300 switch (ps) {
4301 case POSTCOPY_INCOMING_ADVISE:
4303 * Update what ram_postcopy_incoming_init()->init_range() does at the
4304 * time postcopy was advised. Syncing RAM blocks with the source will
4305 * result in RAM resizes.
4307 if (old_size < new_size) {
4308 if (ram_discard_range(rb->idstr, old_size, new_size - old_size)) {
4309 error_report("RAM block '%s' discard of resized RAM failed",
4310 rb->idstr);
4313 rb->postcopy_length = new_size;
4314 break;
4315 case POSTCOPY_INCOMING_NONE:
4316 case POSTCOPY_INCOMING_RUNNING:
4317 case POSTCOPY_INCOMING_END:
4319 * Once our guest is running, postcopy does no longer care about
4320 * resizes. When growing, the new memory was not available on the
4321 * source, no handler needed.
4323 break;
4324 default:
4325 error_report("RAM block '%s' resized during postcopy state: %d",
4326 rb->idstr, ps);
4327 exit(-1);
4331 static RAMBlockNotifier ram_mig_ram_notifier = {
4332 .ram_block_resized = ram_mig_ram_block_resized,
4335 void ram_mig_init(void)
4337 qemu_mutex_init(&XBZRLE.lock);
4338 register_savevm_live("ram", 0, 4, &savevm_ram_handlers, &ram_state);
4339 ram_block_notifier_add(&ram_mig_ram_notifier);