hw/i386/pc: Do pc_cmos_init_late() from pc_machine_done()
[qemu/kevin.git] / target / hexagon / cpu.c
blob759ea62814d26ddf9e1baa119752c6a80270fe35
1 /*
2 * Copyright(c) 2019-2023 Qualcomm Innovation Center, Inc. All Rights Reserved.
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, see <http://www.gnu.org/licenses/>.
18 #include "qemu/osdep.h"
19 #include "qemu/qemu-print.h"
20 #include "cpu.h"
21 #include "internal.h"
22 #include "exec/exec-all.h"
23 #include "qapi/error.h"
24 #include "hw/qdev-properties.h"
25 #include "fpu/softfloat-helpers.h"
26 #include "tcg/tcg.h"
27 #include "exec/gdbstub.h"
29 static void hexagon_v67_cpu_init(Object *obj) { }
30 static void hexagon_v68_cpu_init(Object *obj) { }
31 static void hexagon_v69_cpu_init(Object *obj) { }
32 static void hexagon_v71_cpu_init(Object *obj) { }
33 static void hexagon_v73_cpu_init(Object *obj) { }
35 static ObjectClass *hexagon_cpu_class_by_name(const char *cpu_model)
37 ObjectClass *oc;
38 char *typename;
39 char **cpuname;
41 cpuname = g_strsplit(cpu_model, ",", 1);
42 typename = g_strdup_printf(HEXAGON_CPU_TYPE_NAME("%s"), cpuname[0]);
43 oc = object_class_by_name(typename);
44 g_strfreev(cpuname);
45 g_free(typename);
47 return oc;
50 static Property hexagon_lldb_compat_property =
51 DEFINE_PROP_BOOL("lldb-compat", HexagonCPU, lldb_compat, false);
52 static Property hexagon_lldb_stack_adjust_property =
53 DEFINE_PROP_UNSIGNED("lldb-stack-adjust", HexagonCPU, lldb_stack_adjust,
54 0, qdev_prop_uint32, target_ulong);
55 static Property hexagon_short_circuit_property =
56 DEFINE_PROP_BOOL("short-circuit", HexagonCPU, short_circuit, true);
58 const char * const hexagon_regnames[TOTAL_PER_THREAD_REGS] = {
59 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
60 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
61 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
62 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
63 "sa0", "lc0", "sa1", "lc1", "p3_0", "c5", "m0", "m1",
64 "usr", "pc", "ugp", "gp", "cs0", "cs1", "c14", "c15",
65 "c16", "c17", "c18", "c19", "pkt_cnt", "insn_cnt", "hvx_cnt", "c23",
66 "c24", "c25", "c26", "c27", "c28", "c29", "c30", "c31",
70 * One of the main debugging techniques is to use "-d cpu" and compare against
71 * LLDB output when single stepping. However, the target and qemu put the
72 * stacks at different locations. This is used to compensate so the diff is
73 * cleaner.
75 static target_ulong adjust_stack_ptrs(CPUHexagonState *env, target_ulong addr)
77 HexagonCPU *cpu = env_archcpu(env);
78 target_ulong stack_adjust = cpu->lldb_stack_adjust;
79 target_ulong stack_start = env->stack_start;
80 target_ulong stack_size = 0x10000;
82 if (stack_adjust == 0) {
83 return addr;
86 if (stack_start + 0x1000 >= addr && addr >= (stack_start - stack_size)) {
87 return addr - stack_adjust;
89 return addr;
92 /* HEX_REG_P3_0_ALIASED (aka C4) is an alias for the predicate registers */
93 static target_ulong read_p3_0(CPUHexagonState *env)
95 int32_t control_reg = 0;
96 int i;
97 for (i = NUM_PREGS - 1; i >= 0; i--) {
98 control_reg <<= 8;
99 control_reg |= env->pred[i] & 0xff;
101 return control_reg;
104 static void print_reg(FILE *f, CPUHexagonState *env, int regnum)
106 target_ulong value;
108 if (regnum == HEX_REG_P3_0_ALIASED) {
109 value = read_p3_0(env);
110 } else {
111 value = regnum < 32 ? adjust_stack_ptrs(env, env->gpr[regnum])
112 : env->gpr[regnum];
115 qemu_fprintf(f, " %s = 0x" TARGET_FMT_lx "\n",
116 hexagon_regnames[regnum], value);
119 static void print_vreg(FILE *f, CPUHexagonState *env, int regnum,
120 bool skip_if_zero)
122 if (skip_if_zero) {
123 bool nonzero_found = false;
124 for (int i = 0; i < MAX_VEC_SIZE_BYTES; i++) {
125 if (env->VRegs[regnum].ub[i] != 0) {
126 nonzero_found = true;
127 break;
130 if (!nonzero_found) {
131 return;
135 qemu_fprintf(f, " v%d = ( ", regnum);
136 qemu_fprintf(f, "0x%02x", env->VRegs[regnum].ub[MAX_VEC_SIZE_BYTES - 1]);
137 for (int i = MAX_VEC_SIZE_BYTES - 2; i >= 0; i--) {
138 qemu_fprintf(f, ", 0x%02x", env->VRegs[regnum].ub[i]);
140 qemu_fprintf(f, " )\n");
143 void hexagon_debug_vreg(CPUHexagonState *env, int regnum)
145 print_vreg(stdout, env, regnum, false);
148 static void print_qreg(FILE *f, CPUHexagonState *env, int regnum,
149 bool skip_if_zero)
151 if (skip_if_zero) {
152 bool nonzero_found = false;
153 for (int i = 0; i < MAX_VEC_SIZE_BYTES / 8; i++) {
154 if (env->QRegs[regnum].ub[i] != 0) {
155 nonzero_found = true;
156 break;
159 if (!nonzero_found) {
160 return;
164 qemu_fprintf(f, " q%d = ( ", regnum);
165 qemu_fprintf(f, "0x%02x",
166 env->QRegs[regnum].ub[MAX_VEC_SIZE_BYTES / 8 - 1]);
167 for (int i = MAX_VEC_SIZE_BYTES / 8 - 2; i >= 0; i--) {
168 qemu_fprintf(f, ", 0x%02x", env->QRegs[regnum].ub[i]);
170 qemu_fprintf(f, " )\n");
173 void hexagon_debug_qreg(CPUHexagonState *env, int regnum)
175 print_qreg(stdout, env, regnum, false);
178 static void hexagon_dump(CPUHexagonState *env, FILE *f, int flags)
180 HexagonCPU *cpu = env_archcpu(env);
182 if (cpu->lldb_compat) {
184 * When comparing with LLDB, it doesn't step through single-cycle
185 * hardware loops the same way. So, we just skip them here
187 if (env->gpr[HEX_REG_PC] == env->last_pc_dumped) {
188 return;
190 env->last_pc_dumped = env->gpr[HEX_REG_PC];
193 qemu_fprintf(f, "General Purpose Registers = {\n");
194 for (int i = 0; i < 32; i++) {
195 print_reg(f, env, i);
197 print_reg(f, env, HEX_REG_SA0);
198 print_reg(f, env, HEX_REG_LC0);
199 print_reg(f, env, HEX_REG_SA1);
200 print_reg(f, env, HEX_REG_LC1);
201 print_reg(f, env, HEX_REG_M0);
202 print_reg(f, env, HEX_REG_M1);
203 print_reg(f, env, HEX_REG_USR);
204 print_reg(f, env, HEX_REG_P3_0_ALIASED);
205 print_reg(f, env, HEX_REG_GP);
206 print_reg(f, env, HEX_REG_UGP);
207 print_reg(f, env, HEX_REG_PC);
208 #ifdef CONFIG_USER_ONLY
210 * Not modelled in user mode, print junk to minimize the diff's
211 * with LLDB output
213 qemu_fprintf(f, " cause = 0x000000db\n");
214 qemu_fprintf(f, " badva = 0x00000000\n");
215 qemu_fprintf(f, " cs0 = 0x00000000\n");
216 qemu_fprintf(f, " cs1 = 0x00000000\n");
217 #else
218 print_reg(f, env, HEX_REG_CAUSE);
219 print_reg(f, env, HEX_REG_BADVA);
220 print_reg(f, env, HEX_REG_CS0);
221 print_reg(f, env, HEX_REG_CS1);
222 #endif
223 qemu_fprintf(f, "}\n");
225 if (flags & CPU_DUMP_FPU) {
226 qemu_fprintf(f, "Vector Registers = {\n");
227 for (int i = 0; i < NUM_VREGS; i++) {
228 print_vreg(f, env, i, true);
230 for (int i = 0; i < NUM_QREGS; i++) {
231 print_qreg(f, env, i, true);
233 qemu_fprintf(f, "}\n");
237 static void hexagon_dump_state(CPUState *cs, FILE *f, int flags)
239 HexagonCPU *cpu = HEXAGON_CPU(cs);
240 CPUHexagonState *env = &cpu->env;
242 hexagon_dump(env, f, flags);
245 void hexagon_debug(CPUHexagonState *env)
247 hexagon_dump(env, stdout, CPU_DUMP_FPU);
250 static void hexagon_cpu_set_pc(CPUState *cs, vaddr value)
252 HexagonCPU *cpu = HEXAGON_CPU(cs);
253 CPUHexagonState *env = &cpu->env;
254 env->gpr[HEX_REG_PC] = value;
257 static vaddr hexagon_cpu_get_pc(CPUState *cs)
259 HexagonCPU *cpu = HEXAGON_CPU(cs);
260 CPUHexagonState *env = &cpu->env;
261 return env->gpr[HEX_REG_PC];
264 static void hexagon_cpu_synchronize_from_tb(CPUState *cs,
265 const TranslationBlock *tb)
267 HexagonCPU *cpu = HEXAGON_CPU(cs);
268 CPUHexagonState *env = &cpu->env;
269 tcg_debug_assert(!(cs->tcg_cflags & CF_PCREL));
270 env->gpr[HEX_REG_PC] = tb->pc;
273 static bool hexagon_cpu_has_work(CPUState *cs)
275 return true;
278 static void hexagon_restore_state_to_opc(CPUState *cs,
279 const TranslationBlock *tb,
280 const uint64_t *data)
282 HexagonCPU *cpu = HEXAGON_CPU(cs);
283 CPUHexagonState *env = &cpu->env;
285 env->gpr[HEX_REG_PC] = data[0];
288 static void hexagon_cpu_reset_hold(Object *obj)
290 CPUState *cs = CPU(obj);
291 HexagonCPU *cpu = HEXAGON_CPU(cs);
292 HexagonCPUClass *mcc = HEXAGON_CPU_GET_CLASS(cpu);
293 CPUHexagonState *env = &cpu->env;
295 if (mcc->parent_phases.hold) {
296 mcc->parent_phases.hold(obj);
299 set_default_nan_mode(1, &env->fp_status);
300 set_float_detect_tininess(float_tininess_before_rounding, &env->fp_status);
303 static void hexagon_cpu_disas_set_info(CPUState *s, disassemble_info *info)
305 info->print_insn = print_insn_hexagon;
308 static void hexagon_cpu_realize(DeviceState *dev, Error **errp)
310 CPUState *cs = CPU(dev);
311 HexagonCPUClass *mcc = HEXAGON_CPU_GET_CLASS(dev);
312 Error *local_err = NULL;
314 cpu_exec_realizefn(cs, &local_err);
315 if (local_err != NULL) {
316 error_propagate(errp, local_err);
317 return;
320 gdb_register_coprocessor(cs, hexagon_hvx_gdb_read_register,
321 hexagon_hvx_gdb_write_register,
322 NUM_VREGS + NUM_QREGS,
323 "hexagon-hvx.xml", 0);
325 qemu_init_vcpu(cs);
326 cpu_reset(cs);
328 mcc->parent_realize(dev, errp);
331 static void hexagon_cpu_init(Object *obj)
333 qdev_property_add_static(DEVICE(obj), &hexagon_lldb_compat_property);
334 qdev_property_add_static(DEVICE(obj), &hexagon_lldb_stack_adjust_property);
335 qdev_property_add_static(DEVICE(obj), &hexagon_short_circuit_property);
338 #include "hw/core/tcg-cpu-ops.h"
340 static const TCGCPUOps hexagon_tcg_ops = {
341 .initialize = hexagon_translate_init,
342 .synchronize_from_tb = hexagon_cpu_synchronize_from_tb,
343 .restore_state_to_opc = hexagon_restore_state_to_opc,
346 static void hexagon_cpu_class_init(ObjectClass *c, void *data)
348 HexagonCPUClass *mcc = HEXAGON_CPU_CLASS(c);
349 CPUClass *cc = CPU_CLASS(c);
350 DeviceClass *dc = DEVICE_CLASS(c);
351 ResettableClass *rc = RESETTABLE_CLASS(c);
353 device_class_set_parent_realize(dc, hexagon_cpu_realize,
354 &mcc->parent_realize);
356 resettable_class_set_parent_phases(rc, NULL, hexagon_cpu_reset_hold, NULL,
357 &mcc->parent_phases);
359 cc->class_by_name = hexagon_cpu_class_by_name;
360 cc->has_work = hexagon_cpu_has_work;
361 cc->dump_state = hexagon_dump_state;
362 cc->set_pc = hexagon_cpu_set_pc;
363 cc->get_pc = hexagon_cpu_get_pc;
364 cc->gdb_read_register = hexagon_gdb_read_register;
365 cc->gdb_write_register = hexagon_gdb_write_register;
366 cc->gdb_num_core_regs = TOTAL_PER_THREAD_REGS;
367 cc->gdb_stop_before_watchpoint = true;
368 cc->gdb_core_xml_file = "hexagon-core.xml";
369 cc->disas_set_info = hexagon_cpu_disas_set_info;
370 cc->tcg_ops = &hexagon_tcg_ops;
373 #define DEFINE_CPU(type_name, initfn) \
375 .name = type_name, \
376 .parent = TYPE_HEXAGON_CPU, \
377 .instance_init = initfn \
380 static const TypeInfo hexagon_cpu_type_infos[] = {
382 .name = TYPE_HEXAGON_CPU,
383 .parent = TYPE_CPU,
384 .instance_size = sizeof(HexagonCPU),
385 .instance_align = __alignof(HexagonCPU),
386 .instance_init = hexagon_cpu_init,
387 .abstract = true,
388 .class_size = sizeof(HexagonCPUClass),
389 .class_init = hexagon_cpu_class_init,
391 DEFINE_CPU(TYPE_HEXAGON_CPU_V67, hexagon_v67_cpu_init),
392 DEFINE_CPU(TYPE_HEXAGON_CPU_V68, hexagon_v68_cpu_init),
393 DEFINE_CPU(TYPE_HEXAGON_CPU_V69, hexagon_v69_cpu_init),
394 DEFINE_CPU(TYPE_HEXAGON_CPU_V71, hexagon_v71_cpu_init),
395 DEFINE_CPU(TYPE_HEXAGON_CPU_V73, hexagon_v73_cpu_init),
398 DEFINE_TYPES(hexagon_cpu_type_infos)