2 * Copyright(c) 2019-2023 Qualcomm Innovation Center, Inc. All Rights Reserved.
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, see <http://www.gnu.org/licenses/>.
18 #include "qemu/osdep.h"
19 #include "qemu/qemu-print.h"
22 #include "exec/exec-all.h"
23 #include "qapi/error.h"
24 #include "hw/qdev-properties.h"
25 #include "fpu/softfloat-helpers.h"
27 #include "exec/gdbstub.h"
29 static void hexagon_v67_cpu_init(Object
*obj
) { }
30 static void hexagon_v68_cpu_init(Object
*obj
) { }
31 static void hexagon_v69_cpu_init(Object
*obj
) { }
32 static void hexagon_v71_cpu_init(Object
*obj
) { }
33 static void hexagon_v73_cpu_init(Object
*obj
) { }
35 static ObjectClass
*hexagon_cpu_class_by_name(const char *cpu_model
)
41 cpuname
= g_strsplit(cpu_model
, ",", 1);
42 typename
= g_strdup_printf(HEXAGON_CPU_TYPE_NAME("%s"), cpuname
[0]);
43 oc
= object_class_by_name(typename
);
50 static Property hexagon_lldb_compat_property
=
51 DEFINE_PROP_BOOL("lldb-compat", HexagonCPU
, lldb_compat
, false);
52 static Property hexagon_lldb_stack_adjust_property
=
53 DEFINE_PROP_UNSIGNED("lldb-stack-adjust", HexagonCPU
, lldb_stack_adjust
,
54 0, qdev_prop_uint32
, target_ulong
);
55 static Property hexagon_short_circuit_property
=
56 DEFINE_PROP_BOOL("short-circuit", HexagonCPU
, short_circuit
, true);
58 const char * const hexagon_regnames
[TOTAL_PER_THREAD_REGS
] = {
59 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
60 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
61 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
62 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
63 "sa0", "lc0", "sa1", "lc1", "p3_0", "c5", "m0", "m1",
64 "usr", "pc", "ugp", "gp", "cs0", "cs1", "c14", "c15",
65 "c16", "c17", "c18", "c19", "pkt_cnt", "insn_cnt", "hvx_cnt", "c23",
66 "c24", "c25", "c26", "c27", "c28", "c29", "c30", "c31",
70 * One of the main debugging techniques is to use "-d cpu" and compare against
71 * LLDB output when single stepping. However, the target and qemu put the
72 * stacks at different locations. This is used to compensate so the diff is
75 static target_ulong
adjust_stack_ptrs(CPUHexagonState
*env
, target_ulong addr
)
77 HexagonCPU
*cpu
= env_archcpu(env
);
78 target_ulong stack_adjust
= cpu
->lldb_stack_adjust
;
79 target_ulong stack_start
= env
->stack_start
;
80 target_ulong stack_size
= 0x10000;
82 if (stack_adjust
== 0) {
86 if (stack_start
+ 0x1000 >= addr
&& addr
>= (stack_start
- stack_size
)) {
87 return addr
- stack_adjust
;
92 /* HEX_REG_P3_0_ALIASED (aka C4) is an alias for the predicate registers */
93 static target_ulong
read_p3_0(CPUHexagonState
*env
)
95 int32_t control_reg
= 0;
97 for (i
= NUM_PREGS
- 1; i
>= 0; i
--) {
99 control_reg
|= env
->pred
[i
] & 0xff;
104 static void print_reg(FILE *f
, CPUHexagonState
*env
, int regnum
)
108 if (regnum
== HEX_REG_P3_0_ALIASED
) {
109 value
= read_p3_0(env
);
111 value
= regnum
< 32 ? adjust_stack_ptrs(env
, env
->gpr
[regnum
])
115 qemu_fprintf(f
, " %s = 0x" TARGET_FMT_lx
"\n",
116 hexagon_regnames
[regnum
], value
);
119 static void print_vreg(FILE *f
, CPUHexagonState
*env
, int regnum
,
123 bool nonzero_found
= false;
124 for (int i
= 0; i
< MAX_VEC_SIZE_BYTES
; i
++) {
125 if (env
->VRegs
[regnum
].ub
[i
] != 0) {
126 nonzero_found
= true;
130 if (!nonzero_found
) {
135 qemu_fprintf(f
, " v%d = ( ", regnum
);
136 qemu_fprintf(f
, "0x%02x", env
->VRegs
[regnum
].ub
[MAX_VEC_SIZE_BYTES
- 1]);
137 for (int i
= MAX_VEC_SIZE_BYTES
- 2; i
>= 0; i
--) {
138 qemu_fprintf(f
, ", 0x%02x", env
->VRegs
[regnum
].ub
[i
]);
140 qemu_fprintf(f
, " )\n");
143 void hexagon_debug_vreg(CPUHexagonState
*env
, int regnum
)
145 print_vreg(stdout
, env
, regnum
, false);
148 static void print_qreg(FILE *f
, CPUHexagonState
*env
, int regnum
,
152 bool nonzero_found
= false;
153 for (int i
= 0; i
< MAX_VEC_SIZE_BYTES
/ 8; i
++) {
154 if (env
->QRegs
[regnum
].ub
[i
] != 0) {
155 nonzero_found
= true;
159 if (!nonzero_found
) {
164 qemu_fprintf(f
, " q%d = ( ", regnum
);
165 qemu_fprintf(f
, "0x%02x",
166 env
->QRegs
[regnum
].ub
[MAX_VEC_SIZE_BYTES
/ 8 - 1]);
167 for (int i
= MAX_VEC_SIZE_BYTES
/ 8 - 2; i
>= 0; i
--) {
168 qemu_fprintf(f
, ", 0x%02x", env
->QRegs
[regnum
].ub
[i
]);
170 qemu_fprintf(f
, " )\n");
173 void hexagon_debug_qreg(CPUHexagonState
*env
, int regnum
)
175 print_qreg(stdout
, env
, regnum
, false);
178 static void hexagon_dump(CPUHexagonState
*env
, FILE *f
, int flags
)
180 HexagonCPU
*cpu
= env_archcpu(env
);
182 if (cpu
->lldb_compat
) {
184 * When comparing with LLDB, it doesn't step through single-cycle
185 * hardware loops the same way. So, we just skip them here
187 if (env
->gpr
[HEX_REG_PC
] == env
->last_pc_dumped
) {
190 env
->last_pc_dumped
= env
->gpr
[HEX_REG_PC
];
193 qemu_fprintf(f
, "General Purpose Registers = {\n");
194 for (int i
= 0; i
< 32; i
++) {
195 print_reg(f
, env
, i
);
197 print_reg(f
, env
, HEX_REG_SA0
);
198 print_reg(f
, env
, HEX_REG_LC0
);
199 print_reg(f
, env
, HEX_REG_SA1
);
200 print_reg(f
, env
, HEX_REG_LC1
);
201 print_reg(f
, env
, HEX_REG_M0
);
202 print_reg(f
, env
, HEX_REG_M1
);
203 print_reg(f
, env
, HEX_REG_USR
);
204 print_reg(f
, env
, HEX_REG_P3_0_ALIASED
);
205 print_reg(f
, env
, HEX_REG_GP
);
206 print_reg(f
, env
, HEX_REG_UGP
);
207 print_reg(f
, env
, HEX_REG_PC
);
208 #ifdef CONFIG_USER_ONLY
210 * Not modelled in user mode, print junk to minimize the diff's
213 qemu_fprintf(f
, " cause = 0x000000db\n");
214 qemu_fprintf(f
, " badva = 0x00000000\n");
215 qemu_fprintf(f
, " cs0 = 0x00000000\n");
216 qemu_fprintf(f
, " cs1 = 0x00000000\n");
218 print_reg(f
, env
, HEX_REG_CAUSE
);
219 print_reg(f
, env
, HEX_REG_BADVA
);
220 print_reg(f
, env
, HEX_REG_CS0
);
221 print_reg(f
, env
, HEX_REG_CS1
);
223 qemu_fprintf(f
, "}\n");
225 if (flags
& CPU_DUMP_FPU
) {
226 qemu_fprintf(f
, "Vector Registers = {\n");
227 for (int i
= 0; i
< NUM_VREGS
; i
++) {
228 print_vreg(f
, env
, i
, true);
230 for (int i
= 0; i
< NUM_QREGS
; i
++) {
231 print_qreg(f
, env
, i
, true);
233 qemu_fprintf(f
, "}\n");
237 static void hexagon_dump_state(CPUState
*cs
, FILE *f
, int flags
)
239 HexagonCPU
*cpu
= HEXAGON_CPU(cs
);
240 CPUHexagonState
*env
= &cpu
->env
;
242 hexagon_dump(env
, f
, flags
);
245 void hexagon_debug(CPUHexagonState
*env
)
247 hexagon_dump(env
, stdout
, CPU_DUMP_FPU
);
250 static void hexagon_cpu_set_pc(CPUState
*cs
, vaddr value
)
252 HexagonCPU
*cpu
= HEXAGON_CPU(cs
);
253 CPUHexagonState
*env
= &cpu
->env
;
254 env
->gpr
[HEX_REG_PC
] = value
;
257 static vaddr
hexagon_cpu_get_pc(CPUState
*cs
)
259 HexagonCPU
*cpu
= HEXAGON_CPU(cs
);
260 CPUHexagonState
*env
= &cpu
->env
;
261 return env
->gpr
[HEX_REG_PC
];
264 static void hexagon_cpu_synchronize_from_tb(CPUState
*cs
,
265 const TranslationBlock
*tb
)
267 HexagonCPU
*cpu
= HEXAGON_CPU(cs
);
268 CPUHexagonState
*env
= &cpu
->env
;
269 tcg_debug_assert(!(cs
->tcg_cflags
& CF_PCREL
));
270 env
->gpr
[HEX_REG_PC
] = tb
->pc
;
273 static bool hexagon_cpu_has_work(CPUState
*cs
)
278 static void hexagon_restore_state_to_opc(CPUState
*cs
,
279 const TranslationBlock
*tb
,
280 const uint64_t *data
)
282 HexagonCPU
*cpu
= HEXAGON_CPU(cs
);
283 CPUHexagonState
*env
= &cpu
->env
;
285 env
->gpr
[HEX_REG_PC
] = data
[0];
288 static void hexagon_cpu_reset_hold(Object
*obj
)
290 CPUState
*cs
= CPU(obj
);
291 HexagonCPU
*cpu
= HEXAGON_CPU(cs
);
292 HexagonCPUClass
*mcc
= HEXAGON_CPU_GET_CLASS(cpu
);
293 CPUHexagonState
*env
= &cpu
->env
;
295 if (mcc
->parent_phases
.hold
) {
296 mcc
->parent_phases
.hold(obj
);
299 set_default_nan_mode(1, &env
->fp_status
);
300 set_float_detect_tininess(float_tininess_before_rounding
, &env
->fp_status
);
303 static void hexagon_cpu_disas_set_info(CPUState
*s
, disassemble_info
*info
)
305 info
->print_insn
= print_insn_hexagon
;
308 static void hexagon_cpu_realize(DeviceState
*dev
, Error
**errp
)
310 CPUState
*cs
= CPU(dev
);
311 HexagonCPUClass
*mcc
= HEXAGON_CPU_GET_CLASS(dev
);
312 Error
*local_err
= NULL
;
314 cpu_exec_realizefn(cs
, &local_err
);
315 if (local_err
!= NULL
) {
316 error_propagate(errp
, local_err
);
320 gdb_register_coprocessor(cs
, hexagon_hvx_gdb_read_register
,
321 hexagon_hvx_gdb_write_register
,
322 NUM_VREGS
+ NUM_QREGS
,
323 "hexagon-hvx.xml", 0);
328 mcc
->parent_realize(dev
, errp
);
331 static void hexagon_cpu_init(Object
*obj
)
333 qdev_property_add_static(DEVICE(obj
), &hexagon_lldb_compat_property
);
334 qdev_property_add_static(DEVICE(obj
), &hexagon_lldb_stack_adjust_property
);
335 qdev_property_add_static(DEVICE(obj
), &hexagon_short_circuit_property
);
338 #include "hw/core/tcg-cpu-ops.h"
340 static const TCGCPUOps hexagon_tcg_ops
= {
341 .initialize
= hexagon_translate_init
,
342 .synchronize_from_tb
= hexagon_cpu_synchronize_from_tb
,
343 .restore_state_to_opc
= hexagon_restore_state_to_opc
,
346 static void hexagon_cpu_class_init(ObjectClass
*c
, void *data
)
348 HexagonCPUClass
*mcc
= HEXAGON_CPU_CLASS(c
);
349 CPUClass
*cc
= CPU_CLASS(c
);
350 DeviceClass
*dc
= DEVICE_CLASS(c
);
351 ResettableClass
*rc
= RESETTABLE_CLASS(c
);
353 device_class_set_parent_realize(dc
, hexagon_cpu_realize
,
354 &mcc
->parent_realize
);
356 resettable_class_set_parent_phases(rc
, NULL
, hexagon_cpu_reset_hold
, NULL
,
357 &mcc
->parent_phases
);
359 cc
->class_by_name
= hexagon_cpu_class_by_name
;
360 cc
->has_work
= hexagon_cpu_has_work
;
361 cc
->dump_state
= hexagon_dump_state
;
362 cc
->set_pc
= hexagon_cpu_set_pc
;
363 cc
->get_pc
= hexagon_cpu_get_pc
;
364 cc
->gdb_read_register
= hexagon_gdb_read_register
;
365 cc
->gdb_write_register
= hexagon_gdb_write_register
;
366 cc
->gdb_num_core_regs
= TOTAL_PER_THREAD_REGS
;
367 cc
->gdb_stop_before_watchpoint
= true;
368 cc
->gdb_core_xml_file
= "hexagon-core.xml";
369 cc
->disas_set_info
= hexagon_cpu_disas_set_info
;
370 cc
->tcg_ops
= &hexagon_tcg_ops
;
373 #define DEFINE_CPU(type_name, initfn) \
376 .parent = TYPE_HEXAGON_CPU, \
377 .instance_init = initfn \
380 static const TypeInfo hexagon_cpu_type_infos
[] = {
382 .name
= TYPE_HEXAGON_CPU
,
384 .instance_size
= sizeof(HexagonCPU
),
385 .instance_align
= __alignof(HexagonCPU
),
386 .instance_init
= hexagon_cpu_init
,
388 .class_size
= sizeof(HexagonCPUClass
),
389 .class_init
= hexagon_cpu_class_init
,
391 DEFINE_CPU(TYPE_HEXAGON_CPU_V67
, hexagon_v67_cpu_init
),
392 DEFINE_CPU(TYPE_HEXAGON_CPU_V68
, hexagon_v68_cpu_init
),
393 DEFINE_CPU(TYPE_HEXAGON_CPU_V69
, hexagon_v69_cpu_init
),
394 DEFINE_CPU(TYPE_HEXAGON_CPU_V71
, hexagon_v71_cpu_init
),
395 DEFINE_CPU(TYPE_HEXAGON_CPU_V73
, hexagon_v73_cpu_init
),
398 DEFINE_TYPES(hexagon_cpu_type_infos
)