tests/qtest: replace qmp_discard_response with qtest_qmp_assert_success
[qemu/kevin.git] / target / ppc / fpu_helper.c
bloba66e16c2128c2fdb1b905171ae5036a01cd18d46
1 /*
2 * PowerPC floating point and SPE emulation helpers for QEMU.
4 * Copyright (c) 2003-2007 Jocelyn Mayer
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
20 #include "cpu.h"
21 #include "exec/helper-proto.h"
22 #include "exec/exec-all.h"
23 #include "internal.h"
24 #include "fpu/softfloat.h"
26 static inline float128 float128_snan_to_qnan(float128 x)
28 float128 r;
30 r.high = x.high | 0x0000800000000000;
31 r.low = x.low;
32 return r;
35 #define float64_snan_to_qnan(x) ((x) | 0x0008000000000000ULL)
36 #define float32_snan_to_qnan(x) ((x) | 0x00400000)
37 #define float16_snan_to_qnan(x) ((x) | 0x0200)
39 static inline float32 bfp32_neg(float32 a)
41 if (unlikely(float32_is_any_nan(a))) {
42 return a;
43 } else {
44 return float32_chs(a);
48 static inline bool fp_exceptions_enabled(CPUPPCState *env)
50 #ifdef CONFIG_USER_ONLY
51 return true;
52 #else
53 return (env->msr & ((1U << MSR_FE0) | (1U << MSR_FE1))) != 0;
54 #endif
57 /*****************************************************************************/
58 /* Floating point operations helpers */
61 * This is the non-arithmatic conversion that happens e.g. on loads.
62 * In the Power ISA pseudocode, this is called DOUBLE.
64 uint64_t helper_todouble(uint32_t arg)
66 uint32_t abs_arg = arg & 0x7fffffff;
67 uint64_t ret;
69 if (likely(abs_arg >= 0x00800000)) {
70 if (unlikely(extract32(arg, 23, 8) == 0xff)) {
71 /* Inf or NAN. */
72 ret = (uint64_t)extract32(arg, 31, 1) << 63;
73 ret |= (uint64_t)0x7ff << 52;
74 ret |= (uint64_t)extract32(arg, 0, 23) << 29;
75 } else {
76 /* Normalized operand. */
77 ret = (uint64_t)extract32(arg, 30, 2) << 62;
78 ret |= ((extract32(arg, 30, 1) ^ 1) * (uint64_t)7) << 59;
79 ret |= (uint64_t)extract32(arg, 0, 30) << 29;
81 } else {
82 /* Zero or Denormalized operand. */
83 ret = (uint64_t)extract32(arg, 31, 1) << 63;
84 if (unlikely(abs_arg != 0)) {
86 * Denormalized operand.
87 * Shift fraction so that the msb is in the implicit bit position.
88 * Thus, shift is in the range [1:23].
90 int shift = clz32(abs_arg) - 8;
92 * The first 3 terms compute the float64 exponent. We then bias
93 * this result by -1 so that we can swallow the implicit bit below.
95 int exp = -126 - shift + 1023 - 1;
97 ret |= (uint64_t)exp << 52;
98 ret += (uint64_t)abs_arg << (52 - 23 + shift);
101 return ret;
105 * This is the non-arithmatic conversion that happens e.g. on stores.
106 * In the Power ISA pseudocode, this is called SINGLE.
108 uint32_t helper_tosingle(uint64_t arg)
110 int exp = extract64(arg, 52, 11);
111 uint32_t ret;
113 if (likely(exp > 896)) {
114 /* No denormalization required (includes Inf, NaN). */
115 ret = extract64(arg, 62, 2) << 30;
116 ret |= extract64(arg, 29, 30);
117 } else {
119 * Zero or Denormal result. If the exponent is in bounds for
120 * a single-precision denormal result, extract the proper
121 * bits. If the input is not zero, and the exponent is out of
122 * bounds, then the result is undefined; this underflows to
123 * zero.
125 ret = extract64(arg, 63, 1) << 31;
126 if (unlikely(exp >= 874)) {
127 /* Denormal result. */
128 ret |= ((1ULL << 52) | extract64(arg, 0, 52)) >> (896 + 30 - exp);
131 return ret;
134 static inline int ppc_float32_get_unbiased_exp(float32 f)
136 return ((f >> 23) & 0xFF) - 127;
139 static inline int ppc_float64_get_unbiased_exp(float64 f)
141 return ((f >> 52) & 0x7FF) - 1023;
144 /* Classify a floating-point number. */
145 enum {
146 is_normal = 1,
147 is_zero = 2,
148 is_denormal = 4,
149 is_inf = 8,
150 is_qnan = 16,
151 is_snan = 32,
152 is_neg = 64,
155 #define COMPUTE_CLASS(tp) \
156 static int tp##_classify(tp arg) \
158 int ret = tp##_is_neg(arg) * is_neg; \
159 if (unlikely(tp##_is_any_nan(arg))) { \
160 float_status dummy = { }; /* snan_bit_is_one = 0 */ \
161 ret |= (tp##_is_signaling_nan(arg, &dummy) \
162 ? is_snan : is_qnan); \
163 } else if (unlikely(tp##_is_infinity(arg))) { \
164 ret |= is_inf; \
165 } else if (tp##_is_zero(arg)) { \
166 ret |= is_zero; \
167 } else if (tp##_is_zero_or_denormal(arg)) { \
168 ret |= is_denormal; \
169 } else { \
170 ret |= is_normal; \
172 return ret; \
175 COMPUTE_CLASS(float16)
176 COMPUTE_CLASS(float32)
177 COMPUTE_CLASS(float64)
178 COMPUTE_CLASS(float128)
180 static void set_fprf_from_class(CPUPPCState *env, int class)
182 static const uint8_t fprf[6][2] = {
183 { 0x04, 0x08 }, /* normalized */
184 { 0x02, 0x12 }, /* zero */
185 { 0x14, 0x18 }, /* denormalized */
186 { 0x05, 0x09 }, /* infinity */
187 { 0x11, 0x11 }, /* qnan */
188 { 0x00, 0x00 }, /* snan -- flags are undefined */
190 bool isneg = class & is_neg;
192 env->fpscr &= ~FP_FPRF;
193 env->fpscr |= fprf[ctz32(class)][isneg] << FPSCR_FPRF;
196 #define COMPUTE_FPRF(tp) \
197 void helper_compute_fprf_##tp(CPUPPCState *env, tp arg) \
199 set_fprf_from_class(env, tp##_classify(arg)); \
202 COMPUTE_FPRF(float16)
203 COMPUTE_FPRF(float32)
204 COMPUTE_FPRF(float64)
205 COMPUTE_FPRF(float128)
207 /* Floating-point invalid operations exception */
208 static void finish_invalid_op_excp(CPUPPCState *env, int op, uintptr_t retaddr)
210 /* Update the floating-point invalid operation summary */
211 env->fpscr |= FP_VX;
212 /* Update the floating-point exception summary */
213 env->fpscr |= FP_FX;
214 if (env->fpscr & FP_VE) {
215 /* Update the floating-point enabled exception summary */
216 env->fpscr |= FP_FEX;
217 if (fp_exceptions_enabled(env)) {
218 raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
219 POWERPC_EXCP_FP | op, retaddr);
224 static void finish_invalid_op_arith(CPUPPCState *env, int op,
225 bool set_fpcc, uintptr_t retaddr)
227 env->fpscr &= ~(FP_FR | FP_FI);
228 if (!(env->fpscr & FP_VE)) {
229 if (set_fpcc) {
230 env->fpscr &= ~FP_FPCC;
231 env->fpscr |= (FP_C | FP_FU);
234 finish_invalid_op_excp(env, op, retaddr);
237 /* Signalling NaN */
238 static void float_invalid_op_vxsnan(CPUPPCState *env, uintptr_t retaddr)
240 env->fpscr |= FP_VXSNAN;
241 finish_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, retaddr);
244 /* Magnitude subtraction of infinities */
245 static void float_invalid_op_vxisi(CPUPPCState *env, bool set_fpcc,
246 uintptr_t retaddr)
248 env->fpscr |= FP_VXISI;
249 finish_invalid_op_arith(env, POWERPC_EXCP_FP_VXISI, set_fpcc, retaddr);
252 /* Division of infinity by infinity */
253 static void float_invalid_op_vxidi(CPUPPCState *env, bool set_fpcc,
254 uintptr_t retaddr)
256 env->fpscr |= FP_VXIDI;
257 finish_invalid_op_arith(env, POWERPC_EXCP_FP_VXIDI, set_fpcc, retaddr);
260 /* Division of zero by zero */
261 static void float_invalid_op_vxzdz(CPUPPCState *env, bool set_fpcc,
262 uintptr_t retaddr)
264 env->fpscr |= FP_VXZDZ;
265 finish_invalid_op_arith(env, POWERPC_EXCP_FP_VXZDZ, set_fpcc, retaddr);
268 /* Multiplication of zero by infinity */
269 static void float_invalid_op_vximz(CPUPPCState *env, bool set_fpcc,
270 uintptr_t retaddr)
272 env->fpscr |= FP_VXIMZ;
273 finish_invalid_op_arith(env, POWERPC_EXCP_FP_VXIMZ, set_fpcc, retaddr);
276 /* Square root of a negative number */
277 static void float_invalid_op_vxsqrt(CPUPPCState *env, bool set_fpcc,
278 uintptr_t retaddr)
280 env->fpscr |= FP_VXSQRT;
281 finish_invalid_op_arith(env, POWERPC_EXCP_FP_VXSQRT, set_fpcc, retaddr);
284 /* Ordered comparison of NaN */
285 static void float_invalid_op_vxvc(CPUPPCState *env, bool set_fpcc,
286 uintptr_t retaddr)
288 env->fpscr |= FP_VXVC;
289 if (set_fpcc) {
290 env->fpscr &= ~FP_FPCC;
291 env->fpscr |= (FP_C | FP_FU);
293 /* Update the floating-point invalid operation summary */
294 env->fpscr |= FP_VX;
295 /* Update the floating-point exception summary */
296 env->fpscr |= FP_FX;
297 /* We must update the target FPR before raising the exception */
298 if (env->fpscr & FP_VE) {
299 CPUState *cs = env_cpu(env);
301 cs->exception_index = POWERPC_EXCP_PROGRAM;
302 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_VXVC;
303 /* Update the floating-point enabled exception summary */
304 env->fpscr |= FP_FEX;
305 /* Exception is deferred */
309 /* Invalid conversion */
310 static void float_invalid_op_vxcvi(CPUPPCState *env, bool set_fpcc,
311 uintptr_t retaddr)
313 env->fpscr |= FP_VXCVI;
314 env->fpscr &= ~(FP_FR | FP_FI);
315 if (!(env->fpscr & FP_VE)) {
316 if (set_fpcc) {
317 env->fpscr &= ~FP_FPCC;
318 env->fpscr |= (FP_C | FP_FU);
321 finish_invalid_op_excp(env, POWERPC_EXCP_FP_VXCVI, retaddr);
324 static inline void float_zero_divide_excp(CPUPPCState *env, uintptr_t raddr)
326 env->fpscr |= FP_ZX;
327 env->fpscr &= ~(FP_FR | FP_FI);
328 /* Update the floating-point exception summary */
329 env->fpscr |= FP_FX;
330 if (env->fpscr & FP_ZE) {
331 /* Update the floating-point enabled exception summary */
332 env->fpscr |= FP_FEX;
333 if (fp_exceptions_enabled(env)) {
334 raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
335 POWERPC_EXCP_FP | POWERPC_EXCP_FP_ZX,
336 raddr);
341 static inline int float_overflow_excp(CPUPPCState *env)
343 CPUState *cs = env_cpu(env);
345 env->fpscr |= FP_OX;
346 /* Update the floating-point exception summary */
347 env->fpscr |= FP_FX;
349 bool overflow_enabled = !!(env->fpscr & FP_OE);
350 if (overflow_enabled) {
351 /* Update the floating-point enabled exception summary */
352 env->fpscr |= FP_FEX;
353 /* We must update the target FPR before raising the exception */
354 cs->exception_index = POWERPC_EXCP_PROGRAM;
355 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_OX;
358 return overflow_enabled ? 0 : float_flag_inexact;
361 static inline void float_underflow_excp(CPUPPCState *env)
363 CPUState *cs = env_cpu(env);
365 env->fpscr |= FP_UX;
366 /* Update the floating-point exception summary */
367 env->fpscr |= FP_FX;
368 if (env->fpscr & FP_UE) {
369 /* Update the floating-point enabled exception summary */
370 env->fpscr |= FP_FEX;
371 /* We must update the target FPR before raising the exception */
372 cs->exception_index = POWERPC_EXCP_PROGRAM;
373 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_UX;
377 static inline void float_inexact_excp(CPUPPCState *env)
379 CPUState *cs = env_cpu(env);
381 env->fpscr |= FP_XX;
382 /* Update the floating-point exception summary */
383 env->fpscr |= FP_FX;
384 if (env->fpscr & FP_XE) {
385 /* Update the floating-point enabled exception summary */
386 env->fpscr |= FP_FEX;
387 /* We must update the target FPR before raising the exception */
388 cs->exception_index = POWERPC_EXCP_PROGRAM;
389 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_XX;
393 void helper_fpscr_clrbit(CPUPPCState *env, uint32_t bit)
395 uint32_t mask = 1u << bit;
396 if (env->fpscr & mask) {
397 ppc_store_fpscr(env, env->fpscr & ~(target_ulong)mask);
401 void helper_fpscr_setbit(CPUPPCState *env, uint32_t bit)
403 uint32_t mask = 1u << bit;
404 if (!(env->fpscr & mask)) {
405 ppc_store_fpscr(env, env->fpscr | mask);
409 void helper_store_fpscr(CPUPPCState *env, uint64_t val, uint32_t nibbles)
411 target_ulong mask = 0;
412 int i;
414 /* TODO: push this extension back to translation time */
415 for (i = 0; i < sizeof(target_ulong) * 2; i++) {
416 if (nibbles & (1 << i)) {
417 mask |= (target_ulong) 0xf << (4 * i);
420 val = (val & mask) | (env->fpscr & ~mask);
421 ppc_store_fpscr(env, val);
424 static void do_fpscr_check_status(CPUPPCState *env, uintptr_t raddr)
426 CPUState *cs = env_cpu(env);
427 target_ulong fpscr = env->fpscr;
428 int error = 0;
430 if ((fpscr & FP_OX) && (fpscr & FP_OE)) {
431 error = POWERPC_EXCP_FP_OX;
432 } else if ((fpscr & FP_UX) && (fpscr & FP_UE)) {
433 error = POWERPC_EXCP_FP_UX;
434 } else if ((fpscr & FP_XX) && (fpscr & FP_XE)) {
435 error = POWERPC_EXCP_FP_XX;
436 } else if ((fpscr & FP_ZX) && (fpscr & FP_ZE)) {
437 error = POWERPC_EXCP_FP_ZX;
438 } else if (fpscr & FP_VE) {
439 if (fpscr & FP_VXSOFT) {
440 error = POWERPC_EXCP_FP_VXSOFT;
441 } else if (fpscr & FP_VXSNAN) {
442 error = POWERPC_EXCP_FP_VXSNAN;
443 } else if (fpscr & FP_VXISI) {
444 error = POWERPC_EXCP_FP_VXISI;
445 } else if (fpscr & FP_VXIDI) {
446 error = POWERPC_EXCP_FP_VXIDI;
447 } else if (fpscr & FP_VXZDZ) {
448 error = POWERPC_EXCP_FP_VXZDZ;
449 } else if (fpscr & FP_VXIMZ) {
450 error = POWERPC_EXCP_FP_VXIMZ;
451 } else if (fpscr & FP_VXVC) {
452 error = POWERPC_EXCP_FP_VXVC;
453 } else if (fpscr & FP_VXSQRT) {
454 error = POWERPC_EXCP_FP_VXSQRT;
455 } else if (fpscr & FP_VXCVI) {
456 error = POWERPC_EXCP_FP_VXCVI;
457 } else {
458 return;
460 } else {
461 return;
463 cs->exception_index = POWERPC_EXCP_PROGRAM;
464 env->error_code = error | POWERPC_EXCP_FP;
465 env->fpscr |= FP_FEX;
466 /* Deferred floating-point exception after target FPSCR update */
467 if (fp_exceptions_enabled(env)) {
468 raise_exception_err_ra(env, cs->exception_index,
469 env->error_code, raddr);
473 void helper_fpscr_check_status(CPUPPCState *env)
475 do_fpscr_check_status(env, GETPC());
478 static void do_float_check_status(CPUPPCState *env, bool change_fi,
479 uintptr_t raddr)
481 CPUState *cs = env_cpu(env);
482 int status = get_float_exception_flags(&env->fp_status);
484 if (status & float_flag_overflow) {
485 status |= float_overflow_excp(env);
486 } else if (status & float_flag_underflow) {
487 float_underflow_excp(env);
489 if (status & float_flag_inexact) {
490 float_inexact_excp(env);
492 if (change_fi) {
493 env->fpscr = FIELD_DP64(env->fpscr, FPSCR, FI,
494 !!(status & float_flag_inexact));
497 if (cs->exception_index == POWERPC_EXCP_PROGRAM &&
498 (env->error_code & POWERPC_EXCP_FP)) {
499 /* Deferred floating-point exception after target FPR update */
500 if (fp_exceptions_enabled(env)) {
501 raise_exception_err_ra(env, cs->exception_index,
502 env->error_code, raddr);
507 void helper_float_check_status(CPUPPCState *env)
509 do_float_check_status(env, true, GETPC());
512 void helper_reset_fpstatus(CPUPPCState *env)
514 set_float_exception_flags(0, &env->fp_status);
517 static void float_invalid_op_addsub(CPUPPCState *env, int flags,
518 bool set_fpcc, uintptr_t retaddr)
520 if (flags & float_flag_invalid_isi) {
521 float_invalid_op_vxisi(env, set_fpcc, retaddr);
522 } else if (flags & float_flag_invalid_snan) {
523 float_invalid_op_vxsnan(env, retaddr);
527 /* fadd - fadd. */
528 float64 helper_fadd(CPUPPCState *env, float64 arg1, float64 arg2)
530 float64 ret = float64_add(arg1, arg2, &env->fp_status);
531 int flags = get_float_exception_flags(&env->fp_status);
533 if (unlikely(flags & float_flag_invalid)) {
534 float_invalid_op_addsub(env, flags, 1, GETPC());
537 return ret;
540 /* fadds - fadds. */
541 float64 helper_fadds(CPUPPCState *env, float64 arg1, float64 arg2)
543 float64 ret = float64r32_add(arg1, arg2, &env->fp_status);
544 int flags = get_float_exception_flags(&env->fp_status);
546 if (unlikely(flags & float_flag_invalid)) {
547 float_invalid_op_addsub(env, flags, 1, GETPC());
549 return ret;
552 /* fsub - fsub. */
553 float64 helper_fsub(CPUPPCState *env, float64 arg1, float64 arg2)
555 float64 ret = float64_sub(arg1, arg2, &env->fp_status);
556 int flags = get_float_exception_flags(&env->fp_status);
558 if (unlikely(flags & float_flag_invalid)) {
559 float_invalid_op_addsub(env, flags, 1, GETPC());
562 return ret;
565 /* fsubs - fsubs. */
566 float64 helper_fsubs(CPUPPCState *env, float64 arg1, float64 arg2)
568 float64 ret = float64r32_sub(arg1, arg2, &env->fp_status);
569 int flags = get_float_exception_flags(&env->fp_status);
571 if (unlikely(flags & float_flag_invalid)) {
572 float_invalid_op_addsub(env, flags, 1, GETPC());
574 return ret;
577 static void float_invalid_op_mul(CPUPPCState *env, int flags,
578 bool set_fprc, uintptr_t retaddr)
580 if (flags & float_flag_invalid_imz) {
581 float_invalid_op_vximz(env, set_fprc, retaddr);
582 } else if (flags & float_flag_invalid_snan) {
583 float_invalid_op_vxsnan(env, retaddr);
587 /* fmul - fmul. */
588 float64 helper_fmul(CPUPPCState *env, float64 arg1, float64 arg2)
590 float64 ret = float64_mul(arg1, arg2, &env->fp_status);
591 int flags = get_float_exception_flags(&env->fp_status);
593 if (unlikely(flags & float_flag_invalid)) {
594 float_invalid_op_mul(env, flags, 1, GETPC());
597 return ret;
600 /* fmuls - fmuls. */
601 float64 helper_fmuls(CPUPPCState *env, float64 arg1, float64 arg2)
603 float64 ret = float64r32_mul(arg1, arg2, &env->fp_status);
604 int flags = get_float_exception_flags(&env->fp_status);
606 if (unlikely(flags & float_flag_invalid)) {
607 float_invalid_op_mul(env, flags, 1, GETPC());
609 return ret;
612 static void float_invalid_op_div(CPUPPCState *env, int flags,
613 bool set_fprc, uintptr_t retaddr)
615 if (flags & float_flag_invalid_idi) {
616 float_invalid_op_vxidi(env, set_fprc, retaddr);
617 } else if (flags & float_flag_invalid_zdz) {
618 float_invalid_op_vxzdz(env, set_fprc, retaddr);
619 } else if (flags & float_flag_invalid_snan) {
620 float_invalid_op_vxsnan(env, retaddr);
624 /* fdiv - fdiv. */
625 float64 helper_fdiv(CPUPPCState *env, float64 arg1, float64 arg2)
627 float64 ret = float64_div(arg1, arg2, &env->fp_status);
628 int flags = get_float_exception_flags(&env->fp_status);
630 if (unlikely(flags & float_flag_invalid)) {
631 float_invalid_op_div(env, flags, 1, GETPC());
633 if (unlikely(flags & float_flag_divbyzero)) {
634 float_zero_divide_excp(env, GETPC());
637 return ret;
640 /* fdivs - fdivs. */
641 float64 helper_fdivs(CPUPPCState *env, float64 arg1, float64 arg2)
643 float64 ret = float64r32_div(arg1, arg2, &env->fp_status);
644 int flags = get_float_exception_flags(&env->fp_status);
646 if (unlikely(flags & float_flag_invalid)) {
647 float_invalid_op_div(env, flags, 1, GETPC());
649 if (unlikely(flags & float_flag_divbyzero)) {
650 float_zero_divide_excp(env, GETPC());
653 return ret;
656 static uint64_t float_invalid_cvt(CPUPPCState *env, int flags,
657 uint64_t ret, uint64_t ret_nan,
658 bool set_fprc, uintptr_t retaddr)
661 * VXCVI is different from most in that it sets two exception bits,
662 * VXCVI and VXSNAN for an SNaN input.
664 if (flags & float_flag_invalid_snan) {
665 env->fpscr |= FP_VXSNAN;
667 float_invalid_op_vxcvi(env, set_fprc, retaddr);
669 return flags & float_flag_invalid_cvti ? ret : ret_nan;
672 #define FPU_FCTI(op, cvt, nanval) \
673 uint64_t helper_##op(CPUPPCState *env, float64 arg) \
675 uint64_t ret = float64_to_##cvt(arg, &env->fp_status); \
676 int flags = get_float_exception_flags(&env->fp_status); \
677 if (unlikely(flags & float_flag_invalid)) { \
678 ret = float_invalid_cvt(env, flags, ret, nanval, 1, GETPC()); \
680 return ret; \
683 FPU_FCTI(fctiw, int32, 0x80000000U)
684 FPU_FCTI(fctiwz, int32_round_to_zero, 0x80000000U)
685 FPU_FCTI(fctiwu, uint32, 0x00000000U)
686 FPU_FCTI(fctiwuz, uint32_round_to_zero, 0x00000000U)
687 FPU_FCTI(fctid, int64, 0x8000000000000000ULL)
688 FPU_FCTI(fctidz, int64_round_to_zero, 0x8000000000000000ULL)
689 FPU_FCTI(fctidu, uint64, 0x0000000000000000ULL)
690 FPU_FCTI(fctiduz, uint64_round_to_zero, 0x0000000000000000ULL)
692 #define FPU_FCFI(op, cvtr, is_single) \
693 uint64_t helper_##op(CPUPPCState *env, uint64_t arg) \
695 CPU_DoubleU farg; \
697 if (is_single) { \
698 float32 tmp = cvtr(arg, &env->fp_status); \
699 farg.d = float32_to_float64(tmp, &env->fp_status); \
700 } else { \
701 farg.d = cvtr(arg, &env->fp_status); \
703 do_float_check_status(env, true, GETPC()); \
704 return farg.ll; \
707 FPU_FCFI(fcfid, int64_to_float64, 0)
708 FPU_FCFI(fcfids, int64_to_float32, 1)
709 FPU_FCFI(fcfidu, uint64_to_float64, 0)
710 FPU_FCFI(fcfidus, uint64_to_float32, 1)
712 static uint64_t do_fri(CPUPPCState *env, uint64_t arg,
713 FloatRoundMode rounding_mode)
715 FloatRoundMode old_rounding_mode = get_float_rounding_mode(&env->fp_status);
716 int flags;
718 set_float_rounding_mode(rounding_mode, &env->fp_status);
719 arg = float64_round_to_int(arg, &env->fp_status);
720 set_float_rounding_mode(old_rounding_mode, &env->fp_status);
722 flags = get_float_exception_flags(&env->fp_status);
723 if (flags & float_flag_invalid_snan) {
724 float_invalid_op_vxsnan(env, GETPC());
727 /* fri* does not set FPSCR[XX] */
728 set_float_exception_flags(flags & ~float_flag_inexact, &env->fp_status);
729 do_float_check_status(env, true, GETPC());
731 return arg;
734 uint64_t helper_frin(CPUPPCState *env, uint64_t arg)
736 return do_fri(env, arg, float_round_ties_away);
739 uint64_t helper_friz(CPUPPCState *env, uint64_t arg)
741 return do_fri(env, arg, float_round_to_zero);
744 uint64_t helper_frip(CPUPPCState *env, uint64_t arg)
746 return do_fri(env, arg, float_round_up);
749 uint64_t helper_frim(CPUPPCState *env, uint64_t arg)
751 return do_fri(env, arg, float_round_down);
754 static void float_invalid_op_madd(CPUPPCState *env, int flags,
755 bool set_fpcc, uintptr_t retaddr)
757 if (flags & float_flag_invalid_imz) {
758 float_invalid_op_vximz(env, set_fpcc, retaddr);
759 } else {
760 float_invalid_op_addsub(env, flags, set_fpcc, retaddr);
764 static float64 do_fmadd(CPUPPCState *env, float64 a, float64 b,
765 float64 c, int madd_flags, uintptr_t retaddr)
767 float64 ret = float64_muladd(a, b, c, madd_flags, &env->fp_status);
768 int flags = get_float_exception_flags(&env->fp_status);
770 if (unlikely(flags & float_flag_invalid)) {
771 float_invalid_op_madd(env, flags, 1, retaddr);
773 return ret;
776 static uint64_t do_fmadds(CPUPPCState *env, float64 a, float64 b,
777 float64 c, int madd_flags, uintptr_t retaddr)
779 float64 ret = float64r32_muladd(a, b, c, madd_flags, &env->fp_status);
780 int flags = get_float_exception_flags(&env->fp_status);
782 if (unlikely(flags & float_flag_invalid)) {
783 float_invalid_op_madd(env, flags, 1, retaddr);
785 return ret;
788 #define FPU_FMADD(op, madd_flags) \
789 uint64_t helper_##op(CPUPPCState *env, uint64_t arg1, \
790 uint64_t arg2, uint64_t arg3) \
791 { return do_fmadd(env, arg1, arg2, arg3, madd_flags, GETPC()); } \
792 uint64_t helper_##op##s(CPUPPCState *env, uint64_t arg1, \
793 uint64_t arg2, uint64_t arg3) \
794 { return do_fmadds(env, arg1, arg2, arg3, madd_flags, GETPC()); }
796 #define MADD_FLGS 0
797 #define MSUB_FLGS float_muladd_negate_c
798 #define NMADD_FLGS float_muladd_negate_result
799 #define NMSUB_FLGS (float_muladd_negate_c | float_muladd_negate_result)
801 FPU_FMADD(fmadd, MADD_FLGS)
802 FPU_FMADD(fnmadd, NMADD_FLGS)
803 FPU_FMADD(fmsub, MSUB_FLGS)
804 FPU_FMADD(fnmsub, NMSUB_FLGS)
806 /* frsp - frsp. */
807 static uint64_t do_frsp(CPUPPCState *env, uint64_t arg, uintptr_t retaddr)
809 float32 f32 = float64_to_float32(arg, &env->fp_status);
810 int flags = get_float_exception_flags(&env->fp_status);
812 if (unlikely(flags & float_flag_invalid_snan)) {
813 float_invalid_op_vxsnan(env, retaddr);
815 return helper_todouble(f32);
818 uint64_t helper_frsp(CPUPPCState *env, uint64_t arg)
820 return do_frsp(env, arg, GETPC());
823 static void float_invalid_op_sqrt(CPUPPCState *env, int flags,
824 bool set_fpcc, uintptr_t retaddr)
826 if (unlikely(flags & float_flag_invalid_sqrt)) {
827 float_invalid_op_vxsqrt(env, set_fpcc, retaddr);
828 } else if (unlikely(flags & float_flag_invalid_snan)) {
829 float_invalid_op_vxsnan(env, retaddr);
833 #define FPU_FSQRT(name, op) \
834 float64 helper_##name(CPUPPCState *env, float64 arg) \
836 float64 ret = op(arg, &env->fp_status); \
837 int flags = get_float_exception_flags(&env->fp_status); \
839 if (unlikely(flags & float_flag_invalid)) { \
840 float_invalid_op_sqrt(env, flags, 1, GETPC()); \
843 return ret; \
846 FPU_FSQRT(FSQRT, float64_sqrt)
847 FPU_FSQRT(FSQRTS, float64r32_sqrt)
849 /* fre - fre. */
850 float64 helper_fre(CPUPPCState *env, float64 arg)
852 /* "Estimate" the reciprocal with actual division. */
853 float64 ret = float64_div(float64_one, arg, &env->fp_status);
854 int flags = get_float_exception_flags(&env->fp_status);
856 if (unlikely(flags & float_flag_invalid_snan)) {
857 float_invalid_op_vxsnan(env, GETPC());
859 if (unlikely(flags & float_flag_divbyzero)) {
860 float_zero_divide_excp(env, GETPC());
861 /* For FPSCR.ZE == 0, the result is 1/2. */
862 ret = float64_set_sign(float64_half, float64_is_neg(arg));
865 return ret;
868 /* fres - fres. */
869 uint64_t helper_fres(CPUPPCState *env, uint64_t arg)
871 /* "Estimate" the reciprocal with actual division. */
872 float64 ret = float64r32_div(float64_one, arg, &env->fp_status);
873 int flags = get_float_exception_flags(&env->fp_status);
875 if (unlikely(flags & float_flag_invalid_snan)) {
876 float_invalid_op_vxsnan(env, GETPC());
878 if (unlikely(flags & float_flag_divbyzero)) {
879 float_zero_divide_excp(env, GETPC());
880 /* For FPSCR.ZE == 0, the result is 1/2. */
881 ret = float64_set_sign(float64_half, float64_is_neg(arg));
884 return ret;
887 /* frsqrte - frsqrte. */
888 float64 helper_frsqrte(CPUPPCState *env, float64 arg)
890 /* "Estimate" the reciprocal with actual division. */
891 float64 rets = float64_sqrt(arg, &env->fp_status);
892 float64 retd = float64_div(float64_one, rets, &env->fp_status);
893 int flags = get_float_exception_flags(&env->fp_status);
895 if (unlikely(flags & float_flag_invalid)) {
896 float_invalid_op_sqrt(env, flags, 1, GETPC());
898 if (unlikely(flags & float_flag_divbyzero)) {
899 /* Reciprocal of (square root of) zero. */
900 float_zero_divide_excp(env, GETPC());
903 return retd;
906 /* frsqrtes - frsqrtes. */
907 float64 helper_frsqrtes(CPUPPCState *env, float64 arg)
909 /* "Estimate" the reciprocal with actual division. */
910 float64 rets = float64_sqrt(arg, &env->fp_status);
911 float64 retd = float64r32_div(float64_one, rets, &env->fp_status);
912 int flags = get_float_exception_flags(&env->fp_status);
914 if (unlikely(flags & float_flag_invalid)) {
915 float_invalid_op_sqrt(env, flags, 1, GETPC());
917 if (unlikely(flags & float_flag_divbyzero)) {
918 /* Reciprocal of (square root of) zero. */
919 float_zero_divide_excp(env, GETPC());
922 return retd;
925 /* fsel - fsel. */
926 uint64_t helper_FSEL(uint64_t a, uint64_t b, uint64_t c)
928 CPU_DoubleU fa;
930 fa.ll = a;
932 if ((!float64_is_neg(fa.d) || float64_is_zero(fa.d)) &&
933 !float64_is_any_nan(fa.d)) {
934 return c;
935 } else {
936 return b;
940 uint32_t helper_ftdiv(uint64_t fra, uint64_t frb)
942 int fe_flag = 0;
943 int fg_flag = 0;
945 if (unlikely(float64_is_infinity(fra) ||
946 float64_is_infinity(frb) ||
947 float64_is_zero(frb))) {
948 fe_flag = 1;
949 fg_flag = 1;
950 } else {
951 int e_a = ppc_float64_get_unbiased_exp(fra);
952 int e_b = ppc_float64_get_unbiased_exp(frb);
954 if (unlikely(float64_is_any_nan(fra) ||
955 float64_is_any_nan(frb))) {
956 fe_flag = 1;
957 } else if ((e_b <= -1022) || (e_b >= 1021)) {
958 fe_flag = 1;
959 } else if (!float64_is_zero(fra) &&
960 (((e_a - e_b) >= 1023) ||
961 ((e_a - e_b) <= -1021) ||
962 (e_a <= -970))) {
963 fe_flag = 1;
966 if (unlikely(float64_is_zero_or_denormal(frb))) {
967 /* XB is not zero because of the above check and */
968 /* so must be denormalized. */
969 fg_flag = 1;
973 return 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0);
976 uint32_t helper_ftsqrt(uint64_t frb)
978 int fe_flag = 0;
979 int fg_flag = 0;
981 if (unlikely(float64_is_infinity(frb) || float64_is_zero(frb))) {
982 fe_flag = 1;
983 fg_flag = 1;
984 } else {
985 int e_b = ppc_float64_get_unbiased_exp(frb);
987 if (unlikely(float64_is_any_nan(frb))) {
988 fe_flag = 1;
989 } else if (unlikely(float64_is_zero(frb))) {
990 fe_flag = 1;
991 } else if (unlikely(float64_is_neg(frb))) {
992 fe_flag = 1;
993 } else if (!float64_is_zero(frb) && (e_b <= (-1022 + 52))) {
994 fe_flag = 1;
997 if (unlikely(float64_is_zero_or_denormal(frb))) {
998 /* XB is not zero because of the above check and */
999 /* therefore must be denormalized. */
1000 fg_flag = 1;
1004 return 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0);
1007 void helper_fcmpu(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
1008 uint32_t crfD)
1010 CPU_DoubleU farg1, farg2;
1011 uint32_t ret = 0;
1013 farg1.ll = arg1;
1014 farg2.ll = arg2;
1016 if (unlikely(float64_is_any_nan(farg1.d) ||
1017 float64_is_any_nan(farg2.d))) {
1018 ret = 0x01UL;
1019 } else if (float64_lt(farg1.d, farg2.d, &env->fp_status)) {
1020 ret = 0x08UL;
1021 } else if (!float64_le(farg1.d, farg2.d, &env->fp_status)) {
1022 ret = 0x04UL;
1023 } else {
1024 ret = 0x02UL;
1027 env->fpscr &= ~FP_FPCC;
1028 env->fpscr |= ret << FPSCR_FPCC;
1029 env->crf[crfD] = ret;
1030 if (unlikely(ret == 0x01UL
1031 && (float64_is_signaling_nan(farg1.d, &env->fp_status) ||
1032 float64_is_signaling_nan(farg2.d, &env->fp_status)))) {
1033 /* sNaN comparison */
1034 float_invalid_op_vxsnan(env, GETPC());
1038 void helper_fcmpo(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
1039 uint32_t crfD)
1041 CPU_DoubleU farg1, farg2;
1042 uint32_t ret = 0;
1044 farg1.ll = arg1;
1045 farg2.ll = arg2;
1047 if (unlikely(float64_is_any_nan(farg1.d) ||
1048 float64_is_any_nan(farg2.d))) {
1049 ret = 0x01UL;
1050 } else if (float64_lt(farg1.d, farg2.d, &env->fp_status)) {
1051 ret = 0x08UL;
1052 } else if (!float64_le(farg1.d, farg2.d, &env->fp_status)) {
1053 ret = 0x04UL;
1054 } else {
1055 ret = 0x02UL;
1058 env->fpscr &= ~FP_FPCC;
1059 env->fpscr |= ret << FPSCR_FPCC;
1060 env->crf[crfD] = (uint32_t) ret;
1061 if (unlikely(ret == 0x01UL)) {
1062 float_invalid_op_vxvc(env, 1, GETPC());
1063 if (float64_is_signaling_nan(farg1.d, &env->fp_status) ||
1064 float64_is_signaling_nan(farg2.d, &env->fp_status)) {
1065 /* sNaN comparison */
1066 float_invalid_op_vxsnan(env, GETPC());
1071 /* Single-precision floating-point conversions */
1072 static inline uint32_t efscfsi(CPUPPCState *env, uint32_t val)
1074 CPU_FloatU u;
1076 u.f = int32_to_float32(val, &env->vec_status);
1078 return u.l;
1081 static inline uint32_t efscfui(CPUPPCState *env, uint32_t val)
1083 CPU_FloatU u;
1085 u.f = uint32_to_float32(val, &env->vec_status);
1087 return u.l;
1090 static inline int32_t efsctsi(CPUPPCState *env, uint32_t val)
1092 CPU_FloatU u;
1094 u.l = val;
1095 /* NaN are not treated the same way IEEE 754 does */
1096 if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) {
1097 return 0;
1100 return float32_to_int32(u.f, &env->vec_status);
1103 static inline uint32_t efsctui(CPUPPCState *env, uint32_t val)
1105 CPU_FloatU u;
1107 u.l = val;
1108 /* NaN are not treated the same way IEEE 754 does */
1109 if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) {
1110 return 0;
1113 return float32_to_uint32(u.f, &env->vec_status);
1116 static inline uint32_t efsctsiz(CPUPPCState *env, uint32_t val)
1118 CPU_FloatU u;
1120 u.l = val;
1121 /* NaN are not treated the same way IEEE 754 does */
1122 if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) {
1123 return 0;
1126 return float32_to_int32_round_to_zero(u.f, &env->vec_status);
1129 static inline uint32_t efsctuiz(CPUPPCState *env, uint32_t val)
1131 CPU_FloatU u;
1133 u.l = val;
1134 /* NaN are not treated the same way IEEE 754 does */
1135 if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) {
1136 return 0;
1139 return float32_to_uint32_round_to_zero(u.f, &env->vec_status);
1142 static inline uint32_t efscfsf(CPUPPCState *env, uint32_t val)
1144 CPU_FloatU u;
1145 float32 tmp;
1147 u.f = int32_to_float32(val, &env->vec_status);
1148 tmp = int64_to_float32(1ULL << 32, &env->vec_status);
1149 u.f = float32_div(u.f, tmp, &env->vec_status);
1151 return u.l;
1154 static inline uint32_t efscfuf(CPUPPCState *env, uint32_t val)
1156 CPU_FloatU u;
1157 float32 tmp;
1159 u.f = uint32_to_float32(val, &env->vec_status);
1160 tmp = uint64_to_float32(1ULL << 32, &env->vec_status);
1161 u.f = float32_div(u.f, tmp, &env->vec_status);
1163 return u.l;
1166 static inline uint32_t efsctsf(CPUPPCState *env, uint32_t val)
1168 CPU_FloatU u;
1169 float32 tmp;
1171 u.l = val;
1172 /* NaN are not treated the same way IEEE 754 does */
1173 if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) {
1174 return 0;
1176 tmp = uint64_to_float32(1ULL << 32, &env->vec_status);
1177 u.f = float32_mul(u.f, tmp, &env->vec_status);
1179 return float32_to_int32(u.f, &env->vec_status);
1182 static inline uint32_t efsctuf(CPUPPCState *env, uint32_t val)
1184 CPU_FloatU u;
1185 float32 tmp;
1187 u.l = val;
1188 /* NaN are not treated the same way IEEE 754 does */
1189 if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) {
1190 return 0;
1192 tmp = uint64_to_float32(1ULL << 32, &env->vec_status);
1193 u.f = float32_mul(u.f, tmp, &env->vec_status);
1195 return float32_to_uint32(u.f, &env->vec_status);
1198 #define HELPER_SPE_SINGLE_CONV(name) \
1199 uint32_t helper_e##name(CPUPPCState *env, uint32_t val) \
1201 return e##name(env, val); \
1203 /* efscfsi */
1204 HELPER_SPE_SINGLE_CONV(fscfsi);
1205 /* efscfui */
1206 HELPER_SPE_SINGLE_CONV(fscfui);
1207 /* efscfuf */
1208 HELPER_SPE_SINGLE_CONV(fscfuf);
1209 /* efscfsf */
1210 HELPER_SPE_SINGLE_CONV(fscfsf);
1211 /* efsctsi */
1212 HELPER_SPE_SINGLE_CONV(fsctsi);
1213 /* efsctui */
1214 HELPER_SPE_SINGLE_CONV(fsctui);
1215 /* efsctsiz */
1216 HELPER_SPE_SINGLE_CONV(fsctsiz);
1217 /* efsctuiz */
1218 HELPER_SPE_SINGLE_CONV(fsctuiz);
1219 /* efsctsf */
1220 HELPER_SPE_SINGLE_CONV(fsctsf);
1221 /* efsctuf */
1222 HELPER_SPE_SINGLE_CONV(fsctuf);
1224 #define HELPER_SPE_VECTOR_CONV(name) \
1225 uint64_t helper_ev##name(CPUPPCState *env, uint64_t val) \
1227 return ((uint64_t)e##name(env, val >> 32) << 32) | \
1228 (uint64_t)e##name(env, val); \
1230 /* evfscfsi */
1231 HELPER_SPE_VECTOR_CONV(fscfsi);
1232 /* evfscfui */
1233 HELPER_SPE_VECTOR_CONV(fscfui);
1234 /* evfscfuf */
1235 HELPER_SPE_VECTOR_CONV(fscfuf);
1236 /* evfscfsf */
1237 HELPER_SPE_VECTOR_CONV(fscfsf);
1238 /* evfsctsi */
1239 HELPER_SPE_VECTOR_CONV(fsctsi);
1240 /* evfsctui */
1241 HELPER_SPE_VECTOR_CONV(fsctui);
1242 /* evfsctsiz */
1243 HELPER_SPE_VECTOR_CONV(fsctsiz);
1244 /* evfsctuiz */
1245 HELPER_SPE_VECTOR_CONV(fsctuiz);
1246 /* evfsctsf */
1247 HELPER_SPE_VECTOR_CONV(fsctsf);
1248 /* evfsctuf */
1249 HELPER_SPE_VECTOR_CONV(fsctuf);
1251 /* Single-precision floating-point arithmetic */
1252 static inline uint32_t efsadd(CPUPPCState *env, uint32_t op1, uint32_t op2)
1254 CPU_FloatU u1, u2;
1256 u1.l = op1;
1257 u2.l = op2;
1258 u1.f = float32_add(u1.f, u2.f, &env->vec_status);
1259 return u1.l;
1262 static inline uint32_t efssub(CPUPPCState *env, uint32_t op1, uint32_t op2)
1264 CPU_FloatU u1, u2;
1266 u1.l = op1;
1267 u2.l = op2;
1268 u1.f = float32_sub(u1.f, u2.f, &env->vec_status);
1269 return u1.l;
1272 static inline uint32_t efsmul(CPUPPCState *env, uint32_t op1, uint32_t op2)
1274 CPU_FloatU u1, u2;
1276 u1.l = op1;
1277 u2.l = op2;
1278 u1.f = float32_mul(u1.f, u2.f, &env->vec_status);
1279 return u1.l;
1282 static inline uint32_t efsdiv(CPUPPCState *env, uint32_t op1, uint32_t op2)
1284 CPU_FloatU u1, u2;
1286 u1.l = op1;
1287 u2.l = op2;
1288 u1.f = float32_div(u1.f, u2.f, &env->vec_status);
1289 return u1.l;
1292 #define HELPER_SPE_SINGLE_ARITH(name) \
1293 uint32_t helper_e##name(CPUPPCState *env, uint32_t op1, uint32_t op2) \
1295 return e##name(env, op1, op2); \
1297 /* efsadd */
1298 HELPER_SPE_SINGLE_ARITH(fsadd);
1299 /* efssub */
1300 HELPER_SPE_SINGLE_ARITH(fssub);
1301 /* efsmul */
1302 HELPER_SPE_SINGLE_ARITH(fsmul);
1303 /* efsdiv */
1304 HELPER_SPE_SINGLE_ARITH(fsdiv);
1306 #define HELPER_SPE_VECTOR_ARITH(name) \
1307 uint64_t helper_ev##name(CPUPPCState *env, uint64_t op1, uint64_t op2) \
1309 return ((uint64_t)e##name(env, op1 >> 32, op2 >> 32) << 32) | \
1310 (uint64_t)e##name(env, op1, op2); \
1312 /* evfsadd */
1313 HELPER_SPE_VECTOR_ARITH(fsadd);
1314 /* evfssub */
1315 HELPER_SPE_VECTOR_ARITH(fssub);
1316 /* evfsmul */
1317 HELPER_SPE_VECTOR_ARITH(fsmul);
1318 /* evfsdiv */
1319 HELPER_SPE_VECTOR_ARITH(fsdiv);
1321 /* Single-precision floating-point comparisons */
1322 static inline uint32_t efscmplt(CPUPPCState *env, uint32_t op1, uint32_t op2)
1324 CPU_FloatU u1, u2;
1326 u1.l = op1;
1327 u2.l = op2;
1328 return float32_lt(u1.f, u2.f, &env->vec_status) ? 4 : 0;
1331 static inline uint32_t efscmpgt(CPUPPCState *env, uint32_t op1, uint32_t op2)
1333 CPU_FloatU u1, u2;
1335 u1.l = op1;
1336 u2.l = op2;
1337 return float32_le(u1.f, u2.f, &env->vec_status) ? 0 : 4;
1340 static inline uint32_t efscmpeq(CPUPPCState *env, uint32_t op1, uint32_t op2)
1342 CPU_FloatU u1, u2;
1344 u1.l = op1;
1345 u2.l = op2;
1346 return float32_eq(u1.f, u2.f, &env->vec_status) ? 4 : 0;
1349 static inline uint32_t efststlt(CPUPPCState *env, uint32_t op1, uint32_t op2)
1351 /* XXX: TODO: ignore special values (NaN, infinites, ...) */
1352 return efscmplt(env, op1, op2);
1355 static inline uint32_t efststgt(CPUPPCState *env, uint32_t op1, uint32_t op2)
1357 /* XXX: TODO: ignore special values (NaN, infinites, ...) */
1358 return efscmpgt(env, op1, op2);
1361 static inline uint32_t efststeq(CPUPPCState *env, uint32_t op1, uint32_t op2)
1363 /* XXX: TODO: ignore special values (NaN, infinites, ...) */
1364 return efscmpeq(env, op1, op2);
1367 #define HELPER_SINGLE_SPE_CMP(name) \
1368 uint32_t helper_e##name(CPUPPCState *env, uint32_t op1, uint32_t op2) \
1370 return e##name(env, op1, op2); \
1372 /* efststlt */
1373 HELPER_SINGLE_SPE_CMP(fststlt);
1374 /* efststgt */
1375 HELPER_SINGLE_SPE_CMP(fststgt);
1376 /* efststeq */
1377 HELPER_SINGLE_SPE_CMP(fststeq);
1378 /* efscmplt */
1379 HELPER_SINGLE_SPE_CMP(fscmplt);
1380 /* efscmpgt */
1381 HELPER_SINGLE_SPE_CMP(fscmpgt);
1382 /* efscmpeq */
1383 HELPER_SINGLE_SPE_CMP(fscmpeq);
1385 static inline uint32_t evcmp_merge(int t0, int t1)
1387 return (t0 << 3) | (t1 << 2) | ((t0 | t1) << 1) | (t0 & t1);
1390 #define HELPER_VECTOR_SPE_CMP(name) \
1391 uint32_t helper_ev##name(CPUPPCState *env, uint64_t op1, uint64_t op2) \
1393 return evcmp_merge(e##name(env, op1 >> 32, op2 >> 32), \
1394 e##name(env, op1, op2)); \
1396 /* evfststlt */
1397 HELPER_VECTOR_SPE_CMP(fststlt);
1398 /* evfststgt */
1399 HELPER_VECTOR_SPE_CMP(fststgt);
1400 /* evfststeq */
1401 HELPER_VECTOR_SPE_CMP(fststeq);
1402 /* evfscmplt */
1403 HELPER_VECTOR_SPE_CMP(fscmplt);
1404 /* evfscmpgt */
1405 HELPER_VECTOR_SPE_CMP(fscmpgt);
1406 /* evfscmpeq */
1407 HELPER_VECTOR_SPE_CMP(fscmpeq);
1409 /* Double-precision floating-point conversion */
1410 uint64_t helper_efdcfsi(CPUPPCState *env, uint32_t val)
1412 CPU_DoubleU u;
1414 u.d = int32_to_float64(val, &env->vec_status);
1416 return u.ll;
1419 uint64_t helper_efdcfsid(CPUPPCState *env, uint64_t val)
1421 CPU_DoubleU u;
1423 u.d = int64_to_float64(val, &env->vec_status);
1425 return u.ll;
1428 uint64_t helper_efdcfui(CPUPPCState *env, uint32_t val)
1430 CPU_DoubleU u;
1432 u.d = uint32_to_float64(val, &env->vec_status);
1434 return u.ll;
1437 uint64_t helper_efdcfuid(CPUPPCState *env, uint64_t val)
1439 CPU_DoubleU u;
1441 u.d = uint64_to_float64(val, &env->vec_status);
1443 return u.ll;
1446 uint32_t helper_efdctsi(CPUPPCState *env, uint64_t val)
1448 CPU_DoubleU u;
1450 u.ll = val;
1451 /* NaN are not treated the same way IEEE 754 does */
1452 if (unlikely(float64_is_any_nan(u.d))) {
1453 return 0;
1456 return float64_to_int32(u.d, &env->vec_status);
1459 uint32_t helper_efdctui(CPUPPCState *env, uint64_t val)
1461 CPU_DoubleU u;
1463 u.ll = val;
1464 /* NaN are not treated the same way IEEE 754 does */
1465 if (unlikely(float64_is_any_nan(u.d))) {
1466 return 0;
1469 return float64_to_uint32(u.d, &env->vec_status);
1472 uint32_t helper_efdctsiz(CPUPPCState *env, uint64_t val)
1474 CPU_DoubleU u;
1476 u.ll = val;
1477 /* NaN are not treated the same way IEEE 754 does */
1478 if (unlikely(float64_is_any_nan(u.d))) {
1479 return 0;
1482 return float64_to_int32_round_to_zero(u.d, &env->vec_status);
1485 uint64_t helper_efdctsidz(CPUPPCState *env, uint64_t val)
1487 CPU_DoubleU u;
1489 u.ll = val;
1490 /* NaN are not treated the same way IEEE 754 does */
1491 if (unlikely(float64_is_any_nan(u.d))) {
1492 return 0;
1495 return float64_to_int64_round_to_zero(u.d, &env->vec_status);
1498 uint32_t helper_efdctuiz(CPUPPCState *env, uint64_t val)
1500 CPU_DoubleU u;
1502 u.ll = val;
1503 /* NaN are not treated the same way IEEE 754 does */
1504 if (unlikely(float64_is_any_nan(u.d))) {
1505 return 0;
1508 return float64_to_uint32_round_to_zero(u.d, &env->vec_status);
1511 uint64_t helper_efdctuidz(CPUPPCState *env, uint64_t val)
1513 CPU_DoubleU u;
1515 u.ll = val;
1516 /* NaN are not treated the same way IEEE 754 does */
1517 if (unlikely(float64_is_any_nan(u.d))) {
1518 return 0;
1521 return float64_to_uint64_round_to_zero(u.d, &env->vec_status);
1524 uint64_t helper_efdcfsf(CPUPPCState *env, uint32_t val)
1526 CPU_DoubleU u;
1527 float64 tmp;
1529 u.d = int32_to_float64(val, &env->vec_status);
1530 tmp = int64_to_float64(1ULL << 32, &env->vec_status);
1531 u.d = float64_div(u.d, tmp, &env->vec_status);
1533 return u.ll;
1536 uint64_t helper_efdcfuf(CPUPPCState *env, uint32_t val)
1538 CPU_DoubleU u;
1539 float64 tmp;
1541 u.d = uint32_to_float64(val, &env->vec_status);
1542 tmp = int64_to_float64(1ULL << 32, &env->vec_status);
1543 u.d = float64_div(u.d, tmp, &env->vec_status);
1545 return u.ll;
1548 uint32_t helper_efdctsf(CPUPPCState *env, uint64_t val)
1550 CPU_DoubleU u;
1551 float64 tmp;
1553 u.ll = val;
1554 /* NaN are not treated the same way IEEE 754 does */
1555 if (unlikely(float64_is_any_nan(u.d))) {
1556 return 0;
1558 tmp = uint64_to_float64(1ULL << 32, &env->vec_status);
1559 u.d = float64_mul(u.d, tmp, &env->vec_status);
1561 return float64_to_int32(u.d, &env->vec_status);
1564 uint32_t helper_efdctuf(CPUPPCState *env, uint64_t val)
1566 CPU_DoubleU u;
1567 float64 tmp;
1569 u.ll = val;
1570 /* NaN are not treated the same way IEEE 754 does */
1571 if (unlikely(float64_is_any_nan(u.d))) {
1572 return 0;
1574 tmp = uint64_to_float64(1ULL << 32, &env->vec_status);
1575 u.d = float64_mul(u.d, tmp, &env->vec_status);
1577 return float64_to_uint32(u.d, &env->vec_status);
1580 uint32_t helper_efscfd(CPUPPCState *env, uint64_t val)
1582 CPU_DoubleU u1;
1583 CPU_FloatU u2;
1585 u1.ll = val;
1586 u2.f = float64_to_float32(u1.d, &env->vec_status);
1588 return u2.l;
1591 uint64_t helper_efdcfs(CPUPPCState *env, uint32_t val)
1593 CPU_DoubleU u2;
1594 CPU_FloatU u1;
1596 u1.l = val;
1597 u2.d = float32_to_float64(u1.f, &env->vec_status);
1599 return u2.ll;
1602 /* Double precision fixed-point arithmetic */
1603 uint64_t helper_efdadd(CPUPPCState *env, uint64_t op1, uint64_t op2)
1605 CPU_DoubleU u1, u2;
1607 u1.ll = op1;
1608 u2.ll = op2;
1609 u1.d = float64_add(u1.d, u2.d, &env->vec_status);
1610 return u1.ll;
1613 uint64_t helper_efdsub(CPUPPCState *env, uint64_t op1, uint64_t op2)
1615 CPU_DoubleU u1, u2;
1617 u1.ll = op1;
1618 u2.ll = op2;
1619 u1.d = float64_sub(u1.d, u2.d, &env->vec_status);
1620 return u1.ll;
1623 uint64_t helper_efdmul(CPUPPCState *env, uint64_t op1, uint64_t op2)
1625 CPU_DoubleU u1, u2;
1627 u1.ll = op1;
1628 u2.ll = op2;
1629 u1.d = float64_mul(u1.d, u2.d, &env->vec_status);
1630 return u1.ll;
1633 uint64_t helper_efddiv(CPUPPCState *env, uint64_t op1, uint64_t op2)
1635 CPU_DoubleU u1, u2;
1637 u1.ll = op1;
1638 u2.ll = op2;
1639 u1.d = float64_div(u1.d, u2.d, &env->vec_status);
1640 return u1.ll;
1643 /* Double precision floating point helpers */
1644 uint32_t helper_efdtstlt(CPUPPCState *env, uint64_t op1, uint64_t op2)
1646 CPU_DoubleU u1, u2;
1648 u1.ll = op1;
1649 u2.ll = op2;
1650 return float64_lt(u1.d, u2.d, &env->vec_status) ? 4 : 0;
1653 uint32_t helper_efdtstgt(CPUPPCState *env, uint64_t op1, uint64_t op2)
1655 CPU_DoubleU u1, u2;
1657 u1.ll = op1;
1658 u2.ll = op2;
1659 return float64_le(u1.d, u2.d, &env->vec_status) ? 0 : 4;
1662 uint32_t helper_efdtsteq(CPUPPCState *env, uint64_t op1, uint64_t op2)
1664 CPU_DoubleU u1, u2;
1666 u1.ll = op1;
1667 u2.ll = op2;
1668 return float64_eq_quiet(u1.d, u2.d, &env->vec_status) ? 4 : 0;
1671 uint32_t helper_efdcmplt(CPUPPCState *env, uint64_t op1, uint64_t op2)
1673 /* XXX: TODO: test special values (NaN, infinites, ...) */
1674 return helper_efdtstlt(env, op1, op2);
1677 uint32_t helper_efdcmpgt(CPUPPCState *env, uint64_t op1, uint64_t op2)
1679 /* XXX: TODO: test special values (NaN, infinites, ...) */
1680 return helper_efdtstgt(env, op1, op2);
1683 uint32_t helper_efdcmpeq(CPUPPCState *env, uint64_t op1, uint64_t op2)
1685 /* XXX: TODO: test special values (NaN, infinites, ...) */
1686 return helper_efdtsteq(env, op1, op2);
1689 #define float64_to_float64(x, env) x
1693 * VSX_ADD_SUB - VSX floating point add/subtract
1694 * name - instruction mnemonic
1695 * op - operation (add or sub)
1696 * nels - number of elements (1, 2 or 4)
1697 * tp - type (float32 or float64)
1698 * fld - vsr_t field (VsrD(*) or VsrW(*))
1699 * sfifprf - set FI and FPRF
1701 #define VSX_ADD_SUB(name, op, nels, tp, fld, sfifprf, r2sp) \
1702 void helper_##name(CPUPPCState *env, ppc_vsr_t *xt, \
1703 ppc_vsr_t *xa, ppc_vsr_t *xb) \
1705 ppc_vsr_t t = { }; \
1706 int i; \
1708 helper_reset_fpstatus(env); \
1710 for (i = 0; i < nels; i++) { \
1711 float_status tstat = env->fp_status; \
1712 set_float_exception_flags(0, &tstat); \
1713 t.fld = tp##_##op(xa->fld, xb->fld, &tstat); \
1714 env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
1716 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \
1717 float_invalid_op_addsub(env, tstat.float_exception_flags, \
1718 sfifprf, GETPC()); \
1721 if (r2sp) { \
1722 t.fld = do_frsp(env, t.fld, GETPC()); \
1725 if (sfifprf) { \
1726 helper_compute_fprf_float64(env, t.fld); \
1729 *xt = t; \
1730 do_float_check_status(env, sfifprf, GETPC()); \
1733 VSX_ADD_SUB(xsadddp, add, 1, float64, VsrD(0), 1, 0)
1734 VSX_ADD_SUB(xsaddsp, add, 1, float64, VsrD(0), 1, 1)
1735 VSX_ADD_SUB(xvadddp, add, 2, float64, VsrD(i), 0, 0)
1736 VSX_ADD_SUB(xvaddsp, add, 4, float32, VsrW(i), 0, 0)
1737 VSX_ADD_SUB(xssubdp, sub, 1, float64, VsrD(0), 1, 0)
1738 VSX_ADD_SUB(xssubsp, sub, 1, float64, VsrD(0), 1, 1)
1739 VSX_ADD_SUB(xvsubdp, sub, 2, float64, VsrD(i), 0, 0)
1740 VSX_ADD_SUB(xvsubsp, sub, 4, float32, VsrW(i), 0, 0)
1742 void helper_xsaddqp(CPUPPCState *env, uint32_t opcode,
1743 ppc_vsr_t *xt, ppc_vsr_t *xa, ppc_vsr_t *xb)
1745 ppc_vsr_t t = *xt;
1746 float_status tstat;
1748 helper_reset_fpstatus(env);
1750 tstat = env->fp_status;
1751 if (unlikely(Rc(opcode) != 0)) {
1752 tstat.float_rounding_mode = float_round_to_odd;
1755 set_float_exception_flags(0, &tstat);
1756 t.f128 = float128_add(xa->f128, xb->f128, &tstat);
1757 env->fp_status.float_exception_flags |= tstat.float_exception_flags;
1759 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {
1760 float_invalid_op_addsub(env, tstat.float_exception_flags, 1, GETPC());
1763 helper_compute_fprf_float128(env, t.f128);
1765 *xt = t;
1766 do_float_check_status(env, true, GETPC());
1770 * VSX_MUL - VSX floating point multiply
1771 * op - instruction mnemonic
1772 * nels - number of elements (1, 2 or 4)
1773 * tp - type (float32 or float64)
1774 * fld - vsr_t field (VsrD(*) or VsrW(*))
1775 * sfifprf - set FI and FPRF
1777 #define VSX_MUL(op, nels, tp, fld, sfifprf, r2sp) \
1778 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, \
1779 ppc_vsr_t *xa, ppc_vsr_t *xb) \
1781 ppc_vsr_t t = { }; \
1782 int i; \
1784 helper_reset_fpstatus(env); \
1786 for (i = 0; i < nels; i++) { \
1787 float_status tstat = env->fp_status; \
1788 set_float_exception_flags(0, &tstat); \
1789 t.fld = tp##_mul(xa->fld, xb->fld, &tstat); \
1790 env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
1792 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \
1793 float_invalid_op_mul(env, tstat.float_exception_flags, \
1794 sfifprf, GETPC()); \
1797 if (r2sp) { \
1798 t.fld = do_frsp(env, t.fld, GETPC()); \
1801 if (sfifprf) { \
1802 helper_compute_fprf_float64(env, t.fld); \
1806 *xt = t; \
1807 do_float_check_status(env, sfifprf, GETPC()); \
1810 VSX_MUL(xsmuldp, 1, float64, VsrD(0), 1, 0)
1811 VSX_MUL(xsmulsp, 1, float64, VsrD(0), 1, 1)
1812 VSX_MUL(xvmuldp, 2, float64, VsrD(i), 0, 0)
1813 VSX_MUL(xvmulsp, 4, float32, VsrW(i), 0, 0)
1815 void helper_xsmulqp(CPUPPCState *env, uint32_t opcode,
1816 ppc_vsr_t *xt, ppc_vsr_t *xa, ppc_vsr_t *xb)
1818 ppc_vsr_t t = *xt;
1819 float_status tstat;
1821 helper_reset_fpstatus(env);
1822 tstat = env->fp_status;
1823 if (unlikely(Rc(opcode) != 0)) {
1824 tstat.float_rounding_mode = float_round_to_odd;
1827 set_float_exception_flags(0, &tstat);
1828 t.f128 = float128_mul(xa->f128, xb->f128, &tstat);
1829 env->fp_status.float_exception_flags |= tstat.float_exception_flags;
1831 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {
1832 float_invalid_op_mul(env, tstat.float_exception_flags, 1, GETPC());
1834 helper_compute_fprf_float128(env, t.f128);
1836 *xt = t;
1837 do_float_check_status(env, true, GETPC());
1841 * VSX_DIV - VSX floating point divide
1842 * op - instruction mnemonic
1843 * nels - number of elements (1, 2 or 4)
1844 * tp - type (float32 or float64)
1845 * fld - vsr_t field (VsrD(*) or VsrW(*))
1846 * sfifprf - set FI and FPRF
1848 #define VSX_DIV(op, nels, tp, fld, sfifprf, r2sp) \
1849 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, \
1850 ppc_vsr_t *xa, ppc_vsr_t *xb) \
1852 ppc_vsr_t t = { }; \
1853 int i; \
1855 helper_reset_fpstatus(env); \
1857 for (i = 0; i < nels; i++) { \
1858 float_status tstat = env->fp_status; \
1859 set_float_exception_flags(0, &tstat); \
1860 t.fld = tp##_div(xa->fld, xb->fld, &tstat); \
1861 env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
1863 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \
1864 float_invalid_op_div(env, tstat.float_exception_flags, \
1865 sfifprf, GETPC()); \
1867 if (unlikely(tstat.float_exception_flags & float_flag_divbyzero)) { \
1868 float_zero_divide_excp(env, GETPC()); \
1871 if (r2sp) { \
1872 t.fld = do_frsp(env, t.fld, GETPC()); \
1875 if (sfifprf) { \
1876 helper_compute_fprf_float64(env, t.fld); \
1880 *xt = t; \
1881 do_float_check_status(env, sfifprf, GETPC()); \
1884 VSX_DIV(xsdivdp, 1, float64, VsrD(0), 1, 0)
1885 VSX_DIV(xsdivsp, 1, float64, VsrD(0), 1, 1)
1886 VSX_DIV(xvdivdp, 2, float64, VsrD(i), 0, 0)
1887 VSX_DIV(xvdivsp, 4, float32, VsrW(i), 0, 0)
1889 void helper_xsdivqp(CPUPPCState *env, uint32_t opcode,
1890 ppc_vsr_t *xt, ppc_vsr_t *xa, ppc_vsr_t *xb)
1892 ppc_vsr_t t = *xt;
1893 float_status tstat;
1895 helper_reset_fpstatus(env);
1896 tstat = env->fp_status;
1897 if (unlikely(Rc(opcode) != 0)) {
1898 tstat.float_rounding_mode = float_round_to_odd;
1901 set_float_exception_flags(0, &tstat);
1902 t.f128 = float128_div(xa->f128, xb->f128, &tstat);
1903 env->fp_status.float_exception_flags |= tstat.float_exception_flags;
1905 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {
1906 float_invalid_op_div(env, tstat.float_exception_flags, 1, GETPC());
1908 if (unlikely(tstat.float_exception_flags & float_flag_divbyzero)) {
1909 float_zero_divide_excp(env, GETPC());
1912 helper_compute_fprf_float128(env, t.f128);
1913 *xt = t;
1914 do_float_check_status(env, true, GETPC());
1918 * VSX_RE - VSX floating point reciprocal estimate
1919 * op - instruction mnemonic
1920 * nels - number of elements (1, 2 or 4)
1921 * tp - type (float32 or float64)
1922 * fld - vsr_t field (VsrD(*) or VsrW(*))
1923 * sfifprf - set FI and FPRF
1925 #define VSX_RE(op, nels, tp, fld, sfifprf, r2sp) \
1926 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) \
1928 ppc_vsr_t t = { }; \
1929 int i; \
1931 helper_reset_fpstatus(env); \
1933 for (i = 0; i < nels; i++) { \
1934 if (unlikely(tp##_is_signaling_nan(xb->fld, &env->fp_status))) { \
1935 float_invalid_op_vxsnan(env, GETPC()); \
1937 t.fld = tp##_div(tp##_one, xb->fld, &env->fp_status); \
1939 if (r2sp) { \
1940 t.fld = do_frsp(env, t.fld, GETPC()); \
1943 if (sfifprf) { \
1944 helper_compute_fprf_float64(env, t.fld); \
1948 *xt = t; \
1949 do_float_check_status(env, sfifprf, GETPC()); \
1952 VSX_RE(xsredp, 1, float64, VsrD(0), 1, 0)
1953 VSX_RE(xsresp, 1, float64, VsrD(0), 1, 1)
1954 VSX_RE(xvredp, 2, float64, VsrD(i), 0, 0)
1955 VSX_RE(xvresp, 4, float32, VsrW(i), 0, 0)
1958 * VSX_SQRT - VSX floating point square root
1959 * op - instruction mnemonic
1960 * nels - number of elements (1, 2 or 4)
1961 * tp - type (float32 or float64)
1962 * fld - vsr_t field (VsrD(*) or VsrW(*))
1963 * sfifprf - set FI and FPRF
1965 #define VSX_SQRT(op, nels, tp, fld, sfifprf, r2sp) \
1966 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) \
1968 ppc_vsr_t t = { }; \
1969 int i; \
1971 helper_reset_fpstatus(env); \
1973 for (i = 0; i < nels; i++) { \
1974 float_status tstat = env->fp_status; \
1975 set_float_exception_flags(0, &tstat); \
1976 t.fld = tp##_sqrt(xb->fld, &tstat); \
1977 env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
1979 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \
1980 float_invalid_op_sqrt(env, tstat.float_exception_flags, \
1981 sfifprf, GETPC()); \
1984 if (r2sp) { \
1985 t.fld = do_frsp(env, t.fld, GETPC()); \
1988 if (sfifprf) { \
1989 helper_compute_fprf_float64(env, t.fld); \
1993 *xt = t; \
1994 do_float_check_status(env, sfifprf, GETPC()); \
1997 VSX_SQRT(xssqrtdp, 1, float64, VsrD(0), 1, 0)
1998 VSX_SQRT(xssqrtsp, 1, float64, VsrD(0), 1, 1)
1999 VSX_SQRT(xvsqrtdp, 2, float64, VsrD(i), 0, 0)
2000 VSX_SQRT(xvsqrtsp, 4, float32, VsrW(i), 0, 0)
2003 *VSX_RSQRTE - VSX floating point reciprocal square root estimate
2004 * op - instruction mnemonic
2005 * nels - number of elements (1, 2 or 4)
2006 * tp - type (float32 or float64)
2007 * fld - vsr_t field (VsrD(*) or VsrW(*))
2008 * sfifprf - set FI and FPRF
2010 #define VSX_RSQRTE(op, nels, tp, fld, sfifprf, r2sp) \
2011 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) \
2013 ppc_vsr_t t = { }; \
2014 int i; \
2016 helper_reset_fpstatus(env); \
2018 for (i = 0; i < nels; i++) { \
2019 float_status tstat = env->fp_status; \
2020 set_float_exception_flags(0, &tstat); \
2021 t.fld = tp##_sqrt(xb->fld, &tstat); \
2022 t.fld = tp##_div(tp##_one, t.fld, &tstat); \
2023 env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
2024 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \
2025 float_invalid_op_sqrt(env, tstat.float_exception_flags, \
2026 sfifprf, GETPC()); \
2028 if (r2sp) { \
2029 t.fld = do_frsp(env, t.fld, GETPC()); \
2032 if (sfifprf) { \
2033 helper_compute_fprf_float64(env, t.fld); \
2037 *xt = t; \
2038 do_float_check_status(env, sfifprf, GETPC()); \
2041 VSX_RSQRTE(xsrsqrtedp, 1, float64, VsrD(0), 1, 0)
2042 VSX_RSQRTE(xsrsqrtesp, 1, float64, VsrD(0), 1, 1)
2043 VSX_RSQRTE(xvrsqrtedp, 2, float64, VsrD(i), 0, 0)
2044 VSX_RSQRTE(xvrsqrtesp, 4, float32, VsrW(i), 0, 0)
2047 * VSX_TDIV - VSX floating point test for divide
2048 * op - instruction mnemonic
2049 * nels - number of elements (1, 2 or 4)
2050 * tp - type (float32 or float64)
2051 * fld - vsr_t field (VsrD(*) or VsrW(*))
2052 * emin - minimum unbiased exponent
2053 * emax - maximum unbiased exponent
2054 * nbits - number of fraction bits
2056 #define VSX_TDIV(op, nels, tp, fld, emin, emax, nbits) \
2057 void helper_##op(CPUPPCState *env, uint32_t opcode, \
2058 ppc_vsr_t *xa, ppc_vsr_t *xb) \
2060 int i; \
2061 int fe_flag = 0; \
2062 int fg_flag = 0; \
2064 for (i = 0; i < nels; i++) { \
2065 if (unlikely(tp##_is_infinity(xa->fld) || \
2066 tp##_is_infinity(xb->fld) || \
2067 tp##_is_zero(xb->fld))) { \
2068 fe_flag = 1; \
2069 fg_flag = 1; \
2070 } else { \
2071 int e_a = ppc_##tp##_get_unbiased_exp(xa->fld); \
2072 int e_b = ppc_##tp##_get_unbiased_exp(xb->fld); \
2074 if (unlikely(tp##_is_any_nan(xa->fld) || \
2075 tp##_is_any_nan(xb->fld))) { \
2076 fe_flag = 1; \
2077 } else if ((e_b <= emin) || (e_b >= (emax - 2))) { \
2078 fe_flag = 1; \
2079 } else if (!tp##_is_zero(xa->fld) && \
2080 (((e_a - e_b) >= emax) || \
2081 ((e_a - e_b) <= (emin + 1)) || \
2082 (e_a <= (emin + nbits)))) { \
2083 fe_flag = 1; \
2086 if (unlikely(tp##_is_zero_or_denormal(xb->fld))) { \
2087 /* \
2088 * XB is not zero because of the above check and so \
2089 * must be denormalized. \
2090 */ \
2091 fg_flag = 1; \
2096 env->crf[BF(opcode)] = 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0); \
2099 VSX_TDIV(xstdivdp, 1, float64, VsrD(0), -1022, 1023, 52)
2100 VSX_TDIV(xvtdivdp, 2, float64, VsrD(i), -1022, 1023, 52)
2101 VSX_TDIV(xvtdivsp, 4, float32, VsrW(i), -126, 127, 23)
2104 * VSX_TSQRT - VSX floating point test for square root
2105 * op - instruction mnemonic
2106 * nels - number of elements (1, 2 or 4)
2107 * tp - type (float32 or float64)
2108 * fld - vsr_t field (VsrD(*) or VsrW(*))
2109 * emin - minimum unbiased exponent
2110 * emax - maximum unbiased exponent
2111 * nbits - number of fraction bits
2113 #define VSX_TSQRT(op, nels, tp, fld, emin, nbits) \
2114 void helper_##op(CPUPPCState *env, uint32_t opcode, ppc_vsr_t *xb) \
2116 int i; \
2117 int fe_flag = 0; \
2118 int fg_flag = 0; \
2120 for (i = 0; i < nels; i++) { \
2121 if (unlikely(tp##_is_infinity(xb->fld) || \
2122 tp##_is_zero(xb->fld))) { \
2123 fe_flag = 1; \
2124 fg_flag = 1; \
2125 } else { \
2126 int e_b = ppc_##tp##_get_unbiased_exp(xb->fld); \
2128 if (unlikely(tp##_is_any_nan(xb->fld))) { \
2129 fe_flag = 1; \
2130 } else if (unlikely(tp##_is_zero(xb->fld))) { \
2131 fe_flag = 1; \
2132 } else if (unlikely(tp##_is_neg(xb->fld))) { \
2133 fe_flag = 1; \
2134 } else if (!tp##_is_zero(xb->fld) && \
2135 (e_b <= (emin + nbits))) { \
2136 fe_flag = 1; \
2139 if (unlikely(tp##_is_zero_or_denormal(xb->fld))) { \
2140 /* \
2141 * XB is not zero because of the above check and \
2142 * therefore must be denormalized. \
2143 */ \
2144 fg_flag = 1; \
2149 env->crf[BF(opcode)] = 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0); \
2152 VSX_TSQRT(xstsqrtdp, 1, float64, VsrD(0), -1022, 52)
2153 VSX_TSQRT(xvtsqrtdp, 2, float64, VsrD(i), -1022, 52)
2154 VSX_TSQRT(xvtsqrtsp, 4, float32, VsrW(i), -126, 23)
2157 * VSX_MADD - VSX floating point muliply/add variations
2158 * op - instruction mnemonic
2159 * nels - number of elements (1, 2 or 4)
2160 * tp - type (float32 or float64)
2161 * fld - vsr_t field (VsrD(*) or VsrW(*))
2162 * maddflgs - flags for the float*muladd routine that control the
2163 * various forms (madd, msub, nmadd, nmsub)
2164 * sfifprf - set FI and FPRF
2166 #define VSX_MADD(op, nels, tp, fld, maddflgs, sfifprf) \
2167 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, \
2168 ppc_vsr_t *s1, ppc_vsr_t *s2, ppc_vsr_t *s3) \
2170 ppc_vsr_t t = { }; \
2171 int i; \
2173 helper_reset_fpstatus(env); \
2175 for (i = 0; i < nels; i++) { \
2176 float_status tstat = env->fp_status; \
2177 set_float_exception_flags(0, &tstat); \
2178 t.fld = tp##_muladd(s1->fld, s3->fld, s2->fld, maddflgs, &tstat); \
2179 env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
2181 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \
2182 float_invalid_op_madd(env, tstat.float_exception_flags, \
2183 sfifprf, GETPC()); \
2186 if (sfifprf) { \
2187 helper_compute_fprf_float64(env, t.fld); \
2190 *xt = t; \
2191 do_float_check_status(env, sfifprf, GETPC()); \
2194 VSX_MADD(XSMADDDP, 1, float64, VsrD(0), MADD_FLGS, 1)
2195 VSX_MADD(XSMSUBDP, 1, float64, VsrD(0), MSUB_FLGS, 1)
2196 VSX_MADD(XSNMADDDP, 1, float64, VsrD(0), NMADD_FLGS, 1)
2197 VSX_MADD(XSNMSUBDP, 1, float64, VsrD(0), NMSUB_FLGS, 1)
2198 VSX_MADD(XSMADDSP, 1, float64r32, VsrD(0), MADD_FLGS, 1)
2199 VSX_MADD(XSMSUBSP, 1, float64r32, VsrD(0), MSUB_FLGS, 1)
2200 VSX_MADD(XSNMADDSP, 1, float64r32, VsrD(0), NMADD_FLGS, 1)
2201 VSX_MADD(XSNMSUBSP, 1, float64r32, VsrD(0), NMSUB_FLGS, 1)
2203 VSX_MADD(xvmadddp, 2, float64, VsrD(i), MADD_FLGS, 0)
2204 VSX_MADD(xvmsubdp, 2, float64, VsrD(i), MSUB_FLGS, 0)
2205 VSX_MADD(xvnmadddp, 2, float64, VsrD(i), NMADD_FLGS, 0)
2206 VSX_MADD(xvnmsubdp, 2, float64, VsrD(i), NMSUB_FLGS, 0)
2208 VSX_MADD(xvmaddsp, 4, float32, VsrW(i), MADD_FLGS, 0)
2209 VSX_MADD(xvmsubsp, 4, float32, VsrW(i), MSUB_FLGS, 0)
2210 VSX_MADD(xvnmaddsp, 4, float32, VsrW(i), NMADD_FLGS, 0)
2211 VSX_MADD(xvnmsubsp, 4, float32, VsrW(i), NMSUB_FLGS, 0)
2214 * VSX_MADDQ - VSX floating point quad-precision muliply/add
2215 * op - instruction mnemonic
2216 * maddflgs - flags for the float*muladd routine that control the
2217 * various forms (madd, msub, nmadd, nmsub)
2218 * ro - round to odd
2220 #define VSX_MADDQ(op, maddflgs, ro) \
2221 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *s1, ppc_vsr_t *s2,\
2222 ppc_vsr_t *s3) \
2224 ppc_vsr_t t = *xt; \
2226 helper_reset_fpstatus(env); \
2228 float_status tstat = env->fp_status; \
2229 set_float_exception_flags(0, &tstat); \
2230 if (ro) { \
2231 tstat.float_rounding_mode = float_round_to_odd; \
2233 t.f128 = float128_muladd(s1->f128, s3->f128, s2->f128, maddflgs, &tstat); \
2234 env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
2236 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \
2237 float_invalid_op_madd(env, tstat.float_exception_flags, \
2238 false, GETPC()); \
2241 helper_compute_fprf_float128(env, t.f128); \
2242 *xt = t; \
2243 do_float_check_status(env, true, GETPC()); \
2246 VSX_MADDQ(XSMADDQP, MADD_FLGS, 0)
2247 VSX_MADDQ(XSMADDQPO, MADD_FLGS, 1)
2248 VSX_MADDQ(XSMSUBQP, MSUB_FLGS, 0)
2249 VSX_MADDQ(XSMSUBQPO, MSUB_FLGS, 1)
2250 VSX_MADDQ(XSNMADDQP, NMADD_FLGS, 0)
2251 VSX_MADDQ(XSNMADDQPO, NMADD_FLGS, 1)
2252 VSX_MADDQ(XSNMSUBQP, NMSUB_FLGS, 0)
2253 VSX_MADDQ(XSNMSUBQPO, NMSUB_FLGS, 0)
2256 * VSX_SCALAR_CMP - VSX scalar floating point compare
2257 * op - instruction mnemonic
2258 * tp - type
2259 * cmp - comparison operation
2260 * fld - vsr_t field
2261 * svxvc - set VXVC bit
2263 #define VSX_SCALAR_CMP(op, tp, cmp, fld, svxvc) \
2264 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, \
2265 ppc_vsr_t *xa, ppc_vsr_t *xb) \
2267 int flags; \
2268 bool r, vxvc; \
2270 helper_reset_fpstatus(env); \
2272 if (svxvc) { \
2273 r = tp##_##cmp(xb->fld, xa->fld, &env->fp_status); \
2274 } else { \
2275 r = tp##_##cmp##_quiet(xb->fld, xa->fld, &env->fp_status); \
2278 flags = get_float_exception_flags(&env->fp_status); \
2279 if (unlikely(flags & float_flag_invalid)) { \
2280 vxvc = svxvc; \
2281 if (flags & float_flag_invalid_snan) { \
2282 float_invalid_op_vxsnan(env, GETPC()); \
2283 vxvc &= !(env->fpscr & FP_VE); \
2285 if (vxvc) { \
2286 float_invalid_op_vxvc(env, 0, GETPC()); \
2290 memset(xt, 0, sizeof(*xt)); \
2291 memset(&xt->fld, -r, sizeof(xt->fld)); \
2292 do_float_check_status(env, false, GETPC()); \
2295 VSX_SCALAR_CMP(XSCMPEQDP, float64, eq, VsrD(0), 0)
2296 VSX_SCALAR_CMP(XSCMPGEDP, float64, le, VsrD(0), 1)
2297 VSX_SCALAR_CMP(XSCMPGTDP, float64, lt, VsrD(0), 1)
2298 VSX_SCALAR_CMP(XSCMPEQQP, float128, eq, f128, 0)
2299 VSX_SCALAR_CMP(XSCMPGEQP, float128, le, f128, 1)
2300 VSX_SCALAR_CMP(XSCMPGTQP, float128, lt, f128, 1)
2302 void helper_xscmpexpdp(CPUPPCState *env, uint32_t opcode,
2303 ppc_vsr_t *xa, ppc_vsr_t *xb)
2305 int64_t exp_a, exp_b;
2306 uint32_t cc;
2308 exp_a = extract64(xa->VsrD(0), 52, 11);
2309 exp_b = extract64(xb->VsrD(0), 52, 11);
2311 if (unlikely(float64_is_any_nan(xa->VsrD(0)) ||
2312 float64_is_any_nan(xb->VsrD(0)))) {
2313 cc = CRF_SO;
2314 } else {
2315 if (exp_a < exp_b) {
2316 cc = CRF_LT;
2317 } else if (exp_a > exp_b) {
2318 cc = CRF_GT;
2319 } else {
2320 cc = CRF_EQ;
2324 env->fpscr &= ~FP_FPCC;
2325 env->fpscr |= cc << FPSCR_FPCC;
2326 env->crf[BF(opcode)] = cc;
2328 do_float_check_status(env, false, GETPC());
2331 void helper_xscmpexpqp(CPUPPCState *env, uint32_t opcode,
2332 ppc_vsr_t *xa, ppc_vsr_t *xb)
2334 int64_t exp_a, exp_b;
2335 uint32_t cc;
2337 exp_a = extract64(xa->VsrD(0), 48, 15);
2338 exp_b = extract64(xb->VsrD(0), 48, 15);
2340 if (unlikely(float128_is_any_nan(xa->f128) ||
2341 float128_is_any_nan(xb->f128))) {
2342 cc = CRF_SO;
2343 } else {
2344 if (exp_a < exp_b) {
2345 cc = CRF_LT;
2346 } else if (exp_a > exp_b) {
2347 cc = CRF_GT;
2348 } else {
2349 cc = CRF_EQ;
2353 env->fpscr &= ~FP_FPCC;
2354 env->fpscr |= cc << FPSCR_FPCC;
2355 env->crf[BF(opcode)] = cc;
2357 do_float_check_status(env, false, GETPC());
2360 static inline void do_scalar_cmp(CPUPPCState *env, ppc_vsr_t *xa, ppc_vsr_t *xb,
2361 int crf_idx, bool ordered)
2363 uint32_t cc;
2364 bool vxsnan_flag = false, vxvc_flag = false;
2366 helper_reset_fpstatus(env);
2368 switch (float64_compare(xa->VsrD(0), xb->VsrD(0), &env->fp_status)) {
2369 case float_relation_less:
2370 cc = CRF_LT;
2371 break;
2372 case float_relation_equal:
2373 cc = CRF_EQ;
2374 break;
2375 case float_relation_greater:
2376 cc = CRF_GT;
2377 break;
2378 case float_relation_unordered:
2379 cc = CRF_SO;
2381 if (float64_is_signaling_nan(xa->VsrD(0), &env->fp_status) ||
2382 float64_is_signaling_nan(xb->VsrD(0), &env->fp_status)) {
2383 vxsnan_flag = true;
2384 if (!(env->fpscr & FP_VE) && ordered) {
2385 vxvc_flag = true;
2387 } else if (float64_is_quiet_nan(xa->VsrD(0), &env->fp_status) ||
2388 float64_is_quiet_nan(xb->VsrD(0), &env->fp_status)) {
2389 if (ordered) {
2390 vxvc_flag = true;
2394 break;
2395 default:
2396 g_assert_not_reached();
2399 env->fpscr &= ~FP_FPCC;
2400 env->fpscr |= cc << FPSCR_FPCC;
2401 env->crf[crf_idx] = cc;
2403 if (vxsnan_flag) {
2404 float_invalid_op_vxsnan(env, GETPC());
2406 if (vxvc_flag) {
2407 float_invalid_op_vxvc(env, 0, GETPC());
2410 do_float_check_status(env, false, GETPC());
2413 void helper_xscmpodp(CPUPPCState *env, uint32_t opcode, ppc_vsr_t *xa,
2414 ppc_vsr_t *xb)
2416 do_scalar_cmp(env, xa, xb, BF(opcode), true);
2419 void helper_xscmpudp(CPUPPCState *env, uint32_t opcode, ppc_vsr_t *xa,
2420 ppc_vsr_t *xb)
2422 do_scalar_cmp(env, xa, xb, BF(opcode), false);
2425 static inline void do_scalar_cmpq(CPUPPCState *env, ppc_vsr_t *xa,
2426 ppc_vsr_t *xb, int crf_idx, bool ordered)
2428 uint32_t cc;
2429 bool vxsnan_flag = false, vxvc_flag = false;
2431 helper_reset_fpstatus(env);
2433 switch (float128_compare(xa->f128, xb->f128, &env->fp_status)) {
2434 case float_relation_less:
2435 cc = CRF_LT;
2436 break;
2437 case float_relation_equal:
2438 cc = CRF_EQ;
2439 break;
2440 case float_relation_greater:
2441 cc = CRF_GT;
2442 break;
2443 case float_relation_unordered:
2444 cc = CRF_SO;
2446 if (float128_is_signaling_nan(xa->f128, &env->fp_status) ||
2447 float128_is_signaling_nan(xb->f128, &env->fp_status)) {
2448 vxsnan_flag = true;
2449 if (!(env->fpscr & FP_VE) && ordered) {
2450 vxvc_flag = true;
2452 } else if (float128_is_quiet_nan(xa->f128, &env->fp_status) ||
2453 float128_is_quiet_nan(xb->f128, &env->fp_status)) {
2454 if (ordered) {
2455 vxvc_flag = true;
2459 break;
2460 default:
2461 g_assert_not_reached();
2464 env->fpscr &= ~FP_FPCC;
2465 env->fpscr |= cc << FPSCR_FPCC;
2466 env->crf[crf_idx] = cc;
2468 if (vxsnan_flag) {
2469 float_invalid_op_vxsnan(env, GETPC());
2471 if (vxvc_flag) {
2472 float_invalid_op_vxvc(env, 0, GETPC());
2475 do_float_check_status(env, false, GETPC());
2478 void helper_xscmpoqp(CPUPPCState *env, uint32_t opcode, ppc_vsr_t *xa,
2479 ppc_vsr_t *xb)
2481 do_scalar_cmpq(env, xa, xb, BF(opcode), true);
2484 void helper_xscmpuqp(CPUPPCState *env, uint32_t opcode, ppc_vsr_t *xa,
2485 ppc_vsr_t *xb)
2487 do_scalar_cmpq(env, xa, xb, BF(opcode), false);
2491 * VSX_MAX_MIN - VSX floating point maximum/minimum
2492 * name - instruction mnemonic
2493 * op - operation (max or min)
2494 * nels - number of elements (1, 2 or 4)
2495 * tp - type (float32 or float64)
2496 * fld - vsr_t field (VsrD(*) or VsrW(*))
2498 #define VSX_MAX_MIN(name, op, nels, tp, fld) \
2499 void helper_##name(CPUPPCState *env, ppc_vsr_t *xt, \
2500 ppc_vsr_t *xa, ppc_vsr_t *xb) \
2502 ppc_vsr_t t = { }; \
2503 int i; \
2505 for (i = 0; i < nels; i++) { \
2506 t.fld = tp##_##op(xa->fld, xb->fld, &env->fp_status); \
2507 if (unlikely(tp##_is_signaling_nan(xa->fld, &env->fp_status) || \
2508 tp##_is_signaling_nan(xb->fld, &env->fp_status))) { \
2509 float_invalid_op_vxsnan(env, GETPC()); \
2513 *xt = t; \
2514 do_float_check_status(env, false, GETPC()); \
2517 VSX_MAX_MIN(xsmaxdp, maxnum, 1, float64, VsrD(0))
2518 VSX_MAX_MIN(xvmaxdp, maxnum, 2, float64, VsrD(i))
2519 VSX_MAX_MIN(xvmaxsp, maxnum, 4, float32, VsrW(i))
2520 VSX_MAX_MIN(xsmindp, minnum, 1, float64, VsrD(0))
2521 VSX_MAX_MIN(xvmindp, minnum, 2, float64, VsrD(i))
2522 VSX_MAX_MIN(xvminsp, minnum, 4, float32, VsrW(i))
2524 #define VSX_MAX_MINC(name, max, tp, fld) \
2525 void helper_##name(CPUPPCState *env, \
2526 ppc_vsr_t *xt, ppc_vsr_t *xa, ppc_vsr_t *xb) \
2528 ppc_vsr_t t = { }; \
2529 bool first; \
2531 helper_reset_fpstatus(env); \
2533 if (max) { \
2534 first = tp##_le_quiet(xb->fld, xa->fld, &env->fp_status); \
2535 } else { \
2536 first = tp##_lt_quiet(xa->fld, xb->fld, &env->fp_status); \
2539 if (first) { \
2540 t.fld = xa->fld; \
2541 } else { \
2542 t.fld = xb->fld; \
2543 if (env->fp_status.float_exception_flags & float_flag_invalid_snan) { \
2544 float_invalid_op_vxsnan(env, GETPC()); \
2548 *xt = t; \
2551 VSX_MAX_MINC(XSMAXCDP, true, float64, VsrD(0));
2552 VSX_MAX_MINC(XSMINCDP, false, float64, VsrD(0));
2553 VSX_MAX_MINC(XSMAXCQP, true, float128, f128);
2554 VSX_MAX_MINC(XSMINCQP, false, float128, f128);
2556 #define VSX_MAX_MINJ(name, max) \
2557 void helper_##name(CPUPPCState *env, \
2558 ppc_vsr_t *xt, ppc_vsr_t *xa, ppc_vsr_t *xb) \
2560 ppc_vsr_t t = { }; \
2561 bool vxsnan_flag = false, vex_flag = false; \
2563 if (unlikely(float64_is_any_nan(xa->VsrD(0)))) { \
2564 if (float64_is_signaling_nan(xa->VsrD(0), &env->fp_status)) { \
2565 vxsnan_flag = true; \
2567 t.VsrD(0) = xa->VsrD(0); \
2568 } else if (unlikely(float64_is_any_nan(xb->VsrD(0)))) { \
2569 if (float64_is_signaling_nan(xb->VsrD(0), &env->fp_status)) { \
2570 vxsnan_flag = true; \
2572 t.VsrD(0) = xb->VsrD(0); \
2573 } else if (float64_is_zero(xa->VsrD(0)) && \
2574 float64_is_zero(xb->VsrD(0))) { \
2575 if (max) { \
2576 if (!float64_is_neg(xa->VsrD(0)) || \
2577 !float64_is_neg(xb->VsrD(0))) { \
2578 t.VsrD(0) = 0ULL; \
2579 } else { \
2580 t.VsrD(0) = 0x8000000000000000ULL; \
2582 } else { \
2583 if (float64_is_neg(xa->VsrD(0)) || \
2584 float64_is_neg(xb->VsrD(0))) { \
2585 t.VsrD(0) = 0x8000000000000000ULL; \
2586 } else { \
2587 t.VsrD(0) = 0ULL; \
2590 } else if ((max && \
2591 !float64_lt(xa->VsrD(0), xb->VsrD(0), &env->fp_status)) || \
2592 (!max && \
2593 float64_lt(xa->VsrD(0), xb->VsrD(0), &env->fp_status))) { \
2594 t.VsrD(0) = xa->VsrD(0); \
2595 } else { \
2596 t.VsrD(0) = xb->VsrD(0); \
2599 vex_flag = (env->fpscr & FP_VE) && vxsnan_flag; \
2600 if (vxsnan_flag) { \
2601 float_invalid_op_vxsnan(env, GETPC()); \
2603 if (!vex_flag) { \
2604 *xt = t; \
2608 VSX_MAX_MINJ(XSMAXJDP, 1);
2609 VSX_MAX_MINJ(XSMINJDP, 0);
2612 * VSX_CMP - VSX floating point compare
2613 * op - instruction mnemonic
2614 * nels - number of elements (1, 2 or 4)
2615 * tp - type (float32 or float64)
2616 * fld - vsr_t field (VsrD(*) or VsrW(*))
2617 * cmp - comparison operation
2618 * svxvc - set VXVC bit
2619 * exp - expected result of comparison
2621 #define VSX_CMP(op, nels, tp, fld, cmp, svxvc, exp) \
2622 uint32_t helper_##op(CPUPPCState *env, ppc_vsr_t *xt, \
2623 ppc_vsr_t *xa, ppc_vsr_t *xb) \
2625 ppc_vsr_t t = *xt; \
2626 uint32_t crf6 = 0; \
2627 int i; \
2628 int all_true = 1; \
2629 int all_false = 1; \
2631 helper_reset_fpstatus(env); \
2633 for (i = 0; i < nels; i++) { \
2634 if (unlikely(tp##_is_any_nan(xa->fld) || \
2635 tp##_is_any_nan(xb->fld))) { \
2636 if (tp##_is_signaling_nan(xa->fld, &env->fp_status) || \
2637 tp##_is_signaling_nan(xb->fld, &env->fp_status)) { \
2638 float_invalid_op_vxsnan(env, GETPC()); \
2640 if (svxvc) { \
2641 float_invalid_op_vxvc(env, 0, GETPC()); \
2643 t.fld = 0; \
2644 all_true = 0; \
2645 } else { \
2646 if (tp##_##cmp(xb->fld, xa->fld, &env->fp_status) == exp) { \
2647 t.fld = -1; \
2648 all_false = 0; \
2649 } else { \
2650 t.fld = 0; \
2651 all_true = 0; \
2656 *xt = t; \
2657 crf6 = (all_true ? 0x8 : 0) | (all_false ? 0x2 : 0); \
2658 return crf6; \
2661 VSX_CMP(xvcmpeqdp, 2, float64, VsrD(i), eq, 0, 1)
2662 VSX_CMP(xvcmpgedp, 2, float64, VsrD(i), le, 1, 1)
2663 VSX_CMP(xvcmpgtdp, 2, float64, VsrD(i), lt, 1, 1)
2664 VSX_CMP(xvcmpnedp, 2, float64, VsrD(i), eq, 0, 0)
2665 VSX_CMP(xvcmpeqsp, 4, float32, VsrW(i), eq, 0, 1)
2666 VSX_CMP(xvcmpgesp, 4, float32, VsrW(i), le, 1, 1)
2667 VSX_CMP(xvcmpgtsp, 4, float32, VsrW(i), lt, 1, 1)
2668 VSX_CMP(xvcmpnesp, 4, float32, VsrW(i), eq, 0, 0)
2671 * VSX_CVT_FP_TO_FP - VSX floating point/floating point conversion
2672 * op - instruction mnemonic
2673 * nels - number of elements (1, 2 or 4)
2674 * stp - source type (float32 or float64)
2675 * ttp - target type (float32 or float64)
2676 * sfld - source vsr_t field
2677 * tfld - target vsr_t field (f32 or f64)
2678 * sfifprf - set FI and FPRF
2680 #define VSX_CVT_FP_TO_FP(op, nels, stp, ttp, sfld, tfld, sfifprf) \
2681 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) \
2683 ppc_vsr_t t = { }; \
2684 int i; \
2686 helper_reset_fpstatus(env); \
2688 for (i = 0; i < nels; i++) { \
2689 t.tfld = stp##_to_##ttp(xb->sfld, &env->fp_status); \
2690 if (unlikely(stp##_is_signaling_nan(xb->sfld, \
2691 &env->fp_status))) { \
2692 float_invalid_op_vxsnan(env, GETPC()); \
2693 t.tfld = ttp##_snan_to_qnan(t.tfld); \
2695 if (sfifprf) { \
2696 helper_compute_fprf_##ttp(env, t.tfld); \
2700 *xt = t; \
2701 do_float_check_status(env, sfifprf, GETPC()); \
2704 VSX_CVT_FP_TO_FP(xscvspdp, 1, float32, float64, VsrW(0), VsrD(0), 1)
2705 VSX_CVT_FP_TO_FP(xvcvspdp, 2, float32, float64, VsrW(2 * i), VsrD(i), 0)
2707 #define VSX_CVT_FP_TO_FP2(op, nels, stp, ttp, sfifprf) \
2708 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) \
2710 ppc_vsr_t t = { }; \
2711 int i; \
2713 helper_reset_fpstatus(env); \
2715 for (i = 0; i < nels; i++) { \
2716 t.VsrW(2 * i) = stp##_to_##ttp(xb->VsrD(i), &env->fp_status); \
2717 if (unlikely(stp##_is_signaling_nan(xb->VsrD(i), \
2718 &env->fp_status))) { \
2719 float_invalid_op_vxsnan(env, GETPC()); \
2720 t.VsrW(2 * i) = ttp##_snan_to_qnan(t.VsrW(2 * i)); \
2722 if (sfifprf) { \
2723 helper_compute_fprf_##ttp(env, t.VsrW(2 * i)); \
2725 t.VsrW(2 * i + 1) = t.VsrW(2 * i); \
2728 *xt = t; \
2729 do_float_check_status(env, sfifprf, GETPC()); \
2732 VSX_CVT_FP_TO_FP2(xvcvdpsp, 2, float64, float32, 0)
2733 VSX_CVT_FP_TO_FP2(xscvdpsp, 1, float64, float32, 1)
2736 * VSX_CVT_FP_TO_FP_VECTOR - VSX floating point/floating point conversion
2737 * op - instruction mnemonic
2738 * nels - number of elements (1, 2 or 4)
2739 * stp - source type (float32 or float64)
2740 * ttp - target type (float32 or float64)
2741 * sfld - source vsr_t field
2742 * tfld - target vsr_t field (f32 or f64)
2743 * sfprf - set FPRF
2745 #define VSX_CVT_FP_TO_FP_VECTOR(op, nels, stp, ttp, sfld, tfld, sfprf) \
2746 void helper_##op(CPUPPCState *env, uint32_t opcode, \
2747 ppc_vsr_t *xt, ppc_vsr_t *xb) \
2749 ppc_vsr_t t = *xt; \
2750 int i; \
2752 helper_reset_fpstatus(env); \
2754 for (i = 0; i < nels; i++) { \
2755 t.tfld = stp##_to_##ttp(xb->sfld, &env->fp_status); \
2756 if (unlikely(stp##_is_signaling_nan(xb->sfld, \
2757 &env->fp_status))) { \
2758 float_invalid_op_vxsnan(env, GETPC()); \
2759 t.tfld = ttp##_snan_to_qnan(t.tfld); \
2761 if (sfprf) { \
2762 helper_compute_fprf_##ttp(env, t.tfld); \
2766 *xt = t; \
2767 do_float_check_status(env, true, GETPC()); \
2770 VSX_CVT_FP_TO_FP_VECTOR(xscvdpqp, 1, float64, float128, VsrD(0), f128, 1)
2773 * VSX_CVT_FP_TO_FP_HP - VSX floating point/floating point conversion
2774 * involving one half precision value
2775 * op - instruction mnemonic
2776 * nels - number of elements (1, 2 or 4)
2777 * stp - source type
2778 * ttp - target type
2779 * sfld - source vsr_t field
2780 * tfld - target vsr_t field
2781 * sfifprf - set FI and FPRF
2783 #define VSX_CVT_FP_TO_FP_HP(op, nels, stp, ttp, sfld, tfld, sfifprf) \
2784 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) \
2786 ppc_vsr_t t = { }; \
2787 int i; \
2789 helper_reset_fpstatus(env); \
2791 for (i = 0; i < nels; i++) { \
2792 t.tfld = stp##_to_##ttp(xb->sfld, 1, &env->fp_status); \
2793 if (unlikely(stp##_is_signaling_nan(xb->sfld, \
2794 &env->fp_status))) { \
2795 float_invalid_op_vxsnan(env, GETPC()); \
2796 t.tfld = ttp##_snan_to_qnan(t.tfld); \
2798 if (sfifprf) { \
2799 helper_compute_fprf_##ttp(env, t.tfld); \
2803 *xt = t; \
2804 do_float_check_status(env, sfifprf, GETPC()); \
2807 VSX_CVT_FP_TO_FP_HP(xscvdphp, 1, float64, float16, VsrD(0), VsrH(3), 1)
2808 VSX_CVT_FP_TO_FP_HP(xscvhpdp, 1, float16, float64, VsrH(3), VsrD(0), 1)
2809 VSX_CVT_FP_TO_FP_HP(xvcvsphp, 4, float32, float16, VsrW(i), VsrH(2 * i + 1), 0)
2810 VSX_CVT_FP_TO_FP_HP(xvcvhpsp, 4, float16, float32, VsrH(2 * i + 1), VsrW(i), 0)
2812 void helper_XVCVSPBF16(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb)
2814 ppc_vsr_t t = { };
2815 int i, status;
2817 helper_reset_fpstatus(env);
2819 for (i = 0; i < 4; i++) {
2820 t.VsrH(2 * i + 1) = float32_to_bfloat16(xb->VsrW(i), &env->fp_status);
2823 status = get_float_exception_flags(&env->fp_status);
2824 if (unlikely(status & float_flag_invalid_snan)) {
2825 float_invalid_op_vxsnan(env, GETPC());
2828 *xt = t;
2829 do_float_check_status(env, false, GETPC());
2832 void helper_XSCVQPDP(CPUPPCState *env, uint32_t ro, ppc_vsr_t *xt,
2833 ppc_vsr_t *xb)
2835 ppc_vsr_t t = { };
2836 float_status tstat;
2838 helper_reset_fpstatus(env);
2840 tstat = env->fp_status;
2841 if (ro != 0) {
2842 tstat.float_rounding_mode = float_round_to_odd;
2845 t.VsrD(0) = float128_to_float64(xb->f128, &tstat);
2846 env->fp_status.float_exception_flags |= tstat.float_exception_flags;
2847 if (unlikely(float128_is_signaling_nan(xb->f128, &tstat))) {
2848 float_invalid_op_vxsnan(env, GETPC());
2849 t.VsrD(0) = float64_snan_to_qnan(t.VsrD(0));
2851 helper_compute_fprf_float64(env, t.VsrD(0));
2853 *xt = t;
2854 do_float_check_status(env, true, GETPC());
2857 uint64_t helper_xscvdpspn(CPUPPCState *env, uint64_t xb)
2859 uint64_t result, sign, exp, frac;
2861 helper_reset_fpstatus(env);
2862 float_status tstat = env->fp_status;
2863 set_float_exception_flags(0, &tstat);
2865 sign = extract64(xb, 63, 1);
2866 exp = extract64(xb, 52, 11);
2867 frac = extract64(xb, 0, 52) | 0x10000000000000ULL;
2869 if (unlikely(exp == 0 && extract64(frac, 0, 52) != 0)) {
2870 /* DP denormal operand. */
2871 /* Exponent override to DP min exp. */
2872 exp = 1;
2873 /* Implicit bit override to 0. */
2874 frac = deposit64(frac, 53, 1, 0);
2877 if (unlikely(exp < 897 && frac != 0)) {
2878 /* SP tiny operand. */
2879 if (897 - exp > 63) {
2880 frac = 0;
2881 } else {
2882 /* Denormalize until exp = SP min exp. */
2883 frac >>= (897 - exp);
2885 /* Exponent override to SP min exp - 1. */
2886 exp = 896;
2889 result = sign << 31;
2890 result |= extract64(exp, 10, 1) << 30;
2891 result |= extract64(exp, 0, 7) << 23;
2892 result |= extract64(frac, 29, 23);
2894 /* hardware replicates result to both words of the doubleword result. */
2895 return (result << 32) | result;
2898 uint64_t helper_XSCVSPDPN(uint64_t xb)
2900 return helper_todouble(xb >> 32);
2904 * VSX_CVT_FP_TO_INT - VSX floating point to integer conversion
2905 * op - instruction mnemonic
2906 * nels - number of elements (1, 2 or 4)
2907 * stp - source type (float32 or float64)
2908 * ttp - target type (int32, uint32, int64 or uint64)
2909 * sfld - source vsr_t field
2910 * tfld - target vsr_t field
2911 * sfi - set FI
2912 * rnan - resulting NaN
2914 #define VSX_CVT_FP_TO_INT(op, nels, stp, ttp, sfld, tfld, sfi, rnan) \
2915 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) \
2917 ppc_vsr_t t = { }; \
2918 int i, flags; \
2920 helper_reset_fpstatus(env); \
2922 for (i = 0; i < nels; i++) { \
2923 t.tfld = stp##_to_##ttp##_round_to_zero(xb->sfld, &env->fp_status); \
2924 flags = env->fp_status.float_exception_flags; \
2925 if (unlikely(flags & float_flag_invalid)) { \
2926 t.tfld = float_invalid_cvt(env, flags, t.tfld, rnan, 0, GETPC());\
2930 *xt = t; \
2931 do_float_check_status(env, sfi, GETPC()); \
2934 VSX_CVT_FP_TO_INT(xscvdpsxds, 1, float64, int64, VsrD(0), VsrD(0), true, \
2935 0x8000000000000000ULL)
2936 VSX_CVT_FP_TO_INT(xscvdpuxds, 1, float64, uint64, VsrD(0), VsrD(0), true, 0ULL)
2937 VSX_CVT_FP_TO_INT(xvcvdpsxds, 2, float64, int64, VsrD(i), VsrD(i), false, \
2938 0x8000000000000000ULL)
2939 VSX_CVT_FP_TO_INT(xvcvdpuxds, 2, float64, uint64, VsrD(i), VsrD(i), false, \
2940 0ULL)
2941 VSX_CVT_FP_TO_INT(xvcvspsxds, 2, float32, int64, VsrW(2 * i), VsrD(i), false, \
2942 0x8000000000000000ULL)
2943 VSX_CVT_FP_TO_INT(xvcvspsxws, 4, float32, int32, VsrW(i), VsrW(i), false, \
2944 0x80000000ULL)
2945 VSX_CVT_FP_TO_INT(xvcvspuxds, 2, float32, uint64, VsrW(2 * i), VsrD(i), \
2946 false, 0ULL)
2947 VSX_CVT_FP_TO_INT(xvcvspuxws, 4, float32, uint32, VsrW(i), VsrW(i), false, 0U)
2949 #define VSX_CVT_FP_TO_INT128(op, tp, rnan) \
2950 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) \
2952 ppc_vsr_t t; \
2953 int flags; \
2955 helper_reset_fpstatus(env); \
2956 t.s128 = float128_to_##tp##_round_to_zero(xb->f128, &env->fp_status); \
2957 flags = get_float_exception_flags(&env->fp_status); \
2958 if (unlikely(flags & float_flag_invalid)) { \
2959 t.VsrD(0) = float_invalid_cvt(env, flags, t.VsrD(0), rnan, 0, GETPC());\
2960 t.VsrD(1) = -(t.VsrD(0) & 1); \
2963 *xt = t; \
2964 do_float_check_status(env, true, GETPC()); \
2967 VSX_CVT_FP_TO_INT128(XSCVQPUQZ, uint128, 0)
2968 VSX_CVT_FP_TO_INT128(XSCVQPSQZ, int128, 0x8000000000000000ULL);
2971 * Likewise, except that the result is duplicated into both subwords.
2972 * Power ISA v3.1 has Programming Notes for these insns:
2973 * Previous versions of the architecture allowed the contents of
2974 * word 0 of the result register to be undefined. However, all
2975 * processors that support this instruction write the result into
2976 * words 0 and 1 (and words 2 and 3) of the result register, as
2977 * is required by this version of the architecture.
2979 #define VSX_CVT_FP_TO_INT2(op, nels, stp, ttp, sfi, rnan) \
2980 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) \
2982 ppc_vsr_t t = { }; \
2983 int i, flags; \
2985 helper_reset_fpstatus(env); \
2987 for (i = 0; i < nels; i++) { \
2988 t.VsrW(2 * i) = stp##_to_##ttp##_round_to_zero(xb->VsrD(i), \
2989 &env->fp_status); \
2990 flags = env->fp_status.float_exception_flags; \
2991 if (unlikely(flags & float_flag_invalid)) { \
2992 t.VsrW(2 * i) = float_invalid_cvt(env, flags, t.VsrW(2 * i), \
2993 rnan, 0, GETPC()); \
2995 t.VsrW(2 * i + 1) = t.VsrW(2 * i); \
2998 *xt = t; \
2999 do_float_check_status(env, sfi, GETPC()); \
3002 VSX_CVT_FP_TO_INT2(xscvdpsxws, 1, float64, int32, true, 0x80000000U)
3003 VSX_CVT_FP_TO_INT2(xscvdpuxws, 1, float64, uint32, true, 0U)
3004 VSX_CVT_FP_TO_INT2(xvcvdpsxws, 2, float64, int32, false, 0x80000000U)
3005 VSX_CVT_FP_TO_INT2(xvcvdpuxws, 2, float64, uint32, false, 0U)
3008 * VSX_CVT_FP_TO_INT_VECTOR - VSX floating point to integer conversion
3009 * op - instruction mnemonic
3010 * stp - source type (float32 or float64)
3011 * ttp - target type (int32, uint32, int64 or uint64)
3012 * sfld - source vsr_t field
3013 * tfld - target vsr_t field
3014 * rnan - resulting NaN
3016 #define VSX_CVT_FP_TO_INT_VECTOR(op, stp, ttp, sfld, tfld, rnan) \
3017 void helper_##op(CPUPPCState *env, uint32_t opcode, \
3018 ppc_vsr_t *xt, ppc_vsr_t *xb) \
3020 ppc_vsr_t t = { }; \
3021 int flags; \
3023 helper_reset_fpstatus(env); \
3025 t.tfld = stp##_to_##ttp##_round_to_zero(xb->sfld, &env->fp_status); \
3026 flags = get_float_exception_flags(&env->fp_status); \
3027 if (flags & float_flag_invalid) { \
3028 t.tfld = float_invalid_cvt(env, flags, t.tfld, rnan, 0, GETPC()); \
3031 *xt = t; \
3032 do_float_check_status(env, true, GETPC()); \
3035 VSX_CVT_FP_TO_INT_VECTOR(xscvqpsdz, float128, int64, f128, VsrD(0), \
3036 0x8000000000000000ULL)
3037 VSX_CVT_FP_TO_INT_VECTOR(xscvqpswz, float128, int32, f128, VsrD(0), \
3038 0xffffffff80000000ULL)
3039 VSX_CVT_FP_TO_INT_VECTOR(xscvqpudz, float128, uint64, f128, VsrD(0), 0x0ULL)
3040 VSX_CVT_FP_TO_INT_VECTOR(xscvqpuwz, float128, uint32, f128, VsrD(0), 0x0ULL)
3043 * VSX_CVT_INT_TO_FP - VSX integer to floating point conversion
3044 * op - instruction mnemonic
3045 * nels - number of elements (1, 2 or 4)
3046 * stp - source type (int32, uint32, int64 or uint64)
3047 * ttp - target type (float32 or float64)
3048 * sfld - source vsr_t field
3049 * tfld - target vsr_t field
3050 * jdef - definition of the j index (i or 2*i)
3051 * sfifprf - set FI and FPRF
3053 #define VSX_CVT_INT_TO_FP(op, nels, stp, ttp, sfld, tfld, sfifprf, r2sp)\
3054 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) \
3056 ppc_vsr_t t = { }; \
3057 int i; \
3059 helper_reset_fpstatus(env); \
3061 for (i = 0; i < nels; i++) { \
3062 t.tfld = stp##_to_##ttp(xb->sfld, &env->fp_status); \
3063 if (r2sp) { \
3064 t.tfld = do_frsp(env, t.tfld, GETPC()); \
3066 if (sfifprf) { \
3067 helper_compute_fprf_float64(env, t.tfld); \
3071 *xt = t; \
3072 do_float_check_status(env, sfifprf, GETPC()); \
3075 VSX_CVT_INT_TO_FP(xscvsxddp, 1, int64, float64, VsrD(0), VsrD(0), 1, 0)
3076 VSX_CVT_INT_TO_FP(xscvuxddp, 1, uint64, float64, VsrD(0), VsrD(0), 1, 0)
3077 VSX_CVT_INT_TO_FP(xscvsxdsp, 1, int64, float64, VsrD(0), VsrD(0), 1, 1)
3078 VSX_CVT_INT_TO_FP(xscvuxdsp, 1, uint64, float64, VsrD(0), VsrD(0), 1, 1)
3079 VSX_CVT_INT_TO_FP(xvcvsxddp, 2, int64, float64, VsrD(i), VsrD(i), 0, 0)
3080 VSX_CVT_INT_TO_FP(xvcvuxddp, 2, uint64, float64, VsrD(i), VsrD(i), 0, 0)
3081 VSX_CVT_INT_TO_FP(xvcvsxwdp, 2, int32, float64, VsrW(2 * i), VsrD(i), 0, 0)
3082 VSX_CVT_INT_TO_FP(xvcvuxwdp, 2, uint64, float64, VsrW(2 * i), VsrD(i), 0, 0)
3083 VSX_CVT_INT_TO_FP(xvcvsxwsp, 4, int32, float32, VsrW(i), VsrW(i), 0, 0)
3084 VSX_CVT_INT_TO_FP(xvcvuxwsp, 4, uint32, float32, VsrW(i), VsrW(i), 0, 0)
3086 #define VSX_CVT_INT_TO_FP2(op, stp, ttp) \
3087 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) \
3089 ppc_vsr_t t = { }; \
3090 int i; \
3092 for (i = 0; i < 2; i++) { \
3093 t.VsrW(2 * i) = stp##_to_##ttp(xb->VsrD(i), &env->fp_status); \
3094 t.VsrW(2 * i + 1) = t.VsrW(2 * i); \
3097 *xt = t; \
3098 do_float_check_status(env, false, GETPC()); \
3101 VSX_CVT_INT_TO_FP2(xvcvsxdsp, int64, float32)
3102 VSX_CVT_INT_TO_FP2(xvcvuxdsp, uint64, float32)
3104 #define VSX_CVT_INT128_TO_FP(op, tp) \
3105 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb)\
3107 helper_reset_fpstatus(env); \
3108 xt->f128 = tp##_to_float128(xb->s128, &env->fp_status); \
3109 helper_compute_fprf_float128(env, xt->f128); \
3110 do_float_check_status(env, true, GETPC()); \
3113 VSX_CVT_INT128_TO_FP(XSCVUQQP, uint128);
3114 VSX_CVT_INT128_TO_FP(XSCVSQQP, int128);
3117 * VSX_CVT_INT_TO_FP_VECTOR - VSX integer to floating point conversion
3118 * op - instruction mnemonic
3119 * stp - source type (int32, uint32, int64 or uint64)
3120 * ttp - target type (float32 or float64)
3121 * sfld - source vsr_t field
3122 * tfld - target vsr_t field
3124 #define VSX_CVT_INT_TO_FP_VECTOR(op, stp, ttp, sfld, tfld) \
3125 void helper_##op(CPUPPCState *env, uint32_t opcode, \
3126 ppc_vsr_t *xt, ppc_vsr_t *xb) \
3128 ppc_vsr_t t = *xt; \
3130 helper_reset_fpstatus(env); \
3131 t.tfld = stp##_to_##ttp(xb->sfld, &env->fp_status); \
3132 helper_compute_fprf_##ttp(env, t.tfld); \
3134 *xt = t; \
3135 do_float_check_status(env, true, GETPC()); \
3138 VSX_CVT_INT_TO_FP_VECTOR(xscvsdqp, int64, float128, VsrD(0), f128)
3139 VSX_CVT_INT_TO_FP_VECTOR(xscvudqp, uint64, float128, VsrD(0), f128)
3142 * For "use current rounding mode", define a value that will not be
3143 * one of the existing rounding model enums.
3145 #define FLOAT_ROUND_CURRENT (float_round_nearest_even + float_round_down + \
3146 float_round_up + float_round_to_zero)
3149 * VSX_ROUND - VSX floating point round
3150 * op - instruction mnemonic
3151 * nels - number of elements (1, 2 or 4)
3152 * tp - type (float32 or float64)
3153 * fld - vsr_t field (VsrD(*) or VsrW(*))
3154 * rmode - rounding mode
3155 * sfifprf - set FI and FPRF
3157 #define VSX_ROUND(op, nels, tp, fld, rmode, sfifprf) \
3158 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) \
3160 ppc_vsr_t t = { }; \
3161 int i; \
3162 FloatRoundMode curr_rounding_mode; \
3164 helper_reset_fpstatus(env); \
3166 if (rmode != FLOAT_ROUND_CURRENT) { \
3167 curr_rounding_mode = get_float_rounding_mode(&env->fp_status); \
3168 set_float_rounding_mode(rmode, &env->fp_status); \
3171 for (i = 0; i < nels; i++) { \
3172 if (unlikely(tp##_is_signaling_nan(xb->fld, \
3173 &env->fp_status))) { \
3174 float_invalid_op_vxsnan(env, GETPC()); \
3175 t.fld = tp##_snan_to_qnan(xb->fld); \
3176 } else { \
3177 t.fld = tp##_round_to_int(xb->fld, &env->fp_status); \
3179 if (sfifprf) { \
3180 helper_compute_fprf_float64(env, t.fld); \
3184 /* \
3185 * If this is not a "use current rounding mode" instruction, \
3186 * then inhibit setting of the XX bit and restore rounding \
3187 * mode from FPSCR \
3188 */ \
3189 if (rmode != FLOAT_ROUND_CURRENT) { \
3190 set_float_rounding_mode(curr_rounding_mode, &env->fp_status); \
3191 env->fp_status.float_exception_flags &= ~float_flag_inexact; \
3194 *xt = t; \
3195 do_float_check_status(env, sfifprf, GETPC()); \
3198 VSX_ROUND(xsrdpi, 1, float64, VsrD(0), float_round_ties_away, 1)
3199 VSX_ROUND(xsrdpic, 1, float64, VsrD(0), FLOAT_ROUND_CURRENT, 1)
3200 VSX_ROUND(xsrdpim, 1, float64, VsrD(0), float_round_down, 1)
3201 VSX_ROUND(xsrdpip, 1, float64, VsrD(0), float_round_up, 1)
3202 VSX_ROUND(xsrdpiz, 1, float64, VsrD(0), float_round_to_zero, 1)
3204 VSX_ROUND(xvrdpi, 2, float64, VsrD(i), float_round_ties_away, 0)
3205 VSX_ROUND(xvrdpic, 2, float64, VsrD(i), FLOAT_ROUND_CURRENT, 0)
3206 VSX_ROUND(xvrdpim, 2, float64, VsrD(i), float_round_down, 0)
3207 VSX_ROUND(xvrdpip, 2, float64, VsrD(i), float_round_up, 0)
3208 VSX_ROUND(xvrdpiz, 2, float64, VsrD(i), float_round_to_zero, 0)
3210 VSX_ROUND(xvrspi, 4, float32, VsrW(i), float_round_ties_away, 0)
3211 VSX_ROUND(xvrspic, 4, float32, VsrW(i), FLOAT_ROUND_CURRENT, 0)
3212 VSX_ROUND(xvrspim, 4, float32, VsrW(i), float_round_down, 0)
3213 VSX_ROUND(xvrspip, 4, float32, VsrW(i), float_round_up, 0)
3214 VSX_ROUND(xvrspiz, 4, float32, VsrW(i), float_round_to_zero, 0)
3216 uint64_t helper_xsrsp(CPUPPCState *env, uint64_t xb)
3218 helper_reset_fpstatus(env);
3220 uint64_t xt = do_frsp(env, xb, GETPC());
3222 helper_compute_fprf_float64(env, xt);
3223 do_float_check_status(env, true, GETPC());
3224 return xt;
3227 void helper_XVXSIGSP(ppc_vsr_t *xt, ppc_vsr_t *xb)
3229 ppc_vsr_t t = { };
3230 uint32_t exp, i, fraction;
3232 for (i = 0; i < 4; i++) {
3233 exp = (xb->VsrW(i) >> 23) & 0xFF;
3234 fraction = xb->VsrW(i) & 0x7FFFFF;
3235 if (exp != 0 && exp != 255) {
3236 t.VsrW(i) = fraction | 0x00800000;
3237 } else {
3238 t.VsrW(i) = fraction;
3241 *xt = t;
3244 #define VSX_TSTDC(tp) \
3245 static int32_t tp##_tstdc(tp b, uint32_t dcmx) \
3247 uint32_t match = 0; \
3248 uint32_t sign = tp##_is_neg(b); \
3249 if (tp##_is_any_nan(b)) { \
3250 match = extract32(dcmx, 6, 1); \
3251 } else if (tp##_is_infinity(b)) { \
3252 match = extract32(dcmx, 4 + !sign, 1); \
3253 } else if (tp##_is_zero(b)) { \
3254 match = extract32(dcmx, 2 + !sign, 1); \
3255 } else if (tp##_is_zero_or_denormal(b)) { \
3256 match = extract32(dcmx, 0 + !sign, 1); \
3258 return (match != 0); \
3261 VSX_TSTDC(float32)
3262 VSX_TSTDC(float64)
3263 VSX_TSTDC(float128)
3264 #undef VSX_TSTDC
3266 void helper_XVTSTDCDP(ppc_vsr_t *t, ppc_vsr_t *b, uint64_t dcmx, uint32_t v)
3268 int i;
3269 for (i = 0; i < 2; i++) {
3270 t->s64[i] = (int64_t)-float64_tstdc(b->f64[i], dcmx);
3274 void helper_XVTSTDCSP(ppc_vsr_t *t, ppc_vsr_t *b, uint64_t dcmx, uint32_t v)
3276 int i;
3277 for (i = 0; i < 4; i++) {
3278 t->s32[i] = (int32_t)-float32_tstdc(b->f32[i], dcmx);
3282 static bool not_SP_value(float64 val)
3284 return val != helper_todouble(helper_tosingle(val));
3288 * VSX_XS_TSTDC - VSX Scalar Test Data Class
3289 * NAME - instruction name
3290 * FLD - vsr_t field (VsrD(0) or f128)
3291 * TP - type (float64 or float128)
3293 #define VSX_XS_TSTDC(NAME, FLD, TP) \
3294 void helper_##NAME(CPUPPCState *env, uint32_t bf, \
3295 uint32_t dcmx, ppc_vsr_t *b) \
3297 uint32_t cc, match, sign = TP##_is_neg(b->FLD); \
3298 match = TP##_tstdc(b->FLD, dcmx); \
3299 cc = sign << CRF_LT_BIT | match << CRF_EQ_BIT; \
3300 env->fpscr &= ~FP_FPCC; \
3301 env->fpscr |= cc << FPSCR_FPCC; \
3302 env->crf[bf] = cc; \
3305 VSX_XS_TSTDC(XSTSTDCDP, VsrD(0), float64)
3306 VSX_XS_TSTDC(XSTSTDCQP, f128, float128)
3307 #undef VSX_XS_TSTDC
3309 void helper_XSTSTDCSP(CPUPPCState *env, uint32_t bf,
3310 uint32_t dcmx, ppc_vsr_t *b)
3312 uint32_t cc, match, sign = float64_is_neg(b->VsrD(0));
3313 uint32_t exp = (b->VsrD(0) >> 52) & 0x7FF;
3314 int not_sp = (int)not_SP_value(b->VsrD(0));
3315 match = float64_tstdc(b->VsrD(0), dcmx) || (exp > 0 && exp < 0x381);
3316 cc = sign << CRF_LT_BIT | match << CRF_EQ_BIT | not_sp << CRF_SO_BIT;
3317 env->fpscr &= ~FP_FPCC;
3318 env->fpscr |= cc << FPSCR_FPCC;
3319 env->crf[bf] = cc;
3322 void helper_xsrqpi(CPUPPCState *env, uint32_t opcode,
3323 ppc_vsr_t *xt, ppc_vsr_t *xb)
3325 ppc_vsr_t t = { };
3326 uint8_t r = Rrm(opcode);
3327 uint8_t ex = Rc(opcode);
3328 uint8_t rmc = RMC(opcode);
3329 uint8_t rmode = 0;
3330 float_status tstat;
3332 helper_reset_fpstatus(env);
3334 if (r == 0 && rmc == 0) {
3335 rmode = float_round_ties_away;
3336 } else if (r == 0 && rmc == 0x3) {
3337 rmode = env->fpscr & FP_RN;
3338 } else if (r == 1) {
3339 switch (rmc) {
3340 case 0:
3341 rmode = float_round_nearest_even;
3342 break;
3343 case 1:
3344 rmode = float_round_to_zero;
3345 break;
3346 case 2:
3347 rmode = float_round_up;
3348 break;
3349 case 3:
3350 rmode = float_round_down;
3351 break;
3352 default:
3353 abort();
3357 tstat = env->fp_status;
3358 set_float_exception_flags(0, &tstat);
3359 set_float_rounding_mode(rmode, &tstat);
3360 t.f128 = float128_round_to_int(xb->f128, &tstat);
3361 env->fp_status.float_exception_flags |= tstat.float_exception_flags;
3363 if (unlikely(tstat.float_exception_flags & float_flag_invalid_snan)) {
3364 float_invalid_op_vxsnan(env, GETPC());
3367 if (ex == 0 && (tstat.float_exception_flags & float_flag_inexact)) {
3368 env->fp_status.float_exception_flags &= ~float_flag_inexact;
3371 helper_compute_fprf_float128(env, t.f128);
3372 do_float_check_status(env, true, GETPC());
3373 *xt = t;
3376 void helper_xsrqpxp(CPUPPCState *env, uint32_t opcode,
3377 ppc_vsr_t *xt, ppc_vsr_t *xb)
3379 ppc_vsr_t t = { };
3380 uint8_t r = Rrm(opcode);
3381 uint8_t rmc = RMC(opcode);
3382 uint8_t rmode = 0;
3383 floatx80 round_res;
3384 float_status tstat;
3386 helper_reset_fpstatus(env);
3388 if (r == 0 && rmc == 0) {
3389 rmode = float_round_ties_away;
3390 } else if (r == 0 && rmc == 0x3) {
3391 rmode = env->fpscr & FP_RN;
3392 } else if (r == 1) {
3393 switch (rmc) {
3394 case 0:
3395 rmode = float_round_nearest_even;
3396 break;
3397 case 1:
3398 rmode = float_round_to_zero;
3399 break;
3400 case 2:
3401 rmode = float_round_up;
3402 break;
3403 case 3:
3404 rmode = float_round_down;
3405 break;
3406 default:
3407 abort();
3411 tstat = env->fp_status;
3412 set_float_exception_flags(0, &tstat);
3413 set_float_rounding_mode(rmode, &tstat);
3414 round_res = float128_to_floatx80(xb->f128, &tstat);
3415 t.f128 = floatx80_to_float128(round_res, &tstat);
3416 env->fp_status.float_exception_flags |= tstat.float_exception_flags;
3418 if (unlikely(tstat.float_exception_flags & float_flag_invalid_snan)) {
3419 float_invalid_op_vxsnan(env, GETPC());
3420 t.f128 = float128_snan_to_qnan(t.f128);
3423 helper_compute_fprf_float128(env, t.f128);
3424 *xt = t;
3425 do_float_check_status(env, true, GETPC());
3428 void helper_xssqrtqp(CPUPPCState *env, uint32_t opcode,
3429 ppc_vsr_t *xt, ppc_vsr_t *xb)
3431 ppc_vsr_t t = { };
3432 float_status tstat;
3434 helper_reset_fpstatus(env);
3436 tstat = env->fp_status;
3437 if (unlikely(Rc(opcode) != 0)) {
3438 tstat.float_rounding_mode = float_round_to_odd;
3441 set_float_exception_flags(0, &tstat);
3442 t.f128 = float128_sqrt(xb->f128, &tstat);
3443 env->fp_status.float_exception_flags |= tstat.float_exception_flags;
3445 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {
3446 float_invalid_op_sqrt(env, tstat.float_exception_flags, 1, GETPC());
3449 helper_compute_fprf_float128(env, t.f128);
3450 *xt = t;
3451 do_float_check_status(env, true, GETPC());
3454 void helper_xssubqp(CPUPPCState *env, uint32_t opcode,
3455 ppc_vsr_t *xt, ppc_vsr_t *xa, ppc_vsr_t *xb)
3457 ppc_vsr_t t = *xt;
3458 float_status tstat;
3460 helper_reset_fpstatus(env);
3462 tstat = env->fp_status;
3463 if (unlikely(Rc(opcode) != 0)) {
3464 tstat.float_rounding_mode = float_round_to_odd;
3467 set_float_exception_flags(0, &tstat);
3468 t.f128 = float128_sub(xa->f128, xb->f128, &tstat);
3469 env->fp_status.float_exception_flags |= tstat.float_exception_flags;
3471 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {
3472 float_invalid_op_addsub(env, tstat.float_exception_flags, 1, GETPC());
3475 helper_compute_fprf_float128(env, t.f128);
3476 *xt = t;
3477 do_float_check_status(env, true, GETPC());
3480 static inline void vsxger_excp(CPUPPCState *env, uintptr_t retaddr)
3483 * XV*GER instructions execute and set the FPSCR as if exceptions
3484 * are disabled and only at the end throw an exception
3486 target_ulong enable;
3487 enable = env->fpscr & (FP_ENABLES | FP_FI | FP_FR);
3488 env->fpscr &= ~(FP_ENABLES | FP_FI | FP_FR);
3489 int status = get_float_exception_flags(&env->fp_status);
3490 if (unlikely(status & float_flag_invalid)) {
3491 if (status & float_flag_invalid_snan) {
3492 float_invalid_op_vxsnan(env, 0);
3494 if (status & float_flag_invalid_imz) {
3495 float_invalid_op_vximz(env, false, 0);
3497 if (status & float_flag_invalid_isi) {
3498 float_invalid_op_vxisi(env, false, 0);
3501 do_float_check_status(env, false, retaddr);
3502 env->fpscr |= enable;
3503 do_fpscr_check_status(env, retaddr);
3506 typedef float64 extract_f16(float16, float_status *);
3508 static float64 extract_hf16(float16 in, float_status *fp_status)
3510 return float16_to_float64(in, true, fp_status);
3513 static float64 extract_bf16(bfloat16 in, float_status *fp_status)
3515 return bfloat16_to_float64(in, fp_status);
3518 static void vsxger16(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b,
3519 ppc_acc_t *at, uint32_t mask, bool acc,
3520 bool neg_mul, bool neg_acc, extract_f16 extract)
3522 float32 r, aux_acc;
3523 float64 psum, va, vb, vc, vd;
3524 int i, j, xmsk_bit, ymsk_bit;
3525 uint8_t pmsk = FIELD_EX32(mask, GER_MSK, PMSK),
3526 xmsk = FIELD_EX32(mask, GER_MSK, XMSK),
3527 ymsk = FIELD_EX32(mask, GER_MSK, YMSK);
3528 float_status *excp_ptr = &env->fp_status;
3529 for (i = 0, xmsk_bit = 1 << 3; i < 4; i++, xmsk_bit >>= 1) {
3530 for (j = 0, ymsk_bit = 1 << 3; j < 4; j++, ymsk_bit >>= 1) {
3531 if ((xmsk_bit & xmsk) && (ymsk_bit & ymsk)) {
3532 va = !(pmsk & 2) ? float64_zero :
3533 extract(a->VsrHF(2 * i), excp_ptr);
3534 vb = !(pmsk & 2) ? float64_zero :
3535 extract(b->VsrHF(2 * j), excp_ptr);
3536 vc = !(pmsk & 1) ? float64_zero :
3537 extract(a->VsrHF(2 * i + 1), excp_ptr);
3538 vd = !(pmsk & 1) ? float64_zero :
3539 extract(b->VsrHF(2 * j + 1), excp_ptr);
3540 psum = float64_mul(va, vb, excp_ptr);
3541 psum = float64r32_muladd(vc, vd, psum, 0, excp_ptr);
3542 r = float64_to_float32(psum, excp_ptr);
3543 if (acc) {
3544 aux_acc = at[i].VsrSF(j);
3545 if (neg_mul) {
3546 r = bfp32_neg(r);
3548 if (neg_acc) {
3549 aux_acc = bfp32_neg(aux_acc);
3551 r = float32_add(r, aux_acc, excp_ptr);
3553 at[i].VsrSF(j) = r;
3554 } else {
3555 at[i].VsrSF(j) = float32_zero;
3559 vsxger_excp(env, GETPC());
3562 typedef void vsxger_zero(ppc_vsr_t *at, int, int);
3564 typedef void vsxger_muladd_f(ppc_vsr_t *, ppc_vsr_t *, ppc_vsr_t *, int, int,
3565 int flags, float_status *s);
3567 static void vsxger_muladd32(ppc_vsr_t *at, ppc_vsr_t *a, ppc_vsr_t *b, int i,
3568 int j, int flags, float_status *s)
3570 at[i].VsrSF(j) = float32_muladd(a->VsrSF(i), b->VsrSF(j),
3571 at[i].VsrSF(j), flags, s);
3574 static void vsxger_mul32(ppc_vsr_t *at, ppc_vsr_t *a, ppc_vsr_t *b, int i,
3575 int j, int flags, float_status *s)
3577 at[i].VsrSF(j) = float32_mul(a->VsrSF(i), b->VsrSF(j), s);
3580 static void vsxger_zero32(ppc_vsr_t *at, int i, int j)
3582 at[i].VsrSF(j) = float32_zero;
3585 static void vsxger_muladd64(ppc_vsr_t *at, ppc_vsr_t *a, ppc_vsr_t *b, int i,
3586 int j, int flags, float_status *s)
3588 if (j >= 2) {
3589 j -= 2;
3590 at[i].VsrDF(j) = float64_muladd(a[i / 2].VsrDF(i % 2), b->VsrDF(j),
3591 at[i].VsrDF(j), flags, s);
3595 static void vsxger_mul64(ppc_vsr_t *at, ppc_vsr_t *a, ppc_vsr_t *b, int i,
3596 int j, int flags, float_status *s)
3598 if (j >= 2) {
3599 j -= 2;
3600 at[i].VsrDF(j) = float64_mul(a[i / 2].VsrDF(i % 2), b->VsrDF(j), s);
3604 static void vsxger_zero64(ppc_vsr_t *at, int i, int j)
3606 if (j >= 2) {
3607 j -= 2;
3608 at[i].VsrDF(j) = float64_zero;
3612 static void vsxger(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b,
3613 ppc_acc_t *at, uint32_t mask, bool acc, bool neg_mul,
3614 bool neg_acc, vsxger_muladd_f mul, vsxger_muladd_f muladd,
3615 vsxger_zero zero)
3617 int i, j, xmsk_bit, ymsk_bit, op_flags;
3618 uint8_t xmsk = mask & 0x0F;
3619 uint8_t ymsk = (mask >> 4) & 0x0F;
3620 float_status *excp_ptr = &env->fp_status;
3621 op_flags = (neg_acc ^ neg_mul) ? float_muladd_negate_c : 0;
3622 op_flags |= (neg_mul) ? float_muladd_negate_result : 0;
3623 helper_reset_fpstatus(env);
3624 for (i = 0, xmsk_bit = 1 << 3; i < 4; i++, xmsk_bit >>= 1) {
3625 for (j = 0, ymsk_bit = 1 << 3; j < 4; j++, ymsk_bit >>= 1) {
3626 if ((xmsk_bit & xmsk) && (ymsk_bit & ymsk)) {
3627 if (acc) {
3628 muladd(at, a, b, i, j, op_flags, excp_ptr);
3629 } else {
3630 mul(at, a, b, i, j, op_flags, excp_ptr);
3632 } else {
3633 zero(at, i, j);
3637 vsxger_excp(env, GETPC());
3640 QEMU_FLATTEN
3641 void helper_XVBF16GER2(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b,
3642 ppc_acc_t *at, uint32_t mask)
3644 vsxger16(env, a, b, at, mask, false, false, false, extract_bf16);
3647 QEMU_FLATTEN
3648 void helper_XVBF16GER2PP(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b,
3649 ppc_acc_t *at, uint32_t mask)
3651 vsxger16(env, a, b, at, mask, true, false, false, extract_bf16);
3654 QEMU_FLATTEN
3655 void helper_XVBF16GER2PN(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b,
3656 ppc_acc_t *at, uint32_t mask)
3658 vsxger16(env, a, b, at, mask, true, false, true, extract_bf16);
3661 QEMU_FLATTEN
3662 void helper_XVBF16GER2NP(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b,
3663 ppc_acc_t *at, uint32_t mask)
3665 vsxger16(env, a, b, at, mask, true, true, false, extract_bf16);
3668 QEMU_FLATTEN
3669 void helper_XVBF16GER2NN(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b,
3670 ppc_acc_t *at, uint32_t mask)
3672 vsxger16(env, a, b, at, mask, true, true, true, extract_bf16);
3675 QEMU_FLATTEN
3676 void helper_XVF16GER2(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b,
3677 ppc_acc_t *at, uint32_t mask)
3679 vsxger16(env, a, b, at, mask, false, false, false, extract_hf16);
3682 QEMU_FLATTEN
3683 void helper_XVF16GER2PP(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b,
3684 ppc_acc_t *at, uint32_t mask)
3686 vsxger16(env, a, b, at, mask, true, false, false, extract_hf16);
3689 QEMU_FLATTEN
3690 void helper_XVF16GER2PN(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b,
3691 ppc_acc_t *at, uint32_t mask)
3693 vsxger16(env, a, b, at, mask, true, false, true, extract_hf16);
3696 QEMU_FLATTEN
3697 void helper_XVF16GER2NP(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b,
3698 ppc_acc_t *at, uint32_t mask)
3700 vsxger16(env, a, b, at, mask, true, true, false, extract_hf16);
3703 QEMU_FLATTEN
3704 void helper_XVF16GER2NN(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b,
3705 ppc_acc_t *at, uint32_t mask)
3707 vsxger16(env, a, b, at, mask, true, true, true, extract_hf16);
3710 QEMU_FLATTEN
3711 void helper_XVF32GER(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b,
3712 ppc_acc_t *at, uint32_t mask)
3714 vsxger(env, a, b, at, mask, false, false, false, vsxger_mul32,
3715 vsxger_muladd32, vsxger_zero32);
3718 QEMU_FLATTEN
3719 void helper_XVF32GERPP(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b,
3720 ppc_acc_t *at, uint32_t mask)
3722 vsxger(env, a, b, at, mask, true, false, false, vsxger_mul32,
3723 vsxger_muladd32, vsxger_zero32);
3726 QEMU_FLATTEN
3727 void helper_XVF32GERPN(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b,
3728 ppc_acc_t *at, uint32_t mask)
3730 vsxger(env, a, b, at, mask, true, false, true, vsxger_mul32,
3731 vsxger_muladd32, vsxger_zero32);
3734 QEMU_FLATTEN
3735 void helper_XVF32GERNP(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b,
3736 ppc_acc_t *at, uint32_t mask)
3738 vsxger(env, a, b, at, mask, true, true, false, vsxger_mul32,
3739 vsxger_muladd32, vsxger_zero32);
3742 QEMU_FLATTEN
3743 void helper_XVF32GERNN(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b,
3744 ppc_acc_t *at, uint32_t mask)
3746 vsxger(env, a, b, at, mask, true, true, true, vsxger_mul32,
3747 vsxger_muladd32, vsxger_zero32);
3750 QEMU_FLATTEN
3751 void helper_XVF64GER(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b,
3752 ppc_acc_t *at, uint32_t mask)
3754 vsxger(env, a, b, at, mask, false, false, false, vsxger_mul64,
3755 vsxger_muladd64, vsxger_zero64);
3758 QEMU_FLATTEN
3759 void helper_XVF64GERPP(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b,
3760 ppc_acc_t *at, uint32_t mask)
3762 vsxger(env, a, b, at, mask, true, false, false, vsxger_mul64,
3763 vsxger_muladd64, vsxger_zero64);
3766 QEMU_FLATTEN
3767 void helper_XVF64GERPN(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b,
3768 ppc_acc_t *at, uint32_t mask)
3770 vsxger(env, a, b, at, mask, true, false, true, vsxger_mul64,
3771 vsxger_muladd64, vsxger_zero64);
3774 QEMU_FLATTEN
3775 void helper_XVF64GERNP(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b,
3776 ppc_acc_t *at, uint32_t mask)
3778 vsxger(env, a, b, at, mask, true, true, false, vsxger_mul64,
3779 vsxger_muladd64, vsxger_zero64);
3782 QEMU_FLATTEN
3783 void helper_XVF64GERNN(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b,
3784 ppc_acc_t *at, uint32_t mask)
3786 vsxger(env, a, b, at, mask, true, true, true, vsxger_mul64,
3787 vsxger_muladd64, vsxger_zero64);