2 * PowerPC floating point and SPE emulation helpers for QEMU.
4 * Copyright (c) 2003-2007 Jocelyn Mayer
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
21 #include "exec/helper-proto.h"
22 #include "exec/exec-all.h"
24 #include "fpu/softfloat.h"
26 static inline float128
float128_snan_to_qnan(float128 x
)
30 r
.high
= x
.high
| 0x0000800000000000;
35 #define float64_snan_to_qnan(x) ((x) | 0x0008000000000000ULL)
36 #define float32_snan_to_qnan(x) ((x) | 0x00400000)
37 #define float16_snan_to_qnan(x) ((x) | 0x0200)
39 static inline float32
bfp32_neg(float32 a
)
41 if (unlikely(float32_is_any_nan(a
))) {
44 return float32_chs(a
);
48 static inline bool fp_exceptions_enabled(CPUPPCState
*env
)
50 #ifdef CONFIG_USER_ONLY
53 return (env
->msr
& ((1U << MSR_FE0
) | (1U << MSR_FE1
))) != 0;
57 /*****************************************************************************/
58 /* Floating point operations helpers */
61 * This is the non-arithmatic conversion that happens e.g. on loads.
62 * In the Power ISA pseudocode, this is called DOUBLE.
64 uint64_t helper_todouble(uint32_t arg
)
66 uint32_t abs_arg
= arg
& 0x7fffffff;
69 if (likely(abs_arg
>= 0x00800000)) {
70 if (unlikely(extract32(arg
, 23, 8) == 0xff)) {
72 ret
= (uint64_t)extract32(arg
, 31, 1) << 63;
73 ret
|= (uint64_t)0x7ff << 52;
74 ret
|= (uint64_t)extract32(arg
, 0, 23) << 29;
76 /* Normalized operand. */
77 ret
= (uint64_t)extract32(arg
, 30, 2) << 62;
78 ret
|= ((extract32(arg
, 30, 1) ^ 1) * (uint64_t)7) << 59;
79 ret
|= (uint64_t)extract32(arg
, 0, 30) << 29;
82 /* Zero or Denormalized operand. */
83 ret
= (uint64_t)extract32(arg
, 31, 1) << 63;
84 if (unlikely(abs_arg
!= 0)) {
86 * Denormalized operand.
87 * Shift fraction so that the msb is in the implicit bit position.
88 * Thus, shift is in the range [1:23].
90 int shift
= clz32(abs_arg
) - 8;
92 * The first 3 terms compute the float64 exponent. We then bias
93 * this result by -1 so that we can swallow the implicit bit below.
95 int exp
= -126 - shift
+ 1023 - 1;
97 ret
|= (uint64_t)exp
<< 52;
98 ret
+= (uint64_t)abs_arg
<< (52 - 23 + shift
);
105 * This is the non-arithmatic conversion that happens e.g. on stores.
106 * In the Power ISA pseudocode, this is called SINGLE.
108 uint32_t helper_tosingle(uint64_t arg
)
110 int exp
= extract64(arg
, 52, 11);
113 if (likely(exp
> 896)) {
114 /* No denormalization required (includes Inf, NaN). */
115 ret
= extract64(arg
, 62, 2) << 30;
116 ret
|= extract64(arg
, 29, 30);
119 * Zero or Denormal result. If the exponent is in bounds for
120 * a single-precision denormal result, extract the proper
121 * bits. If the input is not zero, and the exponent is out of
122 * bounds, then the result is undefined; this underflows to
125 ret
= extract64(arg
, 63, 1) << 31;
126 if (unlikely(exp
>= 874)) {
127 /* Denormal result. */
128 ret
|= ((1ULL << 52) | extract64(arg
, 0, 52)) >> (896 + 30 - exp
);
134 static inline int ppc_float32_get_unbiased_exp(float32 f
)
136 return ((f
>> 23) & 0xFF) - 127;
139 static inline int ppc_float64_get_unbiased_exp(float64 f
)
141 return ((f
>> 52) & 0x7FF) - 1023;
144 /* Classify a floating-point number. */
155 #define COMPUTE_CLASS(tp) \
156 static int tp##_classify(tp arg) \
158 int ret = tp##_is_neg(arg) * is_neg; \
159 if (unlikely(tp##_is_any_nan(arg))) { \
160 float_status dummy = { }; /* snan_bit_is_one = 0 */ \
161 ret |= (tp##_is_signaling_nan(arg, &dummy) \
162 ? is_snan : is_qnan); \
163 } else if (unlikely(tp##_is_infinity(arg))) { \
165 } else if (tp##_is_zero(arg)) { \
167 } else if (tp##_is_zero_or_denormal(arg)) { \
168 ret |= is_denormal; \
175 COMPUTE_CLASS(float16
)
176 COMPUTE_CLASS(float32
)
177 COMPUTE_CLASS(float64
)
178 COMPUTE_CLASS(float128
)
180 static void set_fprf_from_class(CPUPPCState
*env
, int class)
182 static const uint8_t fprf
[6][2] = {
183 { 0x04, 0x08 }, /* normalized */
184 { 0x02, 0x12 }, /* zero */
185 { 0x14, 0x18 }, /* denormalized */
186 { 0x05, 0x09 }, /* infinity */
187 { 0x11, 0x11 }, /* qnan */
188 { 0x00, 0x00 }, /* snan -- flags are undefined */
190 bool isneg
= class & is_neg
;
192 env
->fpscr
&= ~FP_FPRF
;
193 env
->fpscr
|= fprf
[ctz32(class)][isneg
] << FPSCR_FPRF
;
196 #define COMPUTE_FPRF(tp) \
197 void helper_compute_fprf_##tp(CPUPPCState *env, tp arg) \
199 set_fprf_from_class(env, tp##_classify(arg)); \
202 COMPUTE_FPRF(float16
)
203 COMPUTE_FPRF(float32
)
204 COMPUTE_FPRF(float64
)
205 COMPUTE_FPRF(float128
)
207 /* Floating-point invalid operations exception */
208 static void finish_invalid_op_excp(CPUPPCState
*env
, int op
, uintptr_t retaddr
)
210 /* Update the floating-point invalid operation summary */
212 /* Update the floating-point exception summary */
214 if (env
->fpscr
& FP_VE
) {
215 /* Update the floating-point enabled exception summary */
216 env
->fpscr
|= FP_FEX
;
217 if (fp_exceptions_enabled(env
)) {
218 raise_exception_err_ra(env
, POWERPC_EXCP_PROGRAM
,
219 POWERPC_EXCP_FP
| op
, retaddr
);
224 static void finish_invalid_op_arith(CPUPPCState
*env
, int op
,
225 bool set_fpcc
, uintptr_t retaddr
)
227 env
->fpscr
&= ~(FP_FR
| FP_FI
);
228 if (!(env
->fpscr
& FP_VE
)) {
230 env
->fpscr
&= ~FP_FPCC
;
231 env
->fpscr
|= (FP_C
| FP_FU
);
234 finish_invalid_op_excp(env
, op
, retaddr
);
238 static void float_invalid_op_vxsnan(CPUPPCState
*env
, uintptr_t retaddr
)
240 env
->fpscr
|= FP_VXSNAN
;
241 finish_invalid_op_excp(env
, POWERPC_EXCP_FP_VXSNAN
, retaddr
);
244 /* Magnitude subtraction of infinities */
245 static void float_invalid_op_vxisi(CPUPPCState
*env
, bool set_fpcc
,
248 env
->fpscr
|= FP_VXISI
;
249 finish_invalid_op_arith(env
, POWERPC_EXCP_FP_VXISI
, set_fpcc
, retaddr
);
252 /* Division of infinity by infinity */
253 static void float_invalid_op_vxidi(CPUPPCState
*env
, bool set_fpcc
,
256 env
->fpscr
|= FP_VXIDI
;
257 finish_invalid_op_arith(env
, POWERPC_EXCP_FP_VXIDI
, set_fpcc
, retaddr
);
260 /* Division of zero by zero */
261 static void float_invalid_op_vxzdz(CPUPPCState
*env
, bool set_fpcc
,
264 env
->fpscr
|= FP_VXZDZ
;
265 finish_invalid_op_arith(env
, POWERPC_EXCP_FP_VXZDZ
, set_fpcc
, retaddr
);
268 /* Multiplication of zero by infinity */
269 static void float_invalid_op_vximz(CPUPPCState
*env
, bool set_fpcc
,
272 env
->fpscr
|= FP_VXIMZ
;
273 finish_invalid_op_arith(env
, POWERPC_EXCP_FP_VXIMZ
, set_fpcc
, retaddr
);
276 /* Square root of a negative number */
277 static void float_invalid_op_vxsqrt(CPUPPCState
*env
, bool set_fpcc
,
280 env
->fpscr
|= FP_VXSQRT
;
281 finish_invalid_op_arith(env
, POWERPC_EXCP_FP_VXSQRT
, set_fpcc
, retaddr
);
284 /* Ordered comparison of NaN */
285 static void float_invalid_op_vxvc(CPUPPCState
*env
, bool set_fpcc
,
288 env
->fpscr
|= FP_VXVC
;
290 env
->fpscr
&= ~FP_FPCC
;
291 env
->fpscr
|= (FP_C
| FP_FU
);
293 /* Update the floating-point invalid operation summary */
295 /* Update the floating-point exception summary */
297 /* We must update the target FPR before raising the exception */
298 if (env
->fpscr
& FP_VE
) {
299 CPUState
*cs
= env_cpu(env
);
301 cs
->exception_index
= POWERPC_EXCP_PROGRAM
;
302 env
->error_code
= POWERPC_EXCP_FP
| POWERPC_EXCP_FP_VXVC
;
303 /* Update the floating-point enabled exception summary */
304 env
->fpscr
|= FP_FEX
;
305 /* Exception is deferred */
309 /* Invalid conversion */
310 static void float_invalid_op_vxcvi(CPUPPCState
*env
, bool set_fpcc
,
313 env
->fpscr
|= FP_VXCVI
;
314 env
->fpscr
&= ~(FP_FR
| FP_FI
);
315 if (!(env
->fpscr
& FP_VE
)) {
317 env
->fpscr
&= ~FP_FPCC
;
318 env
->fpscr
|= (FP_C
| FP_FU
);
321 finish_invalid_op_excp(env
, POWERPC_EXCP_FP_VXCVI
, retaddr
);
324 static inline void float_zero_divide_excp(CPUPPCState
*env
, uintptr_t raddr
)
327 env
->fpscr
&= ~(FP_FR
| FP_FI
);
328 /* Update the floating-point exception summary */
330 if (env
->fpscr
& FP_ZE
) {
331 /* Update the floating-point enabled exception summary */
332 env
->fpscr
|= FP_FEX
;
333 if (fp_exceptions_enabled(env
)) {
334 raise_exception_err_ra(env
, POWERPC_EXCP_PROGRAM
,
335 POWERPC_EXCP_FP
| POWERPC_EXCP_FP_ZX
,
341 static inline int float_overflow_excp(CPUPPCState
*env
)
343 CPUState
*cs
= env_cpu(env
);
346 /* Update the floating-point exception summary */
349 bool overflow_enabled
= !!(env
->fpscr
& FP_OE
);
350 if (overflow_enabled
) {
351 /* Update the floating-point enabled exception summary */
352 env
->fpscr
|= FP_FEX
;
353 /* We must update the target FPR before raising the exception */
354 cs
->exception_index
= POWERPC_EXCP_PROGRAM
;
355 env
->error_code
= POWERPC_EXCP_FP
| POWERPC_EXCP_FP_OX
;
358 return overflow_enabled
? 0 : float_flag_inexact
;
361 static inline void float_underflow_excp(CPUPPCState
*env
)
363 CPUState
*cs
= env_cpu(env
);
366 /* Update the floating-point exception summary */
368 if (env
->fpscr
& FP_UE
) {
369 /* Update the floating-point enabled exception summary */
370 env
->fpscr
|= FP_FEX
;
371 /* We must update the target FPR before raising the exception */
372 cs
->exception_index
= POWERPC_EXCP_PROGRAM
;
373 env
->error_code
= POWERPC_EXCP_FP
| POWERPC_EXCP_FP_UX
;
377 static inline void float_inexact_excp(CPUPPCState
*env
)
379 CPUState
*cs
= env_cpu(env
);
382 /* Update the floating-point exception summary */
384 if (env
->fpscr
& FP_XE
) {
385 /* Update the floating-point enabled exception summary */
386 env
->fpscr
|= FP_FEX
;
387 /* We must update the target FPR before raising the exception */
388 cs
->exception_index
= POWERPC_EXCP_PROGRAM
;
389 env
->error_code
= POWERPC_EXCP_FP
| POWERPC_EXCP_FP_XX
;
393 void helper_fpscr_clrbit(CPUPPCState
*env
, uint32_t bit
)
395 uint32_t mask
= 1u << bit
;
396 if (env
->fpscr
& mask
) {
397 ppc_store_fpscr(env
, env
->fpscr
& ~(target_ulong
)mask
);
401 void helper_fpscr_setbit(CPUPPCState
*env
, uint32_t bit
)
403 uint32_t mask
= 1u << bit
;
404 if (!(env
->fpscr
& mask
)) {
405 ppc_store_fpscr(env
, env
->fpscr
| mask
);
409 void helper_store_fpscr(CPUPPCState
*env
, uint64_t val
, uint32_t nibbles
)
411 target_ulong mask
= 0;
414 /* TODO: push this extension back to translation time */
415 for (i
= 0; i
< sizeof(target_ulong
) * 2; i
++) {
416 if (nibbles
& (1 << i
)) {
417 mask
|= (target_ulong
) 0xf << (4 * i
);
420 val
= (val
& mask
) | (env
->fpscr
& ~mask
);
421 ppc_store_fpscr(env
, val
);
424 static void do_fpscr_check_status(CPUPPCState
*env
, uintptr_t raddr
)
426 CPUState
*cs
= env_cpu(env
);
427 target_ulong fpscr
= env
->fpscr
;
430 if ((fpscr
& FP_OX
) && (fpscr
& FP_OE
)) {
431 error
= POWERPC_EXCP_FP_OX
;
432 } else if ((fpscr
& FP_UX
) && (fpscr
& FP_UE
)) {
433 error
= POWERPC_EXCP_FP_UX
;
434 } else if ((fpscr
& FP_XX
) && (fpscr
& FP_XE
)) {
435 error
= POWERPC_EXCP_FP_XX
;
436 } else if ((fpscr
& FP_ZX
) && (fpscr
& FP_ZE
)) {
437 error
= POWERPC_EXCP_FP_ZX
;
438 } else if (fpscr
& FP_VE
) {
439 if (fpscr
& FP_VXSOFT
) {
440 error
= POWERPC_EXCP_FP_VXSOFT
;
441 } else if (fpscr
& FP_VXSNAN
) {
442 error
= POWERPC_EXCP_FP_VXSNAN
;
443 } else if (fpscr
& FP_VXISI
) {
444 error
= POWERPC_EXCP_FP_VXISI
;
445 } else if (fpscr
& FP_VXIDI
) {
446 error
= POWERPC_EXCP_FP_VXIDI
;
447 } else if (fpscr
& FP_VXZDZ
) {
448 error
= POWERPC_EXCP_FP_VXZDZ
;
449 } else if (fpscr
& FP_VXIMZ
) {
450 error
= POWERPC_EXCP_FP_VXIMZ
;
451 } else if (fpscr
& FP_VXVC
) {
452 error
= POWERPC_EXCP_FP_VXVC
;
453 } else if (fpscr
& FP_VXSQRT
) {
454 error
= POWERPC_EXCP_FP_VXSQRT
;
455 } else if (fpscr
& FP_VXCVI
) {
456 error
= POWERPC_EXCP_FP_VXCVI
;
463 cs
->exception_index
= POWERPC_EXCP_PROGRAM
;
464 env
->error_code
= error
| POWERPC_EXCP_FP
;
465 env
->fpscr
|= FP_FEX
;
466 /* Deferred floating-point exception after target FPSCR update */
467 if (fp_exceptions_enabled(env
)) {
468 raise_exception_err_ra(env
, cs
->exception_index
,
469 env
->error_code
, raddr
);
473 void helper_fpscr_check_status(CPUPPCState
*env
)
475 do_fpscr_check_status(env
, GETPC());
478 static void do_float_check_status(CPUPPCState
*env
, bool change_fi
,
481 CPUState
*cs
= env_cpu(env
);
482 int status
= get_float_exception_flags(&env
->fp_status
);
484 if (status
& float_flag_overflow
) {
485 status
|= float_overflow_excp(env
);
486 } else if (status
& float_flag_underflow
) {
487 float_underflow_excp(env
);
489 if (status
& float_flag_inexact
) {
490 float_inexact_excp(env
);
493 env
->fpscr
= FIELD_DP64(env
->fpscr
, FPSCR
, FI
,
494 !!(status
& float_flag_inexact
));
497 if (cs
->exception_index
== POWERPC_EXCP_PROGRAM
&&
498 (env
->error_code
& POWERPC_EXCP_FP
)) {
499 /* Deferred floating-point exception after target FPR update */
500 if (fp_exceptions_enabled(env
)) {
501 raise_exception_err_ra(env
, cs
->exception_index
,
502 env
->error_code
, raddr
);
507 void helper_float_check_status(CPUPPCState
*env
)
509 do_float_check_status(env
, true, GETPC());
512 void helper_reset_fpstatus(CPUPPCState
*env
)
514 set_float_exception_flags(0, &env
->fp_status
);
517 static void float_invalid_op_addsub(CPUPPCState
*env
, int flags
,
518 bool set_fpcc
, uintptr_t retaddr
)
520 if (flags
& float_flag_invalid_isi
) {
521 float_invalid_op_vxisi(env
, set_fpcc
, retaddr
);
522 } else if (flags
& float_flag_invalid_snan
) {
523 float_invalid_op_vxsnan(env
, retaddr
);
528 float64
helper_fadd(CPUPPCState
*env
, float64 arg1
, float64 arg2
)
530 float64 ret
= float64_add(arg1
, arg2
, &env
->fp_status
);
531 int flags
= get_float_exception_flags(&env
->fp_status
);
533 if (unlikely(flags
& float_flag_invalid
)) {
534 float_invalid_op_addsub(env
, flags
, 1, GETPC());
541 float64
helper_fadds(CPUPPCState
*env
, float64 arg1
, float64 arg2
)
543 float64 ret
= float64r32_add(arg1
, arg2
, &env
->fp_status
);
544 int flags
= get_float_exception_flags(&env
->fp_status
);
546 if (unlikely(flags
& float_flag_invalid
)) {
547 float_invalid_op_addsub(env
, flags
, 1, GETPC());
553 float64
helper_fsub(CPUPPCState
*env
, float64 arg1
, float64 arg2
)
555 float64 ret
= float64_sub(arg1
, arg2
, &env
->fp_status
);
556 int flags
= get_float_exception_flags(&env
->fp_status
);
558 if (unlikely(flags
& float_flag_invalid
)) {
559 float_invalid_op_addsub(env
, flags
, 1, GETPC());
566 float64
helper_fsubs(CPUPPCState
*env
, float64 arg1
, float64 arg2
)
568 float64 ret
= float64r32_sub(arg1
, arg2
, &env
->fp_status
);
569 int flags
= get_float_exception_flags(&env
->fp_status
);
571 if (unlikely(flags
& float_flag_invalid
)) {
572 float_invalid_op_addsub(env
, flags
, 1, GETPC());
577 static void float_invalid_op_mul(CPUPPCState
*env
, int flags
,
578 bool set_fprc
, uintptr_t retaddr
)
580 if (flags
& float_flag_invalid_imz
) {
581 float_invalid_op_vximz(env
, set_fprc
, retaddr
);
582 } else if (flags
& float_flag_invalid_snan
) {
583 float_invalid_op_vxsnan(env
, retaddr
);
588 float64
helper_fmul(CPUPPCState
*env
, float64 arg1
, float64 arg2
)
590 float64 ret
= float64_mul(arg1
, arg2
, &env
->fp_status
);
591 int flags
= get_float_exception_flags(&env
->fp_status
);
593 if (unlikely(flags
& float_flag_invalid
)) {
594 float_invalid_op_mul(env
, flags
, 1, GETPC());
601 float64
helper_fmuls(CPUPPCState
*env
, float64 arg1
, float64 arg2
)
603 float64 ret
= float64r32_mul(arg1
, arg2
, &env
->fp_status
);
604 int flags
= get_float_exception_flags(&env
->fp_status
);
606 if (unlikely(flags
& float_flag_invalid
)) {
607 float_invalid_op_mul(env
, flags
, 1, GETPC());
612 static void float_invalid_op_div(CPUPPCState
*env
, int flags
,
613 bool set_fprc
, uintptr_t retaddr
)
615 if (flags
& float_flag_invalid_idi
) {
616 float_invalid_op_vxidi(env
, set_fprc
, retaddr
);
617 } else if (flags
& float_flag_invalid_zdz
) {
618 float_invalid_op_vxzdz(env
, set_fprc
, retaddr
);
619 } else if (flags
& float_flag_invalid_snan
) {
620 float_invalid_op_vxsnan(env
, retaddr
);
625 float64
helper_fdiv(CPUPPCState
*env
, float64 arg1
, float64 arg2
)
627 float64 ret
= float64_div(arg1
, arg2
, &env
->fp_status
);
628 int flags
= get_float_exception_flags(&env
->fp_status
);
630 if (unlikely(flags
& float_flag_invalid
)) {
631 float_invalid_op_div(env
, flags
, 1, GETPC());
633 if (unlikely(flags
& float_flag_divbyzero
)) {
634 float_zero_divide_excp(env
, GETPC());
641 float64
helper_fdivs(CPUPPCState
*env
, float64 arg1
, float64 arg2
)
643 float64 ret
= float64r32_div(arg1
, arg2
, &env
->fp_status
);
644 int flags
= get_float_exception_flags(&env
->fp_status
);
646 if (unlikely(flags
& float_flag_invalid
)) {
647 float_invalid_op_div(env
, flags
, 1, GETPC());
649 if (unlikely(flags
& float_flag_divbyzero
)) {
650 float_zero_divide_excp(env
, GETPC());
656 static uint64_t float_invalid_cvt(CPUPPCState
*env
, int flags
,
657 uint64_t ret
, uint64_t ret_nan
,
658 bool set_fprc
, uintptr_t retaddr
)
661 * VXCVI is different from most in that it sets two exception bits,
662 * VXCVI and VXSNAN for an SNaN input.
664 if (flags
& float_flag_invalid_snan
) {
665 env
->fpscr
|= FP_VXSNAN
;
667 float_invalid_op_vxcvi(env
, set_fprc
, retaddr
);
669 return flags
& float_flag_invalid_cvti
? ret
: ret_nan
;
672 #define FPU_FCTI(op, cvt, nanval) \
673 uint64_t helper_##op(CPUPPCState *env, float64 arg) \
675 uint64_t ret = float64_to_##cvt(arg, &env->fp_status); \
676 int flags = get_float_exception_flags(&env->fp_status); \
677 if (unlikely(flags & float_flag_invalid)) { \
678 ret = float_invalid_cvt(env, flags, ret, nanval, 1, GETPC()); \
683 FPU_FCTI(fctiw
, int32
, 0x80000000U
)
684 FPU_FCTI(fctiwz
, int32_round_to_zero
, 0x80000000U
)
685 FPU_FCTI(fctiwu
, uint32
, 0x00000000U
)
686 FPU_FCTI(fctiwuz
, uint32_round_to_zero
, 0x00000000U
)
687 FPU_FCTI(fctid
, int64
, 0x8000000000000000ULL
)
688 FPU_FCTI(fctidz
, int64_round_to_zero
, 0x8000000000000000ULL
)
689 FPU_FCTI(fctidu
, uint64
, 0x0000000000000000ULL
)
690 FPU_FCTI(fctiduz
, uint64_round_to_zero
, 0x0000000000000000ULL
)
692 #define FPU_FCFI(op, cvtr, is_single) \
693 uint64_t helper_##op(CPUPPCState *env, uint64_t arg) \
698 float32 tmp = cvtr(arg, &env->fp_status); \
699 farg.d = float32_to_float64(tmp, &env->fp_status); \
701 farg.d = cvtr(arg, &env->fp_status); \
703 do_float_check_status(env, true, GETPC()); \
707 FPU_FCFI(fcfid
, int64_to_float64
, 0)
708 FPU_FCFI(fcfids
, int64_to_float32
, 1)
709 FPU_FCFI(fcfidu
, uint64_to_float64
, 0)
710 FPU_FCFI(fcfidus
, uint64_to_float32
, 1)
712 static uint64_t do_fri(CPUPPCState
*env
, uint64_t arg
,
713 FloatRoundMode rounding_mode
)
715 FloatRoundMode old_rounding_mode
= get_float_rounding_mode(&env
->fp_status
);
718 set_float_rounding_mode(rounding_mode
, &env
->fp_status
);
719 arg
= float64_round_to_int(arg
, &env
->fp_status
);
720 set_float_rounding_mode(old_rounding_mode
, &env
->fp_status
);
722 flags
= get_float_exception_flags(&env
->fp_status
);
723 if (flags
& float_flag_invalid_snan
) {
724 float_invalid_op_vxsnan(env
, GETPC());
727 /* fri* does not set FPSCR[XX] */
728 set_float_exception_flags(flags
& ~float_flag_inexact
, &env
->fp_status
);
729 do_float_check_status(env
, true, GETPC());
734 uint64_t helper_frin(CPUPPCState
*env
, uint64_t arg
)
736 return do_fri(env
, arg
, float_round_ties_away
);
739 uint64_t helper_friz(CPUPPCState
*env
, uint64_t arg
)
741 return do_fri(env
, arg
, float_round_to_zero
);
744 uint64_t helper_frip(CPUPPCState
*env
, uint64_t arg
)
746 return do_fri(env
, arg
, float_round_up
);
749 uint64_t helper_frim(CPUPPCState
*env
, uint64_t arg
)
751 return do_fri(env
, arg
, float_round_down
);
754 static void float_invalid_op_madd(CPUPPCState
*env
, int flags
,
755 bool set_fpcc
, uintptr_t retaddr
)
757 if (flags
& float_flag_invalid_imz
) {
758 float_invalid_op_vximz(env
, set_fpcc
, retaddr
);
760 float_invalid_op_addsub(env
, flags
, set_fpcc
, retaddr
);
764 static float64
do_fmadd(CPUPPCState
*env
, float64 a
, float64 b
,
765 float64 c
, int madd_flags
, uintptr_t retaddr
)
767 float64 ret
= float64_muladd(a
, b
, c
, madd_flags
, &env
->fp_status
);
768 int flags
= get_float_exception_flags(&env
->fp_status
);
770 if (unlikely(flags
& float_flag_invalid
)) {
771 float_invalid_op_madd(env
, flags
, 1, retaddr
);
776 static uint64_t do_fmadds(CPUPPCState
*env
, float64 a
, float64 b
,
777 float64 c
, int madd_flags
, uintptr_t retaddr
)
779 float64 ret
= float64r32_muladd(a
, b
, c
, madd_flags
, &env
->fp_status
);
780 int flags
= get_float_exception_flags(&env
->fp_status
);
782 if (unlikely(flags
& float_flag_invalid
)) {
783 float_invalid_op_madd(env
, flags
, 1, retaddr
);
788 #define FPU_FMADD(op, madd_flags) \
789 uint64_t helper_##op(CPUPPCState *env, uint64_t arg1, \
790 uint64_t arg2, uint64_t arg3) \
791 { return do_fmadd(env, arg1, arg2, arg3, madd_flags, GETPC()); } \
792 uint64_t helper_##op##s(CPUPPCState *env, uint64_t arg1, \
793 uint64_t arg2, uint64_t arg3) \
794 { return do_fmadds(env, arg1, arg2, arg3, madd_flags, GETPC()); }
797 #define MSUB_FLGS float_muladd_negate_c
798 #define NMADD_FLGS float_muladd_negate_result
799 #define NMSUB_FLGS (float_muladd_negate_c | float_muladd_negate_result)
801 FPU_FMADD(fmadd
, MADD_FLGS
)
802 FPU_FMADD(fnmadd
, NMADD_FLGS
)
803 FPU_FMADD(fmsub
, MSUB_FLGS
)
804 FPU_FMADD(fnmsub
, NMSUB_FLGS
)
807 static uint64_t do_frsp(CPUPPCState
*env
, uint64_t arg
, uintptr_t retaddr
)
809 float32 f32
= float64_to_float32(arg
, &env
->fp_status
);
810 int flags
= get_float_exception_flags(&env
->fp_status
);
812 if (unlikely(flags
& float_flag_invalid_snan
)) {
813 float_invalid_op_vxsnan(env
, retaddr
);
815 return helper_todouble(f32
);
818 uint64_t helper_frsp(CPUPPCState
*env
, uint64_t arg
)
820 return do_frsp(env
, arg
, GETPC());
823 static void float_invalid_op_sqrt(CPUPPCState
*env
, int flags
,
824 bool set_fpcc
, uintptr_t retaddr
)
826 if (unlikely(flags
& float_flag_invalid_sqrt
)) {
827 float_invalid_op_vxsqrt(env
, set_fpcc
, retaddr
);
828 } else if (unlikely(flags
& float_flag_invalid_snan
)) {
829 float_invalid_op_vxsnan(env
, retaddr
);
833 #define FPU_FSQRT(name, op) \
834 float64 helper_##name(CPUPPCState *env, float64 arg) \
836 float64 ret = op(arg, &env->fp_status); \
837 int flags = get_float_exception_flags(&env->fp_status); \
839 if (unlikely(flags & float_flag_invalid)) { \
840 float_invalid_op_sqrt(env, flags, 1, GETPC()); \
846 FPU_FSQRT(FSQRT
, float64_sqrt
)
847 FPU_FSQRT(FSQRTS
, float64r32_sqrt
)
850 float64
helper_fre(CPUPPCState
*env
, float64 arg
)
852 /* "Estimate" the reciprocal with actual division. */
853 float64 ret
= float64_div(float64_one
, arg
, &env
->fp_status
);
854 int flags
= get_float_exception_flags(&env
->fp_status
);
856 if (unlikely(flags
& float_flag_invalid_snan
)) {
857 float_invalid_op_vxsnan(env
, GETPC());
859 if (unlikely(flags
& float_flag_divbyzero
)) {
860 float_zero_divide_excp(env
, GETPC());
861 /* For FPSCR.ZE == 0, the result is 1/2. */
862 ret
= float64_set_sign(float64_half
, float64_is_neg(arg
));
869 uint64_t helper_fres(CPUPPCState
*env
, uint64_t arg
)
871 /* "Estimate" the reciprocal with actual division. */
872 float64 ret
= float64r32_div(float64_one
, arg
, &env
->fp_status
);
873 int flags
= get_float_exception_flags(&env
->fp_status
);
875 if (unlikely(flags
& float_flag_invalid_snan
)) {
876 float_invalid_op_vxsnan(env
, GETPC());
878 if (unlikely(flags
& float_flag_divbyzero
)) {
879 float_zero_divide_excp(env
, GETPC());
880 /* For FPSCR.ZE == 0, the result is 1/2. */
881 ret
= float64_set_sign(float64_half
, float64_is_neg(arg
));
887 /* frsqrte - frsqrte. */
888 float64
helper_frsqrte(CPUPPCState
*env
, float64 arg
)
890 /* "Estimate" the reciprocal with actual division. */
891 float64 rets
= float64_sqrt(arg
, &env
->fp_status
);
892 float64 retd
= float64_div(float64_one
, rets
, &env
->fp_status
);
893 int flags
= get_float_exception_flags(&env
->fp_status
);
895 if (unlikely(flags
& float_flag_invalid
)) {
896 float_invalid_op_sqrt(env
, flags
, 1, GETPC());
898 if (unlikely(flags
& float_flag_divbyzero
)) {
899 /* Reciprocal of (square root of) zero. */
900 float_zero_divide_excp(env
, GETPC());
906 /* frsqrtes - frsqrtes. */
907 float64
helper_frsqrtes(CPUPPCState
*env
, float64 arg
)
909 /* "Estimate" the reciprocal with actual division. */
910 float64 rets
= float64_sqrt(arg
, &env
->fp_status
);
911 float64 retd
= float64r32_div(float64_one
, rets
, &env
->fp_status
);
912 int flags
= get_float_exception_flags(&env
->fp_status
);
914 if (unlikely(flags
& float_flag_invalid
)) {
915 float_invalid_op_sqrt(env
, flags
, 1, GETPC());
917 if (unlikely(flags
& float_flag_divbyzero
)) {
918 /* Reciprocal of (square root of) zero. */
919 float_zero_divide_excp(env
, GETPC());
926 uint64_t helper_FSEL(uint64_t a
, uint64_t b
, uint64_t c
)
932 if ((!float64_is_neg(fa
.d
) || float64_is_zero(fa
.d
)) &&
933 !float64_is_any_nan(fa
.d
)) {
940 uint32_t helper_ftdiv(uint64_t fra
, uint64_t frb
)
945 if (unlikely(float64_is_infinity(fra
) ||
946 float64_is_infinity(frb
) ||
947 float64_is_zero(frb
))) {
951 int e_a
= ppc_float64_get_unbiased_exp(fra
);
952 int e_b
= ppc_float64_get_unbiased_exp(frb
);
954 if (unlikely(float64_is_any_nan(fra
) ||
955 float64_is_any_nan(frb
))) {
957 } else if ((e_b
<= -1022) || (e_b
>= 1021)) {
959 } else if (!float64_is_zero(fra
) &&
960 (((e_a
- e_b
) >= 1023) ||
961 ((e_a
- e_b
) <= -1021) ||
966 if (unlikely(float64_is_zero_or_denormal(frb
))) {
967 /* XB is not zero because of the above check and */
968 /* so must be denormalized. */
973 return 0x8 | (fg_flag
? 4 : 0) | (fe_flag
? 2 : 0);
976 uint32_t helper_ftsqrt(uint64_t frb
)
981 if (unlikely(float64_is_infinity(frb
) || float64_is_zero(frb
))) {
985 int e_b
= ppc_float64_get_unbiased_exp(frb
);
987 if (unlikely(float64_is_any_nan(frb
))) {
989 } else if (unlikely(float64_is_zero(frb
))) {
991 } else if (unlikely(float64_is_neg(frb
))) {
993 } else if (!float64_is_zero(frb
) && (e_b
<= (-1022 + 52))) {
997 if (unlikely(float64_is_zero_or_denormal(frb
))) {
998 /* XB is not zero because of the above check and */
999 /* therefore must be denormalized. */
1004 return 0x8 | (fg_flag
? 4 : 0) | (fe_flag
? 2 : 0);
1007 void helper_fcmpu(CPUPPCState
*env
, uint64_t arg1
, uint64_t arg2
,
1010 CPU_DoubleU farg1
, farg2
;
1016 if (unlikely(float64_is_any_nan(farg1
.d
) ||
1017 float64_is_any_nan(farg2
.d
))) {
1019 } else if (float64_lt(farg1
.d
, farg2
.d
, &env
->fp_status
)) {
1021 } else if (!float64_le(farg1
.d
, farg2
.d
, &env
->fp_status
)) {
1027 env
->fpscr
&= ~FP_FPCC
;
1028 env
->fpscr
|= ret
<< FPSCR_FPCC
;
1029 env
->crf
[crfD
] = ret
;
1030 if (unlikely(ret
== 0x01UL
1031 && (float64_is_signaling_nan(farg1
.d
, &env
->fp_status
) ||
1032 float64_is_signaling_nan(farg2
.d
, &env
->fp_status
)))) {
1033 /* sNaN comparison */
1034 float_invalid_op_vxsnan(env
, GETPC());
1038 void helper_fcmpo(CPUPPCState
*env
, uint64_t arg1
, uint64_t arg2
,
1041 CPU_DoubleU farg1
, farg2
;
1047 if (unlikely(float64_is_any_nan(farg1
.d
) ||
1048 float64_is_any_nan(farg2
.d
))) {
1050 } else if (float64_lt(farg1
.d
, farg2
.d
, &env
->fp_status
)) {
1052 } else if (!float64_le(farg1
.d
, farg2
.d
, &env
->fp_status
)) {
1058 env
->fpscr
&= ~FP_FPCC
;
1059 env
->fpscr
|= ret
<< FPSCR_FPCC
;
1060 env
->crf
[crfD
] = (uint32_t) ret
;
1061 if (unlikely(ret
== 0x01UL
)) {
1062 float_invalid_op_vxvc(env
, 1, GETPC());
1063 if (float64_is_signaling_nan(farg1
.d
, &env
->fp_status
) ||
1064 float64_is_signaling_nan(farg2
.d
, &env
->fp_status
)) {
1065 /* sNaN comparison */
1066 float_invalid_op_vxsnan(env
, GETPC());
1071 /* Single-precision floating-point conversions */
1072 static inline uint32_t efscfsi(CPUPPCState
*env
, uint32_t val
)
1076 u
.f
= int32_to_float32(val
, &env
->vec_status
);
1081 static inline uint32_t efscfui(CPUPPCState
*env
, uint32_t val
)
1085 u
.f
= uint32_to_float32(val
, &env
->vec_status
);
1090 static inline int32_t efsctsi(CPUPPCState
*env
, uint32_t val
)
1095 /* NaN are not treated the same way IEEE 754 does */
1096 if (unlikely(float32_is_quiet_nan(u
.f
, &env
->vec_status
))) {
1100 return float32_to_int32(u
.f
, &env
->vec_status
);
1103 static inline uint32_t efsctui(CPUPPCState
*env
, uint32_t val
)
1108 /* NaN are not treated the same way IEEE 754 does */
1109 if (unlikely(float32_is_quiet_nan(u
.f
, &env
->vec_status
))) {
1113 return float32_to_uint32(u
.f
, &env
->vec_status
);
1116 static inline uint32_t efsctsiz(CPUPPCState
*env
, uint32_t val
)
1121 /* NaN are not treated the same way IEEE 754 does */
1122 if (unlikely(float32_is_quiet_nan(u
.f
, &env
->vec_status
))) {
1126 return float32_to_int32_round_to_zero(u
.f
, &env
->vec_status
);
1129 static inline uint32_t efsctuiz(CPUPPCState
*env
, uint32_t val
)
1134 /* NaN are not treated the same way IEEE 754 does */
1135 if (unlikely(float32_is_quiet_nan(u
.f
, &env
->vec_status
))) {
1139 return float32_to_uint32_round_to_zero(u
.f
, &env
->vec_status
);
1142 static inline uint32_t efscfsf(CPUPPCState
*env
, uint32_t val
)
1147 u
.f
= int32_to_float32(val
, &env
->vec_status
);
1148 tmp
= int64_to_float32(1ULL << 32, &env
->vec_status
);
1149 u
.f
= float32_div(u
.f
, tmp
, &env
->vec_status
);
1154 static inline uint32_t efscfuf(CPUPPCState
*env
, uint32_t val
)
1159 u
.f
= uint32_to_float32(val
, &env
->vec_status
);
1160 tmp
= uint64_to_float32(1ULL << 32, &env
->vec_status
);
1161 u
.f
= float32_div(u
.f
, tmp
, &env
->vec_status
);
1166 static inline uint32_t efsctsf(CPUPPCState
*env
, uint32_t val
)
1172 /* NaN are not treated the same way IEEE 754 does */
1173 if (unlikely(float32_is_quiet_nan(u
.f
, &env
->vec_status
))) {
1176 tmp
= uint64_to_float32(1ULL << 32, &env
->vec_status
);
1177 u
.f
= float32_mul(u
.f
, tmp
, &env
->vec_status
);
1179 return float32_to_int32(u
.f
, &env
->vec_status
);
1182 static inline uint32_t efsctuf(CPUPPCState
*env
, uint32_t val
)
1188 /* NaN are not treated the same way IEEE 754 does */
1189 if (unlikely(float32_is_quiet_nan(u
.f
, &env
->vec_status
))) {
1192 tmp
= uint64_to_float32(1ULL << 32, &env
->vec_status
);
1193 u
.f
= float32_mul(u
.f
, tmp
, &env
->vec_status
);
1195 return float32_to_uint32(u
.f
, &env
->vec_status
);
1198 #define HELPER_SPE_SINGLE_CONV(name) \
1199 uint32_t helper_e##name(CPUPPCState *env, uint32_t val) \
1201 return e##name(env, val); \
1204 HELPER_SPE_SINGLE_CONV(fscfsi
);
1206 HELPER_SPE_SINGLE_CONV(fscfui
);
1208 HELPER_SPE_SINGLE_CONV(fscfuf
);
1210 HELPER_SPE_SINGLE_CONV(fscfsf
);
1212 HELPER_SPE_SINGLE_CONV(fsctsi
);
1214 HELPER_SPE_SINGLE_CONV(fsctui
);
1216 HELPER_SPE_SINGLE_CONV(fsctsiz
);
1218 HELPER_SPE_SINGLE_CONV(fsctuiz
);
1220 HELPER_SPE_SINGLE_CONV(fsctsf
);
1222 HELPER_SPE_SINGLE_CONV(fsctuf
);
1224 #define HELPER_SPE_VECTOR_CONV(name) \
1225 uint64_t helper_ev##name(CPUPPCState *env, uint64_t val) \
1227 return ((uint64_t)e##name(env, val >> 32) << 32) | \
1228 (uint64_t)e##name(env, val); \
1231 HELPER_SPE_VECTOR_CONV(fscfsi
);
1233 HELPER_SPE_VECTOR_CONV(fscfui
);
1235 HELPER_SPE_VECTOR_CONV(fscfuf
);
1237 HELPER_SPE_VECTOR_CONV(fscfsf
);
1239 HELPER_SPE_VECTOR_CONV(fsctsi
);
1241 HELPER_SPE_VECTOR_CONV(fsctui
);
1243 HELPER_SPE_VECTOR_CONV(fsctsiz
);
1245 HELPER_SPE_VECTOR_CONV(fsctuiz
);
1247 HELPER_SPE_VECTOR_CONV(fsctsf
);
1249 HELPER_SPE_VECTOR_CONV(fsctuf
);
1251 /* Single-precision floating-point arithmetic */
1252 static inline uint32_t efsadd(CPUPPCState
*env
, uint32_t op1
, uint32_t op2
)
1258 u1
.f
= float32_add(u1
.f
, u2
.f
, &env
->vec_status
);
1262 static inline uint32_t efssub(CPUPPCState
*env
, uint32_t op1
, uint32_t op2
)
1268 u1
.f
= float32_sub(u1
.f
, u2
.f
, &env
->vec_status
);
1272 static inline uint32_t efsmul(CPUPPCState
*env
, uint32_t op1
, uint32_t op2
)
1278 u1
.f
= float32_mul(u1
.f
, u2
.f
, &env
->vec_status
);
1282 static inline uint32_t efsdiv(CPUPPCState
*env
, uint32_t op1
, uint32_t op2
)
1288 u1
.f
= float32_div(u1
.f
, u2
.f
, &env
->vec_status
);
1292 #define HELPER_SPE_SINGLE_ARITH(name) \
1293 uint32_t helper_e##name(CPUPPCState *env, uint32_t op1, uint32_t op2) \
1295 return e##name(env, op1, op2); \
1298 HELPER_SPE_SINGLE_ARITH(fsadd
);
1300 HELPER_SPE_SINGLE_ARITH(fssub
);
1302 HELPER_SPE_SINGLE_ARITH(fsmul
);
1304 HELPER_SPE_SINGLE_ARITH(fsdiv
);
1306 #define HELPER_SPE_VECTOR_ARITH(name) \
1307 uint64_t helper_ev##name(CPUPPCState *env, uint64_t op1, uint64_t op2) \
1309 return ((uint64_t)e##name(env, op1 >> 32, op2 >> 32) << 32) | \
1310 (uint64_t)e##name(env, op1, op2); \
1313 HELPER_SPE_VECTOR_ARITH(fsadd
);
1315 HELPER_SPE_VECTOR_ARITH(fssub
);
1317 HELPER_SPE_VECTOR_ARITH(fsmul
);
1319 HELPER_SPE_VECTOR_ARITH(fsdiv
);
1321 /* Single-precision floating-point comparisons */
1322 static inline uint32_t efscmplt(CPUPPCState
*env
, uint32_t op1
, uint32_t op2
)
1328 return float32_lt(u1
.f
, u2
.f
, &env
->vec_status
) ? 4 : 0;
1331 static inline uint32_t efscmpgt(CPUPPCState
*env
, uint32_t op1
, uint32_t op2
)
1337 return float32_le(u1
.f
, u2
.f
, &env
->vec_status
) ? 0 : 4;
1340 static inline uint32_t efscmpeq(CPUPPCState
*env
, uint32_t op1
, uint32_t op2
)
1346 return float32_eq(u1
.f
, u2
.f
, &env
->vec_status
) ? 4 : 0;
1349 static inline uint32_t efststlt(CPUPPCState
*env
, uint32_t op1
, uint32_t op2
)
1351 /* XXX: TODO: ignore special values (NaN, infinites, ...) */
1352 return efscmplt(env
, op1
, op2
);
1355 static inline uint32_t efststgt(CPUPPCState
*env
, uint32_t op1
, uint32_t op2
)
1357 /* XXX: TODO: ignore special values (NaN, infinites, ...) */
1358 return efscmpgt(env
, op1
, op2
);
1361 static inline uint32_t efststeq(CPUPPCState
*env
, uint32_t op1
, uint32_t op2
)
1363 /* XXX: TODO: ignore special values (NaN, infinites, ...) */
1364 return efscmpeq(env
, op1
, op2
);
1367 #define HELPER_SINGLE_SPE_CMP(name) \
1368 uint32_t helper_e##name(CPUPPCState *env, uint32_t op1, uint32_t op2) \
1370 return e##name(env, op1, op2); \
1373 HELPER_SINGLE_SPE_CMP(fststlt
);
1375 HELPER_SINGLE_SPE_CMP(fststgt
);
1377 HELPER_SINGLE_SPE_CMP(fststeq
);
1379 HELPER_SINGLE_SPE_CMP(fscmplt
);
1381 HELPER_SINGLE_SPE_CMP(fscmpgt
);
1383 HELPER_SINGLE_SPE_CMP(fscmpeq
);
1385 static inline uint32_t evcmp_merge(int t0
, int t1
)
1387 return (t0
<< 3) | (t1
<< 2) | ((t0
| t1
) << 1) | (t0
& t1
);
1390 #define HELPER_VECTOR_SPE_CMP(name) \
1391 uint32_t helper_ev##name(CPUPPCState *env, uint64_t op1, uint64_t op2) \
1393 return evcmp_merge(e##name(env, op1 >> 32, op2 >> 32), \
1394 e##name(env, op1, op2)); \
1397 HELPER_VECTOR_SPE_CMP(fststlt
);
1399 HELPER_VECTOR_SPE_CMP(fststgt
);
1401 HELPER_VECTOR_SPE_CMP(fststeq
);
1403 HELPER_VECTOR_SPE_CMP(fscmplt
);
1405 HELPER_VECTOR_SPE_CMP(fscmpgt
);
1407 HELPER_VECTOR_SPE_CMP(fscmpeq
);
1409 /* Double-precision floating-point conversion */
1410 uint64_t helper_efdcfsi(CPUPPCState
*env
, uint32_t val
)
1414 u
.d
= int32_to_float64(val
, &env
->vec_status
);
1419 uint64_t helper_efdcfsid(CPUPPCState
*env
, uint64_t val
)
1423 u
.d
= int64_to_float64(val
, &env
->vec_status
);
1428 uint64_t helper_efdcfui(CPUPPCState
*env
, uint32_t val
)
1432 u
.d
= uint32_to_float64(val
, &env
->vec_status
);
1437 uint64_t helper_efdcfuid(CPUPPCState
*env
, uint64_t val
)
1441 u
.d
= uint64_to_float64(val
, &env
->vec_status
);
1446 uint32_t helper_efdctsi(CPUPPCState
*env
, uint64_t val
)
1451 /* NaN are not treated the same way IEEE 754 does */
1452 if (unlikely(float64_is_any_nan(u
.d
))) {
1456 return float64_to_int32(u
.d
, &env
->vec_status
);
1459 uint32_t helper_efdctui(CPUPPCState
*env
, uint64_t val
)
1464 /* NaN are not treated the same way IEEE 754 does */
1465 if (unlikely(float64_is_any_nan(u
.d
))) {
1469 return float64_to_uint32(u
.d
, &env
->vec_status
);
1472 uint32_t helper_efdctsiz(CPUPPCState
*env
, uint64_t val
)
1477 /* NaN are not treated the same way IEEE 754 does */
1478 if (unlikely(float64_is_any_nan(u
.d
))) {
1482 return float64_to_int32_round_to_zero(u
.d
, &env
->vec_status
);
1485 uint64_t helper_efdctsidz(CPUPPCState
*env
, uint64_t val
)
1490 /* NaN are not treated the same way IEEE 754 does */
1491 if (unlikely(float64_is_any_nan(u
.d
))) {
1495 return float64_to_int64_round_to_zero(u
.d
, &env
->vec_status
);
1498 uint32_t helper_efdctuiz(CPUPPCState
*env
, uint64_t val
)
1503 /* NaN are not treated the same way IEEE 754 does */
1504 if (unlikely(float64_is_any_nan(u
.d
))) {
1508 return float64_to_uint32_round_to_zero(u
.d
, &env
->vec_status
);
1511 uint64_t helper_efdctuidz(CPUPPCState
*env
, uint64_t val
)
1516 /* NaN are not treated the same way IEEE 754 does */
1517 if (unlikely(float64_is_any_nan(u
.d
))) {
1521 return float64_to_uint64_round_to_zero(u
.d
, &env
->vec_status
);
1524 uint64_t helper_efdcfsf(CPUPPCState
*env
, uint32_t val
)
1529 u
.d
= int32_to_float64(val
, &env
->vec_status
);
1530 tmp
= int64_to_float64(1ULL << 32, &env
->vec_status
);
1531 u
.d
= float64_div(u
.d
, tmp
, &env
->vec_status
);
1536 uint64_t helper_efdcfuf(CPUPPCState
*env
, uint32_t val
)
1541 u
.d
= uint32_to_float64(val
, &env
->vec_status
);
1542 tmp
= int64_to_float64(1ULL << 32, &env
->vec_status
);
1543 u
.d
= float64_div(u
.d
, tmp
, &env
->vec_status
);
1548 uint32_t helper_efdctsf(CPUPPCState
*env
, uint64_t val
)
1554 /* NaN are not treated the same way IEEE 754 does */
1555 if (unlikely(float64_is_any_nan(u
.d
))) {
1558 tmp
= uint64_to_float64(1ULL << 32, &env
->vec_status
);
1559 u
.d
= float64_mul(u
.d
, tmp
, &env
->vec_status
);
1561 return float64_to_int32(u
.d
, &env
->vec_status
);
1564 uint32_t helper_efdctuf(CPUPPCState
*env
, uint64_t val
)
1570 /* NaN are not treated the same way IEEE 754 does */
1571 if (unlikely(float64_is_any_nan(u
.d
))) {
1574 tmp
= uint64_to_float64(1ULL << 32, &env
->vec_status
);
1575 u
.d
= float64_mul(u
.d
, tmp
, &env
->vec_status
);
1577 return float64_to_uint32(u
.d
, &env
->vec_status
);
1580 uint32_t helper_efscfd(CPUPPCState
*env
, uint64_t val
)
1586 u2
.f
= float64_to_float32(u1
.d
, &env
->vec_status
);
1591 uint64_t helper_efdcfs(CPUPPCState
*env
, uint32_t val
)
1597 u2
.d
= float32_to_float64(u1
.f
, &env
->vec_status
);
1602 /* Double precision fixed-point arithmetic */
1603 uint64_t helper_efdadd(CPUPPCState
*env
, uint64_t op1
, uint64_t op2
)
1609 u1
.d
= float64_add(u1
.d
, u2
.d
, &env
->vec_status
);
1613 uint64_t helper_efdsub(CPUPPCState
*env
, uint64_t op1
, uint64_t op2
)
1619 u1
.d
= float64_sub(u1
.d
, u2
.d
, &env
->vec_status
);
1623 uint64_t helper_efdmul(CPUPPCState
*env
, uint64_t op1
, uint64_t op2
)
1629 u1
.d
= float64_mul(u1
.d
, u2
.d
, &env
->vec_status
);
1633 uint64_t helper_efddiv(CPUPPCState
*env
, uint64_t op1
, uint64_t op2
)
1639 u1
.d
= float64_div(u1
.d
, u2
.d
, &env
->vec_status
);
1643 /* Double precision floating point helpers */
1644 uint32_t helper_efdtstlt(CPUPPCState
*env
, uint64_t op1
, uint64_t op2
)
1650 return float64_lt(u1
.d
, u2
.d
, &env
->vec_status
) ? 4 : 0;
1653 uint32_t helper_efdtstgt(CPUPPCState
*env
, uint64_t op1
, uint64_t op2
)
1659 return float64_le(u1
.d
, u2
.d
, &env
->vec_status
) ? 0 : 4;
1662 uint32_t helper_efdtsteq(CPUPPCState
*env
, uint64_t op1
, uint64_t op2
)
1668 return float64_eq_quiet(u1
.d
, u2
.d
, &env
->vec_status
) ? 4 : 0;
1671 uint32_t helper_efdcmplt(CPUPPCState
*env
, uint64_t op1
, uint64_t op2
)
1673 /* XXX: TODO: test special values (NaN, infinites, ...) */
1674 return helper_efdtstlt(env
, op1
, op2
);
1677 uint32_t helper_efdcmpgt(CPUPPCState
*env
, uint64_t op1
, uint64_t op2
)
1679 /* XXX: TODO: test special values (NaN, infinites, ...) */
1680 return helper_efdtstgt(env
, op1
, op2
);
1683 uint32_t helper_efdcmpeq(CPUPPCState
*env
, uint64_t op1
, uint64_t op2
)
1685 /* XXX: TODO: test special values (NaN, infinites, ...) */
1686 return helper_efdtsteq(env
, op1
, op2
);
1689 #define float64_to_float64(x, env) x
1693 * VSX_ADD_SUB - VSX floating point add/subtract
1694 * name - instruction mnemonic
1695 * op - operation (add or sub)
1696 * nels - number of elements (1, 2 or 4)
1697 * tp - type (float32 or float64)
1698 * fld - vsr_t field (VsrD(*) or VsrW(*))
1699 * sfifprf - set FI and FPRF
1701 #define VSX_ADD_SUB(name, op, nels, tp, fld, sfifprf, r2sp) \
1702 void helper_##name(CPUPPCState *env, ppc_vsr_t *xt, \
1703 ppc_vsr_t *xa, ppc_vsr_t *xb) \
1705 ppc_vsr_t t = { }; \
1708 helper_reset_fpstatus(env); \
1710 for (i = 0; i < nels; i++) { \
1711 float_status tstat = env->fp_status; \
1712 set_float_exception_flags(0, &tstat); \
1713 t.fld = tp##_##op(xa->fld, xb->fld, &tstat); \
1714 env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
1716 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \
1717 float_invalid_op_addsub(env, tstat.float_exception_flags, \
1718 sfifprf, GETPC()); \
1722 t.fld = do_frsp(env, t.fld, GETPC()); \
1726 helper_compute_fprf_float64(env, t.fld); \
1730 do_float_check_status(env, sfifprf, GETPC()); \
1733 VSX_ADD_SUB(xsadddp
, add
, 1, float64
, VsrD(0), 1, 0)
1734 VSX_ADD_SUB(xsaddsp
, add
, 1, float64
, VsrD(0), 1, 1)
1735 VSX_ADD_SUB(xvadddp
, add
, 2, float64
, VsrD(i
), 0, 0)
1736 VSX_ADD_SUB(xvaddsp
, add
, 4, float32
, VsrW(i
), 0, 0)
1737 VSX_ADD_SUB(xssubdp
, sub
, 1, float64
, VsrD(0), 1, 0)
1738 VSX_ADD_SUB(xssubsp
, sub
, 1, float64
, VsrD(0), 1, 1)
1739 VSX_ADD_SUB(xvsubdp
, sub
, 2, float64
, VsrD(i
), 0, 0)
1740 VSX_ADD_SUB(xvsubsp
, sub
, 4, float32
, VsrW(i
), 0, 0)
1742 void helper_xsaddqp(CPUPPCState
*env
, uint32_t opcode
,
1743 ppc_vsr_t
*xt
, ppc_vsr_t
*xa
, ppc_vsr_t
*xb
)
1748 helper_reset_fpstatus(env
);
1750 tstat
= env
->fp_status
;
1751 if (unlikely(Rc(opcode
) != 0)) {
1752 tstat
.float_rounding_mode
= float_round_to_odd
;
1755 set_float_exception_flags(0, &tstat
);
1756 t
.f128
= float128_add(xa
->f128
, xb
->f128
, &tstat
);
1757 env
->fp_status
.float_exception_flags
|= tstat
.float_exception_flags
;
1759 if (unlikely(tstat
.float_exception_flags
& float_flag_invalid
)) {
1760 float_invalid_op_addsub(env
, tstat
.float_exception_flags
, 1, GETPC());
1763 helper_compute_fprf_float128(env
, t
.f128
);
1766 do_float_check_status(env
, true, GETPC());
1770 * VSX_MUL - VSX floating point multiply
1771 * op - instruction mnemonic
1772 * nels - number of elements (1, 2 or 4)
1773 * tp - type (float32 or float64)
1774 * fld - vsr_t field (VsrD(*) or VsrW(*))
1775 * sfifprf - set FI and FPRF
1777 #define VSX_MUL(op, nels, tp, fld, sfifprf, r2sp) \
1778 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, \
1779 ppc_vsr_t *xa, ppc_vsr_t *xb) \
1781 ppc_vsr_t t = { }; \
1784 helper_reset_fpstatus(env); \
1786 for (i = 0; i < nels; i++) { \
1787 float_status tstat = env->fp_status; \
1788 set_float_exception_flags(0, &tstat); \
1789 t.fld = tp##_mul(xa->fld, xb->fld, &tstat); \
1790 env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
1792 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \
1793 float_invalid_op_mul(env, tstat.float_exception_flags, \
1794 sfifprf, GETPC()); \
1798 t.fld = do_frsp(env, t.fld, GETPC()); \
1802 helper_compute_fprf_float64(env, t.fld); \
1807 do_float_check_status(env, sfifprf, GETPC()); \
1810 VSX_MUL(xsmuldp
, 1, float64
, VsrD(0), 1, 0)
1811 VSX_MUL(xsmulsp
, 1, float64
, VsrD(0), 1, 1)
1812 VSX_MUL(xvmuldp
, 2, float64
, VsrD(i
), 0, 0)
1813 VSX_MUL(xvmulsp
, 4, float32
, VsrW(i
), 0, 0)
1815 void helper_xsmulqp(CPUPPCState
*env
, uint32_t opcode
,
1816 ppc_vsr_t
*xt
, ppc_vsr_t
*xa
, ppc_vsr_t
*xb
)
1821 helper_reset_fpstatus(env
);
1822 tstat
= env
->fp_status
;
1823 if (unlikely(Rc(opcode
) != 0)) {
1824 tstat
.float_rounding_mode
= float_round_to_odd
;
1827 set_float_exception_flags(0, &tstat
);
1828 t
.f128
= float128_mul(xa
->f128
, xb
->f128
, &tstat
);
1829 env
->fp_status
.float_exception_flags
|= tstat
.float_exception_flags
;
1831 if (unlikely(tstat
.float_exception_flags
& float_flag_invalid
)) {
1832 float_invalid_op_mul(env
, tstat
.float_exception_flags
, 1, GETPC());
1834 helper_compute_fprf_float128(env
, t
.f128
);
1837 do_float_check_status(env
, true, GETPC());
1841 * VSX_DIV - VSX floating point divide
1842 * op - instruction mnemonic
1843 * nels - number of elements (1, 2 or 4)
1844 * tp - type (float32 or float64)
1845 * fld - vsr_t field (VsrD(*) or VsrW(*))
1846 * sfifprf - set FI and FPRF
1848 #define VSX_DIV(op, nels, tp, fld, sfifprf, r2sp) \
1849 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, \
1850 ppc_vsr_t *xa, ppc_vsr_t *xb) \
1852 ppc_vsr_t t = { }; \
1855 helper_reset_fpstatus(env); \
1857 for (i = 0; i < nels; i++) { \
1858 float_status tstat = env->fp_status; \
1859 set_float_exception_flags(0, &tstat); \
1860 t.fld = tp##_div(xa->fld, xb->fld, &tstat); \
1861 env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
1863 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \
1864 float_invalid_op_div(env, tstat.float_exception_flags, \
1865 sfifprf, GETPC()); \
1867 if (unlikely(tstat.float_exception_flags & float_flag_divbyzero)) { \
1868 float_zero_divide_excp(env, GETPC()); \
1872 t.fld = do_frsp(env, t.fld, GETPC()); \
1876 helper_compute_fprf_float64(env, t.fld); \
1881 do_float_check_status(env, sfifprf, GETPC()); \
1884 VSX_DIV(xsdivdp
, 1, float64
, VsrD(0), 1, 0)
1885 VSX_DIV(xsdivsp
, 1, float64
, VsrD(0), 1, 1)
1886 VSX_DIV(xvdivdp
, 2, float64
, VsrD(i
), 0, 0)
1887 VSX_DIV(xvdivsp
, 4, float32
, VsrW(i
), 0, 0)
1889 void helper_xsdivqp(CPUPPCState
*env
, uint32_t opcode
,
1890 ppc_vsr_t
*xt
, ppc_vsr_t
*xa
, ppc_vsr_t
*xb
)
1895 helper_reset_fpstatus(env
);
1896 tstat
= env
->fp_status
;
1897 if (unlikely(Rc(opcode
) != 0)) {
1898 tstat
.float_rounding_mode
= float_round_to_odd
;
1901 set_float_exception_flags(0, &tstat
);
1902 t
.f128
= float128_div(xa
->f128
, xb
->f128
, &tstat
);
1903 env
->fp_status
.float_exception_flags
|= tstat
.float_exception_flags
;
1905 if (unlikely(tstat
.float_exception_flags
& float_flag_invalid
)) {
1906 float_invalid_op_div(env
, tstat
.float_exception_flags
, 1, GETPC());
1908 if (unlikely(tstat
.float_exception_flags
& float_flag_divbyzero
)) {
1909 float_zero_divide_excp(env
, GETPC());
1912 helper_compute_fprf_float128(env
, t
.f128
);
1914 do_float_check_status(env
, true, GETPC());
1918 * VSX_RE - VSX floating point reciprocal estimate
1919 * op - instruction mnemonic
1920 * nels - number of elements (1, 2 or 4)
1921 * tp - type (float32 or float64)
1922 * fld - vsr_t field (VsrD(*) or VsrW(*))
1923 * sfifprf - set FI and FPRF
1925 #define VSX_RE(op, nels, tp, fld, sfifprf, r2sp) \
1926 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) \
1928 ppc_vsr_t t = { }; \
1931 helper_reset_fpstatus(env); \
1933 for (i = 0; i < nels; i++) { \
1934 if (unlikely(tp##_is_signaling_nan(xb->fld, &env->fp_status))) { \
1935 float_invalid_op_vxsnan(env, GETPC()); \
1937 t.fld = tp##_div(tp##_one, xb->fld, &env->fp_status); \
1940 t.fld = do_frsp(env, t.fld, GETPC()); \
1944 helper_compute_fprf_float64(env, t.fld); \
1949 do_float_check_status(env, sfifprf, GETPC()); \
1952 VSX_RE(xsredp
, 1, float64
, VsrD(0), 1, 0)
1953 VSX_RE(xsresp
, 1, float64
, VsrD(0), 1, 1)
1954 VSX_RE(xvredp
, 2, float64
, VsrD(i
), 0, 0)
1955 VSX_RE(xvresp
, 4, float32
, VsrW(i
), 0, 0)
1958 * VSX_SQRT - VSX floating point square root
1959 * op - instruction mnemonic
1960 * nels - number of elements (1, 2 or 4)
1961 * tp - type (float32 or float64)
1962 * fld - vsr_t field (VsrD(*) or VsrW(*))
1963 * sfifprf - set FI and FPRF
1965 #define VSX_SQRT(op, nels, tp, fld, sfifprf, r2sp) \
1966 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) \
1968 ppc_vsr_t t = { }; \
1971 helper_reset_fpstatus(env); \
1973 for (i = 0; i < nels; i++) { \
1974 float_status tstat = env->fp_status; \
1975 set_float_exception_flags(0, &tstat); \
1976 t.fld = tp##_sqrt(xb->fld, &tstat); \
1977 env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
1979 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \
1980 float_invalid_op_sqrt(env, tstat.float_exception_flags, \
1981 sfifprf, GETPC()); \
1985 t.fld = do_frsp(env, t.fld, GETPC()); \
1989 helper_compute_fprf_float64(env, t.fld); \
1994 do_float_check_status(env, sfifprf, GETPC()); \
1997 VSX_SQRT(xssqrtdp
, 1, float64
, VsrD(0), 1, 0)
1998 VSX_SQRT(xssqrtsp
, 1, float64
, VsrD(0), 1, 1)
1999 VSX_SQRT(xvsqrtdp
, 2, float64
, VsrD(i
), 0, 0)
2000 VSX_SQRT(xvsqrtsp
, 4, float32
, VsrW(i
), 0, 0)
2003 *VSX_RSQRTE - VSX floating point reciprocal square root estimate
2004 * op - instruction mnemonic
2005 * nels - number of elements (1, 2 or 4)
2006 * tp - type (float32 or float64)
2007 * fld - vsr_t field (VsrD(*) or VsrW(*))
2008 * sfifprf - set FI and FPRF
2010 #define VSX_RSQRTE(op, nels, tp, fld, sfifprf, r2sp) \
2011 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) \
2013 ppc_vsr_t t = { }; \
2016 helper_reset_fpstatus(env); \
2018 for (i = 0; i < nels; i++) { \
2019 float_status tstat = env->fp_status; \
2020 set_float_exception_flags(0, &tstat); \
2021 t.fld = tp##_sqrt(xb->fld, &tstat); \
2022 t.fld = tp##_div(tp##_one, t.fld, &tstat); \
2023 env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
2024 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \
2025 float_invalid_op_sqrt(env, tstat.float_exception_flags, \
2026 sfifprf, GETPC()); \
2029 t.fld = do_frsp(env, t.fld, GETPC()); \
2033 helper_compute_fprf_float64(env, t.fld); \
2038 do_float_check_status(env, sfifprf, GETPC()); \
2041 VSX_RSQRTE(xsrsqrtedp
, 1, float64
, VsrD(0), 1, 0)
2042 VSX_RSQRTE(xsrsqrtesp
, 1, float64
, VsrD(0), 1, 1)
2043 VSX_RSQRTE(xvrsqrtedp
, 2, float64
, VsrD(i
), 0, 0)
2044 VSX_RSQRTE(xvrsqrtesp
, 4, float32
, VsrW(i
), 0, 0)
2047 * VSX_TDIV - VSX floating point test for divide
2048 * op - instruction mnemonic
2049 * nels - number of elements (1, 2 or 4)
2050 * tp - type (float32 or float64)
2051 * fld - vsr_t field (VsrD(*) or VsrW(*))
2052 * emin - minimum unbiased exponent
2053 * emax - maximum unbiased exponent
2054 * nbits - number of fraction bits
2056 #define VSX_TDIV(op, nels, tp, fld, emin, emax, nbits) \
2057 void helper_##op(CPUPPCState *env, uint32_t opcode, \
2058 ppc_vsr_t *xa, ppc_vsr_t *xb) \
2064 for (i = 0; i < nels; i++) { \
2065 if (unlikely(tp##_is_infinity(xa->fld) || \
2066 tp##_is_infinity(xb->fld) || \
2067 tp##_is_zero(xb->fld))) { \
2071 int e_a = ppc_##tp##_get_unbiased_exp(xa->fld); \
2072 int e_b = ppc_##tp##_get_unbiased_exp(xb->fld); \
2074 if (unlikely(tp##_is_any_nan(xa->fld) || \
2075 tp##_is_any_nan(xb->fld))) { \
2077 } else if ((e_b <= emin) || (e_b >= (emax - 2))) { \
2079 } else if (!tp##_is_zero(xa->fld) && \
2080 (((e_a - e_b) >= emax) || \
2081 ((e_a - e_b) <= (emin + 1)) || \
2082 (e_a <= (emin + nbits)))) { \
2086 if (unlikely(tp##_is_zero_or_denormal(xb->fld))) { \
2088 * XB is not zero because of the above check and so \
2089 * must be denormalized. \
2096 env->crf[BF(opcode)] = 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0); \
2099 VSX_TDIV(xstdivdp
, 1, float64
, VsrD(0), -1022, 1023, 52)
2100 VSX_TDIV(xvtdivdp
, 2, float64
, VsrD(i
), -1022, 1023, 52)
2101 VSX_TDIV(xvtdivsp
, 4, float32
, VsrW(i
), -126, 127, 23)
2104 * VSX_TSQRT - VSX floating point test for square root
2105 * op - instruction mnemonic
2106 * nels - number of elements (1, 2 or 4)
2107 * tp - type (float32 or float64)
2108 * fld - vsr_t field (VsrD(*) or VsrW(*))
2109 * emin - minimum unbiased exponent
2110 * emax - maximum unbiased exponent
2111 * nbits - number of fraction bits
2113 #define VSX_TSQRT(op, nels, tp, fld, emin, nbits) \
2114 void helper_##op(CPUPPCState *env, uint32_t opcode, ppc_vsr_t *xb) \
2120 for (i = 0; i < nels; i++) { \
2121 if (unlikely(tp##_is_infinity(xb->fld) || \
2122 tp##_is_zero(xb->fld))) { \
2126 int e_b = ppc_##tp##_get_unbiased_exp(xb->fld); \
2128 if (unlikely(tp##_is_any_nan(xb->fld))) { \
2130 } else if (unlikely(tp##_is_zero(xb->fld))) { \
2132 } else if (unlikely(tp##_is_neg(xb->fld))) { \
2134 } else if (!tp##_is_zero(xb->fld) && \
2135 (e_b <= (emin + nbits))) { \
2139 if (unlikely(tp##_is_zero_or_denormal(xb->fld))) { \
2141 * XB is not zero because of the above check and \
2142 * therefore must be denormalized. \
2149 env->crf[BF(opcode)] = 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0); \
2152 VSX_TSQRT(xstsqrtdp
, 1, float64
, VsrD(0), -1022, 52)
2153 VSX_TSQRT(xvtsqrtdp
, 2, float64
, VsrD(i
), -1022, 52)
2154 VSX_TSQRT(xvtsqrtsp
, 4, float32
, VsrW(i
), -126, 23)
2157 * VSX_MADD - VSX floating point muliply/add variations
2158 * op - instruction mnemonic
2159 * nels - number of elements (1, 2 or 4)
2160 * tp - type (float32 or float64)
2161 * fld - vsr_t field (VsrD(*) or VsrW(*))
2162 * maddflgs - flags for the float*muladd routine that control the
2163 * various forms (madd, msub, nmadd, nmsub)
2164 * sfifprf - set FI and FPRF
2166 #define VSX_MADD(op, nels, tp, fld, maddflgs, sfifprf) \
2167 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, \
2168 ppc_vsr_t *s1, ppc_vsr_t *s2, ppc_vsr_t *s3) \
2170 ppc_vsr_t t = { }; \
2173 helper_reset_fpstatus(env); \
2175 for (i = 0; i < nels; i++) { \
2176 float_status tstat = env->fp_status; \
2177 set_float_exception_flags(0, &tstat); \
2178 t.fld = tp##_muladd(s1->fld, s3->fld, s2->fld, maddflgs, &tstat); \
2179 env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
2181 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \
2182 float_invalid_op_madd(env, tstat.float_exception_flags, \
2183 sfifprf, GETPC()); \
2187 helper_compute_fprf_float64(env, t.fld); \
2191 do_float_check_status(env, sfifprf, GETPC()); \
2194 VSX_MADD(XSMADDDP
, 1, float64
, VsrD(0), MADD_FLGS
, 1)
2195 VSX_MADD(XSMSUBDP
, 1, float64
, VsrD(0), MSUB_FLGS
, 1)
2196 VSX_MADD(XSNMADDDP
, 1, float64
, VsrD(0), NMADD_FLGS
, 1)
2197 VSX_MADD(XSNMSUBDP
, 1, float64
, VsrD(0), NMSUB_FLGS
, 1)
2198 VSX_MADD(XSMADDSP
, 1, float64r32
, VsrD(0), MADD_FLGS
, 1)
2199 VSX_MADD(XSMSUBSP
, 1, float64r32
, VsrD(0), MSUB_FLGS
, 1)
2200 VSX_MADD(XSNMADDSP
, 1, float64r32
, VsrD(0), NMADD_FLGS
, 1)
2201 VSX_MADD(XSNMSUBSP
, 1, float64r32
, VsrD(0), NMSUB_FLGS
, 1)
2203 VSX_MADD(xvmadddp
, 2, float64
, VsrD(i
), MADD_FLGS
, 0)
2204 VSX_MADD(xvmsubdp
, 2, float64
, VsrD(i
), MSUB_FLGS
, 0)
2205 VSX_MADD(xvnmadddp
, 2, float64
, VsrD(i
), NMADD_FLGS
, 0)
2206 VSX_MADD(xvnmsubdp
, 2, float64
, VsrD(i
), NMSUB_FLGS
, 0)
2208 VSX_MADD(xvmaddsp
, 4, float32
, VsrW(i
), MADD_FLGS
, 0)
2209 VSX_MADD(xvmsubsp
, 4, float32
, VsrW(i
), MSUB_FLGS
, 0)
2210 VSX_MADD(xvnmaddsp
, 4, float32
, VsrW(i
), NMADD_FLGS
, 0)
2211 VSX_MADD(xvnmsubsp
, 4, float32
, VsrW(i
), NMSUB_FLGS
, 0)
2214 * VSX_MADDQ - VSX floating point quad-precision muliply/add
2215 * op - instruction mnemonic
2216 * maddflgs - flags for the float*muladd routine that control the
2217 * various forms (madd, msub, nmadd, nmsub)
2220 #define VSX_MADDQ(op, maddflgs, ro) \
2221 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *s1, ppc_vsr_t *s2,\
2224 ppc_vsr_t t = *xt; \
2226 helper_reset_fpstatus(env); \
2228 float_status tstat = env->fp_status; \
2229 set_float_exception_flags(0, &tstat); \
2231 tstat.float_rounding_mode = float_round_to_odd; \
2233 t.f128 = float128_muladd(s1->f128, s3->f128, s2->f128, maddflgs, &tstat); \
2234 env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
2236 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \
2237 float_invalid_op_madd(env, tstat.float_exception_flags, \
2241 helper_compute_fprf_float128(env, t.f128); \
2243 do_float_check_status(env, true, GETPC()); \
2246 VSX_MADDQ(XSMADDQP
, MADD_FLGS
, 0)
2247 VSX_MADDQ(XSMADDQPO
, MADD_FLGS
, 1)
2248 VSX_MADDQ(XSMSUBQP
, MSUB_FLGS
, 0)
2249 VSX_MADDQ(XSMSUBQPO
, MSUB_FLGS
, 1)
2250 VSX_MADDQ(XSNMADDQP
, NMADD_FLGS
, 0)
2251 VSX_MADDQ(XSNMADDQPO
, NMADD_FLGS
, 1)
2252 VSX_MADDQ(XSNMSUBQP
, NMSUB_FLGS
, 0)
2253 VSX_MADDQ(XSNMSUBQPO
, NMSUB_FLGS
, 0)
2256 * VSX_SCALAR_CMP - VSX scalar floating point compare
2257 * op - instruction mnemonic
2259 * cmp - comparison operation
2261 * svxvc - set VXVC bit
2263 #define VSX_SCALAR_CMP(op, tp, cmp, fld, svxvc) \
2264 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, \
2265 ppc_vsr_t *xa, ppc_vsr_t *xb) \
2270 helper_reset_fpstatus(env); \
2273 r = tp##_##cmp(xb->fld, xa->fld, &env->fp_status); \
2275 r = tp##_##cmp##_quiet(xb->fld, xa->fld, &env->fp_status); \
2278 flags = get_float_exception_flags(&env->fp_status); \
2279 if (unlikely(flags & float_flag_invalid)) { \
2281 if (flags & float_flag_invalid_snan) { \
2282 float_invalid_op_vxsnan(env, GETPC()); \
2283 vxvc &= !(env->fpscr & FP_VE); \
2286 float_invalid_op_vxvc(env, 0, GETPC()); \
2290 memset(xt, 0, sizeof(*xt)); \
2291 memset(&xt->fld, -r, sizeof(xt->fld)); \
2292 do_float_check_status(env, false, GETPC()); \
2295 VSX_SCALAR_CMP(XSCMPEQDP
, float64
, eq
, VsrD(0), 0)
2296 VSX_SCALAR_CMP(XSCMPGEDP
, float64
, le
, VsrD(0), 1)
2297 VSX_SCALAR_CMP(XSCMPGTDP
, float64
, lt
, VsrD(0), 1)
2298 VSX_SCALAR_CMP(XSCMPEQQP
, float128
, eq
, f128
, 0)
2299 VSX_SCALAR_CMP(XSCMPGEQP
, float128
, le
, f128
, 1)
2300 VSX_SCALAR_CMP(XSCMPGTQP
, float128
, lt
, f128
, 1)
2302 void helper_xscmpexpdp(CPUPPCState
*env
, uint32_t opcode
,
2303 ppc_vsr_t
*xa
, ppc_vsr_t
*xb
)
2305 int64_t exp_a
, exp_b
;
2308 exp_a
= extract64(xa
->VsrD(0), 52, 11);
2309 exp_b
= extract64(xb
->VsrD(0), 52, 11);
2311 if (unlikely(float64_is_any_nan(xa
->VsrD(0)) ||
2312 float64_is_any_nan(xb
->VsrD(0)))) {
2315 if (exp_a
< exp_b
) {
2317 } else if (exp_a
> exp_b
) {
2324 env
->fpscr
&= ~FP_FPCC
;
2325 env
->fpscr
|= cc
<< FPSCR_FPCC
;
2326 env
->crf
[BF(opcode
)] = cc
;
2328 do_float_check_status(env
, false, GETPC());
2331 void helper_xscmpexpqp(CPUPPCState
*env
, uint32_t opcode
,
2332 ppc_vsr_t
*xa
, ppc_vsr_t
*xb
)
2334 int64_t exp_a
, exp_b
;
2337 exp_a
= extract64(xa
->VsrD(0), 48, 15);
2338 exp_b
= extract64(xb
->VsrD(0), 48, 15);
2340 if (unlikely(float128_is_any_nan(xa
->f128
) ||
2341 float128_is_any_nan(xb
->f128
))) {
2344 if (exp_a
< exp_b
) {
2346 } else if (exp_a
> exp_b
) {
2353 env
->fpscr
&= ~FP_FPCC
;
2354 env
->fpscr
|= cc
<< FPSCR_FPCC
;
2355 env
->crf
[BF(opcode
)] = cc
;
2357 do_float_check_status(env
, false, GETPC());
2360 static inline void do_scalar_cmp(CPUPPCState
*env
, ppc_vsr_t
*xa
, ppc_vsr_t
*xb
,
2361 int crf_idx
, bool ordered
)
2364 bool vxsnan_flag
= false, vxvc_flag
= false;
2366 helper_reset_fpstatus(env
);
2368 switch (float64_compare(xa
->VsrD(0), xb
->VsrD(0), &env
->fp_status
)) {
2369 case float_relation_less
:
2372 case float_relation_equal
:
2375 case float_relation_greater
:
2378 case float_relation_unordered
:
2381 if (float64_is_signaling_nan(xa
->VsrD(0), &env
->fp_status
) ||
2382 float64_is_signaling_nan(xb
->VsrD(0), &env
->fp_status
)) {
2384 if (!(env
->fpscr
& FP_VE
) && ordered
) {
2387 } else if (float64_is_quiet_nan(xa
->VsrD(0), &env
->fp_status
) ||
2388 float64_is_quiet_nan(xb
->VsrD(0), &env
->fp_status
)) {
2396 g_assert_not_reached();
2399 env
->fpscr
&= ~FP_FPCC
;
2400 env
->fpscr
|= cc
<< FPSCR_FPCC
;
2401 env
->crf
[crf_idx
] = cc
;
2404 float_invalid_op_vxsnan(env
, GETPC());
2407 float_invalid_op_vxvc(env
, 0, GETPC());
2410 do_float_check_status(env
, false, GETPC());
2413 void helper_xscmpodp(CPUPPCState
*env
, uint32_t opcode
, ppc_vsr_t
*xa
,
2416 do_scalar_cmp(env
, xa
, xb
, BF(opcode
), true);
2419 void helper_xscmpudp(CPUPPCState
*env
, uint32_t opcode
, ppc_vsr_t
*xa
,
2422 do_scalar_cmp(env
, xa
, xb
, BF(opcode
), false);
2425 static inline void do_scalar_cmpq(CPUPPCState
*env
, ppc_vsr_t
*xa
,
2426 ppc_vsr_t
*xb
, int crf_idx
, bool ordered
)
2429 bool vxsnan_flag
= false, vxvc_flag
= false;
2431 helper_reset_fpstatus(env
);
2433 switch (float128_compare(xa
->f128
, xb
->f128
, &env
->fp_status
)) {
2434 case float_relation_less
:
2437 case float_relation_equal
:
2440 case float_relation_greater
:
2443 case float_relation_unordered
:
2446 if (float128_is_signaling_nan(xa
->f128
, &env
->fp_status
) ||
2447 float128_is_signaling_nan(xb
->f128
, &env
->fp_status
)) {
2449 if (!(env
->fpscr
& FP_VE
) && ordered
) {
2452 } else if (float128_is_quiet_nan(xa
->f128
, &env
->fp_status
) ||
2453 float128_is_quiet_nan(xb
->f128
, &env
->fp_status
)) {
2461 g_assert_not_reached();
2464 env
->fpscr
&= ~FP_FPCC
;
2465 env
->fpscr
|= cc
<< FPSCR_FPCC
;
2466 env
->crf
[crf_idx
] = cc
;
2469 float_invalid_op_vxsnan(env
, GETPC());
2472 float_invalid_op_vxvc(env
, 0, GETPC());
2475 do_float_check_status(env
, false, GETPC());
2478 void helper_xscmpoqp(CPUPPCState
*env
, uint32_t opcode
, ppc_vsr_t
*xa
,
2481 do_scalar_cmpq(env
, xa
, xb
, BF(opcode
), true);
2484 void helper_xscmpuqp(CPUPPCState
*env
, uint32_t opcode
, ppc_vsr_t
*xa
,
2487 do_scalar_cmpq(env
, xa
, xb
, BF(opcode
), false);
2491 * VSX_MAX_MIN - VSX floating point maximum/minimum
2492 * name - instruction mnemonic
2493 * op - operation (max or min)
2494 * nels - number of elements (1, 2 or 4)
2495 * tp - type (float32 or float64)
2496 * fld - vsr_t field (VsrD(*) or VsrW(*))
2498 #define VSX_MAX_MIN(name, op, nels, tp, fld) \
2499 void helper_##name(CPUPPCState *env, ppc_vsr_t *xt, \
2500 ppc_vsr_t *xa, ppc_vsr_t *xb) \
2502 ppc_vsr_t t = { }; \
2505 for (i = 0; i < nels; i++) { \
2506 t.fld = tp##_##op(xa->fld, xb->fld, &env->fp_status); \
2507 if (unlikely(tp##_is_signaling_nan(xa->fld, &env->fp_status) || \
2508 tp##_is_signaling_nan(xb->fld, &env->fp_status))) { \
2509 float_invalid_op_vxsnan(env, GETPC()); \
2514 do_float_check_status(env, false, GETPC()); \
2517 VSX_MAX_MIN(xsmaxdp
, maxnum
, 1, float64
, VsrD(0))
2518 VSX_MAX_MIN(xvmaxdp
, maxnum
, 2, float64
, VsrD(i
))
2519 VSX_MAX_MIN(xvmaxsp
, maxnum
, 4, float32
, VsrW(i
))
2520 VSX_MAX_MIN(xsmindp
, minnum
, 1, float64
, VsrD(0))
2521 VSX_MAX_MIN(xvmindp
, minnum
, 2, float64
, VsrD(i
))
2522 VSX_MAX_MIN(xvminsp
, minnum
, 4, float32
, VsrW(i
))
2524 #define VSX_MAX_MINC(name, max, tp, fld) \
2525 void helper_##name(CPUPPCState *env, \
2526 ppc_vsr_t *xt, ppc_vsr_t *xa, ppc_vsr_t *xb) \
2528 ppc_vsr_t t = { }; \
2531 helper_reset_fpstatus(env); \
2534 first = tp##_le_quiet(xb->fld, xa->fld, &env->fp_status); \
2536 first = tp##_lt_quiet(xa->fld, xb->fld, &env->fp_status); \
2543 if (env->fp_status.float_exception_flags & float_flag_invalid_snan) { \
2544 float_invalid_op_vxsnan(env, GETPC()); \
2551 VSX_MAX_MINC(XSMAXCDP
, true, float64
, VsrD(0));
2552 VSX_MAX_MINC(XSMINCDP
, false, float64
, VsrD(0));
2553 VSX_MAX_MINC(XSMAXCQP
, true, float128
, f128
);
2554 VSX_MAX_MINC(XSMINCQP
, false, float128
, f128
);
2556 #define VSX_MAX_MINJ(name, max) \
2557 void helper_##name(CPUPPCState *env, \
2558 ppc_vsr_t *xt, ppc_vsr_t *xa, ppc_vsr_t *xb) \
2560 ppc_vsr_t t = { }; \
2561 bool vxsnan_flag = false, vex_flag = false; \
2563 if (unlikely(float64_is_any_nan(xa->VsrD(0)))) { \
2564 if (float64_is_signaling_nan(xa->VsrD(0), &env->fp_status)) { \
2565 vxsnan_flag = true; \
2567 t.VsrD(0) = xa->VsrD(0); \
2568 } else if (unlikely(float64_is_any_nan(xb->VsrD(0)))) { \
2569 if (float64_is_signaling_nan(xb->VsrD(0), &env->fp_status)) { \
2570 vxsnan_flag = true; \
2572 t.VsrD(0) = xb->VsrD(0); \
2573 } else if (float64_is_zero(xa->VsrD(0)) && \
2574 float64_is_zero(xb->VsrD(0))) { \
2576 if (!float64_is_neg(xa->VsrD(0)) || \
2577 !float64_is_neg(xb->VsrD(0))) { \
2580 t.VsrD(0) = 0x8000000000000000ULL; \
2583 if (float64_is_neg(xa->VsrD(0)) || \
2584 float64_is_neg(xb->VsrD(0))) { \
2585 t.VsrD(0) = 0x8000000000000000ULL; \
2590 } else if ((max && \
2591 !float64_lt(xa->VsrD(0), xb->VsrD(0), &env->fp_status)) || \
2593 float64_lt(xa->VsrD(0), xb->VsrD(0), &env->fp_status))) { \
2594 t.VsrD(0) = xa->VsrD(0); \
2596 t.VsrD(0) = xb->VsrD(0); \
2599 vex_flag = (env->fpscr & FP_VE) && vxsnan_flag; \
2600 if (vxsnan_flag) { \
2601 float_invalid_op_vxsnan(env, GETPC()); \
2608 VSX_MAX_MINJ(XSMAXJDP, 1);
2609 VSX_MAX_MINJ(XSMINJDP
, 0);
2612 * VSX_CMP - VSX floating point compare
2613 * op - instruction mnemonic
2614 * nels - number of elements (1, 2 or 4)
2615 * tp - type (float32 or float64)
2616 * fld - vsr_t field (VsrD(*) or VsrW(*))
2617 * cmp - comparison operation
2618 * svxvc - set VXVC bit
2619 * exp - expected result of comparison
2621 #define VSX_CMP(op, nels, tp, fld, cmp, svxvc, exp) \
2622 uint32_t helper_##op(CPUPPCState *env, ppc_vsr_t *xt, \
2623 ppc_vsr_t *xa, ppc_vsr_t *xb) \
2625 ppc_vsr_t t = *xt; \
2626 uint32_t crf6 = 0; \
2629 int all_false = 1; \
2631 helper_reset_fpstatus(env); \
2633 for (i = 0; i < nels; i++) { \
2634 if (unlikely(tp##_is_any_nan(xa->fld) || \
2635 tp##_is_any_nan(xb->fld))) { \
2636 if (tp##_is_signaling_nan(xa->fld, &env->fp_status) || \
2637 tp##_is_signaling_nan(xb->fld, &env->fp_status)) { \
2638 float_invalid_op_vxsnan(env, GETPC()); \
2641 float_invalid_op_vxvc(env, 0, GETPC()); \
2646 if (tp##_##cmp(xb->fld, xa->fld, &env->fp_status) == exp) { \
2657 crf6 = (all_true ? 0x8 : 0) | (all_false ? 0x2 : 0); \
2661 VSX_CMP(xvcmpeqdp
, 2, float64
, VsrD(i
), eq
, 0, 1)
2662 VSX_CMP(xvcmpgedp
, 2, float64
, VsrD(i
), le
, 1, 1)
2663 VSX_CMP(xvcmpgtdp
, 2, float64
, VsrD(i
), lt
, 1, 1)
2664 VSX_CMP(xvcmpnedp
, 2, float64
, VsrD(i
), eq
, 0, 0)
2665 VSX_CMP(xvcmpeqsp
, 4, float32
, VsrW(i
), eq
, 0, 1)
2666 VSX_CMP(xvcmpgesp
, 4, float32
, VsrW(i
), le
, 1, 1)
2667 VSX_CMP(xvcmpgtsp
, 4, float32
, VsrW(i
), lt
, 1, 1)
2668 VSX_CMP(xvcmpnesp
, 4, float32
, VsrW(i
), eq
, 0, 0)
2671 * VSX_CVT_FP_TO_FP - VSX floating point/floating point conversion
2672 * op - instruction mnemonic
2673 * nels - number of elements (1, 2 or 4)
2674 * stp - source type (float32 or float64)
2675 * ttp - target type (float32 or float64)
2676 * sfld - source vsr_t field
2677 * tfld - target vsr_t field (f32 or f64)
2678 * sfifprf - set FI and FPRF
2680 #define VSX_CVT_FP_TO_FP(op, nels, stp, ttp, sfld, tfld, sfifprf) \
2681 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) \
2683 ppc_vsr_t t = { }; \
2686 helper_reset_fpstatus(env); \
2688 for (i = 0; i < nels; i++) { \
2689 t.tfld = stp##_to_##ttp(xb->sfld, &env->fp_status); \
2690 if (unlikely(stp##_is_signaling_nan(xb->sfld, \
2691 &env->fp_status))) { \
2692 float_invalid_op_vxsnan(env, GETPC()); \
2693 t.tfld = ttp##_snan_to_qnan(t.tfld); \
2696 helper_compute_fprf_##ttp(env, t.tfld); \
2701 do_float_check_status(env, sfifprf, GETPC()); \
2704 VSX_CVT_FP_TO_FP(xscvspdp
, 1, float32
, float64
, VsrW(0), VsrD(0), 1)
2705 VSX_CVT_FP_TO_FP(xvcvspdp
, 2, float32
, float64
, VsrW(2 * i
), VsrD(i
), 0)
2707 #define VSX_CVT_FP_TO_FP2(op, nels, stp, ttp, sfifprf) \
2708 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) \
2710 ppc_vsr_t t = { }; \
2713 helper_reset_fpstatus(env); \
2715 for (i = 0; i < nels; i++) { \
2716 t.VsrW(2 * i) = stp##_to_##ttp(xb->VsrD(i), &env->fp_status); \
2717 if (unlikely(stp##_is_signaling_nan(xb->VsrD(i), \
2718 &env->fp_status))) { \
2719 float_invalid_op_vxsnan(env, GETPC()); \
2720 t.VsrW(2 * i) = ttp##_snan_to_qnan(t.VsrW(2 * i)); \
2723 helper_compute_fprf_##ttp(env, t.VsrW(2 * i)); \
2725 t.VsrW(2 * i + 1) = t.VsrW(2 * i); \
2729 do_float_check_status(env, sfifprf, GETPC()); \
2732 VSX_CVT_FP_TO_FP2(xvcvdpsp
, 2, float64
, float32
, 0)
2733 VSX_CVT_FP_TO_FP2(xscvdpsp
, 1, float64
, float32
, 1)
2736 * VSX_CVT_FP_TO_FP_VECTOR - VSX floating point/floating point conversion
2737 * op - instruction mnemonic
2738 * nels - number of elements (1, 2 or 4)
2739 * stp - source type (float32 or float64)
2740 * ttp - target type (float32 or float64)
2741 * sfld - source vsr_t field
2742 * tfld - target vsr_t field (f32 or f64)
2745 #define VSX_CVT_FP_TO_FP_VECTOR(op, nels, stp, ttp, sfld, tfld, sfprf) \
2746 void helper_##op(CPUPPCState *env, uint32_t opcode, \
2747 ppc_vsr_t *xt, ppc_vsr_t *xb) \
2749 ppc_vsr_t t = *xt; \
2752 helper_reset_fpstatus(env); \
2754 for (i = 0; i < nels; i++) { \
2755 t.tfld = stp##_to_##ttp(xb->sfld, &env->fp_status); \
2756 if (unlikely(stp##_is_signaling_nan(xb->sfld, \
2757 &env->fp_status))) { \
2758 float_invalid_op_vxsnan(env, GETPC()); \
2759 t.tfld = ttp##_snan_to_qnan(t.tfld); \
2762 helper_compute_fprf_##ttp(env, t.tfld); \
2767 do_float_check_status(env, true, GETPC()); \
2770 VSX_CVT_FP_TO_FP_VECTOR(xscvdpqp
, 1, float64
, float128
, VsrD(0), f128
, 1)
2773 * VSX_CVT_FP_TO_FP_HP - VSX floating point/floating point conversion
2774 * involving one half precision value
2775 * op - instruction mnemonic
2776 * nels - number of elements (1, 2 or 4)
2779 * sfld - source vsr_t field
2780 * tfld - target vsr_t field
2781 * sfifprf - set FI and FPRF
2783 #define VSX_CVT_FP_TO_FP_HP(op, nels, stp, ttp, sfld, tfld, sfifprf) \
2784 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) \
2786 ppc_vsr_t t = { }; \
2789 helper_reset_fpstatus(env); \
2791 for (i = 0; i < nels; i++) { \
2792 t.tfld = stp##_to_##ttp(xb->sfld, 1, &env->fp_status); \
2793 if (unlikely(stp##_is_signaling_nan(xb->sfld, \
2794 &env->fp_status))) { \
2795 float_invalid_op_vxsnan(env, GETPC()); \
2796 t.tfld = ttp##_snan_to_qnan(t.tfld); \
2799 helper_compute_fprf_##ttp(env, t.tfld); \
2804 do_float_check_status(env, sfifprf, GETPC()); \
2807 VSX_CVT_FP_TO_FP_HP(xscvdphp
, 1, float64
, float16
, VsrD(0), VsrH(3), 1)
2808 VSX_CVT_FP_TO_FP_HP(xscvhpdp
, 1, float16
, float64
, VsrH(3), VsrD(0), 1)
2809 VSX_CVT_FP_TO_FP_HP(xvcvsphp
, 4, float32
, float16
, VsrW(i
), VsrH(2 * i
+ 1), 0)
2810 VSX_CVT_FP_TO_FP_HP(xvcvhpsp
, 4, float16
, float32
, VsrH(2 * i
+ 1), VsrW(i
), 0)
2812 void helper_XVCVSPBF16(CPUPPCState
*env
, ppc_vsr_t
*xt
, ppc_vsr_t
*xb
)
2817 helper_reset_fpstatus(env
);
2819 for (i
= 0; i
< 4; i
++) {
2820 t
.VsrH(2 * i
+ 1) = float32_to_bfloat16(xb
->VsrW(i
), &env
->fp_status
);
2823 status
= get_float_exception_flags(&env
->fp_status
);
2824 if (unlikely(status
& float_flag_invalid_snan
)) {
2825 float_invalid_op_vxsnan(env
, GETPC());
2829 do_float_check_status(env
, false, GETPC());
2832 void helper_XSCVQPDP(CPUPPCState
*env
, uint32_t ro
, ppc_vsr_t
*xt
,
2838 helper_reset_fpstatus(env
);
2840 tstat
= env
->fp_status
;
2842 tstat
.float_rounding_mode
= float_round_to_odd
;
2845 t
.VsrD(0) = float128_to_float64(xb
->f128
, &tstat
);
2846 env
->fp_status
.float_exception_flags
|= tstat
.float_exception_flags
;
2847 if (unlikely(float128_is_signaling_nan(xb
->f128
, &tstat
))) {
2848 float_invalid_op_vxsnan(env
, GETPC());
2849 t
.VsrD(0) = float64_snan_to_qnan(t
.VsrD(0));
2851 helper_compute_fprf_float64(env
, t
.VsrD(0));
2854 do_float_check_status(env
, true, GETPC());
2857 uint64_t helper_xscvdpspn(CPUPPCState
*env
, uint64_t xb
)
2859 uint64_t result
, sign
, exp
, frac
;
2861 helper_reset_fpstatus(env
);
2862 float_status tstat
= env
->fp_status
;
2863 set_float_exception_flags(0, &tstat
);
2865 sign
= extract64(xb
, 63, 1);
2866 exp
= extract64(xb
, 52, 11);
2867 frac
= extract64(xb
, 0, 52) | 0x10000000000000ULL
;
2869 if (unlikely(exp
== 0 && extract64(frac
, 0, 52) != 0)) {
2870 /* DP denormal operand. */
2871 /* Exponent override to DP min exp. */
2873 /* Implicit bit override to 0. */
2874 frac
= deposit64(frac
, 53, 1, 0);
2877 if (unlikely(exp
< 897 && frac
!= 0)) {
2878 /* SP tiny operand. */
2879 if (897 - exp
> 63) {
2882 /* Denormalize until exp = SP min exp. */
2883 frac
>>= (897 - exp
);
2885 /* Exponent override to SP min exp - 1. */
2889 result
= sign
<< 31;
2890 result
|= extract64(exp
, 10, 1) << 30;
2891 result
|= extract64(exp
, 0, 7) << 23;
2892 result
|= extract64(frac
, 29, 23);
2894 /* hardware replicates result to both words of the doubleword result. */
2895 return (result
<< 32) | result
;
2898 uint64_t helper_XSCVSPDPN(uint64_t xb
)
2900 return helper_todouble(xb
>> 32);
2904 * VSX_CVT_FP_TO_INT - VSX floating point to integer conversion
2905 * op - instruction mnemonic
2906 * nels - number of elements (1, 2 or 4)
2907 * stp - source type (float32 or float64)
2908 * ttp - target type (int32, uint32, int64 or uint64)
2909 * sfld - source vsr_t field
2910 * tfld - target vsr_t field
2912 * rnan - resulting NaN
2914 #define VSX_CVT_FP_TO_INT(op, nels, stp, ttp, sfld, tfld, sfi, rnan) \
2915 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) \
2917 ppc_vsr_t t = { }; \
2920 helper_reset_fpstatus(env); \
2922 for (i = 0; i < nels; i++) { \
2923 t.tfld = stp##_to_##ttp##_round_to_zero(xb->sfld, &env->fp_status); \
2924 flags = env->fp_status.float_exception_flags; \
2925 if (unlikely(flags & float_flag_invalid)) { \
2926 t.tfld = float_invalid_cvt(env, flags, t.tfld, rnan, 0, GETPC());\
2931 do_float_check_status(env, sfi, GETPC()); \
2934 VSX_CVT_FP_TO_INT(xscvdpsxds
, 1, float64
, int64
, VsrD(0), VsrD(0), true, \
2935 0x8000000000000000ULL
)
2936 VSX_CVT_FP_TO_INT(xscvdpuxds
, 1, float64
, uint64
, VsrD(0), VsrD(0), true, 0ULL)
2937 VSX_CVT_FP_TO_INT(xvcvdpsxds
, 2, float64
, int64
, VsrD(i
), VsrD(i
), false, \
2938 0x8000000000000000ULL
)
2939 VSX_CVT_FP_TO_INT(xvcvdpuxds
, 2, float64
, uint64
, VsrD(i
), VsrD(i
), false, \
2941 VSX_CVT_FP_TO_INT(xvcvspsxds
, 2, float32
, int64
, VsrW(2 * i
), VsrD(i
), false, \
2942 0x8000000000000000ULL
)
2943 VSX_CVT_FP_TO_INT(xvcvspsxws
, 4, float32
, int32
, VsrW(i
), VsrW(i
), false, \
2945 VSX_CVT_FP_TO_INT(xvcvspuxds
, 2, float32
, uint64
, VsrW(2 * i
), VsrD(i
), \
2947 VSX_CVT_FP_TO_INT(xvcvspuxws
, 4, float32
, uint32
, VsrW(i
), VsrW(i
), false, 0U)
2949 #define VSX_CVT_FP_TO_INT128(op, tp, rnan) \
2950 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) \
2955 helper_reset_fpstatus(env); \
2956 t.s128 = float128_to_##tp##_round_to_zero(xb->f128, &env->fp_status); \
2957 flags = get_float_exception_flags(&env->fp_status); \
2958 if (unlikely(flags & float_flag_invalid)) { \
2959 t.VsrD(0) = float_invalid_cvt(env, flags, t.VsrD(0), rnan, 0, GETPC());\
2960 t.VsrD(1) = -(t.VsrD(0) & 1); \
2964 do_float_check_status(env, true, GETPC()); \
2967 VSX_CVT_FP_TO_INT128(XSCVQPUQZ
, uint128
, 0)
2968 VSX_CVT_FP_TO_INT128(XSCVQPSQZ
, int128
, 0x8000000000000000ULL
);
2971 * Likewise, except that the result is duplicated into both subwords.
2972 * Power ISA v3.1 has Programming Notes for these insns:
2973 * Previous versions of the architecture allowed the contents of
2974 * word 0 of the result register to be undefined. However, all
2975 * processors that support this instruction write the result into
2976 * words 0 and 1 (and words 2 and 3) of the result register, as
2977 * is required by this version of the architecture.
2979 #define VSX_CVT_FP_TO_INT2(op, nels, stp, ttp, sfi, rnan) \
2980 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) \
2982 ppc_vsr_t t = { }; \
2985 helper_reset_fpstatus(env); \
2987 for (i = 0; i < nels; i++) { \
2988 t.VsrW(2 * i) = stp##_to_##ttp##_round_to_zero(xb->VsrD(i), \
2990 flags = env->fp_status.float_exception_flags; \
2991 if (unlikely(flags & float_flag_invalid)) { \
2992 t.VsrW(2 * i) = float_invalid_cvt(env, flags, t.VsrW(2 * i), \
2993 rnan, 0, GETPC()); \
2995 t.VsrW(2 * i + 1) = t.VsrW(2 * i); \
2999 do_float_check_status(env, sfi, GETPC()); \
3002 VSX_CVT_FP_TO_INT2(xscvdpsxws
, 1, float64
, int32
, true, 0x80000000U
)
3003 VSX_CVT_FP_TO_INT2(xscvdpuxws
, 1, float64
, uint32
, true, 0U)
3004 VSX_CVT_FP_TO_INT2(xvcvdpsxws
, 2, float64
, int32
, false, 0x80000000U
)
3005 VSX_CVT_FP_TO_INT2(xvcvdpuxws
, 2, float64
, uint32
, false, 0U)
3008 * VSX_CVT_FP_TO_INT_VECTOR - VSX floating point to integer conversion
3009 * op - instruction mnemonic
3010 * stp - source type (float32 or float64)
3011 * ttp - target type (int32, uint32, int64 or uint64)
3012 * sfld - source vsr_t field
3013 * tfld - target vsr_t field
3014 * rnan - resulting NaN
3016 #define VSX_CVT_FP_TO_INT_VECTOR(op, stp, ttp, sfld, tfld, rnan) \
3017 void helper_##op(CPUPPCState *env, uint32_t opcode, \
3018 ppc_vsr_t *xt, ppc_vsr_t *xb) \
3020 ppc_vsr_t t = { }; \
3023 helper_reset_fpstatus(env); \
3025 t.tfld = stp##_to_##ttp##_round_to_zero(xb->sfld, &env->fp_status); \
3026 flags = get_float_exception_flags(&env->fp_status); \
3027 if (flags & float_flag_invalid) { \
3028 t.tfld = float_invalid_cvt(env, flags, t.tfld, rnan, 0, GETPC()); \
3032 do_float_check_status(env, true, GETPC()); \
3035 VSX_CVT_FP_TO_INT_VECTOR(xscvqpsdz
, float128
, int64
, f128
, VsrD(0), \
3036 0x8000000000000000ULL
)
3037 VSX_CVT_FP_TO_INT_VECTOR(xscvqpswz
, float128
, int32
, f128
, VsrD(0), \
3038 0xffffffff80000000ULL
)
3039 VSX_CVT_FP_TO_INT_VECTOR(xscvqpudz
, float128
, uint64
, f128
, VsrD(0), 0x0ULL
)
3040 VSX_CVT_FP_TO_INT_VECTOR(xscvqpuwz
, float128
, uint32
, f128
, VsrD(0), 0x0ULL
)
3043 * VSX_CVT_INT_TO_FP - VSX integer to floating point conversion
3044 * op - instruction mnemonic
3045 * nels - number of elements (1, 2 or 4)
3046 * stp - source type (int32, uint32, int64 or uint64)
3047 * ttp - target type (float32 or float64)
3048 * sfld - source vsr_t field
3049 * tfld - target vsr_t field
3050 * jdef - definition of the j index (i or 2*i)
3051 * sfifprf - set FI and FPRF
3053 #define VSX_CVT_INT_TO_FP(op, nels, stp, ttp, sfld, tfld, sfifprf, r2sp)\
3054 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) \
3056 ppc_vsr_t t = { }; \
3059 helper_reset_fpstatus(env); \
3061 for (i = 0; i < nels; i++) { \
3062 t.tfld = stp##_to_##ttp(xb->sfld, &env->fp_status); \
3064 t.tfld = do_frsp(env, t.tfld, GETPC()); \
3067 helper_compute_fprf_float64(env, t.tfld); \
3072 do_float_check_status(env, sfifprf, GETPC()); \
3075 VSX_CVT_INT_TO_FP(xscvsxddp
, 1, int64
, float64
, VsrD(0), VsrD(0), 1, 0)
3076 VSX_CVT_INT_TO_FP(xscvuxddp
, 1, uint64
, float64
, VsrD(0), VsrD(0), 1, 0)
3077 VSX_CVT_INT_TO_FP(xscvsxdsp
, 1, int64
, float64
, VsrD(0), VsrD(0), 1, 1)
3078 VSX_CVT_INT_TO_FP(xscvuxdsp
, 1, uint64
, float64
, VsrD(0), VsrD(0), 1, 1)
3079 VSX_CVT_INT_TO_FP(xvcvsxddp
, 2, int64
, float64
, VsrD(i
), VsrD(i
), 0, 0)
3080 VSX_CVT_INT_TO_FP(xvcvuxddp
, 2, uint64
, float64
, VsrD(i
), VsrD(i
), 0, 0)
3081 VSX_CVT_INT_TO_FP(xvcvsxwdp
, 2, int32
, float64
, VsrW(2 * i
), VsrD(i
), 0, 0)
3082 VSX_CVT_INT_TO_FP(xvcvuxwdp
, 2, uint64
, float64
, VsrW(2 * i
), VsrD(i
), 0, 0)
3083 VSX_CVT_INT_TO_FP(xvcvsxwsp
, 4, int32
, float32
, VsrW(i
), VsrW(i
), 0, 0)
3084 VSX_CVT_INT_TO_FP(xvcvuxwsp
, 4, uint32
, float32
, VsrW(i
), VsrW(i
), 0, 0)
3086 #define VSX_CVT_INT_TO_FP2(op, stp, ttp) \
3087 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) \
3089 ppc_vsr_t t = { }; \
3092 for (i = 0; i < 2; i++) { \
3093 t.VsrW(2 * i) = stp##_to_##ttp(xb->VsrD(i), &env->fp_status); \
3094 t.VsrW(2 * i + 1) = t.VsrW(2 * i); \
3098 do_float_check_status(env, false, GETPC()); \
3101 VSX_CVT_INT_TO_FP2(xvcvsxdsp
, int64
, float32
)
3102 VSX_CVT_INT_TO_FP2(xvcvuxdsp
, uint64
, float32
)
3104 #define VSX_CVT_INT128_TO_FP(op, tp) \
3105 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb)\
3107 helper_reset_fpstatus(env); \
3108 xt->f128 = tp##_to_float128(xb->s128, &env->fp_status); \
3109 helper_compute_fprf_float128(env, xt->f128); \
3110 do_float_check_status(env, true, GETPC()); \
3113 VSX_CVT_INT128_TO_FP(XSCVUQQP
, uint128
);
3114 VSX_CVT_INT128_TO_FP(XSCVSQQP
, int128
);
3117 * VSX_CVT_INT_TO_FP_VECTOR - VSX integer to floating point conversion
3118 * op - instruction mnemonic
3119 * stp - source type (int32, uint32, int64 or uint64)
3120 * ttp - target type (float32 or float64)
3121 * sfld - source vsr_t field
3122 * tfld - target vsr_t field
3124 #define VSX_CVT_INT_TO_FP_VECTOR(op, stp, ttp, sfld, tfld) \
3125 void helper_##op(CPUPPCState *env, uint32_t opcode, \
3126 ppc_vsr_t *xt, ppc_vsr_t *xb) \
3128 ppc_vsr_t t = *xt; \
3130 helper_reset_fpstatus(env); \
3131 t.tfld = stp##_to_##ttp(xb->sfld, &env->fp_status); \
3132 helper_compute_fprf_##ttp(env, t.tfld); \
3135 do_float_check_status(env, true, GETPC()); \
3138 VSX_CVT_INT_TO_FP_VECTOR(xscvsdqp
, int64
, float128
, VsrD(0), f128
)
3139 VSX_CVT_INT_TO_FP_VECTOR(xscvudqp
, uint64
, float128
, VsrD(0), f128
)
3142 * For "use current rounding mode", define a value that will not be
3143 * one of the existing rounding model enums.
3145 #define FLOAT_ROUND_CURRENT (float_round_nearest_even + float_round_down + \
3146 float_round_up + float_round_to_zero)
3149 * VSX_ROUND - VSX floating point round
3150 * op - instruction mnemonic
3151 * nels - number of elements (1, 2 or 4)
3152 * tp - type (float32 or float64)
3153 * fld - vsr_t field (VsrD(*) or VsrW(*))
3154 * rmode - rounding mode
3155 * sfifprf - set FI and FPRF
3157 #define VSX_ROUND(op, nels, tp, fld, rmode, sfifprf) \
3158 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) \
3160 ppc_vsr_t t = { }; \
3162 FloatRoundMode curr_rounding_mode; \
3164 helper_reset_fpstatus(env); \
3166 if (rmode != FLOAT_ROUND_CURRENT) { \
3167 curr_rounding_mode = get_float_rounding_mode(&env->fp_status); \
3168 set_float_rounding_mode(rmode, &env->fp_status); \
3171 for (i = 0; i < nels; i++) { \
3172 if (unlikely(tp##_is_signaling_nan(xb->fld, \
3173 &env->fp_status))) { \
3174 float_invalid_op_vxsnan(env, GETPC()); \
3175 t.fld = tp##_snan_to_qnan(xb->fld); \
3177 t.fld = tp##_round_to_int(xb->fld, &env->fp_status); \
3180 helper_compute_fprf_float64(env, t.fld); \
3185 * If this is not a "use current rounding mode" instruction, \
3186 * then inhibit setting of the XX bit and restore rounding \
3189 if (rmode != FLOAT_ROUND_CURRENT) { \
3190 set_float_rounding_mode(curr_rounding_mode, &env->fp_status); \
3191 env->fp_status.float_exception_flags &= ~float_flag_inexact; \
3195 do_float_check_status(env, sfifprf, GETPC()); \
3198 VSX_ROUND(xsrdpi
, 1, float64
, VsrD(0), float_round_ties_away
, 1)
3199 VSX_ROUND(xsrdpic
, 1, float64
, VsrD(0), FLOAT_ROUND_CURRENT
, 1)
3200 VSX_ROUND(xsrdpim
, 1, float64
, VsrD(0), float_round_down
, 1)
3201 VSX_ROUND(xsrdpip
, 1, float64
, VsrD(0), float_round_up
, 1)
3202 VSX_ROUND(xsrdpiz
, 1, float64
, VsrD(0), float_round_to_zero
, 1)
3204 VSX_ROUND(xvrdpi
, 2, float64
, VsrD(i
), float_round_ties_away
, 0)
3205 VSX_ROUND(xvrdpic
, 2, float64
, VsrD(i
), FLOAT_ROUND_CURRENT
, 0)
3206 VSX_ROUND(xvrdpim
, 2, float64
, VsrD(i
), float_round_down
, 0)
3207 VSX_ROUND(xvrdpip
, 2, float64
, VsrD(i
), float_round_up
, 0)
3208 VSX_ROUND(xvrdpiz
, 2, float64
, VsrD(i
), float_round_to_zero
, 0)
3210 VSX_ROUND(xvrspi
, 4, float32
, VsrW(i
), float_round_ties_away
, 0)
3211 VSX_ROUND(xvrspic
, 4, float32
, VsrW(i
), FLOAT_ROUND_CURRENT
, 0)
3212 VSX_ROUND(xvrspim
, 4, float32
, VsrW(i
), float_round_down
, 0)
3213 VSX_ROUND(xvrspip
, 4, float32
, VsrW(i
), float_round_up
, 0)
3214 VSX_ROUND(xvrspiz
, 4, float32
, VsrW(i
), float_round_to_zero
, 0)
3216 uint64_t helper_xsrsp(CPUPPCState
*env
, uint64_t xb
)
3218 helper_reset_fpstatus(env
);
3220 uint64_t xt
= do_frsp(env
, xb
, GETPC());
3222 helper_compute_fprf_float64(env
, xt
);
3223 do_float_check_status(env
, true, GETPC());
3227 void helper_XVXSIGSP(ppc_vsr_t
*xt
, ppc_vsr_t
*xb
)
3230 uint32_t exp
, i
, fraction
;
3232 for (i
= 0; i
< 4; i
++) {
3233 exp
= (xb
->VsrW(i
) >> 23) & 0xFF;
3234 fraction
= xb
->VsrW(i
) & 0x7FFFFF;
3235 if (exp
!= 0 && exp
!= 255) {
3236 t
.VsrW(i
) = fraction
| 0x00800000;
3238 t
.VsrW(i
) = fraction
;
3244 #define VSX_TSTDC(tp) \
3245 static int32_t tp##_tstdc(tp b, uint32_t dcmx) \
3247 uint32_t match = 0; \
3248 uint32_t sign = tp##_is_neg(b); \
3249 if (tp##_is_any_nan(b)) { \
3250 match = extract32(dcmx, 6, 1); \
3251 } else if (tp##_is_infinity(b)) { \
3252 match = extract32(dcmx, 4 + !sign, 1); \
3253 } else if (tp##_is_zero(b)) { \
3254 match = extract32(dcmx, 2 + !sign, 1); \
3255 } else if (tp##_is_zero_or_denormal(b)) { \
3256 match = extract32(dcmx, 0 + !sign, 1); \
3258 return (match != 0); \
3266 void helper_XVTSTDCDP(ppc_vsr_t
*t
, ppc_vsr_t
*b
, uint64_t dcmx
, uint32_t v
)
3269 for (i
= 0; i
< 2; i
++) {
3270 t
->s64
[i
] = (int64_t)-float64_tstdc(b
->f64
[i
], dcmx
);
3274 void helper_XVTSTDCSP(ppc_vsr_t
*t
, ppc_vsr_t
*b
, uint64_t dcmx
, uint32_t v
)
3277 for (i
= 0; i
< 4; i
++) {
3278 t
->s32
[i
] = (int32_t)-float32_tstdc(b
->f32
[i
], dcmx
);
3282 static bool not_SP_value(float64 val
)
3284 return val
!= helper_todouble(helper_tosingle(val
));
3288 * VSX_XS_TSTDC - VSX Scalar Test Data Class
3289 * NAME - instruction name
3290 * FLD - vsr_t field (VsrD(0) or f128)
3291 * TP - type (float64 or float128)
3293 #define VSX_XS_TSTDC(NAME, FLD, TP) \
3294 void helper_##NAME(CPUPPCState *env, uint32_t bf, \
3295 uint32_t dcmx, ppc_vsr_t *b) \
3297 uint32_t cc, match, sign = TP##_is_neg(b->FLD); \
3298 match = TP##_tstdc(b->FLD, dcmx); \
3299 cc = sign << CRF_LT_BIT | match << CRF_EQ_BIT; \
3300 env->fpscr &= ~FP_FPCC; \
3301 env->fpscr |= cc << FPSCR_FPCC; \
3302 env->crf[bf] = cc; \
3305 VSX_XS_TSTDC(XSTSTDCDP
, VsrD(0), float64
)
3306 VSX_XS_TSTDC(XSTSTDCQP
, f128
, float128
)
3309 void helper_XSTSTDCSP(CPUPPCState
*env
, uint32_t bf
,
3310 uint32_t dcmx
, ppc_vsr_t
*b
)
3312 uint32_t cc
, match
, sign
= float64_is_neg(b
->VsrD(0));
3313 uint32_t exp
= (b
->VsrD(0) >> 52) & 0x7FF;
3314 int not_sp
= (int)not_SP_value(b
->VsrD(0));
3315 match
= float64_tstdc(b
->VsrD(0), dcmx
) || (exp
> 0 && exp
< 0x381);
3316 cc
= sign
<< CRF_LT_BIT
| match
<< CRF_EQ_BIT
| not_sp
<< CRF_SO_BIT
;
3317 env
->fpscr
&= ~FP_FPCC
;
3318 env
->fpscr
|= cc
<< FPSCR_FPCC
;
3322 void helper_xsrqpi(CPUPPCState
*env
, uint32_t opcode
,
3323 ppc_vsr_t
*xt
, ppc_vsr_t
*xb
)
3326 uint8_t r
= Rrm(opcode
);
3327 uint8_t ex
= Rc(opcode
);
3328 uint8_t rmc
= RMC(opcode
);
3332 helper_reset_fpstatus(env
);
3334 if (r
== 0 && rmc
== 0) {
3335 rmode
= float_round_ties_away
;
3336 } else if (r
== 0 && rmc
== 0x3) {
3337 rmode
= env
->fpscr
& FP_RN
;
3338 } else if (r
== 1) {
3341 rmode
= float_round_nearest_even
;
3344 rmode
= float_round_to_zero
;
3347 rmode
= float_round_up
;
3350 rmode
= float_round_down
;
3357 tstat
= env
->fp_status
;
3358 set_float_exception_flags(0, &tstat
);
3359 set_float_rounding_mode(rmode
, &tstat
);
3360 t
.f128
= float128_round_to_int(xb
->f128
, &tstat
);
3361 env
->fp_status
.float_exception_flags
|= tstat
.float_exception_flags
;
3363 if (unlikely(tstat
.float_exception_flags
& float_flag_invalid_snan
)) {
3364 float_invalid_op_vxsnan(env
, GETPC());
3367 if (ex
== 0 && (tstat
.float_exception_flags
& float_flag_inexact
)) {
3368 env
->fp_status
.float_exception_flags
&= ~float_flag_inexact
;
3371 helper_compute_fprf_float128(env
, t
.f128
);
3372 do_float_check_status(env
, true, GETPC());
3376 void helper_xsrqpxp(CPUPPCState
*env
, uint32_t opcode
,
3377 ppc_vsr_t
*xt
, ppc_vsr_t
*xb
)
3380 uint8_t r
= Rrm(opcode
);
3381 uint8_t rmc
= RMC(opcode
);
3386 helper_reset_fpstatus(env
);
3388 if (r
== 0 && rmc
== 0) {
3389 rmode
= float_round_ties_away
;
3390 } else if (r
== 0 && rmc
== 0x3) {
3391 rmode
= env
->fpscr
& FP_RN
;
3392 } else if (r
== 1) {
3395 rmode
= float_round_nearest_even
;
3398 rmode
= float_round_to_zero
;
3401 rmode
= float_round_up
;
3404 rmode
= float_round_down
;
3411 tstat
= env
->fp_status
;
3412 set_float_exception_flags(0, &tstat
);
3413 set_float_rounding_mode(rmode
, &tstat
);
3414 round_res
= float128_to_floatx80(xb
->f128
, &tstat
);
3415 t
.f128
= floatx80_to_float128(round_res
, &tstat
);
3416 env
->fp_status
.float_exception_flags
|= tstat
.float_exception_flags
;
3418 if (unlikely(tstat
.float_exception_flags
& float_flag_invalid_snan
)) {
3419 float_invalid_op_vxsnan(env
, GETPC());
3420 t
.f128
= float128_snan_to_qnan(t
.f128
);
3423 helper_compute_fprf_float128(env
, t
.f128
);
3425 do_float_check_status(env
, true, GETPC());
3428 void helper_xssqrtqp(CPUPPCState
*env
, uint32_t opcode
,
3429 ppc_vsr_t
*xt
, ppc_vsr_t
*xb
)
3434 helper_reset_fpstatus(env
);
3436 tstat
= env
->fp_status
;
3437 if (unlikely(Rc(opcode
) != 0)) {
3438 tstat
.float_rounding_mode
= float_round_to_odd
;
3441 set_float_exception_flags(0, &tstat
);
3442 t
.f128
= float128_sqrt(xb
->f128
, &tstat
);
3443 env
->fp_status
.float_exception_flags
|= tstat
.float_exception_flags
;
3445 if (unlikely(tstat
.float_exception_flags
& float_flag_invalid
)) {
3446 float_invalid_op_sqrt(env
, tstat
.float_exception_flags
, 1, GETPC());
3449 helper_compute_fprf_float128(env
, t
.f128
);
3451 do_float_check_status(env
, true, GETPC());
3454 void helper_xssubqp(CPUPPCState
*env
, uint32_t opcode
,
3455 ppc_vsr_t
*xt
, ppc_vsr_t
*xa
, ppc_vsr_t
*xb
)
3460 helper_reset_fpstatus(env
);
3462 tstat
= env
->fp_status
;
3463 if (unlikely(Rc(opcode
) != 0)) {
3464 tstat
.float_rounding_mode
= float_round_to_odd
;
3467 set_float_exception_flags(0, &tstat
);
3468 t
.f128
= float128_sub(xa
->f128
, xb
->f128
, &tstat
);
3469 env
->fp_status
.float_exception_flags
|= tstat
.float_exception_flags
;
3471 if (unlikely(tstat
.float_exception_flags
& float_flag_invalid
)) {
3472 float_invalid_op_addsub(env
, tstat
.float_exception_flags
, 1, GETPC());
3475 helper_compute_fprf_float128(env
, t
.f128
);
3477 do_float_check_status(env
, true, GETPC());
3480 static inline void vsxger_excp(CPUPPCState
*env
, uintptr_t retaddr
)
3483 * XV*GER instructions execute and set the FPSCR as if exceptions
3484 * are disabled and only at the end throw an exception
3486 target_ulong enable
;
3487 enable
= env
->fpscr
& (FP_ENABLES
| FP_FI
| FP_FR
);
3488 env
->fpscr
&= ~(FP_ENABLES
| FP_FI
| FP_FR
);
3489 int status
= get_float_exception_flags(&env
->fp_status
);
3490 if (unlikely(status
& float_flag_invalid
)) {
3491 if (status
& float_flag_invalid_snan
) {
3492 float_invalid_op_vxsnan(env
, 0);
3494 if (status
& float_flag_invalid_imz
) {
3495 float_invalid_op_vximz(env
, false, 0);
3497 if (status
& float_flag_invalid_isi
) {
3498 float_invalid_op_vxisi(env
, false, 0);
3501 do_float_check_status(env
, false, retaddr
);
3502 env
->fpscr
|= enable
;
3503 do_fpscr_check_status(env
, retaddr
);
3506 typedef float64
extract_f16(float16
, float_status
*);
3508 static float64
extract_hf16(float16 in
, float_status
*fp_status
)
3510 return float16_to_float64(in
, true, fp_status
);
3513 static float64
extract_bf16(bfloat16 in
, float_status
*fp_status
)
3515 return bfloat16_to_float64(in
, fp_status
);
3518 static void vsxger16(CPUPPCState
*env
, ppc_vsr_t
*a
, ppc_vsr_t
*b
,
3519 ppc_acc_t
*at
, uint32_t mask
, bool acc
,
3520 bool neg_mul
, bool neg_acc
, extract_f16 extract
)
3523 float64 psum
, va
, vb
, vc
, vd
;
3524 int i
, j
, xmsk_bit
, ymsk_bit
;
3525 uint8_t pmsk
= FIELD_EX32(mask
, GER_MSK
, PMSK
),
3526 xmsk
= FIELD_EX32(mask
, GER_MSK
, XMSK
),
3527 ymsk
= FIELD_EX32(mask
, GER_MSK
, YMSK
);
3528 float_status
*excp_ptr
= &env
->fp_status
;
3529 for (i
= 0, xmsk_bit
= 1 << 3; i
< 4; i
++, xmsk_bit
>>= 1) {
3530 for (j
= 0, ymsk_bit
= 1 << 3; j
< 4; j
++, ymsk_bit
>>= 1) {
3531 if ((xmsk_bit
& xmsk
) && (ymsk_bit
& ymsk
)) {
3532 va
= !(pmsk
& 2) ? float64_zero
:
3533 extract(a
->VsrHF(2 * i
), excp_ptr
);
3534 vb
= !(pmsk
& 2) ? float64_zero
:
3535 extract(b
->VsrHF(2 * j
), excp_ptr
);
3536 vc
= !(pmsk
& 1) ? float64_zero
:
3537 extract(a
->VsrHF(2 * i
+ 1), excp_ptr
);
3538 vd
= !(pmsk
& 1) ? float64_zero
:
3539 extract(b
->VsrHF(2 * j
+ 1), excp_ptr
);
3540 psum
= float64_mul(va
, vb
, excp_ptr
);
3541 psum
= float64r32_muladd(vc
, vd
, psum
, 0, excp_ptr
);
3542 r
= float64_to_float32(psum
, excp_ptr
);
3544 aux_acc
= at
[i
].VsrSF(j
);
3549 aux_acc
= bfp32_neg(aux_acc
);
3551 r
= float32_add(r
, aux_acc
, excp_ptr
);
3555 at
[i
].VsrSF(j
) = float32_zero
;
3559 vsxger_excp(env
, GETPC());
3562 typedef void vsxger_zero(ppc_vsr_t
*at
, int, int);
3564 typedef void vsxger_muladd_f(ppc_vsr_t
*, ppc_vsr_t
*, ppc_vsr_t
*, int, int,
3565 int flags
, float_status
*s
);
3567 static void vsxger_muladd32(ppc_vsr_t
*at
, ppc_vsr_t
*a
, ppc_vsr_t
*b
, int i
,
3568 int j
, int flags
, float_status
*s
)
3570 at
[i
].VsrSF(j
) = float32_muladd(a
->VsrSF(i
), b
->VsrSF(j
),
3571 at
[i
].VsrSF(j
), flags
, s
);
3574 static void vsxger_mul32(ppc_vsr_t
*at
, ppc_vsr_t
*a
, ppc_vsr_t
*b
, int i
,
3575 int j
, int flags
, float_status
*s
)
3577 at
[i
].VsrSF(j
) = float32_mul(a
->VsrSF(i
), b
->VsrSF(j
), s
);
3580 static void vsxger_zero32(ppc_vsr_t
*at
, int i
, int j
)
3582 at
[i
].VsrSF(j
) = float32_zero
;
3585 static void vsxger_muladd64(ppc_vsr_t
*at
, ppc_vsr_t
*a
, ppc_vsr_t
*b
, int i
,
3586 int j
, int flags
, float_status
*s
)
3590 at
[i
].VsrDF(j
) = float64_muladd(a
[i
/ 2].VsrDF(i
% 2), b
->VsrDF(j
),
3591 at
[i
].VsrDF(j
), flags
, s
);
3595 static void vsxger_mul64(ppc_vsr_t
*at
, ppc_vsr_t
*a
, ppc_vsr_t
*b
, int i
,
3596 int j
, int flags
, float_status
*s
)
3600 at
[i
].VsrDF(j
) = float64_mul(a
[i
/ 2].VsrDF(i
% 2), b
->VsrDF(j
), s
);
3604 static void vsxger_zero64(ppc_vsr_t
*at
, int i
, int j
)
3608 at
[i
].VsrDF(j
) = float64_zero
;
3612 static void vsxger(CPUPPCState
*env
, ppc_vsr_t
*a
, ppc_vsr_t
*b
,
3613 ppc_acc_t
*at
, uint32_t mask
, bool acc
, bool neg_mul
,
3614 bool neg_acc
, vsxger_muladd_f mul
, vsxger_muladd_f muladd
,
3617 int i
, j
, xmsk_bit
, ymsk_bit
, op_flags
;
3618 uint8_t xmsk
= mask
& 0x0F;
3619 uint8_t ymsk
= (mask
>> 4) & 0x0F;
3620 float_status
*excp_ptr
= &env
->fp_status
;
3621 op_flags
= (neg_acc
^ neg_mul
) ? float_muladd_negate_c
: 0;
3622 op_flags
|= (neg_mul
) ? float_muladd_negate_result
: 0;
3623 helper_reset_fpstatus(env
);
3624 for (i
= 0, xmsk_bit
= 1 << 3; i
< 4; i
++, xmsk_bit
>>= 1) {
3625 for (j
= 0, ymsk_bit
= 1 << 3; j
< 4; j
++, ymsk_bit
>>= 1) {
3626 if ((xmsk_bit
& xmsk
) && (ymsk_bit
& ymsk
)) {
3628 muladd(at
, a
, b
, i
, j
, op_flags
, excp_ptr
);
3630 mul(at
, a
, b
, i
, j
, op_flags
, excp_ptr
);
3637 vsxger_excp(env
, GETPC());
3641 void helper_XVBF16GER2(CPUPPCState
*env
, ppc_vsr_t
*a
, ppc_vsr_t
*b
,
3642 ppc_acc_t
*at
, uint32_t mask
)
3644 vsxger16(env
, a
, b
, at
, mask
, false, false, false, extract_bf16
);
3648 void helper_XVBF16GER2PP(CPUPPCState
*env
, ppc_vsr_t
*a
, ppc_vsr_t
*b
,
3649 ppc_acc_t
*at
, uint32_t mask
)
3651 vsxger16(env
, a
, b
, at
, mask
, true, false, false, extract_bf16
);
3655 void helper_XVBF16GER2PN(CPUPPCState
*env
, ppc_vsr_t
*a
, ppc_vsr_t
*b
,
3656 ppc_acc_t
*at
, uint32_t mask
)
3658 vsxger16(env
, a
, b
, at
, mask
, true, false, true, extract_bf16
);
3662 void helper_XVBF16GER2NP(CPUPPCState
*env
, ppc_vsr_t
*a
, ppc_vsr_t
*b
,
3663 ppc_acc_t
*at
, uint32_t mask
)
3665 vsxger16(env
, a
, b
, at
, mask
, true, true, false, extract_bf16
);
3669 void helper_XVBF16GER2NN(CPUPPCState
*env
, ppc_vsr_t
*a
, ppc_vsr_t
*b
,
3670 ppc_acc_t
*at
, uint32_t mask
)
3672 vsxger16(env
, a
, b
, at
, mask
, true, true, true, extract_bf16
);
3676 void helper_XVF16GER2(CPUPPCState
*env
, ppc_vsr_t
*a
, ppc_vsr_t
*b
,
3677 ppc_acc_t
*at
, uint32_t mask
)
3679 vsxger16(env
, a
, b
, at
, mask
, false, false, false, extract_hf16
);
3683 void helper_XVF16GER2PP(CPUPPCState
*env
, ppc_vsr_t
*a
, ppc_vsr_t
*b
,
3684 ppc_acc_t
*at
, uint32_t mask
)
3686 vsxger16(env
, a
, b
, at
, mask
, true, false, false, extract_hf16
);
3690 void helper_XVF16GER2PN(CPUPPCState
*env
, ppc_vsr_t
*a
, ppc_vsr_t
*b
,
3691 ppc_acc_t
*at
, uint32_t mask
)
3693 vsxger16(env
, a
, b
, at
, mask
, true, false, true, extract_hf16
);
3697 void helper_XVF16GER2NP(CPUPPCState
*env
, ppc_vsr_t
*a
, ppc_vsr_t
*b
,
3698 ppc_acc_t
*at
, uint32_t mask
)
3700 vsxger16(env
, a
, b
, at
, mask
, true, true, false, extract_hf16
);
3704 void helper_XVF16GER2NN(CPUPPCState
*env
, ppc_vsr_t
*a
, ppc_vsr_t
*b
,
3705 ppc_acc_t
*at
, uint32_t mask
)
3707 vsxger16(env
, a
, b
, at
, mask
, true, true, true, extract_hf16
);
3711 void helper_XVF32GER(CPUPPCState
*env
, ppc_vsr_t
*a
, ppc_vsr_t
*b
,
3712 ppc_acc_t
*at
, uint32_t mask
)
3714 vsxger(env
, a
, b
, at
, mask
, false, false, false, vsxger_mul32
,
3715 vsxger_muladd32
, vsxger_zero32
);
3719 void helper_XVF32GERPP(CPUPPCState
*env
, ppc_vsr_t
*a
, ppc_vsr_t
*b
,
3720 ppc_acc_t
*at
, uint32_t mask
)
3722 vsxger(env
, a
, b
, at
, mask
, true, false, false, vsxger_mul32
,
3723 vsxger_muladd32
, vsxger_zero32
);
3727 void helper_XVF32GERPN(CPUPPCState
*env
, ppc_vsr_t
*a
, ppc_vsr_t
*b
,
3728 ppc_acc_t
*at
, uint32_t mask
)
3730 vsxger(env
, a
, b
, at
, mask
, true, false, true, vsxger_mul32
,
3731 vsxger_muladd32
, vsxger_zero32
);
3735 void helper_XVF32GERNP(CPUPPCState
*env
, ppc_vsr_t
*a
, ppc_vsr_t
*b
,
3736 ppc_acc_t
*at
, uint32_t mask
)
3738 vsxger(env
, a
, b
, at
, mask
, true, true, false, vsxger_mul32
,
3739 vsxger_muladd32
, vsxger_zero32
);
3743 void helper_XVF32GERNN(CPUPPCState
*env
, ppc_vsr_t
*a
, ppc_vsr_t
*b
,
3744 ppc_acc_t
*at
, uint32_t mask
)
3746 vsxger(env
, a
, b
, at
, mask
, true, true, true, vsxger_mul32
,
3747 vsxger_muladd32
, vsxger_zero32
);
3751 void helper_XVF64GER(CPUPPCState
*env
, ppc_vsr_t
*a
, ppc_vsr_t
*b
,
3752 ppc_acc_t
*at
, uint32_t mask
)
3754 vsxger(env
, a
, b
, at
, mask
, false, false, false, vsxger_mul64
,
3755 vsxger_muladd64
, vsxger_zero64
);
3759 void helper_XVF64GERPP(CPUPPCState
*env
, ppc_vsr_t
*a
, ppc_vsr_t
*b
,
3760 ppc_acc_t
*at
, uint32_t mask
)
3762 vsxger(env
, a
, b
, at
, mask
, true, false, false, vsxger_mul64
,
3763 vsxger_muladd64
, vsxger_zero64
);
3767 void helper_XVF64GERPN(CPUPPCState
*env
, ppc_vsr_t
*a
, ppc_vsr_t
*b
,
3768 ppc_acc_t
*at
, uint32_t mask
)
3770 vsxger(env
, a
, b
, at
, mask
, true, false, true, vsxger_mul64
,
3771 vsxger_muladd64
, vsxger_zero64
);
3775 void helper_XVF64GERNP(CPUPPCState
*env
, ppc_vsr_t
*a
, ppc_vsr_t
*b
,
3776 ppc_acc_t
*at
, uint32_t mask
)
3778 vsxger(env
, a
, b
, at
, mask
, true, true, false, vsxger_mul64
,
3779 vsxger_muladd64
, vsxger_zero64
);
3783 void helper_XVF64GERNN(CPUPPCState
*env
, ppc_vsr_t
*a
, ppc_vsr_t
*b
,
3784 ppc_acc_t
*at
, uint32_t mask
)
3786 vsxger(env
, a
, b
, at
, mask
, true, true, true, vsxger_mul64
,
3787 vsxger_muladd64
, vsxger_zero64
);