tests/migration: Print some debug on bad status
[qemu/kevin.git] / target / s390x / kvm.c
blob0c9d14b4b115de974e21af3f0f4768ff02d6f812
1 /*
2 * QEMU S390x KVM implementation
4 * Copyright (c) 2009 Alexander Graf <agraf@suse.de>
5 * Copyright IBM Corp. 2012
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, see <http://www.gnu.org/licenses/>.
21 #include "qemu/osdep.h"
22 #include <sys/ioctl.h>
24 #include <linux/kvm.h>
25 #include <asm/ptrace.h>
27 #include "qemu-common.h"
28 #include "cpu.h"
29 #include "internal.h"
30 #include "kvm_s390x.h"
31 #include "sysemu/kvm_int.h"
32 #include "qapi/error.h"
33 #include "qemu/error-report.h"
34 #include "qemu/timer.h"
35 #include "qemu/units.h"
36 #include "qemu/main-loop.h"
37 #include "qemu/mmap-alloc.h"
38 #include "qemu/log.h"
39 #include "sysemu/sysemu.h"
40 #include "sysemu/hw_accel.h"
41 #include "sysemu/runstate.h"
42 #include "sysemu/device_tree.h"
43 #include "exec/gdbstub.h"
44 #include "exec/ram_addr.h"
45 #include "trace.h"
46 #include "hw/s390x/s390-pci-inst.h"
47 #include "hw/s390x/s390-pci-bus.h"
48 #include "hw/s390x/ipl.h"
49 #include "hw/s390x/ebcdic.h"
50 #include "exec/memattrs.h"
51 #include "hw/s390x/s390-virtio-ccw.h"
52 #include "hw/s390x/s390-virtio-hcall.h"
54 #ifndef DEBUG_KVM
55 #define DEBUG_KVM 0
56 #endif
58 #define DPRINTF(fmt, ...) do { \
59 if (DEBUG_KVM) { \
60 fprintf(stderr, fmt, ## __VA_ARGS__); \
61 } \
62 } while (0)
64 #define kvm_vm_check_mem_attr(s, attr) \
65 kvm_vm_check_attr(s, KVM_S390_VM_MEM_CTRL, attr)
67 #define IPA0_DIAG 0x8300
68 #define IPA0_SIGP 0xae00
69 #define IPA0_B2 0xb200
70 #define IPA0_B9 0xb900
71 #define IPA0_EB 0xeb00
72 #define IPA0_E3 0xe300
74 #define PRIV_B2_SCLP_CALL 0x20
75 #define PRIV_B2_CSCH 0x30
76 #define PRIV_B2_HSCH 0x31
77 #define PRIV_B2_MSCH 0x32
78 #define PRIV_B2_SSCH 0x33
79 #define PRIV_B2_STSCH 0x34
80 #define PRIV_B2_TSCH 0x35
81 #define PRIV_B2_TPI 0x36
82 #define PRIV_B2_SAL 0x37
83 #define PRIV_B2_RSCH 0x38
84 #define PRIV_B2_STCRW 0x39
85 #define PRIV_B2_STCPS 0x3a
86 #define PRIV_B2_RCHP 0x3b
87 #define PRIV_B2_SCHM 0x3c
88 #define PRIV_B2_CHSC 0x5f
89 #define PRIV_B2_SIGA 0x74
90 #define PRIV_B2_XSCH 0x76
92 #define PRIV_EB_SQBS 0x8a
93 #define PRIV_EB_PCISTB 0xd0
94 #define PRIV_EB_SIC 0xd1
96 #define PRIV_B9_EQBS 0x9c
97 #define PRIV_B9_CLP 0xa0
98 #define PRIV_B9_PCISTG 0xd0
99 #define PRIV_B9_PCILG 0xd2
100 #define PRIV_B9_RPCIT 0xd3
102 #define PRIV_E3_MPCIFC 0xd0
103 #define PRIV_E3_STPCIFC 0xd4
105 #define DIAG_TIMEREVENT 0x288
106 #define DIAG_IPL 0x308
107 #define DIAG_KVM_HYPERCALL 0x500
108 #define DIAG_KVM_BREAKPOINT 0x501
110 #define ICPT_INSTRUCTION 0x04
111 #define ICPT_PROGRAM 0x08
112 #define ICPT_EXT_INT 0x14
113 #define ICPT_WAITPSW 0x1c
114 #define ICPT_SOFT_INTERCEPT 0x24
115 #define ICPT_CPU_STOP 0x28
116 #define ICPT_OPEREXC 0x2c
117 #define ICPT_IO 0x40
119 #define NR_LOCAL_IRQS 32
121 * Needs to be big enough to contain max_cpus emergency signals
122 * and in addition NR_LOCAL_IRQS interrupts
124 #define VCPU_IRQ_BUF_SIZE(max_cpus) (sizeof(struct kvm_s390_irq) * \
125 (max_cpus + NR_LOCAL_IRQS))
127 * KVM does only support memory slots up to KVM_MEM_MAX_NR_PAGES pages
128 * as the dirty bitmap must be managed by bitops that take an int as
129 * position indicator. This would end at an unaligned address
130 * (0x7fffff00000). As future variants might provide larger pages
131 * and to make all addresses properly aligned, let us split at 4TB.
133 #define KVM_SLOT_MAX_BYTES (4UL * TiB)
135 static CPUWatchpoint hw_watchpoint;
137 * We don't use a list because this structure is also used to transmit the
138 * hardware breakpoints to the kernel.
140 static struct kvm_hw_breakpoint *hw_breakpoints;
141 static int nb_hw_breakpoints;
143 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
144 KVM_CAP_LAST_INFO
147 static int cap_sync_regs;
148 static int cap_async_pf;
149 static int cap_mem_op;
150 static int cap_s390_irq;
151 static int cap_ri;
152 static int cap_gs;
153 static int cap_hpage_1m;
155 static int active_cmma;
157 static void *legacy_s390_alloc(size_t size, uint64_t *align, bool shared);
159 static int kvm_s390_query_mem_limit(uint64_t *memory_limit)
161 struct kvm_device_attr attr = {
162 .group = KVM_S390_VM_MEM_CTRL,
163 .attr = KVM_S390_VM_MEM_LIMIT_SIZE,
164 .addr = (uint64_t) memory_limit,
167 return kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
170 int kvm_s390_set_mem_limit(uint64_t new_limit, uint64_t *hw_limit)
172 int rc;
174 struct kvm_device_attr attr = {
175 .group = KVM_S390_VM_MEM_CTRL,
176 .attr = KVM_S390_VM_MEM_LIMIT_SIZE,
177 .addr = (uint64_t) &new_limit,
180 if (!kvm_vm_check_mem_attr(kvm_state, KVM_S390_VM_MEM_LIMIT_SIZE)) {
181 return 0;
184 rc = kvm_s390_query_mem_limit(hw_limit);
185 if (rc) {
186 return rc;
187 } else if (*hw_limit < new_limit) {
188 return -E2BIG;
191 return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
194 int kvm_s390_cmma_active(void)
196 return active_cmma;
199 static bool kvm_s390_cmma_available(void)
201 static bool initialized, value;
203 if (!initialized) {
204 initialized = true;
205 value = kvm_vm_check_mem_attr(kvm_state, KVM_S390_VM_MEM_ENABLE_CMMA) &&
206 kvm_vm_check_mem_attr(kvm_state, KVM_S390_VM_MEM_CLR_CMMA);
208 return value;
211 void kvm_s390_cmma_reset(void)
213 int rc;
214 struct kvm_device_attr attr = {
215 .group = KVM_S390_VM_MEM_CTRL,
216 .attr = KVM_S390_VM_MEM_CLR_CMMA,
219 if (!kvm_s390_cmma_active()) {
220 return;
223 rc = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
224 trace_kvm_clear_cmma(rc);
227 static void kvm_s390_enable_cmma(void)
229 int rc;
230 struct kvm_device_attr attr = {
231 .group = KVM_S390_VM_MEM_CTRL,
232 .attr = KVM_S390_VM_MEM_ENABLE_CMMA,
235 if (cap_hpage_1m) {
236 warn_report("CMM will not be enabled because it is not "
237 "compatible with huge memory backings.");
238 return;
240 rc = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
241 active_cmma = !rc;
242 trace_kvm_enable_cmma(rc);
245 static void kvm_s390_set_attr(uint64_t attr)
247 struct kvm_device_attr attribute = {
248 .group = KVM_S390_VM_CRYPTO,
249 .attr = attr,
252 int ret = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attribute);
254 if (ret) {
255 error_report("Failed to set crypto device attribute %lu: %s",
256 attr, strerror(-ret));
260 static void kvm_s390_init_aes_kw(void)
262 uint64_t attr = KVM_S390_VM_CRYPTO_DISABLE_AES_KW;
264 if (object_property_get_bool(OBJECT(qdev_get_machine()), "aes-key-wrap",
265 NULL)) {
266 attr = KVM_S390_VM_CRYPTO_ENABLE_AES_KW;
269 if (kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO, attr)) {
270 kvm_s390_set_attr(attr);
274 static void kvm_s390_init_dea_kw(void)
276 uint64_t attr = KVM_S390_VM_CRYPTO_DISABLE_DEA_KW;
278 if (object_property_get_bool(OBJECT(qdev_get_machine()), "dea-key-wrap",
279 NULL)) {
280 attr = KVM_S390_VM_CRYPTO_ENABLE_DEA_KW;
283 if (kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO, attr)) {
284 kvm_s390_set_attr(attr);
288 void kvm_s390_crypto_reset(void)
290 if (s390_has_feat(S390_FEAT_MSA_EXT_3)) {
291 kvm_s390_init_aes_kw();
292 kvm_s390_init_dea_kw();
296 void kvm_s390_set_max_pagesize(uint64_t pagesize, Error **errp)
298 if (pagesize == 4 * KiB) {
299 return;
302 if (!hpage_1m_allowed()) {
303 error_setg(errp, "This QEMU machine does not support huge page "
304 "mappings");
305 return;
308 if (pagesize != 1 * MiB) {
309 error_setg(errp, "Memory backing with 2G pages was specified, "
310 "but KVM does not support this memory backing");
311 return;
314 if (kvm_vm_enable_cap(kvm_state, KVM_CAP_S390_HPAGE_1M, 0)) {
315 error_setg(errp, "Memory backing with 1M pages was specified, "
316 "but KVM does not support this memory backing");
317 return;
320 cap_hpage_1m = 1;
323 static void ccw_machine_class_foreach(ObjectClass *oc, void *opaque)
325 MachineClass *mc = MACHINE_CLASS(oc);
327 mc->default_cpu_type = S390_CPU_TYPE_NAME("host");
330 int kvm_arch_init(MachineState *ms, KVMState *s)
332 object_class_foreach(ccw_machine_class_foreach, TYPE_S390_CCW_MACHINE,
333 false, NULL);
335 if (!kvm_check_extension(kvm_state, KVM_CAP_DEVICE_CTRL)) {
336 error_report("KVM is missing capability KVM_CAP_DEVICE_CTRL - "
337 "please use kernel 3.15 or newer");
338 return -1;
341 cap_sync_regs = kvm_check_extension(s, KVM_CAP_SYNC_REGS);
342 cap_async_pf = kvm_check_extension(s, KVM_CAP_ASYNC_PF);
343 cap_mem_op = kvm_check_extension(s, KVM_CAP_S390_MEM_OP);
344 cap_s390_irq = kvm_check_extension(s, KVM_CAP_S390_INJECT_IRQ);
346 if (!kvm_check_extension(s, KVM_CAP_S390_GMAP)
347 || !kvm_check_extension(s, KVM_CAP_S390_COW)) {
348 phys_mem_set_alloc(legacy_s390_alloc);
351 kvm_vm_enable_cap(s, KVM_CAP_S390_USER_SIGP, 0);
352 kvm_vm_enable_cap(s, KVM_CAP_S390_VECTOR_REGISTERS, 0);
353 kvm_vm_enable_cap(s, KVM_CAP_S390_USER_STSI, 0);
354 if (ri_allowed()) {
355 if (kvm_vm_enable_cap(s, KVM_CAP_S390_RI, 0) == 0) {
356 cap_ri = 1;
359 if (cpu_model_allowed()) {
360 if (kvm_vm_enable_cap(s, KVM_CAP_S390_GS, 0) == 0) {
361 cap_gs = 1;
366 * The migration interface for ais was introduced with kernel 4.13
367 * but the capability itself had been active since 4.12. As migration
368 * support is considered necessary let's disable ais in the 2.10
369 * machine.
371 /* kvm_vm_enable_cap(s, KVM_CAP_S390_AIS, 0); */
373 kvm_set_max_memslot_size(KVM_SLOT_MAX_BYTES);
374 return 0;
377 int kvm_arch_irqchip_create(MachineState *ms, KVMState *s)
379 return 0;
382 unsigned long kvm_arch_vcpu_id(CPUState *cpu)
384 return cpu->cpu_index;
387 int kvm_arch_init_vcpu(CPUState *cs)
389 unsigned int max_cpus = MACHINE(qdev_get_machine())->smp.max_cpus;
390 S390CPU *cpu = S390_CPU(cs);
391 kvm_s390_set_cpu_state(cpu, cpu->env.cpu_state);
392 cpu->irqstate = g_malloc0(VCPU_IRQ_BUF_SIZE(max_cpus));
393 return 0;
396 int kvm_arch_destroy_vcpu(CPUState *cs)
398 S390CPU *cpu = S390_CPU(cs);
400 g_free(cpu->irqstate);
401 cpu->irqstate = NULL;
403 return 0;
406 void kvm_s390_reset_vcpu(S390CPU *cpu)
408 CPUState *cs = CPU(cpu);
410 /* The initial reset call is needed here to reset in-kernel
411 * vcpu data that we can't access directly from QEMU
412 * (i.e. with older kernels which don't support sync_regs/ONE_REG).
413 * Before this ioctl cpu_synchronize_state() is called in common kvm
414 * code (kvm-all) */
415 if (kvm_vcpu_ioctl(cs, KVM_S390_INITIAL_RESET, NULL)) {
416 error_report("Initial CPU reset failed on CPU %i", cs->cpu_index);
420 static int can_sync_regs(CPUState *cs, int regs)
422 return cap_sync_regs && (cs->kvm_run->kvm_valid_regs & regs) == regs;
425 int kvm_arch_put_registers(CPUState *cs, int level)
427 S390CPU *cpu = S390_CPU(cs);
428 CPUS390XState *env = &cpu->env;
429 struct kvm_sregs sregs;
430 struct kvm_regs regs;
431 struct kvm_fpu fpu = {};
432 int r;
433 int i;
435 /* always save the PSW and the GPRS*/
436 cs->kvm_run->psw_addr = env->psw.addr;
437 cs->kvm_run->psw_mask = env->psw.mask;
439 if (can_sync_regs(cs, KVM_SYNC_GPRS)) {
440 for (i = 0; i < 16; i++) {
441 cs->kvm_run->s.regs.gprs[i] = env->regs[i];
442 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_GPRS;
444 } else {
445 for (i = 0; i < 16; i++) {
446 regs.gprs[i] = env->regs[i];
448 r = kvm_vcpu_ioctl(cs, KVM_SET_REGS, &regs);
449 if (r < 0) {
450 return r;
454 if (can_sync_regs(cs, KVM_SYNC_VRS)) {
455 for (i = 0; i < 32; i++) {
456 cs->kvm_run->s.regs.vrs[i][0] = env->vregs[i][0];
457 cs->kvm_run->s.regs.vrs[i][1] = env->vregs[i][1];
459 cs->kvm_run->s.regs.fpc = env->fpc;
460 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_VRS;
461 } else if (can_sync_regs(cs, KVM_SYNC_FPRS)) {
462 for (i = 0; i < 16; i++) {
463 cs->kvm_run->s.regs.fprs[i] = *get_freg(env, i);
465 cs->kvm_run->s.regs.fpc = env->fpc;
466 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_FPRS;
467 } else {
468 /* Floating point */
469 for (i = 0; i < 16; i++) {
470 fpu.fprs[i] = *get_freg(env, i);
472 fpu.fpc = env->fpc;
474 r = kvm_vcpu_ioctl(cs, KVM_SET_FPU, &fpu);
475 if (r < 0) {
476 return r;
480 /* Do we need to save more than that? */
481 if (level == KVM_PUT_RUNTIME_STATE) {
482 return 0;
485 if (can_sync_regs(cs, KVM_SYNC_ARCH0)) {
486 cs->kvm_run->s.regs.cputm = env->cputm;
487 cs->kvm_run->s.regs.ckc = env->ckc;
488 cs->kvm_run->s.regs.todpr = env->todpr;
489 cs->kvm_run->s.regs.gbea = env->gbea;
490 cs->kvm_run->s.regs.pp = env->pp;
491 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_ARCH0;
492 } else {
494 * These ONE_REGS are not protected by a capability. As they are only
495 * necessary for migration we just trace a possible error, but don't
496 * return with an error return code.
498 kvm_set_one_reg(cs, KVM_REG_S390_CPU_TIMER, &env->cputm);
499 kvm_set_one_reg(cs, KVM_REG_S390_CLOCK_COMP, &env->ckc);
500 kvm_set_one_reg(cs, KVM_REG_S390_TODPR, &env->todpr);
501 kvm_set_one_reg(cs, KVM_REG_S390_GBEA, &env->gbea);
502 kvm_set_one_reg(cs, KVM_REG_S390_PP, &env->pp);
505 if (can_sync_regs(cs, KVM_SYNC_RICCB)) {
506 memcpy(cs->kvm_run->s.regs.riccb, env->riccb, 64);
507 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_RICCB;
510 /* pfault parameters */
511 if (can_sync_regs(cs, KVM_SYNC_PFAULT)) {
512 cs->kvm_run->s.regs.pft = env->pfault_token;
513 cs->kvm_run->s.regs.pfs = env->pfault_select;
514 cs->kvm_run->s.regs.pfc = env->pfault_compare;
515 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_PFAULT;
516 } else if (cap_async_pf) {
517 r = kvm_set_one_reg(cs, KVM_REG_S390_PFTOKEN, &env->pfault_token);
518 if (r < 0) {
519 return r;
521 r = kvm_set_one_reg(cs, KVM_REG_S390_PFCOMPARE, &env->pfault_compare);
522 if (r < 0) {
523 return r;
525 r = kvm_set_one_reg(cs, KVM_REG_S390_PFSELECT, &env->pfault_select);
526 if (r < 0) {
527 return r;
531 /* access registers and control registers*/
532 if (can_sync_regs(cs, KVM_SYNC_ACRS | KVM_SYNC_CRS)) {
533 for (i = 0; i < 16; i++) {
534 cs->kvm_run->s.regs.acrs[i] = env->aregs[i];
535 cs->kvm_run->s.regs.crs[i] = env->cregs[i];
537 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_ACRS;
538 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_CRS;
539 } else {
540 for (i = 0; i < 16; i++) {
541 sregs.acrs[i] = env->aregs[i];
542 sregs.crs[i] = env->cregs[i];
544 r = kvm_vcpu_ioctl(cs, KVM_SET_SREGS, &sregs);
545 if (r < 0) {
546 return r;
550 if (can_sync_regs(cs, KVM_SYNC_GSCB)) {
551 memcpy(cs->kvm_run->s.regs.gscb, env->gscb, 32);
552 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_GSCB;
555 if (can_sync_regs(cs, KVM_SYNC_BPBC)) {
556 cs->kvm_run->s.regs.bpbc = env->bpbc;
557 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_BPBC;
560 if (can_sync_regs(cs, KVM_SYNC_ETOKEN)) {
561 cs->kvm_run->s.regs.etoken = env->etoken;
562 cs->kvm_run->s.regs.etoken_extension = env->etoken_extension;
563 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_ETOKEN;
566 /* Finally the prefix */
567 if (can_sync_regs(cs, KVM_SYNC_PREFIX)) {
568 cs->kvm_run->s.regs.prefix = env->psa;
569 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_PREFIX;
570 } else {
571 /* prefix is only supported via sync regs */
573 return 0;
576 int kvm_arch_get_registers(CPUState *cs)
578 S390CPU *cpu = S390_CPU(cs);
579 CPUS390XState *env = &cpu->env;
580 struct kvm_sregs sregs;
581 struct kvm_regs regs;
582 struct kvm_fpu fpu;
583 int i, r;
585 /* get the PSW */
586 env->psw.addr = cs->kvm_run->psw_addr;
587 env->psw.mask = cs->kvm_run->psw_mask;
589 /* the GPRS */
590 if (can_sync_regs(cs, KVM_SYNC_GPRS)) {
591 for (i = 0; i < 16; i++) {
592 env->regs[i] = cs->kvm_run->s.regs.gprs[i];
594 } else {
595 r = kvm_vcpu_ioctl(cs, KVM_GET_REGS, &regs);
596 if (r < 0) {
597 return r;
599 for (i = 0; i < 16; i++) {
600 env->regs[i] = regs.gprs[i];
604 /* The ACRS and CRS */
605 if (can_sync_regs(cs, KVM_SYNC_ACRS | KVM_SYNC_CRS)) {
606 for (i = 0; i < 16; i++) {
607 env->aregs[i] = cs->kvm_run->s.regs.acrs[i];
608 env->cregs[i] = cs->kvm_run->s.regs.crs[i];
610 } else {
611 r = kvm_vcpu_ioctl(cs, KVM_GET_SREGS, &sregs);
612 if (r < 0) {
613 return r;
615 for (i = 0; i < 16; i++) {
616 env->aregs[i] = sregs.acrs[i];
617 env->cregs[i] = sregs.crs[i];
621 /* Floating point and vector registers */
622 if (can_sync_regs(cs, KVM_SYNC_VRS)) {
623 for (i = 0; i < 32; i++) {
624 env->vregs[i][0] = cs->kvm_run->s.regs.vrs[i][0];
625 env->vregs[i][1] = cs->kvm_run->s.regs.vrs[i][1];
627 env->fpc = cs->kvm_run->s.regs.fpc;
628 } else if (can_sync_regs(cs, KVM_SYNC_FPRS)) {
629 for (i = 0; i < 16; i++) {
630 *get_freg(env, i) = cs->kvm_run->s.regs.fprs[i];
632 env->fpc = cs->kvm_run->s.regs.fpc;
633 } else {
634 r = kvm_vcpu_ioctl(cs, KVM_GET_FPU, &fpu);
635 if (r < 0) {
636 return r;
638 for (i = 0; i < 16; i++) {
639 *get_freg(env, i) = fpu.fprs[i];
641 env->fpc = fpu.fpc;
644 /* The prefix */
645 if (can_sync_regs(cs, KVM_SYNC_PREFIX)) {
646 env->psa = cs->kvm_run->s.regs.prefix;
649 if (can_sync_regs(cs, KVM_SYNC_ARCH0)) {
650 env->cputm = cs->kvm_run->s.regs.cputm;
651 env->ckc = cs->kvm_run->s.regs.ckc;
652 env->todpr = cs->kvm_run->s.regs.todpr;
653 env->gbea = cs->kvm_run->s.regs.gbea;
654 env->pp = cs->kvm_run->s.regs.pp;
655 } else {
657 * These ONE_REGS are not protected by a capability. As they are only
658 * necessary for migration we just trace a possible error, but don't
659 * return with an error return code.
661 kvm_get_one_reg(cs, KVM_REG_S390_CPU_TIMER, &env->cputm);
662 kvm_get_one_reg(cs, KVM_REG_S390_CLOCK_COMP, &env->ckc);
663 kvm_get_one_reg(cs, KVM_REG_S390_TODPR, &env->todpr);
664 kvm_get_one_reg(cs, KVM_REG_S390_GBEA, &env->gbea);
665 kvm_get_one_reg(cs, KVM_REG_S390_PP, &env->pp);
668 if (can_sync_regs(cs, KVM_SYNC_RICCB)) {
669 memcpy(env->riccb, cs->kvm_run->s.regs.riccb, 64);
672 if (can_sync_regs(cs, KVM_SYNC_GSCB)) {
673 memcpy(env->gscb, cs->kvm_run->s.regs.gscb, 32);
676 if (can_sync_regs(cs, KVM_SYNC_BPBC)) {
677 env->bpbc = cs->kvm_run->s.regs.bpbc;
680 if (can_sync_regs(cs, KVM_SYNC_ETOKEN)) {
681 env->etoken = cs->kvm_run->s.regs.etoken;
682 env->etoken_extension = cs->kvm_run->s.regs.etoken_extension;
685 /* pfault parameters */
686 if (can_sync_regs(cs, KVM_SYNC_PFAULT)) {
687 env->pfault_token = cs->kvm_run->s.regs.pft;
688 env->pfault_select = cs->kvm_run->s.regs.pfs;
689 env->pfault_compare = cs->kvm_run->s.regs.pfc;
690 } else if (cap_async_pf) {
691 r = kvm_get_one_reg(cs, KVM_REG_S390_PFTOKEN, &env->pfault_token);
692 if (r < 0) {
693 return r;
695 r = kvm_get_one_reg(cs, KVM_REG_S390_PFCOMPARE, &env->pfault_compare);
696 if (r < 0) {
697 return r;
699 r = kvm_get_one_reg(cs, KVM_REG_S390_PFSELECT, &env->pfault_select);
700 if (r < 0) {
701 return r;
705 return 0;
708 int kvm_s390_get_clock(uint8_t *tod_high, uint64_t *tod_low)
710 int r;
711 struct kvm_device_attr attr = {
712 .group = KVM_S390_VM_TOD,
713 .attr = KVM_S390_VM_TOD_LOW,
714 .addr = (uint64_t)tod_low,
717 r = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
718 if (r) {
719 return r;
722 attr.attr = KVM_S390_VM_TOD_HIGH;
723 attr.addr = (uint64_t)tod_high;
724 return kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
727 int kvm_s390_get_clock_ext(uint8_t *tod_high, uint64_t *tod_low)
729 int r;
730 struct kvm_s390_vm_tod_clock gtod;
731 struct kvm_device_attr attr = {
732 .group = KVM_S390_VM_TOD,
733 .attr = KVM_S390_VM_TOD_EXT,
734 .addr = (uint64_t)&gtod,
737 r = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
738 *tod_high = gtod.epoch_idx;
739 *tod_low = gtod.tod;
741 return r;
744 int kvm_s390_set_clock(uint8_t tod_high, uint64_t tod_low)
746 int r;
747 struct kvm_device_attr attr = {
748 .group = KVM_S390_VM_TOD,
749 .attr = KVM_S390_VM_TOD_LOW,
750 .addr = (uint64_t)&tod_low,
753 r = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
754 if (r) {
755 return r;
758 attr.attr = KVM_S390_VM_TOD_HIGH;
759 attr.addr = (uint64_t)&tod_high;
760 return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
763 int kvm_s390_set_clock_ext(uint8_t tod_high, uint64_t tod_low)
765 struct kvm_s390_vm_tod_clock gtod = {
766 .epoch_idx = tod_high,
767 .tod = tod_low,
769 struct kvm_device_attr attr = {
770 .group = KVM_S390_VM_TOD,
771 .attr = KVM_S390_VM_TOD_EXT,
772 .addr = (uint64_t)&gtod,
775 return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
779 * kvm_s390_mem_op:
780 * @addr: the logical start address in guest memory
781 * @ar: the access register number
782 * @hostbuf: buffer in host memory. NULL = do only checks w/o copying
783 * @len: length that should be transferred
784 * @is_write: true = write, false = read
785 * Returns: 0 on success, non-zero if an exception or error occurred
787 * Use KVM ioctl to read/write from/to guest memory. An access exception
788 * is injected into the vCPU in case of translation errors.
790 int kvm_s390_mem_op(S390CPU *cpu, vaddr addr, uint8_t ar, void *hostbuf,
791 int len, bool is_write)
793 struct kvm_s390_mem_op mem_op = {
794 .gaddr = addr,
795 .flags = KVM_S390_MEMOP_F_INJECT_EXCEPTION,
796 .size = len,
797 .op = is_write ? KVM_S390_MEMOP_LOGICAL_WRITE
798 : KVM_S390_MEMOP_LOGICAL_READ,
799 .buf = (uint64_t)hostbuf,
800 .ar = ar,
802 int ret;
804 if (!cap_mem_op) {
805 return -ENOSYS;
807 if (!hostbuf) {
808 mem_op.flags |= KVM_S390_MEMOP_F_CHECK_ONLY;
811 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_S390_MEM_OP, &mem_op);
812 if (ret < 0) {
813 warn_report("KVM_S390_MEM_OP failed: %s", strerror(-ret));
815 return ret;
819 * Legacy layout for s390:
820 * Older S390 KVM requires the topmost vma of the RAM to be
821 * smaller than an system defined value, which is at least 256GB.
822 * Larger systems have larger values. We put the guest between
823 * the end of data segment (system break) and this value. We
824 * use 32GB as a base to have enough room for the system break
825 * to grow. We also have to use MAP parameters that avoid
826 * read-only mapping of guest pages.
828 static void *legacy_s390_alloc(size_t size, uint64_t *align, bool shared)
830 static void *mem;
832 if (mem) {
833 /* we only support one allocation, which is enough for initial ram */
834 return NULL;
837 mem = mmap((void *) 0x800000000ULL, size,
838 PROT_EXEC|PROT_READ|PROT_WRITE,
839 MAP_SHARED | MAP_ANONYMOUS | MAP_FIXED, -1, 0);
840 if (mem == MAP_FAILED) {
841 mem = NULL;
843 if (mem && align) {
844 *align = QEMU_VMALLOC_ALIGN;
846 return mem;
849 static uint8_t const *sw_bp_inst;
850 static uint8_t sw_bp_ilen;
852 static void determine_sw_breakpoint_instr(void)
854 /* DIAG 501 is used for sw breakpoints with old kernels */
855 static const uint8_t diag_501[] = {0x83, 0x24, 0x05, 0x01};
856 /* Instruction 0x0000 is used for sw breakpoints with recent kernels */
857 static const uint8_t instr_0x0000[] = {0x00, 0x00};
859 if (sw_bp_inst) {
860 return;
862 if (kvm_vm_enable_cap(kvm_state, KVM_CAP_S390_USER_INSTR0, 0)) {
863 sw_bp_inst = diag_501;
864 sw_bp_ilen = sizeof(diag_501);
865 DPRINTF("KVM: will use 4-byte sw breakpoints.\n");
866 } else {
867 sw_bp_inst = instr_0x0000;
868 sw_bp_ilen = sizeof(instr_0x0000);
869 DPRINTF("KVM: will use 2-byte sw breakpoints.\n");
873 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
875 determine_sw_breakpoint_instr();
877 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn,
878 sw_bp_ilen, 0) ||
879 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)sw_bp_inst, sw_bp_ilen, 1)) {
880 return -EINVAL;
882 return 0;
885 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
887 uint8_t t[MAX_ILEN];
889 if (cpu_memory_rw_debug(cs, bp->pc, t, sw_bp_ilen, 0)) {
890 return -EINVAL;
891 } else if (memcmp(t, sw_bp_inst, sw_bp_ilen)) {
892 return -EINVAL;
893 } else if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn,
894 sw_bp_ilen, 1)) {
895 return -EINVAL;
898 return 0;
901 static struct kvm_hw_breakpoint *find_hw_breakpoint(target_ulong addr,
902 int len, int type)
904 int n;
906 for (n = 0; n < nb_hw_breakpoints; n++) {
907 if (hw_breakpoints[n].addr == addr && hw_breakpoints[n].type == type &&
908 (hw_breakpoints[n].len == len || len == -1)) {
909 return &hw_breakpoints[n];
913 return NULL;
916 static int insert_hw_breakpoint(target_ulong addr, int len, int type)
918 int size;
920 if (find_hw_breakpoint(addr, len, type)) {
921 return -EEXIST;
924 size = (nb_hw_breakpoints + 1) * sizeof(struct kvm_hw_breakpoint);
926 if (!hw_breakpoints) {
927 nb_hw_breakpoints = 0;
928 hw_breakpoints = (struct kvm_hw_breakpoint *)g_try_malloc(size);
929 } else {
930 hw_breakpoints =
931 (struct kvm_hw_breakpoint *)g_try_realloc(hw_breakpoints, size);
934 if (!hw_breakpoints) {
935 nb_hw_breakpoints = 0;
936 return -ENOMEM;
939 hw_breakpoints[nb_hw_breakpoints].addr = addr;
940 hw_breakpoints[nb_hw_breakpoints].len = len;
941 hw_breakpoints[nb_hw_breakpoints].type = type;
943 nb_hw_breakpoints++;
945 return 0;
948 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
949 target_ulong len, int type)
951 switch (type) {
952 case GDB_BREAKPOINT_HW:
953 type = KVM_HW_BP;
954 break;
955 case GDB_WATCHPOINT_WRITE:
956 if (len < 1) {
957 return -EINVAL;
959 type = KVM_HW_WP_WRITE;
960 break;
961 default:
962 return -ENOSYS;
964 return insert_hw_breakpoint(addr, len, type);
967 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
968 target_ulong len, int type)
970 int size;
971 struct kvm_hw_breakpoint *bp = find_hw_breakpoint(addr, len, type);
973 if (bp == NULL) {
974 return -ENOENT;
977 nb_hw_breakpoints--;
978 if (nb_hw_breakpoints > 0) {
980 * In order to trim the array, move the last element to the position to
981 * be removed - if necessary.
983 if (bp != &hw_breakpoints[nb_hw_breakpoints]) {
984 *bp = hw_breakpoints[nb_hw_breakpoints];
986 size = nb_hw_breakpoints * sizeof(struct kvm_hw_breakpoint);
987 hw_breakpoints =
988 (struct kvm_hw_breakpoint *)g_realloc(hw_breakpoints, size);
989 } else {
990 g_free(hw_breakpoints);
991 hw_breakpoints = NULL;
994 return 0;
997 void kvm_arch_remove_all_hw_breakpoints(void)
999 nb_hw_breakpoints = 0;
1000 g_free(hw_breakpoints);
1001 hw_breakpoints = NULL;
1004 void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg)
1006 int i;
1008 if (nb_hw_breakpoints > 0) {
1009 dbg->arch.nr_hw_bp = nb_hw_breakpoints;
1010 dbg->arch.hw_bp = hw_breakpoints;
1012 for (i = 0; i < nb_hw_breakpoints; ++i) {
1013 hw_breakpoints[i].phys_addr = s390_cpu_get_phys_addr_debug(cpu,
1014 hw_breakpoints[i].addr);
1016 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
1017 } else {
1018 dbg->arch.nr_hw_bp = 0;
1019 dbg->arch.hw_bp = NULL;
1023 void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run)
1027 MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run)
1029 return MEMTXATTRS_UNSPECIFIED;
1032 int kvm_arch_process_async_events(CPUState *cs)
1034 return cs->halted;
1037 static int s390_kvm_irq_to_interrupt(struct kvm_s390_irq *irq,
1038 struct kvm_s390_interrupt *interrupt)
1040 int r = 0;
1042 interrupt->type = irq->type;
1043 switch (irq->type) {
1044 case KVM_S390_INT_VIRTIO:
1045 interrupt->parm = irq->u.ext.ext_params;
1046 /* fall through */
1047 case KVM_S390_INT_PFAULT_INIT:
1048 case KVM_S390_INT_PFAULT_DONE:
1049 interrupt->parm64 = irq->u.ext.ext_params2;
1050 break;
1051 case KVM_S390_PROGRAM_INT:
1052 interrupt->parm = irq->u.pgm.code;
1053 break;
1054 case KVM_S390_SIGP_SET_PREFIX:
1055 interrupt->parm = irq->u.prefix.address;
1056 break;
1057 case KVM_S390_INT_SERVICE:
1058 interrupt->parm = irq->u.ext.ext_params;
1059 break;
1060 case KVM_S390_MCHK:
1061 interrupt->parm = irq->u.mchk.cr14;
1062 interrupt->parm64 = irq->u.mchk.mcic;
1063 break;
1064 case KVM_S390_INT_EXTERNAL_CALL:
1065 interrupt->parm = irq->u.extcall.code;
1066 break;
1067 case KVM_S390_INT_EMERGENCY:
1068 interrupt->parm = irq->u.emerg.code;
1069 break;
1070 case KVM_S390_SIGP_STOP:
1071 case KVM_S390_RESTART:
1072 break; /* These types have no parameters */
1073 case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
1074 interrupt->parm = irq->u.io.subchannel_id << 16;
1075 interrupt->parm |= irq->u.io.subchannel_nr;
1076 interrupt->parm64 = (uint64_t)irq->u.io.io_int_parm << 32;
1077 interrupt->parm64 |= irq->u.io.io_int_word;
1078 break;
1079 default:
1080 r = -EINVAL;
1081 break;
1083 return r;
1086 static void inject_vcpu_irq_legacy(CPUState *cs, struct kvm_s390_irq *irq)
1088 struct kvm_s390_interrupt kvmint = {};
1089 int r;
1091 r = s390_kvm_irq_to_interrupt(irq, &kvmint);
1092 if (r < 0) {
1093 fprintf(stderr, "%s called with bogus interrupt\n", __func__);
1094 exit(1);
1097 r = kvm_vcpu_ioctl(cs, KVM_S390_INTERRUPT, &kvmint);
1098 if (r < 0) {
1099 fprintf(stderr, "KVM failed to inject interrupt\n");
1100 exit(1);
1104 void kvm_s390_vcpu_interrupt(S390CPU *cpu, struct kvm_s390_irq *irq)
1106 CPUState *cs = CPU(cpu);
1107 int r;
1109 if (cap_s390_irq) {
1110 r = kvm_vcpu_ioctl(cs, KVM_S390_IRQ, irq);
1111 if (!r) {
1112 return;
1114 error_report("KVM failed to inject interrupt %llx", irq->type);
1115 exit(1);
1118 inject_vcpu_irq_legacy(cs, irq);
1121 void kvm_s390_floating_interrupt_legacy(struct kvm_s390_irq *irq)
1123 struct kvm_s390_interrupt kvmint = {};
1124 int r;
1126 r = s390_kvm_irq_to_interrupt(irq, &kvmint);
1127 if (r < 0) {
1128 fprintf(stderr, "%s called with bogus interrupt\n", __func__);
1129 exit(1);
1132 r = kvm_vm_ioctl(kvm_state, KVM_S390_INTERRUPT, &kvmint);
1133 if (r < 0) {
1134 fprintf(stderr, "KVM failed to inject interrupt\n");
1135 exit(1);
1139 void kvm_s390_program_interrupt(S390CPU *cpu, uint16_t code)
1141 struct kvm_s390_irq irq = {
1142 .type = KVM_S390_PROGRAM_INT,
1143 .u.pgm.code = code,
1145 qemu_log_mask(CPU_LOG_INT, "program interrupt at %#" PRIx64 "\n",
1146 cpu->env.psw.addr);
1147 kvm_s390_vcpu_interrupt(cpu, &irq);
1150 void kvm_s390_access_exception(S390CPU *cpu, uint16_t code, uint64_t te_code)
1152 struct kvm_s390_irq irq = {
1153 .type = KVM_S390_PROGRAM_INT,
1154 .u.pgm.code = code,
1155 .u.pgm.trans_exc_code = te_code,
1156 .u.pgm.exc_access_id = te_code & 3,
1159 kvm_s390_vcpu_interrupt(cpu, &irq);
1162 static int kvm_sclp_service_call(S390CPU *cpu, struct kvm_run *run,
1163 uint16_t ipbh0)
1165 CPUS390XState *env = &cpu->env;
1166 uint64_t sccb;
1167 uint32_t code;
1168 int r = 0;
1170 sccb = env->regs[ipbh0 & 0xf];
1171 code = env->regs[(ipbh0 & 0xf0) >> 4];
1173 r = sclp_service_call(env, sccb, code);
1174 if (r < 0) {
1175 kvm_s390_program_interrupt(cpu, -r);
1176 } else {
1177 setcc(cpu, r);
1180 return 0;
1183 static int handle_b2(S390CPU *cpu, struct kvm_run *run, uint8_t ipa1)
1185 CPUS390XState *env = &cpu->env;
1186 int rc = 0;
1187 uint16_t ipbh0 = (run->s390_sieic.ipb & 0xffff0000) >> 16;
1189 switch (ipa1) {
1190 case PRIV_B2_XSCH:
1191 ioinst_handle_xsch(cpu, env->regs[1], RA_IGNORED);
1192 break;
1193 case PRIV_B2_CSCH:
1194 ioinst_handle_csch(cpu, env->regs[1], RA_IGNORED);
1195 break;
1196 case PRIV_B2_HSCH:
1197 ioinst_handle_hsch(cpu, env->regs[1], RA_IGNORED);
1198 break;
1199 case PRIV_B2_MSCH:
1200 ioinst_handle_msch(cpu, env->regs[1], run->s390_sieic.ipb, RA_IGNORED);
1201 break;
1202 case PRIV_B2_SSCH:
1203 ioinst_handle_ssch(cpu, env->regs[1], run->s390_sieic.ipb, RA_IGNORED);
1204 break;
1205 case PRIV_B2_STCRW:
1206 ioinst_handle_stcrw(cpu, run->s390_sieic.ipb, RA_IGNORED);
1207 break;
1208 case PRIV_B2_STSCH:
1209 ioinst_handle_stsch(cpu, env->regs[1], run->s390_sieic.ipb, RA_IGNORED);
1210 break;
1211 case PRIV_B2_TSCH:
1212 /* We should only get tsch via KVM_EXIT_S390_TSCH. */
1213 fprintf(stderr, "Spurious tsch intercept\n");
1214 break;
1215 case PRIV_B2_CHSC:
1216 ioinst_handle_chsc(cpu, run->s390_sieic.ipb, RA_IGNORED);
1217 break;
1218 case PRIV_B2_TPI:
1219 /* This should have been handled by kvm already. */
1220 fprintf(stderr, "Spurious tpi intercept\n");
1221 break;
1222 case PRIV_B2_SCHM:
1223 ioinst_handle_schm(cpu, env->regs[1], env->regs[2],
1224 run->s390_sieic.ipb, RA_IGNORED);
1225 break;
1226 case PRIV_B2_RSCH:
1227 ioinst_handle_rsch(cpu, env->regs[1], RA_IGNORED);
1228 break;
1229 case PRIV_B2_RCHP:
1230 ioinst_handle_rchp(cpu, env->regs[1], RA_IGNORED);
1231 break;
1232 case PRIV_B2_STCPS:
1233 /* We do not provide this instruction, it is suppressed. */
1234 break;
1235 case PRIV_B2_SAL:
1236 ioinst_handle_sal(cpu, env->regs[1], RA_IGNORED);
1237 break;
1238 case PRIV_B2_SIGA:
1239 /* Not provided, set CC = 3 for subchannel not operational */
1240 setcc(cpu, 3);
1241 break;
1242 case PRIV_B2_SCLP_CALL:
1243 rc = kvm_sclp_service_call(cpu, run, ipbh0);
1244 break;
1245 default:
1246 rc = -1;
1247 DPRINTF("KVM: unhandled PRIV: 0xb2%x\n", ipa1);
1248 break;
1251 return rc;
1254 static uint64_t get_base_disp_rxy(S390CPU *cpu, struct kvm_run *run,
1255 uint8_t *ar)
1257 CPUS390XState *env = &cpu->env;
1258 uint32_t x2 = (run->s390_sieic.ipa & 0x000f);
1259 uint32_t base2 = run->s390_sieic.ipb >> 28;
1260 uint32_t disp2 = ((run->s390_sieic.ipb & 0x0fff0000) >> 16) +
1261 ((run->s390_sieic.ipb & 0xff00) << 4);
1263 if (disp2 & 0x80000) {
1264 disp2 += 0xfff00000;
1266 if (ar) {
1267 *ar = base2;
1270 return (base2 ? env->regs[base2] : 0) +
1271 (x2 ? env->regs[x2] : 0) + (long)(int)disp2;
1274 static uint64_t get_base_disp_rsy(S390CPU *cpu, struct kvm_run *run,
1275 uint8_t *ar)
1277 CPUS390XState *env = &cpu->env;
1278 uint32_t base2 = run->s390_sieic.ipb >> 28;
1279 uint32_t disp2 = ((run->s390_sieic.ipb & 0x0fff0000) >> 16) +
1280 ((run->s390_sieic.ipb & 0xff00) << 4);
1282 if (disp2 & 0x80000) {
1283 disp2 += 0xfff00000;
1285 if (ar) {
1286 *ar = base2;
1289 return (base2 ? env->regs[base2] : 0) + (long)(int)disp2;
1292 static int kvm_clp_service_call(S390CPU *cpu, struct kvm_run *run)
1294 uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16;
1296 if (s390_has_feat(S390_FEAT_ZPCI)) {
1297 return clp_service_call(cpu, r2, RA_IGNORED);
1298 } else {
1299 return -1;
1303 static int kvm_pcilg_service_call(S390CPU *cpu, struct kvm_run *run)
1305 uint8_t r1 = (run->s390_sieic.ipb & 0x00f00000) >> 20;
1306 uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16;
1308 if (s390_has_feat(S390_FEAT_ZPCI)) {
1309 return pcilg_service_call(cpu, r1, r2, RA_IGNORED);
1310 } else {
1311 return -1;
1315 static int kvm_pcistg_service_call(S390CPU *cpu, struct kvm_run *run)
1317 uint8_t r1 = (run->s390_sieic.ipb & 0x00f00000) >> 20;
1318 uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16;
1320 if (s390_has_feat(S390_FEAT_ZPCI)) {
1321 return pcistg_service_call(cpu, r1, r2, RA_IGNORED);
1322 } else {
1323 return -1;
1327 static int kvm_stpcifc_service_call(S390CPU *cpu, struct kvm_run *run)
1329 uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1330 uint64_t fiba;
1331 uint8_t ar;
1333 if (s390_has_feat(S390_FEAT_ZPCI)) {
1334 fiba = get_base_disp_rxy(cpu, run, &ar);
1336 return stpcifc_service_call(cpu, r1, fiba, ar, RA_IGNORED);
1337 } else {
1338 return -1;
1342 static int kvm_sic_service_call(S390CPU *cpu, struct kvm_run *run)
1344 CPUS390XState *env = &cpu->env;
1345 uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1346 uint8_t r3 = run->s390_sieic.ipa & 0x000f;
1347 uint8_t isc;
1348 uint16_t mode;
1349 int r;
1351 mode = env->regs[r1] & 0xffff;
1352 isc = (env->regs[r3] >> 27) & 0x7;
1353 r = css_do_sic(env, isc, mode);
1354 if (r) {
1355 kvm_s390_program_interrupt(cpu, -r);
1358 return 0;
1361 static int kvm_rpcit_service_call(S390CPU *cpu, struct kvm_run *run)
1363 uint8_t r1 = (run->s390_sieic.ipb & 0x00f00000) >> 20;
1364 uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16;
1366 if (s390_has_feat(S390_FEAT_ZPCI)) {
1367 return rpcit_service_call(cpu, r1, r2, RA_IGNORED);
1368 } else {
1369 return -1;
1373 static int kvm_pcistb_service_call(S390CPU *cpu, struct kvm_run *run)
1375 uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1376 uint8_t r3 = run->s390_sieic.ipa & 0x000f;
1377 uint64_t gaddr;
1378 uint8_t ar;
1380 if (s390_has_feat(S390_FEAT_ZPCI)) {
1381 gaddr = get_base_disp_rsy(cpu, run, &ar);
1383 return pcistb_service_call(cpu, r1, r3, gaddr, ar, RA_IGNORED);
1384 } else {
1385 return -1;
1389 static int kvm_mpcifc_service_call(S390CPU *cpu, struct kvm_run *run)
1391 uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1392 uint64_t fiba;
1393 uint8_t ar;
1395 if (s390_has_feat(S390_FEAT_ZPCI)) {
1396 fiba = get_base_disp_rxy(cpu, run, &ar);
1398 return mpcifc_service_call(cpu, r1, fiba, ar, RA_IGNORED);
1399 } else {
1400 return -1;
1404 static int handle_b9(S390CPU *cpu, struct kvm_run *run, uint8_t ipa1)
1406 int r = 0;
1408 switch (ipa1) {
1409 case PRIV_B9_CLP:
1410 r = kvm_clp_service_call(cpu, run);
1411 break;
1412 case PRIV_B9_PCISTG:
1413 r = kvm_pcistg_service_call(cpu, run);
1414 break;
1415 case PRIV_B9_PCILG:
1416 r = kvm_pcilg_service_call(cpu, run);
1417 break;
1418 case PRIV_B9_RPCIT:
1419 r = kvm_rpcit_service_call(cpu, run);
1420 break;
1421 case PRIV_B9_EQBS:
1422 /* just inject exception */
1423 r = -1;
1424 break;
1425 default:
1426 r = -1;
1427 DPRINTF("KVM: unhandled PRIV: 0xb9%x\n", ipa1);
1428 break;
1431 return r;
1434 static int handle_eb(S390CPU *cpu, struct kvm_run *run, uint8_t ipbl)
1436 int r = 0;
1438 switch (ipbl) {
1439 case PRIV_EB_PCISTB:
1440 r = kvm_pcistb_service_call(cpu, run);
1441 break;
1442 case PRIV_EB_SIC:
1443 r = kvm_sic_service_call(cpu, run);
1444 break;
1445 case PRIV_EB_SQBS:
1446 /* just inject exception */
1447 r = -1;
1448 break;
1449 default:
1450 r = -1;
1451 DPRINTF("KVM: unhandled PRIV: 0xeb%x\n", ipbl);
1452 break;
1455 return r;
1458 static int handle_e3(S390CPU *cpu, struct kvm_run *run, uint8_t ipbl)
1460 int r = 0;
1462 switch (ipbl) {
1463 case PRIV_E3_MPCIFC:
1464 r = kvm_mpcifc_service_call(cpu, run);
1465 break;
1466 case PRIV_E3_STPCIFC:
1467 r = kvm_stpcifc_service_call(cpu, run);
1468 break;
1469 default:
1470 r = -1;
1471 DPRINTF("KVM: unhandled PRIV: 0xe3%x\n", ipbl);
1472 break;
1475 return r;
1478 static int handle_hypercall(S390CPU *cpu, struct kvm_run *run)
1480 CPUS390XState *env = &cpu->env;
1481 int ret;
1483 ret = s390_virtio_hypercall(env);
1484 if (ret == -EINVAL) {
1485 kvm_s390_program_interrupt(cpu, PGM_SPECIFICATION);
1486 return 0;
1489 return ret;
1492 static void kvm_handle_diag_288(S390CPU *cpu, struct kvm_run *run)
1494 uint64_t r1, r3;
1495 int rc;
1497 r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1498 r3 = run->s390_sieic.ipa & 0x000f;
1499 rc = handle_diag_288(&cpu->env, r1, r3);
1500 if (rc) {
1501 kvm_s390_program_interrupt(cpu, PGM_SPECIFICATION);
1505 static void kvm_handle_diag_308(S390CPU *cpu, struct kvm_run *run)
1507 uint64_t r1, r3;
1509 r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1510 r3 = run->s390_sieic.ipa & 0x000f;
1511 handle_diag_308(&cpu->env, r1, r3, RA_IGNORED);
1514 static int handle_sw_breakpoint(S390CPU *cpu, struct kvm_run *run)
1516 CPUS390XState *env = &cpu->env;
1517 unsigned long pc;
1519 pc = env->psw.addr - sw_bp_ilen;
1520 if (kvm_find_sw_breakpoint(CPU(cpu), pc)) {
1521 env->psw.addr = pc;
1522 return EXCP_DEBUG;
1525 return -ENOENT;
1528 #define DIAG_KVM_CODE_MASK 0x000000000000ffff
1530 static int handle_diag(S390CPU *cpu, struct kvm_run *run, uint32_t ipb)
1532 int r = 0;
1533 uint16_t func_code;
1536 * For any diagnose call we support, bits 48-63 of the resulting
1537 * address specify the function code; the remainder is ignored.
1539 func_code = decode_basedisp_rs(&cpu->env, ipb, NULL) & DIAG_KVM_CODE_MASK;
1540 switch (func_code) {
1541 case DIAG_TIMEREVENT:
1542 kvm_handle_diag_288(cpu, run);
1543 break;
1544 case DIAG_IPL:
1545 kvm_handle_diag_308(cpu, run);
1546 break;
1547 case DIAG_KVM_HYPERCALL:
1548 r = handle_hypercall(cpu, run);
1549 break;
1550 case DIAG_KVM_BREAKPOINT:
1551 r = handle_sw_breakpoint(cpu, run);
1552 break;
1553 default:
1554 DPRINTF("KVM: unknown DIAG: 0x%x\n", func_code);
1555 kvm_s390_program_interrupt(cpu, PGM_SPECIFICATION);
1556 break;
1559 return r;
1562 static int kvm_s390_handle_sigp(S390CPU *cpu, uint8_t ipa1, uint32_t ipb)
1564 CPUS390XState *env = &cpu->env;
1565 const uint8_t r1 = ipa1 >> 4;
1566 const uint8_t r3 = ipa1 & 0x0f;
1567 int ret;
1568 uint8_t order;
1570 /* get order code */
1571 order = decode_basedisp_rs(env, ipb, NULL) & SIGP_ORDER_MASK;
1573 ret = handle_sigp(env, order, r1, r3);
1574 setcc(cpu, ret);
1575 return 0;
1578 static int handle_instruction(S390CPU *cpu, struct kvm_run *run)
1580 unsigned int ipa0 = (run->s390_sieic.ipa & 0xff00);
1581 uint8_t ipa1 = run->s390_sieic.ipa & 0x00ff;
1582 int r = -1;
1584 DPRINTF("handle_instruction 0x%x 0x%x\n",
1585 run->s390_sieic.ipa, run->s390_sieic.ipb);
1586 switch (ipa0) {
1587 case IPA0_B2:
1588 r = handle_b2(cpu, run, ipa1);
1589 break;
1590 case IPA0_B9:
1591 r = handle_b9(cpu, run, ipa1);
1592 break;
1593 case IPA0_EB:
1594 r = handle_eb(cpu, run, run->s390_sieic.ipb & 0xff);
1595 break;
1596 case IPA0_E3:
1597 r = handle_e3(cpu, run, run->s390_sieic.ipb & 0xff);
1598 break;
1599 case IPA0_DIAG:
1600 r = handle_diag(cpu, run, run->s390_sieic.ipb);
1601 break;
1602 case IPA0_SIGP:
1603 r = kvm_s390_handle_sigp(cpu, ipa1, run->s390_sieic.ipb);
1604 break;
1607 if (r < 0) {
1608 r = 0;
1609 kvm_s390_program_interrupt(cpu, PGM_OPERATION);
1612 return r;
1615 static void unmanageable_intercept(S390CPU *cpu, S390CrashReason reason,
1616 int pswoffset)
1618 CPUState *cs = CPU(cpu);
1620 s390_cpu_halt(cpu);
1621 cpu->env.crash_reason = reason;
1622 qemu_system_guest_panicked(cpu_get_crash_info(cs));
1625 /* try to detect pgm check loops */
1626 static int handle_oper_loop(S390CPU *cpu, struct kvm_run *run)
1628 CPUState *cs = CPU(cpu);
1629 PSW oldpsw, newpsw;
1631 newpsw.mask = ldq_phys(cs->as, cpu->env.psa +
1632 offsetof(LowCore, program_new_psw));
1633 newpsw.addr = ldq_phys(cs->as, cpu->env.psa +
1634 offsetof(LowCore, program_new_psw) + 8);
1635 oldpsw.mask = run->psw_mask;
1636 oldpsw.addr = run->psw_addr;
1638 * Avoid endless loops of operation exceptions, if the pgm new
1639 * PSW will cause a new operation exception.
1640 * The heuristic checks if the pgm new psw is within 6 bytes before
1641 * the faulting psw address (with same DAT, AS settings) and the
1642 * new psw is not a wait psw and the fault was not triggered by
1643 * problem state. In that case go into crashed state.
1646 if (oldpsw.addr - newpsw.addr <= 6 &&
1647 !(newpsw.mask & PSW_MASK_WAIT) &&
1648 !(oldpsw.mask & PSW_MASK_PSTATE) &&
1649 (newpsw.mask & PSW_MASK_ASC) == (oldpsw.mask & PSW_MASK_ASC) &&
1650 (newpsw.mask & PSW_MASK_DAT) == (oldpsw.mask & PSW_MASK_DAT)) {
1651 unmanageable_intercept(cpu, S390_CRASH_REASON_OPINT_LOOP,
1652 offsetof(LowCore, program_new_psw));
1653 return EXCP_HALTED;
1655 return 0;
1658 static int handle_intercept(S390CPU *cpu)
1660 CPUState *cs = CPU(cpu);
1661 struct kvm_run *run = cs->kvm_run;
1662 int icpt_code = run->s390_sieic.icptcode;
1663 int r = 0;
1665 DPRINTF("intercept: 0x%x (at 0x%lx)\n", icpt_code,
1666 (long)cs->kvm_run->psw_addr);
1667 switch (icpt_code) {
1668 case ICPT_INSTRUCTION:
1669 r = handle_instruction(cpu, run);
1670 break;
1671 case ICPT_PROGRAM:
1672 unmanageable_intercept(cpu, S390_CRASH_REASON_PGMINT_LOOP,
1673 offsetof(LowCore, program_new_psw));
1674 r = EXCP_HALTED;
1675 break;
1676 case ICPT_EXT_INT:
1677 unmanageable_intercept(cpu, S390_CRASH_REASON_EXTINT_LOOP,
1678 offsetof(LowCore, external_new_psw));
1679 r = EXCP_HALTED;
1680 break;
1681 case ICPT_WAITPSW:
1682 /* disabled wait, since enabled wait is handled in kernel */
1683 s390_handle_wait(cpu);
1684 r = EXCP_HALTED;
1685 break;
1686 case ICPT_CPU_STOP:
1687 do_stop_interrupt(&cpu->env);
1688 r = EXCP_HALTED;
1689 break;
1690 case ICPT_OPEREXC:
1691 /* check for break points */
1692 r = handle_sw_breakpoint(cpu, run);
1693 if (r == -ENOENT) {
1694 /* Then check for potential pgm check loops */
1695 r = handle_oper_loop(cpu, run);
1696 if (r == 0) {
1697 kvm_s390_program_interrupt(cpu, PGM_OPERATION);
1700 break;
1701 case ICPT_SOFT_INTERCEPT:
1702 fprintf(stderr, "KVM unimplemented icpt SOFT\n");
1703 exit(1);
1704 break;
1705 case ICPT_IO:
1706 fprintf(stderr, "KVM unimplemented icpt IO\n");
1707 exit(1);
1708 break;
1709 default:
1710 fprintf(stderr, "Unknown intercept code: %d\n", icpt_code);
1711 exit(1);
1712 break;
1715 return r;
1718 static int handle_tsch(S390CPU *cpu)
1720 CPUState *cs = CPU(cpu);
1721 struct kvm_run *run = cs->kvm_run;
1722 int ret;
1724 ret = ioinst_handle_tsch(cpu, cpu->env.regs[1], run->s390_tsch.ipb,
1725 RA_IGNORED);
1726 if (ret < 0) {
1728 * Failure.
1729 * If an I/O interrupt had been dequeued, we have to reinject it.
1731 if (run->s390_tsch.dequeued) {
1732 s390_io_interrupt(run->s390_tsch.subchannel_id,
1733 run->s390_tsch.subchannel_nr,
1734 run->s390_tsch.io_int_parm,
1735 run->s390_tsch.io_int_word);
1737 ret = 0;
1739 return ret;
1742 static void insert_stsi_3_2_2(S390CPU *cpu, __u64 addr, uint8_t ar)
1744 SysIB_322 sysib;
1745 int del;
1747 if (s390_cpu_virt_mem_read(cpu, addr, ar, &sysib, sizeof(sysib))) {
1748 return;
1750 /* Shift the stack of Extended Names to prepare for our own data */
1751 memmove(&sysib.ext_names[1], &sysib.ext_names[0],
1752 sizeof(sysib.ext_names[0]) * (sysib.count - 1));
1753 /* First virt level, that doesn't provide Ext Names delimits stack. It is
1754 * assumed it's not capable of managing Extended Names for lower levels.
1756 for (del = 1; del < sysib.count; del++) {
1757 if (!sysib.vm[del].ext_name_encoding || !sysib.ext_names[del][0]) {
1758 break;
1761 if (del < sysib.count) {
1762 memset(sysib.ext_names[del], 0,
1763 sizeof(sysib.ext_names[0]) * (sysib.count - del));
1765 /* Insert short machine name in EBCDIC, padded with blanks */
1766 if (qemu_name) {
1767 memset(sysib.vm[0].name, 0x40, sizeof(sysib.vm[0].name));
1768 ebcdic_put(sysib.vm[0].name, qemu_name, MIN(sizeof(sysib.vm[0].name),
1769 strlen(qemu_name)));
1771 sysib.vm[0].ext_name_encoding = 2; /* 2 = UTF-8 */
1772 memset(sysib.ext_names[0], 0, sizeof(sysib.ext_names[0]));
1773 /* If hypervisor specifies zero Extended Name in STSI322 SYSIB, it's
1774 * considered by s390 as not capable of providing any Extended Name.
1775 * Therefore if no name was specified on qemu invocation, we go with the
1776 * same "KVMguest" default, which KVM has filled into short name field.
1778 if (qemu_name) {
1779 strncpy((char *)sysib.ext_names[0], qemu_name,
1780 sizeof(sysib.ext_names[0]));
1781 } else {
1782 strcpy((char *)sysib.ext_names[0], "KVMguest");
1784 /* Insert UUID */
1785 memcpy(sysib.vm[0].uuid, &qemu_uuid, sizeof(sysib.vm[0].uuid));
1787 s390_cpu_virt_mem_write(cpu, addr, ar, &sysib, sizeof(sysib));
1790 static int handle_stsi(S390CPU *cpu)
1792 CPUState *cs = CPU(cpu);
1793 struct kvm_run *run = cs->kvm_run;
1795 switch (run->s390_stsi.fc) {
1796 case 3:
1797 if (run->s390_stsi.sel1 != 2 || run->s390_stsi.sel2 != 2) {
1798 return 0;
1800 /* Only sysib 3.2.2 needs post-handling for now. */
1801 insert_stsi_3_2_2(cpu, run->s390_stsi.addr, run->s390_stsi.ar);
1802 return 0;
1803 default:
1804 return 0;
1808 static int kvm_arch_handle_debug_exit(S390CPU *cpu)
1810 CPUState *cs = CPU(cpu);
1811 struct kvm_run *run = cs->kvm_run;
1813 int ret = 0;
1814 struct kvm_debug_exit_arch *arch_info = &run->debug.arch;
1816 switch (arch_info->type) {
1817 case KVM_HW_WP_WRITE:
1818 if (find_hw_breakpoint(arch_info->addr, -1, arch_info->type)) {
1819 cs->watchpoint_hit = &hw_watchpoint;
1820 hw_watchpoint.vaddr = arch_info->addr;
1821 hw_watchpoint.flags = BP_MEM_WRITE;
1822 ret = EXCP_DEBUG;
1824 break;
1825 case KVM_HW_BP:
1826 if (find_hw_breakpoint(arch_info->addr, -1, arch_info->type)) {
1827 ret = EXCP_DEBUG;
1829 break;
1830 case KVM_SINGLESTEP:
1831 if (cs->singlestep_enabled) {
1832 ret = EXCP_DEBUG;
1834 break;
1835 default:
1836 ret = -ENOSYS;
1839 return ret;
1842 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
1844 S390CPU *cpu = S390_CPU(cs);
1845 int ret = 0;
1847 qemu_mutex_lock_iothread();
1849 kvm_cpu_synchronize_state(cs);
1851 switch (run->exit_reason) {
1852 case KVM_EXIT_S390_SIEIC:
1853 ret = handle_intercept(cpu);
1854 break;
1855 case KVM_EXIT_S390_RESET:
1856 s390_ipl_reset_request(cs, S390_RESET_REIPL);
1857 break;
1858 case KVM_EXIT_S390_TSCH:
1859 ret = handle_tsch(cpu);
1860 break;
1861 case KVM_EXIT_S390_STSI:
1862 ret = handle_stsi(cpu);
1863 break;
1864 case KVM_EXIT_DEBUG:
1865 ret = kvm_arch_handle_debug_exit(cpu);
1866 break;
1867 default:
1868 fprintf(stderr, "Unknown KVM exit: %d\n", run->exit_reason);
1869 break;
1871 qemu_mutex_unlock_iothread();
1873 if (ret == 0) {
1874 ret = EXCP_INTERRUPT;
1876 return ret;
1879 bool kvm_arch_stop_on_emulation_error(CPUState *cpu)
1881 return true;
1884 void kvm_s390_enable_css_support(S390CPU *cpu)
1886 int r;
1888 /* Activate host kernel channel subsystem support. */
1889 r = kvm_vcpu_enable_cap(CPU(cpu), KVM_CAP_S390_CSS_SUPPORT, 0);
1890 assert(r == 0);
1893 void kvm_arch_init_irq_routing(KVMState *s)
1896 * Note that while irqchip capabilities generally imply that cpustates
1897 * are handled in-kernel, it is not true for s390 (yet); therefore, we
1898 * have to override the common code kvm_halt_in_kernel_allowed setting.
1900 if (kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) {
1901 kvm_gsi_routing_allowed = true;
1902 kvm_halt_in_kernel_allowed = false;
1906 int kvm_s390_assign_subch_ioeventfd(EventNotifier *notifier, uint32_t sch,
1907 int vq, bool assign)
1909 struct kvm_ioeventfd kick = {
1910 .flags = KVM_IOEVENTFD_FLAG_VIRTIO_CCW_NOTIFY |
1911 KVM_IOEVENTFD_FLAG_DATAMATCH,
1912 .fd = event_notifier_get_fd(notifier),
1913 .datamatch = vq,
1914 .addr = sch,
1915 .len = 8,
1917 trace_kvm_assign_subch_ioeventfd(kick.fd, kick.addr, assign,
1918 kick.datamatch);
1919 if (!kvm_check_extension(kvm_state, KVM_CAP_IOEVENTFD)) {
1920 return -ENOSYS;
1922 if (!assign) {
1923 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1925 return kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
1928 int kvm_s390_get_ri(void)
1930 return cap_ri;
1933 int kvm_s390_get_gs(void)
1935 return cap_gs;
1938 int kvm_s390_set_cpu_state(S390CPU *cpu, uint8_t cpu_state)
1940 struct kvm_mp_state mp_state = {};
1941 int ret;
1943 /* the kvm part might not have been initialized yet */
1944 if (CPU(cpu)->kvm_state == NULL) {
1945 return 0;
1948 switch (cpu_state) {
1949 case S390_CPU_STATE_STOPPED:
1950 mp_state.mp_state = KVM_MP_STATE_STOPPED;
1951 break;
1952 case S390_CPU_STATE_CHECK_STOP:
1953 mp_state.mp_state = KVM_MP_STATE_CHECK_STOP;
1954 break;
1955 case S390_CPU_STATE_OPERATING:
1956 mp_state.mp_state = KVM_MP_STATE_OPERATING;
1957 break;
1958 case S390_CPU_STATE_LOAD:
1959 mp_state.mp_state = KVM_MP_STATE_LOAD;
1960 break;
1961 default:
1962 error_report("Requested CPU state is not a valid S390 CPU state: %u",
1963 cpu_state);
1964 exit(1);
1967 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
1968 if (ret) {
1969 trace_kvm_failed_cpu_state_set(CPU(cpu)->cpu_index, cpu_state,
1970 strerror(-ret));
1973 return ret;
1976 void kvm_s390_vcpu_interrupt_pre_save(S390CPU *cpu)
1978 unsigned int max_cpus = MACHINE(qdev_get_machine())->smp.max_cpus;
1979 struct kvm_s390_irq_state irq_state = {
1980 .buf = (uint64_t) cpu->irqstate,
1981 .len = VCPU_IRQ_BUF_SIZE(max_cpus),
1983 CPUState *cs = CPU(cpu);
1984 int32_t bytes;
1986 if (!kvm_check_extension(kvm_state, KVM_CAP_S390_IRQ_STATE)) {
1987 return;
1990 bytes = kvm_vcpu_ioctl(cs, KVM_S390_GET_IRQ_STATE, &irq_state);
1991 if (bytes < 0) {
1992 cpu->irqstate_saved_size = 0;
1993 error_report("Migration of interrupt state failed");
1994 return;
1997 cpu->irqstate_saved_size = bytes;
2000 int kvm_s390_vcpu_interrupt_post_load(S390CPU *cpu)
2002 CPUState *cs = CPU(cpu);
2003 struct kvm_s390_irq_state irq_state = {
2004 .buf = (uint64_t) cpu->irqstate,
2005 .len = cpu->irqstate_saved_size,
2007 int r;
2009 if (cpu->irqstate_saved_size == 0) {
2010 return 0;
2013 if (!kvm_check_extension(kvm_state, KVM_CAP_S390_IRQ_STATE)) {
2014 return -ENOSYS;
2017 r = kvm_vcpu_ioctl(cs, KVM_S390_SET_IRQ_STATE, &irq_state);
2018 if (r) {
2019 error_report("Setting interrupt state failed %d", r);
2021 return r;
2024 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
2025 uint64_t address, uint32_t data, PCIDevice *dev)
2027 S390PCIBusDevice *pbdev;
2028 uint32_t vec = data & ZPCI_MSI_VEC_MASK;
2030 if (!dev) {
2031 DPRINTF("add_msi_route no pci device\n");
2032 return -ENODEV;
2035 pbdev = s390_pci_find_dev_by_target(s390_get_phb(), DEVICE(dev)->id);
2036 if (!pbdev) {
2037 DPRINTF("add_msi_route no zpci device\n");
2038 return -ENODEV;
2041 route->type = KVM_IRQ_ROUTING_S390_ADAPTER;
2042 route->flags = 0;
2043 route->u.adapter.summary_addr = pbdev->routes.adapter.summary_addr;
2044 route->u.adapter.ind_addr = pbdev->routes.adapter.ind_addr;
2045 route->u.adapter.summary_offset = pbdev->routes.adapter.summary_offset;
2046 route->u.adapter.ind_offset = pbdev->routes.adapter.ind_offset + vec;
2047 route->u.adapter.adapter_id = pbdev->routes.adapter.adapter_id;
2048 return 0;
2051 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
2052 int vector, PCIDevice *dev)
2054 return 0;
2057 int kvm_arch_release_virq_post(int virq)
2059 return 0;
2062 int kvm_arch_msi_data_to_gsi(uint32_t data)
2064 abort();
2067 static int query_cpu_subfunc(S390FeatBitmap features)
2069 struct kvm_s390_vm_cpu_subfunc prop;
2070 struct kvm_device_attr attr = {
2071 .group = KVM_S390_VM_CPU_MODEL,
2072 .attr = KVM_S390_VM_CPU_MACHINE_SUBFUNC,
2073 .addr = (uint64_t) &prop,
2075 int rc;
2077 rc = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
2078 if (rc) {
2079 return rc;
2083 * We're going to add all subfunctions now, if the corresponding feature
2084 * is available that unlocks the query functions.
2086 s390_add_from_feat_block(features, S390_FEAT_TYPE_PLO, prop.plo);
2087 if (test_bit(S390_FEAT_TOD_CLOCK_STEERING, features)) {
2088 s390_add_from_feat_block(features, S390_FEAT_TYPE_PTFF, prop.ptff);
2090 if (test_bit(S390_FEAT_MSA, features)) {
2091 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMAC, prop.kmac);
2092 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMC, prop.kmc);
2093 s390_add_from_feat_block(features, S390_FEAT_TYPE_KM, prop.km);
2094 s390_add_from_feat_block(features, S390_FEAT_TYPE_KIMD, prop.kimd);
2095 s390_add_from_feat_block(features, S390_FEAT_TYPE_KLMD, prop.klmd);
2097 if (test_bit(S390_FEAT_MSA_EXT_3, features)) {
2098 s390_add_from_feat_block(features, S390_FEAT_TYPE_PCKMO, prop.pckmo);
2100 if (test_bit(S390_FEAT_MSA_EXT_4, features)) {
2101 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMCTR, prop.kmctr);
2102 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMF, prop.kmf);
2103 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMO, prop.kmo);
2104 s390_add_from_feat_block(features, S390_FEAT_TYPE_PCC, prop.pcc);
2106 if (test_bit(S390_FEAT_MSA_EXT_5, features)) {
2107 s390_add_from_feat_block(features, S390_FEAT_TYPE_PPNO, prop.ppno);
2109 if (test_bit(S390_FEAT_MSA_EXT_8, features)) {
2110 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMA, prop.kma);
2112 if (test_bit(S390_FEAT_MSA_EXT_9, features)) {
2113 s390_add_from_feat_block(features, S390_FEAT_TYPE_KDSA, prop.kdsa);
2115 if (test_bit(S390_FEAT_ESORT_BASE, features)) {
2116 s390_add_from_feat_block(features, S390_FEAT_TYPE_SORTL, prop.sortl);
2118 if (test_bit(S390_FEAT_DEFLATE_BASE, features)) {
2119 s390_add_from_feat_block(features, S390_FEAT_TYPE_DFLTCC, prop.dfltcc);
2121 return 0;
2124 static int configure_cpu_subfunc(const S390FeatBitmap features)
2126 struct kvm_s390_vm_cpu_subfunc prop = {};
2127 struct kvm_device_attr attr = {
2128 .group = KVM_S390_VM_CPU_MODEL,
2129 .attr = KVM_S390_VM_CPU_PROCESSOR_SUBFUNC,
2130 .addr = (uint64_t) &prop,
2133 if (!kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2134 KVM_S390_VM_CPU_PROCESSOR_SUBFUNC)) {
2135 /* hardware support might be missing, IBC will handle most of this */
2136 return 0;
2139 s390_fill_feat_block(features, S390_FEAT_TYPE_PLO, prop.plo);
2140 if (test_bit(S390_FEAT_TOD_CLOCK_STEERING, features)) {
2141 s390_fill_feat_block(features, S390_FEAT_TYPE_PTFF, prop.ptff);
2143 if (test_bit(S390_FEAT_MSA, features)) {
2144 s390_fill_feat_block(features, S390_FEAT_TYPE_KMAC, prop.kmac);
2145 s390_fill_feat_block(features, S390_FEAT_TYPE_KMC, prop.kmc);
2146 s390_fill_feat_block(features, S390_FEAT_TYPE_KM, prop.km);
2147 s390_fill_feat_block(features, S390_FEAT_TYPE_KIMD, prop.kimd);
2148 s390_fill_feat_block(features, S390_FEAT_TYPE_KLMD, prop.klmd);
2150 if (test_bit(S390_FEAT_MSA_EXT_3, features)) {
2151 s390_fill_feat_block(features, S390_FEAT_TYPE_PCKMO, prop.pckmo);
2153 if (test_bit(S390_FEAT_MSA_EXT_4, features)) {
2154 s390_fill_feat_block(features, S390_FEAT_TYPE_KMCTR, prop.kmctr);
2155 s390_fill_feat_block(features, S390_FEAT_TYPE_KMF, prop.kmf);
2156 s390_fill_feat_block(features, S390_FEAT_TYPE_KMO, prop.kmo);
2157 s390_fill_feat_block(features, S390_FEAT_TYPE_PCC, prop.pcc);
2159 if (test_bit(S390_FEAT_MSA_EXT_5, features)) {
2160 s390_fill_feat_block(features, S390_FEAT_TYPE_PPNO, prop.ppno);
2162 if (test_bit(S390_FEAT_MSA_EXT_8, features)) {
2163 s390_fill_feat_block(features, S390_FEAT_TYPE_KMA, prop.kma);
2165 if (test_bit(S390_FEAT_MSA_EXT_9, features)) {
2166 s390_fill_feat_block(features, S390_FEAT_TYPE_KDSA, prop.kdsa);
2168 if (test_bit(S390_FEAT_ESORT_BASE, features)) {
2169 s390_fill_feat_block(features, S390_FEAT_TYPE_SORTL, prop.sortl);
2171 if (test_bit(S390_FEAT_DEFLATE_BASE, features)) {
2172 s390_fill_feat_block(features, S390_FEAT_TYPE_DFLTCC, prop.dfltcc);
2174 return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
2177 static int kvm_to_feat[][2] = {
2178 { KVM_S390_VM_CPU_FEAT_ESOP, S390_FEAT_ESOP },
2179 { KVM_S390_VM_CPU_FEAT_SIEF2, S390_FEAT_SIE_F2 },
2180 { KVM_S390_VM_CPU_FEAT_64BSCAO , S390_FEAT_SIE_64BSCAO },
2181 { KVM_S390_VM_CPU_FEAT_SIIF, S390_FEAT_SIE_SIIF },
2182 { KVM_S390_VM_CPU_FEAT_GPERE, S390_FEAT_SIE_GPERE },
2183 { KVM_S390_VM_CPU_FEAT_GSLS, S390_FEAT_SIE_GSLS },
2184 { KVM_S390_VM_CPU_FEAT_IB, S390_FEAT_SIE_IB },
2185 { KVM_S390_VM_CPU_FEAT_CEI, S390_FEAT_SIE_CEI },
2186 { KVM_S390_VM_CPU_FEAT_IBS, S390_FEAT_SIE_IBS },
2187 { KVM_S390_VM_CPU_FEAT_SKEY, S390_FEAT_SIE_SKEY },
2188 { KVM_S390_VM_CPU_FEAT_CMMA, S390_FEAT_SIE_CMMA },
2189 { KVM_S390_VM_CPU_FEAT_PFMFI, S390_FEAT_SIE_PFMFI},
2190 { KVM_S390_VM_CPU_FEAT_SIGPIF, S390_FEAT_SIE_SIGPIF},
2191 { KVM_S390_VM_CPU_FEAT_KSS, S390_FEAT_SIE_KSS},
2194 static int query_cpu_feat(S390FeatBitmap features)
2196 struct kvm_s390_vm_cpu_feat prop;
2197 struct kvm_device_attr attr = {
2198 .group = KVM_S390_VM_CPU_MODEL,
2199 .attr = KVM_S390_VM_CPU_MACHINE_FEAT,
2200 .addr = (uint64_t) &prop,
2202 int rc;
2203 int i;
2205 rc = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
2206 if (rc) {
2207 return rc;
2210 for (i = 0; i < ARRAY_SIZE(kvm_to_feat); i++) {
2211 if (test_be_bit(kvm_to_feat[i][0], (uint8_t *) prop.feat)) {
2212 set_bit(kvm_to_feat[i][1], features);
2215 return 0;
2218 static int configure_cpu_feat(const S390FeatBitmap features)
2220 struct kvm_s390_vm_cpu_feat prop = {};
2221 struct kvm_device_attr attr = {
2222 .group = KVM_S390_VM_CPU_MODEL,
2223 .attr = KVM_S390_VM_CPU_PROCESSOR_FEAT,
2224 .addr = (uint64_t) &prop,
2226 int i;
2228 for (i = 0; i < ARRAY_SIZE(kvm_to_feat); i++) {
2229 if (test_bit(kvm_to_feat[i][1], features)) {
2230 set_be_bit(kvm_to_feat[i][0], (uint8_t *) prop.feat);
2233 return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
2236 bool kvm_s390_cpu_models_supported(void)
2238 if (!cpu_model_allowed()) {
2239 /* compatibility machines interfere with the cpu model */
2240 return false;
2242 return kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2243 KVM_S390_VM_CPU_MACHINE) &&
2244 kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2245 KVM_S390_VM_CPU_PROCESSOR) &&
2246 kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2247 KVM_S390_VM_CPU_MACHINE_FEAT) &&
2248 kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2249 KVM_S390_VM_CPU_PROCESSOR_FEAT) &&
2250 kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2251 KVM_S390_VM_CPU_MACHINE_SUBFUNC);
2254 void kvm_s390_get_host_cpu_model(S390CPUModel *model, Error **errp)
2256 struct kvm_s390_vm_cpu_machine prop = {};
2257 struct kvm_device_attr attr = {
2258 .group = KVM_S390_VM_CPU_MODEL,
2259 .attr = KVM_S390_VM_CPU_MACHINE,
2260 .addr = (uint64_t) &prop,
2262 uint16_t unblocked_ibc = 0, cpu_type = 0;
2263 int rc;
2265 memset(model, 0, sizeof(*model));
2267 if (!kvm_s390_cpu_models_supported()) {
2268 error_setg(errp, "KVM doesn't support CPU models");
2269 return;
2272 /* query the basic cpu model properties */
2273 rc = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
2274 if (rc) {
2275 error_setg(errp, "KVM: Error querying host CPU model: %d", rc);
2276 return;
2279 cpu_type = cpuid_type(prop.cpuid);
2280 if (has_ibc(prop.ibc)) {
2281 model->lowest_ibc = lowest_ibc(prop.ibc);
2282 unblocked_ibc = unblocked_ibc(prop.ibc);
2284 model->cpu_id = cpuid_id(prop.cpuid);
2285 model->cpu_id_format = cpuid_format(prop.cpuid);
2286 model->cpu_ver = 0xff;
2288 /* get supported cpu features indicated via STFL(E) */
2289 s390_add_from_feat_block(model->features, S390_FEAT_TYPE_STFL,
2290 (uint8_t *) prop.fac_mask);
2291 /* dat-enhancement facility 2 has no bit but was introduced with stfle */
2292 if (test_bit(S390_FEAT_STFLE, model->features)) {
2293 set_bit(S390_FEAT_DAT_ENH_2, model->features);
2295 /* get supported cpu features indicated e.g. via SCLP */
2296 rc = query_cpu_feat(model->features);
2297 if (rc) {
2298 error_setg(errp, "KVM: Error querying CPU features: %d", rc);
2299 return;
2301 /* get supported cpu subfunctions indicated via query / test bit */
2302 rc = query_cpu_subfunc(model->features);
2303 if (rc) {
2304 error_setg(errp, "KVM: Error querying CPU subfunctions: %d", rc);
2305 return;
2308 /* PTFF subfunctions might be indicated although kernel support missing */
2309 if (!test_bit(S390_FEAT_MULTIPLE_EPOCH, model->features)) {
2310 clear_bit(S390_FEAT_PTFF_QSIE, model->features);
2311 clear_bit(S390_FEAT_PTFF_QTOUE, model->features);
2312 clear_bit(S390_FEAT_PTFF_STOE, model->features);
2313 clear_bit(S390_FEAT_PTFF_STOUE, model->features);
2316 /* with cpu model support, CMM is only indicated if really available */
2317 if (kvm_s390_cmma_available()) {
2318 set_bit(S390_FEAT_CMM, model->features);
2319 } else {
2320 /* no cmm -> no cmm nt */
2321 clear_bit(S390_FEAT_CMM_NT, model->features);
2324 /* bpb needs kernel support for migration, VSIE and reset */
2325 if (!kvm_check_extension(kvm_state, KVM_CAP_S390_BPB)) {
2326 clear_bit(S390_FEAT_BPB, model->features);
2329 /* We emulate a zPCI bus and AEN, therefore we don't need HW support */
2330 set_bit(S390_FEAT_ZPCI, model->features);
2331 set_bit(S390_FEAT_ADAPTER_EVENT_NOTIFICATION, model->features);
2333 if (s390_known_cpu_type(cpu_type)) {
2334 /* we want the exact model, even if some features are missing */
2335 model->def = s390_find_cpu_def(cpu_type, ibc_gen(unblocked_ibc),
2336 ibc_ec_ga(unblocked_ibc), NULL);
2337 } else {
2338 /* model unknown, e.g. too new - search using features */
2339 model->def = s390_find_cpu_def(0, ibc_gen(unblocked_ibc),
2340 ibc_ec_ga(unblocked_ibc),
2341 model->features);
2343 if (!model->def) {
2344 error_setg(errp, "KVM: host CPU model could not be identified");
2345 return;
2347 /* for now, we can only provide the AP feature with HW support */
2348 if (kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO,
2349 KVM_S390_VM_CRYPTO_ENABLE_APIE)) {
2350 set_bit(S390_FEAT_AP, model->features);
2352 /* strip of features that are not part of the maximum model */
2353 bitmap_and(model->features, model->features, model->def->full_feat,
2354 S390_FEAT_MAX);
2357 static void kvm_s390_configure_apie(bool interpret)
2359 uint64_t attr = interpret ? KVM_S390_VM_CRYPTO_ENABLE_APIE :
2360 KVM_S390_VM_CRYPTO_DISABLE_APIE;
2362 if (kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO, attr)) {
2363 kvm_s390_set_attr(attr);
2367 void kvm_s390_apply_cpu_model(const S390CPUModel *model, Error **errp)
2369 struct kvm_s390_vm_cpu_processor prop = {
2370 .fac_list = { 0 },
2372 struct kvm_device_attr attr = {
2373 .group = KVM_S390_VM_CPU_MODEL,
2374 .attr = KVM_S390_VM_CPU_PROCESSOR,
2375 .addr = (uint64_t) &prop,
2377 int rc;
2379 if (!model) {
2380 /* compatibility handling if cpu models are disabled */
2381 if (kvm_s390_cmma_available()) {
2382 kvm_s390_enable_cmma();
2384 return;
2386 if (!kvm_s390_cpu_models_supported()) {
2387 error_setg(errp, "KVM doesn't support CPU models");
2388 return;
2390 prop.cpuid = s390_cpuid_from_cpu_model(model);
2391 prop.ibc = s390_ibc_from_cpu_model(model);
2392 /* configure cpu features indicated via STFL(e) */
2393 s390_fill_feat_block(model->features, S390_FEAT_TYPE_STFL,
2394 (uint8_t *) prop.fac_list);
2395 rc = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
2396 if (rc) {
2397 error_setg(errp, "KVM: Error configuring the CPU model: %d", rc);
2398 return;
2400 /* configure cpu features indicated e.g. via SCLP */
2401 rc = configure_cpu_feat(model->features);
2402 if (rc) {
2403 error_setg(errp, "KVM: Error configuring CPU features: %d", rc);
2404 return;
2406 /* configure cpu subfunctions indicated via query / test bit */
2407 rc = configure_cpu_subfunc(model->features);
2408 if (rc) {
2409 error_setg(errp, "KVM: Error configuring CPU subfunctions: %d", rc);
2410 return;
2412 /* enable CMM via CMMA */
2413 if (test_bit(S390_FEAT_CMM, model->features)) {
2414 kvm_s390_enable_cmma();
2417 if (test_bit(S390_FEAT_AP, model->features)) {
2418 kvm_s390_configure_apie(true);
2422 void kvm_s390_restart_interrupt(S390CPU *cpu)
2424 struct kvm_s390_irq irq = {
2425 .type = KVM_S390_RESTART,
2428 kvm_s390_vcpu_interrupt(cpu, &irq);
2431 void kvm_s390_stop_interrupt(S390CPU *cpu)
2433 struct kvm_s390_irq irq = {
2434 .type = KVM_S390_SIGP_STOP,
2437 kvm_s390_vcpu_interrupt(cpu, &irq);