ram migration: Properly reset statistics
[qemu/kevin.git] / vl.c
blob78a4ec4d905124dfdb90965b31de9a13f88aa534
1 /*
2 * QEMU System Emulator
4 * Copyright (c) 2003-2008 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
24 #include <unistd.h>
25 #include <fcntl.h>
26 #include <signal.h>
27 #include <time.h>
28 #include <errno.h>
29 #include <sys/time.h>
30 #include <zlib.h>
32 /* Needed early for CONFIG_BSD etc. */
33 #include "config-host.h"
35 #ifndef _WIN32
36 #include <libgen.h>
37 #include <pwd.h>
38 #include <sys/times.h>
39 #include <sys/wait.h>
40 #include <termios.h>
41 #include <sys/mman.h>
42 #include <sys/ioctl.h>
43 #include <sys/resource.h>
44 #include <sys/socket.h>
45 #include <netinet/in.h>
46 #include <net/if.h>
47 #include <arpa/inet.h>
48 #include <dirent.h>
49 #include <netdb.h>
50 #include <sys/select.h>
51 #ifdef CONFIG_BSD
52 #include <sys/stat.h>
53 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__) || defined(__DragonFly__)
54 #include <libutil.h>
55 #else
56 #include <util.h>
57 #endif
58 #else
59 #ifdef __linux__
60 #include <pty.h>
61 #include <malloc.h>
62 #include <linux/rtc.h>
63 #include <sys/prctl.h>
65 /* For the benefit of older linux systems which don't supply it,
66 we use a local copy of hpet.h. */
67 /* #include <linux/hpet.h> */
68 #include "hpet.h"
70 #include <linux/ppdev.h>
71 #include <linux/parport.h>
72 #endif
73 #ifdef __sun__
74 #include <sys/stat.h>
75 #include <sys/ethernet.h>
76 #include <sys/sockio.h>
77 #include <netinet/arp.h>
78 #include <netinet/in.h>
79 #include <netinet/in_systm.h>
80 #include <netinet/ip.h>
81 #include <netinet/ip_icmp.h> // must come after ip.h
82 #include <netinet/udp.h>
83 #include <netinet/tcp.h>
84 #include <net/if.h>
85 #include <syslog.h>
86 #include <stropts.h>
87 /* See MySQL bug #7156 (http://bugs.mysql.com/bug.php?id=7156) for
88 discussion about Solaris header problems */
89 extern int madvise(caddr_t, size_t, int);
90 #endif
91 #endif
92 #endif
94 #if defined(__OpenBSD__)
95 #include <util.h>
96 #endif
98 #if defined(CONFIG_VDE)
99 #include <libvdeplug.h>
100 #endif
102 #ifdef _WIN32
103 #include <windows.h>
104 #include <mmsystem.h>
105 #endif
107 #ifdef CONFIG_SDL
108 #if defined(__APPLE__) || defined(main)
109 #include <SDL.h>
110 int qemu_main(int argc, char **argv, char **envp);
111 int main(int argc, char **argv)
113 return qemu_main(argc, argv, NULL);
115 #undef main
116 #define main qemu_main
117 #endif
118 #endif /* CONFIG_SDL */
120 #ifdef CONFIG_COCOA
121 #undef main
122 #define main qemu_main
123 #endif /* CONFIG_COCOA */
125 #include "hw/hw.h"
126 #include "hw/boards.h"
127 #include "hw/usb.h"
128 #include "hw/pcmcia.h"
129 #include "hw/pc.h"
130 #include "hw/audiodev.h"
131 #include "hw/isa.h"
132 #include "hw/baum.h"
133 #include "hw/bt.h"
134 #include "hw/watchdog.h"
135 #include "hw/smbios.h"
136 #include "hw/xen.h"
137 #include "hw/qdev.h"
138 #include "hw/loader.h"
139 #include "bt-host.h"
140 #include "net.h"
141 #include "net/slirp.h"
142 #include "monitor.h"
143 #include "console.h"
144 #include "sysemu.h"
145 #include "gdbstub.h"
146 #include "qemu-timer.h"
147 #include "qemu-char.h"
148 #include "cache-utils.h"
149 #include "block.h"
150 #include "block_int.h"
151 #include "block-migration.h"
152 #include "dma.h"
153 #include "audio/audio.h"
154 #include "migration.h"
155 #include "kvm.h"
156 #include "balloon.h"
157 #include "qemu-option.h"
158 #include "qemu-config.h"
160 #include "disas.h"
162 #include "exec-all.h"
164 #include "qemu_socket.h"
166 #include "slirp/libslirp.h"
168 #include "qemu-queue.h"
170 //#define DEBUG_NET
171 //#define DEBUG_SLIRP
173 #define DEFAULT_RAM_SIZE 128
175 /* Maximum number of monitor devices */
176 #define MAX_MONITOR_DEVICES 10
178 static const char *data_dir;
179 const char *bios_name = NULL;
180 /* Note: drives_table[MAX_DRIVES] is a dummy block driver if none available
181 to store the VM snapshots */
182 struct drivelist drives = QTAILQ_HEAD_INITIALIZER(drives);
183 struct driveoptlist driveopts = QTAILQ_HEAD_INITIALIZER(driveopts);
184 enum vga_retrace_method vga_retrace_method = VGA_RETRACE_DUMB;
185 static DisplayState *display_state;
186 DisplayType display_type = DT_DEFAULT;
187 const char* keyboard_layout = NULL;
188 ram_addr_t ram_size;
189 int nb_nics;
190 NICInfo nd_table[MAX_NICS];
191 int vm_running;
192 int autostart;
193 static int rtc_utc = 1;
194 static int rtc_date_offset = -1; /* -1 means no change */
195 QEMUClock *rtc_clock;
196 int vga_interface_type = VGA_CIRRUS;
197 #ifdef TARGET_SPARC
198 int graphic_width = 1024;
199 int graphic_height = 768;
200 int graphic_depth = 8;
201 #else
202 int graphic_width = 800;
203 int graphic_height = 600;
204 int graphic_depth = 15;
205 #endif
206 static int full_screen = 0;
207 #ifdef CONFIG_SDL
208 static int no_frame = 0;
209 #endif
210 int no_quit = 0;
211 CharDriverState *serial_hds[MAX_SERIAL_PORTS];
212 CharDriverState *parallel_hds[MAX_PARALLEL_PORTS];
213 CharDriverState *virtcon_hds[MAX_VIRTIO_CONSOLES];
214 #ifdef TARGET_I386
215 int win2k_install_hack = 0;
216 int rtc_td_hack = 0;
217 #endif
218 int usb_enabled = 0;
219 int singlestep = 0;
220 int smp_cpus = 1;
221 int max_cpus = 0;
222 int smp_cores = 1;
223 int smp_threads = 1;
224 const char *vnc_display;
225 int acpi_enabled = 1;
226 int no_hpet = 0;
227 int fd_bootchk = 1;
228 int no_reboot = 0;
229 int no_shutdown = 0;
230 int cursor_hide = 1;
231 int graphic_rotate = 0;
232 uint8_t irq0override = 1;
233 #ifndef _WIN32
234 int daemonize = 0;
235 #endif
236 const char *watchdog;
237 const char *option_rom[MAX_OPTION_ROMS];
238 int nb_option_roms;
239 int semihosting_enabled = 0;
240 #ifdef TARGET_ARM
241 int old_param = 0;
242 #endif
243 const char *qemu_name;
244 int alt_grab = 0;
245 int ctrl_grab = 0;
246 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
247 unsigned int nb_prom_envs = 0;
248 const char *prom_envs[MAX_PROM_ENVS];
249 #endif
250 int boot_menu;
252 int nb_numa_nodes;
253 uint64_t node_mem[MAX_NODES];
254 uint64_t node_cpumask[MAX_NODES];
256 static CPUState *cur_cpu;
257 static CPUState *next_cpu;
258 static int timer_alarm_pending = 1;
259 /* Conversion factor from emulated instructions to virtual clock ticks. */
260 static int icount_time_shift;
261 /* Arbitrarily pick 1MIPS as the minimum allowable speed. */
262 #define MAX_ICOUNT_SHIFT 10
263 /* Compensate for varying guest execution speed. */
264 static int64_t qemu_icount_bias;
265 static QEMUTimer *icount_rt_timer;
266 static QEMUTimer *icount_vm_timer;
267 static QEMUTimer *nographic_timer;
269 uint8_t qemu_uuid[16];
271 static QEMUBootSetHandler *boot_set_handler;
272 static void *boot_set_opaque;
274 /***********************************************************/
275 /* x86 ISA bus support */
277 target_phys_addr_t isa_mem_base = 0;
278 PicState2 *isa_pic;
280 /***********************************************************/
281 void hw_error(const char *fmt, ...)
283 va_list ap;
284 CPUState *env;
286 va_start(ap, fmt);
287 fprintf(stderr, "qemu: hardware error: ");
288 vfprintf(stderr, fmt, ap);
289 fprintf(stderr, "\n");
290 for(env = first_cpu; env != NULL; env = env->next_cpu) {
291 fprintf(stderr, "CPU #%d:\n", env->cpu_index);
292 #ifdef TARGET_I386
293 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU);
294 #else
295 cpu_dump_state(env, stderr, fprintf, 0);
296 #endif
298 va_end(ap);
299 abort();
302 static void set_proc_name(const char *s)
304 #if defined(__linux__) && defined(PR_SET_NAME)
305 char name[16];
306 if (!s)
307 return;
308 name[sizeof(name) - 1] = 0;
309 strncpy(name, s, sizeof(name));
310 /* Could rewrite argv[0] too, but that's a bit more complicated.
311 This simple way is enough for `top'. */
312 prctl(PR_SET_NAME, name);
313 #endif
316 /***************/
317 /* ballooning */
319 static QEMUBalloonEvent *qemu_balloon_event;
320 void *qemu_balloon_event_opaque;
322 void qemu_add_balloon_handler(QEMUBalloonEvent *func, void *opaque)
324 qemu_balloon_event = func;
325 qemu_balloon_event_opaque = opaque;
328 void qemu_balloon(ram_addr_t target)
330 if (qemu_balloon_event)
331 qemu_balloon_event(qemu_balloon_event_opaque, target);
334 ram_addr_t qemu_balloon_status(void)
336 if (qemu_balloon_event)
337 return qemu_balloon_event(qemu_balloon_event_opaque, 0);
338 return 0;
341 /***********************************************************/
342 /* keyboard/mouse */
344 static QEMUPutKBDEvent *qemu_put_kbd_event;
345 static void *qemu_put_kbd_event_opaque;
346 static QEMUPutMouseEntry *qemu_put_mouse_event_head;
347 static QEMUPutMouseEntry *qemu_put_mouse_event_current;
349 void qemu_add_kbd_event_handler(QEMUPutKBDEvent *func, void *opaque)
351 qemu_put_kbd_event_opaque = opaque;
352 qemu_put_kbd_event = func;
355 QEMUPutMouseEntry *qemu_add_mouse_event_handler(QEMUPutMouseEvent *func,
356 void *opaque, int absolute,
357 const char *name)
359 QEMUPutMouseEntry *s, *cursor;
361 s = qemu_mallocz(sizeof(QEMUPutMouseEntry));
363 s->qemu_put_mouse_event = func;
364 s->qemu_put_mouse_event_opaque = opaque;
365 s->qemu_put_mouse_event_absolute = absolute;
366 s->qemu_put_mouse_event_name = qemu_strdup(name);
367 s->next = NULL;
369 if (!qemu_put_mouse_event_head) {
370 qemu_put_mouse_event_head = qemu_put_mouse_event_current = s;
371 return s;
374 cursor = qemu_put_mouse_event_head;
375 while (cursor->next != NULL)
376 cursor = cursor->next;
378 cursor->next = s;
379 qemu_put_mouse_event_current = s;
381 return s;
384 void qemu_remove_mouse_event_handler(QEMUPutMouseEntry *entry)
386 QEMUPutMouseEntry *prev = NULL, *cursor;
388 if (!qemu_put_mouse_event_head || entry == NULL)
389 return;
391 cursor = qemu_put_mouse_event_head;
392 while (cursor != NULL && cursor != entry) {
393 prev = cursor;
394 cursor = cursor->next;
397 if (cursor == NULL) // does not exist or list empty
398 return;
399 else if (prev == NULL) { // entry is head
400 qemu_put_mouse_event_head = cursor->next;
401 if (qemu_put_mouse_event_current == entry)
402 qemu_put_mouse_event_current = cursor->next;
403 qemu_free(entry->qemu_put_mouse_event_name);
404 qemu_free(entry);
405 return;
408 prev->next = entry->next;
410 if (qemu_put_mouse_event_current == entry)
411 qemu_put_mouse_event_current = prev;
413 qemu_free(entry->qemu_put_mouse_event_name);
414 qemu_free(entry);
417 void kbd_put_keycode(int keycode)
419 if (qemu_put_kbd_event) {
420 qemu_put_kbd_event(qemu_put_kbd_event_opaque, keycode);
424 void kbd_mouse_event(int dx, int dy, int dz, int buttons_state)
426 QEMUPutMouseEvent *mouse_event;
427 void *mouse_event_opaque;
428 int width;
430 if (!qemu_put_mouse_event_current) {
431 return;
434 mouse_event =
435 qemu_put_mouse_event_current->qemu_put_mouse_event;
436 mouse_event_opaque =
437 qemu_put_mouse_event_current->qemu_put_mouse_event_opaque;
439 if (mouse_event) {
440 if (graphic_rotate) {
441 if (qemu_put_mouse_event_current->qemu_put_mouse_event_absolute)
442 width = 0x7fff;
443 else
444 width = graphic_width - 1;
445 mouse_event(mouse_event_opaque,
446 width - dy, dx, dz, buttons_state);
447 } else
448 mouse_event(mouse_event_opaque,
449 dx, dy, dz, buttons_state);
453 int kbd_mouse_is_absolute(void)
455 if (!qemu_put_mouse_event_current)
456 return 0;
458 return qemu_put_mouse_event_current->qemu_put_mouse_event_absolute;
461 void do_info_mice(Monitor *mon)
463 QEMUPutMouseEntry *cursor;
464 int index = 0;
466 if (!qemu_put_mouse_event_head) {
467 monitor_printf(mon, "No mouse devices connected\n");
468 return;
471 monitor_printf(mon, "Mouse devices available:\n");
472 cursor = qemu_put_mouse_event_head;
473 while (cursor != NULL) {
474 monitor_printf(mon, "%c Mouse #%d: %s\n",
475 (cursor == qemu_put_mouse_event_current ? '*' : ' '),
476 index, cursor->qemu_put_mouse_event_name);
477 index++;
478 cursor = cursor->next;
482 void do_mouse_set(Monitor *mon, const QDict *qdict)
484 QEMUPutMouseEntry *cursor;
485 int i = 0;
486 int index = qdict_get_int(qdict, "index");
488 if (!qemu_put_mouse_event_head) {
489 monitor_printf(mon, "No mouse devices connected\n");
490 return;
493 cursor = qemu_put_mouse_event_head;
494 while (cursor != NULL && index != i) {
495 i++;
496 cursor = cursor->next;
499 if (cursor != NULL)
500 qemu_put_mouse_event_current = cursor;
501 else
502 monitor_printf(mon, "Mouse at given index not found\n");
505 /* compute with 96 bit intermediate result: (a*b)/c */
506 uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
508 union {
509 uint64_t ll;
510 struct {
511 #ifdef HOST_WORDS_BIGENDIAN
512 uint32_t high, low;
513 #else
514 uint32_t low, high;
515 #endif
516 } l;
517 } u, res;
518 uint64_t rl, rh;
520 u.ll = a;
521 rl = (uint64_t)u.l.low * (uint64_t)b;
522 rh = (uint64_t)u.l.high * (uint64_t)b;
523 rh += (rl >> 32);
524 res.l.high = rh / c;
525 res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
526 return res.ll;
529 /***********************************************************/
530 /* real time host monotonic timer */
532 static int64_t get_clock_realtime(void)
534 struct timeval tv;
536 gettimeofday(&tv, NULL);
537 return tv.tv_sec * 1000000000LL + (tv.tv_usec * 1000);
540 #ifdef WIN32
542 static int64_t clock_freq;
544 static void init_get_clock(void)
546 LARGE_INTEGER freq;
547 int ret;
548 ret = QueryPerformanceFrequency(&freq);
549 if (ret == 0) {
550 fprintf(stderr, "Could not calibrate ticks\n");
551 exit(1);
553 clock_freq = freq.QuadPart;
556 static int64_t get_clock(void)
558 LARGE_INTEGER ti;
559 QueryPerformanceCounter(&ti);
560 return muldiv64(ti.QuadPart, get_ticks_per_sec(), clock_freq);
563 #else
565 static int use_rt_clock;
567 static void init_get_clock(void)
569 use_rt_clock = 0;
570 #if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \
571 || defined(__DragonFly__) || defined(__FreeBSD_kernel__)
573 struct timespec ts;
574 if (clock_gettime(CLOCK_MONOTONIC, &ts) == 0) {
575 use_rt_clock = 1;
578 #endif
581 static int64_t get_clock(void)
583 #if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \
584 || defined(__DragonFly__) || defined(__FreeBSD_kernel__)
585 if (use_rt_clock) {
586 struct timespec ts;
587 clock_gettime(CLOCK_MONOTONIC, &ts);
588 return ts.tv_sec * 1000000000LL + ts.tv_nsec;
589 } else
590 #endif
592 /* XXX: using gettimeofday leads to problems if the date
593 changes, so it should be avoided. */
594 return get_clock_realtime();
597 #endif
599 /* Return the virtual CPU time, based on the instruction counter. */
600 static int64_t cpu_get_icount(void)
602 int64_t icount;
603 CPUState *env = cpu_single_env;;
604 icount = qemu_icount;
605 if (env) {
606 if (!can_do_io(env))
607 fprintf(stderr, "Bad clock read\n");
608 icount -= (env->icount_decr.u16.low + env->icount_extra);
610 return qemu_icount_bias + (icount << icount_time_shift);
613 /***********************************************************/
614 /* guest cycle counter */
616 typedef struct TimersState {
617 int64_t cpu_ticks_prev;
618 int64_t cpu_ticks_offset;
619 int64_t cpu_clock_offset;
620 int32_t cpu_ticks_enabled;
621 int64_t dummy;
622 } TimersState;
624 TimersState timers_state;
626 /* return the host CPU cycle counter and handle stop/restart */
627 int64_t cpu_get_ticks(void)
629 if (use_icount) {
630 return cpu_get_icount();
632 if (!timers_state.cpu_ticks_enabled) {
633 return timers_state.cpu_ticks_offset;
634 } else {
635 int64_t ticks;
636 ticks = cpu_get_real_ticks();
637 if (timers_state.cpu_ticks_prev > ticks) {
638 /* Note: non increasing ticks may happen if the host uses
639 software suspend */
640 timers_state.cpu_ticks_offset += timers_state.cpu_ticks_prev - ticks;
642 timers_state.cpu_ticks_prev = ticks;
643 return ticks + timers_state.cpu_ticks_offset;
647 /* return the host CPU monotonic timer and handle stop/restart */
648 static int64_t cpu_get_clock(void)
650 int64_t ti;
651 if (!timers_state.cpu_ticks_enabled) {
652 return timers_state.cpu_clock_offset;
653 } else {
654 ti = get_clock();
655 return ti + timers_state.cpu_clock_offset;
659 /* enable cpu_get_ticks() */
660 void cpu_enable_ticks(void)
662 if (!timers_state.cpu_ticks_enabled) {
663 timers_state.cpu_ticks_offset -= cpu_get_real_ticks();
664 timers_state.cpu_clock_offset -= get_clock();
665 timers_state.cpu_ticks_enabled = 1;
669 /* disable cpu_get_ticks() : the clock is stopped. You must not call
670 cpu_get_ticks() after that. */
671 void cpu_disable_ticks(void)
673 if (timers_state.cpu_ticks_enabled) {
674 timers_state.cpu_ticks_offset = cpu_get_ticks();
675 timers_state.cpu_clock_offset = cpu_get_clock();
676 timers_state.cpu_ticks_enabled = 0;
680 /***********************************************************/
681 /* timers */
683 #define QEMU_CLOCK_REALTIME 0
684 #define QEMU_CLOCK_VIRTUAL 1
685 #define QEMU_CLOCK_HOST 2
687 struct QEMUClock {
688 int type;
689 /* XXX: add frequency */
692 struct QEMUTimer {
693 QEMUClock *clock;
694 int64_t expire_time;
695 QEMUTimerCB *cb;
696 void *opaque;
697 struct QEMUTimer *next;
700 struct qemu_alarm_timer {
701 char const *name;
702 unsigned int flags;
704 int (*start)(struct qemu_alarm_timer *t);
705 void (*stop)(struct qemu_alarm_timer *t);
706 void (*rearm)(struct qemu_alarm_timer *t);
707 void *priv;
710 #define ALARM_FLAG_DYNTICKS 0x1
711 #define ALARM_FLAG_EXPIRED 0x2
713 static inline int alarm_has_dynticks(struct qemu_alarm_timer *t)
715 return t && (t->flags & ALARM_FLAG_DYNTICKS);
718 static void qemu_rearm_alarm_timer(struct qemu_alarm_timer *t)
720 if (!alarm_has_dynticks(t))
721 return;
723 t->rearm(t);
726 /* TODO: MIN_TIMER_REARM_US should be optimized */
727 #define MIN_TIMER_REARM_US 250
729 static struct qemu_alarm_timer *alarm_timer;
731 #ifdef _WIN32
733 struct qemu_alarm_win32 {
734 MMRESULT timerId;
735 unsigned int period;
736 } alarm_win32_data = {0, -1};
738 static int win32_start_timer(struct qemu_alarm_timer *t);
739 static void win32_stop_timer(struct qemu_alarm_timer *t);
740 static void win32_rearm_timer(struct qemu_alarm_timer *t);
742 #else
744 static int unix_start_timer(struct qemu_alarm_timer *t);
745 static void unix_stop_timer(struct qemu_alarm_timer *t);
747 #ifdef __linux__
749 static int dynticks_start_timer(struct qemu_alarm_timer *t);
750 static void dynticks_stop_timer(struct qemu_alarm_timer *t);
751 static void dynticks_rearm_timer(struct qemu_alarm_timer *t);
753 static int hpet_start_timer(struct qemu_alarm_timer *t);
754 static void hpet_stop_timer(struct qemu_alarm_timer *t);
756 static int rtc_start_timer(struct qemu_alarm_timer *t);
757 static void rtc_stop_timer(struct qemu_alarm_timer *t);
759 #endif /* __linux__ */
761 #endif /* _WIN32 */
763 /* Correlation between real and virtual time is always going to be
764 fairly approximate, so ignore small variation.
765 When the guest is idle real and virtual time will be aligned in
766 the IO wait loop. */
767 #define ICOUNT_WOBBLE (get_ticks_per_sec() / 10)
769 static void icount_adjust(void)
771 int64_t cur_time;
772 int64_t cur_icount;
773 int64_t delta;
774 static int64_t last_delta;
775 /* If the VM is not running, then do nothing. */
776 if (!vm_running)
777 return;
779 cur_time = cpu_get_clock();
780 cur_icount = qemu_get_clock(vm_clock);
781 delta = cur_icount - cur_time;
782 /* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */
783 if (delta > 0
784 && last_delta + ICOUNT_WOBBLE < delta * 2
785 && icount_time_shift > 0) {
786 /* The guest is getting too far ahead. Slow time down. */
787 icount_time_shift--;
789 if (delta < 0
790 && last_delta - ICOUNT_WOBBLE > delta * 2
791 && icount_time_shift < MAX_ICOUNT_SHIFT) {
792 /* The guest is getting too far behind. Speed time up. */
793 icount_time_shift++;
795 last_delta = delta;
796 qemu_icount_bias = cur_icount - (qemu_icount << icount_time_shift);
799 static void icount_adjust_rt(void * opaque)
801 qemu_mod_timer(icount_rt_timer,
802 qemu_get_clock(rt_clock) + 1000);
803 icount_adjust();
806 static void icount_adjust_vm(void * opaque)
808 qemu_mod_timer(icount_vm_timer,
809 qemu_get_clock(vm_clock) + get_ticks_per_sec() / 10);
810 icount_adjust();
813 static void init_icount_adjust(void)
815 /* Have both realtime and virtual time triggers for speed adjustment.
816 The realtime trigger catches emulated time passing too slowly,
817 the virtual time trigger catches emulated time passing too fast.
818 Realtime triggers occur even when idle, so use them less frequently
819 than VM triggers. */
820 icount_rt_timer = qemu_new_timer(rt_clock, icount_adjust_rt, NULL);
821 qemu_mod_timer(icount_rt_timer,
822 qemu_get_clock(rt_clock) + 1000);
823 icount_vm_timer = qemu_new_timer(vm_clock, icount_adjust_vm, NULL);
824 qemu_mod_timer(icount_vm_timer,
825 qemu_get_clock(vm_clock) + get_ticks_per_sec() / 10);
828 static struct qemu_alarm_timer alarm_timers[] = {
829 #ifndef _WIN32
830 #ifdef __linux__
831 {"dynticks", ALARM_FLAG_DYNTICKS, dynticks_start_timer,
832 dynticks_stop_timer, dynticks_rearm_timer, NULL},
833 /* HPET - if available - is preferred */
834 {"hpet", 0, hpet_start_timer, hpet_stop_timer, NULL, NULL},
835 /* ...otherwise try RTC */
836 {"rtc", 0, rtc_start_timer, rtc_stop_timer, NULL, NULL},
837 #endif
838 {"unix", 0, unix_start_timer, unix_stop_timer, NULL, NULL},
839 #else
840 {"dynticks", ALARM_FLAG_DYNTICKS, win32_start_timer,
841 win32_stop_timer, win32_rearm_timer, &alarm_win32_data},
842 {"win32", 0, win32_start_timer,
843 win32_stop_timer, NULL, &alarm_win32_data},
844 #endif
845 {NULL, }
848 static void show_available_alarms(void)
850 int i;
852 printf("Available alarm timers, in order of precedence:\n");
853 for (i = 0; alarm_timers[i].name; i++)
854 printf("%s\n", alarm_timers[i].name);
857 static void configure_alarms(char const *opt)
859 int i;
860 int cur = 0;
861 int count = ARRAY_SIZE(alarm_timers) - 1;
862 char *arg;
863 char *name;
864 struct qemu_alarm_timer tmp;
866 if (!strcmp(opt, "?")) {
867 show_available_alarms();
868 exit(0);
871 arg = qemu_strdup(opt);
873 /* Reorder the array */
874 name = strtok(arg, ",");
875 while (name) {
876 for (i = 0; i < count && alarm_timers[i].name; i++) {
877 if (!strcmp(alarm_timers[i].name, name))
878 break;
881 if (i == count) {
882 fprintf(stderr, "Unknown clock %s\n", name);
883 goto next;
886 if (i < cur)
887 /* Ignore */
888 goto next;
890 /* Swap */
891 tmp = alarm_timers[i];
892 alarm_timers[i] = alarm_timers[cur];
893 alarm_timers[cur] = tmp;
895 cur++;
896 next:
897 name = strtok(NULL, ",");
900 qemu_free(arg);
902 if (cur) {
903 /* Disable remaining timers */
904 for (i = cur; i < count; i++)
905 alarm_timers[i].name = NULL;
906 } else {
907 show_available_alarms();
908 exit(1);
912 #define QEMU_NUM_CLOCKS 3
914 QEMUClock *rt_clock;
915 QEMUClock *vm_clock;
916 QEMUClock *host_clock;
918 static QEMUTimer *active_timers[QEMU_NUM_CLOCKS];
920 static QEMUClock *qemu_new_clock(int type)
922 QEMUClock *clock;
923 clock = qemu_mallocz(sizeof(QEMUClock));
924 clock->type = type;
925 return clock;
928 QEMUTimer *qemu_new_timer(QEMUClock *clock, QEMUTimerCB *cb, void *opaque)
930 QEMUTimer *ts;
932 ts = qemu_mallocz(sizeof(QEMUTimer));
933 ts->clock = clock;
934 ts->cb = cb;
935 ts->opaque = opaque;
936 return ts;
939 void qemu_free_timer(QEMUTimer *ts)
941 qemu_free(ts);
944 /* stop a timer, but do not dealloc it */
945 void qemu_del_timer(QEMUTimer *ts)
947 QEMUTimer **pt, *t;
949 /* NOTE: this code must be signal safe because
950 qemu_timer_expired() can be called from a signal. */
951 pt = &active_timers[ts->clock->type];
952 for(;;) {
953 t = *pt;
954 if (!t)
955 break;
956 if (t == ts) {
957 *pt = t->next;
958 break;
960 pt = &t->next;
964 /* modify the current timer so that it will be fired when current_time
965 >= expire_time. The corresponding callback will be called. */
966 void qemu_mod_timer(QEMUTimer *ts, int64_t expire_time)
968 QEMUTimer **pt, *t;
970 qemu_del_timer(ts);
972 /* add the timer in the sorted list */
973 /* NOTE: this code must be signal safe because
974 qemu_timer_expired() can be called from a signal. */
975 pt = &active_timers[ts->clock->type];
976 for(;;) {
977 t = *pt;
978 if (!t)
979 break;
980 if (t->expire_time > expire_time)
981 break;
982 pt = &t->next;
984 ts->expire_time = expire_time;
985 ts->next = *pt;
986 *pt = ts;
988 /* Rearm if necessary */
989 if (pt == &active_timers[ts->clock->type]) {
990 if ((alarm_timer->flags & ALARM_FLAG_EXPIRED) == 0) {
991 qemu_rearm_alarm_timer(alarm_timer);
993 /* Interrupt execution to force deadline recalculation. */
994 if (use_icount)
995 qemu_notify_event();
999 int qemu_timer_pending(QEMUTimer *ts)
1001 QEMUTimer *t;
1002 for(t = active_timers[ts->clock->type]; t != NULL; t = t->next) {
1003 if (t == ts)
1004 return 1;
1006 return 0;
1009 int qemu_timer_expired(QEMUTimer *timer_head, int64_t current_time)
1011 if (!timer_head)
1012 return 0;
1013 return (timer_head->expire_time <= current_time);
1016 static void qemu_run_timers(QEMUTimer **ptimer_head, int64_t current_time)
1018 QEMUTimer *ts;
1020 for(;;) {
1021 ts = *ptimer_head;
1022 if (!ts || ts->expire_time > current_time)
1023 break;
1024 /* remove timer from the list before calling the callback */
1025 *ptimer_head = ts->next;
1026 ts->next = NULL;
1028 /* run the callback (the timer list can be modified) */
1029 ts->cb(ts->opaque);
1033 int64_t qemu_get_clock(QEMUClock *clock)
1035 switch(clock->type) {
1036 case QEMU_CLOCK_REALTIME:
1037 return get_clock() / 1000000;
1038 default:
1039 case QEMU_CLOCK_VIRTUAL:
1040 if (use_icount) {
1041 return cpu_get_icount();
1042 } else {
1043 return cpu_get_clock();
1045 case QEMU_CLOCK_HOST:
1046 return get_clock_realtime();
1050 static void init_clocks(void)
1052 init_get_clock();
1053 rt_clock = qemu_new_clock(QEMU_CLOCK_REALTIME);
1054 vm_clock = qemu_new_clock(QEMU_CLOCK_VIRTUAL);
1055 host_clock = qemu_new_clock(QEMU_CLOCK_HOST);
1057 rtc_clock = host_clock;
1060 /* save a timer */
1061 void qemu_put_timer(QEMUFile *f, QEMUTimer *ts)
1063 uint64_t expire_time;
1065 if (qemu_timer_pending(ts)) {
1066 expire_time = ts->expire_time;
1067 } else {
1068 expire_time = -1;
1070 qemu_put_be64(f, expire_time);
1073 void qemu_get_timer(QEMUFile *f, QEMUTimer *ts)
1075 uint64_t expire_time;
1077 expire_time = qemu_get_be64(f);
1078 if (expire_time != -1) {
1079 qemu_mod_timer(ts, expire_time);
1080 } else {
1081 qemu_del_timer(ts);
1085 static const VMStateDescription vmstate_timers = {
1086 .name = "timer",
1087 .version_id = 2,
1088 .minimum_version_id = 1,
1089 .minimum_version_id_old = 1,
1090 .fields = (VMStateField []) {
1091 VMSTATE_INT64(cpu_ticks_offset, TimersState),
1092 VMSTATE_INT64(dummy, TimersState),
1093 VMSTATE_INT64_V(cpu_clock_offset, TimersState, 2),
1094 VMSTATE_END_OF_LIST()
1098 static void qemu_event_increment(void);
1100 #ifdef _WIN32
1101 static void CALLBACK host_alarm_handler(UINT uTimerID, UINT uMsg,
1102 DWORD_PTR dwUser, DWORD_PTR dw1,
1103 DWORD_PTR dw2)
1104 #else
1105 static void host_alarm_handler(int host_signum)
1106 #endif
1108 #if 0
1109 #define DISP_FREQ 1000
1111 static int64_t delta_min = INT64_MAX;
1112 static int64_t delta_max, delta_cum, last_clock, delta, ti;
1113 static int count;
1114 ti = qemu_get_clock(vm_clock);
1115 if (last_clock != 0) {
1116 delta = ti - last_clock;
1117 if (delta < delta_min)
1118 delta_min = delta;
1119 if (delta > delta_max)
1120 delta_max = delta;
1121 delta_cum += delta;
1122 if (++count == DISP_FREQ) {
1123 printf("timer: min=%" PRId64 " us max=%" PRId64 " us avg=%" PRId64 " us avg_freq=%0.3f Hz\n",
1124 muldiv64(delta_min, 1000000, get_ticks_per_sec()),
1125 muldiv64(delta_max, 1000000, get_ticks_per_sec()),
1126 muldiv64(delta_cum, 1000000 / DISP_FREQ, get_ticks_per_sec()),
1127 (double)get_ticks_per_sec() / ((double)delta_cum / DISP_FREQ));
1128 count = 0;
1129 delta_min = INT64_MAX;
1130 delta_max = 0;
1131 delta_cum = 0;
1134 last_clock = ti;
1136 #endif
1137 if (alarm_has_dynticks(alarm_timer) ||
1138 (!use_icount &&
1139 qemu_timer_expired(active_timers[QEMU_CLOCK_VIRTUAL],
1140 qemu_get_clock(vm_clock))) ||
1141 qemu_timer_expired(active_timers[QEMU_CLOCK_REALTIME],
1142 qemu_get_clock(rt_clock)) ||
1143 qemu_timer_expired(active_timers[QEMU_CLOCK_HOST],
1144 qemu_get_clock(host_clock))) {
1145 qemu_event_increment();
1146 if (alarm_timer) alarm_timer->flags |= ALARM_FLAG_EXPIRED;
1148 #ifndef CONFIG_IOTHREAD
1149 if (next_cpu) {
1150 /* stop the currently executing cpu because a timer occured */
1151 cpu_exit(next_cpu);
1153 #endif
1154 timer_alarm_pending = 1;
1155 qemu_notify_event();
1159 static int64_t qemu_next_deadline(void)
1161 /* To avoid problems with overflow limit this to 2^32. */
1162 int64_t delta = INT32_MAX;
1164 if (active_timers[QEMU_CLOCK_VIRTUAL]) {
1165 delta = active_timers[QEMU_CLOCK_VIRTUAL]->expire_time -
1166 qemu_get_clock(vm_clock);
1168 if (active_timers[QEMU_CLOCK_HOST]) {
1169 int64_t hdelta = active_timers[QEMU_CLOCK_HOST]->expire_time -
1170 qemu_get_clock(host_clock);
1171 if (hdelta < delta)
1172 delta = hdelta;
1175 if (delta < 0)
1176 delta = 0;
1178 return delta;
1181 #if defined(__linux__)
1182 static uint64_t qemu_next_deadline_dyntick(void)
1184 int64_t delta;
1185 int64_t rtdelta;
1187 if (use_icount)
1188 delta = INT32_MAX;
1189 else
1190 delta = (qemu_next_deadline() + 999) / 1000;
1192 if (active_timers[QEMU_CLOCK_REALTIME]) {
1193 rtdelta = (active_timers[QEMU_CLOCK_REALTIME]->expire_time -
1194 qemu_get_clock(rt_clock))*1000;
1195 if (rtdelta < delta)
1196 delta = rtdelta;
1199 if (delta < MIN_TIMER_REARM_US)
1200 delta = MIN_TIMER_REARM_US;
1202 return delta;
1204 #endif
1206 #ifndef _WIN32
1208 /* Sets a specific flag */
1209 static int fcntl_setfl(int fd, int flag)
1211 int flags;
1213 flags = fcntl(fd, F_GETFL);
1214 if (flags == -1)
1215 return -errno;
1217 if (fcntl(fd, F_SETFL, flags | flag) == -1)
1218 return -errno;
1220 return 0;
1223 #if defined(__linux__)
1225 #define RTC_FREQ 1024
1227 static void enable_sigio_timer(int fd)
1229 struct sigaction act;
1231 /* timer signal */
1232 sigfillset(&act.sa_mask);
1233 act.sa_flags = 0;
1234 act.sa_handler = host_alarm_handler;
1236 sigaction(SIGIO, &act, NULL);
1237 fcntl_setfl(fd, O_ASYNC);
1238 fcntl(fd, F_SETOWN, getpid());
1241 static int hpet_start_timer(struct qemu_alarm_timer *t)
1243 struct hpet_info info;
1244 int r, fd;
1246 fd = open("/dev/hpet", O_RDONLY);
1247 if (fd < 0)
1248 return -1;
1250 /* Set frequency */
1251 r = ioctl(fd, HPET_IRQFREQ, RTC_FREQ);
1252 if (r < 0) {
1253 fprintf(stderr, "Could not configure '/dev/hpet' to have a 1024Hz timer. This is not a fatal\n"
1254 "error, but for better emulation accuracy type:\n"
1255 "'echo 1024 > /proc/sys/dev/hpet/max-user-freq' as root.\n");
1256 goto fail;
1259 /* Check capabilities */
1260 r = ioctl(fd, HPET_INFO, &info);
1261 if (r < 0)
1262 goto fail;
1264 /* Enable periodic mode */
1265 r = ioctl(fd, HPET_EPI, 0);
1266 if (info.hi_flags && (r < 0))
1267 goto fail;
1269 /* Enable interrupt */
1270 r = ioctl(fd, HPET_IE_ON, 0);
1271 if (r < 0)
1272 goto fail;
1274 enable_sigio_timer(fd);
1275 t->priv = (void *)(long)fd;
1277 return 0;
1278 fail:
1279 close(fd);
1280 return -1;
1283 static void hpet_stop_timer(struct qemu_alarm_timer *t)
1285 int fd = (long)t->priv;
1287 close(fd);
1290 static int rtc_start_timer(struct qemu_alarm_timer *t)
1292 int rtc_fd;
1293 unsigned long current_rtc_freq = 0;
1295 TFR(rtc_fd = open("/dev/rtc", O_RDONLY));
1296 if (rtc_fd < 0)
1297 return -1;
1298 ioctl(rtc_fd, RTC_IRQP_READ, &current_rtc_freq);
1299 if (current_rtc_freq != RTC_FREQ &&
1300 ioctl(rtc_fd, RTC_IRQP_SET, RTC_FREQ) < 0) {
1301 fprintf(stderr, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n"
1302 "error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n"
1303 "type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n");
1304 goto fail;
1306 if (ioctl(rtc_fd, RTC_PIE_ON, 0) < 0) {
1307 fail:
1308 close(rtc_fd);
1309 return -1;
1312 enable_sigio_timer(rtc_fd);
1314 t->priv = (void *)(long)rtc_fd;
1316 return 0;
1319 static void rtc_stop_timer(struct qemu_alarm_timer *t)
1321 int rtc_fd = (long)t->priv;
1323 close(rtc_fd);
1326 static int dynticks_start_timer(struct qemu_alarm_timer *t)
1328 struct sigevent ev;
1329 timer_t host_timer;
1330 struct sigaction act;
1332 sigfillset(&act.sa_mask);
1333 act.sa_flags = 0;
1334 act.sa_handler = host_alarm_handler;
1336 sigaction(SIGALRM, &act, NULL);
1339 * Initialize ev struct to 0 to avoid valgrind complaining
1340 * about uninitialized data in timer_create call
1342 memset(&ev, 0, sizeof(ev));
1343 ev.sigev_value.sival_int = 0;
1344 ev.sigev_notify = SIGEV_SIGNAL;
1345 ev.sigev_signo = SIGALRM;
1347 if (timer_create(CLOCK_REALTIME, &ev, &host_timer)) {
1348 perror("timer_create");
1350 /* disable dynticks */
1351 fprintf(stderr, "Dynamic Ticks disabled\n");
1353 return -1;
1356 t->priv = (void *)(long)host_timer;
1358 return 0;
1361 static void dynticks_stop_timer(struct qemu_alarm_timer *t)
1363 timer_t host_timer = (timer_t)(long)t->priv;
1365 timer_delete(host_timer);
1368 static void dynticks_rearm_timer(struct qemu_alarm_timer *t)
1370 timer_t host_timer = (timer_t)(long)t->priv;
1371 struct itimerspec timeout;
1372 int64_t nearest_delta_us = INT64_MAX;
1373 int64_t current_us;
1375 if (!active_timers[QEMU_CLOCK_REALTIME] &&
1376 !active_timers[QEMU_CLOCK_VIRTUAL] &&
1377 !active_timers[QEMU_CLOCK_HOST])
1378 return;
1380 nearest_delta_us = qemu_next_deadline_dyntick();
1382 /* check whether a timer is already running */
1383 if (timer_gettime(host_timer, &timeout)) {
1384 perror("gettime");
1385 fprintf(stderr, "Internal timer error: aborting\n");
1386 exit(1);
1388 current_us = timeout.it_value.tv_sec * 1000000 + timeout.it_value.tv_nsec/1000;
1389 if (current_us && current_us <= nearest_delta_us)
1390 return;
1392 timeout.it_interval.tv_sec = 0;
1393 timeout.it_interval.tv_nsec = 0; /* 0 for one-shot timer */
1394 timeout.it_value.tv_sec = nearest_delta_us / 1000000;
1395 timeout.it_value.tv_nsec = (nearest_delta_us % 1000000) * 1000;
1396 if (timer_settime(host_timer, 0 /* RELATIVE */, &timeout, NULL)) {
1397 perror("settime");
1398 fprintf(stderr, "Internal timer error: aborting\n");
1399 exit(1);
1403 #endif /* defined(__linux__) */
1405 static int unix_start_timer(struct qemu_alarm_timer *t)
1407 struct sigaction act;
1408 struct itimerval itv;
1409 int err;
1411 /* timer signal */
1412 sigfillset(&act.sa_mask);
1413 act.sa_flags = 0;
1414 act.sa_handler = host_alarm_handler;
1416 sigaction(SIGALRM, &act, NULL);
1418 itv.it_interval.tv_sec = 0;
1419 /* for i386 kernel 2.6 to get 1 ms */
1420 itv.it_interval.tv_usec = 999;
1421 itv.it_value.tv_sec = 0;
1422 itv.it_value.tv_usec = 10 * 1000;
1424 err = setitimer(ITIMER_REAL, &itv, NULL);
1425 if (err)
1426 return -1;
1428 return 0;
1431 static void unix_stop_timer(struct qemu_alarm_timer *t)
1433 struct itimerval itv;
1435 memset(&itv, 0, sizeof(itv));
1436 setitimer(ITIMER_REAL, &itv, NULL);
1439 #endif /* !defined(_WIN32) */
1442 #ifdef _WIN32
1444 static int win32_start_timer(struct qemu_alarm_timer *t)
1446 TIMECAPS tc;
1447 struct qemu_alarm_win32 *data = t->priv;
1448 UINT flags;
1450 memset(&tc, 0, sizeof(tc));
1451 timeGetDevCaps(&tc, sizeof(tc));
1453 if (data->period < tc.wPeriodMin)
1454 data->period = tc.wPeriodMin;
1456 timeBeginPeriod(data->period);
1458 flags = TIME_CALLBACK_FUNCTION;
1459 if (alarm_has_dynticks(t))
1460 flags |= TIME_ONESHOT;
1461 else
1462 flags |= TIME_PERIODIC;
1464 data->timerId = timeSetEvent(1, // interval (ms)
1465 data->period, // resolution
1466 host_alarm_handler, // function
1467 (DWORD)t, // parameter
1468 flags);
1470 if (!data->timerId) {
1471 fprintf(stderr, "Failed to initialize win32 alarm timer: %ld\n",
1472 GetLastError());
1473 timeEndPeriod(data->period);
1474 return -1;
1477 return 0;
1480 static void win32_stop_timer(struct qemu_alarm_timer *t)
1482 struct qemu_alarm_win32 *data = t->priv;
1484 timeKillEvent(data->timerId);
1485 timeEndPeriod(data->period);
1488 static void win32_rearm_timer(struct qemu_alarm_timer *t)
1490 struct qemu_alarm_win32 *data = t->priv;
1492 if (!active_timers[QEMU_CLOCK_REALTIME] &&
1493 !active_timers[QEMU_CLOCK_VIRTUAL] &&
1494 !active_timers[QEMU_CLOCK_HOST])
1495 return;
1497 timeKillEvent(data->timerId);
1499 data->timerId = timeSetEvent(1,
1500 data->period,
1501 host_alarm_handler,
1502 (DWORD)t,
1503 TIME_ONESHOT | TIME_PERIODIC);
1505 if (!data->timerId) {
1506 fprintf(stderr, "Failed to re-arm win32 alarm timer %ld\n",
1507 GetLastError());
1509 timeEndPeriod(data->period);
1510 exit(1);
1514 #endif /* _WIN32 */
1516 static int init_timer_alarm(void)
1518 struct qemu_alarm_timer *t = NULL;
1519 int i, err = -1;
1521 for (i = 0; alarm_timers[i].name; i++) {
1522 t = &alarm_timers[i];
1524 err = t->start(t);
1525 if (!err)
1526 break;
1529 if (err) {
1530 err = -ENOENT;
1531 goto fail;
1534 alarm_timer = t;
1536 return 0;
1538 fail:
1539 return err;
1542 static void quit_timers(void)
1544 alarm_timer->stop(alarm_timer);
1545 alarm_timer = NULL;
1548 /***********************************************************/
1549 /* host time/date access */
1550 void qemu_get_timedate(struct tm *tm, int offset)
1552 time_t ti;
1553 struct tm *ret;
1555 time(&ti);
1556 ti += offset;
1557 if (rtc_date_offset == -1) {
1558 if (rtc_utc)
1559 ret = gmtime(&ti);
1560 else
1561 ret = localtime(&ti);
1562 } else {
1563 ti -= rtc_date_offset;
1564 ret = gmtime(&ti);
1567 memcpy(tm, ret, sizeof(struct tm));
1570 int qemu_timedate_diff(struct tm *tm)
1572 time_t seconds;
1574 if (rtc_date_offset == -1)
1575 if (rtc_utc)
1576 seconds = mktimegm(tm);
1577 else
1578 seconds = mktime(tm);
1579 else
1580 seconds = mktimegm(tm) + rtc_date_offset;
1582 return seconds - time(NULL);
1585 static void configure_rtc_date_offset(const char *startdate, int legacy)
1587 time_t rtc_start_date;
1588 struct tm tm;
1590 if (!strcmp(startdate, "now") && legacy) {
1591 rtc_date_offset = -1;
1592 } else {
1593 if (sscanf(startdate, "%d-%d-%dT%d:%d:%d",
1594 &tm.tm_year,
1595 &tm.tm_mon,
1596 &tm.tm_mday,
1597 &tm.tm_hour,
1598 &tm.tm_min,
1599 &tm.tm_sec) == 6) {
1600 /* OK */
1601 } else if (sscanf(startdate, "%d-%d-%d",
1602 &tm.tm_year,
1603 &tm.tm_mon,
1604 &tm.tm_mday) == 3) {
1605 tm.tm_hour = 0;
1606 tm.tm_min = 0;
1607 tm.tm_sec = 0;
1608 } else {
1609 goto date_fail;
1611 tm.tm_year -= 1900;
1612 tm.tm_mon--;
1613 rtc_start_date = mktimegm(&tm);
1614 if (rtc_start_date == -1) {
1615 date_fail:
1616 fprintf(stderr, "Invalid date format. Valid formats are:\n"
1617 "'2006-06-17T16:01:21' or '2006-06-17'\n");
1618 exit(1);
1620 rtc_date_offset = time(NULL) - rtc_start_date;
1624 static void configure_rtc(QemuOpts *opts)
1626 const char *value;
1628 value = qemu_opt_get(opts, "base");
1629 if (value) {
1630 if (!strcmp(value, "utc")) {
1631 rtc_utc = 1;
1632 } else if (!strcmp(value, "localtime")) {
1633 rtc_utc = 0;
1634 } else {
1635 configure_rtc_date_offset(value, 0);
1638 value = qemu_opt_get(opts, "clock");
1639 if (value) {
1640 if (!strcmp(value, "host")) {
1641 rtc_clock = host_clock;
1642 } else if (!strcmp(value, "vm")) {
1643 rtc_clock = vm_clock;
1644 } else {
1645 fprintf(stderr, "qemu: invalid option value '%s'\n", value);
1646 exit(1);
1649 #ifdef CONFIG_TARGET_I386
1650 value = qemu_opt_get(opts, "driftfix");
1651 if (value) {
1652 if (!strcmp(buf, "slew")) {
1653 rtc_td_hack = 1;
1654 } else if (!strcmp(buf, "none")) {
1655 rtc_td_hack = 0;
1656 } else {
1657 fprintf(stderr, "qemu: invalid option value '%s'\n", value);
1658 exit(1);
1661 #endif
1664 #ifdef _WIN32
1665 static void socket_cleanup(void)
1667 WSACleanup();
1670 static int socket_init(void)
1672 WSADATA Data;
1673 int ret, err;
1675 ret = WSAStartup(MAKEWORD(2,2), &Data);
1676 if (ret != 0) {
1677 err = WSAGetLastError();
1678 fprintf(stderr, "WSAStartup: %d\n", err);
1679 return -1;
1681 atexit(socket_cleanup);
1682 return 0;
1684 #endif
1686 /***********************************************************/
1687 /* Bluetooth support */
1688 static int nb_hcis;
1689 static int cur_hci;
1690 static struct HCIInfo *hci_table[MAX_NICS];
1692 static struct bt_vlan_s {
1693 struct bt_scatternet_s net;
1694 int id;
1695 struct bt_vlan_s *next;
1696 } *first_bt_vlan;
1698 /* find or alloc a new bluetooth "VLAN" */
1699 static struct bt_scatternet_s *qemu_find_bt_vlan(int id)
1701 struct bt_vlan_s **pvlan, *vlan;
1702 for (vlan = first_bt_vlan; vlan != NULL; vlan = vlan->next) {
1703 if (vlan->id == id)
1704 return &vlan->net;
1706 vlan = qemu_mallocz(sizeof(struct bt_vlan_s));
1707 vlan->id = id;
1708 pvlan = &first_bt_vlan;
1709 while (*pvlan != NULL)
1710 pvlan = &(*pvlan)->next;
1711 *pvlan = vlan;
1712 return &vlan->net;
1715 static void null_hci_send(struct HCIInfo *hci, const uint8_t *data, int len)
1719 static int null_hci_addr_set(struct HCIInfo *hci, const uint8_t *bd_addr)
1721 return -ENOTSUP;
1724 static struct HCIInfo null_hci = {
1725 .cmd_send = null_hci_send,
1726 .sco_send = null_hci_send,
1727 .acl_send = null_hci_send,
1728 .bdaddr_set = null_hci_addr_set,
1731 struct HCIInfo *qemu_next_hci(void)
1733 if (cur_hci == nb_hcis)
1734 return &null_hci;
1736 return hci_table[cur_hci++];
1739 static struct HCIInfo *hci_init(const char *str)
1741 char *endp;
1742 struct bt_scatternet_s *vlan = 0;
1744 if (!strcmp(str, "null"))
1745 /* null */
1746 return &null_hci;
1747 else if (!strncmp(str, "host", 4) && (str[4] == '\0' || str[4] == ':'))
1748 /* host[:hciN] */
1749 return bt_host_hci(str[4] ? str + 5 : "hci0");
1750 else if (!strncmp(str, "hci", 3)) {
1751 /* hci[,vlan=n] */
1752 if (str[3]) {
1753 if (!strncmp(str + 3, ",vlan=", 6)) {
1754 vlan = qemu_find_bt_vlan(strtol(str + 9, &endp, 0));
1755 if (*endp)
1756 vlan = 0;
1758 } else
1759 vlan = qemu_find_bt_vlan(0);
1760 if (vlan)
1761 return bt_new_hci(vlan);
1764 fprintf(stderr, "qemu: Unknown bluetooth HCI `%s'.\n", str);
1766 return 0;
1769 static int bt_hci_parse(const char *str)
1771 struct HCIInfo *hci;
1772 bdaddr_t bdaddr;
1774 if (nb_hcis >= MAX_NICS) {
1775 fprintf(stderr, "qemu: Too many bluetooth HCIs (max %i).\n", MAX_NICS);
1776 return -1;
1779 hci = hci_init(str);
1780 if (!hci)
1781 return -1;
1783 bdaddr.b[0] = 0x52;
1784 bdaddr.b[1] = 0x54;
1785 bdaddr.b[2] = 0x00;
1786 bdaddr.b[3] = 0x12;
1787 bdaddr.b[4] = 0x34;
1788 bdaddr.b[5] = 0x56 + nb_hcis;
1789 hci->bdaddr_set(hci, bdaddr.b);
1791 hci_table[nb_hcis++] = hci;
1793 return 0;
1796 static void bt_vhci_add(int vlan_id)
1798 struct bt_scatternet_s *vlan = qemu_find_bt_vlan(vlan_id);
1800 if (!vlan->slave)
1801 fprintf(stderr, "qemu: warning: adding a VHCI to "
1802 "an empty scatternet %i\n", vlan_id);
1804 bt_vhci_init(bt_new_hci(vlan));
1807 static struct bt_device_s *bt_device_add(const char *opt)
1809 struct bt_scatternet_s *vlan;
1810 int vlan_id = 0;
1811 char *endp = strstr(opt, ",vlan=");
1812 int len = (endp ? endp - opt : strlen(opt)) + 1;
1813 char devname[10];
1815 pstrcpy(devname, MIN(sizeof(devname), len), opt);
1817 if (endp) {
1818 vlan_id = strtol(endp + 6, &endp, 0);
1819 if (*endp) {
1820 fprintf(stderr, "qemu: unrecognised bluetooth vlan Id\n");
1821 return 0;
1825 vlan = qemu_find_bt_vlan(vlan_id);
1827 if (!vlan->slave)
1828 fprintf(stderr, "qemu: warning: adding a slave device to "
1829 "an empty scatternet %i\n", vlan_id);
1831 if (!strcmp(devname, "keyboard"))
1832 return bt_keyboard_init(vlan);
1834 fprintf(stderr, "qemu: unsupported bluetooth device `%s'\n", devname);
1835 return 0;
1838 static int bt_parse(const char *opt)
1840 const char *endp, *p;
1841 int vlan;
1843 if (strstart(opt, "hci", &endp)) {
1844 if (!*endp || *endp == ',') {
1845 if (*endp)
1846 if (!strstart(endp, ",vlan=", 0))
1847 opt = endp + 1;
1849 return bt_hci_parse(opt);
1851 } else if (strstart(opt, "vhci", &endp)) {
1852 if (!*endp || *endp == ',') {
1853 if (*endp) {
1854 if (strstart(endp, ",vlan=", &p)) {
1855 vlan = strtol(p, (char **) &endp, 0);
1856 if (*endp) {
1857 fprintf(stderr, "qemu: bad scatternet '%s'\n", p);
1858 return 1;
1860 } else {
1861 fprintf(stderr, "qemu: bad parameter '%s'\n", endp + 1);
1862 return 1;
1864 } else
1865 vlan = 0;
1867 bt_vhci_add(vlan);
1868 return 0;
1870 } else if (strstart(opt, "device:", &endp))
1871 return !bt_device_add(endp);
1873 fprintf(stderr, "qemu: bad bluetooth parameter '%s'\n", opt);
1874 return 1;
1877 /***********************************************************/
1878 /* QEMU Block devices */
1880 #define HD_ALIAS "index=%d,media=disk"
1881 #define CDROM_ALIAS "index=2,media=cdrom"
1882 #define FD_ALIAS "index=%d,if=floppy"
1883 #define PFLASH_ALIAS "if=pflash"
1884 #define MTD_ALIAS "if=mtd"
1885 #define SD_ALIAS "index=0,if=sd"
1887 QemuOpts *drive_add(const char *file, const char *fmt, ...)
1889 va_list ap;
1890 char optstr[1024];
1891 QemuOpts *opts;
1893 va_start(ap, fmt);
1894 vsnprintf(optstr, sizeof(optstr), fmt, ap);
1895 va_end(ap);
1897 opts = qemu_opts_parse(&qemu_drive_opts, optstr, NULL);
1898 if (!opts) {
1899 fprintf(stderr, "%s: huh? duplicate? (%s)\n",
1900 __FUNCTION__, optstr);
1901 return NULL;
1903 if (file)
1904 qemu_opt_set(opts, "file", file);
1905 return opts;
1908 DriveInfo *drive_get(BlockInterfaceType type, int bus, int unit)
1910 DriveInfo *dinfo;
1912 /* seek interface, bus and unit */
1914 QTAILQ_FOREACH(dinfo, &drives, next) {
1915 if (dinfo->type == type &&
1916 dinfo->bus == bus &&
1917 dinfo->unit == unit)
1918 return dinfo;
1921 return NULL;
1924 DriveInfo *drive_get_by_id(const char *id)
1926 DriveInfo *dinfo;
1928 QTAILQ_FOREACH(dinfo, &drives, next) {
1929 if (strcmp(id, dinfo->id))
1930 continue;
1931 return dinfo;
1933 return NULL;
1936 int drive_get_max_bus(BlockInterfaceType type)
1938 int max_bus;
1939 DriveInfo *dinfo;
1941 max_bus = -1;
1942 QTAILQ_FOREACH(dinfo, &drives, next) {
1943 if(dinfo->type == type &&
1944 dinfo->bus > max_bus)
1945 max_bus = dinfo->bus;
1947 return max_bus;
1950 const char *drive_get_serial(BlockDriverState *bdrv)
1952 DriveInfo *dinfo;
1954 QTAILQ_FOREACH(dinfo, &drives, next) {
1955 if (dinfo->bdrv == bdrv)
1956 return dinfo->serial;
1959 return "\0";
1962 BlockInterfaceErrorAction drive_get_onerror(BlockDriverState *bdrv)
1964 DriveInfo *dinfo;
1966 QTAILQ_FOREACH(dinfo, &drives, next) {
1967 if (dinfo->bdrv == bdrv)
1968 return dinfo->onerror;
1971 return BLOCK_ERR_STOP_ENOSPC;
1974 static void bdrv_format_print(void *opaque, const char *name)
1976 fprintf(stderr, " %s", name);
1979 void drive_uninit(DriveInfo *dinfo)
1981 qemu_opts_del(dinfo->opts);
1982 bdrv_delete(dinfo->bdrv);
1983 QTAILQ_REMOVE(&drives, dinfo, next);
1984 qemu_free(dinfo);
1987 DriveInfo *drive_init(QemuOpts *opts, void *opaque,
1988 int *fatal_error)
1990 const char *buf;
1991 const char *file = NULL;
1992 char devname[128];
1993 const char *serial;
1994 const char *mediastr = "";
1995 BlockInterfaceType type;
1996 enum { MEDIA_DISK, MEDIA_CDROM } media;
1997 int bus_id, unit_id;
1998 int cyls, heads, secs, translation;
1999 BlockDriver *drv = NULL;
2000 QEMUMachine *machine = opaque;
2001 int max_devs;
2002 int index;
2003 int cache;
2004 int aio = 0;
2005 int ro = 0;
2006 int bdrv_flags, onerror;
2007 const char *devaddr;
2008 DriveInfo *dinfo;
2009 int snapshot = 0;
2011 *fatal_error = 1;
2013 translation = BIOS_ATA_TRANSLATION_AUTO;
2014 cache = 1;
2016 if (machine && machine->use_scsi) {
2017 type = IF_SCSI;
2018 max_devs = MAX_SCSI_DEVS;
2019 pstrcpy(devname, sizeof(devname), "scsi");
2020 } else {
2021 type = IF_IDE;
2022 max_devs = MAX_IDE_DEVS;
2023 pstrcpy(devname, sizeof(devname), "ide");
2025 media = MEDIA_DISK;
2027 /* extract parameters */
2028 bus_id = qemu_opt_get_number(opts, "bus", 0);
2029 unit_id = qemu_opt_get_number(opts, "unit", -1);
2030 index = qemu_opt_get_number(opts, "index", -1);
2032 cyls = qemu_opt_get_number(opts, "cyls", 0);
2033 heads = qemu_opt_get_number(opts, "heads", 0);
2034 secs = qemu_opt_get_number(opts, "secs", 0);
2036 snapshot = qemu_opt_get_bool(opts, "snapshot", 0);
2037 ro = qemu_opt_get_bool(opts, "readonly", 0);
2039 file = qemu_opt_get(opts, "file");
2040 serial = qemu_opt_get(opts, "serial");
2042 if ((buf = qemu_opt_get(opts, "if")) != NULL) {
2043 pstrcpy(devname, sizeof(devname), buf);
2044 if (!strcmp(buf, "ide")) {
2045 type = IF_IDE;
2046 max_devs = MAX_IDE_DEVS;
2047 } else if (!strcmp(buf, "scsi")) {
2048 type = IF_SCSI;
2049 max_devs = MAX_SCSI_DEVS;
2050 } else if (!strcmp(buf, "floppy")) {
2051 type = IF_FLOPPY;
2052 max_devs = 0;
2053 } else if (!strcmp(buf, "pflash")) {
2054 type = IF_PFLASH;
2055 max_devs = 0;
2056 } else if (!strcmp(buf, "mtd")) {
2057 type = IF_MTD;
2058 max_devs = 0;
2059 } else if (!strcmp(buf, "sd")) {
2060 type = IF_SD;
2061 max_devs = 0;
2062 } else if (!strcmp(buf, "virtio")) {
2063 type = IF_VIRTIO;
2064 max_devs = 0;
2065 } else if (!strcmp(buf, "xen")) {
2066 type = IF_XEN;
2067 max_devs = 0;
2068 } else if (!strcmp(buf, "none")) {
2069 type = IF_NONE;
2070 max_devs = 0;
2071 } else {
2072 fprintf(stderr, "qemu: unsupported bus type '%s'\n", buf);
2073 return NULL;
2077 if (cyls || heads || secs) {
2078 if (cyls < 1 || (type == IF_IDE && cyls > 16383)) {
2079 fprintf(stderr, "qemu: '%s' invalid physical cyls number\n", buf);
2080 return NULL;
2082 if (heads < 1 || (type == IF_IDE && heads > 16)) {
2083 fprintf(stderr, "qemu: '%s' invalid physical heads number\n", buf);
2084 return NULL;
2086 if (secs < 1 || (type == IF_IDE && secs > 63)) {
2087 fprintf(stderr, "qemu: '%s' invalid physical secs number\n", buf);
2088 return NULL;
2092 if ((buf = qemu_opt_get(opts, "trans")) != NULL) {
2093 if (!cyls) {
2094 fprintf(stderr,
2095 "qemu: '%s' trans must be used with cyls,heads and secs\n",
2096 buf);
2097 return NULL;
2099 if (!strcmp(buf, "none"))
2100 translation = BIOS_ATA_TRANSLATION_NONE;
2101 else if (!strcmp(buf, "lba"))
2102 translation = BIOS_ATA_TRANSLATION_LBA;
2103 else if (!strcmp(buf, "auto"))
2104 translation = BIOS_ATA_TRANSLATION_AUTO;
2105 else {
2106 fprintf(stderr, "qemu: '%s' invalid translation type\n", buf);
2107 return NULL;
2111 if ((buf = qemu_opt_get(opts, "media")) != NULL) {
2112 if (!strcmp(buf, "disk")) {
2113 media = MEDIA_DISK;
2114 } else if (!strcmp(buf, "cdrom")) {
2115 if (cyls || secs || heads) {
2116 fprintf(stderr,
2117 "qemu: '%s' invalid physical CHS format\n", buf);
2118 return NULL;
2120 media = MEDIA_CDROM;
2121 } else {
2122 fprintf(stderr, "qemu: '%s' invalid media\n", buf);
2123 return NULL;
2127 if ((buf = qemu_opt_get(opts, "cache")) != NULL) {
2128 if (!strcmp(buf, "off") || !strcmp(buf, "none"))
2129 cache = 0;
2130 else if (!strcmp(buf, "writethrough"))
2131 cache = 1;
2132 else if (!strcmp(buf, "writeback"))
2133 cache = 2;
2134 else {
2135 fprintf(stderr, "qemu: invalid cache option\n");
2136 return NULL;
2140 #ifdef CONFIG_LINUX_AIO
2141 if ((buf = qemu_opt_get(opts, "aio")) != NULL) {
2142 if (!strcmp(buf, "threads"))
2143 aio = 0;
2144 else if (!strcmp(buf, "native"))
2145 aio = 1;
2146 else {
2147 fprintf(stderr, "qemu: invalid aio option\n");
2148 return NULL;
2151 #endif
2153 if ((buf = qemu_opt_get(opts, "format")) != NULL) {
2154 if (strcmp(buf, "?") == 0) {
2155 fprintf(stderr, "qemu: Supported formats:");
2156 bdrv_iterate_format(bdrv_format_print, NULL);
2157 fprintf(stderr, "\n");
2158 return NULL;
2160 drv = bdrv_find_whitelisted_format(buf);
2161 if (!drv) {
2162 fprintf(stderr, "qemu: '%s' invalid format\n", buf);
2163 return NULL;
2167 onerror = BLOCK_ERR_STOP_ENOSPC;
2168 if ((buf = qemu_opt_get(opts, "werror")) != NULL) {
2169 if (type != IF_IDE && type != IF_SCSI && type != IF_VIRTIO) {
2170 fprintf(stderr, "werror is no supported by this format\n");
2171 return NULL;
2173 if (!strcmp(buf, "ignore"))
2174 onerror = BLOCK_ERR_IGNORE;
2175 else if (!strcmp(buf, "enospc"))
2176 onerror = BLOCK_ERR_STOP_ENOSPC;
2177 else if (!strcmp(buf, "stop"))
2178 onerror = BLOCK_ERR_STOP_ANY;
2179 else if (!strcmp(buf, "report"))
2180 onerror = BLOCK_ERR_REPORT;
2181 else {
2182 fprintf(stderr, "qemu: '%s' invalid write error action\n", buf);
2183 return NULL;
2187 if ((devaddr = qemu_opt_get(opts, "addr")) != NULL) {
2188 if (type != IF_VIRTIO) {
2189 fprintf(stderr, "addr is not supported\n");
2190 return NULL;
2194 /* compute bus and unit according index */
2196 if (index != -1) {
2197 if (bus_id != 0 || unit_id != -1) {
2198 fprintf(stderr,
2199 "qemu: index cannot be used with bus and unit\n");
2200 return NULL;
2202 if (max_devs == 0)
2204 unit_id = index;
2205 bus_id = 0;
2206 } else {
2207 unit_id = index % max_devs;
2208 bus_id = index / max_devs;
2212 /* if user doesn't specify a unit_id,
2213 * try to find the first free
2216 if (unit_id == -1) {
2217 unit_id = 0;
2218 while (drive_get(type, bus_id, unit_id) != NULL) {
2219 unit_id++;
2220 if (max_devs && unit_id >= max_devs) {
2221 unit_id -= max_devs;
2222 bus_id++;
2227 /* check unit id */
2229 if (max_devs && unit_id >= max_devs) {
2230 fprintf(stderr, "qemu: unit %d too big (max is %d)\n",
2231 unit_id, max_devs - 1);
2232 return NULL;
2236 * ignore multiple definitions
2239 if (drive_get(type, bus_id, unit_id) != NULL) {
2240 *fatal_error = 0;
2241 return NULL;
2244 /* init */
2246 dinfo = qemu_mallocz(sizeof(*dinfo));
2247 if ((buf = qemu_opts_id(opts)) != NULL) {
2248 dinfo->id = qemu_strdup(buf);
2249 } else {
2250 /* no id supplied -> create one */
2251 dinfo->id = qemu_mallocz(32);
2252 if (type == IF_IDE || type == IF_SCSI)
2253 mediastr = (media == MEDIA_CDROM) ? "-cd" : "-hd";
2254 if (max_devs)
2255 snprintf(dinfo->id, 32, "%s%i%s%i",
2256 devname, bus_id, mediastr, unit_id);
2257 else
2258 snprintf(dinfo->id, 32, "%s%s%i",
2259 devname, mediastr, unit_id);
2261 dinfo->bdrv = bdrv_new(dinfo->id);
2262 dinfo->devaddr = devaddr;
2263 dinfo->type = type;
2264 dinfo->bus = bus_id;
2265 dinfo->unit = unit_id;
2266 dinfo->onerror = onerror;
2267 dinfo->opts = opts;
2268 if (serial)
2269 strncpy(dinfo->serial, serial, sizeof(serial));
2270 QTAILQ_INSERT_TAIL(&drives, dinfo, next);
2272 switch(type) {
2273 case IF_IDE:
2274 case IF_SCSI:
2275 case IF_XEN:
2276 case IF_NONE:
2277 switch(media) {
2278 case MEDIA_DISK:
2279 if (cyls != 0) {
2280 bdrv_set_geometry_hint(dinfo->bdrv, cyls, heads, secs);
2281 bdrv_set_translation_hint(dinfo->bdrv, translation);
2283 break;
2284 case MEDIA_CDROM:
2285 bdrv_set_type_hint(dinfo->bdrv, BDRV_TYPE_CDROM);
2286 break;
2288 break;
2289 case IF_SD:
2290 /* FIXME: This isn't really a floppy, but it's a reasonable
2291 approximation. */
2292 case IF_FLOPPY:
2293 bdrv_set_type_hint(dinfo->bdrv, BDRV_TYPE_FLOPPY);
2294 break;
2295 case IF_PFLASH:
2296 case IF_MTD:
2297 break;
2298 case IF_VIRTIO:
2299 /* add virtio block device */
2300 opts = qemu_opts_create(&qemu_device_opts, NULL, 0);
2301 qemu_opt_set(opts, "driver", "virtio-blk-pci");
2302 qemu_opt_set(opts, "drive", dinfo->id);
2303 if (devaddr)
2304 qemu_opt_set(opts, "addr", devaddr);
2305 break;
2306 case IF_COUNT:
2307 abort();
2309 if (!file) {
2310 *fatal_error = 0;
2311 return NULL;
2313 bdrv_flags = 0;
2314 if (snapshot) {
2315 bdrv_flags |= BDRV_O_SNAPSHOT;
2316 cache = 2; /* always use write-back with snapshot */
2318 if (cache == 0) /* no caching */
2319 bdrv_flags |= BDRV_O_NOCACHE;
2320 else if (cache == 2) /* write-back */
2321 bdrv_flags |= BDRV_O_CACHE_WB;
2323 if (aio == 1) {
2324 bdrv_flags |= BDRV_O_NATIVE_AIO;
2325 } else {
2326 bdrv_flags &= ~BDRV_O_NATIVE_AIO;
2329 if (ro == 1) {
2330 if (type == IF_IDE) {
2331 fprintf(stderr, "qemu: readonly flag not supported for drive with ide interface\n");
2332 return NULL;
2334 (void)bdrv_set_read_only(dinfo->bdrv, 1);
2337 if (bdrv_open2(dinfo->bdrv, file, bdrv_flags, drv) < 0) {
2338 fprintf(stderr, "qemu: could not open disk image %s: %s\n",
2339 file, strerror(errno));
2340 return NULL;
2343 if (bdrv_key_required(dinfo->bdrv))
2344 autostart = 0;
2345 *fatal_error = 0;
2346 return dinfo;
2349 static int drive_init_func(QemuOpts *opts, void *opaque)
2351 QEMUMachine *machine = opaque;
2352 int fatal_error = 0;
2354 if (drive_init(opts, machine, &fatal_error) == NULL) {
2355 if (fatal_error)
2356 return 1;
2358 return 0;
2361 static int drive_enable_snapshot(QemuOpts *opts, void *opaque)
2363 if (NULL == qemu_opt_get(opts, "snapshot")) {
2364 qemu_opt_set(opts, "snapshot", "on");
2366 return 0;
2369 void qemu_register_boot_set(QEMUBootSetHandler *func, void *opaque)
2371 boot_set_handler = func;
2372 boot_set_opaque = opaque;
2375 int qemu_boot_set(const char *boot_devices)
2377 if (!boot_set_handler) {
2378 return -EINVAL;
2380 return boot_set_handler(boot_set_opaque, boot_devices);
2383 static int parse_bootdevices(char *devices)
2385 /* We just do some generic consistency checks */
2386 const char *p;
2387 int bitmap = 0;
2389 for (p = devices; *p != '\0'; p++) {
2390 /* Allowed boot devices are:
2391 * a-b: floppy disk drives
2392 * c-f: IDE disk drives
2393 * g-m: machine implementation dependant drives
2394 * n-p: network devices
2395 * It's up to each machine implementation to check if the given boot
2396 * devices match the actual hardware implementation and firmware
2397 * features.
2399 if (*p < 'a' || *p > 'p') {
2400 fprintf(stderr, "Invalid boot device '%c'\n", *p);
2401 exit(1);
2403 if (bitmap & (1 << (*p - 'a'))) {
2404 fprintf(stderr, "Boot device '%c' was given twice\n", *p);
2405 exit(1);
2407 bitmap |= 1 << (*p - 'a');
2409 return bitmap;
2412 static void restore_boot_devices(void *opaque)
2414 char *standard_boot_devices = opaque;
2416 qemu_boot_set(standard_boot_devices);
2418 qemu_unregister_reset(restore_boot_devices, standard_boot_devices);
2419 qemu_free(standard_boot_devices);
2422 static void numa_add(const char *optarg)
2424 char option[128];
2425 char *endptr;
2426 unsigned long long value, endvalue;
2427 int nodenr;
2429 optarg = get_opt_name(option, 128, optarg, ',') + 1;
2430 if (!strcmp(option, "node")) {
2431 if (get_param_value(option, 128, "nodeid", optarg) == 0) {
2432 nodenr = nb_numa_nodes;
2433 } else {
2434 nodenr = strtoull(option, NULL, 10);
2437 if (get_param_value(option, 128, "mem", optarg) == 0) {
2438 node_mem[nodenr] = 0;
2439 } else {
2440 value = strtoull(option, &endptr, 0);
2441 switch (*endptr) {
2442 case 0: case 'M': case 'm':
2443 value <<= 20;
2444 break;
2445 case 'G': case 'g':
2446 value <<= 30;
2447 break;
2449 node_mem[nodenr] = value;
2451 if (get_param_value(option, 128, "cpus", optarg) == 0) {
2452 node_cpumask[nodenr] = 0;
2453 } else {
2454 value = strtoull(option, &endptr, 10);
2455 if (value >= 64) {
2456 value = 63;
2457 fprintf(stderr, "only 64 CPUs in NUMA mode supported.\n");
2458 } else {
2459 if (*endptr == '-') {
2460 endvalue = strtoull(endptr+1, &endptr, 10);
2461 if (endvalue >= 63) {
2462 endvalue = 62;
2463 fprintf(stderr,
2464 "only 63 CPUs in NUMA mode supported.\n");
2466 value = (1 << (endvalue + 1)) - (1 << value);
2467 } else {
2468 value = 1 << value;
2471 node_cpumask[nodenr] = value;
2473 nb_numa_nodes++;
2475 return;
2478 static void smp_parse(const char *optarg)
2480 int smp, sockets = 0, threads = 0, cores = 0;
2481 char *endptr;
2482 char option[128];
2484 smp = strtoul(optarg, &endptr, 10);
2485 if (endptr != optarg) {
2486 if (*endptr == ',') {
2487 endptr++;
2490 if (get_param_value(option, 128, "sockets", endptr) != 0)
2491 sockets = strtoull(option, NULL, 10);
2492 if (get_param_value(option, 128, "cores", endptr) != 0)
2493 cores = strtoull(option, NULL, 10);
2494 if (get_param_value(option, 128, "threads", endptr) != 0)
2495 threads = strtoull(option, NULL, 10);
2496 if (get_param_value(option, 128, "maxcpus", endptr) != 0)
2497 max_cpus = strtoull(option, NULL, 10);
2499 /* compute missing values, prefer sockets over cores over threads */
2500 if (smp == 0 || sockets == 0) {
2501 sockets = sockets > 0 ? sockets : 1;
2502 cores = cores > 0 ? cores : 1;
2503 threads = threads > 0 ? threads : 1;
2504 if (smp == 0) {
2505 smp = cores * threads * sockets;
2506 } else {
2507 sockets = smp / (cores * threads);
2509 } else {
2510 if (cores == 0) {
2511 threads = threads > 0 ? threads : 1;
2512 cores = smp / (sockets * threads);
2513 } else {
2514 if (sockets == 0) {
2515 sockets = smp / (cores * threads);
2516 } else {
2517 threads = smp / (cores * sockets);
2521 smp_cpus = smp;
2522 smp_cores = cores > 0 ? cores : 1;
2523 smp_threads = threads > 0 ? threads : 1;
2524 if (max_cpus == 0)
2525 max_cpus = smp_cpus;
2528 /***********************************************************/
2529 /* USB devices */
2531 static int usb_device_add(const char *devname, int is_hotplug)
2533 const char *p;
2534 USBDevice *dev = NULL;
2536 if (!usb_enabled)
2537 return -1;
2539 /* drivers with .usbdevice_name entry in USBDeviceInfo */
2540 dev = usbdevice_create(devname);
2541 if (dev)
2542 goto done;
2544 /* the other ones */
2545 if (strstart(devname, "host:", &p)) {
2546 dev = usb_host_device_open(p);
2547 } else if (strstart(devname, "net:", &p)) {
2548 QemuOpts *opts;
2549 int idx;
2551 opts = qemu_opts_parse(&qemu_net_opts, p, NULL);
2552 if (!opts) {
2553 return -1;
2556 qemu_opt_set(opts, "type", "nic");
2557 qemu_opt_set(opts, "model", "usb");
2559 idx = net_client_init(NULL, opts, 0);
2560 if (idx == -1) {
2561 return -1;
2564 dev = usb_net_init(&nd_table[idx]);
2565 } else if (!strcmp(devname, "bt") || strstart(devname, "bt:", &p)) {
2566 dev = usb_bt_init(devname[2] ? hci_init(p) :
2567 bt_new_hci(qemu_find_bt_vlan(0)));
2568 } else {
2569 return -1;
2571 if (!dev)
2572 return -1;
2574 done:
2575 return 0;
2578 static int usb_device_del(const char *devname)
2580 int bus_num, addr;
2581 const char *p;
2583 if (strstart(devname, "host:", &p))
2584 return usb_host_device_close(p);
2586 if (!usb_enabled)
2587 return -1;
2589 p = strchr(devname, '.');
2590 if (!p)
2591 return -1;
2592 bus_num = strtoul(devname, NULL, 0);
2593 addr = strtoul(p + 1, NULL, 0);
2595 return usb_device_delete_addr(bus_num, addr);
2598 static int usb_parse(const char *cmdline)
2600 return usb_device_add(cmdline, 0);
2603 void do_usb_add(Monitor *mon, const QDict *qdict)
2605 usb_device_add(qdict_get_str(qdict, "devname"), 1);
2608 void do_usb_del(Monitor *mon, const QDict *qdict)
2610 usb_device_del(qdict_get_str(qdict, "devname"));
2613 /***********************************************************/
2614 /* PCMCIA/Cardbus */
2616 static struct pcmcia_socket_entry_s {
2617 PCMCIASocket *socket;
2618 struct pcmcia_socket_entry_s *next;
2619 } *pcmcia_sockets = 0;
2621 void pcmcia_socket_register(PCMCIASocket *socket)
2623 struct pcmcia_socket_entry_s *entry;
2625 entry = qemu_malloc(sizeof(struct pcmcia_socket_entry_s));
2626 entry->socket = socket;
2627 entry->next = pcmcia_sockets;
2628 pcmcia_sockets = entry;
2631 void pcmcia_socket_unregister(PCMCIASocket *socket)
2633 struct pcmcia_socket_entry_s *entry, **ptr;
2635 ptr = &pcmcia_sockets;
2636 for (entry = *ptr; entry; ptr = &entry->next, entry = *ptr)
2637 if (entry->socket == socket) {
2638 *ptr = entry->next;
2639 qemu_free(entry);
2643 void pcmcia_info(Monitor *mon)
2645 struct pcmcia_socket_entry_s *iter;
2647 if (!pcmcia_sockets)
2648 monitor_printf(mon, "No PCMCIA sockets\n");
2650 for (iter = pcmcia_sockets; iter; iter = iter->next)
2651 monitor_printf(mon, "%s: %s\n", iter->socket->slot_string,
2652 iter->socket->attached ? iter->socket->card_string :
2653 "Empty");
2656 /***********************************************************/
2657 /* register display */
2659 struct DisplayAllocator default_allocator = {
2660 defaultallocator_create_displaysurface,
2661 defaultallocator_resize_displaysurface,
2662 defaultallocator_free_displaysurface
2665 void register_displaystate(DisplayState *ds)
2667 DisplayState **s;
2668 s = &display_state;
2669 while (*s != NULL)
2670 s = &(*s)->next;
2671 ds->next = NULL;
2672 *s = ds;
2675 DisplayState *get_displaystate(void)
2677 return display_state;
2680 DisplayAllocator *register_displayallocator(DisplayState *ds, DisplayAllocator *da)
2682 if(ds->allocator == &default_allocator) ds->allocator = da;
2683 return ds->allocator;
2686 /* dumb display */
2688 static void dumb_display_init(void)
2690 DisplayState *ds = qemu_mallocz(sizeof(DisplayState));
2691 ds->allocator = &default_allocator;
2692 ds->surface = qemu_create_displaysurface(ds, 640, 480);
2693 register_displaystate(ds);
2696 /***********************************************************/
2697 /* I/O handling */
2699 typedef struct IOHandlerRecord {
2700 int fd;
2701 IOCanRWHandler *fd_read_poll;
2702 IOHandler *fd_read;
2703 IOHandler *fd_write;
2704 int deleted;
2705 void *opaque;
2706 /* temporary data */
2707 struct pollfd *ufd;
2708 struct IOHandlerRecord *next;
2709 } IOHandlerRecord;
2711 static IOHandlerRecord *first_io_handler;
2713 /* XXX: fd_read_poll should be suppressed, but an API change is
2714 necessary in the character devices to suppress fd_can_read(). */
2715 int qemu_set_fd_handler2(int fd,
2716 IOCanRWHandler *fd_read_poll,
2717 IOHandler *fd_read,
2718 IOHandler *fd_write,
2719 void *opaque)
2721 IOHandlerRecord **pioh, *ioh;
2723 if (!fd_read && !fd_write) {
2724 pioh = &first_io_handler;
2725 for(;;) {
2726 ioh = *pioh;
2727 if (ioh == NULL)
2728 break;
2729 if (ioh->fd == fd) {
2730 ioh->deleted = 1;
2731 break;
2733 pioh = &ioh->next;
2735 } else {
2736 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
2737 if (ioh->fd == fd)
2738 goto found;
2740 ioh = qemu_mallocz(sizeof(IOHandlerRecord));
2741 ioh->next = first_io_handler;
2742 first_io_handler = ioh;
2743 found:
2744 ioh->fd = fd;
2745 ioh->fd_read_poll = fd_read_poll;
2746 ioh->fd_read = fd_read;
2747 ioh->fd_write = fd_write;
2748 ioh->opaque = opaque;
2749 ioh->deleted = 0;
2751 return 0;
2754 int qemu_set_fd_handler(int fd,
2755 IOHandler *fd_read,
2756 IOHandler *fd_write,
2757 void *opaque)
2759 return qemu_set_fd_handler2(fd, NULL, fd_read, fd_write, opaque);
2762 #ifdef _WIN32
2763 /***********************************************************/
2764 /* Polling handling */
2766 typedef struct PollingEntry {
2767 PollingFunc *func;
2768 void *opaque;
2769 struct PollingEntry *next;
2770 } PollingEntry;
2772 static PollingEntry *first_polling_entry;
2774 int qemu_add_polling_cb(PollingFunc *func, void *opaque)
2776 PollingEntry **ppe, *pe;
2777 pe = qemu_mallocz(sizeof(PollingEntry));
2778 pe->func = func;
2779 pe->opaque = opaque;
2780 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next);
2781 *ppe = pe;
2782 return 0;
2785 void qemu_del_polling_cb(PollingFunc *func, void *opaque)
2787 PollingEntry **ppe, *pe;
2788 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next) {
2789 pe = *ppe;
2790 if (pe->func == func && pe->opaque == opaque) {
2791 *ppe = pe->next;
2792 qemu_free(pe);
2793 break;
2798 /***********************************************************/
2799 /* Wait objects support */
2800 typedef struct WaitObjects {
2801 int num;
2802 HANDLE events[MAXIMUM_WAIT_OBJECTS + 1];
2803 WaitObjectFunc *func[MAXIMUM_WAIT_OBJECTS + 1];
2804 void *opaque[MAXIMUM_WAIT_OBJECTS + 1];
2805 } WaitObjects;
2807 static WaitObjects wait_objects = {0};
2809 int qemu_add_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
2811 WaitObjects *w = &wait_objects;
2813 if (w->num >= MAXIMUM_WAIT_OBJECTS)
2814 return -1;
2815 w->events[w->num] = handle;
2816 w->func[w->num] = func;
2817 w->opaque[w->num] = opaque;
2818 w->num++;
2819 return 0;
2822 void qemu_del_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
2824 int i, found;
2825 WaitObjects *w = &wait_objects;
2827 found = 0;
2828 for (i = 0; i < w->num; i++) {
2829 if (w->events[i] == handle)
2830 found = 1;
2831 if (found) {
2832 w->events[i] = w->events[i + 1];
2833 w->func[i] = w->func[i + 1];
2834 w->opaque[i] = w->opaque[i + 1];
2837 if (found)
2838 w->num--;
2840 #endif
2842 /***********************************************************/
2843 /* ram save/restore */
2845 #define RAM_SAVE_FLAG_FULL 0x01 /* Obsolete, not used anymore */
2846 #define RAM_SAVE_FLAG_COMPRESS 0x02
2847 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
2848 #define RAM_SAVE_FLAG_PAGE 0x08
2849 #define RAM_SAVE_FLAG_EOS 0x10
2851 static int is_dup_page(uint8_t *page, uint8_t ch)
2853 uint32_t val = ch << 24 | ch << 16 | ch << 8 | ch;
2854 uint32_t *array = (uint32_t *)page;
2855 int i;
2857 for (i = 0; i < (TARGET_PAGE_SIZE / 4); i++) {
2858 if (array[i] != val)
2859 return 0;
2862 return 1;
2865 static int ram_save_block(QEMUFile *f)
2867 static ram_addr_t current_addr = 0;
2868 ram_addr_t saved_addr = current_addr;
2869 ram_addr_t addr = 0;
2870 int found = 0;
2872 while (addr < last_ram_offset) {
2873 if (cpu_physical_memory_get_dirty(current_addr, MIGRATION_DIRTY_FLAG)) {
2874 uint8_t *p;
2876 cpu_physical_memory_reset_dirty(current_addr,
2877 current_addr + TARGET_PAGE_SIZE,
2878 MIGRATION_DIRTY_FLAG);
2880 p = qemu_get_ram_ptr(current_addr);
2882 if (is_dup_page(p, *p)) {
2883 qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_COMPRESS);
2884 qemu_put_byte(f, *p);
2885 } else {
2886 qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_PAGE);
2887 qemu_put_buffer(f, p, TARGET_PAGE_SIZE);
2890 found = 1;
2891 break;
2893 addr += TARGET_PAGE_SIZE;
2894 current_addr = (saved_addr + addr) % last_ram_offset;
2897 return found;
2900 static uint64_t bytes_transferred;
2902 static ram_addr_t ram_save_remaining(void)
2904 ram_addr_t addr;
2905 ram_addr_t count = 0;
2907 for (addr = 0; addr < last_ram_offset; addr += TARGET_PAGE_SIZE) {
2908 if (cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
2909 count++;
2912 return count;
2915 uint64_t ram_bytes_remaining(void)
2917 return ram_save_remaining() * TARGET_PAGE_SIZE;
2920 uint64_t ram_bytes_transferred(void)
2922 return bytes_transferred;
2925 uint64_t ram_bytes_total(void)
2927 return last_ram_offset;
2930 static int ram_save_live(Monitor *mon, QEMUFile *f, int stage, void *opaque)
2932 ram_addr_t addr;
2933 uint64_t bytes_transferred_last;
2934 double bwidth = 0;
2935 uint64_t expected_time = 0;
2937 if (stage < 0) {
2938 cpu_physical_memory_set_dirty_tracking(0);
2939 return 0;
2942 if (cpu_physical_sync_dirty_bitmap(0, TARGET_PHYS_ADDR_MAX) != 0) {
2943 qemu_file_set_error(f);
2944 return 0;
2947 if (stage == 1) {
2948 bytes_transferred = 0;
2950 /* Make sure all dirty bits are set */
2951 for (addr = 0; addr < last_ram_offset; addr += TARGET_PAGE_SIZE) {
2952 if (!cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
2953 cpu_physical_memory_set_dirty(addr);
2956 /* Enable dirty memory tracking */
2957 cpu_physical_memory_set_dirty_tracking(1);
2959 qemu_put_be64(f, last_ram_offset | RAM_SAVE_FLAG_MEM_SIZE);
2962 bytes_transferred_last = bytes_transferred;
2963 bwidth = get_clock();
2965 while (!qemu_file_rate_limit(f)) {
2966 int ret;
2968 ret = ram_save_block(f);
2969 bytes_transferred += ret * TARGET_PAGE_SIZE;
2970 if (ret == 0) /* no more blocks */
2971 break;
2974 bwidth = get_clock() - bwidth;
2975 bwidth = (bytes_transferred - bytes_transferred_last) / bwidth;
2977 /* if we haven't transferred anything this round, force expected_time to a
2978 * a very high value, but without crashing */
2979 if (bwidth == 0)
2980 bwidth = 0.000001;
2982 /* try transferring iterative blocks of memory */
2983 if (stage == 3) {
2984 /* flush all remaining blocks regardless of rate limiting */
2985 while (ram_save_block(f) != 0) {
2986 bytes_transferred += TARGET_PAGE_SIZE;
2988 cpu_physical_memory_set_dirty_tracking(0);
2991 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
2993 expected_time = ram_save_remaining() * TARGET_PAGE_SIZE / bwidth;
2995 return (stage == 2) && (expected_time <= migrate_max_downtime());
2998 static int ram_load(QEMUFile *f, void *opaque, int version_id)
3000 ram_addr_t addr;
3001 int flags;
3003 if (version_id != 3)
3004 return -EINVAL;
3006 do {
3007 addr = qemu_get_be64(f);
3009 flags = addr & ~TARGET_PAGE_MASK;
3010 addr &= TARGET_PAGE_MASK;
3012 if (flags & RAM_SAVE_FLAG_MEM_SIZE) {
3013 if (addr != last_ram_offset)
3014 return -EINVAL;
3017 if (flags & RAM_SAVE_FLAG_COMPRESS) {
3018 uint8_t ch = qemu_get_byte(f);
3019 memset(qemu_get_ram_ptr(addr), ch, TARGET_PAGE_SIZE);
3020 #ifndef _WIN32
3021 if (ch == 0 &&
3022 (!kvm_enabled() || kvm_has_sync_mmu())) {
3023 madvise(qemu_get_ram_ptr(addr), TARGET_PAGE_SIZE, MADV_DONTNEED);
3025 #endif
3026 } else if (flags & RAM_SAVE_FLAG_PAGE) {
3027 qemu_get_buffer(f, qemu_get_ram_ptr(addr), TARGET_PAGE_SIZE);
3029 if (qemu_file_has_error(f)) {
3030 return -EIO;
3032 } while (!(flags & RAM_SAVE_FLAG_EOS));
3034 return 0;
3037 void qemu_service_io(void)
3039 qemu_notify_event();
3042 /***********************************************************/
3043 /* machine registration */
3045 static QEMUMachine *first_machine = NULL;
3046 QEMUMachine *current_machine = NULL;
3048 int qemu_register_machine(QEMUMachine *m)
3050 QEMUMachine **pm;
3051 pm = &first_machine;
3052 while (*pm != NULL)
3053 pm = &(*pm)->next;
3054 m->next = NULL;
3055 *pm = m;
3056 return 0;
3059 static QEMUMachine *find_machine(const char *name)
3061 QEMUMachine *m;
3063 for(m = first_machine; m != NULL; m = m->next) {
3064 if (!strcmp(m->name, name))
3065 return m;
3066 if (m->alias && !strcmp(m->alias, name))
3067 return m;
3069 return NULL;
3072 static QEMUMachine *find_default_machine(void)
3074 QEMUMachine *m;
3076 for(m = first_machine; m != NULL; m = m->next) {
3077 if (m->is_default) {
3078 return m;
3081 return NULL;
3084 /***********************************************************/
3085 /* main execution loop */
3087 static void gui_update(void *opaque)
3089 uint64_t interval = GUI_REFRESH_INTERVAL;
3090 DisplayState *ds = opaque;
3091 DisplayChangeListener *dcl = ds->listeners;
3093 dpy_refresh(ds);
3095 while (dcl != NULL) {
3096 if (dcl->gui_timer_interval &&
3097 dcl->gui_timer_interval < interval)
3098 interval = dcl->gui_timer_interval;
3099 dcl = dcl->next;
3101 qemu_mod_timer(ds->gui_timer, interval + qemu_get_clock(rt_clock));
3104 static void nographic_update(void *opaque)
3106 uint64_t interval = GUI_REFRESH_INTERVAL;
3108 qemu_mod_timer(nographic_timer, interval + qemu_get_clock(rt_clock));
3111 struct vm_change_state_entry {
3112 VMChangeStateHandler *cb;
3113 void *opaque;
3114 QLIST_ENTRY (vm_change_state_entry) entries;
3117 static QLIST_HEAD(vm_change_state_head, vm_change_state_entry) vm_change_state_head;
3119 VMChangeStateEntry *qemu_add_vm_change_state_handler(VMChangeStateHandler *cb,
3120 void *opaque)
3122 VMChangeStateEntry *e;
3124 e = qemu_mallocz(sizeof (*e));
3126 e->cb = cb;
3127 e->opaque = opaque;
3128 QLIST_INSERT_HEAD(&vm_change_state_head, e, entries);
3129 return e;
3132 void qemu_del_vm_change_state_handler(VMChangeStateEntry *e)
3134 QLIST_REMOVE (e, entries);
3135 qemu_free (e);
3138 static void vm_state_notify(int running, int reason)
3140 VMChangeStateEntry *e;
3142 for (e = vm_change_state_head.lh_first; e; e = e->entries.le_next) {
3143 e->cb(e->opaque, running, reason);
3147 static void resume_all_vcpus(void);
3148 static void pause_all_vcpus(void);
3150 void vm_start(void)
3152 if (!vm_running) {
3153 cpu_enable_ticks();
3154 vm_running = 1;
3155 vm_state_notify(1, 0);
3156 qemu_rearm_alarm_timer(alarm_timer);
3157 resume_all_vcpus();
3161 /* reset/shutdown handler */
3163 typedef struct QEMUResetEntry {
3164 QTAILQ_ENTRY(QEMUResetEntry) entry;
3165 QEMUResetHandler *func;
3166 void *opaque;
3167 } QEMUResetEntry;
3169 static QTAILQ_HEAD(reset_handlers, QEMUResetEntry) reset_handlers =
3170 QTAILQ_HEAD_INITIALIZER(reset_handlers);
3171 static int reset_requested;
3172 static int shutdown_requested;
3173 static int powerdown_requested;
3174 static int debug_requested;
3175 static int vmstop_requested;
3177 int qemu_shutdown_requested(void)
3179 int r = shutdown_requested;
3180 shutdown_requested = 0;
3181 return r;
3184 int qemu_reset_requested(void)
3186 int r = reset_requested;
3187 reset_requested = 0;
3188 return r;
3191 int qemu_powerdown_requested(void)
3193 int r = powerdown_requested;
3194 powerdown_requested = 0;
3195 return r;
3198 static int qemu_debug_requested(void)
3200 int r = debug_requested;
3201 debug_requested = 0;
3202 return r;
3205 static int qemu_vmstop_requested(void)
3207 int r = vmstop_requested;
3208 vmstop_requested = 0;
3209 return r;
3212 static void do_vm_stop(int reason)
3214 if (vm_running) {
3215 cpu_disable_ticks();
3216 vm_running = 0;
3217 pause_all_vcpus();
3218 vm_state_notify(0, reason);
3222 void qemu_register_reset(QEMUResetHandler *func, void *opaque)
3224 QEMUResetEntry *re = qemu_mallocz(sizeof(QEMUResetEntry));
3226 re->func = func;
3227 re->opaque = opaque;
3228 QTAILQ_INSERT_TAIL(&reset_handlers, re, entry);
3231 void qemu_unregister_reset(QEMUResetHandler *func, void *opaque)
3233 QEMUResetEntry *re;
3235 QTAILQ_FOREACH(re, &reset_handlers, entry) {
3236 if (re->func == func && re->opaque == opaque) {
3237 QTAILQ_REMOVE(&reset_handlers, re, entry);
3238 qemu_free(re);
3239 return;
3244 void qemu_system_reset(void)
3246 QEMUResetEntry *re, *nre;
3248 /* reset all devices */
3249 QTAILQ_FOREACH_SAFE(re, &reset_handlers, entry, nre) {
3250 re->func(re->opaque);
3254 void qemu_system_reset_request(void)
3256 if (no_reboot) {
3257 shutdown_requested = 1;
3258 } else {
3259 reset_requested = 1;
3261 qemu_notify_event();
3264 void qemu_system_shutdown_request(void)
3266 shutdown_requested = 1;
3267 qemu_notify_event();
3270 void qemu_system_powerdown_request(void)
3272 powerdown_requested = 1;
3273 qemu_notify_event();
3276 #ifdef CONFIG_IOTHREAD
3277 static void qemu_system_vmstop_request(int reason)
3279 vmstop_requested = reason;
3280 qemu_notify_event();
3282 #endif
3284 #ifndef _WIN32
3285 static int io_thread_fd = -1;
3287 static void qemu_event_increment(void)
3289 static const char byte = 0;
3291 if (io_thread_fd == -1)
3292 return;
3294 write(io_thread_fd, &byte, sizeof(byte));
3297 static void qemu_event_read(void *opaque)
3299 int fd = (unsigned long)opaque;
3300 ssize_t len;
3302 /* Drain the notify pipe */
3303 do {
3304 char buffer[512];
3305 len = read(fd, buffer, sizeof(buffer));
3306 } while ((len == -1 && errno == EINTR) || len > 0);
3309 static int qemu_event_init(void)
3311 int err;
3312 int fds[2];
3314 err = pipe(fds);
3315 if (err == -1)
3316 return -errno;
3318 err = fcntl_setfl(fds[0], O_NONBLOCK);
3319 if (err < 0)
3320 goto fail;
3322 err = fcntl_setfl(fds[1], O_NONBLOCK);
3323 if (err < 0)
3324 goto fail;
3326 qemu_set_fd_handler2(fds[0], NULL, qemu_event_read, NULL,
3327 (void *)(unsigned long)fds[0]);
3329 io_thread_fd = fds[1];
3330 return 0;
3332 fail:
3333 close(fds[0]);
3334 close(fds[1]);
3335 return err;
3337 #else
3338 HANDLE qemu_event_handle;
3340 static void dummy_event_handler(void *opaque)
3344 static int qemu_event_init(void)
3346 qemu_event_handle = CreateEvent(NULL, FALSE, FALSE, NULL);
3347 if (!qemu_event_handle) {
3348 fprintf(stderr, "Failed CreateEvent: %ld\n", GetLastError());
3349 return -1;
3351 qemu_add_wait_object(qemu_event_handle, dummy_event_handler, NULL);
3352 return 0;
3355 static void qemu_event_increment(void)
3357 if (!SetEvent(qemu_event_handle)) {
3358 fprintf(stderr, "qemu_event_increment: SetEvent failed: %ld\n",
3359 GetLastError());
3360 exit (1);
3363 #endif
3365 static int cpu_can_run(CPUState *env)
3367 if (env->stop)
3368 return 0;
3369 if (env->stopped)
3370 return 0;
3371 return 1;
3374 #ifndef CONFIG_IOTHREAD
3375 static int qemu_init_main_loop(void)
3377 return qemu_event_init();
3380 void qemu_init_vcpu(void *_env)
3382 CPUState *env = _env;
3384 if (kvm_enabled())
3385 kvm_init_vcpu(env);
3386 env->nr_cores = smp_cores;
3387 env->nr_threads = smp_threads;
3388 return;
3391 int qemu_cpu_self(void *env)
3393 return 1;
3396 static void resume_all_vcpus(void)
3400 static void pause_all_vcpus(void)
3404 void qemu_cpu_kick(void *env)
3406 return;
3409 void qemu_notify_event(void)
3411 CPUState *env = cpu_single_env;
3413 if (env) {
3414 cpu_exit(env);
3418 void qemu_mutex_lock_iothread(void) {}
3419 void qemu_mutex_unlock_iothread(void) {}
3421 void vm_stop(int reason)
3423 do_vm_stop(reason);
3426 #else /* CONFIG_IOTHREAD */
3428 #include "qemu-thread.h"
3430 QemuMutex qemu_global_mutex;
3431 static QemuMutex qemu_fair_mutex;
3433 static QemuThread io_thread;
3435 static QemuThread *tcg_cpu_thread;
3436 static QemuCond *tcg_halt_cond;
3438 static int qemu_system_ready;
3439 /* cpu creation */
3440 static QemuCond qemu_cpu_cond;
3441 /* system init */
3442 static QemuCond qemu_system_cond;
3443 static QemuCond qemu_pause_cond;
3445 static void block_io_signals(void);
3446 static void unblock_io_signals(void);
3447 static int tcg_has_work(void);
3449 static int qemu_init_main_loop(void)
3451 int ret;
3453 ret = qemu_event_init();
3454 if (ret)
3455 return ret;
3457 qemu_cond_init(&qemu_pause_cond);
3458 qemu_mutex_init(&qemu_fair_mutex);
3459 qemu_mutex_init(&qemu_global_mutex);
3460 qemu_mutex_lock(&qemu_global_mutex);
3462 unblock_io_signals();
3463 qemu_thread_self(&io_thread);
3465 return 0;
3468 static void qemu_wait_io_event(CPUState *env)
3470 while (!tcg_has_work())
3471 qemu_cond_timedwait(env->halt_cond, &qemu_global_mutex, 1000);
3473 qemu_mutex_unlock(&qemu_global_mutex);
3476 * Users of qemu_global_mutex can be starved, having no chance
3477 * to acquire it since this path will get to it first.
3478 * So use another lock to provide fairness.
3480 qemu_mutex_lock(&qemu_fair_mutex);
3481 qemu_mutex_unlock(&qemu_fair_mutex);
3483 qemu_mutex_lock(&qemu_global_mutex);
3484 if (env->stop) {
3485 env->stop = 0;
3486 env->stopped = 1;
3487 qemu_cond_signal(&qemu_pause_cond);
3491 static int qemu_cpu_exec(CPUState *env);
3493 static void *kvm_cpu_thread_fn(void *arg)
3495 CPUState *env = arg;
3497 block_io_signals();
3498 qemu_thread_self(env->thread);
3499 if (kvm_enabled())
3500 kvm_init_vcpu(env);
3502 /* signal CPU creation */
3503 qemu_mutex_lock(&qemu_global_mutex);
3504 env->created = 1;
3505 qemu_cond_signal(&qemu_cpu_cond);
3507 /* and wait for machine initialization */
3508 while (!qemu_system_ready)
3509 qemu_cond_timedwait(&qemu_system_cond, &qemu_global_mutex, 100);
3511 while (1) {
3512 if (cpu_can_run(env))
3513 qemu_cpu_exec(env);
3514 qemu_wait_io_event(env);
3517 return NULL;
3520 static void tcg_cpu_exec(void);
3522 static void *tcg_cpu_thread_fn(void *arg)
3524 CPUState *env = arg;
3526 block_io_signals();
3527 qemu_thread_self(env->thread);
3529 /* signal CPU creation */
3530 qemu_mutex_lock(&qemu_global_mutex);
3531 for (env = first_cpu; env != NULL; env = env->next_cpu)
3532 env->created = 1;
3533 qemu_cond_signal(&qemu_cpu_cond);
3535 /* and wait for machine initialization */
3536 while (!qemu_system_ready)
3537 qemu_cond_timedwait(&qemu_system_cond, &qemu_global_mutex, 100);
3539 while (1) {
3540 tcg_cpu_exec();
3541 qemu_wait_io_event(cur_cpu);
3544 return NULL;
3547 void qemu_cpu_kick(void *_env)
3549 CPUState *env = _env;
3550 qemu_cond_broadcast(env->halt_cond);
3551 if (kvm_enabled())
3552 qemu_thread_signal(env->thread, SIGUSR1);
3555 int qemu_cpu_self(void *_env)
3557 CPUState *env = _env;
3558 QemuThread this;
3560 qemu_thread_self(&this);
3562 return qemu_thread_equal(&this, env->thread);
3565 static void cpu_signal(int sig)
3567 if (cpu_single_env)
3568 cpu_exit(cpu_single_env);
3571 static void block_io_signals(void)
3573 sigset_t set;
3574 struct sigaction sigact;
3576 sigemptyset(&set);
3577 sigaddset(&set, SIGUSR2);
3578 sigaddset(&set, SIGIO);
3579 sigaddset(&set, SIGALRM);
3580 pthread_sigmask(SIG_BLOCK, &set, NULL);
3582 sigemptyset(&set);
3583 sigaddset(&set, SIGUSR1);
3584 pthread_sigmask(SIG_UNBLOCK, &set, NULL);
3586 memset(&sigact, 0, sizeof(sigact));
3587 sigact.sa_handler = cpu_signal;
3588 sigaction(SIGUSR1, &sigact, NULL);
3591 static void unblock_io_signals(void)
3593 sigset_t set;
3595 sigemptyset(&set);
3596 sigaddset(&set, SIGUSR2);
3597 sigaddset(&set, SIGIO);
3598 sigaddset(&set, SIGALRM);
3599 pthread_sigmask(SIG_UNBLOCK, &set, NULL);
3601 sigemptyset(&set);
3602 sigaddset(&set, SIGUSR1);
3603 pthread_sigmask(SIG_BLOCK, &set, NULL);
3606 static void qemu_signal_lock(unsigned int msecs)
3608 qemu_mutex_lock(&qemu_fair_mutex);
3610 while (qemu_mutex_trylock(&qemu_global_mutex)) {
3611 qemu_thread_signal(tcg_cpu_thread, SIGUSR1);
3612 if (!qemu_mutex_timedlock(&qemu_global_mutex, msecs))
3613 break;
3615 qemu_mutex_unlock(&qemu_fair_mutex);
3618 void qemu_mutex_lock_iothread(void)
3620 if (kvm_enabled()) {
3621 qemu_mutex_lock(&qemu_fair_mutex);
3622 qemu_mutex_lock(&qemu_global_mutex);
3623 qemu_mutex_unlock(&qemu_fair_mutex);
3624 } else
3625 qemu_signal_lock(100);
3628 void qemu_mutex_unlock_iothread(void)
3630 qemu_mutex_unlock(&qemu_global_mutex);
3633 static int all_vcpus_paused(void)
3635 CPUState *penv = first_cpu;
3637 while (penv) {
3638 if (!penv->stopped)
3639 return 0;
3640 penv = (CPUState *)penv->next_cpu;
3643 return 1;
3646 static void pause_all_vcpus(void)
3648 CPUState *penv = first_cpu;
3650 while (penv) {
3651 penv->stop = 1;
3652 qemu_thread_signal(penv->thread, SIGUSR1);
3653 qemu_cpu_kick(penv);
3654 penv = (CPUState *)penv->next_cpu;
3657 while (!all_vcpus_paused()) {
3658 qemu_cond_timedwait(&qemu_pause_cond, &qemu_global_mutex, 100);
3659 penv = first_cpu;
3660 while (penv) {
3661 qemu_thread_signal(penv->thread, SIGUSR1);
3662 penv = (CPUState *)penv->next_cpu;
3667 static void resume_all_vcpus(void)
3669 CPUState *penv = first_cpu;
3671 while (penv) {
3672 penv->stop = 0;
3673 penv->stopped = 0;
3674 qemu_thread_signal(penv->thread, SIGUSR1);
3675 qemu_cpu_kick(penv);
3676 penv = (CPUState *)penv->next_cpu;
3680 static void tcg_init_vcpu(void *_env)
3682 CPUState *env = _env;
3683 /* share a single thread for all cpus with TCG */
3684 if (!tcg_cpu_thread) {
3685 env->thread = qemu_mallocz(sizeof(QemuThread));
3686 env->halt_cond = qemu_mallocz(sizeof(QemuCond));
3687 qemu_cond_init(env->halt_cond);
3688 qemu_thread_create(env->thread, tcg_cpu_thread_fn, env);
3689 while (env->created == 0)
3690 qemu_cond_timedwait(&qemu_cpu_cond, &qemu_global_mutex, 100);
3691 tcg_cpu_thread = env->thread;
3692 tcg_halt_cond = env->halt_cond;
3693 } else {
3694 env->thread = tcg_cpu_thread;
3695 env->halt_cond = tcg_halt_cond;
3699 static void kvm_start_vcpu(CPUState *env)
3701 env->thread = qemu_mallocz(sizeof(QemuThread));
3702 env->halt_cond = qemu_mallocz(sizeof(QemuCond));
3703 qemu_cond_init(env->halt_cond);
3704 qemu_thread_create(env->thread, kvm_cpu_thread_fn, env);
3705 while (env->created == 0)
3706 qemu_cond_timedwait(&qemu_cpu_cond, &qemu_global_mutex, 100);
3709 void qemu_init_vcpu(void *_env)
3711 CPUState *env = _env;
3713 if (kvm_enabled())
3714 kvm_start_vcpu(env);
3715 else
3716 tcg_init_vcpu(env);
3717 env->nr_cores = smp_cores;
3718 env->nr_threads = smp_threads;
3721 void qemu_notify_event(void)
3723 qemu_event_increment();
3726 void vm_stop(int reason)
3728 QemuThread me;
3729 qemu_thread_self(&me);
3731 if (!qemu_thread_equal(&me, &io_thread)) {
3732 qemu_system_vmstop_request(reason);
3734 * FIXME: should not return to device code in case
3735 * vm_stop() has been requested.
3737 if (cpu_single_env) {
3738 cpu_exit(cpu_single_env);
3739 cpu_single_env->stop = 1;
3741 return;
3743 do_vm_stop(reason);
3746 #endif
3749 #ifdef _WIN32
3750 static void host_main_loop_wait(int *timeout)
3752 int ret, ret2, i;
3753 PollingEntry *pe;
3756 /* XXX: need to suppress polling by better using win32 events */
3757 ret = 0;
3758 for(pe = first_polling_entry; pe != NULL; pe = pe->next) {
3759 ret |= pe->func(pe->opaque);
3761 if (ret == 0) {
3762 int err;
3763 WaitObjects *w = &wait_objects;
3765 ret = WaitForMultipleObjects(w->num, w->events, FALSE, *timeout);
3766 if (WAIT_OBJECT_0 + 0 <= ret && ret <= WAIT_OBJECT_0 + w->num - 1) {
3767 if (w->func[ret - WAIT_OBJECT_0])
3768 w->func[ret - WAIT_OBJECT_0](w->opaque[ret - WAIT_OBJECT_0]);
3770 /* Check for additional signaled events */
3771 for(i = (ret - WAIT_OBJECT_0 + 1); i < w->num; i++) {
3773 /* Check if event is signaled */
3774 ret2 = WaitForSingleObject(w->events[i], 0);
3775 if(ret2 == WAIT_OBJECT_0) {
3776 if (w->func[i])
3777 w->func[i](w->opaque[i]);
3778 } else if (ret2 == WAIT_TIMEOUT) {
3779 } else {
3780 err = GetLastError();
3781 fprintf(stderr, "WaitForSingleObject error %d %d\n", i, err);
3784 } else if (ret == WAIT_TIMEOUT) {
3785 } else {
3786 err = GetLastError();
3787 fprintf(stderr, "WaitForMultipleObjects error %d %d\n", ret, err);
3791 *timeout = 0;
3793 #else
3794 static void host_main_loop_wait(int *timeout)
3797 #endif
3799 void main_loop_wait(int timeout)
3801 IOHandlerRecord *ioh;
3802 fd_set rfds, wfds, xfds;
3803 int ret, nfds;
3804 struct timeval tv;
3806 qemu_bh_update_timeout(&timeout);
3808 host_main_loop_wait(&timeout);
3810 /* poll any events */
3811 /* XXX: separate device handlers from system ones */
3812 nfds = -1;
3813 FD_ZERO(&rfds);
3814 FD_ZERO(&wfds);
3815 FD_ZERO(&xfds);
3816 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
3817 if (ioh->deleted)
3818 continue;
3819 if (ioh->fd_read &&
3820 (!ioh->fd_read_poll ||
3821 ioh->fd_read_poll(ioh->opaque) != 0)) {
3822 FD_SET(ioh->fd, &rfds);
3823 if (ioh->fd > nfds)
3824 nfds = ioh->fd;
3826 if (ioh->fd_write) {
3827 FD_SET(ioh->fd, &wfds);
3828 if (ioh->fd > nfds)
3829 nfds = ioh->fd;
3833 tv.tv_sec = timeout / 1000;
3834 tv.tv_usec = (timeout % 1000) * 1000;
3836 slirp_select_fill(&nfds, &rfds, &wfds, &xfds);
3838 qemu_mutex_unlock_iothread();
3839 ret = select(nfds + 1, &rfds, &wfds, &xfds, &tv);
3840 qemu_mutex_lock_iothread();
3841 if (ret > 0) {
3842 IOHandlerRecord **pioh;
3844 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
3845 if (!ioh->deleted && ioh->fd_read && FD_ISSET(ioh->fd, &rfds)) {
3846 ioh->fd_read(ioh->opaque);
3848 if (!ioh->deleted && ioh->fd_write && FD_ISSET(ioh->fd, &wfds)) {
3849 ioh->fd_write(ioh->opaque);
3853 /* remove deleted IO handlers */
3854 pioh = &first_io_handler;
3855 while (*pioh) {
3856 ioh = *pioh;
3857 if (ioh->deleted) {
3858 *pioh = ioh->next;
3859 qemu_free(ioh);
3860 } else
3861 pioh = &ioh->next;
3865 slirp_select_poll(&rfds, &wfds, &xfds, (ret < 0));
3867 /* rearm timer, if not periodic */
3868 if (alarm_timer->flags & ALARM_FLAG_EXPIRED) {
3869 alarm_timer->flags &= ~ALARM_FLAG_EXPIRED;
3870 qemu_rearm_alarm_timer(alarm_timer);
3873 /* vm time timers */
3874 if (vm_running) {
3875 if (!cur_cpu || likely(!(cur_cpu->singlestep_enabled & SSTEP_NOTIMER)))
3876 qemu_run_timers(&active_timers[QEMU_CLOCK_VIRTUAL],
3877 qemu_get_clock(vm_clock));
3880 /* real time timers */
3881 qemu_run_timers(&active_timers[QEMU_CLOCK_REALTIME],
3882 qemu_get_clock(rt_clock));
3884 qemu_run_timers(&active_timers[QEMU_CLOCK_HOST],
3885 qemu_get_clock(host_clock));
3887 /* Check bottom-halves last in case any of the earlier events triggered
3888 them. */
3889 qemu_bh_poll();
3893 static int qemu_cpu_exec(CPUState *env)
3895 int ret;
3896 #ifdef CONFIG_PROFILER
3897 int64_t ti;
3898 #endif
3900 #ifdef CONFIG_PROFILER
3901 ti = profile_getclock();
3902 #endif
3903 if (use_icount) {
3904 int64_t count;
3905 int decr;
3906 qemu_icount -= (env->icount_decr.u16.low + env->icount_extra);
3907 env->icount_decr.u16.low = 0;
3908 env->icount_extra = 0;
3909 count = qemu_next_deadline();
3910 count = (count + (1 << icount_time_shift) - 1)
3911 >> icount_time_shift;
3912 qemu_icount += count;
3913 decr = (count > 0xffff) ? 0xffff : count;
3914 count -= decr;
3915 env->icount_decr.u16.low = decr;
3916 env->icount_extra = count;
3918 ret = cpu_exec(env);
3919 #ifdef CONFIG_PROFILER
3920 qemu_time += profile_getclock() - ti;
3921 #endif
3922 if (use_icount) {
3923 /* Fold pending instructions back into the
3924 instruction counter, and clear the interrupt flag. */
3925 qemu_icount -= (env->icount_decr.u16.low
3926 + env->icount_extra);
3927 env->icount_decr.u32 = 0;
3928 env->icount_extra = 0;
3930 return ret;
3933 static void tcg_cpu_exec(void)
3935 int ret = 0;
3937 if (next_cpu == NULL)
3938 next_cpu = first_cpu;
3939 for (; next_cpu != NULL; next_cpu = next_cpu->next_cpu) {
3940 CPUState *env = cur_cpu = next_cpu;
3942 if (!vm_running)
3943 break;
3944 if (timer_alarm_pending) {
3945 timer_alarm_pending = 0;
3946 break;
3948 if (cpu_can_run(env))
3949 ret = qemu_cpu_exec(env);
3950 if (ret == EXCP_DEBUG) {
3951 gdb_set_stop_cpu(env);
3952 debug_requested = 1;
3953 break;
3958 static int cpu_has_work(CPUState *env)
3960 if (env->stop)
3961 return 1;
3962 if (env->stopped)
3963 return 0;
3964 if (!env->halted)
3965 return 1;
3966 if (qemu_cpu_has_work(env))
3967 return 1;
3968 return 0;
3971 static int tcg_has_work(void)
3973 CPUState *env;
3975 for (env = first_cpu; env != NULL; env = env->next_cpu)
3976 if (cpu_has_work(env))
3977 return 1;
3978 return 0;
3981 static int qemu_calculate_timeout(void)
3983 #ifndef CONFIG_IOTHREAD
3984 int timeout;
3986 if (!vm_running)
3987 timeout = 5000;
3988 else if (tcg_has_work())
3989 timeout = 0;
3990 else if (!use_icount)
3991 timeout = 5000;
3992 else {
3993 /* XXX: use timeout computed from timers */
3994 int64_t add;
3995 int64_t delta;
3996 /* Advance virtual time to the next event. */
3997 if (use_icount == 1) {
3998 /* When not using an adaptive execution frequency
3999 we tend to get badly out of sync with real time,
4000 so just delay for a reasonable amount of time. */
4001 delta = 0;
4002 } else {
4003 delta = cpu_get_icount() - cpu_get_clock();
4005 if (delta > 0) {
4006 /* If virtual time is ahead of real time then just
4007 wait for IO. */
4008 timeout = (delta / 1000000) + 1;
4009 } else {
4010 /* Wait for either IO to occur or the next
4011 timer event. */
4012 add = qemu_next_deadline();
4013 /* We advance the timer before checking for IO.
4014 Limit the amount we advance so that early IO
4015 activity won't get the guest too far ahead. */
4016 if (add > 10000000)
4017 add = 10000000;
4018 delta += add;
4019 add = (add + (1 << icount_time_shift) - 1)
4020 >> icount_time_shift;
4021 qemu_icount += add;
4022 timeout = delta / 1000000;
4023 if (timeout < 0)
4024 timeout = 0;
4028 return timeout;
4029 #else /* CONFIG_IOTHREAD */
4030 return 1000;
4031 #endif
4034 static int vm_can_run(void)
4036 if (powerdown_requested)
4037 return 0;
4038 if (reset_requested)
4039 return 0;
4040 if (shutdown_requested)
4041 return 0;
4042 if (debug_requested)
4043 return 0;
4044 return 1;
4047 qemu_irq qemu_system_powerdown;
4049 static void main_loop(void)
4051 int r;
4053 #ifdef CONFIG_IOTHREAD
4054 qemu_system_ready = 1;
4055 qemu_cond_broadcast(&qemu_system_cond);
4056 #endif
4058 for (;;) {
4059 do {
4060 #ifdef CONFIG_PROFILER
4061 int64_t ti;
4062 #endif
4063 #ifndef CONFIG_IOTHREAD
4064 tcg_cpu_exec();
4065 #endif
4066 #ifdef CONFIG_PROFILER
4067 ti = profile_getclock();
4068 #endif
4069 main_loop_wait(qemu_calculate_timeout());
4070 #ifdef CONFIG_PROFILER
4071 dev_time += profile_getclock() - ti;
4072 #endif
4073 } while (vm_can_run());
4075 if (qemu_debug_requested()) {
4076 monitor_protocol_event(EVENT_DEBUG, NULL);
4077 vm_stop(EXCP_DEBUG);
4079 if (qemu_shutdown_requested()) {
4080 monitor_protocol_event(EVENT_SHUTDOWN, NULL);
4081 if (no_shutdown) {
4082 vm_stop(0);
4083 no_shutdown = 0;
4084 } else
4085 break;
4087 if (qemu_reset_requested()) {
4088 monitor_protocol_event(EVENT_RESET, NULL);
4089 pause_all_vcpus();
4090 qemu_system_reset();
4091 resume_all_vcpus();
4093 if (qemu_powerdown_requested()) {
4094 monitor_protocol_event(EVENT_POWERDOWN, NULL);
4095 qemu_irq_raise(qemu_system_powerdown);
4097 if ((r = qemu_vmstop_requested())) {
4098 monitor_protocol_event(EVENT_STOP, NULL);
4099 vm_stop(r);
4102 pause_all_vcpus();
4105 static void version(void)
4107 printf("QEMU PC emulator version " QEMU_VERSION QEMU_PKGVERSION ", Copyright (c) 2003-2008 Fabrice Bellard\n");
4110 static void help(int exitcode)
4112 version();
4113 printf("usage: %s [options] [disk_image]\n"
4114 "\n"
4115 "'disk_image' is a raw hard image image for IDE hard disk 0\n"
4116 "\n"
4117 #define DEF(option, opt_arg, opt_enum, opt_help) \
4118 opt_help
4119 #define DEFHEADING(text) stringify(text) "\n"
4120 #include "qemu-options.h"
4121 #undef DEF
4122 #undef DEFHEADING
4123 #undef GEN_DOCS
4124 "\n"
4125 "During emulation, the following keys are useful:\n"
4126 "ctrl-alt-f toggle full screen\n"
4127 "ctrl-alt-n switch to virtual console 'n'\n"
4128 "ctrl-alt toggle mouse and keyboard grab\n"
4129 "\n"
4130 "When using -nographic, press 'ctrl-a h' to get some help.\n"
4132 "qemu",
4133 DEFAULT_RAM_SIZE,
4134 #ifndef _WIN32
4135 DEFAULT_NETWORK_SCRIPT,
4136 DEFAULT_NETWORK_DOWN_SCRIPT,
4137 #endif
4138 DEFAULT_GDBSTUB_PORT,
4139 "/tmp/qemu.log");
4140 exit(exitcode);
4143 #define HAS_ARG 0x0001
4145 enum {
4146 #define DEF(option, opt_arg, opt_enum, opt_help) \
4147 opt_enum,
4148 #define DEFHEADING(text)
4149 #include "qemu-options.h"
4150 #undef DEF
4151 #undef DEFHEADING
4152 #undef GEN_DOCS
4155 typedef struct QEMUOption {
4156 const char *name;
4157 int flags;
4158 int index;
4159 } QEMUOption;
4161 static const QEMUOption qemu_options[] = {
4162 { "h", 0, QEMU_OPTION_h },
4163 #define DEF(option, opt_arg, opt_enum, opt_help) \
4164 { option, opt_arg, opt_enum },
4165 #define DEFHEADING(text)
4166 #include "qemu-options.h"
4167 #undef DEF
4168 #undef DEFHEADING
4169 #undef GEN_DOCS
4170 { NULL },
4173 #ifdef HAS_AUDIO
4174 struct soundhw soundhw[] = {
4175 #ifdef HAS_AUDIO_CHOICE
4176 #if defined(TARGET_I386) || defined(TARGET_MIPS)
4178 "pcspk",
4179 "PC speaker",
4182 { .init_isa = pcspk_audio_init }
4184 #endif
4186 #ifdef CONFIG_SB16
4188 "sb16",
4189 "Creative Sound Blaster 16",
4192 { .init_isa = SB16_init }
4194 #endif
4196 #ifdef CONFIG_CS4231A
4198 "cs4231a",
4199 "CS4231A",
4202 { .init_isa = cs4231a_init }
4204 #endif
4206 #ifdef CONFIG_ADLIB
4208 "adlib",
4209 #ifdef HAS_YMF262
4210 "Yamaha YMF262 (OPL3)",
4211 #else
4212 "Yamaha YM3812 (OPL2)",
4213 #endif
4216 { .init_isa = Adlib_init }
4218 #endif
4220 #ifdef CONFIG_GUS
4222 "gus",
4223 "Gravis Ultrasound GF1",
4226 { .init_isa = GUS_init }
4228 #endif
4230 #ifdef CONFIG_AC97
4232 "ac97",
4233 "Intel 82801AA AC97 Audio",
4236 { .init_pci = ac97_init }
4238 #endif
4240 #ifdef CONFIG_ES1370
4242 "es1370",
4243 "ENSONIQ AudioPCI ES1370",
4246 { .init_pci = es1370_init }
4248 #endif
4250 #endif /* HAS_AUDIO_CHOICE */
4252 { NULL, NULL, 0, 0, { NULL } }
4255 static void select_soundhw (const char *optarg)
4257 struct soundhw *c;
4259 if (*optarg == '?') {
4260 show_valid_cards:
4262 printf ("Valid sound card names (comma separated):\n");
4263 for (c = soundhw; c->name; ++c) {
4264 printf ("%-11s %s\n", c->name, c->descr);
4266 printf ("\n-soundhw all will enable all of the above\n");
4267 exit (*optarg != '?');
4269 else {
4270 size_t l;
4271 const char *p;
4272 char *e;
4273 int bad_card = 0;
4275 if (!strcmp (optarg, "all")) {
4276 for (c = soundhw; c->name; ++c) {
4277 c->enabled = 1;
4279 return;
4282 p = optarg;
4283 while (*p) {
4284 e = strchr (p, ',');
4285 l = !e ? strlen (p) : (size_t) (e - p);
4287 for (c = soundhw; c->name; ++c) {
4288 if (!strncmp (c->name, p, l) && !c->name[l]) {
4289 c->enabled = 1;
4290 break;
4294 if (!c->name) {
4295 if (l > 80) {
4296 fprintf (stderr,
4297 "Unknown sound card name (too big to show)\n");
4299 else {
4300 fprintf (stderr, "Unknown sound card name `%.*s'\n",
4301 (int) l, p);
4303 bad_card = 1;
4305 p += l + (e != NULL);
4308 if (bad_card)
4309 goto show_valid_cards;
4312 #endif
4314 static void select_vgahw (const char *p)
4316 const char *opts;
4318 vga_interface_type = VGA_NONE;
4319 if (strstart(p, "std", &opts)) {
4320 vga_interface_type = VGA_STD;
4321 } else if (strstart(p, "cirrus", &opts)) {
4322 vga_interface_type = VGA_CIRRUS;
4323 } else if (strstart(p, "vmware", &opts)) {
4324 vga_interface_type = VGA_VMWARE;
4325 } else if (strstart(p, "xenfb", &opts)) {
4326 vga_interface_type = VGA_XENFB;
4327 } else if (!strstart(p, "none", &opts)) {
4328 invalid_vga:
4329 fprintf(stderr, "Unknown vga type: %s\n", p);
4330 exit(1);
4332 while (*opts) {
4333 const char *nextopt;
4335 if (strstart(opts, ",retrace=", &nextopt)) {
4336 opts = nextopt;
4337 if (strstart(opts, "dumb", &nextopt))
4338 vga_retrace_method = VGA_RETRACE_DUMB;
4339 else if (strstart(opts, "precise", &nextopt))
4340 vga_retrace_method = VGA_RETRACE_PRECISE;
4341 else goto invalid_vga;
4342 } else goto invalid_vga;
4343 opts = nextopt;
4347 #ifdef TARGET_I386
4348 static int balloon_parse(const char *arg)
4350 QemuOpts *opts;
4352 if (strcmp(arg, "none") == 0) {
4353 return 0;
4356 if (!strncmp(arg, "virtio", 6)) {
4357 if (arg[6] == ',') {
4358 /* have params -> parse them */
4359 opts = qemu_opts_parse(&qemu_device_opts, arg+7, NULL);
4360 if (!opts)
4361 return -1;
4362 } else {
4363 /* create empty opts */
4364 opts = qemu_opts_create(&qemu_device_opts, NULL, 0);
4366 qemu_opt_set(opts, "driver", "virtio-balloon-pci");
4367 return 0;
4370 return -1;
4372 #endif
4374 #ifdef _WIN32
4375 static BOOL WINAPI qemu_ctrl_handler(DWORD type)
4377 exit(STATUS_CONTROL_C_EXIT);
4378 return TRUE;
4380 #endif
4382 int qemu_uuid_parse(const char *str, uint8_t *uuid)
4384 int ret;
4386 if(strlen(str) != 36)
4387 return -1;
4389 ret = sscanf(str, UUID_FMT, &uuid[0], &uuid[1], &uuid[2], &uuid[3],
4390 &uuid[4], &uuid[5], &uuid[6], &uuid[7], &uuid[8], &uuid[9],
4391 &uuid[10], &uuid[11], &uuid[12], &uuid[13], &uuid[14], &uuid[15]);
4393 if(ret != 16)
4394 return -1;
4396 #ifdef TARGET_I386
4397 smbios_add_field(1, offsetof(struct smbios_type_1, uuid), 16, uuid);
4398 #endif
4400 return 0;
4403 #ifndef _WIN32
4405 static void termsig_handler(int signal)
4407 qemu_system_shutdown_request();
4410 static void sigchld_handler(int signal)
4412 waitpid(-1, NULL, WNOHANG);
4415 static void sighandler_setup(void)
4417 struct sigaction act;
4419 memset(&act, 0, sizeof(act));
4420 act.sa_handler = termsig_handler;
4421 sigaction(SIGINT, &act, NULL);
4422 sigaction(SIGHUP, &act, NULL);
4423 sigaction(SIGTERM, &act, NULL);
4425 act.sa_handler = sigchld_handler;
4426 act.sa_flags = SA_NOCLDSTOP;
4427 sigaction(SIGCHLD, &act, NULL);
4430 #endif
4432 #ifdef _WIN32
4433 /* Look for support files in the same directory as the executable. */
4434 static char *find_datadir(const char *argv0)
4436 char *p;
4437 char buf[MAX_PATH];
4438 DWORD len;
4440 len = GetModuleFileName(NULL, buf, sizeof(buf) - 1);
4441 if (len == 0) {
4442 return NULL;
4445 buf[len] = 0;
4446 p = buf + len - 1;
4447 while (p != buf && *p != '\\')
4448 p--;
4449 *p = 0;
4450 if (access(buf, R_OK) == 0) {
4451 return qemu_strdup(buf);
4453 return NULL;
4455 #else /* !_WIN32 */
4457 /* Find a likely location for support files using the location of the binary.
4458 For installed binaries this will be "$bindir/../share/qemu". When
4459 running from the build tree this will be "$bindir/../pc-bios". */
4460 #define SHARE_SUFFIX "/share/qemu"
4461 #define BUILD_SUFFIX "/pc-bios"
4462 static char *find_datadir(const char *argv0)
4464 char *dir;
4465 char *p = NULL;
4466 char *res;
4467 char buf[PATH_MAX];
4468 size_t max_len;
4470 #if defined(__linux__)
4472 int len;
4473 len = readlink("/proc/self/exe", buf, sizeof(buf) - 1);
4474 if (len > 0) {
4475 buf[len] = 0;
4476 p = buf;
4479 #elif defined(__FreeBSD__)
4481 int len;
4482 len = readlink("/proc/curproc/file", buf, sizeof(buf) - 1);
4483 if (len > 0) {
4484 buf[len] = 0;
4485 p = buf;
4488 #endif
4489 /* If we don't have any way of figuring out the actual executable
4490 location then try argv[0]. */
4491 if (!p) {
4492 p = realpath(argv0, buf);
4493 if (!p) {
4494 return NULL;
4497 dir = dirname(p);
4498 dir = dirname(dir);
4500 max_len = strlen(dir) +
4501 MAX(strlen(SHARE_SUFFIX), strlen(BUILD_SUFFIX)) + 1;
4502 res = qemu_mallocz(max_len);
4503 snprintf(res, max_len, "%s%s", dir, SHARE_SUFFIX);
4504 if (access(res, R_OK)) {
4505 snprintf(res, max_len, "%s%s", dir, BUILD_SUFFIX);
4506 if (access(res, R_OK)) {
4507 qemu_free(res);
4508 res = NULL;
4512 return res;
4514 #undef SHARE_SUFFIX
4515 #undef BUILD_SUFFIX
4516 #endif
4518 char *qemu_find_file(int type, const char *name)
4520 int len;
4521 const char *subdir;
4522 char *buf;
4524 /* If name contains path separators then try it as a straight path. */
4525 if ((strchr(name, '/') || strchr(name, '\\'))
4526 && access(name, R_OK) == 0) {
4527 return qemu_strdup(name);
4529 switch (type) {
4530 case QEMU_FILE_TYPE_BIOS:
4531 subdir = "";
4532 break;
4533 case QEMU_FILE_TYPE_KEYMAP:
4534 subdir = "keymaps/";
4535 break;
4536 default:
4537 abort();
4539 len = strlen(data_dir) + strlen(name) + strlen(subdir) + 2;
4540 buf = qemu_mallocz(len);
4541 snprintf(buf, len, "%s/%s%s", data_dir, subdir, name);
4542 if (access(buf, R_OK)) {
4543 qemu_free(buf);
4544 return NULL;
4546 return buf;
4549 static int device_init_func(QemuOpts *opts, void *opaque)
4551 DeviceState *dev;
4553 dev = qdev_device_add(opts);
4554 if (!dev)
4555 return -1;
4556 return 0;
4559 struct device_config {
4560 enum {
4561 DEV_USB, /* -usbdevice */
4562 DEV_BT, /* -bt */
4563 } type;
4564 const char *cmdline;
4565 QTAILQ_ENTRY(device_config) next;
4567 QTAILQ_HEAD(, device_config) device_configs = QTAILQ_HEAD_INITIALIZER(device_configs);
4569 static void add_device_config(int type, const char *cmdline)
4571 struct device_config *conf;
4573 conf = qemu_mallocz(sizeof(*conf));
4574 conf->type = type;
4575 conf->cmdline = cmdline;
4576 QTAILQ_INSERT_TAIL(&device_configs, conf, next);
4579 static int foreach_device_config(int type, int (*func)(const char *cmdline))
4581 struct device_config *conf;
4582 int rc;
4584 QTAILQ_FOREACH(conf, &device_configs, next) {
4585 if (conf->type != type)
4586 continue;
4587 rc = func(conf->cmdline);
4588 if (0 != rc)
4589 return rc;
4591 return 0;
4594 int main(int argc, char **argv, char **envp)
4596 const char *gdbstub_dev = NULL;
4597 uint32_t boot_devices_bitmap = 0;
4598 int i;
4599 int snapshot, linux_boot, net_boot;
4600 const char *initrd_filename;
4601 const char *kernel_filename, *kernel_cmdline;
4602 char boot_devices[33] = "cad"; /* default to HD->floppy->CD-ROM */
4603 DisplayState *ds;
4604 DisplayChangeListener *dcl;
4605 int cyls, heads, secs, translation;
4606 QemuOpts *hda_opts = NULL, *opts;
4607 int optind;
4608 const char *r, *optarg;
4609 CharDriverState *monitor_hds[MAX_MONITOR_DEVICES];
4610 const char *monitor_devices[MAX_MONITOR_DEVICES];
4611 int monitor_flags[MAX_MONITOR_DEVICES];
4612 int monitor_device_index;
4613 const char *serial_devices[MAX_SERIAL_PORTS];
4614 int serial_device_index;
4615 const char *parallel_devices[MAX_PARALLEL_PORTS];
4616 int parallel_device_index;
4617 const char *virtio_consoles[MAX_VIRTIO_CONSOLES];
4618 int virtio_console_index;
4619 const char *loadvm = NULL;
4620 QEMUMachine *machine;
4621 const char *cpu_model;
4622 #ifndef _WIN32
4623 int fds[2];
4624 #endif
4625 int tb_size;
4626 const char *pid_file = NULL;
4627 const char *incoming = NULL;
4628 #ifndef _WIN32
4629 int fd = 0;
4630 struct passwd *pwd = NULL;
4631 const char *chroot_dir = NULL;
4632 const char *run_as = NULL;
4633 #endif
4634 CPUState *env;
4635 int show_vnc_port = 0;
4637 init_clocks();
4639 qemu_errors_to_file(stderr);
4640 qemu_cache_utils_init(envp);
4642 QLIST_INIT (&vm_change_state_head);
4643 #ifndef _WIN32
4645 struct sigaction act;
4646 sigfillset(&act.sa_mask);
4647 act.sa_flags = 0;
4648 act.sa_handler = SIG_IGN;
4649 sigaction(SIGPIPE, &act, NULL);
4651 #else
4652 SetConsoleCtrlHandler(qemu_ctrl_handler, TRUE);
4653 /* Note: cpu_interrupt() is currently not SMP safe, so we force
4654 QEMU to run on a single CPU */
4656 HANDLE h;
4657 DWORD mask, smask;
4658 int i;
4659 h = GetCurrentProcess();
4660 if (GetProcessAffinityMask(h, &mask, &smask)) {
4661 for(i = 0; i < 32; i++) {
4662 if (mask & (1 << i))
4663 break;
4665 if (i != 32) {
4666 mask = 1 << i;
4667 SetProcessAffinityMask(h, mask);
4671 #endif
4673 module_call_init(MODULE_INIT_MACHINE);
4674 machine = find_default_machine();
4675 cpu_model = NULL;
4676 initrd_filename = NULL;
4677 ram_size = 0;
4678 snapshot = 0;
4679 kernel_filename = NULL;
4680 kernel_cmdline = "";
4681 cyls = heads = secs = 0;
4682 translation = BIOS_ATA_TRANSLATION_AUTO;
4684 serial_devices[0] = "vc:80Cx24C";
4685 for(i = 1; i < MAX_SERIAL_PORTS; i++)
4686 serial_devices[i] = NULL;
4687 serial_device_index = 0;
4689 parallel_devices[0] = "vc:80Cx24C";
4690 for(i = 1; i < MAX_PARALLEL_PORTS; i++)
4691 parallel_devices[i] = NULL;
4692 parallel_device_index = 0;
4694 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++)
4695 virtio_consoles[i] = NULL;
4696 virtio_console_index = 0;
4698 monitor_devices[0] = "vc:80Cx24C";
4699 monitor_flags[0] = MONITOR_IS_DEFAULT | MONITOR_USE_READLINE;
4700 for (i = 1; i < MAX_MONITOR_DEVICES; i++) {
4701 monitor_devices[i] = NULL;
4702 monitor_flags[i] = MONITOR_USE_READLINE;
4704 monitor_device_index = 0;
4706 for (i = 0; i < MAX_NODES; i++) {
4707 node_mem[i] = 0;
4708 node_cpumask[i] = 0;
4711 nb_numa_nodes = 0;
4712 nb_nics = 0;
4714 tb_size = 0;
4715 autostart= 1;
4717 optind = 1;
4718 for(;;) {
4719 if (optind >= argc)
4720 break;
4721 r = argv[optind];
4722 if (r[0] != '-') {
4723 hda_opts = drive_add(argv[optind++], HD_ALIAS, 0);
4724 } else {
4725 const QEMUOption *popt;
4727 optind++;
4728 /* Treat --foo the same as -foo. */
4729 if (r[1] == '-')
4730 r++;
4731 popt = qemu_options;
4732 for(;;) {
4733 if (!popt->name) {
4734 fprintf(stderr, "%s: invalid option -- '%s'\n",
4735 argv[0], r);
4736 exit(1);
4738 if (!strcmp(popt->name, r + 1))
4739 break;
4740 popt++;
4742 if (popt->flags & HAS_ARG) {
4743 if (optind >= argc) {
4744 fprintf(stderr, "%s: option '%s' requires an argument\n",
4745 argv[0], r);
4746 exit(1);
4748 optarg = argv[optind++];
4749 } else {
4750 optarg = NULL;
4753 switch(popt->index) {
4754 case QEMU_OPTION_M:
4755 machine = find_machine(optarg);
4756 if (!machine) {
4757 QEMUMachine *m;
4758 printf("Supported machines are:\n");
4759 for(m = first_machine; m != NULL; m = m->next) {
4760 if (m->alias)
4761 printf("%-10s %s (alias of %s)\n",
4762 m->alias, m->desc, m->name);
4763 printf("%-10s %s%s\n",
4764 m->name, m->desc,
4765 m->is_default ? " (default)" : "");
4767 exit(*optarg != '?');
4769 break;
4770 case QEMU_OPTION_cpu:
4771 /* hw initialization will check this */
4772 if (*optarg == '?') {
4773 /* XXX: implement xxx_cpu_list for targets that still miss it */
4774 #if defined(cpu_list)
4775 cpu_list(stdout, &fprintf);
4776 #endif
4777 exit(0);
4778 } else {
4779 cpu_model = optarg;
4781 break;
4782 case QEMU_OPTION_initrd:
4783 initrd_filename = optarg;
4784 break;
4785 case QEMU_OPTION_hda:
4786 if (cyls == 0)
4787 hda_opts = drive_add(optarg, HD_ALIAS, 0);
4788 else
4789 hda_opts = drive_add(optarg, HD_ALIAS
4790 ",cyls=%d,heads=%d,secs=%d%s",
4791 0, cyls, heads, secs,
4792 translation == BIOS_ATA_TRANSLATION_LBA ?
4793 ",trans=lba" :
4794 translation == BIOS_ATA_TRANSLATION_NONE ?
4795 ",trans=none" : "");
4796 break;
4797 case QEMU_OPTION_hdb:
4798 case QEMU_OPTION_hdc:
4799 case QEMU_OPTION_hdd:
4800 drive_add(optarg, HD_ALIAS, popt->index - QEMU_OPTION_hda);
4801 break;
4802 case QEMU_OPTION_drive:
4803 drive_add(NULL, "%s", optarg);
4804 break;
4805 case QEMU_OPTION_set:
4806 if (qemu_set_option(optarg) != 0)
4807 exit(1);
4808 break;
4809 case QEMU_OPTION_mtdblock:
4810 drive_add(optarg, MTD_ALIAS);
4811 break;
4812 case QEMU_OPTION_sd:
4813 drive_add(optarg, SD_ALIAS);
4814 break;
4815 case QEMU_OPTION_pflash:
4816 drive_add(optarg, PFLASH_ALIAS);
4817 break;
4818 case QEMU_OPTION_snapshot:
4819 snapshot = 1;
4820 break;
4821 case QEMU_OPTION_hdachs:
4823 const char *p;
4824 p = optarg;
4825 cyls = strtol(p, (char **)&p, 0);
4826 if (cyls < 1 || cyls > 16383)
4827 goto chs_fail;
4828 if (*p != ',')
4829 goto chs_fail;
4830 p++;
4831 heads = strtol(p, (char **)&p, 0);
4832 if (heads < 1 || heads > 16)
4833 goto chs_fail;
4834 if (*p != ',')
4835 goto chs_fail;
4836 p++;
4837 secs = strtol(p, (char **)&p, 0);
4838 if (secs < 1 || secs > 63)
4839 goto chs_fail;
4840 if (*p == ',') {
4841 p++;
4842 if (!strcmp(p, "none"))
4843 translation = BIOS_ATA_TRANSLATION_NONE;
4844 else if (!strcmp(p, "lba"))
4845 translation = BIOS_ATA_TRANSLATION_LBA;
4846 else if (!strcmp(p, "auto"))
4847 translation = BIOS_ATA_TRANSLATION_AUTO;
4848 else
4849 goto chs_fail;
4850 } else if (*p != '\0') {
4851 chs_fail:
4852 fprintf(stderr, "qemu: invalid physical CHS format\n");
4853 exit(1);
4855 if (hda_opts != NULL) {
4856 char num[16];
4857 snprintf(num, sizeof(num), "%d", cyls);
4858 qemu_opt_set(hda_opts, "cyls", num);
4859 snprintf(num, sizeof(num), "%d", heads);
4860 qemu_opt_set(hda_opts, "heads", num);
4861 snprintf(num, sizeof(num), "%d", secs);
4862 qemu_opt_set(hda_opts, "secs", num);
4863 if (translation == BIOS_ATA_TRANSLATION_LBA)
4864 qemu_opt_set(hda_opts, "trans", "lba");
4865 if (translation == BIOS_ATA_TRANSLATION_NONE)
4866 qemu_opt_set(hda_opts, "trans", "none");
4869 break;
4870 case QEMU_OPTION_numa:
4871 if (nb_numa_nodes >= MAX_NODES) {
4872 fprintf(stderr, "qemu: too many NUMA nodes\n");
4873 exit(1);
4875 numa_add(optarg);
4876 break;
4877 case QEMU_OPTION_nographic:
4878 display_type = DT_NOGRAPHIC;
4879 break;
4880 #ifdef CONFIG_CURSES
4881 case QEMU_OPTION_curses:
4882 display_type = DT_CURSES;
4883 break;
4884 #endif
4885 case QEMU_OPTION_portrait:
4886 graphic_rotate = 1;
4887 break;
4888 case QEMU_OPTION_kernel:
4889 kernel_filename = optarg;
4890 break;
4891 case QEMU_OPTION_append:
4892 kernel_cmdline = optarg;
4893 break;
4894 case QEMU_OPTION_cdrom:
4895 drive_add(optarg, CDROM_ALIAS);
4896 break;
4897 case QEMU_OPTION_boot:
4899 static const char * const params[] = {
4900 "order", "once", "menu", NULL
4902 char buf[sizeof(boot_devices)];
4903 char *standard_boot_devices;
4904 int legacy = 0;
4906 if (!strchr(optarg, '=')) {
4907 legacy = 1;
4908 pstrcpy(buf, sizeof(buf), optarg);
4909 } else if (check_params(buf, sizeof(buf), params, optarg) < 0) {
4910 fprintf(stderr,
4911 "qemu: unknown boot parameter '%s' in '%s'\n",
4912 buf, optarg);
4913 exit(1);
4916 if (legacy ||
4917 get_param_value(buf, sizeof(buf), "order", optarg)) {
4918 boot_devices_bitmap = parse_bootdevices(buf);
4919 pstrcpy(boot_devices, sizeof(boot_devices), buf);
4921 if (!legacy) {
4922 if (get_param_value(buf, sizeof(buf),
4923 "once", optarg)) {
4924 boot_devices_bitmap |= parse_bootdevices(buf);
4925 standard_boot_devices = qemu_strdup(boot_devices);
4926 pstrcpy(boot_devices, sizeof(boot_devices), buf);
4927 qemu_register_reset(restore_boot_devices,
4928 standard_boot_devices);
4930 if (get_param_value(buf, sizeof(buf),
4931 "menu", optarg)) {
4932 if (!strcmp(buf, "on")) {
4933 boot_menu = 1;
4934 } else if (!strcmp(buf, "off")) {
4935 boot_menu = 0;
4936 } else {
4937 fprintf(stderr,
4938 "qemu: invalid option value '%s'\n",
4939 buf);
4940 exit(1);
4945 break;
4946 case QEMU_OPTION_fda:
4947 case QEMU_OPTION_fdb:
4948 drive_add(optarg, FD_ALIAS, popt->index - QEMU_OPTION_fda);
4949 break;
4950 #ifdef TARGET_I386
4951 case QEMU_OPTION_no_fd_bootchk:
4952 fd_bootchk = 0;
4953 break;
4954 #endif
4955 case QEMU_OPTION_netdev:
4956 if (net_client_parse(&qemu_netdev_opts, optarg) == -1) {
4957 exit(1);
4959 break;
4960 case QEMU_OPTION_net:
4961 if (net_client_parse(&qemu_net_opts, optarg) == -1) {
4962 exit(1);
4964 break;
4965 #ifdef CONFIG_SLIRP
4966 case QEMU_OPTION_tftp:
4967 legacy_tftp_prefix = optarg;
4968 break;
4969 case QEMU_OPTION_bootp:
4970 legacy_bootp_filename = optarg;
4971 break;
4972 #ifndef _WIN32
4973 case QEMU_OPTION_smb:
4974 if (net_slirp_smb(optarg) < 0)
4975 exit(1);
4976 break;
4977 #endif
4978 case QEMU_OPTION_redir:
4979 if (net_slirp_redir(optarg) < 0)
4980 exit(1);
4981 break;
4982 #endif
4983 case QEMU_OPTION_bt:
4984 add_device_config(DEV_BT, optarg);
4985 break;
4986 #ifdef HAS_AUDIO
4987 case QEMU_OPTION_audio_help:
4988 AUD_help ();
4989 exit (0);
4990 break;
4991 case QEMU_OPTION_soundhw:
4992 select_soundhw (optarg);
4993 break;
4994 #endif
4995 case QEMU_OPTION_h:
4996 help(0);
4997 break;
4998 case QEMU_OPTION_version:
4999 version();
5000 exit(0);
5001 break;
5002 case QEMU_OPTION_m: {
5003 uint64_t value;
5004 char *ptr;
5006 value = strtoul(optarg, &ptr, 10);
5007 switch (*ptr) {
5008 case 0: case 'M': case 'm':
5009 value <<= 20;
5010 break;
5011 case 'G': case 'g':
5012 value <<= 30;
5013 break;
5014 default:
5015 fprintf(stderr, "qemu: invalid ram size: %s\n", optarg);
5016 exit(1);
5019 /* On 32-bit hosts, QEMU is limited by virtual address space */
5020 if (value > (2047 << 20) && HOST_LONG_BITS == 32) {
5021 fprintf(stderr, "qemu: at most 2047 MB RAM can be simulated\n");
5022 exit(1);
5024 if (value != (uint64_t)(ram_addr_t)value) {
5025 fprintf(stderr, "qemu: ram size too large\n");
5026 exit(1);
5028 ram_size = value;
5029 break;
5031 case QEMU_OPTION_d:
5033 int mask;
5034 const CPULogItem *item;
5036 mask = cpu_str_to_log_mask(optarg);
5037 if (!mask) {
5038 printf("Log items (comma separated):\n");
5039 for(item = cpu_log_items; item->mask != 0; item++) {
5040 printf("%-10s %s\n", item->name, item->help);
5042 exit(1);
5044 cpu_set_log(mask);
5046 break;
5047 case QEMU_OPTION_s:
5048 gdbstub_dev = "tcp::" DEFAULT_GDBSTUB_PORT;
5049 break;
5050 case QEMU_OPTION_gdb:
5051 gdbstub_dev = optarg;
5052 break;
5053 case QEMU_OPTION_L:
5054 data_dir = optarg;
5055 break;
5056 case QEMU_OPTION_bios:
5057 bios_name = optarg;
5058 break;
5059 case QEMU_OPTION_singlestep:
5060 singlestep = 1;
5061 break;
5062 case QEMU_OPTION_S:
5063 autostart = 0;
5064 break;
5065 case QEMU_OPTION_k:
5066 keyboard_layout = optarg;
5067 break;
5068 case QEMU_OPTION_localtime:
5069 rtc_utc = 0;
5070 break;
5071 case QEMU_OPTION_vga:
5072 select_vgahw (optarg);
5073 break;
5074 #if defined(TARGET_PPC) || defined(TARGET_SPARC)
5075 case QEMU_OPTION_g:
5077 const char *p;
5078 int w, h, depth;
5079 p = optarg;
5080 w = strtol(p, (char **)&p, 10);
5081 if (w <= 0) {
5082 graphic_error:
5083 fprintf(stderr, "qemu: invalid resolution or depth\n");
5084 exit(1);
5086 if (*p != 'x')
5087 goto graphic_error;
5088 p++;
5089 h = strtol(p, (char **)&p, 10);
5090 if (h <= 0)
5091 goto graphic_error;
5092 if (*p == 'x') {
5093 p++;
5094 depth = strtol(p, (char **)&p, 10);
5095 if (depth != 8 && depth != 15 && depth != 16 &&
5096 depth != 24 && depth != 32)
5097 goto graphic_error;
5098 } else if (*p == '\0') {
5099 depth = graphic_depth;
5100 } else {
5101 goto graphic_error;
5104 graphic_width = w;
5105 graphic_height = h;
5106 graphic_depth = depth;
5108 break;
5109 #endif
5110 case QEMU_OPTION_echr:
5112 char *r;
5113 term_escape_char = strtol(optarg, &r, 0);
5114 if (r == optarg)
5115 printf("Bad argument to echr\n");
5116 break;
5118 case QEMU_OPTION_monitor:
5119 if (monitor_device_index >= MAX_MONITOR_DEVICES) {
5120 fprintf(stderr, "qemu: too many monitor devices\n");
5121 exit(1);
5123 monitor_devices[monitor_device_index] =
5124 monitor_cmdline_parse(optarg,
5125 &monitor_flags[monitor_device_index]);
5126 monitor_device_index++;
5127 break;
5128 case QEMU_OPTION_chardev:
5129 opts = qemu_opts_parse(&qemu_chardev_opts, optarg, "backend");
5130 if (!opts) {
5131 fprintf(stderr, "parse error: %s\n", optarg);
5132 exit(1);
5134 if (qemu_chr_open_opts(opts, NULL) == NULL) {
5135 exit(1);
5137 break;
5138 case QEMU_OPTION_serial:
5139 if (serial_device_index >= MAX_SERIAL_PORTS) {
5140 fprintf(stderr, "qemu: too many serial ports\n");
5141 exit(1);
5143 serial_devices[serial_device_index] = optarg;
5144 serial_device_index++;
5145 break;
5146 case QEMU_OPTION_watchdog:
5147 if (watchdog) {
5148 fprintf(stderr,
5149 "qemu: only one watchdog option may be given\n");
5150 return 1;
5152 watchdog = optarg;
5153 break;
5154 case QEMU_OPTION_watchdog_action:
5155 if (select_watchdog_action(optarg) == -1) {
5156 fprintf(stderr, "Unknown -watchdog-action parameter\n");
5157 exit(1);
5159 break;
5160 case QEMU_OPTION_virtiocon:
5161 if (virtio_console_index >= MAX_VIRTIO_CONSOLES) {
5162 fprintf(stderr, "qemu: too many virtio consoles\n");
5163 exit(1);
5165 virtio_consoles[virtio_console_index] = optarg;
5166 virtio_console_index++;
5167 break;
5168 case QEMU_OPTION_parallel:
5169 if (parallel_device_index >= MAX_PARALLEL_PORTS) {
5170 fprintf(stderr, "qemu: too many parallel ports\n");
5171 exit(1);
5173 parallel_devices[parallel_device_index] = optarg;
5174 parallel_device_index++;
5175 break;
5176 case QEMU_OPTION_loadvm:
5177 loadvm = optarg;
5178 break;
5179 case QEMU_OPTION_full_screen:
5180 full_screen = 1;
5181 break;
5182 #ifdef CONFIG_SDL
5183 case QEMU_OPTION_no_frame:
5184 no_frame = 1;
5185 break;
5186 case QEMU_OPTION_alt_grab:
5187 alt_grab = 1;
5188 break;
5189 case QEMU_OPTION_ctrl_grab:
5190 ctrl_grab = 1;
5191 break;
5192 case QEMU_OPTION_no_quit:
5193 no_quit = 1;
5194 break;
5195 case QEMU_OPTION_sdl:
5196 display_type = DT_SDL;
5197 break;
5198 #endif
5199 case QEMU_OPTION_pidfile:
5200 pid_file = optarg;
5201 break;
5202 #ifdef TARGET_I386
5203 case QEMU_OPTION_win2k_hack:
5204 win2k_install_hack = 1;
5205 break;
5206 case QEMU_OPTION_rtc_td_hack:
5207 rtc_td_hack = 1;
5208 break;
5209 case QEMU_OPTION_acpitable:
5210 if(acpi_table_add(optarg) < 0) {
5211 fprintf(stderr, "Wrong acpi table provided\n");
5212 exit(1);
5214 break;
5215 case QEMU_OPTION_smbios:
5216 if(smbios_entry_add(optarg) < 0) {
5217 fprintf(stderr, "Wrong smbios provided\n");
5218 exit(1);
5220 break;
5221 #endif
5222 #ifdef CONFIG_KVM
5223 case QEMU_OPTION_enable_kvm:
5224 kvm_allowed = 1;
5225 break;
5226 #endif
5227 case QEMU_OPTION_usb:
5228 usb_enabled = 1;
5229 break;
5230 case QEMU_OPTION_usbdevice:
5231 usb_enabled = 1;
5232 add_device_config(DEV_USB, optarg);
5233 break;
5234 case QEMU_OPTION_device:
5235 if (!qemu_opts_parse(&qemu_device_opts, optarg, "driver")) {
5236 exit(1);
5238 break;
5239 case QEMU_OPTION_smp:
5240 smp_parse(optarg);
5241 if (smp_cpus < 1) {
5242 fprintf(stderr, "Invalid number of CPUs\n");
5243 exit(1);
5245 if (max_cpus < smp_cpus) {
5246 fprintf(stderr, "maxcpus must be equal to or greater than "
5247 "smp\n");
5248 exit(1);
5250 if (max_cpus > 255) {
5251 fprintf(stderr, "Unsupported number of maxcpus\n");
5252 exit(1);
5254 break;
5255 case QEMU_OPTION_vnc:
5256 display_type = DT_VNC;
5257 vnc_display = optarg;
5258 break;
5259 #ifdef TARGET_I386
5260 case QEMU_OPTION_no_acpi:
5261 acpi_enabled = 0;
5262 break;
5263 case QEMU_OPTION_no_hpet:
5264 no_hpet = 1;
5265 break;
5266 case QEMU_OPTION_balloon:
5267 if (balloon_parse(optarg) < 0) {
5268 fprintf(stderr, "Unknown -balloon argument %s\n", optarg);
5269 exit(1);
5271 break;
5272 #endif
5273 case QEMU_OPTION_no_reboot:
5274 no_reboot = 1;
5275 break;
5276 case QEMU_OPTION_no_shutdown:
5277 no_shutdown = 1;
5278 break;
5279 case QEMU_OPTION_show_cursor:
5280 cursor_hide = 0;
5281 break;
5282 case QEMU_OPTION_uuid:
5283 if(qemu_uuid_parse(optarg, qemu_uuid) < 0) {
5284 fprintf(stderr, "Fail to parse UUID string."
5285 " Wrong format.\n");
5286 exit(1);
5288 break;
5289 #ifndef _WIN32
5290 case QEMU_OPTION_daemonize:
5291 daemonize = 1;
5292 break;
5293 #endif
5294 case QEMU_OPTION_option_rom:
5295 if (nb_option_roms >= MAX_OPTION_ROMS) {
5296 fprintf(stderr, "Too many option ROMs\n");
5297 exit(1);
5299 option_rom[nb_option_roms] = optarg;
5300 nb_option_roms++;
5301 break;
5302 #if defined(TARGET_ARM) || defined(TARGET_M68K)
5303 case QEMU_OPTION_semihosting:
5304 semihosting_enabled = 1;
5305 break;
5306 #endif
5307 case QEMU_OPTION_name:
5308 qemu_name = qemu_strdup(optarg);
5310 char *p = strchr(qemu_name, ',');
5311 if (p != NULL) {
5312 *p++ = 0;
5313 if (strncmp(p, "process=", 8)) {
5314 fprintf(stderr, "Unknown subargument %s to -name", p);
5315 exit(1);
5317 p += 8;
5318 set_proc_name(p);
5321 break;
5322 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
5323 case QEMU_OPTION_prom_env:
5324 if (nb_prom_envs >= MAX_PROM_ENVS) {
5325 fprintf(stderr, "Too many prom variables\n");
5326 exit(1);
5328 prom_envs[nb_prom_envs] = optarg;
5329 nb_prom_envs++;
5330 break;
5331 #endif
5332 #ifdef TARGET_ARM
5333 case QEMU_OPTION_old_param:
5334 old_param = 1;
5335 break;
5336 #endif
5337 case QEMU_OPTION_clock:
5338 configure_alarms(optarg);
5339 break;
5340 case QEMU_OPTION_startdate:
5341 configure_rtc_date_offset(optarg, 1);
5342 break;
5343 case QEMU_OPTION_rtc:
5344 opts = qemu_opts_parse(&qemu_rtc_opts, optarg, NULL);
5345 if (!opts) {
5346 fprintf(stderr, "parse error: %s\n", optarg);
5347 exit(1);
5349 configure_rtc(opts);
5350 break;
5351 case QEMU_OPTION_tb_size:
5352 tb_size = strtol(optarg, NULL, 0);
5353 if (tb_size < 0)
5354 tb_size = 0;
5355 break;
5356 case QEMU_OPTION_icount:
5357 use_icount = 1;
5358 if (strcmp(optarg, "auto") == 0) {
5359 icount_time_shift = -1;
5360 } else {
5361 icount_time_shift = strtol(optarg, NULL, 0);
5363 break;
5364 case QEMU_OPTION_incoming:
5365 incoming = optarg;
5366 break;
5367 #ifndef _WIN32
5368 case QEMU_OPTION_chroot:
5369 chroot_dir = optarg;
5370 break;
5371 case QEMU_OPTION_runas:
5372 run_as = optarg;
5373 break;
5374 #endif
5375 #ifdef CONFIG_XEN
5376 case QEMU_OPTION_xen_domid:
5377 xen_domid = atoi(optarg);
5378 break;
5379 case QEMU_OPTION_xen_create:
5380 xen_mode = XEN_CREATE;
5381 break;
5382 case QEMU_OPTION_xen_attach:
5383 xen_mode = XEN_ATTACH;
5384 break;
5385 #endif
5386 case QEMU_OPTION_readconfig:
5388 FILE *fp;
5389 fp = fopen(optarg, "r");
5390 if (fp == NULL) {
5391 fprintf(stderr, "open %s: %s\n", optarg, strerror(errno));
5392 exit(1);
5394 if (qemu_config_parse(fp) != 0) {
5395 exit(1);
5397 fclose(fp);
5398 break;
5400 case QEMU_OPTION_writeconfig:
5402 FILE *fp;
5403 if (strcmp(optarg, "-") == 0) {
5404 fp = stdout;
5405 } else {
5406 fp = fopen(optarg, "w");
5407 if (fp == NULL) {
5408 fprintf(stderr, "open %s: %s\n", optarg, strerror(errno));
5409 exit(1);
5412 qemu_config_write(fp);
5413 fclose(fp);
5414 break;
5420 /* If no data_dir is specified then try to find it relative to the
5421 executable path. */
5422 if (!data_dir) {
5423 data_dir = find_datadir(argv[0]);
5425 /* If all else fails use the install patch specified when building. */
5426 if (!data_dir) {
5427 data_dir = CONFIG_QEMU_SHAREDIR;
5431 * Default to max_cpus = smp_cpus, in case the user doesn't
5432 * specify a max_cpus value.
5434 if (!max_cpus)
5435 max_cpus = smp_cpus;
5437 machine->max_cpus = machine->max_cpus ?: 1; /* Default to UP */
5438 if (smp_cpus > machine->max_cpus) {
5439 fprintf(stderr, "Number of SMP cpus requested (%d), exceeds max cpus "
5440 "supported by machine `%s' (%d)\n", smp_cpus, machine->name,
5441 machine->max_cpus);
5442 exit(1);
5445 if (display_type == DT_NOGRAPHIC) {
5446 if (serial_device_index == 0)
5447 serial_devices[0] = "stdio";
5448 if (parallel_device_index == 0)
5449 parallel_devices[0] = "null";
5450 if (strncmp(monitor_devices[0], "vc", 2) == 0) {
5451 monitor_devices[0] = "stdio";
5455 #ifndef _WIN32
5456 if (daemonize) {
5457 pid_t pid;
5459 if (pipe(fds) == -1)
5460 exit(1);
5462 pid = fork();
5463 if (pid > 0) {
5464 uint8_t status;
5465 ssize_t len;
5467 close(fds[1]);
5469 again:
5470 len = read(fds[0], &status, 1);
5471 if (len == -1 && (errno == EINTR))
5472 goto again;
5474 if (len != 1)
5475 exit(1);
5476 else if (status == 1) {
5477 fprintf(stderr, "Could not acquire pidfile: %s\n", strerror(errno));
5478 exit(1);
5479 } else
5480 exit(0);
5481 } else if (pid < 0)
5482 exit(1);
5484 setsid();
5486 pid = fork();
5487 if (pid > 0)
5488 exit(0);
5489 else if (pid < 0)
5490 exit(1);
5492 umask(027);
5494 signal(SIGTSTP, SIG_IGN);
5495 signal(SIGTTOU, SIG_IGN);
5496 signal(SIGTTIN, SIG_IGN);
5499 if (pid_file && qemu_create_pidfile(pid_file) != 0) {
5500 if (daemonize) {
5501 uint8_t status = 1;
5502 write(fds[1], &status, 1);
5503 } else
5504 fprintf(stderr, "Could not acquire pid file: %s\n", strerror(errno));
5505 exit(1);
5507 #endif
5509 if (kvm_enabled()) {
5510 int ret;
5512 ret = kvm_init(smp_cpus);
5513 if (ret < 0) {
5514 fprintf(stderr, "failed to initialize KVM\n");
5515 exit(1);
5519 if (qemu_init_main_loop()) {
5520 fprintf(stderr, "qemu_init_main_loop failed\n");
5521 exit(1);
5523 linux_boot = (kernel_filename != NULL);
5525 if (!linux_boot && *kernel_cmdline != '\0') {
5526 fprintf(stderr, "-append only allowed with -kernel option\n");
5527 exit(1);
5530 if (!linux_boot && initrd_filename != NULL) {
5531 fprintf(stderr, "-initrd only allowed with -kernel option\n");
5532 exit(1);
5535 #ifndef _WIN32
5536 /* Win32 doesn't support line-buffering and requires size >= 2 */
5537 setvbuf(stdout, NULL, _IOLBF, 0);
5538 #endif
5540 if (init_timer_alarm() < 0) {
5541 fprintf(stderr, "could not initialize alarm timer\n");
5542 exit(1);
5544 if (use_icount && icount_time_shift < 0) {
5545 use_icount = 2;
5546 /* 125MIPS seems a reasonable initial guess at the guest speed.
5547 It will be corrected fairly quickly anyway. */
5548 icount_time_shift = 3;
5549 init_icount_adjust();
5552 #ifdef _WIN32
5553 socket_init();
5554 #endif
5556 if (net_init_clients() < 0) {
5557 exit(1);
5560 net_boot = (boot_devices_bitmap >> ('n' - 'a')) & 0xF;
5561 net_set_boot_mask(net_boot);
5563 /* init the bluetooth world */
5564 if (foreach_device_config(DEV_BT, bt_parse))
5565 exit(1);
5567 /* init the memory */
5568 if (ram_size == 0)
5569 ram_size = DEFAULT_RAM_SIZE * 1024 * 1024;
5571 /* init the dynamic translator */
5572 cpu_exec_init_all(tb_size * 1024 * 1024);
5574 bdrv_init_with_whitelist();
5576 blk_mig_init();
5578 /* we always create the cdrom drive, even if no disk is there */
5579 drive_add(NULL, CDROM_ALIAS);
5581 /* we always create at least one floppy */
5582 drive_add(NULL, FD_ALIAS, 0);
5584 /* we always create one sd slot, even if no card is in it */
5585 drive_add(NULL, SD_ALIAS);
5587 /* open the virtual block devices */
5588 if (snapshot)
5589 qemu_opts_foreach(&qemu_drive_opts, drive_enable_snapshot, NULL, 0);
5590 if (qemu_opts_foreach(&qemu_drive_opts, drive_init_func, machine, 1) != 0)
5591 exit(1);
5593 vmstate_register(0, &vmstate_timers ,&timers_state);
5594 register_savevm_live("ram", 0, 3, NULL, ram_save_live, NULL,
5595 ram_load, NULL);
5597 /* Maintain compatibility with multiple stdio monitors */
5598 if (!strcmp(monitor_devices[0],"stdio")) {
5599 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
5600 const char *devname = serial_devices[i];
5601 if (devname && !strcmp(devname,"mon:stdio")) {
5602 monitor_devices[0] = NULL;
5603 break;
5604 } else if (devname && !strcmp(devname,"stdio")) {
5605 monitor_devices[0] = NULL;
5606 serial_devices[i] = "mon:stdio";
5607 break;
5612 if (nb_numa_nodes > 0) {
5613 int i;
5615 if (nb_numa_nodes > smp_cpus) {
5616 nb_numa_nodes = smp_cpus;
5619 /* If no memory size if given for any node, assume the default case
5620 * and distribute the available memory equally across all nodes
5622 for (i = 0; i < nb_numa_nodes; i++) {
5623 if (node_mem[i] != 0)
5624 break;
5626 if (i == nb_numa_nodes) {
5627 uint64_t usedmem = 0;
5629 /* On Linux, the each node's border has to be 8MB aligned,
5630 * the final node gets the rest.
5632 for (i = 0; i < nb_numa_nodes - 1; i++) {
5633 node_mem[i] = (ram_size / nb_numa_nodes) & ~((1 << 23UL) - 1);
5634 usedmem += node_mem[i];
5636 node_mem[i] = ram_size - usedmem;
5639 for (i = 0; i < nb_numa_nodes; i++) {
5640 if (node_cpumask[i] != 0)
5641 break;
5643 /* assigning the VCPUs round-robin is easier to implement, guest OSes
5644 * must cope with this anyway, because there are BIOSes out there in
5645 * real machines which also use this scheme.
5647 if (i == nb_numa_nodes) {
5648 for (i = 0; i < smp_cpus; i++) {
5649 node_cpumask[i % nb_numa_nodes] |= 1 << i;
5654 for (i = 0; i < MAX_MONITOR_DEVICES; i++) {
5655 const char *devname = monitor_devices[i];
5656 if (devname && strcmp(devname, "none")) {
5657 char label[32];
5658 if (i == 0) {
5659 snprintf(label, sizeof(label), "monitor");
5660 } else {
5661 snprintf(label, sizeof(label), "monitor%d", i);
5663 monitor_hds[i] = qemu_chr_open(label, devname, NULL);
5664 if (!monitor_hds[i]) {
5665 fprintf(stderr, "qemu: could not open monitor device '%s'\n",
5666 devname);
5667 exit(1);
5672 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
5673 const char *devname = serial_devices[i];
5674 if (devname && strcmp(devname, "none")) {
5675 char label[32];
5676 snprintf(label, sizeof(label), "serial%d", i);
5677 serial_hds[i] = qemu_chr_open(label, devname, NULL);
5678 if (!serial_hds[i]) {
5679 fprintf(stderr, "qemu: could not open serial device '%s': %s\n",
5680 devname, strerror(errno));
5681 exit(1);
5686 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
5687 const char *devname = parallel_devices[i];
5688 if (devname && strcmp(devname, "none")) {
5689 char label[32];
5690 snprintf(label, sizeof(label), "parallel%d", i);
5691 parallel_hds[i] = qemu_chr_open(label, devname, NULL);
5692 if (!parallel_hds[i]) {
5693 fprintf(stderr, "qemu: could not open parallel device '%s': %s\n",
5694 devname, strerror(errno));
5695 exit(1);
5700 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++) {
5701 const char *devname = virtio_consoles[i];
5702 if (devname && strcmp(devname, "none")) {
5703 char label[32];
5704 snprintf(label, sizeof(label), "virtcon%d", i);
5705 virtcon_hds[i] = qemu_chr_open(label, devname, NULL);
5706 if (!virtcon_hds[i]) {
5707 fprintf(stderr, "qemu: could not open virtio console '%s': %s\n",
5708 devname, strerror(errno));
5709 exit(1);
5714 module_call_init(MODULE_INIT_DEVICE);
5716 if (watchdog) {
5717 i = select_watchdog(watchdog);
5718 if (i > 0)
5719 exit (i == 1 ? 1 : 0);
5722 if (machine->compat_props) {
5723 qdev_prop_register_compat(machine->compat_props);
5725 machine->init(ram_size, boot_devices,
5726 kernel_filename, kernel_cmdline, initrd_filename, cpu_model);
5729 #ifndef _WIN32
5730 /* must be after terminal init, SDL library changes signal handlers */
5731 sighandler_setup();
5732 #endif
5734 for (env = first_cpu; env != NULL; env = env->next_cpu) {
5735 for (i = 0; i < nb_numa_nodes; i++) {
5736 if (node_cpumask[i] & (1 << env->cpu_index)) {
5737 env->numa_node = i;
5742 current_machine = machine;
5744 /* init USB devices */
5745 if (usb_enabled) {
5746 if (foreach_device_config(DEV_USB, usb_parse) < 0)
5747 exit(1);
5750 /* init generic devices */
5751 if (qemu_opts_foreach(&qemu_device_opts, device_init_func, NULL, 1) != 0)
5752 exit(1);
5754 if (!display_state)
5755 dumb_display_init();
5756 /* just use the first displaystate for the moment */
5757 ds = display_state;
5759 if (display_type == DT_DEFAULT) {
5760 #if defined(CONFIG_SDL) || defined(CONFIG_COCOA)
5761 display_type = DT_SDL;
5762 #else
5763 display_type = DT_VNC;
5764 vnc_display = "localhost:0,to=99";
5765 show_vnc_port = 1;
5766 #endif
5770 switch (display_type) {
5771 case DT_NOGRAPHIC:
5772 break;
5773 #if defined(CONFIG_CURSES)
5774 case DT_CURSES:
5775 curses_display_init(ds, full_screen);
5776 break;
5777 #endif
5778 #if defined(CONFIG_SDL)
5779 case DT_SDL:
5780 sdl_display_init(ds, full_screen, no_frame);
5781 break;
5782 #elif defined(CONFIG_COCOA)
5783 case DT_SDL:
5784 cocoa_display_init(ds, full_screen);
5785 break;
5786 #endif
5787 case DT_VNC:
5788 vnc_display_init(ds);
5789 if (vnc_display_open(ds, vnc_display) < 0)
5790 exit(1);
5792 if (show_vnc_port) {
5793 printf("VNC server running on `%s'\n", vnc_display_local_addr(ds));
5795 break;
5796 default:
5797 break;
5799 dpy_resize(ds);
5801 dcl = ds->listeners;
5802 while (dcl != NULL) {
5803 if (dcl->dpy_refresh != NULL) {
5804 ds->gui_timer = qemu_new_timer(rt_clock, gui_update, ds);
5805 qemu_mod_timer(ds->gui_timer, qemu_get_clock(rt_clock));
5807 dcl = dcl->next;
5810 if (display_type == DT_NOGRAPHIC || display_type == DT_VNC) {
5811 nographic_timer = qemu_new_timer(rt_clock, nographic_update, NULL);
5812 qemu_mod_timer(nographic_timer, qemu_get_clock(rt_clock));
5815 text_consoles_set_display(display_state);
5817 for (i = 0; i < MAX_MONITOR_DEVICES; i++) {
5818 if (monitor_devices[i] && monitor_hds[i]) {
5819 monitor_init(monitor_hds[i], monitor_flags[i]);
5823 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
5824 const char *devname = serial_devices[i];
5825 if (devname && strcmp(devname, "none")) {
5826 if (strstart(devname, "vc", 0))
5827 qemu_chr_printf(serial_hds[i], "serial%d console\r\n", i);
5831 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
5832 const char *devname = parallel_devices[i];
5833 if (devname && strcmp(devname, "none")) {
5834 if (strstart(devname, "vc", 0))
5835 qemu_chr_printf(parallel_hds[i], "parallel%d console\r\n", i);
5839 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++) {
5840 const char *devname = virtio_consoles[i];
5841 if (virtcon_hds[i] && devname) {
5842 if (strstart(devname, "vc", 0))
5843 qemu_chr_printf(virtcon_hds[i], "virtio console%d\r\n", i);
5847 if (gdbstub_dev && gdbserver_start(gdbstub_dev) < 0) {
5848 fprintf(stderr, "qemu: could not open gdbserver on device '%s'\n",
5849 gdbstub_dev);
5850 exit(1);
5853 qdev_machine_creation_done();
5855 rom_load_all();
5857 qemu_system_reset();
5858 if (loadvm) {
5859 if (load_vmstate(cur_mon, loadvm) < 0) {
5860 autostart = 0;
5864 if (incoming) {
5865 qemu_start_incoming_migration(incoming);
5866 } else if (autostart) {
5867 vm_start();
5870 #ifndef _WIN32
5871 if (daemonize) {
5872 uint8_t status = 0;
5873 ssize_t len;
5875 again1:
5876 len = write(fds[1], &status, 1);
5877 if (len == -1 && (errno == EINTR))
5878 goto again1;
5880 if (len != 1)
5881 exit(1);
5883 chdir("/");
5884 TFR(fd = open("/dev/null", O_RDWR));
5885 if (fd == -1)
5886 exit(1);
5889 if (run_as) {
5890 pwd = getpwnam(run_as);
5891 if (!pwd) {
5892 fprintf(stderr, "User \"%s\" doesn't exist\n", run_as);
5893 exit(1);
5897 if (chroot_dir) {
5898 if (chroot(chroot_dir) < 0) {
5899 fprintf(stderr, "chroot failed\n");
5900 exit(1);
5902 chdir("/");
5905 if (run_as) {
5906 if (setgid(pwd->pw_gid) < 0) {
5907 fprintf(stderr, "Failed to setgid(%d)\n", pwd->pw_gid);
5908 exit(1);
5910 if (setuid(pwd->pw_uid) < 0) {
5911 fprintf(stderr, "Failed to setuid(%d)\n", pwd->pw_uid);
5912 exit(1);
5914 if (setuid(0) != -1) {
5915 fprintf(stderr, "Dropping privileges failed\n");
5916 exit(1);
5920 if (daemonize) {
5921 dup2(fd, 0);
5922 dup2(fd, 1);
5923 dup2(fd, 2);
5925 close(fd);
5927 #endif
5929 main_loop();
5930 quit_timers();
5931 net_cleanup();
5933 return 0;