spapr: Remove 'awaiting_allocation' DRC flag
[qemu/kevin.git] / qtest.c
blob88a09e9afc68577a85f4c3e796b4c86651898fd2
1 /*
2 * Test Server
4 * Copyright IBM, Corp. 2011
6 * Authors:
7 * Anthony Liguori <aliguori@us.ibm.com>
9 * This work is licensed under the terms of the GNU GPL, version 2 or later.
10 * See the COPYING file in the top-level directory.
14 #include "qemu/osdep.h"
15 #include "qapi/error.h"
16 #include "qemu-common.h"
17 #include "cpu.h"
18 #include "sysemu/qtest.h"
19 #include "hw/qdev.h"
20 #include "chardev/char-fe.h"
21 #include "exec/ioport.h"
22 #include "exec/memory.h"
23 #include "hw/irq.h"
24 #include "sysemu/accel.h"
25 #include "sysemu/sysemu.h"
26 #include "sysemu/cpus.h"
27 #include "qemu/config-file.h"
28 #include "qemu/option.h"
29 #include "qemu/error-report.h"
30 #include "qemu/cutils.h"
31 #ifdef TARGET_PPC64
32 #include "hw/ppc/spapr_rtas.h"
33 #endif
35 #define MAX_IRQ 256
37 bool qtest_allowed;
39 static DeviceState *irq_intercept_dev;
40 static FILE *qtest_log_fp;
41 static CharBackend qtest_chr;
42 static GString *inbuf;
43 static int irq_levels[MAX_IRQ];
44 static qemu_timeval start_time;
45 static bool qtest_opened;
47 #define FMT_timeval "%ld.%06ld"
49 /**
50 * QTest Protocol
52 * Line based protocol, request/response based. Server can send async messages
53 * so clients should always handle many async messages before the response
54 * comes in.
56 * Valid requests
58 * Clock management:
60 * The qtest client is completely in charge of the QEMU_CLOCK_VIRTUAL. qtest commands
61 * let you adjust the value of the clock (monotonically). All the commands
62 * return the current value of the clock in nanoseconds.
64 * > clock_step
65 * < OK VALUE
67 * Advance the clock to the next deadline. Useful when waiting for
68 * asynchronous events.
70 * > clock_step NS
71 * < OK VALUE
73 * Advance the clock by NS nanoseconds.
75 * > clock_set NS
76 * < OK VALUE
78 * Advance the clock to NS nanoseconds (do nothing if it's already past).
80 * PIO and memory access:
82 * > outb ADDR VALUE
83 * < OK
85 * > outw ADDR VALUE
86 * < OK
88 * > outl ADDR VALUE
89 * < OK
91 * > inb ADDR
92 * < OK VALUE
94 * > inw ADDR
95 * < OK VALUE
97 * > inl ADDR
98 * < OK VALUE
100 * > writeb ADDR VALUE
101 * < OK
103 * > writew ADDR VALUE
104 * < OK
106 * > writel ADDR VALUE
107 * < OK
109 * > writeq ADDR VALUE
110 * < OK
112 * > readb ADDR
113 * < OK VALUE
115 * > readw ADDR
116 * < OK VALUE
118 * > readl ADDR
119 * < OK VALUE
121 * > readq ADDR
122 * < OK VALUE
124 * > read ADDR SIZE
125 * < OK DATA
127 * > write ADDR SIZE DATA
128 * < OK
130 * > b64read ADDR SIZE
131 * < OK B64_DATA
133 * > b64write ADDR SIZE B64_DATA
134 * < OK
136 * > memset ADDR SIZE VALUE
137 * < OK
139 * ADDR, SIZE, VALUE are all integers parsed with strtoul() with a base of 0.
140 * For 'memset' a zero size is permitted and does nothing.
142 * DATA is an arbitrarily long hex number prefixed with '0x'. If it's smaller
143 * than the expected size, the value will be zero filled at the end of the data
144 * sequence.
146 * B64_DATA is an arbitrarily long base64 encoded string.
147 * If the sizes do not match, the data will be truncated.
149 * IRQ management:
151 * > irq_intercept_in QOM-PATH
152 * < OK
154 * > irq_intercept_out QOM-PATH
155 * < OK
157 * Attach to the gpio-in (resp. gpio-out) pins exported by the device at
158 * QOM-PATH. When the pin is triggered, one of the following async messages
159 * will be printed to the qtest stream:
161 * IRQ raise NUM
162 * IRQ lower NUM
164 * where NUM is an IRQ number. For the PC, interrupts can be intercepted
165 * simply with "irq_intercept_in ioapic" (note that IRQ0 comes out with
166 * NUM=0 even though it is remapped to GSI 2).
169 static int hex2nib(char ch)
171 if (ch >= '0' && ch <= '9') {
172 return ch - '0';
173 } else if (ch >= 'a' && ch <= 'f') {
174 return 10 + (ch - 'a');
175 } else if (ch >= 'A' && ch <= 'F') {
176 return 10 + (ch - 'A');
177 } else {
178 return -1;
182 static void qtest_get_time(qemu_timeval *tv)
184 qemu_gettimeofday(tv);
185 tv->tv_sec -= start_time.tv_sec;
186 tv->tv_usec -= start_time.tv_usec;
187 if (tv->tv_usec < 0) {
188 tv->tv_usec += 1000000;
189 tv->tv_sec -= 1;
193 static void qtest_send_prefix(CharBackend *chr)
195 qemu_timeval tv;
197 if (!qtest_log_fp || !qtest_opened) {
198 return;
201 qtest_get_time(&tv);
202 fprintf(qtest_log_fp, "[S +" FMT_timeval "] ",
203 (long) tv.tv_sec, (long) tv.tv_usec);
206 static void GCC_FMT_ATTR(1, 2) qtest_log_send(const char *fmt, ...)
208 va_list ap;
210 if (!qtest_log_fp || !qtest_opened) {
211 return;
214 qtest_send_prefix(NULL);
216 va_start(ap, fmt);
217 vfprintf(qtest_log_fp, fmt, ap);
218 va_end(ap);
221 static void do_qtest_send(CharBackend *chr, const char *str, size_t len)
223 qemu_chr_fe_write_all(chr, (uint8_t *)str, len);
224 if (qtest_log_fp && qtest_opened) {
225 fprintf(qtest_log_fp, "%s", str);
229 static void qtest_send(CharBackend *chr, const char *str)
231 do_qtest_send(chr, str, strlen(str));
234 static void GCC_FMT_ATTR(2, 3) qtest_sendf(CharBackend *chr,
235 const char *fmt, ...)
237 va_list ap;
238 gchar *buffer;
240 va_start(ap, fmt);
241 buffer = g_strdup_vprintf(fmt, ap);
242 qtest_send(chr, buffer);
243 g_free(buffer);
244 va_end(ap);
247 static void qtest_irq_handler(void *opaque, int n, int level)
249 qemu_irq old_irq = *(qemu_irq *)opaque;
250 qemu_set_irq(old_irq, level);
252 if (irq_levels[n] != level) {
253 CharBackend *chr = &qtest_chr;
254 irq_levels[n] = level;
255 qtest_send_prefix(chr);
256 qtest_sendf(chr, "IRQ %s %d\n",
257 level ? "raise" : "lower", n);
261 static void qtest_process_command(CharBackend *chr, gchar **words)
263 const gchar *command;
265 g_assert(words);
267 command = words[0];
269 if (qtest_log_fp) {
270 qemu_timeval tv;
271 int i;
273 qtest_get_time(&tv);
274 fprintf(qtest_log_fp, "[R +" FMT_timeval "]",
275 (long) tv.tv_sec, (long) tv.tv_usec);
276 for (i = 0; words[i]; i++) {
277 fprintf(qtest_log_fp, " %s", words[i]);
279 fprintf(qtest_log_fp, "\n");
282 g_assert(command);
283 if (strcmp(words[0], "irq_intercept_out") == 0
284 || strcmp(words[0], "irq_intercept_in") == 0) {
285 DeviceState *dev;
286 NamedGPIOList *ngl;
288 g_assert(words[1]);
289 dev = DEVICE(object_resolve_path(words[1], NULL));
290 if (!dev) {
291 qtest_send_prefix(chr);
292 qtest_send(chr, "FAIL Unknown device\n");
293 return;
296 if (irq_intercept_dev) {
297 qtest_send_prefix(chr);
298 if (irq_intercept_dev != dev) {
299 qtest_send(chr, "FAIL IRQ intercept already enabled\n");
300 } else {
301 qtest_send(chr, "OK\n");
303 return;
306 QLIST_FOREACH(ngl, &dev->gpios, node) {
307 /* We don't support intercept of named GPIOs yet */
308 if (ngl->name) {
309 continue;
311 if (words[0][14] == 'o') {
312 int i;
313 for (i = 0; i < ngl->num_out; ++i) {
314 qemu_irq *disconnected = g_new0(qemu_irq, 1);
315 qemu_irq icpt = qemu_allocate_irq(qtest_irq_handler,
316 disconnected, i);
318 *disconnected = qdev_intercept_gpio_out(dev, icpt,
319 ngl->name, i);
321 } else {
322 qemu_irq_intercept_in(ngl->in, qtest_irq_handler,
323 ngl->num_in);
326 irq_intercept_dev = dev;
327 qtest_send_prefix(chr);
328 qtest_send(chr, "OK\n");
330 } else if (strcmp(words[0], "outb") == 0 ||
331 strcmp(words[0], "outw") == 0 ||
332 strcmp(words[0], "outl") == 0) {
333 unsigned long addr;
334 unsigned long value;
336 g_assert(words[1] && words[2]);
337 g_assert(qemu_strtoul(words[1], NULL, 0, &addr) == 0);
338 g_assert(qemu_strtoul(words[2], NULL, 0, &value) == 0);
339 g_assert(addr <= 0xffff);
341 if (words[0][3] == 'b') {
342 cpu_outb(addr, value);
343 } else if (words[0][3] == 'w') {
344 cpu_outw(addr, value);
345 } else if (words[0][3] == 'l') {
346 cpu_outl(addr, value);
348 qtest_send_prefix(chr);
349 qtest_send(chr, "OK\n");
350 } else if (strcmp(words[0], "inb") == 0 ||
351 strcmp(words[0], "inw") == 0 ||
352 strcmp(words[0], "inl") == 0) {
353 unsigned long addr;
354 uint32_t value = -1U;
356 g_assert(words[1]);
357 g_assert(qemu_strtoul(words[1], NULL, 0, &addr) == 0);
358 g_assert(addr <= 0xffff);
360 if (words[0][2] == 'b') {
361 value = cpu_inb(addr);
362 } else if (words[0][2] == 'w') {
363 value = cpu_inw(addr);
364 } else if (words[0][2] == 'l') {
365 value = cpu_inl(addr);
367 qtest_send_prefix(chr);
368 qtest_sendf(chr, "OK 0x%04x\n", value);
369 } else if (strcmp(words[0], "writeb") == 0 ||
370 strcmp(words[0], "writew") == 0 ||
371 strcmp(words[0], "writel") == 0 ||
372 strcmp(words[0], "writeq") == 0) {
373 uint64_t addr;
374 uint64_t value;
376 g_assert(words[1] && words[2]);
377 g_assert(qemu_strtou64(words[1], NULL, 0, &addr) == 0);
378 g_assert(qemu_strtou64(words[2], NULL, 0, &value) == 0);
380 if (words[0][5] == 'b') {
381 uint8_t data = value;
382 cpu_physical_memory_write(addr, &data, 1);
383 } else if (words[0][5] == 'w') {
384 uint16_t data = value;
385 tswap16s(&data);
386 cpu_physical_memory_write(addr, &data, 2);
387 } else if (words[0][5] == 'l') {
388 uint32_t data = value;
389 tswap32s(&data);
390 cpu_physical_memory_write(addr, &data, 4);
391 } else if (words[0][5] == 'q') {
392 uint64_t data = value;
393 tswap64s(&data);
394 cpu_physical_memory_write(addr, &data, 8);
396 qtest_send_prefix(chr);
397 qtest_send(chr, "OK\n");
398 } else if (strcmp(words[0], "readb") == 0 ||
399 strcmp(words[0], "readw") == 0 ||
400 strcmp(words[0], "readl") == 0 ||
401 strcmp(words[0], "readq") == 0) {
402 uint64_t addr;
403 uint64_t value = UINT64_C(-1);
405 g_assert(words[1]);
406 g_assert(qemu_strtou64(words[1], NULL, 0, &addr) == 0);
408 if (words[0][4] == 'b') {
409 uint8_t data;
410 cpu_physical_memory_read(addr, &data, 1);
411 value = data;
412 } else if (words[0][4] == 'w') {
413 uint16_t data;
414 cpu_physical_memory_read(addr, &data, 2);
415 value = tswap16(data);
416 } else if (words[0][4] == 'l') {
417 uint32_t data;
418 cpu_physical_memory_read(addr, &data, 4);
419 value = tswap32(data);
420 } else if (words[0][4] == 'q') {
421 cpu_physical_memory_read(addr, &value, 8);
422 tswap64s(&value);
424 qtest_send_prefix(chr);
425 qtest_sendf(chr, "OK 0x%016" PRIx64 "\n", value);
426 } else if (strcmp(words[0], "read") == 0) {
427 uint64_t addr, len, i;
428 uint8_t *data;
429 char *enc;
431 g_assert(words[1] && words[2]);
432 g_assert(qemu_strtou64(words[1], NULL, 0, &addr) == 0);
433 g_assert(qemu_strtou64(words[2], NULL, 0, &len) == 0);
434 /* We'd send garbage to libqtest if len is 0 */
435 g_assert(len);
437 data = g_malloc(len);
438 cpu_physical_memory_read(addr, data, len);
440 enc = g_malloc(2 * len + 1);
441 for (i = 0; i < len; i++) {
442 sprintf(&enc[i * 2], "%02x", data[i]);
445 qtest_send_prefix(chr);
446 qtest_sendf(chr, "OK 0x%s\n", enc);
448 g_free(data);
449 g_free(enc);
450 } else if (strcmp(words[0], "b64read") == 0) {
451 uint64_t addr, len;
452 uint8_t *data;
453 gchar *b64_data;
455 g_assert(words[1] && words[2]);
456 g_assert(qemu_strtou64(words[1], NULL, 0, &addr) == 0);
457 g_assert(qemu_strtou64(words[2], NULL, 0, &len) == 0);
459 data = g_malloc(len);
460 cpu_physical_memory_read(addr, data, len);
461 b64_data = g_base64_encode(data, len);
462 qtest_send_prefix(chr);
463 qtest_sendf(chr, "OK %s\n", b64_data);
465 g_free(data);
466 g_free(b64_data);
467 } else if (strcmp(words[0], "write") == 0) {
468 uint64_t addr, len, i;
469 uint8_t *data;
470 size_t data_len;
472 g_assert(words[1] && words[2] && words[3]);
473 g_assert(qemu_strtou64(words[1], NULL, 0, &addr) == 0);
474 g_assert(qemu_strtou64(words[2], NULL, 0, &len) == 0);
476 data_len = strlen(words[3]);
477 if (data_len < 3) {
478 qtest_send(chr, "ERR invalid argument size\n");
479 return;
482 data = g_malloc(len);
483 for (i = 0; i < len; i++) {
484 if ((i * 2 + 4) <= data_len) {
485 data[i] = hex2nib(words[3][i * 2 + 2]) << 4;
486 data[i] |= hex2nib(words[3][i * 2 + 3]);
487 } else {
488 data[i] = 0;
491 cpu_physical_memory_write(addr, data, len);
492 g_free(data);
494 qtest_send_prefix(chr);
495 qtest_send(chr, "OK\n");
496 } else if (strcmp(words[0], "memset") == 0) {
497 uint64_t addr, len;
498 uint8_t *data;
499 unsigned long pattern;
501 g_assert(words[1] && words[2] && words[3]);
502 g_assert(qemu_strtou64(words[1], NULL, 0, &addr) == 0);
503 g_assert(qemu_strtou64(words[2], NULL, 0, &len) == 0);
504 g_assert(qemu_strtoul(words[3], NULL, 0, &pattern) == 0);
506 if (len) {
507 data = g_malloc(len);
508 memset(data, pattern, len);
509 cpu_physical_memory_write(addr, data, len);
510 g_free(data);
513 qtest_send_prefix(chr);
514 qtest_send(chr, "OK\n");
515 } else if (strcmp(words[0], "b64write") == 0) {
516 uint64_t addr, len;
517 uint8_t *data;
518 size_t data_len;
519 gsize out_len;
521 g_assert(words[1] && words[2] && words[3]);
522 g_assert(qemu_strtou64(words[1], NULL, 0, &addr) == 0);
523 g_assert(qemu_strtou64(words[2], NULL, 0, &len) == 0);
525 data_len = strlen(words[3]);
526 if (data_len < 3) {
527 qtest_send(chr, "ERR invalid argument size\n");
528 return;
531 data = g_base64_decode_inplace(words[3], &out_len);
532 if (out_len != len) {
533 qtest_log_send("b64write: data length mismatch (told %"PRIu64", "
534 "found %zu)\n",
535 len, out_len);
536 out_len = MIN(out_len, len);
539 cpu_physical_memory_write(addr, data, out_len);
541 qtest_send_prefix(chr);
542 qtest_send(chr, "OK\n");
543 } else if (strcmp(words[0], "endianness") == 0) {
544 qtest_send_prefix(chr);
545 #if defined(TARGET_WORDS_BIGENDIAN)
546 qtest_sendf(chr, "OK big\n");
547 #else
548 qtest_sendf(chr, "OK little\n");
549 #endif
550 #ifdef TARGET_PPC64
551 } else if (strcmp(words[0], "rtas") == 0) {
552 uint64_t res, args, ret;
553 unsigned long nargs, nret;
555 g_assert(qemu_strtoul(words[2], NULL, 0, &nargs) == 0);
556 g_assert(qemu_strtou64(words[3], NULL, 0, &args) == 0);
557 g_assert(qemu_strtoul(words[4], NULL, 0, &nret) == 0);
558 g_assert(qemu_strtou64(words[5], NULL, 0, &ret) == 0);
559 res = qtest_rtas_call(words[1], nargs, args, nret, ret);
561 qtest_send_prefix(chr);
562 qtest_sendf(chr, "OK %"PRIu64"\n", res);
563 #endif
564 } else if (qtest_enabled() && strcmp(words[0], "clock_step") == 0) {
565 int64_t ns;
567 if (words[1]) {
568 g_assert(qemu_strtoi64(words[1], NULL, 0, &ns) == 0);
569 } else {
570 ns = qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL);
572 qtest_clock_warp(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + ns);
573 qtest_send_prefix(chr);
574 qtest_sendf(chr, "OK %"PRIi64"\n",
575 (int64_t)qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
576 } else if (qtest_enabled() && strcmp(words[0], "clock_set") == 0) {
577 int64_t ns;
579 g_assert(words[1]);
580 g_assert(qemu_strtoi64(words[1], NULL, 0, &ns) == 0);
581 qtest_clock_warp(ns);
582 qtest_send_prefix(chr);
583 qtest_sendf(chr, "OK %"PRIi64"\n",
584 (int64_t)qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
585 } else {
586 qtest_send_prefix(chr);
587 qtest_sendf(chr, "FAIL Unknown command '%s'\n", words[0]);
591 static void qtest_process_inbuf(CharBackend *chr, GString *inbuf)
593 char *end;
595 while ((end = strchr(inbuf->str, '\n')) != NULL) {
596 size_t offset;
597 GString *cmd;
598 gchar **words;
600 offset = end - inbuf->str;
602 cmd = g_string_new_len(inbuf->str, offset);
603 g_string_erase(inbuf, 0, offset + 1);
605 words = g_strsplit(cmd->str, " ", 0);
606 qtest_process_command(chr, words);
607 g_strfreev(words);
609 g_string_free(cmd, TRUE);
613 static void qtest_read(void *opaque, const uint8_t *buf, int size)
615 CharBackend *chr = opaque;
617 g_string_append_len(inbuf, (const gchar *)buf, size);
618 qtest_process_inbuf(chr, inbuf);
621 static int qtest_can_read(void *opaque)
623 return 1024;
626 static void qtest_event(void *opaque, int event)
628 int i;
630 switch (event) {
631 case CHR_EVENT_OPENED:
633 * We used to call qemu_system_reset() here, hoping we could
634 * use the same process for multiple tests that way. Never
635 * used. Injects an extra reset even when it's not used, and
636 * that can mess up tests, e.g. -boot once.
638 for (i = 0; i < ARRAY_SIZE(irq_levels); i++) {
639 irq_levels[i] = 0;
641 qemu_gettimeofday(&start_time);
642 qtest_opened = true;
643 if (qtest_log_fp) {
644 fprintf(qtest_log_fp, "[I " FMT_timeval "] OPENED\n",
645 (long) start_time.tv_sec, (long) start_time.tv_usec);
647 break;
648 case CHR_EVENT_CLOSED:
649 qtest_opened = false;
650 if (qtest_log_fp) {
651 qemu_timeval tv;
652 qtest_get_time(&tv);
653 fprintf(qtest_log_fp, "[I +" FMT_timeval "] CLOSED\n",
654 (long) tv.tv_sec, (long) tv.tv_usec);
656 break;
657 default:
658 break;
662 static int qtest_init_accel(MachineState *ms)
664 QemuOpts *opts = qemu_opts_create(qemu_find_opts("icount"), NULL, 0,
665 &error_abort);
666 qemu_opt_set(opts, "shift", "0", &error_abort);
667 configure_icount(opts, &error_abort);
668 qemu_opts_del(opts);
669 return 0;
672 void qtest_init(const char *qtest_chrdev, const char *qtest_log, Error **errp)
674 Chardev *chr;
676 chr = qemu_chr_new("qtest", qtest_chrdev);
678 if (chr == NULL) {
679 error_setg(errp, "Failed to initialize device for qtest: \"%s\"",
680 qtest_chrdev);
681 return;
684 if (qtest_log) {
685 if (strcmp(qtest_log, "none") != 0) {
686 qtest_log_fp = fopen(qtest_log, "w+");
688 } else {
689 qtest_log_fp = stderr;
692 qemu_chr_fe_init(&qtest_chr, chr, errp);
693 qemu_chr_fe_set_handlers(&qtest_chr, qtest_can_read, qtest_read,
694 qtest_event, NULL, &qtest_chr, NULL, true);
695 qemu_chr_fe_set_echo(&qtest_chr, true);
697 inbuf = g_string_new("");
700 bool qtest_driver(void)
702 return qtest_chr.chr != NULL;
705 static void qtest_accel_class_init(ObjectClass *oc, void *data)
707 AccelClass *ac = ACCEL_CLASS(oc);
708 ac->name = "QTest";
709 ac->available = qtest_available;
710 ac->init_machine = qtest_init_accel;
711 ac->allowed = &qtest_allowed;
714 #define TYPE_QTEST_ACCEL ACCEL_CLASS_NAME("qtest")
716 static const TypeInfo qtest_accel_type = {
717 .name = TYPE_QTEST_ACCEL,
718 .parent = TYPE_ACCEL,
719 .class_init = qtest_accel_class_init,
722 static void qtest_type_init(void)
724 type_register_static(&qtest_accel_type);
727 type_init(qtest_type_init);