don't use 'Yoda conditions'
[qemu/kevin.git] / target-arm / cpu.h
blob79205ba33593631af491b912cb66509d17903814
1 /*
2 * ARM virtual CPU header
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #ifndef CPU_ARM_H
20 #define CPU_ARM_H
22 #include "config.h"
24 #include "kvm-consts.h"
26 #if defined(TARGET_AARCH64)
27 /* AArch64 definitions */
28 # define TARGET_LONG_BITS 64
29 # define ELF_MACHINE EM_AARCH64
30 #else
31 # define TARGET_LONG_BITS 32
32 # define ELF_MACHINE EM_ARM
33 #endif
35 #define CPUArchState struct CPUARMState
37 #include "qemu-common.h"
38 #include "exec/cpu-defs.h"
40 #include "fpu/softfloat.h"
42 #define TARGET_HAS_ICE 1
44 #define EXCP_UDEF 1 /* undefined instruction */
45 #define EXCP_SWI 2 /* software interrupt */
46 #define EXCP_PREFETCH_ABORT 3
47 #define EXCP_DATA_ABORT 4
48 #define EXCP_IRQ 5
49 #define EXCP_FIQ 6
50 #define EXCP_BKPT 7
51 #define EXCP_EXCEPTION_EXIT 8 /* Return from v7M exception. */
52 #define EXCP_KERNEL_TRAP 9 /* Jumped to kernel code page. */
53 #define EXCP_STREX 10
55 #define ARMV7M_EXCP_RESET 1
56 #define ARMV7M_EXCP_NMI 2
57 #define ARMV7M_EXCP_HARD 3
58 #define ARMV7M_EXCP_MEM 4
59 #define ARMV7M_EXCP_BUS 5
60 #define ARMV7M_EXCP_USAGE 6
61 #define ARMV7M_EXCP_SVC 11
62 #define ARMV7M_EXCP_DEBUG 12
63 #define ARMV7M_EXCP_PENDSV 14
64 #define ARMV7M_EXCP_SYSTICK 15
66 /* ARM-specific interrupt pending bits. */
67 #define CPU_INTERRUPT_FIQ CPU_INTERRUPT_TGT_EXT_1
69 /* The usual mapping for an AArch64 system register to its AArch32
70 * counterpart is for the 32 bit world to have access to the lower
71 * half only (with writes leaving the upper half untouched). It's
72 * therefore useful to be able to pass TCG the offset of the least
73 * significant half of a uint64_t struct member.
75 #ifdef HOST_WORDS_BIGENDIAN
76 #define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
77 #define offsetofhigh32(S, M) offsetof(S, M)
78 #else
79 #define offsetoflow32(S, M) offsetof(S, M)
80 #define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
81 #endif
83 /* Meanings of the ARMCPU object's two inbound GPIO lines */
84 #define ARM_CPU_IRQ 0
85 #define ARM_CPU_FIQ 1
87 typedef void ARMWriteCPFunc(void *opaque, int cp_info,
88 int srcreg, int operand, uint32_t value);
89 typedef uint32_t ARMReadCPFunc(void *opaque, int cp_info,
90 int dstreg, int operand);
92 struct arm_boot_info;
94 #define NB_MMU_MODES 2
96 /* We currently assume float and double are IEEE single and double
97 precision respectively.
98 Doing runtime conversions is tricky because VFP registers may contain
99 integer values (eg. as the result of a FTOSI instruction).
100 s<2n> maps to the least significant half of d<n>
101 s<2n+1> maps to the most significant half of d<n>
104 /* CPU state for each instance of a generic timer (in cp15 c14) */
105 typedef struct ARMGenericTimer {
106 uint64_t cval; /* Timer CompareValue register */
107 uint64_t ctl; /* Timer Control register */
108 } ARMGenericTimer;
110 #define GTIMER_PHYS 0
111 #define GTIMER_VIRT 1
112 #define NUM_GTIMERS 2
114 typedef struct CPUARMState {
115 /* Regs for current mode. */
116 uint32_t regs[16];
118 /* 32/64 switch only happens when taking and returning from
119 * exceptions so the overlap semantics are taken care of then
120 * instead of having a complicated union.
122 /* Regs for A64 mode. */
123 uint64_t xregs[32];
124 uint64_t pc;
125 /* PSTATE isn't an architectural register for ARMv8. However, it is
126 * convenient for us to assemble the underlying state into a 32 bit format
127 * identical to the architectural format used for the SPSR. (This is also
128 * what the Linux kernel's 'pstate' field in signal handlers and KVM's
129 * 'pstate' register are.) Of the PSTATE bits:
130 * NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
131 * semantics as for AArch32, as described in the comments on each field)
132 * nRW (also known as M[4]) is kept, inverted, in env->aarch64
133 * DAIF (exception masks) are kept in env->daif
134 * all other bits are stored in their correct places in env->pstate
136 uint32_t pstate;
137 uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */
139 /* Frequently accessed CPSR bits are stored separately for efficiency.
140 This contains all the other bits. Use cpsr_{read,write} to access
141 the whole CPSR. */
142 uint32_t uncached_cpsr;
143 uint32_t spsr;
145 /* Banked registers. */
146 uint64_t banked_spsr[8];
147 uint32_t banked_r13[6];
148 uint32_t banked_r14[6];
150 /* These hold r8-r12. */
151 uint32_t usr_regs[5];
152 uint32_t fiq_regs[5];
154 /* cpsr flag cache for faster execution */
155 uint32_t CF; /* 0 or 1 */
156 uint32_t VF; /* V is the bit 31. All other bits are undefined */
157 uint32_t NF; /* N is bit 31. All other bits are undefined. */
158 uint32_t ZF; /* Z set if zero. */
159 uint32_t QF; /* 0 or 1 */
160 uint32_t GE; /* cpsr[19:16] */
161 uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
162 uint32_t condexec_bits; /* IT bits. cpsr[15:10,26:25]. */
163 uint64_t daif; /* exception masks, in the bits they are in in PSTATE */
165 uint64_t elr_el[4]; /* AArch64 exception link regs */
166 uint64_t sp_el[4]; /* AArch64 banked stack pointers */
168 /* System control coprocessor (cp15) */
169 struct {
170 uint32_t c0_cpuid;
171 uint64_t c0_cssel; /* Cache size selection. */
172 uint64_t c1_sys; /* System control register. */
173 uint64_t c1_coproc; /* Coprocessor access register. */
174 uint32_t c1_xscaleauxcr; /* XScale auxiliary control register. */
175 uint32_t c1_scr; /* secure config register. */
176 uint64_t ttbr0_el1; /* MMU translation table base 0. */
177 uint64_t ttbr1_el1; /* MMU translation table base 1. */
178 uint64_t c2_control; /* MMU translation table base control. */
179 uint32_t c2_mask; /* MMU translation table base selection mask. */
180 uint32_t c2_base_mask; /* MMU translation table base 0 mask. */
181 uint32_t c2_data; /* MPU data cachable bits. */
182 uint32_t c2_insn; /* MPU instruction cachable bits. */
183 uint32_t c3; /* MMU domain access control register
184 MPU write buffer control. */
185 uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
186 uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
187 uint32_t ifsr_el2; /* Fault status registers. */
188 uint64_t esr_el[4];
189 uint32_t c6_region[8]; /* MPU base/size registers. */
190 uint64_t far_el[4]; /* Fault address registers. */
191 uint64_t par_el1; /* Translation result. */
192 uint32_t c9_insn; /* Cache lockdown registers. */
193 uint32_t c9_data;
194 uint32_t c9_pmcr; /* performance monitor control register */
195 uint32_t c9_pmcnten; /* perf monitor counter enables */
196 uint32_t c9_pmovsr; /* perf monitor overflow status */
197 uint32_t c9_pmxevtyper; /* perf monitor event type */
198 uint32_t c9_pmuserenr; /* perf monitor user enable */
199 uint32_t c9_pminten; /* perf monitor interrupt enables */
200 uint64_t mair_el1;
201 uint64_t vbar_el[4]; /* vector base address register */
202 uint32_t c13_fcse; /* FCSE PID. */
203 uint64_t contextidr_el1; /* Context ID. */
204 uint64_t tpidr_el0; /* User RW Thread register. */
205 uint64_t tpidrro_el0; /* User RO Thread register. */
206 uint64_t tpidr_el1; /* Privileged Thread register. */
207 uint64_t c14_cntfrq; /* Counter Frequency register */
208 uint64_t c14_cntkctl; /* Timer Control register */
209 ARMGenericTimer c14_timer[NUM_GTIMERS];
210 uint32_t c15_cpar; /* XScale Coprocessor Access Register */
211 uint32_t c15_ticonfig; /* TI925T configuration byte. */
212 uint32_t c15_i_max; /* Maximum D-cache dirty line index. */
213 uint32_t c15_i_min; /* Minimum D-cache dirty line index. */
214 uint32_t c15_threadid; /* TI debugger thread-ID. */
215 uint32_t c15_config_base_address; /* SCU base address. */
216 uint32_t c15_diagnostic; /* diagnostic register */
217 uint32_t c15_power_diagnostic;
218 uint32_t c15_power_control; /* power control */
219 uint64_t dbgbvr[16]; /* breakpoint value registers */
220 uint64_t dbgbcr[16]; /* breakpoint control registers */
221 uint64_t dbgwvr[16]; /* watchpoint value registers */
222 uint64_t dbgwcr[16]; /* watchpoint control registers */
223 /* If the counter is enabled, this stores the last time the counter
224 * was reset. Otherwise it stores the counter value
226 uint32_t c15_ccnt;
227 } cp15;
229 struct {
230 uint32_t other_sp;
231 uint32_t vecbase;
232 uint32_t basepri;
233 uint32_t control;
234 int current_sp;
235 int exception;
236 int pending_exception;
237 } v7m;
239 /* Information associated with an exception about to be taken:
240 * code which raises an exception must set cs->exception_index and
241 * the relevant parts of this structure; the cpu_do_interrupt function
242 * will then set the guest-visible registers as part of the exception
243 * entry process.
245 struct {
246 uint32_t syndrome; /* AArch64 format syndrome register */
247 uint32_t fsr; /* AArch32 format fault status register info */
248 uint64_t vaddress; /* virtual addr associated with exception, if any */
249 /* If we implement EL2 we will also need to store information
250 * about the intermediate physical address for stage 2 faults.
252 } exception;
254 /* Thumb-2 EE state. */
255 uint32_t teecr;
256 uint32_t teehbr;
258 /* VFP coprocessor state. */
259 struct {
260 /* VFP/Neon register state. Note that the mapping between S, D and Q
261 * views of the register bank differs between AArch64 and AArch32:
262 * In AArch32:
263 * Qn = regs[2n+1]:regs[2n]
264 * Dn = regs[n]
265 * Sn = regs[n/2] bits 31..0 for even n, and bits 63..32 for odd n
266 * (and regs[32] to regs[63] are inaccessible)
267 * In AArch64:
268 * Qn = regs[2n+1]:regs[2n]
269 * Dn = regs[2n]
270 * Sn = regs[2n] bits 31..0
271 * This corresponds to the architecturally defined mapping between
272 * the two execution states, and means we do not need to explicitly
273 * map these registers when changing states.
275 float64 regs[64];
277 uint32_t xregs[16];
278 /* We store these fpcsr fields separately for convenience. */
279 int vec_len;
280 int vec_stride;
282 /* scratch space when Tn are not sufficient. */
283 uint32_t scratch[8];
285 /* fp_status is the "normal" fp status. standard_fp_status retains
286 * values corresponding to the ARM "Standard FPSCR Value", ie
287 * default-NaN, flush-to-zero, round-to-nearest and is used by
288 * any operations (generally Neon) which the architecture defines
289 * as controlled by the standard FPSCR value rather than the FPSCR.
291 * To avoid having to transfer exception bits around, we simply
292 * say that the FPSCR cumulative exception flags are the logical
293 * OR of the flags in the two fp statuses. This relies on the
294 * only thing which needs to read the exception flags being
295 * an explicit FPSCR read.
297 float_status fp_status;
298 float_status standard_fp_status;
299 } vfp;
300 uint64_t exclusive_addr;
301 uint64_t exclusive_val;
302 uint64_t exclusive_high;
303 #if defined(CONFIG_USER_ONLY)
304 uint64_t exclusive_test;
305 uint32_t exclusive_info;
306 #endif
308 /* iwMMXt coprocessor state. */
309 struct {
310 uint64_t regs[16];
311 uint64_t val;
313 uint32_t cregs[16];
314 } iwmmxt;
316 /* For mixed endian mode. */
317 bool bswap_code;
319 #if defined(CONFIG_USER_ONLY)
320 /* For usermode syscall translation. */
321 int eabi;
322 #endif
324 CPU_COMMON
326 /* These fields after the common ones so they are preserved on reset. */
328 /* Internal CPU feature flags. */
329 uint64_t features;
331 void *nvic;
332 const struct arm_boot_info *boot_info;
333 } CPUARMState;
335 #include "cpu-qom.h"
337 ARMCPU *cpu_arm_init(const char *cpu_model);
338 int cpu_arm_exec(CPUARMState *s);
339 uint32_t do_arm_semihosting(CPUARMState *env);
341 static inline bool is_a64(CPUARMState *env)
343 return env->aarch64;
346 /* you can call this signal handler from your SIGBUS and SIGSEGV
347 signal handlers to inform the virtual CPU of exceptions. non zero
348 is returned if the signal was handled by the virtual CPU. */
349 int cpu_arm_signal_handler(int host_signum, void *pinfo,
350 void *puc);
351 int arm_cpu_handle_mmu_fault(CPUState *cpu, vaddr address, int rw,
352 int mmu_idx);
354 /* SCTLR bit meanings. Several bits have been reused in newer
355 * versions of the architecture; in that case we define constants
356 * for both old and new bit meanings. Code which tests against those
357 * bits should probably check or otherwise arrange that the CPU
358 * is the architectural version it expects.
360 #define SCTLR_M (1U << 0)
361 #define SCTLR_A (1U << 1)
362 #define SCTLR_C (1U << 2)
363 #define SCTLR_W (1U << 3) /* up to v6; RAO in v7 */
364 #define SCTLR_SA (1U << 3)
365 #define SCTLR_P (1U << 4) /* up to v5; RAO in v6 and v7 */
366 #define SCTLR_SA0 (1U << 4) /* v8 onward, AArch64 only */
367 #define SCTLR_D (1U << 5) /* up to v5; RAO in v6 */
368 #define SCTLR_CP15BEN (1U << 5) /* v7 onward */
369 #define SCTLR_L (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
370 #define SCTLR_B (1U << 7) /* up to v6; RAZ in v7 */
371 #define SCTLR_ITD (1U << 7) /* v8 onward */
372 #define SCTLR_S (1U << 8) /* up to v6; RAZ in v7 */
373 #define SCTLR_SED (1U << 8) /* v8 onward */
374 #define SCTLR_R (1U << 9) /* up to v6; RAZ in v7 */
375 #define SCTLR_UMA (1U << 9) /* v8 onward, AArch64 only */
376 #define SCTLR_F (1U << 10) /* up to v6 */
377 #define SCTLR_SW (1U << 10) /* v7 onward */
378 #define SCTLR_Z (1U << 11)
379 #define SCTLR_I (1U << 12)
380 #define SCTLR_V (1U << 13)
381 #define SCTLR_RR (1U << 14) /* up to v7 */
382 #define SCTLR_DZE (1U << 14) /* v8 onward, AArch64 only */
383 #define SCTLR_L4 (1U << 15) /* up to v6; RAZ in v7 */
384 #define SCTLR_UCT (1U << 15) /* v8 onward, AArch64 only */
385 #define SCTLR_DT (1U << 16) /* up to ??, RAO in v6 and v7 */
386 #define SCTLR_nTWI (1U << 16) /* v8 onward */
387 #define SCTLR_HA (1U << 17)
388 #define SCTLR_IT (1U << 18) /* up to ??, RAO in v6 and v7 */
389 #define SCTLR_nTWE (1U << 18) /* v8 onward */
390 #define SCTLR_WXN (1U << 19)
391 #define SCTLR_ST (1U << 20) /* up to ??, RAZ in v6 */
392 #define SCTLR_UWXN (1U << 20) /* v7 onward */
393 #define SCTLR_FI (1U << 21)
394 #define SCTLR_U (1U << 22)
395 #define SCTLR_XP (1U << 23) /* up to v6; v7 onward RAO */
396 #define SCTLR_VE (1U << 24) /* up to v7 */
397 #define SCTLR_E0E (1U << 24) /* v8 onward, AArch64 only */
398 #define SCTLR_EE (1U << 25)
399 #define SCTLR_L2 (1U << 26) /* up to v6, RAZ in v7 */
400 #define SCTLR_UCI (1U << 26) /* v8 onward, AArch64 only */
401 #define SCTLR_NMFI (1U << 27)
402 #define SCTLR_TRE (1U << 28)
403 #define SCTLR_AFE (1U << 29)
404 #define SCTLR_TE (1U << 30)
406 #define CPSR_M (0x1fU)
407 #define CPSR_T (1U << 5)
408 #define CPSR_F (1U << 6)
409 #define CPSR_I (1U << 7)
410 #define CPSR_A (1U << 8)
411 #define CPSR_E (1U << 9)
412 #define CPSR_IT_2_7 (0xfc00U)
413 #define CPSR_GE (0xfU << 16)
414 #define CPSR_RESERVED (0xfU << 20)
415 #define CPSR_J (1U << 24)
416 #define CPSR_IT_0_1 (3U << 25)
417 #define CPSR_Q (1U << 27)
418 #define CPSR_V (1U << 28)
419 #define CPSR_C (1U << 29)
420 #define CPSR_Z (1U << 30)
421 #define CPSR_N (1U << 31)
422 #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
423 #define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
425 #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
426 #define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
427 | CPSR_NZCV)
428 /* Bits writable in user mode. */
429 #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE)
430 /* Execution state bits. MRS read as zero, MSR writes ignored. */
431 #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J)
433 #define TTBCR_N (7U << 0) /* TTBCR.EAE==0 */
434 #define TTBCR_T0SZ (7U << 0) /* TTBCR.EAE==1 */
435 #define TTBCR_PD0 (1U << 4)
436 #define TTBCR_PD1 (1U << 5)
437 #define TTBCR_EPD0 (1U << 7)
438 #define TTBCR_IRGN0 (3U << 8)
439 #define TTBCR_ORGN0 (3U << 10)
440 #define TTBCR_SH0 (3U << 12)
441 #define TTBCR_T1SZ (3U << 16)
442 #define TTBCR_A1 (1U << 22)
443 #define TTBCR_EPD1 (1U << 23)
444 #define TTBCR_IRGN1 (3U << 24)
445 #define TTBCR_ORGN1 (3U << 26)
446 #define TTBCR_SH1 (1U << 28)
447 #define TTBCR_EAE (1U << 31)
449 /* Bit definitions for ARMv8 SPSR (PSTATE) format.
450 * Only these are valid when in AArch64 mode; in
451 * AArch32 mode SPSRs are basically CPSR-format.
453 #define PSTATE_SP (1U)
454 #define PSTATE_M (0xFU)
455 #define PSTATE_nRW (1U << 4)
456 #define PSTATE_F (1U << 6)
457 #define PSTATE_I (1U << 7)
458 #define PSTATE_A (1U << 8)
459 #define PSTATE_D (1U << 9)
460 #define PSTATE_IL (1U << 20)
461 #define PSTATE_SS (1U << 21)
462 #define PSTATE_V (1U << 28)
463 #define PSTATE_C (1U << 29)
464 #define PSTATE_Z (1U << 30)
465 #define PSTATE_N (1U << 31)
466 #define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
467 #define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
468 #define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF)
469 /* Mode values for AArch64 */
470 #define PSTATE_MODE_EL3h 13
471 #define PSTATE_MODE_EL3t 12
472 #define PSTATE_MODE_EL2h 9
473 #define PSTATE_MODE_EL2t 8
474 #define PSTATE_MODE_EL1h 5
475 #define PSTATE_MODE_EL1t 4
476 #define PSTATE_MODE_EL0t 0
478 /* Return the current PSTATE value. For the moment we don't support 32<->64 bit
479 * interprocessing, so we don't attempt to sync with the cpsr state used by
480 * the 32 bit decoder.
482 static inline uint32_t pstate_read(CPUARMState *env)
484 int ZF;
486 ZF = (env->ZF == 0);
487 return (env->NF & 0x80000000) | (ZF << 30)
488 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
489 | env->pstate | env->daif;
492 static inline void pstate_write(CPUARMState *env, uint32_t val)
494 env->ZF = (~val) & PSTATE_Z;
495 env->NF = val;
496 env->CF = (val >> 29) & 1;
497 env->VF = (val << 3) & 0x80000000;
498 env->daif = val & PSTATE_DAIF;
499 env->pstate = val & ~CACHED_PSTATE_BITS;
502 /* Return the current CPSR value. */
503 uint32_t cpsr_read(CPUARMState *env);
504 /* Set the CPSR. Note that some bits of mask must be all-set or all-clear. */
505 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask);
507 /* Return the current xPSR value. */
508 static inline uint32_t xpsr_read(CPUARMState *env)
510 int ZF;
511 ZF = (env->ZF == 0);
512 return (env->NF & 0x80000000) | (ZF << 30)
513 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
514 | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
515 | ((env->condexec_bits & 0xfc) << 8)
516 | env->v7m.exception;
519 /* Set the xPSR. Note that some bits of mask must be all-set or all-clear. */
520 static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
522 if (mask & CPSR_NZCV) {
523 env->ZF = (~val) & CPSR_Z;
524 env->NF = val;
525 env->CF = (val >> 29) & 1;
526 env->VF = (val << 3) & 0x80000000;
528 if (mask & CPSR_Q)
529 env->QF = ((val & CPSR_Q) != 0);
530 if (mask & (1 << 24))
531 env->thumb = ((val & (1 << 24)) != 0);
532 if (mask & CPSR_IT_0_1) {
533 env->condexec_bits &= ~3;
534 env->condexec_bits |= (val >> 25) & 3;
536 if (mask & CPSR_IT_2_7) {
537 env->condexec_bits &= 3;
538 env->condexec_bits |= (val >> 8) & 0xfc;
540 if (mask & 0x1ff) {
541 env->v7m.exception = val & 0x1ff;
545 /* Return the current FPSCR value. */
546 uint32_t vfp_get_fpscr(CPUARMState *env);
547 void vfp_set_fpscr(CPUARMState *env, uint32_t val);
549 /* For A64 the FPSCR is split into two logically distinct registers,
550 * FPCR and FPSR. However since they still use non-overlapping bits
551 * we store the underlying state in fpscr and just mask on read/write.
553 #define FPSR_MASK 0xf800009f
554 #define FPCR_MASK 0x07f79f00
555 static inline uint32_t vfp_get_fpsr(CPUARMState *env)
557 return vfp_get_fpscr(env) & FPSR_MASK;
560 static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
562 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
563 vfp_set_fpscr(env, new_fpscr);
566 static inline uint32_t vfp_get_fpcr(CPUARMState *env)
568 return vfp_get_fpscr(env) & FPCR_MASK;
571 static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
573 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
574 vfp_set_fpscr(env, new_fpscr);
577 enum arm_cpu_mode {
578 ARM_CPU_MODE_USR = 0x10,
579 ARM_CPU_MODE_FIQ = 0x11,
580 ARM_CPU_MODE_IRQ = 0x12,
581 ARM_CPU_MODE_SVC = 0x13,
582 ARM_CPU_MODE_MON = 0x16,
583 ARM_CPU_MODE_ABT = 0x17,
584 ARM_CPU_MODE_HYP = 0x1a,
585 ARM_CPU_MODE_UND = 0x1b,
586 ARM_CPU_MODE_SYS = 0x1f
589 /* VFP system registers. */
590 #define ARM_VFP_FPSID 0
591 #define ARM_VFP_FPSCR 1
592 #define ARM_VFP_MVFR2 5
593 #define ARM_VFP_MVFR1 6
594 #define ARM_VFP_MVFR0 7
595 #define ARM_VFP_FPEXC 8
596 #define ARM_VFP_FPINST 9
597 #define ARM_VFP_FPINST2 10
599 /* iwMMXt coprocessor control registers. */
600 #define ARM_IWMMXT_wCID 0
601 #define ARM_IWMMXT_wCon 1
602 #define ARM_IWMMXT_wCSSF 2
603 #define ARM_IWMMXT_wCASF 3
604 #define ARM_IWMMXT_wCGR0 8
605 #define ARM_IWMMXT_wCGR1 9
606 #define ARM_IWMMXT_wCGR2 10
607 #define ARM_IWMMXT_wCGR3 11
609 /* If adding a feature bit which corresponds to a Linux ELF
610 * HWCAP bit, remember to update the feature-bit-to-hwcap
611 * mapping in linux-user/elfload.c:get_elf_hwcap().
613 enum arm_features {
614 ARM_FEATURE_VFP,
615 ARM_FEATURE_AUXCR, /* ARM1026 Auxiliary control register. */
616 ARM_FEATURE_XSCALE, /* Intel XScale extensions. */
617 ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension. */
618 ARM_FEATURE_V6,
619 ARM_FEATURE_V6K,
620 ARM_FEATURE_V7,
621 ARM_FEATURE_THUMB2,
622 ARM_FEATURE_MPU, /* Only has Memory Protection Unit, not full MMU. */
623 ARM_FEATURE_VFP3,
624 ARM_FEATURE_VFP_FP16,
625 ARM_FEATURE_NEON,
626 ARM_FEATURE_THUMB_DIV, /* divide supported in Thumb encoding */
627 ARM_FEATURE_M, /* Microcontroller profile. */
628 ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling. */
629 ARM_FEATURE_THUMB2EE,
630 ARM_FEATURE_V7MP, /* v7 Multiprocessing Extensions */
631 ARM_FEATURE_V4T,
632 ARM_FEATURE_V5,
633 ARM_FEATURE_STRONGARM,
634 ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
635 ARM_FEATURE_ARM_DIV, /* divide supported in ARM encoding */
636 ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */
637 ARM_FEATURE_GENERIC_TIMER,
638 ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
639 ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
640 ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
641 ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
642 ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
643 ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
644 ARM_FEATURE_PXN, /* has Privileged Execute Never bit */
645 ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
646 ARM_FEATURE_V8,
647 ARM_FEATURE_AARCH64, /* supports 64 bit mode */
648 ARM_FEATURE_V8_AES, /* implements AES part of v8 Crypto Extensions */
649 ARM_FEATURE_CBAR, /* has cp15 CBAR */
650 ARM_FEATURE_CRC, /* ARMv8 CRC instructions */
651 ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
652 ARM_FEATURE_EL2, /* has EL2 Virtualization support */
653 ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
654 ARM_FEATURE_V8_SHA1, /* implements SHA1 part of v8 Crypto Extensions */
655 ARM_FEATURE_V8_SHA256, /* implements SHA256 part of v8 Crypto Extensions */
656 ARM_FEATURE_V8_PMULL, /* implements PMULL part of v8 Crypto Extensions */
659 static inline int arm_feature(CPUARMState *env, int feature)
661 return (env->features & (1ULL << feature)) != 0;
664 /* Return true if the specified exception level is running in AArch64 state. */
665 static inline bool arm_el_is_aa64(CPUARMState *env, int el)
667 /* We don't currently support EL2 or EL3, and this isn't valid for EL0
668 * (if we're in EL0, is_a64() is what you want, and if we're not in EL0
669 * then the state of EL0 isn't well defined.)
671 assert(el == 1);
672 /* AArch64-capable CPUs always run with EL1 in AArch64 mode. This
673 * is a QEMU-imposed simplification which we may wish to change later.
674 * If we in future support EL2 and/or EL3, then the state of lower
675 * exception levels is controlled by the HCR.RW and SCR.RW bits.
677 return arm_feature(env, ARM_FEATURE_AARCH64);
680 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf);
682 /* Interface between CPU and Interrupt controller. */
683 void armv7m_nvic_set_pending(void *opaque, int irq);
684 int armv7m_nvic_acknowledge_irq(void *opaque);
685 void armv7m_nvic_complete_irq(void *opaque, int irq);
687 /* Interface for defining coprocessor registers.
688 * Registers are defined in tables of arm_cp_reginfo structs
689 * which are passed to define_arm_cp_regs().
692 /* When looking up a coprocessor register we look for it
693 * via an integer which encodes all of:
694 * coprocessor number
695 * Crn, Crm, opc1, opc2 fields
696 * 32 or 64 bit register (ie is it accessed via MRC/MCR
697 * or via MRRC/MCRR?)
698 * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
699 * (In this case crn and opc2 should be zero.)
700 * For AArch64, there is no 32/64 bit size distinction;
701 * instead all registers have a 2 bit op0, 3 bit op1 and op2,
702 * and 4 bit CRn and CRm. The encoding patterns are chosen
703 * to be easy to convert to and from the KVM encodings, and also
704 * so that the hashtable can contain both AArch32 and AArch64
705 * registers (to allow for interprocessing where we might run
706 * 32 bit code on a 64 bit core).
708 /* This bit is private to our hashtable cpreg; in KVM register
709 * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
710 * in the upper bits of the 64 bit ID.
712 #define CP_REG_AA64_SHIFT 28
713 #define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
715 #define ENCODE_CP_REG(cp, is64, crn, crm, opc1, opc2) \
716 (((cp) << 16) | ((is64) << 15) | ((crn) << 11) | \
717 ((crm) << 7) | ((opc1) << 3) | (opc2))
719 #define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
720 (CP_REG_AA64_MASK | \
721 ((cp) << CP_REG_ARM_COPROC_SHIFT) | \
722 ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) | \
723 ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) | \
724 ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) | \
725 ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) | \
726 ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
728 /* Convert a full 64 bit KVM register ID to the truncated 32 bit
729 * version used as a key for the coprocessor register hashtable
731 static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
733 uint32_t cpregid = kvmid;
734 if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
735 cpregid |= CP_REG_AA64_MASK;
736 } else if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
737 cpregid |= (1 << 15);
739 return cpregid;
742 /* Convert a truncated 32 bit hashtable key into the full
743 * 64 bit KVM register ID.
745 static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
747 uint64_t kvmid;
749 if (cpregid & CP_REG_AA64_MASK) {
750 kvmid = cpregid & ~CP_REG_AA64_MASK;
751 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
752 } else {
753 kvmid = cpregid & ~(1 << 15);
754 if (cpregid & (1 << 15)) {
755 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
756 } else {
757 kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
760 return kvmid;
763 /* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
764 * special-behaviour cp reg and bits [15..8] indicate what behaviour
765 * it has. Otherwise it is a simple cp reg, where CONST indicates that
766 * TCG can assume the value to be constant (ie load at translate time)
767 * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
768 * indicates that the TB should not be ended after a write to this register
769 * (the default is that the TB ends after cp writes). OVERRIDE permits
770 * a register definition to override a previous definition for the
771 * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
772 * old must have the OVERRIDE bit set.
773 * NO_MIGRATE indicates that this register should be ignored for migration;
774 * (eg because any state is accessed via some other coprocessor register).
775 * IO indicates that this register does I/O and therefore its accesses
776 * need to be surrounded by gen_io_start()/gen_io_end(). In particular,
777 * registers which implement clocks or timers require this.
779 #define ARM_CP_SPECIAL 1
780 #define ARM_CP_CONST 2
781 #define ARM_CP_64BIT 4
782 #define ARM_CP_SUPPRESS_TB_END 8
783 #define ARM_CP_OVERRIDE 16
784 #define ARM_CP_NO_MIGRATE 32
785 #define ARM_CP_IO 64
786 #define ARM_CP_NOP (ARM_CP_SPECIAL | (1 << 8))
787 #define ARM_CP_WFI (ARM_CP_SPECIAL | (2 << 8))
788 #define ARM_CP_NZCV (ARM_CP_SPECIAL | (3 << 8))
789 #define ARM_CP_CURRENTEL (ARM_CP_SPECIAL | (4 << 8))
790 #define ARM_CP_DC_ZVA (ARM_CP_SPECIAL | (5 << 8))
791 #define ARM_LAST_SPECIAL ARM_CP_DC_ZVA
792 /* Used only as a terminator for ARMCPRegInfo lists */
793 #define ARM_CP_SENTINEL 0xffff
794 /* Mask of only the flag bits in a type field */
795 #define ARM_CP_FLAG_MASK 0x7f
797 /* Valid values for ARMCPRegInfo state field, indicating which of
798 * the AArch32 and AArch64 execution states this register is visible in.
799 * If the reginfo doesn't explicitly specify then it is AArch32 only.
800 * If the reginfo is declared to be visible in both states then a second
801 * reginfo is synthesised for the AArch32 view of the AArch64 register,
802 * such that the AArch32 view is the lower 32 bits of the AArch64 one.
803 * Note that we rely on the values of these enums as we iterate through
804 * the various states in some places.
806 enum {
807 ARM_CP_STATE_AA32 = 0,
808 ARM_CP_STATE_AA64 = 1,
809 ARM_CP_STATE_BOTH = 2,
812 /* Return true if cptype is a valid type field. This is used to try to
813 * catch errors where the sentinel has been accidentally left off the end
814 * of a list of registers.
816 static inline bool cptype_valid(int cptype)
818 return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
819 || ((cptype & ARM_CP_SPECIAL) &&
820 ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
823 /* Access rights:
824 * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
825 * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
826 * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
827 * (ie any of the privileged modes in Secure state, or Monitor mode).
828 * If a register is accessible in one privilege level it's always accessible
829 * in higher privilege levels too. Since "Secure PL1" also follows this rule
830 * (ie anything visible in PL2 is visible in S-PL1, some things are only
831 * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
832 * terminology a little and call this PL3.
833 * In AArch64 things are somewhat simpler as the PLx bits line up exactly
834 * with the ELx exception levels.
836 * If access permissions for a register are more complex than can be
837 * described with these bits, then use a laxer set of restrictions, and
838 * do the more restrictive/complex check inside a helper function.
840 #define PL3_R 0x80
841 #define PL3_W 0x40
842 #define PL2_R (0x20 | PL3_R)
843 #define PL2_W (0x10 | PL3_W)
844 #define PL1_R (0x08 | PL2_R)
845 #define PL1_W (0x04 | PL2_W)
846 #define PL0_R (0x02 | PL1_R)
847 #define PL0_W (0x01 | PL1_W)
849 #define PL3_RW (PL3_R | PL3_W)
850 #define PL2_RW (PL2_R | PL2_W)
851 #define PL1_RW (PL1_R | PL1_W)
852 #define PL0_RW (PL0_R | PL0_W)
854 static inline int arm_current_pl(CPUARMState *env)
856 if (env->aarch64) {
857 return extract32(env->pstate, 2, 2);
860 if ((env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_USR) {
861 return 0;
863 /* We don't currently implement the Virtualization or TrustZone
864 * extensions, so PL2 and PL3 don't exist for us.
866 return 1;
869 typedef struct ARMCPRegInfo ARMCPRegInfo;
871 typedef enum CPAccessResult {
872 /* Access is permitted */
873 CP_ACCESS_OK = 0,
874 /* Access fails due to a configurable trap or enable which would
875 * result in a categorized exception syndrome giving information about
876 * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
877 * 0xc or 0x18).
879 CP_ACCESS_TRAP = 1,
880 /* Access fails and results in an exception syndrome 0x0 ("uncategorized").
881 * Note that this is not a catch-all case -- the set of cases which may
882 * result in this failure is specifically defined by the architecture.
884 CP_ACCESS_TRAP_UNCATEGORIZED = 2,
885 } CPAccessResult;
887 /* Access functions for coprocessor registers. These cannot fail and
888 * may not raise exceptions.
890 typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
891 typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
892 uint64_t value);
893 /* Access permission check functions for coprocessor registers. */
894 typedef CPAccessResult CPAccessFn(CPUARMState *env, const ARMCPRegInfo *opaque);
895 /* Hook function for register reset */
896 typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
898 #define CP_ANY 0xff
900 /* Definition of an ARM coprocessor register */
901 struct ARMCPRegInfo {
902 /* Name of register (useful mainly for debugging, need not be unique) */
903 const char *name;
904 /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
905 * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
906 * 'wildcard' field -- any value of that field in the MRC/MCR insn
907 * will be decoded to this register. The register read and write
908 * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
909 * used by the program, so it is possible to register a wildcard and
910 * then behave differently on read/write if necessary.
911 * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
912 * must both be zero.
913 * For AArch64-visible registers, opc0 is also used.
914 * Since there are no "coprocessors" in AArch64, cp is purely used as a
915 * way to distinguish (for KVM's benefit) guest-visible system registers
916 * from demuxed ones provided to preserve the "no side effects on
917 * KVM register read/write from QEMU" semantics. cp==0x13 is guest
918 * visible (to match KVM's encoding); cp==0 will be converted to
919 * cp==0x13 when the ARMCPRegInfo is registered, for convenience.
921 uint8_t cp;
922 uint8_t crn;
923 uint8_t crm;
924 uint8_t opc0;
925 uint8_t opc1;
926 uint8_t opc2;
927 /* Execution state in which this register is visible: ARM_CP_STATE_* */
928 int state;
929 /* Register type: ARM_CP_* bits/values */
930 int type;
931 /* Access rights: PL*_[RW] */
932 int access;
933 /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
934 * this register was defined: can be used to hand data through to the
935 * register read/write functions, since they are passed the ARMCPRegInfo*.
937 void *opaque;
938 /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
939 * fieldoffset is non-zero, the reset value of the register.
941 uint64_t resetvalue;
942 /* Offset of the field in CPUARMState for this register. This is not
943 * needed if either:
944 * 1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
945 * 2. both readfn and writefn are specified
947 ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
948 /* Function for making any access checks for this register in addition to
949 * those specified by the 'access' permissions bits. If NULL, no extra
950 * checks required. The access check is performed at runtime, not at
951 * translate time.
953 CPAccessFn *accessfn;
954 /* Function for handling reads of this register. If NULL, then reads
955 * will be done by loading from the offset into CPUARMState specified
956 * by fieldoffset.
958 CPReadFn *readfn;
959 /* Function for handling writes of this register. If NULL, then writes
960 * will be done by writing to the offset into CPUARMState specified
961 * by fieldoffset.
963 CPWriteFn *writefn;
964 /* Function for doing a "raw" read; used when we need to copy
965 * coprocessor state to the kernel for KVM or out for
966 * migration. This only needs to be provided if there is also a
967 * readfn and it has side effects (for instance clear-on-read bits).
969 CPReadFn *raw_readfn;
970 /* Function for doing a "raw" write; used when we need to copy KVM
971 * kernel coprocessor state into userspace, or for inbound
972 * migration. This only needs to be provided if there is also a
973 * writefn and it masks out "unwritable" bits or has write-one-to-clear
974 * or similar behaviour.
976 CPWriteFn *raw_writefn;
977 /* Function for resetting the register. If NULL, then reset will be done
978 * by writing resetvalue to the field specified in fieldoffset. If
979 * fieldoffset is 0 then no reset will be done.
981 CPResetFn *resetfn;
984 /* Macros which are lvalues for the field in CPUARMState for the
985 * ARMCPRegInfo *ri.
987 #define CPREG_FIELD32(env, ri) \
988 (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
989 #define CPREG_FIELD64(env, ri) \
990 (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
992 #define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
994 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
995 const ARMCPRegInfo *regs, void *opaque);
996 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
997 const ARMCPRegInfo *regs, void *opaque);
998 static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
1000 define_arm_cp_regs_with_opaque(cpu, regs, 0);
1002 static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
1004 define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
1006 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);
1008 /* CPWriteFn that can be used to implement writes-ignored behaviour */
1009 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
1010 uint64_t value);
1011 /* CPReadFn that can be used for read-as-zero behaviour */
1012 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);
1014 /* CPResetFn that does nothing, for use if no reset is required even
1015 * if fieldoffset is non zero.
1017 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);
1019 /* Return true if this reginfo struct's field in the cpu state struct
1020 * is 64 bits wide.
1022 static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
1024 return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
1027 static inline bool cp_access_ok(int current_pl,
1028 const ARMCPRegInfo *ri, int isread)
1030 return (ri->access >> ((current_pl * 2) + isread)) & 1;
1034 * write_list_to_cpustate
1035 * @cpu: ARMCPU
1037 * For each register listed in the ARMCPU cpreg_indexes list, write
1038 * its value from the cpreg_values list into the ARMCPUState structure.
1039 * This updates TCG's working data structures from KVM data or
1040 * from incoming migration state.
1042 * Returns: true if all register values were updated correctly,
1043 * false if some register was unknown or could not be written.
1044 * Note that we do not stop early on failure -- we will attempt
1045 * writing all registers in the list.
1047 bool write_list_to_cpustate(ARMCPU *cpu);
1050 * write_cpustate_to_list:
1051 * @cpu: ARMCPU
1053 * For each register listed in the ARMCPU cpreg_indexes list, write
1054 * its value from the ARMCPUState structure into the cpreg_values list.
1055 * This is used to copy info from TCG's working data structures into
1056 * KVM or for outbound migration.
1058 * Returns: true if all register values were read correctly,
1059 * false if some register was unknown or could not be read.
1060 * Note that we do not stop early on failure -- we will attempt
1061 * reading all registers in the list.
1063 bool write_cpustate_to_list(ARMCPU *cpu);
1065 /* Does the core conform to the the "MicroController" profile. e.g. Cortex-M3.
1066 Note the M in older cores (eg. ARM7TDMI) stands for Multiply. These are
1067 conventional cores (ie. Application or Realtime profile). */
1069 #define IS_M(env) arm_feature(env, ARM_FEATURE_M)
1071 #define ARM_CPUID_TI915T 0x54029152
1072 #define ARM_CPUID_TI925T 0x54029252
1074 #if defined(CONFIG_USER_ONLY)
1075 #define TARGET_PAGE_BITS 12
1076 #else
1077 /* The ARM MMU allows 1k pages. */
1078 /* ??? Linux doesn't actually use these, and they're deprecated in recent
1079 architecture revisions. Maybe a configure option to disable them. */
1080 #define TARGET_PAGE_BITS 10
1081 #endif
1083 #if defined(TARGET_AARCH64)
1084 # define TARGET_PHYS_ADDR_SPACE_BITS 48
1085 # define TARGET_VIRT_ADDR_SPACE_BITS 64
1086 #else
1087 # define TARGET_PHYS_ADDR_SPACE_BITS 40
1088 # define TARGET_VIRT_ADDR_SPACE_BITS 32
1089 #endif
1091 static inline CPUARMState *cpu_init(const char *cpu_model)
1093 ARMCPU *cpu = cpu_arm_init(cpu_model);
1094 if (cpu) {
1095 return &cpu->env;
1097 return NULL;
1100 #define cpu_exec cpu_arm_exec
1101 #define cpu_gen_code cpu_arm_gen_code
1102 #define cpu_signal_handler cpu_arm_signal_handler
1103 #define cpu_list arm_cpu_list
1105 /* MMU modes definitions */
1106 #define MMU_MODE0_SUFFIX _user
1107 #define MMU_MODE1_SUFFIX _kernel
1108 #define MMU_USER_IDX 0
1109 static inline int cpu_mmu_index (CPUARMState *env)
1111 return arm_current_pl(env);
1114 #include "exec/cpu-all.h"
1116 /* Bit usage in the TB flags field: bit 31 indicates whether we are
1117 * in 32 or 64 bit mode. The meaning of the other bits depends on that.
1119 #define ARM_TBFLAG_AARCH64_STATE_SHIFT 31
1120 #define ARM_TBFLAG_AARCH64_STATE_MASK (1U << ARM_TBFLAG_AARCH64_STATE_SHIFT)
1122 /* Bit usage when in AArch32 state: */
1123 #define ARM_TBFLAG_THUMB_SHIFT 0
1124 #define ARM_TBFLAG_THUMB_MASK (1 << ARM_TBFLAG_THUMB_SHIFT)
1125 #define ARM_TBFLAG_VECLEN_SHIFT 1
1126 #define ARM_TBFLAG_VECLEN_MASK (0x7 << ARM_TBFLAG_VECLEN_SHIFT)
1127 #define ARM_TBFLAG_VECSTRIDE_SHIFT 4
1128 #define ARM_TBFLAG_VECSTRIDE_MASK (0x3 << ARM_TBFLAG_VECSTRIDE_SHIFT)
1129 #define ARM_TBFLAG_PRIV_SHIFT 6
1130 #define ARM_TBFLAG_PRIV_MASK (1 << ARM_TBFLAG_PRIV_SHIFT)
1131 #define ARM_TBFLAG_VFPEN_SHIFT 7
1132 #define ARM_TBFLAG_VFPEN_MASK (1 << ARM_TBFLAG_VFPEN_SHIFT)
1133 #define ARM_TBFLAG_CONDEXEC_SHIFT 8
1134 #define ARM_TBFLAG_CONDEXEC_MASK (0xff << ARM_TBFLAG_CONDEXEC_SHIFT)
1135 #define ARM_TBFLAG_BSWAP_CODE_SHIFT 16
1136 #define ARM_TBFLAG_BSWAP_CODE_MASK (1 << ARM_TBFLAG_BSWAP_CODE_SHIFT)
1137 #define ARM_TBFLAG_CPACR_FPEN_SHIFT 17
1138 #define ARM_TBFLAG_CPACR_FPEN_MASK (1 << ARM_TBFLAG_CPACR_FPEN_SHIFT)
1140 /* Bit usage when in AArch64 state */
1141 #define ARM_TBFLAG_AA64_EL_SHIFT 0
1142 #define ARM_TBFLAG_AA64_EL_MASK (0x3 << ARM_TBFLAG_AA64_EL_SHIFT)
1143 #define ARM_TBFLAG_AA64_FPEN_SHIFT 2
1144 #define ARM_TBFLAG_AA64_FPEN_MASK (1 << ARM_TBFLAG_AA64_FPEN_SHIFT)
1146 /* some convenience accessor macros */
1147 #define ARM_TBFLAG_AARCH64_STATE(F) \
1148 (((F) & ARM_TBFLAG_AARCH64_STATE_MASK) >> ARM_TBFLAG_AARCH64_STATE_SHIFT)
1149 #define ARM_TBFLAG_THUMB(F) \
1150 (((F) & ARM_TBFLAG_THUMB_MASK) >> ARM_TBFLAG_THUMB_SHIFT)
1151 #define ARM_TBFLAG_VECLEN(F) \
1152 (((F) & ARM_TBFLAG_VECLEN_MASK) >> ARM_TBFLAG_VECLEN_SHIFT)
1153 #define ARM_TBFLAG_VECSTRIDE(F) \
1154 (((F) & ARM_TBFLAG_VECSTRIDE_MASK) >> ARM_TBFLAG_VECSTRIDE_SHIFT)
1155 #define ARM_TBFLAG_PRIV(F) \
1156 (((F) & ARM_TBFLAG_PRIV_MASK) >> ARM_TBFLAG_PRIV_SHIFT)
1157 #define ARM_TBFLAG_VFPEN(F) \
1158 (((F) & ARM_TBFLAG_VFPEN_MASK) >> ARM_TBFLAG_VFPEN_SHIFT)
1159 #define ARM_TBFLAG_CONDEXEC(F) \
1160 (((F) & ARM_TBFLAG_CONDEXEC_MASK) >> ARM_TBFLAG_CONDEXEC_SHIFT)
1161 #define ARM_TBFLAG_BSWAP_CODE(F) \
1162 (((F) & ARM_TBFLAG_BSWAP_CODE_MASK) >> ARM_TBFLAG_BSWAP_CODE_SHIFT)
1163 #define ARM_TBFLAG_CPACR_FPEN(F) \
1164 (((F) & ARM_TBFLAG_CPACR_FPEN_MASK) >> ARM_TBFLAG_CPACR_FPEN_SHIFT)
1165 #define ARM_TBFLAG_AA64_EL(F) \
1166 (((F) & ARM_TBFLAG_AA64_EL_MASK) >> ARM_TBFLAG_AA64_EL_SHIFT)
1167 #define ARM_TBFLAG_AA64_FPEN(F) \
1168 (((F) & ARM_TBFLAG_AA64_FPEN_MASK) >> ARM_TBFLAG_AA64_FPEN_SHIFT)
1170 static inline void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
1171 target_ulong *cs_base, int *flags)
1173 int fpen = extract32(env->cp15.c1_coproc, 20, 2);
1175 if (is_a64(env)) {
1176 *pc = env->pc;
1177 *flags = ARM_TBFLAG_AARCH64_STATE_MASK
1178 | (arm_current_pl(env) << ARM_TBFLAG_AA64_EL_SHIFT);
1179 if (fpen == 3 || (fpen == 1 && arm_current_pl(env) != 0)) {
1180 *flags |= ARM_TBFLAG_AA64_FPEN_MASK;
1182 } else {
1183 int privmode;
1184 *pc = env->regs[15];
1185 *flags = (env->thumb << ARM_TBFLAG_THUMB_SHIFT)
1186 | (env->vfp.vec_len << ARM_TBFLAG_VECLEN_SHIFT)
1187 | (env->vfp.vec_stride << ARM_TBFLAG_VECSTRIDE_SHIFT)
1188 | (env->condexec_bits << ARM_TBFLAG_CONDEXEC_SHIFT)
1189 | (env->bswap_code << ARM_TBFLAG_BSWAP_CODE_SHIFT);
1190 if (arm_feature(env, ARM_FEATURE_M)) {
1191 privmode = !((env->v7m.exception == 0) && (env->v7m.control & 1));
1192 } else {
1193 privmode = (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR;
1195 if (privmode) {
1196 *flags |= ARM_TBFLAG_PRIV_MASK;
1198 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)
1199 || arm_el_is_aa64(env, 1)) {
1200 *flags |= ARM_TBFLAG_VFPEN_MASK;
1202 if (fpen == 3 || (fpen == 1 && arm_current_pl(env) != 0)) {
1203 *flags |= ARM_TBFLAG_CPACR_FPEN_MASK;
1207 *cs_base = 0;
1210 #include "exec/exec-all.h"
1212 static inline void cpu_pc_from_tb(CPUARMState *env, TranslationBlock *tb)
1214 if (ARM_TBFLAG_AARCH64_STATE(tb->flags)) {
1215 env->pc = tb->pc;
1216 } else {
1217 env->regs[15] = tb->pc;
1221 #endif