target/ppc: Improve timebase register defines naming
[qemu/kevin.git] / accel / tcg / user-exec.c
blob68b252cb8e8d55a17ce0fe4c1db44fa89012747c
1 /*
2 * User emulator execution
4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
20 #include "hw/core/tcg-cpu-ops.h"
21 #include "disas/disas.h"
22 #include "exec/exec-all.h"
23 #include "tcg/tcg.h"
24 #include "qemu/bitops.h"
25 #include "qemu/rcu.h"
26 #include "exec/cpu_ldst.h"
27 #include "exec/translate-all.h"
28 #include "exec/helper-proto.h"
29 #include "qemu/atomic128.h"
30 #include "trace/trace-root.h"
31 #include "tcg/tcg-ldst.h"
32 #include "internal-common.h"
33 #include "internal-target.h"
35 __thread uintptr_t helper_retaddr;
37 //#define DEBUG_SIGNAL
40 * Adjust the pc to pass to cpu_restore_state; return the memop type.
42 MMUAccessType adjust_signal_pc(uintptr_t *pc, bool is_write)
44 switch (helper_retaddr) {
45 default:
47 * Fault during host memory operation within a helper function.
48 * The helper's host return address, saved here, gives us a
49 * pointer into the generated code that will unwind to the
50 * correct guest pc.
52 *pc = helper_retaddr;
53 break;
55 case 0:
57 * Fault during host memory operation within generated code.
58 * (Or, a unrelated bug within qemu, but we can't tell from here).
60 * We take the host pc from the signal frame. However, we cannot
61 * use that value directly. Within cpu_restore_state_from_tb, we
62 * assume PC comes from GETPC(), as used by the helper functions,
63 * so we adjust the address by -GETPC_ADJ to form an address that
64 * is within the call insn, so that the address does not accidentally
65 * match the beginning of the next guest insn. However, when the
66 * pc comes from the signal frame it points to the actual faulting
67 * host memory insn and not the return from a call insn.
69 * Therefore, adjust to compensate for what will be done later
70 * by cpu_restore_state_from_tb.
72 *pc += GETPC_ADJ;
73 break;
75 case 1:
77 * Fault during host read for translation, or loosely, "execution".
79 * The guest pc is already pointing to the start of the TB for which
80 * code is being generated. If the guest translator manages the
81 * page crossings correctly, this is exactly the correct address
82 * (and if the translator doesn't handle page boundaries correctly
83 * there's little we can do about that here). Therefore, do not
84 * trigger the unwinder.
86 *pc = 0;
87 return MMU_INST_FETCH;
90 return is_write ? MMU_DATA_STORE : MMU_DATA_LOAD;
93 /**
94 * handle_sigsegv_accerr_write:
95 * @cpu: the cpu context
96 * @old_set: the sigset_t from the signal ucontext_t
97 * @host_pc: the host pc, adjusted for the signal
98 * @guest_addr: the guest address of the fault
100 * Return true if the write fault has been handled, and should be re-tried.
102 * Note that it is important that we don't call page_unprotect() unless
103 * this is really a "write to nonwritable page" fault, because
104 * page_unprotect() assumes that if it is called for an access to
105 * a page that's writable this means we had two threads racing and
106 * another thread got there first and already made the page writable;
107 * so we will retry the access. If we were to call page_unprotect()
108 * for some other kind of fault that should really be passed to the
109 * guest, we'd end up in an infinite loop of retrying the faulting access.
111 bool handle_sigsegv_accerr_write(CPUState *cpu, sigset_t *old_set,
112 uintptr_t host_pc, abi_ptr guest_addr)
114 switch (page_unprotect(guest_addr, host_pc)) {
115 case 0:
117 * Fault not caused by a page marked unwritable to protect
118 * cached translations, must be the guest binary's problem.
120 return false;
121 case 1:
123 * Fault caused by protection of cached translation; TBs
124 * invalidated, so resume execution.
126 return true;
127 case 2:
129 * Fault caused by protection of cached translation, and the
130 * currently executing TB was modified and must be exited immediately.
132 sigprocmask(SIG_SETMASK, old_set, NULL);
133 cpu_loop_exit_noexc(cpu);
134 /* NORETURN */
135 default:
136 g_assert_not_reached();
140 typedef struct PageFlagsNode {
141 struct rcu_head rcu;
142 IntervalTreeNode itree;
143 int flags;
144 } PageFlagsNode;
146 static IntervalTreeRoot pageflags_root;
148 static PageFlagsNode *pageflags_find(target_ulong start, target_ulong last)
150 IntervalTreeNode *n;
152 n = interval_tree_iter_first(&pageflags_root, start, last);
153 return n ? container_of(n, PageFlagsNode, itree) : NULL;
156 static PageFlagsNode *pageflags_next(PageFlagsNode *p, target_ulong start,
157 target_ulong last)
159 IntervalTreeNode *n;
161 n = interval_tree_iter_next(&p->itree, start, last);
162 return n ? container_of(n, PageFlagsNode, itree) : NULL;
165 int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
167 IntervalTreeNode *n;
168 int rc = 0;
170 mmap_lock();
171 for (n = interval_tree_iter_first(&pageflags_root, 0, -1);
172 n != NULL;
173 n = interval_tree_iter_next(n, 0, -1)) {
174 PageFlagsNode *p = container_of(n, PageFlagsNode, itree);
176 rc = fn(priv, n->start, n->last + 1, p->flags);
177 if (rc != 0) {
178 break;
181 mmap_unlock();
183 return rc;
186 static int dump_region(void *priv, target_ulong start,
187 target_ulong end, unsigned long prot)
189 FILE *f = (FILE *)priv;
191 fprintf(f, TARGET_FMT_lx"-"TARGET_FMT_lx" "TARGET_FMT_lx" %c%c%c\n",
192 start, end, end - start,
193 ((prot & PAGE_READ) ? 'r' : '-'),
194 ((prot & PAGE_WRITE) ? 'w' : '-'),
195 ((prot & PAGE_EXEC) ? 'x' : '-'));
196 return 0;
199 /* dump memory mappings */
200 void page_dump(FILE *f)
202 const int length = sizeof(target_ulong) * 2;
204 fprintf(f, "%-*s %-*s %-*s %s\n",
205 length, "start", length, "end", length, "size", "prot");
206 walk_memory_regions(f, dump_region);
209 int page_get_flags(target_ulong address)
211 PageFlagsNode *p = pageflags_find(address, address);
214 * See util/interval-tree.c re lockless lookups: no false positives but
215 * there are false negatives. If we find nothing, retry with the mmap
216 * lock acquired.
218 if (p) {
219 return p->flags;
221 if (have_mmap_lock()) {
222 return 0;
225 mmap_lock();
226 p = pageflags_find(address, address);
227 mmap_unlock();
228 return p ? p->flags : 0;
231 /* A subroutine of page_set_flags: insert a new node for [start,last]. */
232 static void pageflags_create(target_ulong start, target_ulong last, int flags)
234 PageFlagsNode *p = g_new(PageFlagsNode, 1);
236 p->itree.start = start;
237 p->itree.last = last;
238 p->flags = flags;
239 interval_tree_insert(&p->itree, &pageflags_root);
242 /* A subroutine of page_set_flags: remove everything in [start,last]. */
243 static bool pageflags_unset(target_ulong start, target_ulong last)
245 bool inval_tb = false;
247 while (true) {
248 PageFlagsNode *p = pageflags_find(start, last);
249 target_ulong p_last;
251 if (!p) {
252 break;
255 if (p->flags & PAGE_EXEC) {
256 inval_tb = true;
259 interval_tree_remove(&p->itree, &pageflags_root);
260 p_last = p->itree.last;
262 if (p->itree.start < start) {
263 /* Truncate the node from the end, or split out the middle. */
264 p->itree.last = start - 1;
265 interval_tree_insert(&p->itree, &pageflags_root);
266 if (last < p_last) {
267 pageflags_create(last + 1, p_last, p->flags);
268 break;
270 } else if (p_last <= last) {
271 /* Range completely covers node -- remove it. */
272 g_free_rcu(p, rcu);
273 } else {
274 /* Truncate the node from the start. */
275 p->itree.start = last + 1;
276 interval_tree_insert(&p->itree, &pageflags_root);
277 break;
281 return inval_tb;
285 * A subroutine of page_set_flags: nothing overlaps [start,last],
286 * but check adjacent mappings and maybe merge into a single range.
288 static void pageflags_create_merge(target_ulong start, target_ulong last,
289 int flags)
291 PageFlagsNode *next = NULL, *prev = NULL;
293 if (start > 0) {
294 prev = pageflags_find(start - 1, start - 1);
295 if (prev) {
296 if (prev->flags == flags) {
297 interval_tree_remove(&prev->itree, &pageflags_root);
298 } else {
299 prev = NULL;
303 if (last + 1 != 0) {
304 next = pageflags_find(last + 1, last + 1);
305 if (next) {
306 if (next->flags == flags) {
307 interval_tree_remove(&next->itree, &pageflags_root);
308 } else {
309 next = NULL;
314 if (prev) {
315 if (next) {
316 prev->itree.last = next->itree.last;
317 g_free_rcu(next, rcu);
318 } else {
319 prev->itree.last = last;
321 interval_tree_insert(&prev->itree, &pageflags_root);
322 } else if (next) {
323 next->itree.start = start;
324 interval_tree_insert(&next->itree, &pageflags_root);
325 } else {
326 pageflags_create(start, last, flags);
331 * Allow the target to decide if PAGE_TARGET_[12] may be reset.
332 * By default, they are not kept.
334 #ifndef PAGE_TARGET_STICKY
335 #define PAGE_TARGET_STICKY 0
336 #endif
337 #define PAGE_STICKY (PAGE_ANON | PAGE_PASSTHROUGH | PAGE_TARGET_STICKY)
339 /* A subroutine of page_set_flags: add flags to [start,last]. */
340 static bool pageflags_set_clear(target_ulong start, target_ulong last,
341 int set_flags, int clear_flags)
343 PageFlagsNode *p;
344 target_ulong p_start, p_last;
345 int p_flags, merge_flags;
346 bool inval_tb = false;
348 restart:
349 p = pageflags_find(start, last);
350 if (!p) {
351 if (set_flags) {
352 pageflags_create_merge(start, last, set_flags);
354 goto done;
357 p_start = p->itree.start;
358 p_last = p->itree.last;
359 p_flags = p->flags;
360 /* Using mprotect on a page does not change sticky bits. */
361 merge_flags = (p_flags & ~clear_flags) | set_flags;
364 * Need to flush if an overlapping executable region
365 * removes exec, or adds write.
367 if ((p_flags & PAGE_EXEC)
368 && (!(merge_flags & PAGE_EXEC)
369 || (merge_flags & ~p_flags & PAGE_WRITE))) {
370 inval_tb = true;
374 * If there is an exact range match, update and return without
375 * attempting to merge with adjacent regions.
377 if (start == p_start && last == p_last) {
378 if (merge_flags) {
379 p->flags = merge_flags;
380 } else {
381 interval_tree_remove(&p->itree, &pageflags_root);
382 g_free_rcu(p, rcu);
384 goto done;
388 * If sticky bits affect the original mapping, then we must be more
389 * careful about the existing intervals and the separate flags.
391 if (set_flags != merge_flags) {
392 if (p_start < start) {
393 interval_tree_remove(&p->itree, &pageflags_root);
394 p->itree.last = start - 1;
395 interval_tree_insert(&p->itree, &pageflags_root);
397 if (last < p_last) {
398 if (merge_flags) {
399 pageflags_create(start, last, merge_flags);
401 pageflags_create(last + 1, p_last, p_flags);
402 } else {
403 if (merge_flags) {
404 pageflags_create(start, p_last, merge_flags);
406 if (p_last < last) {
407 start = p_last + 1;
408 goto restart;
411 } else {
412 if (start < p_start && set_flags) {
413 pageflags_create(start, p_start - 1, set_flags);
415 if (last < p_last) {
416 interval_tree_remove(&p->itree, &pageflags_root);
417 p->itree.start = last + 1;
418 interval_tree_insert(&p->itree, &pageflags_root);
419 if (merge_flags) {
420 pageflags_create(start, last, merge_flags);
422 } else {
423 if (merge_flags) {
424 p->flags = merge_flags;
425 } else {
426 interval_tree_remove(&p->itree, &pageflags_root);
427 g_free_rcu(p, rcu);
429 if (p_last < last) {
430 start = p_last + 1;
431 goto restart;
435 goto done;
438 /* If flags are not changing for this range, incorporate it. */
439 if (set_flags == p_flags) {
440 if (start < p_start) {
441 interval_tree_remove(&p->itree, &pageflags_root);
442 p->itree.start = start;
443 interval_tree_insert(&p->itree, &pageflags_root);
445 if (p_last < last) {
446 start = p_last + 1;
447 goto restart;
449 goto done;
452 /* Maybe split out head and/or tail ranges with the original flags. */
453 interval_tree_remove(&p->itree, &pageflags_root);
454 if (p_start < start) {
455 p->itree.last = start - 1;
456 interval_tree_insert(&p->itree, &pageflags_root);
458 if (p_last < last) {
459 goto restart;
461 if (last < p_last) {
462 pageflags_create(last + 1, p_last, p_flags);
464 } else if (last < p_last) {
465 p->itree.start = last + 1;
466 interval_tree_insert(&p->itree, &pageflags_root);
467 } else {
468 g_free_rcu(p, rcu);
469 goto restart;
471 if (set_flags) {
472 pageflags_create(start, last, set_flags);
475 done:
476 return inval_tb;
480 * Modify the flags of a page and invalidate the code if necessary.
481 * The flag PAGE_WRITE_ORG is positioned automatically depending
482 * on PAGE_WRITE. The mmap_lock should already be held.
484 void page_set_flags(target_ulong start, target_ulong last, int flags)
486 bool reset = false;
487 bool inval_tb = false;
489 /* This function should never be called with addresses outside the
490 guest address space. If this assert fires, it probably indicates
491 a missing call to h2g_valid. */
492 assert(start <= last);
493 assert(last <= GUEST_ADDR_MAX);
494 /* Only set PAGE_ANON with new mappings. */
495 assert(!(flags & PAGE_ANON) || (flags & PAGE_RESET));
496 assert_memory_lock();
498 start &= TARGET_PAGE_MASK;
499 last |= ~TARGET_PAGE_MASK;
501 if (!(flags & PAGE_VALID)) {
502 flags = 0;
503 } else {
504 reset = flags & PAGE_RESET;
505 flags &= ~PAGE_RESET;
506 if (flags & PAGE_WRITE) {
507 flags |= PAGE_WRITE_ORG;
511 if (!flags || reset) {
512 page_reset_target_data(start, last);
513 inval_tb |= pageflags_unset(start, last);
515 if (flags) {
516 inval_tb |= pageflags_set_clear(start, last, flags,
517 ~(reset ? 0 : PAGE_STICKY));
519 if (inval_tb) {
520 tb_invalidate_phys_range(start, last);
524 bool page_check_range(target_ulong start, target_ulong len, int flags)
526 target_ulong last;
527 int locked; /* tri-state: =0: unlocked, +1: global, -1: local */
528 bool ret;
530 if (len == 0) {
531 return true; /* trivial length */
534 last = start + len - 1;
535 if (last < start) {
536 return false; /* wrap around */
539 locked = have_mmap_lock();
540 while (true) {
541 PageFlagsNode *p = pageflags_find(start, last);
542 int missing;
544 if (!p) {
545 if (!locked) {
547 * Lockless lookups have false negatives.
548 * Retry with the lock held.
550 mmap_lock();
551 locked = -1;
552 p = pageflags_find(start, last);
554 if (!p) {
555 ret = false; /* entire region invalid */
556 break;
559 if (start < p->itree.start) {
560 ret = false; /* initial bytes invalid */
561 break;
564 missing = flags & ~p->flags;
565 if (missing & ~PAGE_WRITE) {
566 ret = false; /* page doesn't match */
567 break;
569 if (missing & PAGE_WRITE) {
570 if (!(p->flags & PAGE_WRITE_ORG)) {
571 ret = false; /* page not writable */
572 break;
574 /* Asking about writable, but has been protected: undo. */
575 if (!page_unprotect(start, 0)) {
576 ret = false;
577 break;
579 /* TODO: page_unprotect should take a range, not a single page. */
580 if (last - start < TARGET_PAGE_SIZE) {
581 ret = true; /* ok */
582 break;
584 start += TARGET_PAGE_SIZE;
585 continue;
588 if (last <= p->itree.last) {
589 ret = true; /* ok */
590 break;
592 start = p->itree.last + 1;
595 /* Release the lock if acquired locally. */
596 if (locked < 0) {
597 mmap_unlock();
599 return ret;
602 bool page_check_range_empty(target_ulong start, target_ulong last)
604 assert(last >= start);
605 assert_memory_lock();
606 return pageflags_find(start, last) == NULL;
609 target_ulong page_find_range_empty(target_ulong min, target_ulong max,
610 target_ulong len, target_ulong align)
612 target_ulong len_m1, align_m1;
614 assert(min <= max);
615 assert(max <= GUEST_ADDR_MAX);
616 assert(len != 0);
617 assert(is_power_of_2(align));
618 assert_memory_lock();
620 len_m1 = len - 1;
621 align_m1 = align - 1;
623 /* Iteratively narrow the search region. */
624 while (1) {
625 PageFlagsNode *p;
627 /* Align min and double-check there's enough space remaining. */
628 min = (min + align_m1) & ~align_m1;
629 if (min > max) {
630 return -1;
632 if (len_m1 > max - min) {
633 return -1;
636 p = pageflags_find(min, min + len_m1);
637 if (p == NULL) {
638 /* Found! */
639 return min;
641 if (max <= p->itree.last) {
642 /* Existing allocation fills the remainder of the search region. */
643 return -1;
645 /* Skip across existing allocation. */
646 min = p->itree.last + 1;
650 void page_protect(tb_page_addr_t address)
652 PageFlagsNode *p;
653 target_ulong start, last;
654 int prot;
656 assert_memory_lock();
658 if (qemu_host_page_size <= TARGET_PAGE_SIZE) {
659 start = address & TARGET_PAGE_MASK;
660 last = start + TARGET_PAGE_SIZE - 1;
661 } else {
662 start = address & qemu_host_page_mask;
663 last = start + qemu_host_page_size - 1;
666 p = pageflags_find(start, last);
667 if (!p) {
668 return;
670 prot = p->flags;
672 if (unlikely(p->itree.last < last)) {
673 /* More than one protection region covers the one host page. */
674 assert(TARGET_PAGE_SIZE < qemu_host_page_size);
675 while ((p = pageflags_next(p, start, last)) != NULL) {
676 prot |= p->flags;
680 if (prot & PAGE_WRITE) {
681 pageflags_set_clear(start, last, 0, PAGE_WRITE);
682 mprotect(g2h_untagged(start), qemu_host_page_size,
683 prot & (PAGE_READ | PAGE_EXEC) ? PROT_READ : PROT_NONE);
688 * Called from signal handler: invalidate the code and unprotect the
689 * page. Return 0 if the fault was not handled, 1 if it was handled,
690 * and 2 if it was handled but the caller must cause the TB to be
691 * immediately exited. (We can only return 2 if the 'pc' argument is
692 * non-zero.)
694 int page_unprotect(target_ulong address, uintptr_t pc)
696 PageFlagsNode *p;
697 bool current_tb_invalidated;
700 * Technically this isn't safe inside a signal handler. However we
701 * know this only ever happens in a synchronous SEGV handler, so in
702 * practice it seems to be ok.
704 mmap_lock();
706 p = pageflags_find(address, address);
708 /* If this address was not really writable, nothing to do. */
709 if (!p || !(p->flags & PAGE_WRITE_ORG)) {
710 mmap_unlock();
711 return 0;
714 current_tb_invalidated = false;
715 if (p->flags & PAGE_WRITE) {
717 * If the page is actually marked WRITE then assume this is because
718 * this thread raced with another one which got here first and
719 * set the page to PAGE_WRITE and did the TB invalidate for us.
721 #ifdef TARGET_HAS_PRECISE_SMC
722 TranslationBlock *current_tb = tcg_tb_lookup(pc);
723 if (current_tb) {
724 current_tb_invalidated = tb_cflags(current_tb) & CF_INVALID;
726 #endif
727 } else {
728 target_ulong start, len, i;
729 int prot;
731 if (qemu_host_page_size <= TARGET_PAGE_SIZE) {
732 start = address & TARGET_PAGE_MASK;
733 len = TARGET_PAGE_SIZE;
734 prot = p->flags | PAGE_WRITE;
735 pageflags_set_clear(start, start + len - 1, PAGE_WRITE, 0);
736 current_tb_invalidated = tb_invalidate_phys_page_unwind(start, pc);
737 } else {
738 start = address & qemu_host_page_mask;
739 len = qemu_host_page_size;
740 prot = 0;
742 for (i = 0; i < len; i += TARGET_PAGE_SIZE) {
743 target_ulong addr = start + i;
745 p = pageflags_find(addr, addr);
746 if (p) {
747 prot |= p->flags;
748 if (p->flags & PAGE_WRITE_ORG) {
749 prot |= PAGE_WRITE;
750 pageflags_set_clear(addr, addr + TARGET_PAGE_SIZE - 1,
751 PAGE_WRITE, 0);
755 * Since the content will be modified, we must invalidate
756 * the corresponding translated code.
758 current_tb_invalidated |=
759 tb_invalidate_phys_page_unwind(addr, pc);
762 if (prot & PAGE_EXEC) {
763 prot = (prot & ~PAGE_EXEC) | PAGE_READ;
765 mprotect((void *)g2h_untagged(start), len, prot & PAGE_BITS);
767 mmap_unlock();
769 /* If current TB was invalidated return to main loop */
770 return current_tb_invalidated ? 2 : 1;
773 static int probe_access_internal(CPUArchState *env, vaddr addr,
774 int fault_size, MMUAccessType access_type,
775 bool nonfault, uintptr_t ra)
777 int acc_flag;
778 bool maperr;
780 switch (access_type) {
781 case MMU_DATA_STORE:
782 acc_flag = PAGE_WRITE_ORG;
783 break;
784 case MMU_DATA_LOAD:
785 acc_flag = PAGE_READ;
786 break;
787 case MMU_INST_FETCH:
788 acc_flag = PAGE_EXEC;
789 break;
790 default:
791 g_assert_not_reached();
794 if (guest_addr_valid_untagged(addr)) {
795 int page_flags = page_get_flags(addr);
796 if (page_flags & acc_flag) {
797 if ((acc_flag == PAGE_READ || acc_flag == PAGE_WRITE)
798 && cpu_plugin_mem_cbs_enabled(env_cpu(env))) {
799 return TLB_MMIO;
801 return 0; /* success */
803 maperr = !(page_flags & PAGE_VALID);
804 } else {
805 maperr = true;
808 if (nonfault) {
809 return TLB_INVALID_MASK;
812 cpu_loop_exit_sigsegv(env_cpu(env), addr, access_type, maperr, ra);
815 int probe_access_flags(CPUArchState *env, vaddr addr, int size,
816 MMUAccessType access_type, int mmu_idx,
817 bool nonfault, void **phost, uintptr_t ra)
819 int flags;
821 g_assert(-(addr | TARGET_PAGE_MASK) >= size);
822 flags = probe_access_internal(env, addr, size, access_type, nonfault, ra);
823 *phost = (flags & TLB_INVALID_MASK) ? NULL : g2h(env_cpu(env), addr);
824 return flags;
827 void *probe_access(CPUArchState *env, vaddr addr, int size,
828 MMUAccessType access_type, int mmu_idx, uintptr_t ra)
830 int flags;
832 g_assert(-(addr | TARGET_PAGE_MASK) >= size);
833 flags = probe_access_internal(env, addr, size, access_type, false, ra);
834 g_assert((flags & ~TLB_MMIO) == 0);
836 return size ? g2h(env_cpu(env), addr) : NULL;
839 tb_page_addr_t get_page_addr_code_hostp(CPUArchState *env, vaddr addr,
840 void **hostp)
842 int flags;
844 flags = probe_access_internal(env, addr, 1, MMU_INST_FETCH, false, 0);
845 g_assert(flags == 0);
847 if (hostp) {
848 *hostp = g2h_untagged(addr);
850 return addr;
853 #ifdef TARGET_PAGE_DATA_SIZE
855 * Allocate chunks of target data together. For the only current user,
856 * if we allocate one hunk per page, we have overhead of 40/128 or 40%.
857 * Therefore, allocate memory for 64 pages at a time for overhead < 1%.
859 #define TPD_PAGES 64
860 #define TBD_MASK (TARGET_PAGE_MASK * TPD_PAGES)
862 typedef struct TargetPageDataNode {
863 struct rcu_head rcu;
864 IntervalTreeNode itree;
865 char data[TPD_PAGES][TARGET_PAGE_DATA_SIZE] __attribute__((aligned));
866 } TargetPageDataNode;
868 static IntervalTreeRoot targetdata_root;
870 void page_reset_target_data(target_ulong start, target_ulong last)
872 IntervalTreeNode *n, *next;
874 assert_memory_lock();
876 start &= TARGET_PAGE_MASK;
877 last |= ~TARGET_PAGE_MASK;
879 for (n = interval_tree_iter_first(&targetdata_root, start, last),
880 next = n ? interval_tree_iter_next(n, start, last) : NULL;
881 n != NULL;
882 n = next,
883 next = next ? interval_tree_iter_next(n, start, last) : NULL) {
884 target_ulong n_start, n_last, p_ofs, p_len;
885 TargetPageDataNode *t = container_of(n, TargetPageDataNode, itree);
887 if (n->start >= start && n->last <= last) {
888 interval_tree_remove(n, &targetdata_root);
889 g_free_rcu(t, rcu);
890 continue;
893 if (n->start < start) {
894 n_start = start;
895 p_ofs = (start - n->start) >> TARGET_PAGE_BITS;
896 } else {
897 n_start = n->start;
898 p_ofs = 0;
900 n_last = MIN(last, n->last);
901 p_len = (n_last + 1 - n_start) >> TARGET_PAGE_BITS;
903 memset(t->data[p_ofs], 0, p_len * TARGET_PAGE_DATA_SIZE);
907 void *page_get_target_data(target_ulong address)
909 IntervalTreeNode *n;
910 TargetPageDataNode *t;
911 target_ulong page, region;
913 page = address & TARGET_PAGE_MASK;
914 region = address & TBD_MASK;
916 n = interval_tree_iter_first(&targetdata_root, page, page);
917 if (!n) {
919 * See util/interval-tree.c re lockless lookups: no false positives
920 * but there are false negatives. If we find nothing, retry with
921 * the mmap lock acquired. We also need the lock for the
922 * allocation + insert.
924 mmap_lock();
925 n = interval_tree_iter_first(&targetdata_root, page, page);
926 if (!n) {
927 t = g_new0(TargetPageDataNode, 1);
928 n = &t->itree;
929 n->start = region;
930 n->last = region | ~TBD_MASK;
931 interval_tree_insert(n, &targetdata_root);
933 mmap_unlock();
936 t = container_of(n, TargetPageDataNode, itree);
937 return t->data[(page - region) >> TARGET_PAGE_BITS];
939 #else
940 void page_reset_target_data(target_ulong start, target_ulong last) { }
941 #endif /* TARGET_PAGE_DATA_SIZE */
943 /* The system-mode versions of these helpers are in cputlb.c. */
945 static void *cpu_mmu_lookup(CPUState *cpu, vaddr addr,
946 MemOp mop, uintptr_t ra, MMUAccessType type)
948 int a_bits = get_alignment_bits(mop);
949 void *ret;
951 /* Enforce guest required alignment. */
952 if (unlikely(addr & ((1 << a_bits) - 1))) {
953 cpu_loop_exit_sigbus(cpu, addr, type, ra);
956 ret = g2h(cpu, addr);
957 set_helper_retaddr(ra);
958 return ret;
961 #include "ldst_atomicity.c.inc"
963 static uint8_t do_ld1_mmu(CPUState *cpu, vaddr addr, MemOpIdx oi,
964 uintptr_t ra, MMUAccessType access_type)
966 void *haddr;
967 uint8_t ret;
969 cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD);
970 haddr = cpu_mmu_lookup(cpu, addr, get_memop(oi), ra, access_type);
971 ret = ldub_p(haddr);
972 clear_helper_retaddr();
973 return ret;
976 static uint16_t do_ld2_mmu(CPUState *cpu, vaddr addr, MemOpIdx oi,
977 uintptr_t ra, MMUAccessType access_type)
979 void *haddr;
980 uint16_t ret;
981 MemOp mop = get_memop(oi);
983 cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD);
984 haddr = cpu_mmu_lookup(cpu, addr, mop, ra, access_type);
985 ret = load_atom_2(cpu, ra, haddr, mop);
986 clear_helper_retaddr();
988 if (mop & MO_BSWAP) {
989 ret = bswap16(ret);
991 return ret;
994 static uint32_t do_ld4_mmu(CPUState *cpu, vaddr addr, MemOpIdx oi,
995 uintptr_t ra, MMUAccessType access_type)
997 void *haddr;
998 uint32_t ret;
999 MemOp mop = get_memop(oi);
1001 cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD);
1002 haddr = cpu_mmu_lookup(cpu, addr, mop, ra, access_type);
1003 ret = load_atom_4(cpu, ra, haddr, mop);
1004 clear_helper_retaddr();
1006 if (mop & MO_BSWAP) {
1007 ret = bswap32(ret);
1009 return ret;
1012 static uint64_t do_ld8_mmu(CPUState *cpu, vaddr addr, MemOpIdx oi,
1013 uintptr_t ra, MMUAccessType access_type)
1015 void *haddr;
1016 uint64_t ret;
1017 MemOp mop = get_memop(oi);
1019 cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD);
1020 haddr = cpu_mmu_lookup(cpu, addr, mop, ra, access_type);
1021 ret = load_atom_8(cpu, ra, haddr, mop);
1022 clear_helper_retaddr();
1024 if (mop & MO_BSWAP) {
1025 ret = bswap64(ret);
1027 return ret;
1030 static Int128 do_ld16_mmu(CPUState *cpu, abi_ptr addr,
1031 MemOpIdx oi, uintptr_t ra)
1033 void *haddr;
1034 Int128 ret;
1035 MemOp mop = get_memop(oi);
1037 tcg_debug_assert((mop & MO_SIZE) == MO_128);
1038 cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD);
1039 haddr = cpu_mmu_lookup(cpu, addr, mop, ra, MMU_DATA_LOAD);
1040 ret = load_atom_16(cpu, ra, haddr, mop);
1041 clear_helper_retaddr();
1043 if (mop & MO_BSWAP) {
1044 ret = bswap128(ret);
1046 return ret;
1049 static void do_st1_mmu(CPUState *cpu, vaddr addr, uint8_t val,
1050 MemOpIdx oi, uintptr_t ra)
1052 void *haddr;
1054 cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST);
1055 haddr = cpu_mmu_lookup(cpu, addr, get_memop(oi), ra, MMU_DATA_STORE);
1056 stb_p(haddr, val);
1057 clear_helper_retaddr();
1060 static void do_st2_mmu(CPUState *cpu, vaddr addr, uint16_t val,
1061 MemOpIdx oi, uintptr_t ra)
1063 void *haddr;
1064 MemOp mop = get_memop(oi);
1066 cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST);
1067 haddr = cpu_mmu_lookup(cpu, addr, mop, ra, MMU_DATA_STORE);
1069 if (mop & MO_BSWAP) {
1070 val = bswap16(val);
1072 store_atom_2(cpu, ra, haddr, mop, val);
1073 clear_helper_retaddr();
1076 static void do_st4_mmu(CPUState *cpu, vaddr addr, uint32_t val,
1077 MemOpIdx oi, uintptr_t ra)
1079 void *haddr;
1080 MemOp mop = get_memop(oi);
1082 cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST);
1083 haddr = cpu_mmu_lookup(cpu, addr, mop, ra, MMU_DATA_STORE);
1085 if (mop & MO_BSWAP) {
1086 val = bswap32(val);
1088 store_atom_4(cpu, ra, haddr, mop, val);
1089 clear_helper_retaddr();
1092 static void do_st8_mmu(CPUState *cpu, vaddr addr, uint64_t val,
1093 MemOpIdx oi, uintptr_t ra)
1095 void *haddr;
1096 MemOp mop = get_memop(oi);
1098 cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST);
1099 haddr = cpu_mmu_lookup(cpu, addr, mop, ra, MMU_DATA_STORE);
1101 if (mop & MO_BSWAP) {
1102 val = bswap64(val);
1104 store_atom_8(cpu, ra, haddr, mop, val);
1105 clear_helper_retaddr();
1108 static void do_st16_mmu(CPUState *cpu, vaddr addr, Int128 val,
1109 MemOpIdx oi, uintptr_t ra)
1111 void *haddr;
1112 MemOpIdx mop = get_memop(oi);
1114 cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST);
1115 haddr = cpu_mmu_lookup(cpu, addr, mop, ra, MMU_DATA_STORE);
1117 if (mop & MO_BSWAP) {
1118 val = bswap128(val);
1120 store_atom_16(cpu, ra, haddr, mop, val);
1121 clear_helper_retaddr();
1124 uint32_t cpu_ldub_code(CPUArchState *env, abi_ptr ptr)
1126 uint32_t ret;
1128 set_helper_retaddr(1);
1129 ret = ldub_p(g2h_untagged(ptr));
1130 clear_helper_retaddr();
1131 return ret;
1134 uint32_t cpu_lduw_code(CPUArchState *env, abi_ptr ptr)
1136 uint32_t ret;
1138 set_helper_retaddr(1);
1139 ret = lduw_p(g2h_untagged(ptr));
1140 clear_helper_retaddr();
1141 return ret;
1144 uint32_t cpu_ldl_code(CPUArchState *env, abi_ptr ptr)
1146 uint32_t ret;
1148 set_helper_retaddr(1);
1149 ret = ldl_p(g2h_untagged(ptr));
1150 clear_helper_retaddr();
1151 return ret;
1154 uint64_t cpu_ldq_code(CPUArchState *env, abi_ptr ptr)
1156 uint64_t ret;
1158 set_helper_retaddr(1);
1159 ret = ldq_p(g2h_untagged(ptr));
1160 clear_helper_retaddr();
1161 return ret;
1164 uint8_t cpu_ldb_code_mmu(CPUArchState *env, abi_ptr addr,
1165 MemOpIdx oi, uintptr_t ra)
1167 void *haddr;
1168 uint8_t ret;
1170 haddr = cpu_mmu_lookup(env_cpu(env), addr, oi, ra, MMU_INST_FETCH);
1171 ret = ldub_p(haddr);
1172 clear_helper_retaddr();
1173 return ret;
1176 uint16_t cpu_ldw_code_mmu(CPUArchState *env, abi_ptr addr,
1177 MemOpIdx oi, uintptr_t ra)
1179 void *haddr;
1180 uint16_t ret;
1182 haddr = cpu_mmu_lookup(env_cpu(env), addr, oi, ra, MMU_INST_FETCH);
1183 ret = lduw_p(haddr);
1184 clear_helper_retaddr();
1185 if (get_memop(oi) & MO_BSWAP) {
1186 ret = bswap16(ret);
1188 return ret;
1191 uint32_t cpu_ldl_code_mmu(CPUArchState *env, abi_ptr addr,
1192 MemOpIdx oi, uintptr_t ra)
1194 void *haddr;
1195 uint32_t ret;
1197 haddr = cpu_mmu_lookup(env_cpu(env), addr, oi, ra, MMU_INST_FETCH);
1198 ret = ldl_p(haddr);
1199 clear_helper_retaddr();
1200 if (get_memop(oi) & MO_BSWAP) {
1201 ret = bswap32(ret);
1203 return ret;
1206 uint64_t cpu_ldq_code_mmu(CPUArchState *env, abi_ptr addr,
1207 MemOpIdx oi, uintptr_t ra)
1209 void *haddr;
1210 uint64_t ret;
1212 haddr = cpu_mmu_lookup(env_cpu(env), addr, oi, ra, MMU_DATA_LOAD);
1213 ret = ldq_p(haddr);
1214 clear_helper_retaddr();
1215 if (get_memop(oi) & MO_BSWAP) {
1216 ret = bswap64(ret);
1218 return ret;
1221 #include "ldst_common.c.inc"
1224 * Do not allow unaligned operations to proceed. Return the host address.
1226 static void *atomic_mmu_lookup(CPUState *cpu, vaddr addr, MemOpIdx oi,
1227 int size, uintptr_t retaddr)
1229 MemOp mop = get_memop(oi);
1230 int a_bits = get_alignment_bits(mop);
1231 void *ret;
1233 /* Enforce guest required alignment. */
1234 if (unlikely(addr & ((1 << a_bits) - 1))) {
1235 cpu_loop_exit_sigbus(cpu, addr, MMU_DATA_STORE, retaddr);
1238 /* Enforce qemu required alignment. */
1239 if (unlikely(addr & (size - 1))) {
1240 cpu_loop_exit_atomic(cpu, retaddr);
1243 ret = g2h(cpu, addr);
1244 set_helper_retaddr(retaddr);
1245 return ret;
1248 #include "atomic_common.c.inc"
1251 * First set of functions passes in OI and RETADDR.
1252 * This makes them callable from other helpers.
1255 #define ATOMIC_NAME(X) \
1256 glue(glue(glue(cpu_atomic_ ## X, SUFFIX), END), _mmu)
1257 #define ATOMIC_MMU_CLEANUP do { clear_helper_retaddr(); } while (0)
1259 #define DATA_SIZE 1
1260 #include "atomic_template.h"
1262 #define DATA_SIZE 2
1263 #include "atomic_template.h"
1265 #define DATA_SIZE 4
1266 #include "atomic_template.h"
1268 #ifdef CONFIG_ATOMIC64
1269 #define DATA_SIZE 8
1270 #include "atomic_template.h"
1271 #endif
1273 #if defined(CONFIG_ATOMIC128) || HAVE_CMPXCHG128
1274 #define DATA_SIZE 16
1275 #include "atomic_template.h"
1276 #endif