find_ram_offset: Align ram_addr_t allocation on long boundaries
[qemu/kevin.git] / hw / net / etraxfs_eth.c
blob013c8d0a4103b60b9db46cced364df6f15e06bab
1 /*
2 * QEMU ETRAX Ethernet Controller.
4 * Copyright (c) 2008 Edgar E. Iglesias, Axis Communications AB.
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 #include "qemu/osdep.h"
26 #include "hw/sysbus.h"
27 #include "net/net.h"
28 #include "hw/cris/etraxfs.h"
29 #include "qemu/error-report.h"
31 #define D(x)
33 /* Advertisement control register. */
34 #define ADVERTISE_10HALF 0x0020 /* Try for 10mbps half-duplex */
35 #define ADVERTISE_10FULL 0x0040 /* Try for 10mbps full-duplex */
36 #define ADVERTISE_100HALF 0x0080 /* Try for 100mbps half-duplex */
37 #define ADVERTISE_100FULL 0x0100 /* Try for 100mbps full-duplex */
40 * The MDIO extensions in the TDK PHY model were reversed engineered from the
41 * linux driver (PHYID and Diagnostics reg).
42 * TODO: Add friendly names for the register nums.
44 struct qemu_phy
46 uint32_t regs[32];
48 int link;
50 unsigned int (*read)(struct qemu_phy *phy, unsigned int req);
51 void (*write)(struct qemu_phy *phy, unsigned int req, unsigned int data);
54 static unsigned int tdk_read(struct qemu_phy *phy, unsigned int req)
56 int regnum;
57 unsigned r = 0;
59 regnum = req & 0x1f;
61 switch (regnum) {
62 case 1:
63 if (!phy->link) {
64 break;
66 /* MR1. */
67 /* Speeds and modes. */
68 r |= (1 << 13) | (1 << 14);
69 r |= (1 << 11) | (1 << 12);
70 r |= (1 << 5); /* Autoneg complete. */
71 r |= (1 << 3); /* Autoneg able. */
72 r |= (1 << 2); /* link. */
73 break;
74 case 5:
75 /* Link partner ability.
76 We are kind; always agree with whatever best mode
77 the guest advertises. */
78 r = 1 << 14; /* Success. */
79 /* Copy advertised modes. */
80 r |= phy->regs[4] & (15 << 5);
81 /* Autoneg support. */
82 r |= 1;
83 break;
84 case 18:
86 /* Diagnostics reg. */
87 int duplex = 0;
88 int speed_100 = 0;
90 if (!phy->link) {
91 break;
94 /* Are we advertising 100 half or 100 duplex ? */
95 speed_100 = !!(phy->regs[4] & ADVERTISE_100HALF);
96 speed_100 |= !!(phy->regs[4] & ADVERTISE_100FULL);
98 /* Are we advertising 10 duplex or 100 duplex ? */
99 duplex = !!(phy->regs[4] & ADVERTISE_100FULL);
100 duplex |= !!(phy->regs[4] & ADVERTISE_10FULL);
101 r = (speed_100 << 10) | (duplex << 11);
103 break;
105 default:
106 r = phy->regs[regnum];
107 break;
109 D(printf("\n%s %x = reg[%d]\n", __func__, r, regnum));
110 return r;
113 static void
114 tdk_write(struct qemu_phy *phy, unsigned int req, unsigned int data)
116 int regnum;
118 regnum = req & 0x1f;
119 D(printf("%s reg[%d] = %x\n", __func__, regnum, data));
120 switch (regnum) {
121 default:
122 phy->regs[regnum] = data;
123 break;
127 static void
128 tdk_init(struct qemu_phy *phy)
130 phy->regs[0] = 0x3100;
131 /* PHY Id. */
132 phy->regs[2] = 0x0300;
133 phy->regs[3] = 0xe400;
134 /* Autonegotiation advertisement reg. */
135 phy->regs[4] = 0x01E1;
136 phy->link = 1;
138 phy->read = tdk_read;
139 phy->write = tdk_write;
142 struct qemu_mdio
144 /* bus. */
145 int mdc;
146 int mdio;
148 /* decoder. */
149 enum {
150 PREAMBLE,
151 SOF,
152 OPC,
153 ADDR,
154 REQ,
155 TURNAROUND,
156 DATA
157 } state;
158 unsigned int drive;
160 unsigned int cnt;
161 unsigned int addr;
162 unsigned int opc;
163 unsigned int req;
164 unsigned int data;
166 struct qemu_phy *devs[32];
169 static void
170 mdio_attach(struct qemu_mdio *bus, struct qemu_phy *phy, unsigned int addr)
172 bus->devs[addr & 0x1f] = phy;
175 #ifdef USE_THIS_DEAD_CODE
176 static void
177 mdio_detach(struct qemu_mdio *bus, struct qemu_phy *phy, unsigned int addr)
179 bus->devs[addr & 0x1f] = NULL;
181 #endif
183 static void mdio_read_req(struct qemu_mdio *bus)
185 struct qemu_phy *phy;
187 phy = bus->devs[bus->addr];
188 if (phy && phy->read) {
189 bus->data = phy->read(phy, bus->req);
190 } else {
191 bus->data = 0xffff;
195 static void mdio_write_req(struct qemu_mdio *bus)
197 struct qemu_phy *phy;
199 phy = bus->devs[bus->addr];
200 if (phy && phy->write) {
201 phy->write(phy, bus->req, bus->data);
205 static void mdio_cycle(struct qemu_mdio *bus)
207 bus->cnt++;
209 D(printf("mdc=%d mdio=%d state=%d cnt=%d drv=%d\n",
210 bus->mdc, bus->mdio, bus->state, bus->cnt, bus->drive));
211 #if 0
212 if (bus->mdc) {
213 printf("%d", bus->mdio);
215 #endif
216 switch (bus->state) {
217 case PREAMBLE:
218 if (bus->mdc) {
219 if (bus->cnt >= (32 * 2) && !bus->mdio) {
220 bus->cnt = 0;
221 bus->state = SOF;
222 bus->data = 0;
225 break;
226 case SOF:
227 if (bus->mdc) {
228 if (bus->mdio != 1) {
229 printf("WARNING: no SOF\n");
231 if (bus->cnt == 1*2) {
232 bus->cnt = 0;
233 bus->opc = 0;
234 bus->state = OPC;
237 break;
238 case OPC:
239 if (bus->mdc) {
240 bus->opc <<= 1;
241 bus->opc |= bus->mdio & 1;
242 if (bus->cnt == 2*2) {
243 bus->cnt = 0;
244 bus->addr = 0;
245 bus->state = ADDR;
248 break;
249 case ADDR:
250 if (bus->mdc) {
251 bus->addr <<= 1;
252 bus->addr |= bus->mdio & 1;
254 if (bus->cnt == 5*2) {
255 bus->cnt = 0;
256 bus->req = 0;
257 bus->state = REQ;
260 break;
261 case REQ:
262 if (bus->mdc) {
263 bus->req <<= 1;
264 bus->req |= bus->mdio & 1;
265 if (bus->cnt == 5*2) {
266 bus->cnt = 0;
267 bus->state = TURNAROUND;
270 break;
271 case TURNAROUND:
272 if (bus->mdc && bus->cnt == 2*2) {
273 bus->mdio = 0;
274 bus->cnt = 0;
276 if (bus->opc == 2) {
277 bus->drive = 1;
278 mdio_read_req(bus);
279 bus->mdio = bus->data & 1;
281 bus->state = DATA;
283 break;
284 case DATA:
285 if (!bus->mdc) {
286 if (bus->drive) {
287 bus->mdio = !!(bus->data & (1 << 15));
288 bus->data <<= 1;
290 } else {
291 if (!bus->drive) {
292 bus->data <<= 1;
293 bus->data |= bus->mdio;
295 if (bus->cnt == 16 * 2) {
296 bus->cnt = 0;
297 bus->state = PREAMBLE;
298 if (!bus->drive) {
299 mdio_write_req(bus);
301 bus->drive = 0;
304 break;
305 default:
306 break;
310 /* ETRAX-FS Ethernet MAC block starts here. */
312 #define RW_MA0_LO 0x00
313 #define RW_MA0_HI 0x01
314 #define RW_MA1_LO 0x02
315 #define RW_MA1_HI 0x03
316 #define RW_GA_LO 0x04
317 #define RW_GA_HI 0x05
318 #define RW_GEN_CTRL 0x06
319 #define RW_REC_CTRL 0x07
320 #define RW_TR_CTRL 0x08
321 #define RW_CLR_ERR 0x09
322 #define RW_MGM_CTRL 0x0a
323 #define R_STAT 0x0b
324 #define FS_ETH_MAX_REGS 0x17
326 #define TYPE_ETRAX_FS_ETH "etraxfs-eth"
327 #define ETRAX_FS_ETH(obj) \
328 OBJECT_CHECK(ETRAXFSEthState, (obj), TYPE_ETRAX_FS_ETH)
330 typedef struct ETRAXFSEthState
332 SysBusDevice parent_obj;
334 MemoryRegion mmio;
335 NICState *nic;
336 NICConf conf;
338 /* Two addrs in the filter. */
339 uint8_t macaddr[2][6];
340 uint32_t regs[FS_ETH_MAX_REGS];
342 union {
343 void *vdma_out;
344 struct etraxfs_dma_client *dma_out;
346 union {
347 void *vdma_in;
348 struct etraxfs_dma_client *dma_in;
351 /* MDIO bus. */
352 struct qemu_mdio mdio_bus;
353 unsigned int phyaddr;
354 int duplex_mismatch;
356 /* PHY. */
357 struct qemu_phy phy;
358 } ETRAXFSEthState;
360 static void eth_validate_duplex(ETRAXFSEthState *eth)
362 struct qemu_phy *phy;
363 unsigned int phy_duplex;
364 unsigned int mac_duplex;
365 int new_mm = 0;
367 phy = eth->mdio_bus.devs[eth->phyaddr];
368 phy_duplex = !!(phy->read(phy, 18) & (1 << 11));
369 mac_duplex = !!(eth->regs[RW_REC_CTRL] & 128);
371 if (mac_duplex != phy_duplex) {
372 new_mm = 1;
375 if (eth->regs[RW_GEN_CTRL] & 1) {
376 if (new_mm != eth->duplex_mismatch) {
377 if (new_mm) {
378 printf("HW: WARNING ETH duplex mismatch MAC=%d PHY=%d\n",
379 mac_duplex, phy_duplex);
380 } else {
381 printf("HW: ETH duplex ok.\n");
384 eth->duplex_mismatch = new_mm;
388 static uint64_t
389 eth_read(void *opaque, hwaddr addr, unsigned int size)
391 ETRAXFSEthState *eth = opaque;
392 uint32_t r = 0;
394 addr >>= 2;
396 switch (addr) {
397 case R_STAT:
398 r = eth->mdio_bus.mdio & 1;
399 break;
400 default:
401 r = eth->regs[addr];
402 D(printf("%s %x\n", __func__, addr * 4));
403 break;
405 return r;
408 static void eth_update_ma(ETRAXFSEthState *eth, int ma)
410 int reg;
411 int i = 0;
413 ma &= 1;
415 reg = RW_MA0_LO;
416 if (ma) {
417 reg = RW_MA1_LO;
420 eth->macaddr[ma][i++] = eth->regs[reg];
421 eth->macaddr[ma][i++] = eth->regs[reg] >> 8;
422 eth->macaddr[ma][i++] = eth->regs[reg] >> 16;
423 eth->macaddr[ma][i++] = eth->regs[reg] >> 24;
424 eth->macaddr[ma][i++] = eth->regs[reg + 1];
425 eth->macaddr[ma][i] = eth->regs[reg + 1] >> 8;
427 D(printf("set mac%d=%x.%x.%x.%x.%x.%x\n", ma,
428 eth->macaddr[ma][0], eth->macaddr[ma][1],
429 eth->macaddr[ma][2], eth->macaddr[ma][3],
430 eth->macaddr[ma][4], eth->macaddr[ma][5]));
433 static void
434 eth_write(void *opaque, hwaddr addr,
435 uint64_t val64, unsigned int size)
437 ETRAXFSEthState *eth = opaque;
438 uint32_t value = val64;
440 addr >>= 2;
441 switch (addr) {
442 case RW_MA0_LO:
443 case RW_MA0_HI:
444 eth->regs[addr] = value;
445 eth_update_ma(eth, 0);
446 break;
447 case RW_MA1_LO:
448 case RW_MA1_HI:
449 eth->regs[addr] = value;
450 eth_update_ma(eth, 1);
451 break;
453 case RW_MGM_CTRL:
454 /* Attach an MDIO/PHY abstraction. */
455 if (value & 2) {
456 eth->mdio_bus.mdio = value & 1;
458 if (eth->mdio_bus.mdc != (value & 4)) {
459 mdio_cycle(&eth->mdio_bus);
460 eth_validate_duplex(eth);
462 eth->mdio_bus.mdc = !!(value & 4);
463 eth->regs[addr] = value;
464 break;
466 case RW_REC_CTRL:
467 eth->regs[addr] = value;
468 eth_validate_duplex(eth);
469 break;
471 default:
472 eth->regs[addr] = value;
473 D(printf("%s %x %x\n", __func__, addr, value));
474 break;
478 /* The ETRAX FS has a groupt address table (GAT) which works like a k=1 bloom
479 filter dropping group addresses we have not joined. The filter has 64
480 bits (m). The has function is a simple nible xor of the group addr. */
481 static int eth_match_groupaddr(ETRAXFSEthState *eth, const unsigned char *sa)
483 unsigned int hsh;
484 int m_individual = eth->regs[RW_REC_CTRL] & 4;
485 int match;
487 /* First bit on the wire of a MAC address signals multicast or
488 physical address. */
489 if (!m_individual && !(sa[0] & 1)) {
490 return 0;
493 /* Calculate the hash index for the GA registers. */
494 hsh = 0;
495 hsh ^= (*sa) & 0x3f;
496 hsh ^= ((*sa) >> 6) & 0x03;
497 ++sa;
498 hsh ^= ((*sa) << 2) & 0x03c;
499 hsh ^= ((*sa) >> 4) & 0xf;
500 ++sa;
501 hsh ^= ((*sa) << 4) & 0x30;
502 hsh ^= ((*sa) >> 2) & 0x3f;
503 ++sa;
504 hsh ^= (*sa) & 0x3f;
505 hsh ^= ((*sa) >> 6) & 0x03;
506 ++sa;
507 hsh ^= ((*sa) << 2) & 0x03c;
508 hsh ^= ((*sa) >> 4) & 0xf;
509 ++sa;
510 hsh ^= ((*sa) << 4) & 0x30;
511 hsh ^= ((*sa) >> 2) & 0x3f;
513 hsh &= 63;
514 if (hsh > 31) {
515 match = eth->regs[RW_GA_HI] & (1 << (hsh - 32));
516 } else {
517 match = eth->regs[RW_GA_LO] & (1 << hsh);
519 D(printf("hsh=%x ga=%x.%x mtch=%d\n", hsh,
520 eth->regs[RW_GA_HI], eth->regs[RW_GA_LO], match));
521 return match;
524 static ssize_t eth_receive(NetClientState *nc, const uint8_t *buf, size_t size)
526 unsigned char sa_bcast[6] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
527 ETRAXFSEthState *eth = qemu_get_nic_opaque(nc);
528 int use_ma0 = eth->regs[RW_REC_CTRL] & 1;
529 int use_ma1 = eth->regs[RW_REC_CTRL] & 2;
530 int r_bcast = eth->regs[RW_REC_CTRL] & 8;
532 if (size < 12) {
533 return -1;
536 D(printf("%x.%x.%x.%x.%x.%x ma=%d %d bc=%d\n",
537 buf[0], buf[1], buf[2], buf[3], buf[4], buf[5],
538 use_ma0, use_ma1, r_bcast));
540 /* Does the frame get through the address filters? */
541 if ((!use_ma0 || memcmp(buf, eth->macaddr[0], 6))
542 && (!use_ma1 || memcmp(buf, eth->macaddr[1], 6))
543 && (!r_bcast || memcmp(buf, sa_bcast, 6))
544 && !eth_match_groupaddr(eth, buf)) {
545 return size;
548 /* FIXME: Find another way to pass on the fake csum. */
549 etraxfs_dmac_input(eth->dma_in, (void *)buf, size + 4, 1);
551 return size;
554 static int eth_tx_push(void *opaque, unsigned char *buf, int len, bool eop)
556 ETRAXFSEthState *eth = opaque;
558 D(printf("%s buf=%p len=%d\n", __func__, buf, len));
559 qemu_send_packet(qemu_get_queue(eth->nic), buf, len);
560 return len;
563 static void eth_set_link(NetClientState *nc)
565 ETRAXFSEthState *eth = qemu_get_nic_opaque(nc);
566 D(printf("%s %d\n", __func__, nc->link_down));
567 eth->phy.link = !nc->link_down;
570 static const MemoryRegionOps eth_ops = {
571 .read = eth_read,
572 .write = eth_write,
573 .endianness = DEVICE_LITTLE_ENDIAN,
574 .valid = {
575 .min_access_size = 4,
576 .max_access_size = 4
580 static NetClientInfo net_etraxfs_info = {
581 .type = NET_CLIENT_DRIVER_NIC,
582 .size = sizeof(NICState),
583 .receive = eth_receive,
584 .link_status_changed = eth_set_link,
587 static int fs_eth_init(SysBusDevice *sbd)
589 DeviceState *dev = DEVICE(sbd);
590 ETRAXFSEthState *s = ETRAX_FS_ETH(dev);
592 if (!s->dma_out || !s->dma_in) {
593 error_report("Unconnected ETRAX-FS Ethernet MAC");
594 return -1;
597 s->dma_out->client.push = eth_tx_push;
598 s->dma_out->client.opaque = s;
599 s->dma_in->client.opaque = s;
600 s->dma_in->client.pull = NULL;
602 memory_region_init_io(&s->mmio, OBJECT(dev), &eth_ops, s,
603 "etraxfs-eth", 0x5c);
604 sysbus_init_mmio(sbd, &s->mmio);
606 qemu_macaddr_default_if_unset(&s->conf.macaddr);
607 s->nic = qemu_new_nic(&net_etraxfs_info, &s->conf,
608 object_get_typename(OBJECT(s)), dev->id, s);
609 qemu_format_nic_info_str(qemu_get_queue(s->nic), s->conf.macaddr.a);
612 tdk_init(&s->phy);
613 mdio_attach(&s->mdio_bus, &s->phy, s->phyaddr);
614 return 0;
617 static Property etraxfs_eth_properties[] = {
618 DEFINE_PROP_UINT32("phyaddr", ETRAXFSEthState, phyaddr, 1),
619 DEFINE_PROP_PTR("dma_out", ETRAXFSEthState, vdma_out),
620 DEFINE_PROP_PTR("dma_in", ETRAXFSEthState, vdma_in),
621 DEFINE_NIC_PROPERTIES(ETRAXFSEthState, conf),
622 DEFINE_PROP_END_OF_LIST(),
625 static void etraxfs_eth_class_init(ObjectClass *klass, void *data)
627 DeviceClass *dc = DEVICE_CLASS(klass);
628 SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
630 k->init = fs_eth_init;
631 dc->props = etraxfs_eth_properties;
632 /* Reason: pointer properties "dma_out", "dma_in" */
633 dc->user_creatable = false;
636 static const TypeInfo etraxfs_eth_info = {
637 .name = TYPE_ETRAX_FS_ETH,
638 .parent = TYPE_SYS_BUS_DEVICE,
639 .instance_size = sizeof(ETRAXFSEthState),
640 .class_init = etraxfs_eth_class_init,
643 static void etraxfs_eth_register_types(void)
645 type_register_static(&etraxfs_eth_info);
648 type_init(etraxfs_eth_register_types)