Merge remote-tracking branch 'remotes/armbru/tags/pull-error-2016-06-20' into staging
[qemu/kevin.git] / target-arm / op_helper.c
blob73da75920640f4d0a42098a78c4b4f1245b5ccc3
1 /*
2 * ARM helper routines
4 * Copyright (c) 2005-2007 CodeSourcery, LLC
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
20 #include "cpu.h"
21 #include "exec/helper-proto.h"
22 #include "internals.h"
23 #include "exec/exec-all.h"
24 #include "exec/cpu_ldst.h"
26 #define SIGNBIT (uint32_t)0x80000000
27 #define SIGNBIT64 ((uint64_t)1 << 63)
29 static void raise_exception(CPUARMState *env, uint32_t excp,
30 uint32_t syndrome, uint32_t target_el)
32 CPUState *cs = CPU(arm_env_get_cpu(env));
34 assert(!excp_is_internal(excp));
35 cs->exception_index = excp;
36 env->exception.syndrome = syndrome;
37 env->exception.target_el = target_el;
38 cpu_loop_exit(cs);
41 static int exception_target_el(CPUARMState *env)
43 int target_el = MAX(1, arm_current_el(env));
45 /* No such thing as secure EL1 if EL3 is aarch32, so update the target EL
46 * to EL3 in this case.
48 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3) && target_el == 1) {
49 target_el = 3;
52 return target_el;
55 uint32_t HELPER(neon_tbl)(CPUARMState *env, uint32_t ireg, uint32_t def,
56 uint32_t rn, uint32_t maxindex)
58 uint32_t val;
59 uint32_t tmp;
60 int index;
61 int shift;
62 uint64_t *table;
63 table = (uint64_t *)&env->vfp.regs[rn];
64 val = 0;
65 for (shift = 0; shift < 32; shift += 8) {
66 index = (ireg >> shift) & 0xff;
67 if (index < maxindex) {
68 tmp = (table[index >> 3] >> ((index & 7) << 3)) & 0xff;
69 val |= tmp << shift;
70 } else {
71 val |= def & (0xff << shift);
74 return val;
77 #if !defined(CONFIG_USER_ONLY)
79 static inline uint32_t merge_syn_data_abort(uint32_t template_syn,
80 unsigned int target_el,
81 bool same_el,
82 bool s1ptw, int is_write,
83 int fsc)
85 uint32_t syn;
87 /* ISV is only set for data aborts routed to EL2 and
88 * never for stage-1 page table walks faulting on stage 2.
90 * Furthermore, ISV is only set for certain kinds of load/stores.
91 * If the template syndrome does not have ISV set, we should leave
92 * it cleared.
94 * See ARMv8 specs, D7-1974:
95 * ISS encoding for an exception from a Data Abort, the
96 * ISV field.
98 if (!(template_syn & ARM_EL_ISV) || target_el != 2 || s1ptw) {
99 syn = syn_data_abort_no_iss(same_el,
100 0, 0, s1ptw, is_write == 1, fsc);
101 } else {
102 /* Fields: IL, ISV, SAS, SSE, SRT, SF and AR come from the template
103 * syndrome created at translation time.
104 * Now we create the runtime syndrome with the remaining fields.
106 syn = syn_data_abort_with_iss(same_el,
107 0, 0, 0, 0, 0,
108 0, 0, s1ptw, is_write == 1, fsc,
109 false);
110 /* Merge the runtime syndrome with the template syndrome. */
111 syn |= template_syn;
113 return syn;
116 /* try to fill the TLB and return an exception if error. If retaddr is
117 * NULL, it means that the function was called in C code (i.e. not
118 * from generated code or from helper.c)
120 void tlb_fill(CPUState *cs, target_ulong addr, int is_write, int mmu_idx,
121 uintptr_t retaddr)
123 bool ret;
124 uint32_t fsr = 0;
125 ARMMMUFaultInfo fi = {};
127 ret = arm_tlb_fill(cs, addr, is_write, mmu_idx, &fsr, &fi);
128 if (unlikely(ret)) {
129 ARMCPU *cpu = ARM_CPU(cs);
130 CPUARMState *env = &cpu->env;
131 uint32_t syn, exc;
132 unsigned int target_el;
133 bool same_el;
135 if (retaddr) {
136 /* now we have a real cpu fault */
137 cpu_restore_state(cs, retaddr);
140 target_el = exception_target_el(env);
141 if (fi.stage2) {
142 target_el = 2;
143 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4;
145 same_el = arm_current_el(env) == target_el;
146 /* AArch64 syndrome does not have an LPAE bit */
147 syn = fsr & ~(1 << 9);
149 /* For insn and data aborts we assume there is no instruction syndrome
150 * information; this is always true for exceptions reported to EL1.
152 if (is_write == 2) {
153 syn = syn_insn_abort(same_el, 0, fi.s1ptw, syn);
154 exc = EXCP_PREFETCH_ABORT;
155 } else {
156 syn = merge_syn_data_abort(env->exception.syndrome, target_el,
157 same_el, fi.s1ptw, is_write, syn);
158 if (is_write == 1 && arm_feature(env, ARM_FEATURE_V6)) {
159 fsr |= (1 << 11);
161 exc = EXCP_DATA_ABORT;
164 env->exception.vaddress = addr;
165 env->exception.fsr = fsr;
166 raise_exception(env, exc, syn, target_el);
170 /* Raise a data fault alignment exception for the specified virtual address */
171 void arm_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr, int is_write,
172 int is_user, uintptr_t retaddr)
174 ARMCPU *cpu = ARM_CPU(cs);
175 CPUARMState *env = &cpu->env;
176 int target_el;
177 bool same_el;
178 uint32_t syn;
180 if (retaddr) {
181 /* now we have a real cpu fault */
182 cpu_restore_state(cs, retaddr);
185 target_el = exception_target_el(env);
186 same_el = (arm_current_el(env) == target_el);
188 env->exception.vaddress = vaddr;
190 /* the DFSR for an alignment fault depends on whether we're using
191 * the LPAE long descriptor format, or the short descriptor format
193 if (arm_s1_regime_using_lpae_format(env, cpu_mmu_index(env, false))) {
194 env->exception.fsr = 0x21;
195 } else {
196 env->exception.fsr = 0x1;
199 if (is_write == 1 && arm_feature(env, ARM_FEATURE_V6)) {
200 env->exception.fsr |= (1 << 11);
203 syn = merge_syn_data_abort(env->exception.syndrome, target_el,
204 same_el, 0, is_write, 0x21);
205 raise_exception(env, EXCP_DATA_ABORT, syn, target_el);
208 #endif /* !defined(CONFIG_USER_ONLY) */
210 uint32_t HELPER(add_setq)(CPUARMState *env, uint32_t a, uint32_t b)
212 uint32_t res = a + b;
213 if (((res ^ a) & SIGNBIT) && !((a ^ b) & SIGNBIT))
214 env->QF = 1;
215 return res;
218 uint32_t HELPER(add_saturate)(CPUARMState *env, uint32_t a, uint32_t b)
220 uint32_t res = a + b;
221 if (((res ^ a) & SIGNBIT) && !((a ^ b) & SIGNBIT)) {
222 env->QF = 1;
223 res = ~(((int32_t)a >> 31) ^ SIGNBIT);
225 return res;
228 uint32_t HELPER(sub_saturate)(CPUARMState *env, uint32_t a, uint32_t b)
230 uint32_t res = a - b;
231 if (((res ^ a) & SIGNBIT) && ((a ^ b) & SIGNBIT)) {
232 env->QF = 1;
233 res = ~(((int32_t)a >> 31) ^ SIGNBIT);
235 return res;
238 uint32_t HELPER(double_saturate)(CPUARMState *env, int32_t val)
240 uint32_t res;
241 if (val >= 0x40000000) {
242 res = ~SIGNBIT;
243 env->QF = 1;
244 } else if (val <= (int32_t)0xc0000000) {
245 res = SIGNBIT;
246 env->QF = 1;
247 } else {
248 res = val << 1;
250 return res;
253 uint32_t HELPER(add_usaturate)(CPUARMState *env, uint32_t a, uint32_t b)
255 uint32_t res = a + b;
256 if (res < a) {
257 env->QF = 1;
258 res = ~0;
260 return res;
263 uint32_t HELPER(sub_usaturate)(CPUARMState *env, uint32_t a, uint32_t b)
265 uint32_t res = a - b;
266 if (res > a) {
267 env->QF = 1;
268 res = 0;
270 return res;
273 /* Signed saturation. */
274 static inline uint32_t do_ssat(CPUARMState *env, int32_t val, int shift)
276 int32_t top;
277 uint32_t mask;
279 top = val >> shift;
280 mask = (1u << shift) - 1;
281 if (top > 0) {
282 env->QF = 1;
283 return mask;
284 } else if (top < -1) {
285 env->QF = 1;
286 return ~mask;
288 return val;
291 /* Unsigned saturation. */
292 static inline uint32_t do_usat(CPUARMState *env, int32_t val, int shift)
294 uint32_t max;
296 max = (1u << shift) - 1;
297 if (val < 0) {
298 env->QF = 1;
299 return 0;
300 } else if (val > max) {
301 env->QF = 1;
302 return max;
304 return val;
307 /* Signed saturate. */
308 uint32_t HELPER(ssat)(CPUARMState *env, uint32_t x, uint32_t shift)
310 return do_ssat(env, x, shift);
313 /* Dual halfword signed saturate. */
314 uint32_t HELPER(ssat16)(CPUARMState *env, uint32_t x, uint32_t shift)
316 uint32_t res;
318 res = (uint16_t)do_ssat(env, (int16_t)x, shift);
319 res |= do_ssat(env, ((int32_t)x) >> 16, shift) << 16;
320 return res;
323 /* Unsigned saturate. */
324 uint32_t HELPER(usat)(CPUARMState *env, uint32_t x, uint32_t shift)
326 return do_usat(env, x, shift);
329 /* Dual halfword unsigned saturate. */
330 uint32_t HELPER(usat16)(CPUARMState *env, uint32_t x, uint32_t shift)
332 uint32_t res;
334 res = (uint16_t)do_usat(env, (int16_t)x, shift);
335 res |= do_usat(env, ((int32_t)x) >> 16, shift) << 16;
336 return res;
339 void HELPER(setend)(CPUARMState *env)
341 env->uncached_cpsr ^= CPSR_E;
344 /* Function checks whether WFx (WFI/WFE) instructions are set up to be trapped.
345 * The function returns the target EL (1-3) if the instruction is to be trapped;
346 * otherwise it returns 0 indicating it is not trapped.
348 static inline int check_wfx_trap(CPUARMState *env, bool is_wfe)
350 int cur_el = arm_current_el(env);
351 uint64_t mask;
353 /* If we are currently in EL0 then we need to check if SCTLR is set up for
354 * WFx instructions being trapped to EL1. These trap bits don't exist in v7.
356 if (cur_el < 1 && arm_feature(env, ARM_FEATURE_V8)) {
357 int target_el;
359 mask = is_wfe ? SCTLR_nTWE : SCTLR_nTWI;
360 if (arm_is_secure_below_el3(env) && !arm_el_is_aa64(env, 3)) {
361 /* Secure EL0 and Secure PL1 is at EL3 */
362 target_el = 3;
363 } else {
364 target_el = 1;
367 if (!(env->cp15.sctlr_el[target_el] & mask)) {
368 return target_el;
372 /* We are not trapping to EL1; trap to EL2 if HCR_EL2 requires it
373 * No need for ARM_FEATURE check as if HCR_EL2 doesn't exist the
374 * bits will be zero indicating no trap.
376 if (cur_el < 2 && !arm_is_secure(env)) {
377 mask = (is_wfe) ? HCR_TWE : HCR_TWI;
378 if (env->cp15.hcr_el2 & mask) {
379 return 2;
383 /* We are not trapping to EL1 or EL2; trap to EL3 if SCR_EL3 requires it */
384 if (cur_el < 3) {
385 mask = (is_wfe) ? SCR_TWE : SCR_TWI;
386 if (env->cp15.scr_el3 & mask) {
387 return 3;
391 return 0;
394 void HELPER(wfi)(CPUARMState *env)
396 CPUState *cs = CPU(arm_env_get_cpu(env));
397 int target_el = check_wfx_trap(env, false);
399 if (cpu_has_work(cs)) {
400 /* Don't bother to go into our "low power state" if
401 * we would just wake up immediately.
403 return;
406 if (target_el) {
407 env->pc -= 4;
408 raise_exception(env, EXCP_UDEF, syn_wfx(1, 0xe, 0), target_el);
411 cs->exception_index = EXCP_HLT;
412 cs->halted = 1;
413 cpu_loop_exit(cs);
416 void HELPER(wfe)(CPUARMState *env)
418 /* This is a hint instruction that is semantically different
419 * from YIELD even though we currently implement it identically.
420 * Don't actually halt the CPU, just yield back to top
421 * level loop. This is not going into a "low power state"
422 * (ie halting until some event occurs), so we never take
423 * a configurable trap to a different exception level.
425 HELPER(yield)(env);
428 void HELPER(yield)(CPUARMState *env)
430 ARMCPU *cpu = arm_env_get_cpu(env);
431 CPUState *cs = CPU(cpu);
433 /* This is a non-trappable hint instruction that generally indicates
434 * that the guest is currently busy-looping. Yield control back to the
435 * top level loop so that a more deserving VCPU has a chance to run.
437 cs->exception_index = EXCP_YIELD;
438 cpu_loop_exit(cs);
441 /* Raise an internal-to-QEMU exception. This is limited to only
442 * those EXCP values which are special cases for QEMU to interrupt
443 * execution and not to be used for exceptions which are passed to
444 * the guest (those must all have syndrome information and thus should
445 * use exception_with_syndrome).
447 void HELPER(exception_internal)(CPUARMState *env, uint32_t excp)
449 CPUState *cs = CPU(arm_env_get_cpu(env));
451 assert(excp_is_internal(excp));
452 cs->exception_index = excp;
453 cpu_loop_exit(cs);
456 /* Raise an exception with the specified syndrome register value */
457 void HELPER(exception_with_syndrome)(CPUARMState *env, uint32_t excp,
458 uint32_t syndrome, uint32_t target_el)
460 raise_exception(env, excp, syndrome, target_el);
463 uint32_t HELPER(cpsr_read)(CPUARMState *env)
465 return cpsr_read(env) & ~(CPSR_EXEC | CPSR_RESERVED);
468 void HELPER(cpsr_write)(CPUARMState *env, uint32_t val, uint32_t mask)
470 cpsr_write(env, val, mask, CPSRWriteByInstr);
473 /* Write the CPSR for a 32-bit exception return */
474 void HELPER(cpsr_write_eret)(CPUARMState *env, uint32_t val)
476 cpsr_write(env, val, CPSR_ERET_MASK, CPSRWriteExceptionReturn);
478 arm_call_el_change_hook(arm_env_get_cpu(env));
481 /* Access to user mode registers from privileged modes. */
482 uint32_t HELPER(get_user_reg)(CPUARMState *env, uint32_t regno)
484 uint32_t val;
486 if (regno == 13) {
487 val = env->banked_r13[BANK_USRSYS];
488 } else if (regno == 14) {
489 val = env->banked_r14[BANK_USRSYS];
490 } else if (regno >= 8
491 && (env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_FIQ) {
492 val = env->usr_regs[regno - 8];
493 } else {
494 val = env->regs[regno];
496 return val;
499 void HELPER(set_user_reg)(CPUARMState *env, uint32_t regno, uint32_t val)
501 if (regno == 13) {
502 env->banked_r13[BANK_USRSYS] = val;
503 } else if (regno == 14) {
504 env->banked_r14[BANK_USRSYS] = val;
505 } else if (regno >= 8
506 && (env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_FIQ) {
507 env->usr_regs[regno - 8] = val;
508 } else {
509 env->regs[regno] = val;
513 void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
515 if ((env->uncached_cpsr & CPSR_M) == mode) {
516 env->regs[13] = val;
517 } else {
518 env->banked_r13[bank_number(mode)] = val;
522 uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
524 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_SYS) {
525 /* SRS instruction is UNPREDICTABLE from System mode; we UNDEF.
526 * Other UNPREDICTABLE and UNDEF cases were caught at translate time.
528 raise_exception(env, EXCP_UDEF, syn_uncategorized(),
529 exception_target_el(env));
532 if ((env->uncached_cpsr & CPSR_M) == mode) {
533 return env->regs[13];
534 } else {
535 return env->banked_r13[bank_number(mode)];
539 static void msr_mrs_banked_exc_checks(CPUARMState *env, uint32_t tgtmode,
540 uint32_t regno)
542 /* Raise an exception if the requested access is one of the UNPREDICTABLE
543 * cases; otherwise return. This broadly corresponds to the pseudocode
544 * BankedRegisterAccessValid() and SPSRAccessValid(),
545 * except that we have already handled some cases at translate time.
547 int curmode = env->uncached_cpsr & CPSR_M;
549 if (curmode == tgtmode) {
550 goto undef;
553 if (tgtmode == ARM_CPU_MODE_USR) {
554 switch (regno) {
555 case 8 ... 12:
556 if (curmode != ARM_CPU_MODE_FIQ) {
557 goto undef;
559 break;
560 case 13:
561 if (curmode == ARM_CPU_MODE_SYS) {
562 goto undef;
564 break;
565 case 14:
566 if (curmode == ARM_CPU_MODE_HYP || curmode == ARM_CPU_MODE_SYS) {
567 goto undef;
569 break;
570 default:
571 break;
575 if (tgtmode == ARM_CPU_MODE_HYP) {
576 switch (regno) {
577 case 17: /* ELR_Hyp */
578 if (curmode != ARM_CPU_MODE_HYP && curmode != ARM_CPU_MODE_MON) {
579 goto undef;
581 break;
582 default:
583 if (curmode != ARM_CPU_MODE_MON) {
584 goto undef;
586 break;
590 return;
592 undef:
593 raise_exception(env, EXCP_UDEF, syn_uncategorized(),
594 exception_target_el(env));
597 void HELPER(msr_banked)(CPUARMState *env, uint32_t value, uint32_t tgtmode,
598 uint32_t regno)
600 msr_mrs_banked_exc_checks(env, tgtmode, regno);
602 switch (regno) {
603 case 16: /* SPSRs */
604 env->banked_spsr[bank_number(tgtmode)] = value;
605 break;
606 case 17: /* ELR_Hyp */
607 env->elr_el[2] = value;
608 break;
609 case 13:
610 env->banked_r13[bank_number(tgtmode)] = value;
611 break;
612 case 14:
613 env->banked_r14[bank_number(tgtmode)] = value;
614 break;
615 case 8 ... 12:
616 switch (tgtmode) {
617 case ARM_CPU_MODE_USR:
618 env->usr_regs[regno - 8] = value;
619 break;
620 case ARM_CPU_MODE_FIQ:
621 env->fiq_regs[regno - 8] = value;
622 break;
623 default:
624 g_assert_not_reached();
626 break;
627 default:
628 g_assert_not_reached();
632 uint32_t HELPER(mrs_banked)(CPUARMState *env, uint32_t tgtmode, uint32_t regno)
634 msr_mrs_banked_exc_checks(env, tgtmode, regno);
636 switch (regno) {
637 case 16: /* SPSRs */
638 return env->banked_spsr[bank_number(tgtmode)];
639 case 17: /* ELR_Hyp */
640 return env->elr_el[2];
641 case 13:
642 return env->banked_r13[bank_number(tgtmode)];
643 case 14:
644 return env->banked_r14[bank_number(tgtmode)];
645 case 8 ... 12:
646 switch (tgtmode) {
647 case ARM_CPU_MODE_USR:
648 return env->usr_regs[regno - 8];
649 case ARM_CPU_MODE_FIQ:
650 return env->fiq_regs[regno - 8];
651 default:
652 g_assert_not_reached();
654 default:
655 g_assert_not_reached();
659 void HELPER(access_check_cp_reg)(CPUARMState *env, void *rip, uint32_t syndrome,
660 uint32_t isread)
662 const ARMCPRegInfo *ri = rip;
663 int target_el;
665 if (arm_feature(env, ARM_FEATURE_XSCALE) && ri->cp < 14
666 && extract32(env->cp15.c15_cpar, ri->cp, 1) == 0) {
667 raise_exception(env, EXCP_UDEF, syndrome, exception_target_el(env));
670 if (!ri->accessfn) {
671 return;
674 switch (ri->accessfn(env, ri, isread)) {
675 case CP_ACCESS_OK:
676 return;
677 case CP_ACCESS_TRAP:
678 target_el = exception_target_el(env);
679 break;
680 case CP_ACCESS_TRAP_EL2:
681 /* Requesting a trap to EL2 when we're in EL3 or S-EL0/1 is
682 * a bug in the access function.
684 assert(!arm_is_secure(env) && arm_current_el(env) != 3);
685 target_el = 2;
686 break;
687 case CP_ACCESS_TRAP_EL3:
688 target_el = 3;
689 break;
690 case CP_ACCESS_TRAP_UNCATEGORIZED:
691 target_el = exception_target_el(env);
692 syndrome = syn_uncategorized();
693 break;
694 case CP_ACCESS_TRAP_UNCATEGORIZED_EL2:
695 target_el = 2;
696 syndrome = syn_uncategorized();
697 break;
698 case CP_ACCESS_TRAP_UNCATEGORIZED_EL3:
699 target_el = 3;
700 syndrome = syn_uncategorized();
701 break;
702 case CP_ACCESS_TRAP_FP_EL2:
703 target_el = 2;
704 /* Since we are an implementation that takes exceptions on a trapped
705 * conditional insn only if the insn has passed its condition code
706 * check, we take the IMPDEF choice to always report CV=1 COND=0xe
707 * (which is also the required value for AArch64 traps).
709 syndrome = syn_fp_access_trap(1, 0xe, false);
710 break;
711 case CP_ACCESS_TRAP_FP_EL3:
712 target_el = 3;
713 syndrome = syn_fp_access_trap(1, 0xe, false);
714 break;
715 default:
716 g_assert_not_reached();
719 raise_exception(env, EXCP_UDEF, syndrome, target_el);
722 void HELPER(set_cp_reg)(CPUARMState *env, void *rip, uint32_t value)
724 const ARMCPRegInfo *ri = rip;
726 ri->writefn(env, ri, value);
729 uint32_t HELPER(get_cp_reg)(CPUARMState *env, void *rip)
731 const ARMCPRegInfo *ri = rip;
733 return ri->readfn(env, ri);
736 void HELPER(set_cp_reg64)(CPUARMState *env, void *rip, uint64_t value)
738 const ARMCPRegInfo *ri = rip;
740 ri->writefn(env, ri, value);
743 uint64_t HELPER(get_cp_reg64)(CPUARMState *env, void *rip)
745 const ARMCPRegInfo *ri = rip;
747 return ri->readfn(env, ri);
750 void HELPER(msr_i_pstate)(CPUARMState *env, uint32_t op, uint32_t imm)
752 /* MSR_i to update PSTATE. This is OK from EL0 only if UMA is set.
753 * Note that SPSel is never OK from EL0; we rely on handle_msr_i()
754 * to catch that case at translate time.
756 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) {
757 uint32_t syndrome = syn_aa64_sysregtrap(0, extract32(op, 0, 3),
758 extract32(op, 3, 3), 4,
759 imm, 0x1f, 0);
760 raise_exception(env, EXCP_UDEF, syndrome, exception_target_el(env));
763 switch (op) {
764 case 0x05: /* SPSel */
765 update_spsel(env, imm);
766 break;
767 case 0x1e: /* DAIFSet */
768 env->daif |= (imm << 6) & PSTATE_DAIF;
769 break;
770 case 0x1f: /* DAIFClear */
771 env->daif &= ~((imm << 6) & PSTATE_DAIF);
772 break;
773 default:
774 g_assert_not_reached();
778 void HELPER(clear_pstate_ss)(CPUARMState *env)
780 env->pstate &= ~PSTATE_SS;
783 void HELPER(pre_hvc)(CPUARMState *env)
785 ARMCPU *cpu = arm_env_get_cpu(env);
786 int cur_el = arm_current_el(env);
787 /* FIXME: Use actual secure state. */
788 bool secure = false;
789 bool undef;
791 if (arm_is_psci_call(cpu, EXCP_HVC)) {
792 /* If PSCI is enabled and this looks like a valid PSCI call then
793 * that overrides the architecturally mandated HVC behaviour.
795 return;
798 if (!arm_feature(env, ARM_FEATURE_EL2)) {
799 /* If EL2 doesn't exist, HVC always UNDEFs */
800 undef = true;
801 } else if (arm_feature(env, ARM_FEATURE_EL3)) {
802 /* EL3.HCE has priority over EL2.HCD. */
803 undef = !(env->cp15.scr_el3 & SCR_HCE);
804 } else {
805 undef = env->cp15.hcr_el2 & HCR_HCD;
808 /* In ARMv7 and ARMv8/AArch32, HVC is undef in secure state.
809 * For ARMv8/AArch64, HVC is allowed in EL3.
810 * Note that we've already trapped HVC from EL0 at translation
811 * time.
813 if (secure && (!is_a64(env) || cur_el == 1)) {
814 undef = true;
817 if (undef) {
818 raise_exception(env, EXCP_UDEF, syn_uncategorized(),
819 exception_target_el(env));
823 void HELPER(pre_smc)(CPUARMState *env, uint32_t syndrome)
825 ARMCPU *cpu = arm_env_get_cpu(env);
826 int cur_el = arm_current_el(env);
827 bool secure = arm_is_secure(env);
828 bool smd = env->cp15.scr_el3 & SCR_SMD;
829 /* On ARMv8 with EL3 AArch64, SMD applies to both S and NS state.
830 * On ARMv8 with EL3 AArch32, or ARMv7 with the Virtualization
831 * extensions, SMD only applies to NS state.
832 * On ARMv7 without the Virtualization extensions, the SMD bit
833 * doesn't exist, but we forbid the guest to set it to 1 in scr_write(),
834 * so we need not special case this here.
836 bool undef = arm_feature(env, ARM_FEATURE_AARCH64) ? smd : smd && !secure;
838 if (arm_is_psci_call(cpu, EXCP_SMC)) {
839 /* If PSCI is enabled and this looks like a valid PSCI call then
840 * that overrides the architecturally mandated SMC behaviour.
842 return;
845 if (!arm_feature(env, ARM_FEATURE_EL3)) {
846 /* If we have no EL3 then SMC always UNDEFs */
847 undef = true;
848 } else if (!secure && cur_el == 1 && (env->cp15.hcr_el2 & HCR_TSC)) {
849 /* In NS EL1, HCR controlled routing to EL2 has priority over SMD. */
850 raise_exception(env, EXCP_HYP_TRAP, syndrome, 2);
853 if (undef) {
854 raise_exception(env, EXCP_UDEF, syn_uncategorized(),
855 exception_target_el(env));
859 static int el_from_spsr(uint32_t spsr)
861 /* Return the exception level that this SPSR is requesting a return to,
862 * or -1 if it is invalid (an illegal return)
864 if (spsr & PSTATE_nRW) {
865 switch (spsr & CPSR_M) {
866 case ARM_CPU_MODE_USR:
867 return 0;
868 case ARM_CPU_MODE_HYP:
869 return 2;
870 case ARM_CPU_MODE_FIQ:
871 case ARM_CPU_MODE_IRQ:
872 case ARM_CPU_MODE_SVC:
873 case ARM_CPU_MODE_ABT:
874 case ARM_CPU_MODE_UND:
875 case ARM_CPU_MODE_SYS:
876 return 1;
877 case ARM_CPU_MODE_MON:
878 /* Returning to Mon from AArch64 is never possible,
879 * so this is an illegal return.
881 default:
882 return -1;
884 } else {
885 if (extract32(spsr, 1, 1)) {
886 /* Return with reserved M[1] bit set */
887 return -1;
889 if (extract32(spsr, 0, 4) == 1) {
890 /* return to EL0 with M[0] bit set */
891 return -1;
893 return extract32(spsr, 2, 2);
897 void HELPER(exception_return)(CPUARMState *env)
899 int cur_el = arm_current_el(env);
900 unsigned int spsr_idx = aarch64_banked_spsr_index(cur_el);
901 uint32_t spsr = env->banked_spsr[spsr_idx];
902 int new_el;
903 bool return_to_aa64 = (spsr & PSTATE_nRW) == 0;
905 aarch64_save_sp(env, cur_el);
907 env->exclusive_addr = -1;
909 /* We must squash the PSTATE.SS bit to zero unless both of the
910 * following hold:
911 * 1. debug exceptions are currently disabled
912 * 2. singlestep will be active in the EL we return to
913 * We check 1 here and 2 after we've done the pstate/cpsr write() to
914 * transition to the EL we're going to.
916 if (arm_generate_debug_exceptions(env)) {
917 spsr &= ~PSTATE_SS;
920 new_el = el_from_spsr(spsr);
921 if (new_el == -1) {
922 goto illegal_return;
924 if (new_el > cur_el
925 || (new_el == 2 && !arm_feature(env, ARM_FEATURE_EL2))) {
926 /* Disallow return to an EL which is unimplemented or higher
927 * than the current one.
929 goto illegal_return;
932 if (new_el != 0 && arm_el_is_aa64(env, new_el) != return_to_aa64) {
933 /* Return to an EL which is configured for a different register width */
934 goto illegal_return;
937 if (new_el == 2 && arm_is_secure_below_el3(env)) {
938 /* Return to the non-existent secure-EL2 */
939 goto illegal_return;
942 if (new_el == 1 && (env->cp15.hcr_el2 & HCR_TGE)
943 && !arm_is_secure_below_el3(env)) {
944 goto illegal_return;
947 if (!return_to_aa64) {
948 env->aarch64 = 0;
949 /* We do a raw CPSR write because aarch64_sync_64_to_32()
950 * will sort the register banks out for us, and we've already
951 * caught all the bad-mode cases in el_from_spsr().
953 cpsr_write(env, spsr, ~0, CPSRWriteRaw);
954 if (!arm_singlestep_active(env)) {
955 env->uncached_cpsr &= ~PSTATE_SS;
957 aarch64_sync_64_to_32(env);
959 if (spsr & CPSR_T) {
960 env->regs[15] = env->elr_el[cur_el] & ~0x1;
961 } else {
962 env->regs[15] = env->elr_el[cur_el] & ~0x3;
964 } else {
965 env->aarch64 = 1;
966 pstate_write(env, spsr);
967 if (!arm_singlestep_active(env)) {
968 env->pstate &= ~PSTATE_SS;
970 aarch64_restore_sp(env, new_el);
971 env->pc = env->elr_el[cur_el];
974 arm_call_el_change_hook(arm_env_get_cpu(env));
976 return;
978 illegal_return:
979 /* Illegal return events of various kinds have architecturally
980 * mandated behaviour:
981 * restore NZCV and DAIF from SPSR_ELx
982 * set PSTATE.IL
983 * restore PC from ELR_ELx
984 * no change to exception level, execution state or stack pointer
986 env->pstate |= PSTATE_IL;
987 env->pc = env->elr_el[cur_el];
988 spsr &= PSTATE_NZCV | PSTATE_DAIF;
989 spsr |= pstate_read(env) & ~(PSTATE_NZCV | PSTATE_DAIF);
990 pstate_write(env, spsr);
991 if (!arm_singlestep_active(env)) {
992 env->pstate &= ~PSTATE_SS;
996 /* Return true if the linked breakpoint entry lbn passes its checks */
997 static bool linked_bp_matches(ARMCPU *cpu, int lbn)
999 CPUARMState *env = &cpu->env;
1000 uint64_t bcr = env->cp15.dbgbcr[lbn];
1001 int brps = extract32(cpu->dbgdidr, 24, 4);
1002 int ctx_cmps = extract32(cpu->dbgdidr, 20, 4);
1003 int bt;
1004 uint32_t contextidr;
1006 /* Links to unimplemented or non-context aware breakpoints are
1007 * CONSTRAINED UNPREDICTABLE: either behave as if disabled, or
1008 * as if linked to an UNKNOWN context-aware breakpoint (in which
1009 * case DBGWCR<n>_EL1.LBN must indicate that breakpoint).
1010 * We choose the former.
1012 if (lbn > brps || lbn < (brps - ctx_cmps)) {
1013 return false;
1016 bcr = env->cp15.dbgbcr[lbn];
1018 if (extract64(bcr, 0, 1) == 0) {
1019 /* Linked breakpoint disabled : generate no events */
1020 return false;
1023 bt = extract64(bcr, 20, 4);
1025 /* We match the whole register even if this is AArch32 using the
1026 * short descriptor format (in which case it holds both PROCID and ASID),
1027 * since we don't implement the optional v7 context ID masking.
1029 contextidr = extract64(env->cp15.contextidr_el[1], 0, 32);
1031 switch (bt) {
1032 case 3: /* linked context ID match */
1033 if (arm_current_el(env) > 1) {
1034 /* Context matches never fire in EL2 or (AArch64) EL3 */
1035 return false;
1037 return (contextidr == extract64(env->cp15.dbgbvr[lbn], 0, 32));
1038 case 5: /* linked address mismatch (reserved in AArch64) */
1039 case 9: /* linked VMID match (reserved if no EL2) */
1040 case 11: /* linked context ID and VMID match (reserved if no EL2) */
1041 default:
1042 /* Links to Unlinked context breakpoints must generate no
1043 * events; we choose to do the same for reserved values too.
1045 return false;
1048 return false;
1051 static bool bp_wp_matches(ARMCPU *cpu, int n, bool is_wp)
1053 CPUARMState *env = &cpu->env;
1054 uint64_t cr;
1055 int pac, hmc, ssc, wt, lbn;
1056 /* Note that for watchpoints the check is against the CPU security
1057 * state, not the S/NS attribute on the offending data access.
1059 bool is_secure = arm_is_secure(env);
1060 int access_el = arm_current_el(env);
1062 if (is_wp) {
1063 CPUWatchpoint *wp = env->cpu_watchpoint[n];
1065 if (!wp || !(wp->flags & BP_WATCHPOINT_HIT)) {
1066 return false;
1068 cr = env->cp15.dbgwcr[n];
1069 if (wp->hitattrs.user) {
1070 /* The LDRT/STRT/LDT/STT "unprivileged access" instructions should
1071 * match watchpoints as if they were accesses done at EL0, even if
1072 * the CPU is at EL1 or higher.
1074 access_el = 0;
1076 } else {
1077 uint64_t pc = is_a64(env) ? env->pc : env->regs[15];
1079 if (!env->cpu_breakpoint[n] || env->cpu_breakpoint[n]->pc != pc) {
1080 return false;
1082 cr = env->cp15.dbgbcr[n];
1084 /* The WATCHPOINT_HIT flag guarantees us that the watchpoint is
1085 * enabled and that the address and access type match; for breakpoints
1086 * we know the address matched; check the remaining fields, including
1087 * linked breakpoints. We rely on WCR and BCR having the same layout
1088 * for the LBN, SSC, HMC, PAC/PMC and is-linked fields.
1089 * Note that some combinations of {PAC, HMC, SSC} are reserved and
1090 * must act either like some valid combination or as if the watchpoint
1091 * were disabled. We choose the former, and use this together with
1092 * the fact that EL3 must always be Secure and EL2 must always be
1093 * Non-Secure to simplify the code slightly compared to the full
1094 * table in the ARM ARM.
1096 pac = extract64(cr, 1, 2);
1097 hmc = extract64(cr, 13, 1);
1098 ssc = extract64(cr, 14, 2);
1100 switch (ssc) {
1101 case 0:
1102 break;
1103 case 1:
1104 case 3:
1105 if (is_secure) {
1106 return false;
1108 break;
1109 case 2:
1110 if (!is_secure) {
1111 return false;
1113 break;
1116 switch (access_el) {
1117 case 3:
1118 case 2:
1119 if (!hmc) {
1120 return false;
1122 break;
1123 case 1:
1124 if (extract32(pac, 0, 1) == 0) {
1125 return false;
1127 break;
1128 case 0:
1129 if (extract32(pac, 1, 1) == 0) {
1130 return false;
1132 break;
1133 default:
1134 g_assert_not_reached();
1137 wt = extract64(cr, 20, 1);
1138 lbn = extract64(cr, 16, 4);
1140 if (wt && !linked_bp_matches(cpu, lbn)) {
1141 return false;
1144 return true;
1147 static bool check_watchpoints(ARMCPU *cpu)
1149 CPUARMState *env = &cpu->env;
1150 int n;
1152 /* If watchpoints are disabled globally or we can't take debug
1153 * exceptions here then watchpoint firings are ignored.
1155 if (extract32(env->cp15.mdscr_el1, 15, 1) == 0
1156 || !arm_generate_debug_exceptions(env)) {
1157 return false;
1160 for (n = 0; n < ARRAY_SIZE(env->cpu_watchpoint); n++) {
1161 if (bp_wp_matches(cpu, n, true)) {
1162 return true;
1165 return false;
1168 static bool check_breakpoints(ARMCPU *cpu)
1170 CPUARMState *env = &cpu->env;
1171 int n;
1173 /* If breakpoints are disabled globally or we can't take debug
1174 * exceptions here then breakpoint firings are ignored.
1176 if (extract32(env->cp15.mdscr_el1, 15, 1) == 0
1177 || !arm_generate_debug_exceptions(env)) {
1178 return false;
1181 for (n = 0; n < ARRAY_SIZE(env->cpu_breakpoint); n++) {
1182 if (bp_wp_matches(cpu, n, false)) {
1183 return true;
1186 return false;
1189 void HELPER(check_breakpoints)(CPUARMState *env)
1191 ARMCPU *cpu = arm_env_get_cpu(env);
1193 if (check_breakpoints(cpu)) {
1194 HELPER(exception_internal(env, EXCP_DEBUG));
1198 bool arm_debug_check_watchpoint(CPUState *cs, CPUWatchpoint *wp)
1200 /* Called by core code when a CPU watchpoint fires; need to check if this
1201 * is also an architectural watchpoint match.
1203 ARMCPU *cpu = ARM_CPU(cs);
1205 return check_watchpoints(cpu);
1208 void arm_debug_excp_handler(CPUState *cs)
1210 /* Called by core code when a watchpoint or breakpoint fires;
1211 * need to check which one and raise the appropriate exception.
1213 ARMCPU *cpu = ARM_CPU(cs);
1214 CPUARMState *env = &cpu->env;
1215 CPUWatchpoint *wp_hit = cs->watchpoint_hit;
1217 if (wp_hit) {
1218 if (wp_hit->flags & BP_CPU) {
1219 bool wnr = (wp_hit->flags & BP_WATCHPOINT_HIT_WRITE) != 0;
1220 bool same_el = arm_debug_target_el(env) == arm_current_el(env);
1222 cs->watchpoint_hit = NULL;
1224 if (extended_addresses_enabled(env)) {
1225 env->exception.fsr = (1 << 9) | 0x22;
1226 } else {
1227 env->exception.fsr = 0x2;
1229 env->exception.vaddress = wp_hit->hitaddr;
1230 raise_exception(env, EXCP_DATA_ABORT,
1231 syn_watchpoint(same_el, 0, wnr),
1232 arm_debug_target_el(env));
1234 } else {
1235 uint64_t pc = is_a64(env) ? env->pc : env->regs[15];
1236 bool same_el = (arm_debug_target_el(env) == arm_current_el(env));
1238 /* (1) GDB breakpoints should be handled first.
1239 * (2) Do not raise a CPU exception if no CPU breakpoint has fired,
1240 * since singlestep is also done by generating a debug internal
1241 * exception.
1243 if (cpu_breakpoint_test(cs, pc, BP_GDB)
1244 || !cpu_breakpoint_test(cs, pc, BP_CPU)) {
1245 return;
1248 if (extended_addresses_enabled(env)) {
1249 env->exception.fsr = (1 << 9) | 0x22;
1250 } else {
1251 env->exception.fsr = 0x2;
1253 /* FAR is UNKNOWN, so doesn't need setting */
1254 raise_exception(env, EXCP_PREFETCH_ABORT,
1255 syn_breakpoint(same_el),
1256 arm_debug_target_el(env));
1260 /* ??? Flag setting arithmetic is awkward because we need to do comparisons.
1261 The only way to do that in TCG is a conditional branch, which clobbers
1262 all our temporaries. For now implement these as helper functions. */
1264 /* Similarly for variable shift instructions. */
1266 uint32_t HELPER(shl_cc)(CPUARMState *env, uint32_t x, uint32_t i)
1268 int shift = i & 0xff;
1269 if (shift >= 32) {
1270 if (shift == 32)
1271 env->CF = x & 1;
1272 else
1273 env->CF = 0;
1274 return 0;
1275 } else if (shift != 0) {
1276 env->CF = (x >> (32 - shift)) & 1;
1277 return x << shift;
1279 return x;
1282 uint32_t HELPER(shr_cc)(CPUARMState *env, uint32_t x, uint32_t i)
1284 int shift = i & 0xff;
1285 if (shift >= 32) {
1286 if (shift == 32)
1287 env->CF = (x >> 31) & 1;
1288 else
1289 env->CF = 0;
1290 return 0;
1291 } else if (shift != 0) {
1292 env->CF = (x >> (shift - 1)) & 1;
1293 return x >> shift;
1295 return x;
1298 uint32_t HELPER(sar_cc)(CPUARMState *env, uint32_t x, uint32_t i)
1300 int shift = i & 0xff;
1301 if (shift >= 32) {
1302 env->CF = (x >> 31) & 1;
1303 return (int32_t)x >> 31;
1304 } else if (shift != 0) {
1305 env->CF = (x >> (shift - 1)) & 1;
1306 return (int32_t)x >> shift;
1308 return x;
1311 uint32_t HELPER(ror_cc)(CPUARMState *env, uint32_t x, uint32_t i)
1313 int shift1, shift;
1314 shift1 = i & 0xff;
1315 shift = shift1 & 0x1f;
1316 if (shift == 0) {
1317 if (shift1 != 0)
1318 env->CF = (x >> 31) & 1;
1319 return x;
1320 } else {
1321 env->CF = (x >> (shift - 1)) & 1;
1322 return ((uint32_t)x >> shift) | (x << (32 - shift));