2 * ARM implementation of KVM hooks, 64 bit specific code
4 * Copyright Mian-M. Hamayun 2013, Virtual Open Systems
5 * Copyright Alex Bennée 2014, Linaro
7 * This work is licensed under the terms of the GNU GPL, version 2 or later.
8 * See the COPYING file in the top-level directory.
12 #include "qemu/osdep.h"
13 #include <sys/ioctl.h>
14 #include <sys/ptrace.h>
16 #include <linux/elf.h>
17 #include <linux/kvm.h>
19 #include "qapi/error.h"
21 #include "qemu/timer.h"
22 #include "qemu/error-report.h"
23 #include "qemu/host-utils.h"
24 #include "qemu/main-loop.h"
25 #include "exec/gdbstub.h"
26 #include "sysemu/runstate.h"
27 #include "sysemu/kvm.h"
28 #include "sysemu/kvm_int.h"
30 #include "internals.h"
31 #include "hw/acpi/acpi.h"
32 #include "hw/acpi/ghes.h"
33 #include "hw/arm/virt.h"
35 static bool have_guest_debug
;
38 * Although the ARM implementation of hardware assisted debugging
39 * allows for different breakpoints per-core, the current GDB
40 * interface treats them as a global pool of registers (which seems to
41 * be the case for x86, ppc and s390). As a result we store one copy
42 * of registers which is used for all active cores.
44 * Write access is serialised by virtue of the GDB protocol which
45 * updates things. Read access (i.e. when the values are copied to the
46 * vCPU) is also gated by GDB's run control.
48 * This is not unreasonable as most of the time debugging kernels you
49 * never know which core will eventually execute your function.
57 /* The watchpoint registers can cover more area than the requested
58 * watchpoint so we need to store the additional information
59 * somewhere. We also need to supply a CPUWatchpoint to the GDB stub
60 * when the watchpoint is hit.
65 CPUWatchpoint details
;
68 /* Maximum and current break/watch point counts */
69 int max_hw_bps
, max_hw_wps
;
70 GArray
*hw_breakpoints
, *hw_watchpoints
;
72 #define cur_hw_wps (hw_watchpoints->len)
73 #define cur_hw_bps (hw_breakpoints->len)
74 #define get_hw_bp(i) (&g_array_index(hw_breakpoints, HWBreakpoint, i))
75 #define get_hw_wp(i) (&g_array_index(hw_watchpoints, HWWatchpoint, i))
78 * kvm_arm_init_debug() - check for guest debug capabilities
81 * kvm_check_extension returns the number of debug registers we have
82 * or 0 if we have none.
85 static void kvm_arm_init_debug(CPUState
*cs
)
87 have_guest_debug
= kvm_check_extension(cs
->kvm_state
,
88 KVM_CAP_SET_GUEST_DEBUG
);
90 max_hw_wps
= kvm_check_extension(cs
->kvm_state
, KVM_CAP_GUEST_DEBUG_HW_WPS
);
91 hw_watchpoints
= g_array_sized_new(true, true,
92 sizeof(HWWatchpoint
), max_hw_wps
);
94 max_hw_bps
= kvm_check_extension(cs
->kvm_state
, KVM_CAP_GUEST_DEBUG_HW_BPS
);
95 hw_breakpoints
= g_array_sized_new(true, true,
96 sizeof(HWBreakpoint
), max_hw_bps
);
101 * insert_hw_breakpoint()
102 * @addr: address of breakpoint
104 * See ARM ARM D2.9.1 for details but here we are only going to create
105 * simple un-linked breakpoints (i.e. we don't chain breakpoints
106 * together to match address and context or vmid). The hardware is
107 * capable of fancier matching but that will require exposing that
108 * fanciness to GDB's interface
110 * DBGBCR<n>_EL1, Debug Breakpoint Control Registers
112 * 31 24 23 20 19 16 15 14 13 12 9 8 5 4 3 2 1 0
113 * +------+------+-------+-----+----+------+-----+------+-----+---+
114 * | RES0 | BT | LBN | SSC | HMC| RES0 | BAS | RES0 | PMC | E |
115 * +------+------+-------+-----+----+------+-----+------+-----+---+
117 * BT: Breakpoint type (0 = unlinked address match)
118 * LBN: Linked BP number (0 = unused)
119 * SSC/HMC/PMC: Security, Higher and Priv access control (Table D-12)
120 * BAS: Byte Address Select (RES1 for AArch64)
123 * DBGBVR<n>_EL1, Debug Breakpoint Value Registers
125 * 63 53 52 49 48 2 1 0
126 * +------+-----------+----------+-----+
127 * | RESS | VA[52:49] | VA[48:2] | 0 0 |
128 * +------+-----------+----------+-----+
130 * Depending on the addressing mode bits the top bits of the register
131 * are a sign extension of the highest applicable VA bit. Some
132 * versions of GDB don't do it correctly so we ensure they are correct
133 * here so future PC comparisons will work properly.
136 static int insert_hw_breakpoint(target_ulong addr
)
139 .bcr
= 0x1, /* BCR E=1, enable */
140 .bvr
= sextract64(addr
, 0, 53)
143 if (cur_hw_bps
>= max_hw_bps
) {
147 brk
.bcr
= deposit32(brk
.bcr
, 1, 2, 0x3); /* PMC = 11 */
148 brk
.bcr
= deposit32(brk
.bcr
, 5, 4, 0xf); /* BAS = RES1 */
150 g_array_append_val(hw_breakpoints
, brk
);
156 * delete_hw_breakpoint()
157 * @pc: address of breakpoint
159 * Delete a breakpoint and shuffle any above down
162 static int delete_hw_breakpoint(target_ulong pc
)
165 for (i
= 0; i
< hw_breakpoints
->len
; i
++) {
166 HWBreakpoint
*brk
= get_hw_bp(i
);
167 if (brk
->bvr
== pc
) {
168 g_array_remove_index(hw_breakpoints
, i
);
176 * insert_hw_watchpoint()
177 * @addr: address of watch point
179 * @type: type of watch point
181 * See ARM ARM D2.10. As with the breakpoints we can do some advanced
182 * stuff if we want to. The watch points can be linked with the break
183 * points above to make them context aware. However for simplicity
184 * currently we only deal with simple read/write watch points.
186 * D7.3.11 DBGWCR<n>_EL1, Debug Watchpoint Control Registers
188 * 31 29 28 24 23 21 20 19 16 15 14 13 12 5 4 3 2 1 0
189 * +------+-------+------+----+-----+-----+-----+-----+-----+-----+---+
190 * | RES0 | MASK | RES0 | WT | LBN | SSC | HMC | BAS | LSC | PAC | E |
191 * +------+-------+------+----+-----+-----+-----+-----+-----+-----+---+
193 * MASK: num bits addr mask (0=none,01/10=res,11=3 bits (8 bytes))
194 * WT: 0 - unlinked, 1 - linked (not currently used)
195 * LBN: Linked BP number (not currently used)
196 * SSC/HMC/PAC: Security, Higher and Priv access control (Table D2-11)
197 * BAS: Byte Address Select
198 * LSC: Load/Store control (01: load, 10: store, 11: both)
201 * The bottom 2 bits of the value register are masked. Therefore to
202 * break on any sizes smaller than an unaligned word you need to set
203 * MASK=0, BAS=bit per byte in question. For larger regions (^2) you
204 * need to ensure you mask the address as required and set BAS=0xff
207 static int insert_hw_watchpoint(target_ulong addr
,
208 target_ulong len
, int type
)
211 .wcr
= R_DBGWCR_E_MASK
, /* E=1, enable */
212 .wvr
= addr
& (~0x7ULL
),
213 .details
= { .vaddr
= addr
, .len
= len
}
216 if (cur_hw_wps
>= max_hw_wps
) {
221 * HMC=0 SSC=0 PAC=3 will hit EL0 or EL1, any security state,
222 * valid whether EL3 is implemented or not
224 wp
.wcr
= FIELD_DP64(wp
.wcr
, DBGWCR
, PAC
, 3);
227 case GDB_WATCHPOINT_READ
:
228 wp
.wcr
= FIELD_DP64(wp
.wcr
, DBGWCR
, LSC
, 1);
229 wp
.details
.flags
= BP_MEM_READ
;
231 case GDB_WATCHPOINT_WRITE
:
232 wp
.wcr
= FIELD_DP64(wp
.wcr
, DBGWCR
, LSC
, 2);
233 wp
.details
.flags
= BP_MEM_WRITE
;
235 case GDB_WATCHPOINT_ACCESS
:
236 wp
.wcr
= FIELD_DP64(wp
.wcr
, DBGWCR
, LSC
, 3);
237 wp
.details
.flags
= BP_MEM_ACCESS
;
240 g_assert_not_reached();
244 /* we align the address and set the bits in BAS */
245 int off
= addr
& 0x7;
246 int bas
= (1 << len
) - 1;
248 wp
.wcr
= deposit32(wp
.wcr
, 5 + off
, 8 - off
, bas
);
250 /* For ranges above 8 bytes we need to be a power of 2 */
251 if (is_power_of_2(len
)) {
252 int bits
= ctz64(len
);
254 wp
.wvr
&= ~((1 << bits
) - 1);
255 wp
.wcr
= FIELD_DP64(wp
.wcr
, DBGWCR
, MASK
, bits
);
256 wp
.wcr
= FIELD_DP64(wp
.wcr
, DBGWCR
, BAS
, 0xff);
262 g_array_append_val(hw_watchpoints
, wp
);
267 static bool check_watchpoint_in_range(int i
, target_ulong addr
)
269 HWWatchpoint
*wp
= get_hw_wp(i
);
270 uint64_t addr_top
, addr_bottom
= wp
->wvr
;
271 int bas
= extract32(wp
->wcr
, 5, 8);
272 int mask
= extract32(wp
->wcr
, 24, 4);
275 addr_top
= addr_bottom
+ (1 << mask
);
277 /* BAS must be contiguous but can offset against the base
278 * address in DBGWVR */
279 addr_bottom
= addr_bottom
+ ctz32(bas
);
280 addr_top
= addr_bottom
+ clo32(bas
);
283 if (addr
>= addr_bottom
&& addr
<= addr_top
) {
291 * delete_hw_watchpoint()
292 * @addr: address of breakpoint
294 * Delete a breakpoint and shuffle any above down
297 static int delete_hw_watchpoint(target_ulong addr
,
298 target_ulong len
, int type
)
301 for (i
= 0; i
< cur_hw_wps
; i
++) {
302 if (check_watchpoint_in_range(i
, addr
)) {
303 g_array_remove_index(hw_watchpoints
, i
);
311 int kvm_arch_insert_hw_breakpoint(target_ulong addr
,
312 target_ulong len
, int type
)
315 case GDB_BREAKPOINT_HW
:
316 return insert_hw_breakpoint(addr
);
318 case GDB_WATCHPOINT_READ
:
319 case GDB_WATCHPOINT_WRITE
:
320 case GDB_WATCHPOINT_ACCESS
:
321 return insert_hw_watchpoint(addr
, len
, type
);
327 int kvm_arch_remove_hw_breakpoint(target_ulong addr
,
328 target_ulong len
, int type
)
331 case GDB_BREAKPOINT_HW
:
332 return delete_hw_breakpoint(addr
);
333 case GDB_WATCHPOINT_READ
:
334 case GDB_WATCHPOINT_WRITE
:
335 case GDB_WATCHPOINT_ACCESS
:
336 return delete_hw_watchpoint(addr
, len
, type
);
343 void kvm_arch_remove_all_hw_breakpoints(void)
345 if (cur_hw_wps
> 0) {
346 g_array_remove_range(hw_watchpoints
, 0, cur_hw_wps
);
348 if (cur_hw_bps
> 0) {
349 g_array_remove_range(hw_breakpoints
, 0, cur_hw_bps
);
353 void kvm_arm_copy_hw_debug_data(struct kvm_guest_debug_arch
*ptr
)
356 memset(ptr
, 0, sizeof(struct kvm_guest_debug_arch
));
358 for (i
= 0; i
< max_hw_wps
; i
++) {
359 HWWatchpoint
*wp
= get_hw_wp(i
);
360 ptr
->dbg_wcr
[i
] = wp
->wcr
;
361 ptr
->dbg_wvr
[i
] = wp
->wvr
;
363 for (i
= 0; i
< max_hw_bps
; i
++) {
364 HWBreakpoint
*bp
= get_hw_bp(i
);
365 ptr
->dbg_bcr
[i
] = bp
->bcr
;
366 ptr
->dbg_bvr
[i
] = bp
->bvr
;
370 bool kvm_arm_hw_debug_active(CPUState
*cs
)
372 return ((cur_hw_wps
> 0) || (cur_hw_bps
> 0));
375 static bool find_hw_breakpoint(CPUState
*cpu
, target_ulong pc
)
379 for (i
= 0; i
< cur_hw_bps
; i
++) {
380 HWBreakpoint
*bp
= get_hw_bp(i
);
388 static CPUWatchpoint
*find_hw_watchpoint(CPUState
*cpu
, target_ulong addr
)
392 for (i
= 0; i
< cur_hw_wps
; i
++) {
393 if (check_watchpoint_in_range(i
, addr
)) {
394 return &get_hw_wp(i
)->details
;
400 static bool kvm_arm_set_device_attr(CPUState
*cs
, struct kvm_device_attr
*attr
,
405 err
= kvm_vcpu_ioctl(cs
, KVM_HAS_DEVICE_ATTR
, attr
);
407 error_report("%s: KVM_HAS_DEVICE_ATTR: %s", name
, strerror(-err
));
411 err
= kvm_vcpu_ioctl(cs
, KVM_SET_DEVICE_ATTR
, attr
);
413 error_report("%s: KVM_SET_DEVICE_ATTR: %s", name
, strerror(-err
));
420 void kvm_arm_pmu_init(CPUState
*cs
)
422 struct kvm_device_attr attr
= {
423 .group
= KVM_ARM_VCPU_PMU_V3_CTRL
,
424 .attr
= KVM_ARM_VCPU_PMU_V3_INIT
,
427 if (!ARM_CPU(cs
)->has_pmu
) {
430 if (!kvm_arm_set_device_attr(cs
, &attr
, "PMU")) {
431 error_report("failed to init PMU");
436 void kvm_arm_pmu_set_irq(CPUState
*cs
, int irq
)
438 struct kvm_device_attr attr
= {
439 .group
= KVM_ARM_VCPU_PMU_V3_CTRL
,
440 .addr
= (intptr_t)&irq
,
441 .attr
= KVM_ARM_VCPU_PMU_V3_IRQ
,
444 if (!ARM_CPU(cs
)->has_pmu
) {
447 if (!kvm_arm_set_device_attr(cs
, &attr
, "PMU")) {
448 error_report("failed to set irq for PMU");
453 void kvm_arm_pvtime_init(CPUState
*cs
, uint64_t ipa
)
455 struct kvm_device_attr attr
= {
456 .group
= KVM_ARM_VCPU_PVTIME_CTRL
,
457 .attr
= KVM_ARM_VCPU_PVTIME_IPA
,
458 .addr
= (uint64_t)&ipa
,
461 if (ARM_CPU(cs
)->kvm_steal_time
== ON_OFF_AUTO_OFF
) {
464 if (!kvm_arm_set_device_attr(cs
, &attr
, "PVTIME IPA")) {
465 error_report("failed to init PVTIME IPA");
470 static int read_sys_reg32(int fd
, uint32_t *pret
, uint64_t id
)
473 struct kvm_one_reg idreg
= { .id
= id
, .addr
= (uintptr_t)&ret
};
476 assert((id
& KVM_REG_SIZE_MASK
) == KVM_REG_SIZE_U64
);
477 err
= ioctl(fd
, KVM_GET_ONE_REG
, &idreg
);
485 static int read_sys_reg64(int fd
, uint64_t *pret
, uint64_t id
)
487 struct kvm_one_reg idreg
= { .id
= id
, .addr
= (uintptr_t)pret
};
489 assert((id
& KVM_REG_SIZE_MASK
) == KVM_REG_SIZE_U64
);
490 return ioctl(fd
, KVM_GET_ONE_REG
, &idreg
);
493 static bool kvm_arm_pauth_supported(void)
495 return (kvm_check_extension(kvm_state
, KVM_CAP_ARM_PTRAUTH_ADDRESS
) &&
496 kvm_check_extension(kvm_state
, KVM_CAP_ARM_PTRAUTH_GENERIC
));
499 bool kvm_arm_get_host_cpu_features(ARMHostCPUFeatures
*ahcf
)
501 /* Identify the feature bits corresponding to the host CPU, and
502 * fill out the ARMHostCPUClass fields accordingly. To do this
503 * we have to create a scratch VM, create a single CPU inside it,
504 * and then query that CPU for the relevant ID registers.
508 bool pmu_supported
= false;
509 uint64_t features
= 0;
513 /* Old kernels may not know about the PREFERRED_TARGET ioctl: however
514 * we know these will only support creating one kind of guest CPU,
515 * which is its preferred CPU type. Fortunately these old kernels
516 * support only a very limited number of CPUs.
518 static const uint32_t cpus_to_try
[] = {
519 KVM_ARM_TARGET_AEM_V8
,
520 KVM_ARM_TARGET_FOUNDATION_V8
,
521 KVM_ARM_TARGET_CORTEX_A57
,
522 QEMU_KVM_ARM_TARGET_NONE
525 * target = -1 informs kvm_arm_create_scratch_host_vcpu()
526 * to use the preferred target
528 struct kvm_vcpu_init init
= { .target
= -1, };
531 * Ask for Pointer Authentication if supported. We can't play the
532 * SVE trick of synthesising the ID reg as KVM won't tell us
533 * whether we have the architected or IMPDEF version of PAuth, so
534 * we have to use the actual ID regs.
536 if (kvm_arm_pauth_supported()) {
537 init
.features
[0] |= (1 << KVM_ARM_VCPU_PTRAUTH_ADDRESS
|
538 1 << KVM_ARM_VCPU_PTRAUTH_GENERIC
);
541 if (kvm_arm_pmu_supported()) {
542 init
.features
[0] |= 1 << KVM_ARM_VCPU_PMU_V3
;
543 pmu_supported
= true;
546 if (!kvm_arm_create_scratch_host_vcpu(cpus_to_try
, fdarray
, &init
)) {
550 ahcf
->target
= init
.target
;
551 ahcf
->dtb_compatible
= "arm,arm-v8";
553 err
= read_sys_reg64(fdarray
[2], &ahcf
->isar
.id_aa64pfr0
,
554 ARM64_SYS_REG(3, 0, 0, 4, 0));
555 if (unlikely(err
< 0)) {
557 * Before v4.15, the kernel only exposed a limited number of system
558 * registers, not including any of the interesting AArch64 ID regs.
559 * For the most part we could leave these fields as zero with minimal
560 * effect, since this does not affect the values seen by the guest.
562 * However, it could cause problems down the line for QEMU,
563 * so provide a minimal v8.0 default.
565 * ??? Could read MIDR and use knowledge from cpu64.c.
566 * ??? Could map a page of memory into our temp guest and
567 * run the tiniest of hand-crafted kernels to extract
568 * the values seen by the guest.
569 * ??? Either of these sounds like too much effort just
570 * to work around running a modern host kernel.
572 ahcf
->isar
.id_aa64pfr0
= 0x00000011; /* EL1&0, AArch64 only */
575 err
|= read_sys_reg64(fdarray
[2], &ahcf
->isar
.id_aa64pfr1
,
576 ARM64_SYS_REG(3, 0, 0, 4, 1));
577 err
|= read_sys_reg64(fdarray
[2], &ahcf
->isar
.id_aa64smfr0
,
578 ARM64_SYS_REG(3, 0, 0, 4, 5));
579 err
|= read_sys_reg64(fdarray
[2], &ahcf
->isar
.id_aa64dfr0
,
580 ARM64_SYS_REG(3, 0, 0, 5, 0));
581 err
|= read_sys_reg64(fdarray
[2], &ahcf
->isar
.id_aa64dfr1
,
582 ARM64_SYS_REG(3, 0, 0, 5, 1));
583 err
|= read_sys_reg64(fdarray
[2], &ahcf
->isar
.id_aa64isar0
,
584 ARM64_SYS_REG(3, 0, 0, 6, 0));
585 err
|= read_sys_reg64(fdarray
[2], &ahcf
->isar
.id_aa64isar1
,
586 ARM64_SYS_REG(3, 0, 0, 6, 1));
587 err
|= read_sys_reg64(fdarray
[2], &ahcf
->isar
.id_aa64mmfr0
,
588 ARM64_SYS_REG(3, 0, 0, 7, 0));
589 err
|= read_sys_reg64(fdarray
[2], &ahcf
->isar
.id_aa64mmfr1
,
590 ARM64_SYS_REG(3, 0, 0, 7, 1));
591 err
|= read_sys_reg64(fdarray
[2], &ahcf
->isar
.id_aa64mmfr2
,
592 ARM64_SYS_REG(3, 0, 0, 7, 2));
595 * Note that if AArch32 support is not present in the host,
596 * the AArch32 sysregs are present to be read, but will
597 * return UNKNOWN values. This is neither better nor worse
598 * than skipping the reads and leaving 0, as we must avoid
599 * considering the values in every case.
601 err
|= read_sys_reg32(fdarray
[2], &ahcf
->isar
.id_pfr0
,
602 ARM64_SYS_REG(3, 0, 0, 1, 0));
603 err
|= read_sys_reg32(fdarray
[2], &ahcf
->isar
.id_pfr1
,
604 ARM64_SYS_REG(3, 0, 0, 1, 1));
605 err
|= read_sys_reg32(fdarray
[2], &ahcf
->isar
.id_pfr2
,
606 ARM64_SYS_REG(3, 0, 0, 3, 4));
607 err
|= read_sys_reg32(fdarray
[2], &ahcf
->isar
.id_dfr0
,
608 ARM64_SYS_REG(3, 0, 0, 1, 2));
609 err
|= read_sys_reg32(fdarray
[2], &ahcf
->isar
.id_mmfr0
,
610 ARM64_SYS_REG(3, 0, 0, 1, 4));
611 err
|= read_sys_reg32(fdarray
[2], &ahcf
->isar
.id_mmfr1
,
612 ARM64_SYS_REG(3, 0, 0, 1, 5));
613 err
|= read_sys_reg32(fdarray
[2], &ahcf
->isar
.id_mmfr2
,
614 ARM64_SYS_REG(3, 0, 0, 1, 6));
615 err
|= read_sys_reg32(fdarray
[2], &ahcf
->isar
.id_mmfr3
,
616 ARM64_SYS_REG(3, 0, 0, 1, 7));
617 err
|= read_sys_reg32(fdarray
[2], &ahcf
->isar
.id_isar0
,
618 ARM64_SYS_REG(3, 0, 0, 2, 0));
619 err
|= read_sys_reg32(fdarray
[2], &ahcf
->isar
.id_isar1
,
620 ARM64_SYS_REG(3, 0, 0, 2, 1));
621 err
|= read_sys_reg32(fdarray
[2], &ahcf
->isar
.id_isar2
,
622 ARM64_SYS_REG(3, 0, 0, 2, 2));
623 err
|= read_sys_reg32(fdarray
[2], &ahcf
->isar
.id_isar3
,
624 ARM64_SYS_REG(3, 0, 0, 2, 3));
625 err
|= read_sys_reg32(fdarray
[2], &ahcf
->isar
.id_isar4
,
626 ARM64_SYS_REG(3, 0, 0, 2, 4));
627 err
|= read_sys_reg32(fdarray
[2], &ahcf
->isar
.id_isar5
,
628 ARM64_SYS_REG(3, 0, 0, 2, 5));
629 err
|= read_sys_reg32(fdarray
[2], &ahcf
->isar
.id_mmfr4
,
630 ARM64_SYS_REG(3, 0, 0, 2, 6));
631 err
|= read_sys_reg32(fdarray
[2], &ahcf
->isar
.id_isar6
,
632 ARM64_SYS_REG(3, 0, 0, 2, 7));
634 err
|= read_sys_reg32(fdarray
[2], &ahcf
->isar
.mvfr0
,
635 ARM64_SYS_REG(3, 0, 0, 3, 0));
636 err
|= read_sys_reg32(fdarray
[2], &ahcf
->isar
.mvfr1
,
637 ARM64_SYS_REG(3, 0, 0, 3, 1));
638 err
|= read_sys_reg32(fdarray
[2], &ahcf
->isar
.mvfr2
,
639 ARM64_SYS_REG(3, 0, 0, 3, 2));
642 * DBGDIDR is a bit complicated because the kernel doesn't
643 * provide an accessor for it in 64-bit mode, which is what this
644 * scratch VM is in, and there's no architected "64-bit sysreg
645 * which reads the same as the 32-bit register" the way there is
646 * for other ID registers. Instead we synthesize a value from the
647 * AArch64 ID_AA64DFR0, the same way the kernel code in
648 * arch/arm64/kvm/sys_regs.c:trap_dbgidr() does.
649 * We only do this if the CPU supports AArch32 at EL1.
651 if (FIELD_EX32(ahcf
->isar
.id_aa64pfr0
, ID_AA64PFR0
, EL1
) >= 2) {
652 int wrps
= FIELD_EX64(ahcf
->isar
.id_aa64dfr0
, ID_AA64DFR0
, WRPS
);
653 int brps
= FIELD_EX64(ahcf
->isar
.id_aa64dfr0
, ID_AA64DFR0
, BRPS
);
655 FIELD_EX64(ahcf
->isar
.id_aa64dfr0
, ID_AA64DFR0
, CTX_CMPS
);
656 int version
= 6; /* ARMv8 debug architecture */
658 !!FIELD_EX32(ahcf
->isar
.id_aa64pfr0
, ID_AA64PFR0
, EL3
);
659 uint32_t dbgdidr
= 0;
661 dbgdidr
= FIELD_DP32(dbgdidr
, DBGDIDR
, WRPS
, wrps
);
662 dbgdidr
= FIELD_DP32(dbgdidr
, DBGDIDR
, BRPS
, brps
);
663 dbgdidr
= FIELD_DP32(dbgdidr
, DBGDIDR
, CTX_CMPS
, ctx_cmps
);
664 dbgdidr
= FIELD_DP32(dbgdidr
, DBGDIDR
, VERSION
, version
);
665 dbgdidr
= FIELD_DP32(dbgdidr
, DBGDIDR
, NSUHD_IMP
, has_el3
);
666 dbgdidr
= FIELD_DP32(dbgdidr
, DBGDIDR
, SE_IMP
, has_el3
);
667 dbgdidr
|= (1 << 15); /* RES1 bit */
668 ahcf
->isar
.dbgdidr
= dbgdidr
;
672 /* PMCR_EL0 is only accessible if the vCPU has feature PMU_V3 */
673 err
|= read_sys_reg64(fdarray
[2], &ahcf
->isar
.reset_pmcr_el0
,
674 ARM64_SYS_REG(3, 3, 9, 12, 0));
678 sve_supported
= ioctl(fdarray
[0], KVM_CHECK_EXTENSION
, KVM_CAP_ARM_SVE
) > 0;
680 /* Add feature bits that can't appear until after VCPU init. */
682 t
= ahcf
->isar
.id_aa64pfr0
;
683 t
= FIELD_DP64(t
, ID_AA64PFR0
, SVE
, 1);
684 ahcf
->isar
.id_aa64pfr0
= t
;
687 * There is a range of kernels between kernel commit 73433762fcae
688 * and f81cb2c3ad41 which have a bug where the kernel doesn't expose
689 * SYS_ID_AA64ZFR0_EL1 via the ONE_REG API unless the VM has enabled
690 * SVE support, so we only read it here, rather than together with all
691 * the other ID registers earlier.
693 err
|= read_sys_reg64(fdarray
[2], &ahcf
->isar
.id_aa64zfr0
,
694 ARM64_SYS_REG(3, 0, 0, 4, 4));
697 kvm_arm_destroy_scratch_host_vcpu(fdarray
);
704 * We can assume any KVM supporting CPU is at least a v8
705 * with VFPv4+Neon; this in turn implies most of the other
708 features
|= 1ULL << ARM_FEATURE_V8
;
709 features
|= 1ULL << ARM_FEATURE_NEON
;
710 features
|= 1ULL << ARM_FEATURE_AARCH64
;
711 features
|= 1ULL << ARM_FEATURE_PMU
;
712 features
|= 1ULL << ARM_FEATURE_GENERIC_TIMER
;
714 ahcf
->features
= features
;
719 void kvm_arm_steal_time_finalize(ARMCPU
*cpu
, Error
**errp
)
721 bool has_steal_time
= kvm_arm_steal_time_supported();
723 if (cpu
->kvm_steal_time
== ON_OFF_AUTO_AUTO
) {
724 if (!has_steal_time
|| !arm_feature(&cpu
->env
, ARM_FEATURE_AARCH64
)) {
725 cpu
->kvm_steal_time
= ON_OFF_AUTO_OFF
;
727 cpu
->kvm_steal_time
= ON_OFF_AUTO_ON
;
729 } else if (cpu
->kvm_steal_time
== ON_OFF_AUTO_ON
) {
730 if (!has_steal_time
) {
731 error_setg(errp
, "'kvm-steal-time' cannot be enabled "
734 } else if (!arm_feature(&cpu
->env
, ARM_FEATURE_AARCH64
)) {
736 * DEN0057A chapter 2 says "This specification only covers
737 * systems in which the Execution state of the hypervisor
738 * as well as EL1 of virtual machines is AArch64.". And,
739 * to ensure that, the smc/hvc calls are only specified as
742 error_setg(errp
, "'kvm-steal-time' cannot be enabled "
743 "for AArch32 guests");
749 bool kvm_arm_aarch32_supported(void)
751 return kvm_check_extension(kvm_state
, KVM_CAP_ARM_EL1_32BIT
);
754 bool kvm_arm_sve_supported(void)
756 return kvm_check_extension(kvm_state
, KVM_CAP_ARM_SVE
);
759 bool kvm_arm_steal_time_supported(void)
761 return kvm_check_extension(kvm_state
, KVM_CAP_STEAL_TIME
);
764 QEMU_BUILD_BUG_ON(KVM_ARM64_SVE_VQ_MIN
!= 1);
766 uint32_t kvm_arm_sve_get_vls(CPUState
*cs
)
768 /* Only call this function if kvm_arm_sve_supported() returns true. */
769 static uint64_t vls
[KVM_ARM64_SVE_VLS_WORDS
];
775 * KVM ensures all host CPUs support the same set of vector lengths.
776 * So we only need to create the scratch VCPUs once and then cache
780 struct kvm_vcpu_init init
= {
782 .features
[0] = (1 << KVM_ARM_VCPU_SVE
),
784 struct kvm_one_reg reg
= {
785 .id
= KVM_REG_ARM64_SVE_VLS
,
786 .addr
= (uint64_t)&vls
[0],
792 if (!kvm_arm_create_scratch_host_vcpu(NULL
, fdarray
, &init
)) {
793 error_report("failed to create scratch VCPU with SVE enabled");
796 ret
= ioctl(fdarray
[2], KVM_GET_ONE_REG
, ®
);
797 kvm_arm_destroy_scratch_host_vcpu(fdarray
);
799 error_report("failed to get KVM_REG_ARM64_SVE_VLS: %s",
804 for (i
= KVM_ARM64_SVE_VLS_WORDS
- 1; i
>= 0; --i
) {
806 vq
= 64 - clz64(vls
[i
]) + i
* 64;
810 if (vq
> ARM_MAX_VQ
) {
811 warn_report("KVM supports vector lengths larger than "
813 vls
[0] &= MAKE_64BIT_MASK(0, ARM_MAX_VQ
);
820 static int kvm_arm_sve_set_vls(CPUState
*cs
)
822 ARMCPU
*cpu
= ARM_CPU(cs
);
823 uint64_t vls
[KVM_ARM64_SVE_VLS_WORDS
] = { cpu
->sve_vq
.map
};
824 struct kvm_one_reg reg
= {
825 .id
= KVM_REG_ARM64_SVE_VLS
,
826 .addr
= (uint64_t)&vls
[0],
829 assert(cpu
->sve_max_vq
<= KVM_ARM64_SVE_VQ_MAX
);
831 return kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, ®
);
834 #define ARM_CPU_ID_MPIDR 3, 0, 0, 0, 5
836 int kvm_arch_init_vcpu(CPUState
*cs
)
840 ARMCPU
*cpu
= ARM_CPU(cs
);
841 CPUARMState
*env
= &cpu
->env
;
844 if (cpu
->kvm_target
== QEMU_KVM_ARM_TARGET_NONE
||
845 !object_dynamic_cast(OBJECT(cpu
), TYPE_AARCH64_CPU
)) {
846 error_report("KVM is not supported for this guest CPU type");
850 qemu_add_vm_change_state_handler(kvm_arm_vm_state_change
, cs
);
852 /* Determine init features for this CPU */
853 memset(cpu
->kvm_init_features
, 0, sizeof(cpu
->kvm_init_features
));
854 if (cs
->start_powered_off
) {
855 cpu
->kvm_init_features
[0] |= 1 << KVM_ARM_VCPU_POWER_OFF
;
857 if (kvm_check_extension(cs
->kvm_state
, KVM_CAP_ARM_PSCI_0_2
)) {
858 cpu
->psci_version
= QEMU_PSCI_VERSION_0_2
;
859 cpu
->kvm_init_features
[0] |= 1 << KVM_ARM_VCPU_PSCI_0_2
;
861 if (!arm_feature(&cpu
->env
, ARM_FEATURE_AARCH64
)) {
862 cpu
->kvm_init_features
[0] |= 1 << KVM_ARM_VCPU_EL1_32BIT
;
864 if (!kvm_check_extension(cs
->kvm_state
, KVM_CAP_ARM_PMU_V3
)) {
865 cpu
->has_pmu
= false;
868 cpu
->kvm_init_features
[0] |= 1 << KVM_ARM_VCPU_PMU_V3
;
870 env
->features
&= ~(1ULL << ARM_FEATURE_PMU
);
872 if (cpu_isar_feature(aa64_sve
, cpu
)) {
873 assert(kvm_arm_sve_supported());
874 cpu
->kvm_init_features
[0] |= 1 << KVM_ARM_VCPU_SVE
;
876 if (cpu_isar_feature(aa64_pauth
, cpu
)) {
877 cpu
->kvm_init_features
[0] |= (1 << KVM_ARM_VCPU_PTRAUTH_ADDRESS
|
878 1 << KVM_ARM_VCPU_PTRAUTH_GENERIC
);
881 /* Do KVM_ARM_VCPU_INIT ioctl */
882 ret
= kvm_arm_vcpu_init(cs
);
887 if (cpu_isar_feature(aa64_sve
, cpu
)) {
888 ret
= kvm_arm_sve_set_vls(cs
);
892 ret
= kvm_arm_vcpu_finalize(cs
, KVM_ARM_VCPU_SVE
);
899 * KVM reports the exact PSCI version it is implementing via a
900 * special sysreg. If it is present, use its contents to determine
901 * what to report to the guest in the dtb (it is the PSCI version,
902 * in the same 15-bits major 16-bits minor format that PSCI_VERSION
905 if (!kvm_get_one_reg(cs
, KVM_REG_ARM_PSCI_VERSION
, &psciver
)) {
906 cpu
->psci_version
= psciver
;
910 * When KVM is in use, PSCI is emulated in-kernel and not by qemu.
911 * Currently KVM has its own idea about MPIDR assignment, so we
912 * override our defaults with what we get from KVM.
914 ret
= kvm_get_one_reg(cs
, ARM64_SYS_REG(ARM_CPU_ID_MPIDR
), &mpidr
);
918 cpu
->mp_affinity
= mpidr
& ARM64_AFFINITY_MASK
;
920 kvm_arm_init_debug(cs
);
922 /* Check whether user space can specify guest syndrome value */
923 kvm_arm_init_serror_injection(cs
);
925 return kvm_arm_init_cpreg_list(cpu
);
928 int kvm_arch_destroy_vcpu(CPUState
*cs
)
933 bool kvm_arm_reg_syncs_via_cpreg_list(uint64_t regidx
)
935 /* Return true if the regidx is a register we should synchronize
936 * via the cpreg_tuples array (ie is not a core or sve reg that
937 * we sync by hand in kvm_arch_get/put_registers())
939 switch (regidx
& KVM_REG_ARM_COPROC_MASK
) {
940 case KVM_REG_ARM_CORE
:
941 case KVM_REG_ARM64_SVE
:
948 typedef struct CPRegStateLevel
{
953 /* All system registers not listed in the following table are assumed to be
954 * of the level KVM_PUT_RUNTIME_STATE. If a register should be written less
955 * often, you must add it to this table with a state of either
956 * KVM_PUT_RESET_STATE or KVM_PUT_FULL_STATE.
958 static const CPRegStateLevel non_runtime_cpregs
[] = {
959 { KVM_REG_ARM_TIMER_CNT
, KVM_PUT_FULL_STATE
},
962 int kvm_arm_cpreg_level(uint64_t regidx
)
966 for (i
= 0; i
< ARRAY_SIZE(non_runtime_cpregs
); i
++) {
967 const CPRegStateLevel
*l
= &non_runtime_cpregs
[i
];
968 if (l
->regidx
== regidx
) {
973 return KVM_PUT_RUNTIME_STATE
;
976 /* Callers must hold the iothread mutex lock */
977 static void kvm_inject_arm_sea(CPUState
*c
)
979 ARMCPU
*cpu
= ARM_CPU(c
);
980 CPUARMState
*env
= &cpu
->env
;
984 c
->exception_index
= EXCP_DATA_ABORT
;
985 env
->exception
.target_el
= 1;
988 * Set the DFSC to synchronous external abort and set FnV to not valid,
989 * this will tell guest the FAR_ELx is UNKNOWN for this abort.
991 same_el
= arm_current_el(env
) == env
->exception
.target_el
;
992 esr
= syn_data_abort_no_iss(same_el
, 1, 0, 0, 0, 0, 0x10);
994 env
->exception
.syndrome
= esr
;
996 arm_cpu_do_interrupt(c
);
999 #define AARCH64_CORE_REG(x) (KVM_REG_ARM64 | KVM_REG_SIZE_U64 | \
1000 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
1002 #define AARCH64_SIMD_CORE_REG(x) (KVM_REG_ARM64 | KVM_REG_SIZE_U128 | \
1003 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
1005 #define AARCH64_SIMD_CTRL_REG(x) (KVM_REG_ARM64 | KVM_REG_SIZE_U32 | \
1006 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
1008 static int kvm_arch_put_fpsimd(CPUState
*cs
)
1010 CPUARMState
*env
= &ARM_CPU(cs
)->env
;
1011 struct kvm_one_reg reg
;
1014 for (i
= 0; i
< 32; i
++) {
1015 uint64_t *q
= aa64_vfp_qreg(env
, i
);
1017 uint64_t fp_val
[2] = { q
[1], q
[0] };
1018 reg
.addr
= (uintptr_t)fp_val
;
1020 reg
.addr
= (uintptr_t)q
;
1022 reg
.id
= AARCH64_SIMD_CORE_REG(fp_regs
.vregs
[i
]);
1023 ret
= kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, ®
);
1033 * KVM SVE registers come in slices where ZREGs have a slice size of 2048 bits
1034 * and PREGS and the FFR have a slice size of 256 bits. However we simply hard
1035 * code the slice index to zero for now as it's unlikely we'll need more than
1036 * one slice for quite some time.
1038 static int kvm_arch_put_sve(CPUState
*cs
)
1040 ARMCPU
*cpu
= ARM_CPU(cs
);
1041 CPUARMState
*env
= &cpu
->env
;
1042 uint64_t tmp
[ARM_MAX_VQ
* 2];
1044 struct kvm_one_reg reg
;
1047 for (n
= 0; n
< KVM_ARM64_SVE_NUM_ZREGS
; ++n
) {
1048 r
= sve_bswap64(tmp
, &env
->vfp
.zregs
[n
].d
[0], cpu
->sve_max_vq
* 2);
1049 reg
.addr
= (uintptr_t)r
;
1050 reg
.id
= KVM_REG_ARM64_SVE_ZREG(n
, 0);
1051 ret
= kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, ®
);
1057 for (n
= 0; n
< KVM_ARM64_SVE_NUM_PREGS
; ++n
) {
1058 r
= sve_bswap64(tmp
, r
= &env
->vfp
.pregs
[n
].p
[0],
1059 DIV_ROUND_UP(cpu
->sve_max_vq
* 2, 8));
1060 reg
.addr
= (uintptr_t)r
;
1061 reg
.id
= KVM_REG_ARM64_SVE_PREG(n
, 0);
1062 ret
= kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, ®
);
1068 r
= sve_bswap64(tmp
, &env
->vfp
.pregs
[FFR_PRED_NUM
].p
[0],
1069 DIV_ROUND_UP(cpu
->sve_max_vq
* 2, 8));
1070 reg
.addr
= (uintptr_t)r
;
1071 reg
.id
= KVM_REG_ARM64_SVE_FFR(0);
1072 ret
= kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, ®
);
1080 int kvm_arch_put_registers(CPUState
*cs
, int level
)
1082 struct kvm_one_reg reg
;
1088 ARMCPU
*cpu
= ARM_CPU(cs
);
1089 CPUARMState
*env
= &cpu
->env
;
1091 /* If we are in AArch32 mode then we need to copy the AArch32 regs to the
1092 * AArch64 registers before pushing them out to 64-bit KVM.
1095 aarch64_sync_32_to_64(env
);
1098 for (i
= 0; i
< 31; i
++) {
1099 reg
.id
= AARCH64_CORE_REG(regs
.regs
[i
]);
1100 reg
.addr
= (uintptr_t) &env
->xregs
[i
];
1101 ret
= kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, ®
);
1107 /* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the
1108 * QEMU side we keep the current SP in xregs[31] as well.
1110 aarch64_save_sp(env
, 1);
1112 reg
.id
= AARCH64_CORE_REG(regs
.sp
);
1113 reg
.addr
= (uintptr_t) &env
->sp_el
[0];
1114 ret
= kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, ®
);
1119 reg
.id
= AARCH64_CORE_REG(sp_el1
);
1120 reg
.addr
= (uintptr_t) &env
->sp_el
[1];
1121 ret
= kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, ®
);
1126 /* Note that KVM thinks pstate is 64 bit but we use a uint32_t */
1128 val
= pstate_read(env
);
1130 val
= cpsr_read(env
);
1132 reg
.id
= AARCH64_CORE_REG(regs
.pstate
);
1133 reg
.addr
= (uintptr_t) &val
;
1134 ret
= kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, ®
);
1139 reg
.id
= AARCH64_CORE_REG(regs
.pc
);
1140 reg
.addr
= (uintptr_t) &env
->pc
;
1141 ret
= kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, ®
);
1146 reg
.id
= AARCH64_CORE_REG(elr_el1
);
1147 reg
.addr
= (uintptr_t) &env
->elr_el
[1];
1148 ret
= kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, ®
);
1153 /* Saved Program State Registers
1155 * Before we restore from the banked_spsr[] array we need to
1156 * ensure that any modifications to env->spsr are correctly
1157 * reflected in the banks.
1159 el
= arm_current_el(env
);
1160 if (el
> 0 && !is_a64(env
)) {
1161 i
= bank_number(env
->uncached_cpsr
& CPSR_M
);
1162 env
->banked_spsr
[i
] = env
->spsr
;
1165 /* KVM 0-4 map to QEMU banks 1-5 */
1166 for (i
= 0; i
< KVM_NR_SPSR
; i
++) {
1167 reg
.id
= AARCH64_CORE_REG(spsr
[i
]);
1168 reg
.addr
= (uintptr_t) &env
->banked_spsr
[i
+ 1];
1169 ret
= kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, ®
);
1175 if (cpu_isar_feature(aa64_sve
, cpu
)) {
1176 ret
= kvm_arch_put_sve(cs
);
1178 ret
= kvm_arch_put_fpsimd(cs
);
1184 reg
.addr
= (uintptr_t)(&fpr
);
1185 fpr
= vfp_get_fpsr(env
);
1186 reg
.id
= AARCH64_SIMD_CTRL_REG(fp_regs
.fpsr
);
1187 ret
= kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, ®
);
1192 reg
.addr
= (uintptr_t)(&fpr
);
1193 fpr
= vfp_get_fpcr(env
);
1194 reg
.id
= AARCH64_SIMD_CTRL_REG(fp_regs
.fpcr
);
1195 ret
= kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, ®
);
1200 write_cpustate_to_list(cpu
, true);
1202 if (!write_list_to_kvmstate(cpu
, level
)) {
1207 * Setting VCPU events should be triggered after syncing the registers
1208 * to avoid overwriting potential changes made by KVM upon calling
1209 * KVM_SET_VCPU_EVENTS ioctl
1211 ret
= kvm_put_vcpu_events(cpu
);
1216 kvm_arm_sync_mpstate_to_kvm(cpu
);
1221 static int kvm_arch_get_fpsimd(CPUState
*cs
)
1223 CPUARMState
*env
= &ARM_CPU(cs
)->env
;
1224 struct kvm_one_reg reg
;
1227 for (i
= 0; i
< 32; i
++) {
1228 uint64_t *q
= aa64_vfp_qreg(env
, i
);
1229 reg
.id
= AARCH64_SIMD_CORE_REG(fp_regs
.vregs
[i
]);
1230 reg
.addr
= (uintptr_t)q
;
1231 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, ®
);
1237 t
= q
[0], q
[0] = q
[1], q
[1] = t
;
1246 * KVM SVE registers come in slices where ZREGs have a slice size of 2048 bits
1247 * and PREGS and the FFR have a slice size of 256 bits. However we simply hard
1248 * code the slice index to zero for now as it's unlikely we'll need more than
1249 * one slice for quite some time.
1251 static int kvm_arch_get_sve(CPUState
*cs
)
1253 ARMCPU
*cpu
= ARM_CPU(cs
);
1254 CPUARMState
*env
= &cpu
->env
;
1255 struct kvm_one_reg reg
;
1259 for (n
= 0; n
< KVM_ARM64_SVE_NUM_ZREGS
; ++n
) {
1260 r
= &env
->vfp
.zregs
[n
].d
[0];
1261 reg
.addr
= (uintptr_t)r
;
1262 reg
.id
= KVM_REG_ARM64_SVE_ZREG(n
, 0);
1263 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, ®
);
1267 sve_bswap64(r
, r
, cpu
->sve_max_vq
* 2);
1270 for (n
= 0; n
< KVM_ARM64_SVE_NUM_PREGS
; ++n
) {
1271 r
= &env
->vfp
.pregs
[n
].p
[0];
1272 reg
.addr
= (uintptr_t)r
;
1273 reg
.id
= KVM_REG_ARM64_SVE_PREG(n
, 0);
1274 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, ®
);
1278 sve_bswap64(r
, r
, DIV_ROUND_UP(cpu
->sve_max_vq
* 2, 8));
1281 r
= &env
->vfp
.pregs
[FFR_PRED_NUM
].p
[0];
1282 reg
.addr
= (uintptr_t)r
;
1283 reg
.id
= KVM_REG_ARM64_SVE_FFR(0);
1284 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, ®
);
1288 sve_bswap64(r
, r
, DIV_ROUND_UP(cpu
->sve_max_vq
* 2, 8));
1293 int kvm_arch_get_registers(CPUState
*cs
)
1295 struct kvm_one_reg reg
;
1301 ARMCPU
*cpu
= ARM_CPU(cs
);
1302 CPUARMState
*env
= &cpu
->env
;
1304 for (i
= 0; i
< 31; i
++) {
1305 reg
.id
= AARCH64_CORE_REG(regs
.regs
[i
]);
1306 reg
.addr
= (uintptr_t) &env
->xregs
[i
];
1307 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, ®
);
1313 reg
.id
= AARCH64_CORE_REG(regs
.sp
);
1314 reg
.addr
= (uintptr_t) &env
->sp_el
[0];
1315 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, ®
);
1320 reg
.id
= AARCH64_CORE_REG(sp_el1
);
1321 reg
.addr
= (uintptr_t) &env
->sp_el
[1];
1322 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, ®
);
1327 reg
.id
= AARCH64_CORE_REG(regs
.pstate
);
1328 reg
.addr
= (uintptr_t) &val
;
1329 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, ®
);
1334 env
->aarch64
= ((val
& PSTATE_nRW
) == 0);
1336 pstate_write(env
, val
);
1338 cpsr_write(env
, val
, 0xffffffff, CPSRWriteRaw
);
1341 /* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the
1342 * QEMU side we keep the current SP in xregs[31] as well.
1344 aarch64_restore_sp(env
, 1);
1346 reg
.id
= AARCH64_CORE_REG(regs
.pc
);
1347 reg
.addr
= (uintptr_t) &env
->pc
;
1348 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, ®
);
1353 /* If we are in AArch32 mode then we need to sync the AArch32 regs with the
1354 * incoming AArch64 regs received from 64-bit KVM.
1355 * We must perform this after all of the registers have been acquired from
1359 aarch64_sync_64_to_32(env
);
1362 reg
.id
= AARCH64_CORE_REG(elr_el1
);
1363 reg
.addr
= (uintptr_t) &env
->elr_el
[1];
1364 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, ®
);
1369 /* Fetch the SPSR registers
1371 * KVM SPSRs 0-4 map to QEMU banks 1-5
1373 for (i
= 0; i
< KVM_NR_SPSR
; i
++) {
1374 reg
.id
= AARCH64_CORE_REG(spsr
[i
]);
1375 reg
.addr
= (uintptr_t) &env
->banked_spsr
[i
+ 1];
1376 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, ®
);
1382 el
= arm_current_el(env
);
1383 if (el
> 0 && !is_a64(env
)) {
1384 i
= bank_number(env
->uncached_cpsr
& CPSR_M
);
1385 env
->spsr
= env
->banked_spsr
[i
];
1388 if (cpu_isar_feature(aa64_sve
, cpu
)) {
1389 ret
= kvm_arch_get_sve(cs
);
1391 ret
= kvm_arch_get_fpsimd(cs
);
1397 reg
.addr
= (uintptr_t)(&fpr
);
1398 reg
.id
= AARCH64_SIMD_CTRL_REG(fp_regs
.fpsr
);
1399 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, ®
);
1403 vfp_set_fpsr(env
, fpr
);
1405 reg
.addr
= (uintptr_t)(&fpr
);
1406 reg
.id
= AARCH64_SIMD_CTRL_REG(fp_regs
.fpcr
);
1407 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, ®
);
1411 vfp_set_fpcr(env
, fpr
);
1413 ret
= kvm_get_vcpu_events(cpu
);
1418 if (!write_kvmstate_to_list(cpu
)) {
1421 /* Note that it's OK to have registers which aren't in CPUState,
1422 * so we can ignore a failure return here.
1424 write_list_to_cpustate(cpu
);
1426 kvm_arm_sync_mpstate_to_qemu(cpu
);
1428 /* TODO: other registers */
1432 void kvm_arch_on_sigbus_vcpu(CPUState
*c
, int code
, void *addr
)
1434 ram_addr_t ram_addr
;
1437 assert(code
== BUS_MCEERR_AR
|| code
== BUS_MCEERR_AO
);
1439 if (acpi_ghes_present() && addr
) {
1440 ram_addr
= qemu_ram_addr_from_host(addr
);
1441 if (ram_addr
!= RAM_ADDR_INVALID
&&
1442 kvm_physical_memory_addr_from_host(c
->kvm_state
, addr
, &paddr
)) {
1443 kvm_hwpoison_page_add(ram_addr
);
1445 * If this is a BUS_MCEERR_AR, we know we have been called
1446 * synchronously from the vCPU thread, so we can easily
1447 * synchronize the state and inject an error.
1449 * TODO: we currently don't tell the guest at all about
1450 * BUS_MCEERR_AO. In that case we might either be being
1451 * called synchronously from the vCPU thread, or a bit
1452 * later from the main thread, so doing the injection of
1453 * the error would be more complicated.
1455 if (code
== BUS_MCEERR_AR
) {
1456 kvm_cpu_synchronize_state(c
);
1457 if (!acpi_ghes_record_errors(ACPI_HEST_SRC_ID_SEA
, paddr
)) {
1458 kvm_inject_arm_sea(c
);
1460 error_report("failed to record the error");
1466 if (code
== BUS_MCEERR_AO
) {
1467 error_report("Hardware memory error at addr %p for memory used by "
1468 "QEMU itself instead of guest system!", addr
);
1472 if (code
== BUS_MCEERR_AR
) {
1473 error_report("Hardware memory error!");
1478 /* C6.6.29 BRK instruction */
1479 static const uint32_t brk_insn
= 0xd4200000;
1481 int kvm_arch_insert_sw_breakpoint(CPUState
*cs
, struct kvm_sw_breakpoint
*bp
)
1483 if (have_guest_debug
) {
1484 if (cpu_memory_rw_debug(cs
, bp
->pc
, (uint8_t *)&bp
->saved_insn
, 4, 0) ||
1485 cpu_memory_rw_debug(cs
, bp
->pc
, (uint8_t *)&brk_insn
, 4, 1)) {
1490 error_report("guest debug not supported on this kernel");
1495 int kvm_arch_remove_sw_breakpoint(CPUState
*cs
, struct kvm_sw_breakpoint
*bp
)
1497 static uint32_t brk
;
1499 if (have_guest_debug
) {
1500 if (cpu_memory_rw_debug(cs
, bp
->pc
, (uint8_t *)&brk
, 4, 0) ||
1502 cpu_memory_rw_debug(cs
, bp
->pc
, (uint8_t *)&bp
->saved_insn
, 4, 1)) {
1507 error_report("guest debug not supported on this kernel");
1512 /* See v8 ARM ARM D7.2.27 ESR_ELx, Exception Syndrome Register
1514 * To minimise translating between kernel and user-space the kernel
1515 * ABI just provides user-space with the full exception syndrome
1516 * register value to be decoded in QEMU.
1519 bool kvm_arm_handle_debug(CPUState
*cs
, struct kvm_debug_exit_arch
*debug_exit
)
1521 int hsr_ec
= syn_get_ec(debug_exit
->hsr
);
1522 ARMCPU
*cpu
= ARM_CPU(cs
);
1523 CPUARMState
*env
= &cpu
->env
;
1525 /* Ensure PC is synchronised */
1526 kvm_cpu_synchronize_state(cs
);
1529 case EC_SOFTWARESTEP
:
1530 if (cs
->singlestep_enabled
) {
1534 * The kernel should have suppressed the guest's ability to
1535 * single step at this point so something has gone wrong.
1537 error_report("%s: guest single-step while debugging unsupported"
1538 " (%"PRIx64
", %"PRIx32
")",
1539 __func__
, env
->pc
, debug_exit
->hsr
);
1544 if (kvm_find_sw_breakpoint(cs
, env
->pc
)) {
1549 if (find_hw_breakpoint(cs
, env
->pc
)) {
1555 CPUWatchpoint
*wp
= find_hw_watchpoint(cs
, debug_exit
->far
);
1557 cs
->watchpoint_hit
= wp
;
1563 error_report("%s: unhandled debug exit (%"PRIx32
", %"PRIx64
")",
1564 __func__
, debug_exit
->hsr
, env
->pc
);
1567 /* If we are not handling the debug exception it must belong to
1568 * the guest. Let's re-use the existing TCG interrupt code to set
1569 * everything up properly.
1571 cs
->exception_index
= EXCP_BKPT
;
1572 env
->exception
.syndrome
= debug_exit
->hsr
;
1573 env
->exception
.vaddress
= debug_exit
->far
;
1574 env
->exception
.target_el
= 1;
1575 qemu_mutex_lock_iothread();
1576 arm_cpu_do_interrupt(cs
);
1577 qemu_mutex_unlock_iothread();
1582 #define ARM64_REG_ESR_EL1 ARM64_SYS_REG(3, 0, 5, 2, 0)
1583 #define ARM64_REG_TCR_EL1 ARM64_SYS_REG(3, 0, 2, 0, 2)
1588 * AARCH64: DFSC, bits [5:0]
1592 * FS[3:0] - DFSR[3:0]
1596 #define ESR_DFSC(aarch64, lpae, v) \
1597 ((aarch64 || (lpae)) ? ((v) & 0x3F) \
1598 : (((v) >> 6) | ((v) & 0x1F)))
1600 #define ESR_DFSC_EXTABT(aarch64, lpae) \
1601 ((aarch64) ? 0x10 : (lpae) ? 0x10 : 0x8)
1603 bool kvm_arm_verify_ext_dabt_pending(CPUState
*cs
)
1607 if (!kvm_get_one_reg(cs
, ARM64_REG_ESR_EL1
, &dfsr_val
)) {
1608 ARMCPU
*cpu
= ARM_CPU(cs
);
1609 CPUARMState
*env
= &cpu
->env
;
1610 int aarch64_mode
= arm_feature(env
, ARM_FEATURE_AARCH64
);
1613 if (!aarch64_mode
) {
1616 if (!kvm_get_one_reg(cs
, ARM64_REG_TCR_EL1
, &ttbcr
)) {
1617 lpae
= arm_feature(env
, ARM_FEATURE_LPAE
)
1618 && (ttbcr
& TTBCR_EAE
);
1622 * The verification here is based on the DFSC bits
1623 * of the ESR_EL1 reg only
1625 return (ESR_DFSC(aarch64_mode
, lpae
, dfsr_val
) ==
1626 ESR_DFSC_EXTABT(aarch64_mode
, lpae
));