PPC: e500: calculate initrd_base like dt_base
[qemu/kevin.git] / cutils.c
blob8ef648f4b928e794d54956088fed40969288f6fb
1 /*
2 * Simple C functions to supplement the C library
4 * Copyright (c) 2006 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
24 #include "qemu-common.h"
25 #include "host-utils.h"
26 #include <math.h>
28 #include "qemu_socket.h"
29 #include "iov.h"
31 void strpadcpy(char *buf, int buf_size, const char *str, char pad)
33 int len = qemu_strnlen(str, buf_size);
34 memcpy(buf, str, len);
35 memset(buf + len, pad, buf_size - len);
38 void pstrcpy(char *buf, int buf_size, const char *str)
40 int c;
41 char *q = buf;
43 if (buf_size <= 0)
44 return;
46 for(;;) {
47 c = *str++;
48 if (c == 0 || q >= buf + buf_size - 1)
49 break;
50 *q++ = c;
52 *q = '\0';
55 /* strcat and truncate. */
56 char *pstrcat(char *buf, int buf_size, const char *s)
58 int len;
59 len = strlen(buf);
60 if (len < buf_size)
61 pstrcpy(buf + len, buf_size - len, s);
62 return buf;
65 int strstart(const char *str, const char *val, const char **ptr)
67 const char *p, *q;
68 p = str;
69 q = val;
70 while (*q != '\0') {
71 if (*p != *q)
72 return 0;
73 p++;
74 q++;
76 if (ptr)
77 *ptr = p;
78 return 1;
81 int stristart(const char *str, const char *val, const char **ptr)
83 const char *p, *q;
84 p = str;
85 q = val;
86 while (*q != '\0') {
87 if (qemu_toupper(*p) != qemu_toupper(*q))
88 return 0;
89 p++;
90 q++;
92 if (ptr)
93 *ptr = p;
94 return 1;
97 /* XXX: use host strnlen if available ? */
98 int qemu_strnlen(const char *s, int max_len)
100 int i;
102 for(i = 0; i < max_len; i++) {
103 if (s[i] == '\0') {
104 break;
107 return i;
110 time_t mktimegm(struct tm *tm)
112 time_t t;
113 int y = tm->tm_year + 1900, m = tm->tm_mon + 1, d = tm->tm_mday;
114 if (m < 3) {
115 m += 12;
116 y--;
118 t = 86400 * (d + (153 * m - 457) / 5 + 365 * y + y / 4 - y / 100 +
119 y / 400 - 719469);
120 t += 3600 * tm->tm_hour + 60 * tm->tm_min + tm->tm_sec;
121 return t;
124 int qemu_fls(int i)
126 return 32 - clz32(i);
130 * Make sure data goes on disk, but if possible do not bother to
131 * write out the inode just for timestamp updates.
133 * Unfortunately even in 2009 many operating systems do not support
134 * fdatasync and have to fall back to fsync.
136 int qemu_fdatasync(int fd)
138 #ifdef CONFIG_FDATASYNC
139 return fdatasync(fd);
140 #else
141 return fsync(fd);
142 #endif
145 /* io vectors */
147 void qemu_iovec_init(QEMUIOVector *qiov, int alloc_hint)
149 qiov->iov = g_malloc(alloc_hint * sizeof(struct iovec));
150 qiov->niov = 0;
151 qiov->nalloc = alloc_hint;
152 qiov->size = 0;
155 void qemu_iovec_init_external(QEMUIOVector *qiov, struct iovec *iov, int niov)
157 int i;
159 qiov->iov = iov;
160 qiov->niov = niov;
161 qiov->nalloc = -1;
162 qiov->size = 0;
163 for (i = 0; i < niov; i++)
164 qiov->size += iov[i].iov_len;
167 void qemu_iovec_add(QEMUIOVector *qiov, void *base, size_t len)
169 assert(qiov->nalloc != -1);
171 if (qiov->niov == qiov->nalloc) {
172 qiov->nalloc = 2 * qiov->nalloc + 1;
173 qiov->iov = g_realloc(qiov->iov, qiov->nalloc * sizeof(struct iovec));
175 qiov->iov[qiov->niov].iov_base = base;
176 qiov->iov[qiov->niov].iov_len = len;
177 qiov->size += len;
178 ++qiov->niov;
182 * Concatenates (partial) iovecs from src to the end of dst.
183 * It starts copying after skipping `soffset' bytes at the
184 * beginning of src and adds individual vectors from src to
185 * dst copies up to `sbytes' bytes total, or up to the end
186 * of src if it comes first. This way, it is okay to specify
187 * very large value for `sbytes' to indicate "up to the end
188 * of src".
189 * Only vector pointers are processed, not the actual data buffers.
191 void qemu_iovec_concat(QEMUIOVector *dst,
192 QEMUIOVector *src, size_t soffset, size_t sbytes)
194 int i;
195 size_t done;
196 struct iovec *siov = src->iov;
197 assert(dst->nalloc != -1);
198 assert(src->size >= soffset);
199 for (i = 0, done = 0; done < sbytes && i < src->niov; i++) {
200 if (soffset < siov[i].iov_len) {
201 size_t len = MIN(siov[i].iov_len - soffset, sbytes - done);
202 qemu_iovec_add(dst, siov[i].iov_base + soffset, len);
203 done += len;
204 soffset = 0;
205 } else {
206 soffset -= siov[i].iov_len;
209 /* return done; */
212 void qemu_iovec_destroy(QEMUIOVector *qiov)
214 assert(qiov->nalloc != -1);
216 qemu_iovec_reset(qiov);
217 g_free(qiov->iov);
218 qiov->nalloc = 0;
219 qiov->iov = NULL;
222 void qemu_iovec_reset(QEMUIOVector *qiov)
224 assert(qiov->nalloc != -1);
226 qiov->niov = 0;
227 qiov->size = 0;
230 size_t qemu_iovec_to_buf(QEMUIOVector *qiov, size_t offset,
231 void *buf, size_t bytes)
233 return iov_to_buf(qiov->iov, qiov->niov, offset, buf, bytes);
236 size_t qemu_iovec_from_buf(QEMUIOVector *qiov, size_t offset,
237 const void *buf, size_t bytes)
239 return iov_from_buf(qiov->iov, qiov->niov, offset, buf, bytes);
242 size_t qemu_iovec_memset(QEMUIOVector *qiov, size_t offset,
243 int fillc, size_t bytes)
245 return iov_memset(qiov->iov, qiov->niov, offset, fillc, bytes);
249 * Checks if a buffer is all zeroes
251 * Attention! The len must be a multiple of 4 * sizeof(long) due to
252 * restriction of optimizations in this function.
254 bool buffer_is_zero(const void *buf, size_t len)
257 * Use long as the biggest available internal data type that fits into the
258 * CPU register and unroll the loop to smooth out the effect of memory
259 * latency.
262 size_t i;
263 long d0, d1, d2, d3;
264 const long * const data = buf;
266 assert(len % (4 * sizeof(long)) == 0);
267 len /= sizeof(long);
269 for (i = 0; i < len; i += 4) {
270 d0 = data[i + 0];
271 d1 = data[i + 1];
272 d2 = data[i + 2];
273 d3 = data[i + 3];
275 if (d0 || d1 || d2 || d3) {
276 return false;
280 return true;
283 #ifndef _WIN32
284 /* Sets a specific flag */
285 int fcntl_setfl(int fd, int flag)
287 int flags;
289 flags = fcntl(fd, F_GETFL);
290 if (flags == -1)
291 return -errno;
293 if (fcntl(fd, F_SETFL, flags | flag) == -1)
294 return -errno;
296 return 0;
298 #endif
300 static int64_t suffix_mul(char suffix, int64_t unit)
302 switch (qemu_toupper(suffix)) {
303 case STRTOSZ_DEFSUFFIX_B:
304 return 1;
305 case STRTOSZ_DEFSUFFIX_KB:
306 return unit;
307 case STRTOSZ_DEFSUFFIX_MB:
308 return unit * unit;
309 case STRTOSZ_DEFSUFFIX_GB:
310 return unit * unit * unit;
311 case STRTOSZ_DEFSUFFIX_TB:
312 return unit * unit * unit * unit;
314 return -1;
318 * Convert string to bytes, allowing either B/b for bytes, K/k for KB,
319 * M/m for MB, G/g for GB or T/t for TB. End pointer will be returned
320 * in *end, if not NULL. Return -1 on error.
322 int64_t strtosz_suffix_unit(const char *nptr, char **end,
323 const char default_suffix, int64_t unit)
325 int64_t retval = -1;
326 char *endptr;
327 unsigned char c;
328 int mul_required = 0;
329 double val, mul, integral, fraction;
331 errno = 0;
332 val = strtod(nptr, &endptr);
333 if (isnan(val) || endptr == nptr || errno != 0) {
334 goto fail;
336 fraction = modf(val, &integral);
337 if (fraction != 0) {
338 mul_required = 1;
340 c = *endptr;
341 mul = suffix_mul(c, unit);
342 if (mul >= 0) {
343 endptr++;
344 } else {
345 mul = suffix_mul(default_suffix, unit);
346 assert(mul >= 0);
348 if (mul == 1 && mul_required) {
349 goto fail;
351 if ((val * mul >= INT64_MAX) || val < 0) {
352 goto fail;
354 retval = val * mul;
356 fail:
357 if (end) {
358 *end = endptr;
361 return retval;
364 int64_t strtosz_suffix(const char *nptr, char **end, const char default_suffix)
366 return strtosz_suffix_unit(nptr, end, default_suffix, 1024);
369 int64_t strtosz(const char *nptr, char **end)
371 return strtosz_suffix(nptr, end, STRTOSZ_DEFSUFFIX_MB);
374 int qemu_parse_fd(const char *param)
376 int fd;
377 char *endptr = NULL;
379 fd = strtol(param, &endptr, 10);
380 if (*endptr || (fd == 0 && param == endptr)) {
381 return -1;
383 return fd;
386 int qemu_parse_fdset(const char *param)
388 return qemu_parse_fd(param);
391 /* round down to the nearest power of 2*/
392 int64_t pow2floor(int64_t value)
394 if (!is_power_of_2(value)) {
395 value = 0x8000000000000000ULL >> clz64(value);
397 return value;
401 * Implementation of ULEB128 (http://en.wikipedia.org/wiki/LEB128)
402 * Input is limited to 14-bit numbers
404 int uleb128_encode_small(uint8_t *out, uint32_t n)
406 g_assert(n <= 0x3fff);
407 if (n < 0x80) {
408 *out++ = n;
409 return 1;
410 } else {
411 *out++ = (n & 0x7f) | 0x80;
412 *out++ = n >> 7;
413 return 2;
417 int uleb128_decode_small(const uint8_t *in, uint32_t *n)
419 if (!(*in & 0x80)) {
420 *n = *in++;
421 return 1;
422 } else {
423 *n = *in++ & 0x7f;
424 /* we exceed 14 bit number */
425 if (*in & 0x80) {
426 return -1;
428 *n |= *in++ << 7;
429 return 2;