4 * The code in this source file is derived from release 2a of the SoftFloat
5 * IEC/IEEE Floating-point Arithmetic Package. Those parts of the code (and
6 * some later contributions) are provided under that license, as detailed below.
7 * It has subsequently been modified by contributors to the QEMU Project,
8 * so some portions are provided under:
9 * the SoftFloat-2a license
13 * Any future contributions to this file after December 1st 2014 will be
14 * taken to be licensed under the Softfloat-2a license unless specifically
15 * indicated otherwise.
19 ===============================================================================
20 This C source fragment is part of the SoftFloat IEC/IEEE Floating-point
21 Arithmetic Package, Release 2a.
23 Written by John R. Hauser. This work was made possible in part by the
24 International Computer Science Institute, located at Suite 600, 1947 Center
25 Street, Berkeley, California 94704. Funding was partially provided by the
26 National Science Foundation under grant MIP-9311980. The original version
27 of this code was written as part of a project to build a fixed-point vector
28 processor in collaboration with the University of California at Berkeley,
29 overseen by Profs. Nelson Morgan and John Wawrzynek. More information
30 is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
31 arithmetic/SoftFloat.html'.
33 THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort
34 has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
35 TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO
36 PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
37 AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
39 Derivative works are acceptable, even for commercial purposes, so long as
40 (1) they include prominent notice that the work is derivative, and (2) they
41 include prominent notice akin to these four paragraphs for those parts of
42 this code that are retained.
44 ===============================================================================
48 * Copyright (c) 2006, Fabrice Bellard
49 * All rights reserved.
51 * Redistribution and use in source and binary forms, with or without
52 * modification, are permitted provided that the following conditions are met:
54 * 1. Redistributions of source code must retain the above copyright notice,
55 * this list of conditions and the following disclaimer.
57 * 2. Redistributions in binary form must reproduce the above copyright notice,
58 * this list of conditions and the following disclaimer in the documentation
59 * and/or other materials provided with the distribution.
61 * 3. Neither the name of the copyright holder nor the names of its contributors
62 * may be used to endorse or promote products derived from this software without
63 * specific prior written permission.
65 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
66 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
67 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
68 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
69 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
70 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
71 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
72 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
73 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
74 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
75 * THE POSSIBILITY OF SUCH DAMAGE.
78 /* Portions of this work are licensed under the terms of the GNU GPL,
79 * version 2 or later. See the COPYING file in the top-level directory.
83 * Define whether architecture deviates from IEEE in not supporting
84 * signaling NaNs (so all NaNs are treated as quiet).
86 static inline bool no_signaling_nans(float_status *status)
88 #if defined(TARGET_XTENSA)
89 return status->no_signaling_nans;
95 /* Define how the architecture discriminates signaling NaNs.
96 * This done with the most significant bit of the fraction.
97 * In IEEE 754-1985 this was implementation defined, but in IEEE 754-2008
98 * the msb must be zero. MIPS is (so far) unique in supporting both the
99 * 2008 revision and backward compatibility with their original choice.
100 * Thus for MIPS we must make the choice at runtime.
102 static inline bool snan_bit_is_one(float_status *status)
104 #if defined(TARGET_MIPS)
105 return status->snan_bit_is_one;
106 #elif defined(TARGET_HPPA) || defined(TARGET_UNICORE32) || defined(TARGET_SH4)
113 /*----------------------------------------------------------------------------
114 | For the deconstructed floating-point with fraction FRAC, return true
115 | if the fraction represents a signalling NaN; otherwise false.
116 *----------------------------------------------------------------------------*/
118 static bool parts_is_snan_frac(uint64_t frac, float_status *status)
120 if (no_signaling_nans(status)) {
123 bool msb = extract64(frac, DECOMPOSED_BINARY_POINT - 1, 1);
124 return msb == snan_bit_is_one(status);
128 /*----------------------------------------------------------------------------
129 | The pattern for a default generated deconstructed floating-point NaN.
130 *----------------------------------------------------------------------------*/
132 static FloatParts parts_default_nan(float_status *status)
137 #if defined(TARGET_SPARC) || defined(TARGET_M68K)
138 /* !snan_bit_is_one, set all bits */
139 frac = (1ULL << DECOMPOSED_BINARY_POINT) - 1;
140 #elif defined(TARGET_I386) || defined(TARGET_X86_64) \
141 || defined(TARGET_MICROBLAZE)
142 /* !snan_bit_is_one, set sign and msb */
143 frac = 1ULL << (DECOMPOSED_BINARY_POINT - 1);
145 #elif defined(TARGET_HPPA)
146 /* snan_bit_is_one, set msb-1. */
147 frac = 1ULL << (DECOMPOSED_BINARY_POINT - 2);
149 /* This case is true for Alpha, ARM, MIPS, OpenRISC, PPC, RISC-V,
150 * S390, SH4, TriCore, and Xtensa. I cannot find documentation
151 * for Unicore32; the choice from the original commit is unchanged.
152 * Our other supported targets, CRIS, LM32, Moxie, Nios2, and Tile,
153 * do not have floating-point.
155 if (snan_bit_is_one(status)) {
156 /* set all bits other than msb */
157 frac = (1ULL << (DECOMPOSED_BINARY_POINT - 1)) - 1;
160 frac = 1ULL << (DECOMPOSED_BINARY_POINT - 1);
164 return (FloatParts) {
165 .cls = float_class_qnan,
172 /*----------------------------------------------------------------------------
173 | Returns a quiet NaN from a signalling NaN for the deconstructed
174 | floating-point parts.
175 *----------------------------------------------------------------------------*/
177 static FloatParts parts_silence_nan(FloatParts a, float_status *status)
179 g_assert(!no_signaling_nans(status));
180 #if defined(TARGET_HPPA)
181 a.frac &= ~(1ULL << (DECOMPOSED_BINARY_POINT - 1));
182 a.frac |= 1ULL << (DECOMPOSED_BINARY_POINT - 2);
184 if (snan_bit_is_one(status)) {
185 return parts_default_nan(status);
187 a.frac |= 1ULL << (DECOMPOSED_BINARY_POINT - 1);
190 a.cls = float_class_qnan;
194 /*----------------------------------------------------------------------------
195 | The pattern for a default generated extended double-precision NaN.
196 *----------------------------------------------------------------------------*/
197 floatx80 floatx80_default_nan(float_status *status)
201 /* None of the targets that have snan_bit_is_one use floatx80. */
202 assert(!snan_bit_is_one(status));
203 #if defined(TARGET_M68K)
204 r.low = UINT64_C(0xFFFFFFFFFFFFFFFF);
208 r.low = UINT64_C(0xC000000000000000);
214 /*----------------------------------------------------------------------------
215 | The pattern for a default generated extended double-precision inf.
216 *----------------------------------------------------------------------------*/
218 #define floatx80_infinity_high 0x7FFF
219 #if defined(TARGET_M68K)
220 #define floatx80_infinity_low UINT64_C(0x0000000000000000)
222 #define floatx80_infinity_low UINT64_C(0x8000000000000000)
225 const floatx80 floatx80_infinity
226 = make_floatx80_init(floatx80_infinity_high, floatx80_infinity_low);
228 /*----------------------------------------------------------------------------
229 | Raises the exceptions specified by `flags'. Floating-point traps can be
230 | defined here if desired. It is currently not possible for such a trap
231 | to substitute a result value. If traps are not implemented, this routine
232 | should be simply `float_exception_flags |= flags;'.
233 *----------------------------------------------------------------------------*/
235 void float_raise(uint8_t flags, float_status *status)
237 status->float_exception_flags |= flags;
240 /*----------------------------------------------------------------------------
241 | Internal canonical NaN format.
242 *----------------------------------------------------------------------------*/
248 /*----------------------------------------------------------------------------
249 | Returns 1 if the half-precision floating-point value `a' is a quiet
250 | NaN; otherwise returns 0.
251 *----------------------------------------------------------------------------*/
253 bool float16_is_quiet_nan(float16 a_, float_status *status)
255 if (no_signaling_nans(status)) {
256 return float16_is_any_nan(a_);
258 uint16_t a = float16_val(a_);
259 if (snan_bit_is_one(status)) {
260 return (((a >> 9) & 0x3F) == 0x3E) && (a & 0x1FF);
263 return ((a >> 9) & 0x3F) == 0x3F;
268 /*----------------------------------------------------------------------------
269 | Returns 1 if the bfloat16 value `a' is a quiet
270 | NaN; otherwise returns 0.
271 *----------------------------------------------------------------------------*/
273 bool bfloat16_is_quiet_nan(bfloat16 a_, float_status *status)
275 if (no_signaling_nans(status)) {
276 return bfloat16_is_any_nan(a_);
279 if (snan_bit_is_one(status)) {
280 return (((a >> 6) & 0x1FF) == 0x1FE) && (a & 0x3F);
282 return ((a >> 6) & 0x1FF) == 0x1FF;
287 /*----------------------------------------------------------------------------
288 | Returns 1 if the half-precision floating-point value `a' is a signaling
289 | NaN; otherwise returns 0.
290 *----------------------------------------------------------------------------*/
292 bool float16_is_signaling_nan(float16 a_, float_status *status)
294 if (no_signaling_nans(status)) {
297 uint16_t a = float16_val(a_);
298 if (snan_bit_is_one(status)) {
299 return ((a >> 9) & 0x3F) == 0x3F;
301 return (((a >> 9) & 0x3F) == 0x3E) && (a & 0x1FF);
306 /*----------------------------------------------------------------------------
307 | Returns 1 if the bfloat16 value `a' is a signaling
308 | NaN; otherwise returns 0.
309 *----------------------------------------------------------------------------*/
311 bool bfloat16_is_signaling_nan(bfloat16 a_, float_status *status)
313 if (no_signaling_nans(status)) {
317 if (snan_bit_is_one(status)) {
318 return ((a >> 6) & 0x1FF) == 0x1FF;
320 return (((a >> 6) & 0x1FF) == 0x1FE) && (a & 0x3F);
325 /*----------------------------------------------------------------------------
326 | Returns 1 if the single-precision floating-point value `a' is a quiet
327 | NaN; otherwise returns 0.
328 *----------------------------------------------------------------------------*/
330 bool float32_is_quiet_nan(float32 a_, float_status *status)
332 if (no_signaling_nans(status)) {
333 return float32_is_any_nan(a_);
335 uint32_t a = float32_val(a_);
336 if (snan_bit_is_one(status)) {
337 return (((a >> 22) & 0x1FF) == 0x1FE) && (a & 0x003FFFFF);
339 return ((uint32_t)(a << 1) >= 0xFF800000);
344 /*----------------------------------------------------------------------------
345 | Returns 1 if the single-precision floating-point value `a' is a signaling
346 | NaN; otherwise returns 0.
347 *----------------------------------------------------------------------------*/
349 bool float32_is_signaling_nan(float32 a_, float_status *status)
351 if (no_signaling_nans(status)) {
354 uint32_t a = float32_val(a_);
355 if (snan_bit_is_one(status)) {
356 return ((uint32_t)(a << 1) >= 0xFF800000);
358 return (((a >> 22) & 0x1FF) == 0x1FE) && (a & 0x003FFFFF);
363 /*----------------------------------------------------------------------------
364 | Returns the result of converting the single-precision floating-point NaN
365 | `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
366 | exception is raised.
367 *----------------------------------------------------------------------------*/
369 static commonNaNT float32ToCommonNaN(float32 a, float_status *status)
373 if (float32_is_signaling_nan(a, status)) {
374 float_raise(float_flag_invalid, status);
376 z.sign = float32_val(a) >> 31;
378 z.high = ((uint64_t)float32_val(a)) << 41;
382 /*----------------------------------------------------------------------------
383 | Returns the result of converting the canonical NaN `a' to the single-
384 | precision floating-point format.
385 *----------------------------------------------------------------------------*/
387 static float32 commonNaNToFloat32(commonNaNT a, float_status *status)
389 uint32_t mantissa = a.high >> 41;
391 if (status->default_nan_mode) {
392 return float32_default_nan(status);
397 (((uint32_t)a.sign) << 31) | 0x7F800000 | (a.high >> 41));
399 return float32_default_nan(status);
403 /*----------------------------------------------------------------------------
404 | Select which NaN to propagate for a two-input operation.
405 | IEEE754 doesn't specify all the details of this, so the
406 | algorithm is target-specific.
407 | The routine is passed various bits of information about the
408 | two NaNs and should return 0 to select NaN a and 1 for NaN b.
409 | Note that signalling NaNs are always squashed to quiet NaNs
410 | by the caller, by calling floatXX_silence_nan() before
413 | aIsLargerSignificand is only valid if both a and b are NaNs
414 | of some kind, and is true if a has the larger significand,
415 | or if both a and b have the same significand but a is
416 | positive but b is negative. It is only needed for the x87
418 *----------------------------------------------------------------------------*/
420 static int pickNaN(FloatClass a_cls, FloatClass b_cls,
421 bool aIsLargerSignificand, float_status *status)
423 #if defined(TARGET_ARM) || defined(TARGET_MIPS) || defined(TARGET_HPPA)
424 /* ARM mandated NaN propagation rules (see FPProcessNaNs()), take
426 * 1. A if it is signaling
427 * 2. B if it is signaling
430 * A signaling NaN is always quietened before returning it.
432 /* According to MIPS specifications, if one of the two operands is
433 * a sNaN, a new qNaN has to be generated. This is done in
434 * floatXX_silence_nan(). For qNaN inputs the specifications
435 * says: "When possible, this QNaN result is one of the operand QNaN
436 * values." In practice it seems that most implementations choose
437 * the first operand if both operands are qNaN. In short this gives
438 * the following rules:
439 * 1. A if it is signaling
440 * 2. B if it is signaling
443 * A signaling NaN is always silenced before returning it.
445 if (is_snan(a_cls)) {
447 } else if (is_snan(b_cls)) {
449 } else if (is_qnan(a_cls)) {
454 #elif defined(TARGET_PPC) || defined(TARGET_M68K)
455 /* PowerPC propagation rules:
456 * 1. A if it sNaN or qNaN
457 * 2. B if it sNaN or qNaN
458 * A signaling NaN is always silenced before returning it.
460 /* M68000 FAMILY PROGRAMMER'S REFERENCE MANUAL
461 * 3.4 FLOATING-POINT INSTRUCTION DETAILS
462 * If either operand, but not both operands, of an operation is a
463 * nonsignaling NaN, then that NaN is returned as the result. If both
464 * operands are nonsignaling NaNs, then the destination operand
465 * nonsignaling NaN is returned as the result.
466 * If either operand to an operation is a signaling NaN (SNaN), then the
467 * SNaN bit is set in the FPSR EXC byte. If the SNaN exception enable bit
468 * is set in the FPCR ENABLE byte, then the exception is taken and the
469 * destination is not modified. If the SNaN exception enable bit is not
470 * set, setting the SNaN bit in the operand to a one converts the SNaN to
471 * a nonsignaling NaN. The operation then continues as described in the
472 * preceding paragraph for nonsignaling NaNs.
479 #elif defined(TARGET_XTENSA)
481 * Xtensa has two NaN propagation modes.
482 * Which one is active is controlled by float_status::use_first_nan.
484 if (status->use_first_nan) {
498 /* This implements x87 NaN propagation rules:
499 * SNaN + QNaN => return the QNaN
500 * two SNaNs => return the one with the larger significand, silenced
501 * two QNaNs => return the one with the larger significand
502 * SNaN and a non-NaN => return the SNaN, silenced
503 * QNaN and a non-NaN => return the QNaN
505 * If we get down to comparing significands and they are the same,
506 * return the NaN with the positive sign bit (if any).
508 if (is_snan(a_cls)) {
509 if (is_snan(b_cls)) {
510 return aIsLargerSignificand ? 0 : 1;
512 return is_qnan(b_cls) ? 1 : 0;
513 } else if (is_qnan(a_cls)) {
514 if (is_snan(b_cls) || !is_qnan(b_cls)) {
517 return aIsLargerSignificand ? 0 : 1;
525 /*----------------------------------------------------------------------------
526 | Select which NaN to propagate for a three-input operation.
527 | For the moment we assume that no CPU needs the 'larger significand'
529 | Return values : 0 : a; 1 : b; 2 : c; 3 : default-NaN
530 *----------------------------------------------------------------------------*/
531 static int pickNaNMulAdd(FloatClass a_cls, FloatClass b_cls, FloatClass c_cls,
532 bool infzero, float_status *status)
534 #if defined(TARGET_ARM)
535 /* For ARM, the (inf,zero,qnan) case sets InvalidOp and returns
538 if (infzero && is_qnan(c_cls)) {
539 float_raise(float_flag_invalid, status);
543 /* This looks different from the ARM ARM pseudocode, because the ARM ARM
544 * puts the operands to a fused mac operation (a*b)+c in the order c,a,b.
546 if (is_snan(c_cls)) {
548 } else if (is_snan(a_cls)) {
550 } else if (is_snan(b_cls)) {
552 } else if (is_qnan(c_cls)) {
554 } else if (is_qnan(a_cls)) {
559 #elif defined(TARGET_MIPS)
560 if (snan_bit_is_one(status)) {
562 * For MIPS systems that conform to IEEE754-1985, the (inf,zero,nan)
563 * case sets InvalidOp and returns the default NaN
566 float_raise(float_flag_invalid, status);
569 /* Prefer sNaN over qNaN, in the a, b, c order. */
570 if (is_snan(a_cls)) {
572 } else if (is_snan(b_cls)) {
574 } else if (is_snan(c_cls)) {
576 } else if (is_qnan(a_cls)) {
578 } else if (is_qnan(b_cls)) {
585 * For MIPS systems that conform to IEEE754-2008, the (inf,zero,nan)
586 * case sets InvalidOp and returns the input value 'c'
589 float_raise(float_flag_invalid, status);
592 /* Prefer sNaN over qNaN, in the c, a, b order. */
593 if (is_snan(c_cls)) {
595 } else if (is_snan(a_cls)) {
597 } else if (is_snan(b_cls)) {
599 } else if (is_qnan(c_cls)) {
601 } else if (is_qnan(a_cls)) {
607 #elif defined(TARGET_PPC)
608 /* For PPC, the (inf,zero,qnan) case sets InvalidOp, but we prefer
609 * to return an input NaN if we have one (ie c) rather than generating
613 float_raise(float_flag_invalid, status);
617 /* If fRA is a NaN return it; otherwise if fRB is a NaN return it;
618 * otherwise return fRC. Note that muladd on PPC is (fRA * fRC) + frB
622 } else if (is_nan(c_cls)) {
627 #elif defined(TARGET_XTENSA)
629 * For Xtensa, the (inf,zero,nan) case sets InvalidOp and returns
630 * an input NaN if we have one (ie c).
633 float_raise(float_flag_invalid, status);
636 if (status->use_first_nan) {
639 } else if (is_nan(b_cls)) {
647 } else if (is_nan(b_cls)) {
654 /* A default implementation: prefer a to b to c.
655 * This is unlikely to actually match any real implementation.
659 } else if (is_nan(b_cls)) {
667 /*----------------------------------------------------------------------------
668 | Takes two single-precision floating-point values `a' and `b', one of which
669 | is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a
670 | signaling NaN, the invalid exception is raised.
671 *----------------------------------------------------------------------------*/
673 static float32 propagateFloat32NaN(float32 a, float32 b, float_status *status)
675 bool aIsLargerSignificand;
677 FloatClass a_cls, b_cls;
679 /* This is not complete, but is good enough for pickNaN. */
680 a_cls = (!float32_is_any_nan(a)
682 : float32_is_signaling_nan(a, status)
685 b_cls = (!float32_is_any_nan(b)
687 : float32_is_signaling_nan(b, status)
694 if (is_snan(a_cls) || is_snan(b_cls)) {
695 float_raise(float_flag_invalid, status);
698 if (status->default_nan_mode) {
699 return float32_default_nan(status);
702 if ((uint32_t)(av << 1) < (uint32_t)(bv << 1)) {
703 aIsLargerSignificand = 0;
704 } else if ((uint32_t)(bv << 1) < (uint32_t)(av << 1)) {
705 aIsLargerSignificand = 1;
707 aIsLargerSignificand = (av < bv) ? 1 : 0;
710 if (pickNaN(a_cls, b_cls, aIsLargerSignificand, status)) {
711 if (is_snan(b_cls)) {
712 return float32_silence_nan(b, status);
716 if (is_snan(a_cls)) {
717 return float32_silence_nan(a, status);
723 /*----------------------------------------------------------------------------
724 | Returns 1 if the double-precision floating-point value `a' is a quiet
725 | NaN; otherwise returns 0.
726 *----------------------------------------------------------------------------*/
728 bool float64_is_quiet_nan(float64 a_, float_status *status)
730 if (no_signaling_nans(status)) {
731 return float64_is_any_nan(a_);
733 uint64_t a = float64_val(a_);
734 if (snan_bit_is_one(status)) {
735 return (((a >> 51) & 0xFFF) == 0xFFE)
736 && (a & 0x0007FFFFFFFFFFFFULL);
738 return ((a << 1) >= 0xFFF0000000000000ULL);
743 /*----------------------------------------------------------------------------
744 | Returns 1 if the double-precision floating-point value `a' is a signaling
745 | NaN; otherwise returns 0.
746 *----------------------------------------------------------------------------*/
748 bool float64_is_signaling_nan(float64 a_, float_status *status)
750 if (no_signaling_nans(status)) {
753 uint64_t a = float64_val(a_);
754 if (snan_bit_is_one(status)) {
755 return ((a << 1) >= 0xFFF0000000000000ULL);
757 return (((a >> 51) & 0xFFF) == 0xFFE)
758 && (a & UINT64_C(0x0007FFFFFFFFFFFF));
763 /*----------------------------------------------------------------------------
764 | Returns the result of converting the double-precision floating-point NaN
765 | `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
766 | exception is raised.
767 *----------------------------------------------------------------------------*/
769 static commonNaNT float64ToCommonNaN(float64 a, float_status *status)
773 if (float64_is_signaling_nan(a, status)) {
774 float_raise(float_flag_invalid, status);
776 z.sign = float64_val(a) >> 63;
778 z.high = float64_val(a) << 12;
782 /*----------------------------------------------------------------------------
783 | Returns the result of converting the canonical NaN `a' to the double-
784 | precision floating-point format.
785 *----------------------------------------------------------------------------*/
787 static float64 commonNaNToFloat64(commonNaNT a, float_status *status)
789 uint64_t mantissa = a.high >> 12;
791 if (status->default_nan_mode) {
792 return float64_default_nan(status);
797 (((uint64_t) a.sign) << 63)
798 | UINT64_C(0x7FF0000000000000)
801 return float64_default_nan(status);
805 /*----------------------------------------------------------------------------
806 | Takes two double-precision floating-point values `a' and `b', one of which
807 | is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a
808 | signaling NaN, the invalid exception is raised.
809 *----------------------------------------------------------------------------*/
811 static float64 propagateFloat64NaN(float64 a, float64 b, float_status *status)
813 bool aIsLargerSignificand;
815 FloatClass a_cls, b_cls;
817 /* This is not complete, but is good enough for pickNaN. */
818 a_cls = (!float64_is_any_nan(a)
820 : float64_is_signaling_nan(a, status)
823 b_cls = (!float64_is_any_nan(b)
825 : float64_is_signaling_nan(b, status)
832 if (is_snan(a_cls) || is_snan(b_cls)) {
833 float_raise(float_flag_invalid, status);
836 if (status->default_nan_mode) {
837 return float64_default_nan(status);
840 if ((uint64_t)(av << 1) < (uint64_t)(bv << 1)) {
841 aIsLargerSignificand = 0;
842 } else if ((uint64_t)(bv << 1) < (uint64_t)(av << 1)) {
843 aIsLargerSignificand = 1;
845 aIsLargerSignificand = (av < bv) ? 1 : 0;
848 if (pickNaN(a_cls, b_cls, aIsLargerSignificand, status)) {
849 if (is_snan(b_cls)) {
850 return float64_silence_nan(b, status);
854 if (is_snan(a_cls)) {
855 return float64_silence_nan(a, status);
861 /*----------------------------------------------------------------------------
862 | Returns 1 if the extended double-precision floating-point value `a' is a
863 | quiet NaN; otherwise returns 0. This slightly differs from the same
864 | function for other types as floatx80 has an explicit bit.
865 *----------------------------------------------------------------------------*/
867 int floatx80_is_quiet_nan(floatx80 a, float_status *status)
869 if (no_signaling_nans(status)) {
870 return floatx80_is_any_nan(a);
872 if (snan_bit_is_one(status)) {
875 aLow = a.low & ~0x4000000000000000ULL;
876 return ((a.high & 0x7FFF) == 0x7FFF)
880 return ((a.high & 0x7FFF) == 0x7FFF)
881 && (UINT64_C(0x8000000000000000) <= ((uint64_t)(a.low << 1)));
886 /*----------------------------------------------------------------------------
887 | Returns 1 if the extended double-precision floating-point value `a' is a
888 | signaling NaN; otherwise returns 0. This slightly differs from the same
889 | function for other types as floatx80 has an explicit bit.
890 *----------------------------------------------------------------------------*/
892 int floatx80_is_signaling_nan(floatx80 a, float_status *status)
894 if (no_signaling_nans(status)) {
897 if (snan_bit_is_one(status)) {
898 return ((a.high & 0x7FFF) == 0x7FFF)
899 && ((a.low << 1) >= 0x8000000000000000ULL);
903 aLow = a.low & ~UINT64_C(0x4000000000000000);
904 return ((a.high & 0x7FFF) == 0x7FFF)
905 && (uint64_t)(aLow << 1)
911 /*----------------------------------------------------------------------------
912 | Returns a quiet NaN from a signalling NaN for the extended double-precision
913 | floating point value `a'.
914 *----------------------------------------------------------------------------*/
916 floatx80 floatx80_silence_nan(floatx80 a, float_status *status)
918 /* None of the targets that have snan_bit_is_one use floatx80. */
919 assert(!snan_bit_is_one(status));
920 a.low |= UINT64_C(0xC000000000000000);
924 /*----------------------------------------------------------------------------
925 | Returns the result of converting the extended double-precision floating-
926 | point NaN `a' to the canonical NaN format. If `a' is a signaling NaN, the
927 | invalid exception is raised.
928 *----------------------------------------------------------------------------*/
930 static commonNaNT floatx80ToCommonNaN(floatx80 a, float_status *status)
935 if (floatx80_is_signaling_nan(a, status)) {
936 float_raise(float_flag_invalid, status);
939 z.sign = a.high >> 15;
943 dflt = floatx80_default_nan(status);
944 z.sign = dflt.high >> 15;
946 z.high = dflt.low << 1;
951 /*----------------------------------------------------------------------------
952 | Returns the result of converting the canonical NaN `a' to the extended
953 | double-precision floating-point format.
954 *----------------------------------------------------------------------------*/
956 static floatx80 commonNaNToFloatx80(commonNaNT a, float_status *status)
960 if (status->default_nan_mode) {
961 return floatx80_default_nan(status);
965 z.low = UINT64_C(0x8000000000000000) | a.high >> 1;
966 z.high = (((uint16_t)a.sign) << 15) | 0x7FFF;
968 z = floatx80_default_nan(status);
973 /*----------------------------------------------------------------------------
974 | Takes two extended double-precision floating-point values `a' and `b', one
975 | of which is a NaN, and returns the appropriate NaN result. If either `a' or
976 | `b' is a signaling NaN, the invalid exception is raised.
977 *----------------------------------------------------------------------------*/
979 floatx80 propagateFloatx80NaN(floatx80 a, floatx80 b, float_status *status)
981 bool aIsLargerSignificand;
982 FloatClass a_cls, b_cls;
984 /* This is not complete, but is good enough for pickNaN. */
985 a_cls = (!floatx80_is_any_nan(a)
987 : floatx80_is_signaling_nan(a, status)
990 b_cls = (!floatx80_is_any_nan(b)
992 : floatx80_is_signaling_nan(b, status)
996 if (is_snan(a_cls) || is_snan(b_cls)) {
997 float_raise(float_flag_invalid, status);
1000 if (status->default_nan_mode) {
1001 return floatx80_default_nan(status);
1004 if (a.low < b.low) {
1005 aIsLargerSignificand = 0;
1006 } else if (b.low < a.low) {
1007 aIsLargerSignificand = 1;
1009 aIsLargerSignificand = (a.high < b.high) ? 1 : 0;
1012 if (pickNaN(a_cls, b_cls, aIsLargerSignificand, status)) {
1013 if (is_snan(b_cls)) {
1014 return floatx80_silence_nan(b, status);
1018 if (is_snan(a_cls)) {
1019 return floatx80_silence_nan(a, status);
1025 /*----------------------------------------------------------------------------
1026 | Returns 1 if the quadruple-precision floating-point value `a' is a quiet
1027 | NaN; otherwise returns 0.
1028 *----------------------------------------------------------------------------*/
1030 bool float128_is_quiet_nan(float128 a, float_status *status)
1032 if (no_signaling_nans(status)) {
1033 return float128_is_any_nan(a);
1035 if (snan_bit_is_one(status)) {
1036 return (((a.high >> 47) & 0xFFFF) == 0xFFFE)
1037 && (a.low || (a.high & 0x00007FFFFFFFFFFFULL));
1039 return ((a.high << 1) >= 0xFFFF000000000000ULL)
1040 && (a.low || (a.high & 0x0000FFFFFFFFFFFFULL));
1045 /*----------------------------------------------------------------------------
1046 | Returns 1 if the quadruple-precision floating-point value `a' is a
1047 | signaling NaN; otherwise returns 0.
1048 *----------------------------------------------------------------------------*/
1050 bool float128_is_signaling_nan(float128 a, float_status *status)
1052 if (no_signaling_nans(status)) {
1055 if (snan_bit_is_one(status)) {
1056 return ((a.high << 1) >= 0xFFFF000000000000ULL)
1057 && (a.low || (a.high & 0x0000FFFFFFFFFFFFULL));
1059 return (((a.high >> 47) & 0xFFFF) == 0xFFFE)
1060 && (a.low || (a.high & UINT64_C(0x00007FFFFFFFFFFF)));
1065 /*----------------------------------------------------------------------------
1066 | Returns a quiet NaN from a signalling NaN for the quadruple-precision
1067 | floating point value `a'.
1068 *----------------------------------------------------------------------------*/
1070 float128 float128_silence_nan(float128 a, float_status *status)
1072 if (no_signaling_nans(status)) {
1073 g_assert_not_reached();
1075 if (snan_bit_is_one(status)) {
1076 return float128_default_nan(status);
1078 a.high |= UINT64_C(0x0000800000000000);
1084 /*----------------------------------------------------------------------------
1085 | Returns the result of converting the quadruple-precision floating-point NaN
1086 | `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
1087 | exception is raised.
1088 *----------------------------------------------------------------------------*/
1090 static commonNaNT float128ToCommonNaN(float128 a, float_status *status)
1094 if (float128_is_signaling_nan(a, status)) {
1095 float_raise(float_flag_invalid, status);
1097 z.sign = a.high >> 63;
1098 shortShift128Left(a.high, a.low, 16, &z.high, &z.low);
1102 /*----------------------------------------------------------------------------
1103 | Returns the result of converting the canonical NaN `a' to the quadruple-
1104 | precision floating-point format.
1105 *----------------------------------------------------------------------------*/
1107 static float128 commonNaNToFloat128(commonNaNT a, float_status *status)
1111 if (status->default_nan_mode) {
1112 return float128_default_nan(status);
1115 shift128Right(a.high, a.low, 16, &z.high, &z.low);
1116 z.high |= (((uint64_t)a.sign) << 63) | UINT64_C(0x7FFF000000000000);
1120 /*----------------------------------------------------------------------------
1121 | Takes two quadruple-precision floating-point values `a' and `b', one of
1122 | which is a NaN, and returns the appropriate NaN result. If either `a' or
1123 | `b' is a signaling NaN, the invalid exception is raised.
1124 *----------------------------------------------------------------------------*/
1126 static float128 propagateFloat128NaN(float128 a, float128 b,
1127 float_status *status)
1129 bool aIsLargerSignificand;
1130 FloatClass a_cls, b_cls;
1132 /* This is not complete, but is good enough for pickNaN. */
1133 a_cls = (!float128_is_any_nan(a)
1134 ? float_class_normal
1135 : float128_is_signaling_nan(a, status)
1137 : float_class_qnan);
1138 b_cls = (!float128_is_any_nan(b)
1139 ? float_class_normal
1140 : float128_is_signaling_nan(b, status)
1142 : float_class_qnan);
1144 if (is_snan(a_cls) || is_snan(b_cls)) {
1145 float_raise(float_flag_invalid, status);
1148 if (status->default_nan_mode) {
1149 return float128_default_nan(status);
1152 if (lt128(a.high << 1, a.low, b.high << 1, b.low)) {
1153 aIsLargerSignificand = 0;
1154 } else if (lt128(b.high << 1, b.low, a.high << 1, a.low)) {
1155 aIsLargerSignificand = 1;
1157 aIsLargerSignificand = (a.high < b.high) ? 1 : 0;
1160 if (pickNaN(a_cls, b_cls, aIsLargerSignificand, status)) {
1161 if (is_snan(b_cls)) {
1162 return float128_silence_nan(b, status);
1166 if (is_snan(a_cls)) {
1167 return float128_silence_nan(a, status);