virtio-gpu: rename virgl source file.
[qemu/kevin.git] / softmmu / physmem.c
blob5232696571838fd1ab51c33320737250b6a2b855
1 /*
2 * RAM allocation and memory access
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "qemu-common.h"
22 #include "qapi/error.h"
24 #include "qemu/cutils.h"
25 #include "qemu/cacheflush.h"
27 #ifdef CONFIG_TCG
28 #include "hw/core/tcg-cpu-ops.h"
29 #endif /* CONFIG_TCG */
31 #include "exec/exec-all.h"
32 #include "exec/target_page.h"
33 #include "hw/qdev-core.h"
34 #include "hw/qdev-properties.h"
35 #include "hw/boards.h"
36 #include "hw/xen/xen.h"
37 #include "sysemu/kvm.h"
38 #include "sysemu/tcg.h"
39 #include "sysemu/qtest.h"
40 #include "qemu/timer.h"
41 #include "qemu/config-file.h"
42 #include "qemu/error-report.h"
43 #include "qemu/qemu-print.h"
44 #include "exec/memory.h"
45 #include "exec/ioport.h"
46 #include "sysemu/dma.h"
47 #include "sysemu/hostmem.h"
48 #include "sysemu/hw_accel.h"
49 #include "sysemu/xen-mapcache.h"
50 #include "trace/trace-root.h"
52 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
53 #include <linux/falloc.h>
54 #endif
56 #include "qemu/rcu_queue.h"
57 #include "qemu/main-loop.h"
58 #include "exec/translate-all.h"
59 #include "sysemu/replay.h"
61 #include "exec/memory-internal.h"
62 #include "exec/ram_addr.h"
63 #include "exec/log.h"
65 #include "qemu/pmem.h"
67 #include "migration/vmstate.h"
69 #include "qemu/range.h"
70 #ifndef _WIN32
71 #include "qemu/mmap-alloc.h"
72 #endif
74 #include "monitor/monitor.h"
76 #ifdef CONFIG_LIBDAXCTL
77 #include <daxctl/libdaxctl.h>
78 #endif
80 //#define DEBUG_SUBPAGE
82 /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
83 * are protected by the ramlist lock.
85 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
87 static MemoryRegion *system_memory;
88 static MemoryRegion *system_io;
90 AddressSpace address_space_io;
91 AddressSpace address_space_memory;
93 static MemoryRegion io_mem_unassigned;
95 typedef struct PhysPageEntry PhysPageEntry;
97 struct PhysPageEntry {
98 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
99 uint32_t skip : 6;
100 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
101 uint32_t ptr : 26;
104 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
106 /* Size of the L2 (and L3, etc) page tables. */
107 #define ADDR_SPACE_BITS 64
109 #define P_L2_BITS 9
110 #define P_L2_SIZE (1 << P_L2_BITS)
112 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
114 typedef PhysPageEntry Node[P_L2_SIZE];
116 typedef struct PhysPageMap {
117 struct rcu_head rcu;
119 unsigned sections_nb;
120 unsigned sections_nb_alloc;
121 unsigned nodes_nb;
122 unsigned nodes_nb_alloc;
123 Node *nodes;
124 MemoryRegionSection *sections;
125 } PhysPageMap;
127 struct AddressSpaceDispatch {
128 MemoryRegionSection *mru_section;
129 /* This is a multi-level map on the physical address space.
130 * The bottom level has pointers to MemoryRegionSections.
132 PhysPageEntry phys_map;
133 PhysPageMap map;
136 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
137 typedef struct subpage_t {
138 MemoryRegion iomem;
139 FlatView *fv;
140 hwaddr base;
141 uint16_t sub_section[];
142 } subpage_t;
144 #define PHYS_SECTION_UNASSIGNED 0
146 static void io_mem_init(void);
147 static void memory_map_init(void);
148 static void tcg_log_global_after_sync(MemoryListener *listener);
149 static void tcg_commit(MemoryListener *listener);
152 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
153 * @cpu: the CPU whose AddressSpace this is
154 * @as: the AddressSpace itself
155 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
156 * @tcg_as_listener: listener for tracking changes to the AddressSpace
158 struct CPUAddressSpace {
159 CPUState *cpu;
160 AddressSpace *as;
161 struct AddressSpaceDispatch *memory_dispatch;
162 MemoryListener tcg_as_listener;
165 struct DirtyBitmapSnapshot {
166 ram_addr_t start;
167 ram_addr_t end;
168 unsigned long dirty[];
171 static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
173 static unsigned alloc_hint = 16;
174 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
175 map->nodes_nb_alloc = MAX(alloc_hint, map->nodes_nb + nodes);
176 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
177 alloc_hint = map->nodes_nb_alloc;
181 static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
183 unsigned i;
184 uint32_t ret;
185 PhysPageEntry e;
186 PhysPageEntry *p;
188 ret = map->nodes_nb++;
189 p = map->nodes[ret];
190 assert(ret != PHYS_MAP_NODE_NIL);
191 assert(ret != map->nodes_nb_alloc);
193 e.skip = leaf ? 0 : 1;
194 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
195 for (i = 0; i < P_L2_SIZE; ++i) {
196 memcpy(&p[i], &e, sizeof(e));
198 return ret;
201 static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
202 hwaddr *index, uint64_t *nb, uint16_t leaf,
203 int level)
205 PhysPageEntry *p;
206 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
208 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
209 lp->ptr = phys_map_node_alloc(map, level == 0);
211 p = map->nodes[lp->ptr];
212 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
214 while (*nb && lp < &p[P_L2_SIZE]) {
215 if ((*index & (step - 1)) == 0 && *nb >= step) {
216 lp->skip = 0;
217 lp->ptr = leaf;
218 *index += step;
219 *nb -= step;
220 } else {
221 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
223 ++lp;
227 static void phys_page_set(AddressSpaceDispatch *d,
228 hwaddr index, uint64_t nb,
229 uint16_t leaf)
231 /* Wildly overreserve - it doesn't matter much. */
232 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
234 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
237 /* Compact a non leaf page entry. Simply detect that the entry has a single child,
238 * and update our entry so we can skip it and go directly to the destination.
240 static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
242 unsigned valid_ptr = P_L2_SIZE;
243 int valid = 0;
244 PhysPageEntry *p;
245 int i;
247 if (lp->ptr == PHYS_MAP_NODE_NIL) {
248 return;
251 p = nodes[lp->ptr];
252 for (i = 0; i < P_L2_SIZE; i++) {
253 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
254 continue;
257 valid_ptr = i;
258 valid++;
259 if (p[i].skip) {
260 phys_page_compact(&p[i], nodes);
264 /* We can only compress if there's only one child. */
265 if (valid != 1) {
266 return;
269 assert(valid_ptr < P_L2_SIZE);
271 /* Don't compress if it won't fit in the # of bits we have. */
272 if (P_L2_LEVELS >= (1 << 6) &&
273 lp->skip + p[valid_ptr].skip >= (1 << 6)) {
274 return;
277 lp->ptr = p[valid_ptr].ptr;
278 if (!p[valid_ptr].skip) {
279 /* If our only child is a leaf, make this a leaf. */
280 /* By design, we should have made this node a leaf to begin with so we
281 * should never reach here.
282 * But since it's so simple to handle this, let's do it just in case we
283 * change this rule.
285 lp->skip = 0;
286 } else {
287 lp->skip += p[valid_ptr].skip;
291 void address_space_dispatch_compact(AddressSpaceDispatch *d)
293 if (d->phys_map.skip) {
294 phys_page_compact(&d->phys_map, d->map.nodes);
298 static inline bool section_covers_addr(const MemoryRegionSection *section,
299 hwaddr addr)
301 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
302 * the section must cover the entire address space.
304 return int128_gethi(section->size) ||
305 range_covers_byte(section->offset_within_address_space,
306 int128_getlo(section->size), addr);
309 static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
311 PhysPageEntry lp = d->phys_map, *p;
312 Node *nodes = d->map.nodes;
313 MemoryRegionSection *sections = d->map.sections;
314 hwaddr index = addr >> TARGET_PAGE_BITS;
315 int i;
317 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
318 if (lp.ptr == PHYS_MAP_NODE_NIL) {
319 return &sections[PHYS_SECTION_UNASSIGNED];
321 p = nodes[lp.ptr];
322 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
325 if (section_covers_addr(&sections[lp.ptr], addr)) {
326 return &sections[lp.ptr];
327 } else {
328 return &sections[PHYS_SECTION_UNASSIGNED];
332 /* Called from RCU critical section */
333 static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
334 hwaddr addr,
335 bool resolve_subpage)
337 MemoryRegionSection *section = qatomic_read(&d->mru_section);
338 subpage_t *subpage;
340 if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] ||
341 !section_covers_addr(section, addr)) {
342 section = phys_page_find(d, addr);
343 qatomic_set(&d->mru_section, section);
345 if (resolve_subpage && section->mr->subpage) {
346 subpage = container_of(section->mr, subpage_t, iomem);
347 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
349 return section;
352 /* Called from RCU critical section */
353 static MemoryRegionSection *
354 address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
355 hwaddr *plen, bool resolve_subpage)
357 MemoryRegionSection *section;
358 MemoryRegion *mr;
359 Int128 diff;
361 section = address_space_lookup_region(d, addr, resolve_subpage);
362 /* Compute offset within MemoryRegionSection */
363 addr -= section->offset_within_address_space;
365 /* Compute offset within MemoryRegion */
366 *xlat = addr + section->offset_within_region;
368 mr = section->mr;
370 /* MMIO registers can be expected to perform full-width accesses based only
371 * on their address, without considering adjacent registers that could
372 * decode to completely different MemoryRegions. When such registers
373 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
374 * regions overlap wildly. For this reason we cannot clamp the accesses
375 * here.
377 * If the length is small (as is the case for address_space_ldl/stl),
378 * everything works fine. If the incoming length is large, however,
379 * the caller really has to do the clamping through memory_access_size.
381 if (memory_region_is_ram(mr)) {
382 diff = int128_sub(section->size, int128_make64(addr));
383 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
385 return section;
389 * address_space_translate_iommu - translate an address through an IOMMU
390 * memory region and then through the target address space.
392 * @iommu_mr: the IOMMU memory region that we start the translation from
393 * @addr: the address to be translated through the MMU
394 * @xlat: the translated address offset within the destination memory region.
395 * It cannot be %NULL.
396 * @plen_out: valid read/write length of the translated address. It
397 * cannot be %NULL.
398 * @page_mask_out: page mask for the translated address. This
399 * should only be meaningful for IOMMU translated
400 * addresses, since there may be huge pages that this bit
401 * would tell. It can be %NULL if we don't care about it.
402 * @is_write: whether the translation operation is for write
403 * @is_mmio: whether this can be MMIO, set true if it can
404 * @target_as: the address space targeted by the IOMMU
405 * @attrs: transaction attributes
407 * This function is called from RCU critical section. It is the common
408 * part of flatview_do_translate and address_space_translate_cached.
410 static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr,
411 hwaddr *xlat,
412 hwaddr *plen_out,
413 hwaddr *page_mask_out,
414 bool is_write,
415 bool is_mmio,
416 AddressSpace **target_as,
417 MemTxAttrs attrs)
419 MemoryRegionSection *section;
420 hwaddr page_mask = (hwaddr)-1;
422 do {
423 hwaddr addr = *xlat;
424 IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
425 int iommu_idx = 0;
426 IOMMUTLBEntry iotlb;
428 if (imrc->attrs_to_index) {
429 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
432 iotlb = imrc->translate(iommu_mr, addr, is_write ?
433 IOMMU_WO : IOMMU_RO, iommu_idx);
435 if (!(iotlb.perm & (1 << is_write))) {
436 goto unassigned;
439 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
440 | (addr & iotlb.addr_mask));
441 page_mask &= iotlb.addr_mask;
442 *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1);
443 *target_as = iotlb.target_as;
445 section = address_space_translate_internal(
446 address_space_to_dispatch(iotlb.target_as), addr, xlat,
447 plen_out, is_mmio);
449 iommu_mr = memory_region_get_iommu(section->mr);
450 } while (unlikely(iommu_mr));
452 if (page_mask_out) {
453 *page_mask_out = page_mask;
455 return *section;
457 unassigned:
458 return (MemoryRegionSection) { .mr = &io_mem_unassigned };
462 * flatview_do_translate - translate an address in FlatView
464 * @fv: the flat view that we want to translate on
465 * @addr: the address to be translated in above address space
466 * @xlat: the translated address offset within memory region. It
467 * cannot be @NULL.
468 * @plen_out: valid read/write length of the translated address. It
469 * can be @NULL when we don't care about it.
470 * @page_mask_out: page mask for the translated address. This
471 * should only be meaningful for IOMMU translated
472 * addresses, since there may be huge pages that this bit
473 * would tell. It can be @NULL if we don't care about it.
474 * @is_write: whether the translation operation is for write
475 * @is_mmio: whether this can be MMIO, set true if it can
476 * @target_as: the address space targeted by the IOMMU
477 * @attrs: memory transaction attributes
479 * This function is called from RCU critical section
481 static MemoryRegionSection flatview_do_translate(FlatView *fv,
482 hwaddr addr,
483 hwaddr *xlat,
484 hwaddr *plen_out,
485 hwaddr *page_mask_out,
486 bool is_write,
487 bool is_mmio,
488 AddressSpace **target_as,
489 MemTxAttrs attrs)
491 MemoryRegionSection *section;
492 IOMMUMemoryRegion *iommu_mr;
493 hwaddr plen = (hwaddr)(-1);
495 if (!plen_out) {
496 plen_out = &plen;
499 section = address_space_translate_internal(
500 flatview_to_dispatch(fv), addr, xlat,
501 plen_out, is_mmio);
503 iommu_mr = memory_region_get_iommu(section->mr);
504 if (unlikely(iommu_mr)) {
505 return address_space_translate_iommu(iommu_mr, xlat,
506 plen_out, page_mask_out,
507 is_write, is_mmio,
508 target_as, attrs);
510 if (page_mask_out) {
511 /* Not behind an IOMMU, use default page size. */
512 *page_mask_out = ~TARGET_PAGE_MASK;
515 return *section;
518 /* Called from RCU critical section */
519 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
520 bool is_write, MemTxAttrs attrs)
522 MemoryRegionSection section;
523 hwaddr xlat, page_mask;
526 * This can never be MMIO, and we don't really care about plen,
527 * but page mask.
529 section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat,
530 NULL, &page_mask, is_write, false, &as,
531 attrs);
533 /* Illegal translation */
534 if (section.mr == &io_mem_unassigned) {
535 goto iotlb_fail;
538 /* Convert memory region offset into address space offset */
539 xlat += section.offset_within_address_space -
540 section.offset_within_region;
542 return (IOMMUTLBEntry) {
543 .target_as = as,
544 .iova = addr & ~page_mask,
545 .translated_addr = xlat & ~page_mask,
546 .addr_mask = page_mask,
547 /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
548 .perm = IOMMU_RW,
551 iotlb_fail:
552 return (IOMMUTLBEntry) {0};
555 /* Called from RCU critical section */
556 MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat,
557 hwaddr *plen, bool is_write,
558 MemTxAttrs attrs)
560 MemoryRegion *mr;
561 MemoryRegionSection section;
562 AddressSpace *as = NULL;
564 /* This can be MMIO, so setup MMIO bit. */
565 section = flatview_do_translate(fv, addr, xlat, plen, NULL,
566 is_write, true, &as, attrs);
567 mr = section.mr;
569 if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
570 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
571 *plen = MIN(page, *plen);
574 return mr;
577 typedef struct TCGIOMMUNotifier {
578 IOMMUNotifier n;
579 MemoryRegion *mr;
580 CPUState *cpu;
581 int iommu_idx;
582 bool active;
583 } TCGIOMMUNotifier;
585 static void tcg_iommu_unmap_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb)
587 TCGIOMMUNotifier *notifier = container_of(n, TCGIOMMUNotifier, n);
589 if (!notifier->active) {
590 return;
592 tlb_flush(notifier->cpu);
593 notifier->active = false;
594 /* We leave the notifier struct on the list to avoid reallocating it later.
595 * Generally the number of IOMMUs a CPU deals with will be small.
596 * In any case we can't unregister the iommu notifier from a notify
597 * callback.
601 static void tcg_register_iommu_notifier(CPUState *cpu,
602 IOMMUMemoryRegion *iommu_mr,
603 int iommu_idx)
605 /* Make sure this CPU has an IOMMU notifier registered for this
606 * IOMMU/IOMMU index combination, so that we can flush its TLB
607 * when the IOMMU tells us the mappings we've cached have changed.
609 MemoryRegion *mr = MEMORY_REGION(iommu_mr);
610 TCGIOMMUNotifier *notifier = NULL;
611 int i;
613 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
614 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
615 if (notifier->mr == mr && notifier->iommu_idx == iommu_idx) {
616 break;
619 if (i == cpu->iommu_notifiers->len) {
620 /* Not found, add a new entry at the end of the array */
621 cpu->iommu_notifiers = g_array_set_size(cpu->iommu_notifiers, i + 1);
622 notifier = g_new0(TCGIOMMUNotifier, 1);
623 g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i) = notifier;
625 notifier->mr = mr;
626 notifier->iommu_idx = iommu_idx;
627 notifier->cpu = cpu;
628 /* Rather than trying to register interest in the specific part
629 * of the iommu's address space that we've accessed and then
630 * expand it later as subsequent accesses touch more of it, we
631 * just register interest in the whole thing, on the assumption
632 * that iommu reconfiguration will be rare.
634 iommu_notifier_init(&notifier->n,
635 tcg_iommu_unmap_notify,
636 IOMMU_NOTIFIER_UNMAP,
638 HWADDR_MAX,
639 iommu_idx);
640 memory_region_register_iommu_notifier(notifier->mr, &notifier->n,
641 &error_fatal);
644 if (!notifier->active) {
645 notifier->active = true;
649 void tcg_iommu_free_notifier_list(CPUState *cpu)
651 /* Destroy the CPU's notifier list */
652 int i;
653 TCGIOMMUNotifier *notifier;
655 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
656 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
657 memory_region_unregister_iommu_notifier(notifier->mr, &notifier->n);
658 g_free(notifier);
660 g_array_free(cpu->iommu_notifiers, true);
663 void tcg_iommu_init_notifier_list(CPUState *cpu)
665 cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier *));
668 /* Called from RCU critical section */
669 MemoryRegionSection *
670 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
671 hwaddr *xlat, hwaddr *plen,
672 MemTxAttrs attrs, int *prot)
674 MemoryRegionSection *section;
675 IOMMUMemoryRegion *iommu_mr;
676 IOMMUMemoryRegionClass *imrc;
677 IOMMUTLBEntry iotlb;
678 int iommu_idx;
679 AddressSpaceDispatch *d =
680 qatomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch);
682 for (;;) {
683 section = address_space_translate_internal(d, addr, &addr, plen, false);
685 iommu_mr = memory_region_get_iommu(section->mr);
686 if (!iommu_mr) {
687 break;
690 imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
692 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
693 tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx);
694 /* We need all the permissions, so pass IOMMU_NONE so the IOMMU
695 * doesn't short-cut its translation table walk.
697 iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx);
698 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
699 | (addr & iotlb.addr_mask));
700 /* Update the caller's prot bits to remove permissions the IOMMU
701 * is giving us a failure response for. If we get down to no
702 * permissions left at all we can give up now.
704 if (!(iotlb.perm & IOMMU_RO)) {
705 *prot &= ~(PAGE_READ | PAGE_EXEC);
707 if (!(iotlb.perm & IOMMU_WO)) {
708 *prot &= ~PAGE_WRITE;
711 if (!*prot) {
712 goto translate_fail;
715 d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as));
718 assert(!memory_region_is_iommu(section->mr));
719 *xlat = addr;
720 return section;
722 translate_fail:
723 return &d->map.sections[PHYS_SECTION_UNASSIGNED];
726 void cpu_address_space_init(CPUState *cpu, int asidx,
727 const char *prefix, MemoryRegion *mr)
729 CPUAddressSpace *newas;
730 AddressSpace *as = g_new0(AddressSpace, 1);
731 char *as_name;
733 assert(mr);
734 as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index);
735 address_space_init(as, mr, as_name);
736 g_free(as_name);
738 /* Target code should have set num_ases before calling us */
739 assert(asidx < cpu->num_ases);
741 if (asidx == 0) {
742 /* address space 0 gets the convenience alias */
743 cpu->as = as;
746 /* KVM cannot currently support multiple address spaces. */
747 assert(asidx == 0 || !kvm_enabled());
749 if (!cpu->cpu_ases) {
750 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
753 newas = &cpu->cpu_ases[asidx];
754 newas->cpu = cpu;
755 newas->as = as;
756 if (tcg_enabled()) {
757 newas->tcg_as_listener.log_global_after_sync = tcg_log_global_after_sync;
758 newas->tcg_as_listener.commit = tcg_commit;
759 memory_listener_register(&newas->tcg_as_listener, as);
763 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
765 /* Return the AddressSpace corresponding to the specified index */
766 return cpu->cpu_ases[asidx].as;
769 /* Add a watchpoint. */
770 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
771 int flags, CPUWatchpoint **watchpoint)
773 CPUWatchpoint *wp;
774 vaddr in_page;
776 /* forbid ranges which are empty or run off the end of the address space */
777 if (len == 0 || (addr + len - 1) < addr) {
778 error_report("tried to set invalid watchpoint at %"
779 VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
780 return -EINVAL;
782 wp = g_malloc(sizeof(*wp));
784 wp->vaddr = addr;
785 wp->len = len;
786 wp->flags = flags;
788 /* keep all GDB-injected watchpoints in front */
789 if (flags & BP_GDB) {
790 QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
791 } else {
792 QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
795 in_page = -(addr | TARGET_PAGE_MASK);
796 if (len <= in_page) {
797 tlb_flush_page(cpu, addr);
798 } else {
799 tlb_flush(cpu);
802 if (watchpoint)
803 *watchpoint = wp;
804 return 0;
807 /* Remove a specific watchpoint. */
808 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
809 int flags)
811 CPUWatchpoint *wp;
813 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
814 if (addr == wp->vaddr && len == wp->len
815 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
816 cpu_watchpoint_remove_by_ref(cpu, wp);
817 return 0;
820 return -ENOENT;
823 /* Remove a specific watchpoint by reference. */
824 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
826 QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
828 tlb_flush_page(cpu, watchpoint->vaddr);
830 g_free(watchpoint);
833 /* Remove all matching watchpoints. */
834 void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
836 CPUWatchpoint *wp, *next;
838 QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
839 if (wp->flags & mask) {
840 cpu_watchpoint_remove_by_ref(cpu, wp);
845 #ifdef CONFIG_TCG
846 /* Return true if this watchpoint address matches the specified
847 * access (ie the address range covered by the watchpoint overlaps
848 * partially or completely with the address range covered by the
849 * access).
851 static inline bool watchpoint_address_matches(CPUWatchpoint *wp,
852 vaddr addr, vaddr len)
854 /* We know the lengths are non-zero, but a little caution is
855 * required to avoid errors in the case where the range ends
856 * exactly at the top of the address space and so addr + len
857 * wraps round to zero.
859 vaddr wpend = wp->vaddr + wp->len - 1;
860 vaddr addrend = addr + len - 1;
862 return !(addr > wpend || wp->vaddr > addrend);
865 /* Return flags for watchpoints that match addr + prot. */
866 int cpu_watchpoint_address_matches(CPUState *cpu, vaddr addr, vaddr len)
868 CPUWatchpoint *wp;
869 int ret = 0;
871 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
872 if (watchpoint_address_matches(wp, addr, len)) {
873 ret |= wp->flags;
876 return ret;
879 /* Generate a debug exception if a watchpoint has been hit. */
880 void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len,
881 MemTxAttrs attrs, int flags, uintptr_t ra)
883 CPUClass *cc = CPU_GET_CLASS(cpu);
884 CPUWatchpoint *wp;
886 assert(tcg_enabled());
887 if (cpu->watchpoint_hit) {
889 * We re-entered the check after replacing the TB.
890 * Now raise the debug interrupt so that it will
891 * trigger after the current instruction.
893 qemu_mutex_lock_iothread();
894 cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
895 qemu_mutex_unlock_iothread();
896 return;
899 if (cc->tcg_ops->adjust_watchpoint_address) {
900 /* this is currently used only by ARM BE32 */
901 addr = cc->tcg_ops->adjust_watchpoint_address(cpu, addr, len);
903 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
904 if (watchpoint_address_matches(wp, addr, len)
905 && (wp->flags & flags)) {
906 if (replay_running_debug()) {
908 * Don't process the watchpoints when we are
909 * in a reverse debugging operation.
911 replay_breakpoint();
912 return;
914 if (flags == BP_MEM_READ) {
915 wp->flags |= BP_WATCHPOINT_HIT_READ;
916 } else {
917 wp->flags |= BP_WATCHPOINT_HIT_WRITE;
919 wp->hitaddr = MAX(addr, wp->vaddr);
920 wp->hitattrs = attrs;
921 if (!cpu->watchpoint_hit) {
922 if (wp->flags & BP_CPU && cc->tcg_ops->debug_check_watchpoint &&
923 !cc->tcg_ops->debug_check_watchpoint(cpu, wp)) {
924 wp->flags &= ~BP_WATCHPOINT_HIT;
925 continue;
927 cpu->watchpoint_hit = wp;
929 mmap_lock();
930 tb_check_watchpoint(cpu, ra);
931 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
932 cpu->exception_index = EXCP_DEBUG;
933 mmap_unlock();
934 cpu_loop_exit_restore(cpu, ra);
935 } else {
936 /* Force execution of one insn next time. */
937 cpu->cflags_next_tb = 1 | curr_cflags(cpu);
938 mmap_unlock();
939 if (ra) {
940 cpu_restore_state(cpu, ra, true);
942 cpu_loop_exit_noexc(cpu);
945 } else {
946 wp->flags &= ~BP_WATCHPOINT_HIT;
951 #endif /* CONFIG_TCG */
953 /* Called from RCU critical section */
954 static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
956 RAMBlock *block;
958 block = qatomic_rcu_read(&ram_list.mru_block);
959 if (block && addr - block->offset < block->max_length) {
960 return block;
962 RAMBLOCK_FOREACH(block) {
963 if (addr - block->offset < block->max_length) {
964 goto found;
968 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
969 abort();
971 found:
972 /* It is safe to write mru_block outside the iothread lock. This
973 * is what happens:
975 * mru_block = xxx
976 * rcu_read_unlock()
977 * xxx removed from list
978 * rcu_read_lock()
979 * read mru_block
980 * mru_block = NULL;
981 * call_rcu(reclaim_ramblock, xxx);
982 * rcu_read_unlock()
984 * qatomic_rcu_set is not needed here. The block was already published
985 * when it was placed into the list. Here we're just making an extra
986 * copy of the pointer.
988 ram_list.mru_block = block;
989 return block;
992 static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
994 CPUState *cpu;
995 ram_addr_t start1;
996 RAMBlock *block;
997 ram_addr_t end;
999 assert(tcg_enabled());
1000 end = TARGET_PAGE_ALIGN(start + length);
1001 start &= TARGET_PAGE_MASK;
1003 RCU_READ_LOCK_GUARD();
1004 block = qemu_get_ram_block(start);
1005 assert(block == qemu_get_ram_block(end - 1));
1006 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
1007 CPU_FOREACH(cpu) {
1008 tlb_reset_dirty(cpu, start1, length);
1012 /* Note: start and end must be within the same ram block. */
1013 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
1014 ram_addr_t length,
1015 unsigned client)
1017 DirtyMemoryBlocks *blocks;
1018 unsigned long end, page, start_page;
1019 bool dirty = false;
1020 RAMBlock *ramblock;
1021 uint64_t mr_offset, mr_size;
1023 if (length == 0) {
1024 return false;
1027 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
1028 start_page = start >> TARGET_PAGE_BITS;
1029 page = start_page;
1031 WITH_RCU_READ_LOCK_GUARD() {
1032 blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]);
1033 ramblock = qemu_get_ram_block(start);
1034 /* Range sanity check on the ramblock */
1035 assert(start >= ramblock->offset &&
1036 start + length <= ramblock->offset + ramblock->used_length);
1038 while (page < end) {
1039 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1040 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1041 unsigned long num = MIN(end - page,
1042 DIRTY_MEMORY_BLOCK_SIZE - offset);
1044 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
1045 offset, num);
1046 page += num;
1049 mr_offset = (ram_addr_t)(start_page << TARGET_PAGE_BITS) - ramblock->offset;
1050 mr_size = (end - start_page) << TARGET_PAGE_BITS;
1051 memory_region_clear_dirty_bitmap(ramblock->mr, mr_offset, mr_size);
1054 if (dirty && tcg_enabled()) {
1055 tlb_reset_dirty_range_all(start, length);
1058 return dirty;
1061 DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
1062 (MemoryRegion *mr, hwaddr offset, hwaddr length, unsigned client)
1064 DirtyMemoryBlocks *blocks;
1065 ram_addr_t start = memory_region_get_ram_addr(mr) + offset;
1066 unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
1067 ram_addr_t first = QEMU_ALIGN_DOWN(start, align);
1068 ram_addr_t last = QEMU_ALIGN_UP(start + length, align);
1069 DirtyBitmapSnapshot *snap;
1070 unsigned long page, end, dest;
1072 snap = g_malloc0(sizeof(*snap) +
1073 ((last - first) >> (TARGET_PAGE_BITS + 3)));
1074 snap->start = first;
1075 snap->end = last;
1077 page = first >> TARGET_PAGE_BITS;
1078 end = last >> TARGET_PAGE_BITS;
1079 dest = 0;
1081 WITH_RCU_READ_LOCK_GUARD() {
1082 blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]);
1084 while (page < end) {
1085 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1086 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1087 unsigned long num = MIN(end - page,
1088 DIRTY_MEMORY_BLOCK_SIZE - offset);
1090 assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL)));
1091 assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL)));
1092 offset >>= BITS_PER_LEVEL;
1094 bitmap_copy_and_clear_atomic(snap->dirty + dest,
1095 blocks->blocks[idx] + offset,
1096 num);
1097 page += num;
1098 dest += num >> BITS_PER_LEVEL;
1102 if (tcg_enabled()) {
1103 tlb_reset_dirty_range_all(start, length);
1106 memory_region_clear_dirty_bitmap(mr, offset, length);
1108 return snap;
1111 bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
1112 ram_addr_t start,
1113 ram_addr_t length)
1115 unsigned long page, end;
1117 assert(start >= snap->start);
1118 assert(start + length <= snap->end);
1120 end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
1121 page = (start - snap->start) >> TARGET_PAGE_BITS;
1123 while (page < end) {
1124 if (test_bit(page, snap->dirty)) {
1125 return true;
1127 page++;
1129 return false;
1132 /* Called from RCU critical section */
1133 hwaddr memory_region_section_get_iotlb(CPUState *cpu,
1134 MemoryRegionSection *section)
1136 AddressSpaceDispatch *d = flatview_to_dispatch(section->fv);
1137 return section - d->map.sections;
1140 static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
1141 uint16_t section);
1142 static subpage_t *subpage_init(FlatView *fv, hwaddr base);
1144 static uint16_t phys_section_add(PhysPageMap *map,
1145 MemoryRegionSection *section)
1147 /* The physical section number is ORed with a page-aligned
1148 * pointer to produce the iotlb entries. Thus it should
1149 * never overflow into the page-aligned value.
1151 assert(map->sections_nb < TARGET_PAGE_SIZE);
1153 if (map->sections_nb == map->sections_nb_alloc) {
1154 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1155 map->sections = g_renew(MemoryRegionSection, map->sections,
1156 map->sections_nb_alloc);
1158 map->sections[map->sections_nb] = *section;
1159 memory_region_ref(section->mr);
1160 return map->sections_nb++;
1163 static void phys_section_destroy(MemoryRegion *mr)
1165 bool have_sub_page = mr->subpage;
1167 memory_region_unref(mr);
1169 if (have_sub_page) {
1170 subpage_t *subpage = container_of(mr, subpage_t, iomem);
1171 object_unref(OBJECT(&subpage->iomem));
1172 g_free(subpage);
1176 static void phys_sections_free(PhysPageMap *map)
1178 while (map->sections_nb > 0) {
1179 MemoryRegionSection *section = &map->sections[--map->sections_nb];
1180 phys_section_destroy(section->mr);
1182 g_free(map->sections);
1183 g_free(map->nodes);
1186 static void register_subpage(FlatView *fv, MemoryRegionSection *section)
1188 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1189 subpage_t *subpage;
1190 hwaddr base = section->offset_within_address_space
1191 & TARGET_PAGE_MASK;
1192 MemoryRegionSection *existing = phys_page_find(d, base);
1193 MemoryRegionSection subsection = {
1194 .offset_within_address_space = base,
1195 .size = int128_make64(TARGET_PAGE_SIZE),
1197 hwaddr start, end;
1199 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
1201 if (!(existing->mr->subpage)) {
1202 subpage = subpage_init(fv, base);
1203 subsection.fv = fv;
1204 subsection.mr = &subpage->iomem;
1205 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
1206 phys_section_add(&d->map, &subsection));
1207 } else {
1208 subpage = container_of(existing->mr, subpage_t, iomem);
1210 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
1211 end = start + int128_get64(section->size) - 1;
1212 subpage_register(subpage, start, end,
1213 phys_section_add(&d->map, section));
1217 static void register_multipage(FlatView *fv,
1218 MemoryRegionSection *section)
1220 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1221 hwaddr start_addr = section->offset_within_address_space;
1222 uint16_t section_index = phys_section_add(&d->map, section);
1223 uint64_t num_pages = int128_get64(int128_rshift(section->size,
1224 TARGET_PAGE_BITS));
1226 assert(num_pages);
1227 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
1231 * The range in *section* may look like this:
1233 * |s|PPPPPPP|s|
1235 * where s stands for subpage and P for page.
1237 void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section)
1239 MemoryRegionSection remain = *section;
1240 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
1242 /* register first subpage */
1243 if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
1244 uint64_t left = TARGET_PAGE_ALIGN(remain.offset_within_address_space)
1245 - remain.offset_within_address_space;
1247 MemoryRegionSection now = remain;
1248 now.size = int128_min(int128_make64(left), now.size);
1249 register_subpage(fv, &now);
1250 if (int128_eq(remain.size, now.size)) {
1251 return;
1253 remain.size = int128_sub(remain.size, now.size);
1254 remain.offset_within_address_space += int128_get64(now.size);
1255 remain.offset_within_region += int128_get64(now.size);
1258 /* register whole pages */
1259 if (int128_ge(remain.size, page_size)) {
1260 MemoryRegionSection now = remain;
1261 now.size = int128_and(now.size, int128_neg(page_size));
1262 register_multipage(fv, &now);
1263 if (int128_eq(remain.size, now.size)) {
1264 return;
1266 remain.size = int128_sub(remain.size, now.size);
1267 remain.offset_within_address_space += int128_get64(now.size);
1268 remain.offset_within_region += int128_get64(now.size);
1271 /* register last subpage */
1272 register_subpage(fv, &remain);
1275 void qemu_flush_coalesced_mmio_buffer(void)
1277 if (kvm_enabled())
1278 kvm_flush_coalesced_mmio_buffer();
1281 void qemu_mutex_lock_ramlist(void)
1283 qemu_mutex_lock(&ram_list.mutex);
1286 void qemu_mutex_unlock_ramlist(void)
1288 qemu_mutex_unlock(&ram_list.mutex);
1291 void ram_block_dump(Monitor *mon)
1293 RAMBlock *block;
1294 char *psize;
1296 RCU_READ_LOCK_GUARD();
1297 monitor_printf(mon, "%24s %8s %18s %18s %18s\n",
1298 "Block Name", "PSize", "Offset", "Used", "Total");
1299 RAMBLOCK_FOREACH(block) {
1300 psize = size_to_str(block->page_size);
1301 monitor_printf(mon, "%24s %8s 0x%016" PRIx64 " 0x%016" PRIx64
1302 " 0x%016" PRIx64 "\n", block->idstr, psize,
1303 (uint64_t)block->offset,
1304 (uint64_t)block->used_length,
1305 (uint64_t)block->max_length);
1306 g_free(psize);
1310 #ifdef __linux__
1312 * FIXME TOCTTOU: this iterates over memory backends' mem-path, which
1313 * may or may not name the same files / on the same filesystem now as
1314 * when we actually open and map them. Iterate over the file
1315 * descriptors instead, and use qemu_fd_getpagesize().
1317 static int find_min_backend_pagesize(Object *obj, void *opaque)
1319 long *hpsize_min = opaque;
1321 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1322 HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1323 long hpsize = host_memory_backend_pagesize(backend);
1325 if (host_memory_backend_is_mapped(backend) && (hpsize < *hpsize_min)) {
1326 *hpsize_min = hpsize;
1330 return 0;
1333 static int find_max_backend_pagesize(Object *obj, void *opaque)
1335 long *hpsize_max = opaque;
1337 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1338 HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1339 long hpsize = host_memory_backend_pagesize(backend);
1341 if (host_memory_backend_is_mapped(backend) && (hpsize > *hpsize_max)) {
1342 *hpsize_max = hpsize;
1346 return 0;
1350 * TODO: We assume right now that all mapped host memory backends are
1351 * used as RAM, however some might be used for different purposes.
1353 long qemu_minrampagesize(void)
1355 long hpsize = LONG_MAX;
1356 Object *memdev_root = object_resolve_path("/objects", NULL);
1358 object_child_foreach(memdev_root, find_min_backend_pagesize, &hpsize);
1359 return hpsize;
1362 long qemu_maxrampagesize(void)
1364 long pagesize = 0;
1365 Object *memdev_root = object_resolve_path("/objects", NULL);
1367 object_child_foreach(memdev_root, find_max_backend_pagesize, &pagesize);
1368 return pagesize;
1370 #else
1371 long qemu_minrampagesize(void)
1373 return qemu_real_host_page_size;
1375 long qemu_maxrampagesize(void)
1377 return qemu_real_host_page_size;
1379 #endif
1381 #ifdef CONFIG_POSIX
1382 static int64_t get_file_size(int fd)
1384 int64_t size;
1385 #if defined(__linux__)
1386 struct stat st;
1388 if (fstat(fd, &st) < 0) {
1389 return -errno;
1392 /* Special handling for devdax character devices */
1393 if (S_ISCHR(st.st_mode)) {
1394 g_autofree char *subsystem_path = NULL;
1395 g_autofree char *subsystem = NULL;
1397 subsystem_path = g_strdup_printf("/sys/dev/char/%d:%d/subsystem",
1398 major(st.st_rdev), minor(st.st_rdev));
1399 subsystem = g_file_read_link(subsystem_path, NULL);
1401 if (subsystem && g_str_has_suffix(subsystem, "/dax")) {
1402 g_autofree char *size_path = NULL;
1403 g_autofree char *size_str = NULL;
1405 size_path = g_strdup_printf("/sys/dev/char/%d:%d/size",
1406 major(st.st_rdev), minor(st.st_rdev));
1408 if (g_file_get_contents(size_path, &size_str, NULL, NULL)) {
1409 return g_ascii_strtoll(size_str, NULL, 0);
1413 #endif /* defined(__linux__) */
1415 /* st.st_size may be zero for special files yet lseek(2) works */
1416 size = lseek(fd, 0, SEEK_END);
1417 if (size < 0) {
1418 return -errno;
1420 return size;
1423 static int64_t get_file_align(int fd)
1425 int64_t align = -1;
1426 #if defined(__linux__) && defined(CONFIG_LIBDAXCTL)
1427 struct stat st;
1429 if (fstat(fd, &st) < 0) {
1430 return -errno;
1433 /* Special handling for devdax character devices */
1434 if (S_ISCHR(st.st_mode)) {
1435 g_autofree char *path = NULL;
1436 g_autofree char *rpath = NULL;
1437 struct daxctl_ctx *ctx;
1438 struct daxctl_region *region;
1439 int rc = 0;
1441 path = g_strdup_printf("/sys/dev/char/%d:%d",
1442 major(st.st_rdev), minor(st.st_rdev));
1443 rpath = realpath(path, NULL);
1445 rc = daxctl_new(&ctx);
1446 if (rc) {
1447 return -1;
1450 daxctl_region_foreach(ctx, region) {
1451 if (strstr(rpath, daxctl_region_get_path(region))) {
1452 align = daxctl_region_get_align(region);
1453 break;
1456 daxctl_unref(ctx);
1458 #endif /* defined(__linux__) && defined(CONFIG_LIBDAXCTL) */
1460 return align;
1463 static int file_ram_open(const char *path,
1464 const char *region_name,
1465 bool readonly,
1466 bool *created,
1467 Error **errp)
1469 char *filename;
1470 char *sanitized_name;
1471 char *c;
1472 int fd = -1;
1474 *created = false;
1475 for (;;) {
1476 fd = open(path, readonly ? O_RDONLY : O_RDWR);
1477 if (fd >= 0) {
1478 /* @path names an existing file, use it */
1479 break;
1481 if (errno == ENOENT) {
1482 /* @path names a file that doesn't exist, create it */
1483 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1484 if (fd >= 0) {
1485 *created = true;
1486 break;
1488 } else if (errno == EISDIR) {
1489 /* @path names a directory, create a file there */
1490 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1491 sanitized_name = g_strdup(region_name);
1492 for (c = sanitized_name; *c != '\0'; c++) {
1493 if (*c == '/') {
1494 *c = '_';
1498 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1499 sanitized_name);
1500 g_free(sanitized_name);
1502 fd = mkstemp(filename);
1503 if (fd >= 0) {
1504 unlink(filename);
1505 g_free(filename);
1506 break;
1508 g_free(filename);
1510 if (errno != EEXIST && errno != EINTR) {
1511 error_setg_errno(errp, errno,
1512 "can't open backing store %s for guest RAM",
1513 path);
1514 return -1;
1517 * Try again on EINTR and EEXIST. The latter happens when
1518 * something else creates the file between our two open().
1522 return fd;
1525 static void *file_ram_alloc(RAMBlock *block,
1526 ram_addr_t memory,
1527 int fd,
1528 bool readonly,
1529 bool truncate,
1530 off_t offset,
1531 Error **errp)
1533 void *area;
1535 block->page_size = qemu_fd_getpagesize(fd);
1536 if (block->mr->align % block->page_size) {
1537 error_setg(errp, "alignment 0x%" PRIx64
1538 " must be multiples of page size 0x%zx",
1539 block->mr->align, block->page_size);
1540 return NULL;
1541 } else if (block->mr->align && !is_power_of_2(block->mr->align)) {
1542 error_setg(errp, "alignment 0x%" PRIx64
1543 " must be a power of two", block->mr->align);
1544 return NULL;
1546 block->mr->align = MAX(block->page_size, block->mr->align);
1547 #if defined(__s390x__)
1548 if (kvm_enabled()) {
1549 block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
1551 #endif
1553 if (memory < block->page_size) {
1554 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
1555 "or larger than page size 0x%zx",
1556 memory, block->page_size);
1557 return NULL;
1560 memory = ROUND_UP(memory, block->page_size);
1563 * ftruncate is not supported by hugetlbfs in older
1564 * hosts, so don't bother bailing out on errors.
1565 * If anything goes wrong with it under other filesystems,
1566 * mmap will fail.
1568 * Do not truncate the non-empty backend file to avoid corrupting
1569 * the existing data in the file. Disabling shrinking is not
1570 * enough. For example, the current vNVDIMM implementation stores
1571 * the guest NVDIMM labels at the end of the backend file. If the
1572 * backend file is later extended, QEMU will not be able to find
1573 * those labels. Therefore, extending the non-empty backend file
1574 * is disabled as well.
1576 if (truncate && ftruncate(fd, memory)) {
1577 perror("ftruncate");
1580 area = qemu_ram_mmap(fd, memory, block->mr->align, readonly,
1581 block->flags & RAM_SHARED, block->flags & RAM_PMEM,
1582 offset);
1583 if (area == MAP_FAILED) {
1584 error_setg_errno(errp, errno,
1585 "unable to map backing store for guest RAM");
1586 return NULL;
1589 block->fd = fd;
1590 return area;
1592 #endif
1594 /* Allocate space within the ram_addr_t space that governs the
1595 * dirty bitmaps.
1596 * Called with the ramlist lock held.
1598 static ram_addr_t find_ram_offset(ram_addr_t size)
1600 RAMBlock *block, *next_block;
1601 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
1603 assert(size != 0); /* it would hand out same offset multiple times */
1605 if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
1606 return 0;
1609 RAMBLOCK_FOREACH(block) {
1610 ram_addr_t candidate, next = RAM_ADDR_MAX;
1612 /* Align blocks to start on a 'long' in the bitmap
1613 * which makes the bitmap sync'ing take the fast path.
1615 candidate = block->offset + block->max_length;
1616 candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS);
1618 /* Search for the closest following block
1619 * and find the gap.
1621 RAMBLOCK_FOREACH(next_block) {
1622 if (next_block->offset >= candidate) {
1623 next = MIN(next, next_block->offset);
1627 /* If it fits remember our place and remember the size
1628 * of gap, but keep going so that we might find a smaller
1629 * gap to fill so avoiding fragmentation.
1631 if (next - candidate >= size && next - candidate < mingap) {
1632 offset = candidate;
1633 mingap = next - candidate;
1636 trace_find_ram_offset_loop(size, candidate, offset, next, mingap);
1639 if (offset == RAM_ADDR_MAX) {
1640 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1641 (uint64_t)size);
1642 abort();
1645 trace_find_ram_offset(size, offset);
1647 return offset;
1650 static unsigned long last_ram_page(void)
1652 RAMBlock *block;
1653 ram_addr_t last = 0;
1655 RCU_READ_LOCK_GUARD();
1656 RAMBLOCK_FOREACH(block) {
1657 last = MAX(last, block->offset + block->max_length);
1659 return last >> TARGET_PAGE_BITS;
1662 static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1664 int ret;
1666 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1667 if (!machine_dump_guest_core(current_machine)) {
1668 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1669 if (ret) {
1670 perror("qemu_madvise");
1671 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1672 "but dump_guest_core=off specified\n");
1677 const char *qemu_ram_get_idstr(RAMBlock *rb)
1679 return rb->idstr;
1682 void *qemu_ram_get_host_addr(RAMBlock *rb)
1684 return rb->host;
1687 ram_addr_t qemu_ram_get_offset(RAMBlock *rb)
1689 return rb->offset;
1692 ram_addr_t qemu_ram_get_used_length(RAMBlock *rb)
1694 return rb->used_length;
1697 bool qemu_ram_is_shared(RAMBlock *rb)
1699 return rb->flags & RAM_SHARED;
1702 /* Note: Only set at the start of postcopy */
1703 bool qemu_ram_is_uf_zeroable(RAMBlock *rb)
1705 return rb->flags & RAM_UF_ZEROPAGE;
1708 void qemu_ram_set_uf_zeroable(RAMBlock *rb)
1710 rb->flags |= RAM_UF_ZEROPAGE;
1713 bool qemu_ram_is_migratable(RAMBlock *rb)
1715 return rb->flags & RAM_MIGRATABLE;
1718 void qemu_ram_set_migratable(RAMBlock *rb)
1720 rb->flags |= RAM_MIGRATABLE;
1723 void qemu_ram_unset_migratable(RAMBlock *rb)
1725 rb->flags &= ~RAM_MIGRATABLE;
1728 /* Called with iothread lock held. */
1729 void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
1731 RAMBlock *block;
1733 assert(new_block);
1734 assert(!new_block->idstr[0]);
1736 if (dev) {
1737 char *id = qdev_get_dev_path(dev);
1738 if (id) {
1739 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
1740 g_free(id);
1743 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1745 RCU_READ_LOCK_GUARD();
1746 RAMBLOCK_FOREACH(block) {
1747 if (block != new_block &&
1748 !strcmp(block->idstr, new_block->idstr)) {
1749 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1750 new_block->idstr);
1751 abort();
1756 /* Called with iothread lock held. */
1757 void qemu_ram_unset_idstr(RAMBlock *block)
1759 /* FIXME: arch_init.c assumes that this is not called throughout
1760 * migration. Ignore the problem since hot-unplug during migration
1761 * does not work anyway.
1763 if (block) {
1764 memset(block->idstr, 0, sizeof(block->idstr));
1768 size_t qemu_ram_pagesize(RAMBlock *rb)
1770 return rb->page_size;
1773 /* Returns the largest size of page in use */
1774 size_t qemu_ram_pagesize_largest(void)
1776 RAMBlock *block;
1777 size_t largest = 0;
1779 RAMBLOCK_FOREACH(block) {
1780 largest = MAX(largest, qemu_ram_pagesize(block));
1783 return largest;
1786 static int memory_try_enable_merging(void *addr, size_t len)
1788 if (!machine_mem_merge(current_machine)) {
1789 /* disabled by the user */
1790 return 0;
1793 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1796 /* Only legal before guest might have detected the memory size: e.g. on
1797 * incoming migration, or right after reset.
1799 * As memory core doesn't know how is memory accessed, it is up to
1800 * resize callback to update device state and/or add assertions to detect
1801 * misuse, if necessary.
1803 int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
1805 const ram_addr_t unaligned_size = newsize;
1807 assert(block);
1809 newsize = HOST_PAGE_ALIGN(newsize);
1811 if (block->used_length == newsize) {
1813 * We don't have to resize the ram block (which only knows aligned
1814 * sizes), however, we have to notify if the unaligned size changed.
1816 if (unaligned_size != memory_region_size(block->mr)) {
1817 memory_region_set_size(block->mr, unaligned_size);
1818 if (block->resized) {
1819 block->resized(block->idstr, unaligned_size, block->host);
1822 return 0;
1825 if (!(block->flags & RAM_RESIZEABLE)) {
1826 error_setg_errno(errp, EINVAL,
1827 "Size mismatch: %s: 0x" RAM_ADDR_FMT
1828 " != 0x" RAM_ADDR_FMT, block->idstr,
1829 newsize, block->used_length);
1830 return -EINVAL;
1833 if (block->max_length < newsize) {
1834 error_setg_errno(errp, EINVAL,
1835 "Size too large: %s: 0x" RAM_ADDR_FMT
1836 " > 0x" RAM_ADDR_FMT, block->idstr,
1837 newsize, block->max_length);
1838 return -EINVAL;
1841 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
1842 block->used_length = newsize;
1843 cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
1844 DIRTY_CLIENTS_ALL);
1845 memory_region_set_size(block->mr, unaligned_size);
1846 if (block->resized) {
1847 block->resized(block->idstr, unaligned_size, block->host);
1849 return 0;
1853 * Trigger sync on the given ram block for range [start, start + length]
1854 * with the backing store if one is available.
1855 * Otherwise no-op.
1856 * @Note: this is supposed to be a synchronous op.
1858 void qemu_ram_msync(RAMBlock *block, ram_addr_t start, ram_addr_t length)
1860 /* The requested range should fit in within the block range */
1861 g_assert((start + length) <= block->used_length);
1863 #ifdef CONFIG_LIBPMEM
1864 /* The lack of support for pmem should not block the sync */
1865 if (ramblock_is_pmem(block)) {
1866 void *addr = ramblock_ptr(block, start);
1867 pmem_persist(addr, length);
1868 return;
1870 #endif
1871 if (block->fd >= 0) {
1873 * Case there is no support for PMEM or the memory has not been
1874 * specified as persistent (or is not one) - use the msync.
1875 * Less optimal but still achieves the same goal
1877 void *addr = ramblock_ptr(block, start);
1878 if (qemu_msync(addr, length, block->fd)) {
1879 warn_report("%s: failed to sync memory range: start: "
1880 RAM_ADDR_FMT " length: " RAM_ADDR_FMT,
1881 __func__, start, length);
1886 /* Called with ram_list.mutex held */
1887 static void dirty_memory_extend(ram_addr_t old_ram_size,
1888 ram_addr_t new_ram_size)
1890 ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
1891 DIRTY_MEMORY_BLOCK_SIZE);
1892 ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
1893 DIRTY_MEMORY_BLOCK_SIZE);
1894 int i;
1896 /* Only need to extend if block count increased */
1897 if (new_num_blocks <= old_num_blocks) {
1898 return;
1901 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
1902 DirtyMemoryBlocks *old_blocks;
1903 DirtyMemoryBlocks *new_blocks;
1904 int j;
1906 old_blocks = qatomic_rcu_read(&ram_list.dirty_memory[i]);
1907 new_blocks = g_malloc(sizeof(*new_blocks) +
1908 sizeof(new_blocks->blocks[0]) * new_num_blocks);
1910 if (old_num_blocks) {
1911 memcpy(new_blocks->blocks, old_blocks->blocks,
1912 old_num_blocks * sizeof(old_blocks->blocks[0]));
1915 for (j = old_num_blocks; j < new_num_blocks; j++) {
1916 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
1919 qatomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
1921 if (old_blocks) {
1922 g_free_rcu(old_blocks, rcu);
1927 static void ram_block_add(RAMBlock *new_block, Error **errp, bool shared)
1929 RAMBlock *block;
1930 RAMBlock *last_block = NULL;
1931 ram_addr_t old_ram_size, new_ram_size;
1932 Error *err = NULL;
1934 old_ram_size = last_ram_page();
1936 qemu_mutex_lock_ramlist();
1937 new_block->offset = find_ram_offset(new_block->max_length);
1939 if (!new_block->host) {
1940 if (xen_enabled()) {
1941 xen_ram_alloc(new_block->offset, new_block->max_length,
1942 new_block->mr, &err);
1943 if (err) {
1944 error_propagate(errp, err);
1945 qemu_mutex_unlock_ramlist();
1946 return;
1948 } else {
1949 new_block->host = qemu_anon_ram_alloc(new_block->max_length,
1950 &new_block->mr->align,
1951 shared);
1952 if (!new_block->host) {
1953 error_setg_errno(errp, errno,
1954 "cannot set up guest memory '%s'",
1955 memory_region_name(new_block->mr));
1956 qemu_mutex_unlock_ramlist();
1957 return;
1959 memory_try_enable_merging(new_block->host, new_block->max_length);
1963 new_ram_size = MAX(old_ram_size,
1964 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
1965 if (new_ram_size > old_ram_size) {
1966 dirty_memory_extend(old_ram_size, new_ram_size);
1968 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
1969 * QLIST (which has an RCU-friendly variant) does not have insertion at
1970 * tail, so save the last element in last_block.
1972 RAMBLOCK_FOREACH(block) {
1973 last_block = block;
1974 if (block->max_length < new_block->max_length) {
1975 break;
1978 if (block) {
1979 QLIST_INSERT_BEFORE_RCU(block, new_block, next);
1980 } else if (last_block) {
1981 QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
1982 } else { /* list is empty */
1983 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
1985 ram_list.mru_block = NULL;
1987 /* Write list before version */
1988 smp_wmb();
1989 ram_list.version++;
1990 qemu_mutex_unlock_ramlist();
1992 cpu_physical_memory_set_dirty_range(new_block->offset,
1993 new_block->used_length,
1994 DIRTY_CLIENTS_ALL);
1996 if (new_block->host) {
1997 qemu_ram_setup_dump(new_block->host, new_block->max_length);
1998 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
2000 * MADV_DONTFORK is also needed by KVM in absence of synchronous MMU
2001 * Configure it unless the machine is a qtest server, in which case
2002 * KVM is not used and it may be forked (eg for fuzzing purposes).
2004 if (!qtest_enabled()) {
2005 qemu_madvise(new_block->host, new_block->max_length,
2006 QEMU_MADV_DONTFORK);
2008 ram_block_notify_add(new_block->host, new_block->max_length);
2012 #ifdef CONFIG_POSIX
2013 RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
2014 uint32_t ram_flags, int fd, off_t offset,
2015 bool readonly, Error **errp)
2017 RAMBlock *new_block;
2018 Error *local_err = NULL;
2019 int64_t file_size, file_align;
2021 /* Just support these ram flags by now. */
2022 assert((ram_flags & ~(RAM_SHARED | RAM_PMEM)) == 0);
2024 if (xen_enabled()) {
2025 error_setg(errp, "-mem-path not supported with Xen");
2026 return NULL;
2029 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2030 error_setg(errp,
2031 "host lacks kvm mmu notifiers, -mem-path unsupported");
2032 return NULL;
2035 size = HOST_PAGE_ALIGN(size);
2036 file_size = get_file_size(fd);
2037 if (file_size > 0 && file_size < size) {
2038 error_setg(errp, "backing store size 0x%" PRIx64
2039 " does not match 'size' option 0x" RAM_ADDR_FMT,
2040 file_size, size);
2041 return NULL;
2044 file_align = get_file_align(fd);
2045 if (file_align > 0 && mr && file_align > mr->align) {
2046 error_setg(errp, "backing store align 0x%" PRIx64
2047 " is larger than 'align' option 0x%" PRIx64,
2048 file_align, mr->align);
2049 return NULL;
2052 new_block = g_malloc0(sizeof(*new_block));
2053 new_block->mr = mr;
2054 new_block->used_length = size;
2055 new_block->max_length = size;
2056 new_block->flags = ram_flags;
2057 new_block->host = file_ram_alloc(new_block, size, fd, readonly,
2058 !file_size, offset, errp);
2059 if (!new_block->host) {
2060 g_free(new_block);
2061 return NULL;
2064 ram_block_add(new_block, &local_err, ram_flags & RAM_SHARED);
2065 if (local_err) {
2066 g_free(new_block);
2067 error_propagate(errp, local_err);
2068 return NULL;
2070 return new_block;
2075 RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
2076 uint32_t ram_flags, const char *mem_path,
2077 bool readonly, Error **errp)
2079 int fd;
2080 bool created;
2081 RAMBlock *block;
2083 fd = file_ram_open(mem_path, memory_region_name(mr), readonly, &created,
2084 errp);
2085 if (fd < 0) {
2086 return NULL;
2089 block = qemu_ram_alloc_from_fd(size, mr, ram_flags, fd, 0, readonly, errp);
2090 if (!block) {
2091 if (created) {
2092 unlink(mem_path);
2094 close(fd);
2095 return NULL;
2098 return block;
2100 #endif
2102 static
2103 RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
2104 void (*resized)(const char*,
2105 uint64_t length,
2106 void *host),
2107 void *host, bool resizeable, bool share,
2108 MemoryRegion *mr, Error **errp)
2110 RAMBlock *new_block;
2111 Error *local_err = NULL;
2113 size = HOST_PAGE_ALIGN(size);
2114 max_size = HOST_PAGE_ALIGN(max_size);
2115 new_block = g_malloc0(sizeof(*new_block));
2116 new_block->mr = mr;
2117 new_block->resized = resized;
2118 new_block->used_length = size;
2119 new_block->max_length = max_size;
2120 assert(max_size >= size);
2121 new_block->fd = -1;
2122 new_block->page_size = qemu_real_host_page_size;
2123 new_block->host = host;
2124 if (host) {
2125 new_block->flags |= RAM_PREALLOC;
2127 if (resizeable) {
2128 new_block->flags |= RAM_RESIZEABLE;
2130 ram_block_add(new_block, &local_err, share);
2131 if (local_err) {
2132 g_free(new_block);
2133 error_propagate(errp, local_err);
2134 return NULL;
2136 return new_block;
2139 RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
2140 MemoryRegion *mr, Error **errp)
2142 return qemu_ram_alloc_internal(size, size, NULL, host, false,
2143 false, mr, errp);
2146 RAMBlock *qemu_ram_alloc(ram_addr_t size, bool share,
2147 MemoryRegion *mr, Error **errp)
2149 return qemu_ram_alloc_internal(size, size, NULL, NULL, false,
2150 share, mr, errp);
2153 RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
2154 void (*resized)(const char*,
2155 uint64_t length,
2156 void *host),
2157 MemoryRegion *mr, Error **errp)
2159 return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true,
2160 false, mr, errp);
2163 static void reclaim_ramblock(RAMBlock *block)
2165 if (block->flags & RAM_PREALLOC) {
2167 } else if (xen_enabled()) {
2168 xen_invalidate_map_cache_entry(block->host);
2169 #ifndef _WIN32
2170 } else if (block->fd >= 0) {
2171 qemu_ram_munmap(block->fd, block->host, block->max_length);
2172 close(block->fd);
2173 #endif
2174 } else {
2175 qemu_anon_ram_free(block->host, block->max_length);
2177 g_free(block);
2180 void qemu_ram_free(RAMBlock *block)
2182 if (!block) {
2183 return;
2186 if (block->host) {
2187 ram_block_notify_remove(block->host, block->max_length);
2190 qemu_mutex_lock_ramlist();
2191 QLIST_REMOVE_RCU(block, next);
2192 ram_list.mru_block = NULL;
2193 /* Write list before version */
2194 smp_wmb();
2195 ram_list.version++;
2196 call_rcu(block, reclaim_ramblock, rcu);
2197 qemu_mutex_unlock_ramlist();
2200 #ifndef _WIN32
2201 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2203 RAMBlock *block;
2204 ram_addr_t offset;
2205 int flags;
2206 void *area, *vaddr;
2208 RAMBLOCK_FOREACH(block) {
2209 offset = addr - block->offset;
2210 if (offset < block->max_length) {
2211 vaddr = ramblock_ptr(block, offset);
2212 if (block->flags & RAM_PREALLOC) {
2214 } else if (xen_enabled()) {
2215 abort();
2216 } else {
2217 flags = MAP_FIXED;
2218 if (block->fd >= 0) {
2219 flags |= (block->flags & RAM_SHARED ?
2220 MAP_SHARED : MAP_PRIVATE);
2221 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2222 flags, block->fd, offset);
2223 } else {
2224 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
2225 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2226 flags, -1, 0);
2228 if (area != vaddr) {
2229 error_report("Could not remap addr: "
2230 RAM_ADDR_FMT "@" RAM_ADDR_FMT "",
2231 length, addr);
2232 exit(1);
2234 memory_try_enable_merging(vaddr, length);
2235 qemu_ram_setup_dump(vaddr, length);
2240 #endif /* !_WIN32 */
2242 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2243 * This should not be used for general purpose DMA. Use address_space_map
2244 * or address_space_rw instead. For local memory (e.g. video ram) that the
2245 * device owns, use memory_region_get_ram_ptr.
2247 * Called within RCU critical section.
2249 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
2251 RAMBlock *block = ram_block;
2253 if (block == NULL) {
2254 block = qemu_get_ram_block(addr);
2255 addr -= block->offset;
2258 if (xen_enabled() && block->host == NULL) {
2259 /* We need to check if the requested address is in the RAM
2260 * because we don't want to map the entire memory in QEMU.
2261 * In that case just map until the end of the page.
2263 if (block->offset == 0) {
2264 return xen_map_cache(addr, 0, 0, false);
2267 block->host = xen_map_cache(block->offset, block->max_length, 1, false);
2269 return ramblock_ptr(block, addr);
2272 /* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
2273 * but takes a size argument.
2275 * Called within RCU critical section.
2277 static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
2278 hwaddr *size, bool lock)
2280 RAMBlock *block = ram_block;
2281 if (*size == 0) {
2282 return NULL;
2285 if (block == NULL) {
2286 block = qemu_get_ram_block(addr);
2287 addr -= block->offset;
2289 *size = MIN(*size, block->max_length - addr);
2291 if (xen_enabled() && block->host == NULL) {
2292 /* We need to check if the requested address is in the RAM
2293 * because we don't want to map the entire memory in QEMU.
2294 * In that case just map the requested area.
2296 if (block->offset == 0) {
2297 return xen_map_cache(addr, *size, lock, lock);
2300 block->host = xen_map_cache(block->offset, block->max_length, 1, lock);
2303 return ramblock_ptr(block, addr);
2306 /* Return the offset of a hostpointer within a ramblock */
2307 ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host)
2309 ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host;
2310 assert((uintptr_t)host >= (uintptr_t)rb->host);
2311 assert(res < rb->max_length);
2313 return res;
2317 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
2318 * in that RAMBlock.
2320 * ptr: Host pointer to look up
2321 * round_offset: If true round the result offset down to a page boundary
2322 * *ram_addr: set to result ram_addr
2323 * *offset: set to result offset within the RAMBlock
2325 * Returns: RAMBlock (or NULL if not found)
2327 * By the time this function returns, the returned pointer is not protected
2328 * by RCU anymore. If the caller is not within an RCU critical section and
2329 * does not hold the iothread lock, it must have other means of protecting the
2330 * pointer, such as a reference to the region that includes the incoming
2331 * ram_addr_t.
2333 RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
2334 ram_addr_t *offset)
2336 RAMBlock *block;
2337 uint8_t *host = ptr;
2339 if (xen_enabled()) {
2340 ram_addr_t ram_addr;
2341 RCU_READ_LOCK_GUARD();
2342 ram_addr = xen_ram_addr_from_mapcache(ptr);
2343 block = qemu_get_ram_block(ram_addr);
2344 if (block) {
2345 *offset = ram_addr - block->offset;
2347 return block;
2350 RCU_READ_LOCK_GUARD();
2351 block = qatomic_rcu_read(&ram_list.mru_block);
2352 if (block && block->host && host - block->host < block->max_length) {
2353 goto found;
2356 RAMBLOCK_FOREACH(block) {
2357 /* This case append when the block is not mapped. */
2358 if (block->host == NULL) {
2359 continue;
2361 if (host - block->host < block->max_length) {
2362 goto found;
2366 return NULL;
2368 found:
2369 *offset = (host - block->host);
2370 if (round_offset) {
2371 *offset &= TARGET_PAGE_MASK;
2373 return block;
2377 * Finds the named RAMBlock
2379 * name: The name of RAMBlock to find
2381 * Returns: RAMBlock (or NULL if not found)
2383 RAMBlock *qemu_ram_block_by_name(const char *name)
2385 RAMBlock *block;
2387 RAMBLOCK_FOREACH(block) {
2388 if (!strcmp(name, block->idstr)) {
2389 return block;
2393 return NULL;
2396 /* Some of the softmmu routines need to translate from a host pointer
2397 (typically a TLB entry) back to a ram offset. */
2398 ram_addr_t qemu_ram_addr_from_host(void *ptr)
2400 RAMBlock *block;
2401 ram_addr_t offset;
2403 block = qemu_ram_block_from_host(ptr, false, &offset);
2404 if (!block) {
2405 return RAM_ADDR_INVALID;
2408 return block->offset + offset;
2411 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
2412 MemTxAttrs attrs, void *buf, hwaddr len);
2413 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2414 const void *buf, hwaddr len);
2415 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
2416 bool is_write, MemTxAttrs attrs);
2418 static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2419 unsigned len, MemTxAttrs attrs)
2421 subpage_t *subpage = opaque;
2422 uint8_t buf[8];
2423 MemTxResult res;
2425 #if defined(DEBUG_SUBPAGE)
2426 printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
2427 subpage, len, addr);
2428 #endif
2429 res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len);
2430 if (res) {
2431 return res;
2433 *data = ldn_p(buf, len);
2434 return MEMTX_OK;
2437 static MemTxResult subpage_write(void *opaque, hwaddr addr,
2438 uint64_t value, unsigned len, MemTxAttrs attrs)
2440 subpage_t *subpage = opaque;
2441 uint8_t buf[8];
2443 #if defined(DEBUG_SUBPAGE)
2444 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
2445 " value %"PRIx64"\n",
2446 __func__, subpage, len, addr, value);
2447 #endif
2448 stn_p(buf, len, value);
2449 return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len);
2452 static bool subpage_accepts(void *opaque, hwaddr addr,
2453 unsigned len, bool is_write,
2454 MemTxAttrs attrs)
2456 subpage_t *subpage = opaque;
2457 #if defined(DEBUG_SUBPAGE)
2458 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
2459 __func__, subpage, is_write ? 'w' : 'r', len, addr);
2460 #endif
2462 return flatview_access_valid(subpage->fv, addr + subpage->base,
2463 len, is_write, attrs);
2466 static const MemoryRegionOps subpage_ops = {
2467 .read_with_attrs = subpage_read,
2468 .write_with_attrs = subpage_write,
2469 .impl.min_access_size = 1,
2470 .impl.max_access_size = 8,
2471 .valid.min_access_size = 1,
2472 .valid.max_access_size = 8,
2473 .valid.accepts = subpage_accepts,
2474 .endianness = DEVICE_NATIVE_ENDIAN,
2477 static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
2478 uint16_t section)
2480 int idx, eidx;
2482 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2483 return -1;
2484 idx = SUBPAGE_IDX(start);
2485 eidx = SUBPAGE_IDX(end);
2486 #if defined(DEBUG_SUBPAGE)
2487 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2488 __func__, mmio, start, end, idx, eidx, section);
2489 #endif
2490 for (; idx <= eidx; idx++) {
2491 mmio->sub_section[idx] = section;
2494 return 0;
2497 static subpage_t *subpage_init(FlatView *fv, hwaddr base)
2499 subpage_t *mmio;
2501 /* mmio->sub_section is set to PHYS_SECTION_UNASSIGNED with g_malloc0 */
2502 mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
2503 mmio->fv = fv;
2504 mmio->base = base;
2505 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
2506 NULL, TARGET_PAGE_SIZE);
2507 mmio->iomem.subpage = true;
2508 #if defined(DEBUG_SUBPAGE)
2509 printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
2510 mmio, base, TARGET_PAGE_SIZE);
2511 #endif
2513 return mmio;
2516 static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr)
2518 assert(fv);
2519 MemoryRegionSection section = {
2520 .fv = fv,
2521 .mr = mr,
2522 .offset_within_address_space = 0,
2523 .offset_within_region = 0,
2524 .size = int128_2_64(),
2527 return phys_section_add(map, &section);
2530 MemoryRegionSection *iotlb_to_section(CPUState *cpu,
2531 hwaddr index, MemTxAttrs attrs)
2533 int asidx = cpu_asidx_from_attrs(cpu, attrs);
2534 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
2535 AddressSpaceDispatch *d = qatomic_rcu_read(&cpuas->memory_dispatch);
2536 MemoryRegionSection *sections = d->map.sections;
2538 return &sections[index & ~TARGET_PAGE_MASK];
2541 static void io_mem_init(void)
2543 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
2544 NULL, UINT64_MAX);
2547 AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv)
2549 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
2550 uint16_t n;
2552 n = dummy_section(&d->map, fv, &io_mem_unassigned);
2553 assert(n == PHYS_SECTION_UNASSIGNED);
2555 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
2557 return d;
2560 void address_space_dispatch_free(AddressSpaceDispatch *d)
2562 phys_sections_free(&d->map);
2563 g_free(d);
2566 static void do_nothing(CPUState *cpu, run_on_cpu_data d)
2570 static void tcg_log_global_after_sync(MemoryListener *listener)
2572 CPUAddressSpace *cpuas;
2574 /* Wait for the CPU to end the current TB. This avoids the following
2575 * incorrect race:
2577 * vCPU migration
2578 * ---------------------- -------------------------
2579 * TLB check -> slow path
2580 * notdirty_mem_write
2581 * write to RAM
2582 * mark dirty
2583 * clear dirty flag
2584 * TLB check -> fast path
2585 * read memory
2586 * write to RAM
2588 * by pushing the migration thread's memory read after the vCPU thread has
2589 * written the memory.
2591 if (replay_mode == REPLAY_MODE_NONE) {
2593 * VGA can make calls to this function while updating the screen.
2594 * In record/replay mode this causes a deadlock, because
2595 * run_on_cpu waits for rr mutex. Therefore no races are possible
2596 * in this case and no need for making run_on_cpu when
2597 * record/replay is not enabled.
2599 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2600 run_on_cpu(cpuas->cpu, do_nothing, RUN_ON_CPU_NULL);
2604 static void tcg_commit(MemoryListener *listener)
2606 CPUAddressSpace *cpuas;
2607 AddressSpaceDispatch *d;
2609 assert(tcg_enabled());
2610 /* since each CPU stores ram addresses in its TLB cache, we must
2611 reset the modified entries */
2612 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2613 cpu_reloading_memory_map();
2614 /* The CPU and TLB are protected by the iothread lock.
2615 * We reload the dispatch pointer now because cpu_reloading_memory_map()
2616 * may have split the RCU critical section.
2618 d = address_space_to_dispatch(cpuas->as);
2619 qatomic_rcu_set(&cpuas->memory_dispatch, d);
2620 tlb_flush(cpuas->cpu);
2623 static void memory_map_init(void)
2625 system_memory = g_malloc(sizeof(*system_memory));
2627 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
2628 address_space_init(&address_space_memory, system_memory, "memory");
2630 system_io = g_malloc(sizeof(*system_io));
2631 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
2632 65536);
2633 address_space_init(&address_space_io, system_io, "I/O");
2636 MemoryRegion *get_system_memory(void)
2638 return system_memory;
2641 MemoryRegion *get_system_io(void)
2643 return system_io;
2646 static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
2647 hwaddr length)
2649 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
2650 addr += memory_region_get_ram_addr(mr);
2652 /* No early return if dirty_log_mask is or becomes 0, because
2653 * cpu_physical_memory_set_dirty_range will still call
2654 * xen_modified_memory.
2656 if (dirty_log_mask) {
2657 dirty_log_mask =
2658 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
2660 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
2661 assert(tcg_enabled());
2662 tb_invalidate_phys_range(addr, addr + length);
2663 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
2665 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
2668 void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size)
2671 * In principle this function would work on other memory region types too,
2672 * but the ROM device use case is the only one where this operation is
2673 * necessary. Other memory regions should use the
2674 * address_space_read/write() APIs.
2676 assert(memory_region_is_romd(mr));
2678 invalidate_and_set_dirty(mr, addr, size);
2681 static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
2683 unsigned access_size_max = mr->ops->valid.max_access_size;
2685 /* Regions are assumed to support 1-4 byte accesses unless
2686 otherwise specified. */
2687 if (access_size_max == 0) {
2688 access_size_max = 4;
2691 /* Bound the maximum access by the alignment of the address. */
2692 if (!mr->ops->impl.unaligned) {
2693 unsigned align_size_max = addr & -addr;
2694 if (align_size_max != 0 && align_size_max < access_size_max) {
2695 access_size_max = align_size_max;
2699 /* Don't attempt accesses larger than the maximum. */
2700 if (l > access_size_max) {
2701 l = access_size_max;
2703 l = pow2floor(l);
2705 return l;
2708 static bool prepare_mmio_access(MemoryRegion *mr)
2710 bool release_lock = false;
2712 if (!qemu_mutex_iothread_locked()) {
2713 qemu_mutex_lock_iothread();
2714 release_lock = true;
2716 if (mr->flush_coalesced_mmio) {
2717 qemu_flush_coalesced_mmio_buffer();
2720 return release_lock;
2723 /* Called within RCU critical section. */
2724 static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr,
2725 MemTxAttrs attrs,
2726 const void *ptr,
2727 hwaddr len, hwaddr addr1,
2728 hwaddr l, MemoryRegion *mr)
2730 uint8_t *ram_ptr;
2731 uint64_t val;
2732 MemTxResult result = MEMTX_OK;
2733 bool release_lock = false;
2734 const uint8_t *buf = ptr;
2736 for (;;) {
2737 if (!memory_access_is_direct(mr, true)) {
2738 release_lock |= prepare_mmio_access(mr);
2739 l = memory_access_size(mr, l, addr1);
2740 /* XXX: could force current_cpu to NULL to avoid
2741 potential bugs */
2742 val = ldn_he_p(buf, l);
2743 result |= memory_region_dispatch_write(mr, addr1, val,
2744 size_memop(l), attrs);
2745 } else {
2746 /* RAM case */
2747 ram_ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
2748 memcpy(ram_ptr, buf, l);
2749 invalidate_and_set_dirty(mr, addr1, l);
2752 if (release_lock) {
2753 qemu_mutex_unlock_iothread();
2754 release_lock = false;
2757 len -= l;
2758 buf += l;
2759 addr += l;
2761 if (!len) {
2762 break;
2765 l = len;
2766 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
2769 return result;
2772 /* Called from RCU critical section. */
2773 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2774 const void *buf, hwaddr len)
2776 hwaddr l;
2777 hwaddr addr1;
2778 MemoryRegion *mr;
2779 MemTxResult result = MEMTX_OK;
2781 l = len;
2782 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
2783 result = flatview_write_continue(fv, addr, attrs, buf, len,
2784 addr1, l, mr);
2786 return result;
2789 /* Called within RCU critical section. */
2790 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
2791 MemTxAttrs attrs, void *ptr,
2792 hwaddr len, hwaddr addr1, hwaddr l,
2793 MemoryRegion *mr)
2795 uint8_t *ram_ptr;
2796 uint64_t val;
2797 MemTxResult result = MEMTX_OK;
2798 bool release_lock = false;
2799 uint8_t *buf = ptr;
2801 fuzz_dma_read_cb(addr, len, mr);
2802 for (;;) {
2803 if (!memory_access_is_direct(mr, false)) {
2804 /* I/O case */
2805 release_lock |= prepare_mmio_access(mr);
2806 l = memory_access_size(mr, l, addr1);
2807 result |= memory_region_dispatch_read(mr, addr1, &val,
2808 size_memop(l), attrs);
2809 stn_he_p(buf, l, val);
2810 } else {
2811 /* RAM case */
2812 ram_ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
2813 memcpy(buf, ram_ptr, l);
2816 if (release_lock) {
2817 qemu_mutex_unlock_iothread();
2818 release_lock = false;
2821 len -= l;
2822 buf += l;
2823 addr += l;
2825 if (!len) {
2826 break;
2829 l = len;
2830 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
2833 return result;
2836 /* Called from RCU critical section. */
2837 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
2838 MemTxAttrs attrs, void *buf, hwaddr len)
2840 hwaddr l;
2841 hwaddr addr1;
2842 MemoryRegion *mr;
2844 l = len;
2845 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
2846 return flatview_read_continue(fv, addr, attrs, buf, len,
2847 addr1, l, mr);
2850 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
2851 MemTxAttrs attrs, void *buf, hwaddr len)
2853 MemTxResult result = MEMTX_OK;
2854 FlatView *fv;
2856 if (len > 0) {
2857 RCU_READ_LOCK_GUARD();
2858 fv = address_space_to_flatview(as);
2859 result = flatview_read(fv, addr, attrs, buf, len);
2862 return result;
2865 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
2866 MemTxAttrs attrs,
2867 const void *buf, hwaddr len)
2869 MemTxResult result = MEMTX_OK;
2870 FlatView *fv;
2872 if (len > 0) {
2873 RCU_READ_LOCK_GUARD();
2874 fv = address_space_to_flatview(as);
2875 result = flatview_write(fv, addr, attrs, buf, len);
2878 return result;
2881 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
2882 void *buf, hwaddr len, bool is_write)
2884 if (is_write) {
2885 return address_space_write(as, addr, attrs, buf, len);
2886 } else {
2887 return address_space_read_full(as, addr, attrs, buf, len);
2891 void cpu_physical_memory_rw(hwaddr addr, void *buf,
2892 hwaddr len, bool is_write)
2894 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
2895 buf, len, is_write);
2898 enum write_rom_type {
2899 WRITE_DATA,
2900 FLUSH_CACHE,
2903 static inline MemTxResult address_space_write_rom_internal(AddressSpace *as,
2904 hwaddr addr,
2905 MemTxAttrs attrs,
2906 const void *ptr,
2907 hwaddr len,
2908 enum write_rom_type type)
2910 hwaddr l;
2911 uint8_t *ram_ptr;
2912 hwaddr addr1;
2913 MemoryRegion *mr;
2914 const uint8_t *buf = ptr;
2916 RCU_READ_LOCK_GUARD();
2917 while (len > 0) {
2918 l = len;
2919 mr = address_space_translate(as, addr, &addr1, &l, true, attrs);
2921 if (!(memory_region_is_ram(mr) ||
2922 memory_region_is_romd(mr))) {
2923 l = memory_access_size(mr, l, addr1);
2924 } else {
2925 /* ROM/RAM case */
2926 ram_ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
2927 switch (type) {
2928 case WRITE_DATA:
2929 memcpy(ram_ptr, buf, l);
2930 invalidate_and_set_dirty(mr, addr1, l);
2931 break;
2932 case FLUSH_CACHE:
2933 flush_idcache_range((uintptr_t)ram_ptr, (uintptr_t)ram_ptr, l);
2934 break;
2937 len -= l;
2938 buf += l;
2939 addr += l;
2941 return MEMTX_OK;
2944 /* used for ROM loading : can write in RAM and ROM */
2945 MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
2946 MemTxAttrs attrs,
2947 const void *buf, hwaddr len)
2949 return address_space_write_rom_internal(as, addr, attrs,
2950 buf, len, WRITE_DATA);
2953 void cpu_flush_icache_range(hwaddr start, hwaddr len)
2956 * This function should do the same thing as an icache flush that was
2957 * triggered from within the guest. For TCG we are always cache coherent,
2958 * so there is no need to flush anything. For KVM / Xen we need to flush
2959 * the host's instruction cache at least.
2961 if (tcg_enabled()) {
2962 return;
2965 address_space_write_rom_internal(&address_space_memory,
2966 start, MEMTXATTRS_UNSPECIFIED,
2967 NULL, len, FLUSH_CACHE);
2970 typedef struct {
2971 MemoryRegion *mr;
2972 void *buffer;
2973 hwaddr addr;
2974 hwaddr len;
2975 bool in_use;
2976 } BounceBuffer;
2978 static BounceBuffer bounce;
2980 typedef struct MapClient {
2981 QEMUBH *bh;
2982 QLIST_ENTRY(MapClient) link;
2983 } MapClient;
2985 QemuMutex map_client_list_lock;
2986 static QLIST_HEAD(, MapClient) map_client_list
2987 = QLIST_HEAD_INITIALIZER(map_client_list);
2989 static void cpu_unregister_map_client_do(MapClient *client)
2991 QLIST_REMOVE(client, link);
2992 g_free(client);
2995 static void cpu_notify_map_clients_locked(void)
2997 MapClient *client;
2999 while (!QLIST_EMPTY(&map_client_list)) {
3000 client = QLIST_FIRST(&map_client_list);
3001 qemu_bh_schedule(client->bh);
3002 cpu_unregister_map_client_do(client);
3006 void cpu_register_map_client(QEMUBH *bh)
3008 MapClient *client = g_malloc(sizeof(*client));
3010 qemu_mutex_lock(&map_client_list_lock);
3011 client->bh = bh;
3012 QLIST_INSERT_HEAD(&map_client_list, client, link);
3013 if (!qatomic_read(&bounce.in_use)) {
3014 cpu_notify_map_clients_locked();
3016 qemu_mutex_unlock(&map_client_list_lock);
3019 void cpu_exec_init_all(void)
3021 qemu_mutex_init(&ram_list.mutex);
3022 /* The data structures we set up here depend on knowing the page size,
3023 * so no more changes can be made after this point.
3024 * In an ideal world, nothing we did before we had finished the
3025 * machine setup would care about the target page size, and we could
3026 * do this much later, rather than requiring board models to state
3027 * up front what their requirements are.
3029 finalize_target_page_bits();
3030 io_mem_init();
3031 memory_map_init();
3032 qemu_mutex_init(&map_client_list_lock);
3035 void cpu_unregister_map_client(QEMUBH *bh)
3037 MapClient *client;
3039 qemu_mutex_lock(&map_client_list_lock);
3040 QLIST_FOREACH(client, &map_client_list, link) {
3041 if (client->bh == bh) {
3042 cpu_unregister_map_client_do(client);
3043 break;
3046 qemu_mutex_unlock(&map_client_list_lock);
3049 static void cpu_notify_map_clients(void)
3051 qemu_mutex_lock(&map_client_list_lock);
3052 cpu_notify_map_clients_locked();
3053 qemu_mutex_unlock(&map_client_list_lock);
3056 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
3057 bool is_write, MemTxAttrs attrs)
3059 MemoryRegion *mr;
3060 hwaddr l, xlat;
3062 while (len > 0) {
3063 l = len;
3064 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3065 if (!memory_access_is_direct(mr, is_write)) {
3066 l = memory_access_size(mr, l, addr);
3067 if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) {
3068 return false;
3072 len -= l;
3073 addr += l;
3075 return true;
3078 bool address_space_access_valid(AddressSpace *as, hwaddr addr,
3079 hwaddr len, bool is_write,
3080 MemTxAttrs attrs)
3082 FlatView *fv;
3083 bool result;
3085 RCU_READ_LOCK_GUARD();
3086 fv = address_space_to_flatview(as);
3087 result = flatview_access_valid(fv, addr, len, is_write, attrs);
3088 return result;
3091 static hwaddr
3092 flatview_extend_translation(FlatView *fv, hwaddr addr,
3093 hwaddr target_len,
3094 MemoryRegion *mr, hwaddr base, hwaddr len,
3095 bool is_write, MemTxAttrs attrs)
3097 hwaddr done = 0;
3098 hwaddr xlat;
3099 MemoryRegion *this_mr;
3101 for (;;) {
3102 target_len -= len;
3103 addr += len;
3104 done += len;
3105 if (target_len == 0) {
3106 return done;
3109 len = target_len;
3110 this_mr = flatview_translate(fv, addr, &xlat,
3111 &len, is_write, attrs);
3112 if (this_mr != mr || xlat != base + done) {
3113 return done;
3118 /* Map a physical memory region into a host virtual address.
3119 * May map a subset of the requested range, given by and returned in *plen.
3120 * May return NULL if resources needed to perform the mapping are exhausted.
3121 * Use only for reads OR writes - not for read-modify-write operations.
3122 * Use cpu_register_map_client() to know when retrying the map operation is
3123 * likely to succeed.
3125 void *address_space_map(AddressSpace *as,
3126 hwaddr addr,
3127 hwaddr *plen,
3128 bool is_write,
3129 MemTxAttrs attrs)
3131 hwaddr len = *plen;
3132 hwaddr l, xlat;
3133 MemoryRegion *mr;
3134 void *ptr;
3135 FlatView *fv;
3137 if (len == 0) {
3138 return NULL;
3141 l = len;
3142 RCU_READ_LOCK_GUARD();
3143 fv = address_space_to_flatview(as);
3144 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3146 if (!memory_access_is_direct(mr, is_write)) {
3147 if (qatomic_xchg(&bounce.in_use, true)) {
3148 *plen = 0;
3149 return NULL;
3151 /* Avoid unbounded allocations */
3152 l = MIN(l, TARGET_PAGE_SIZE);
3153 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
3154 bounce.addr = addr;
3155 bounce.len = l;
3157 memory_region_ref(mr);
3158 bounce.mr = mr;
3159 if (!is_write) {
3160 flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED,
3161 bounce.buffer, l);
3164 *plen = l;
3165 return bounce.buffer;
3169 memory_region_ref(mr);
3170 *plen = flatview_extend_translation(fv, addr, len, mr, xlat,
3171 l, is_write, attrs);
3172 fuzz_dma_read_cb(addr, *plen, mr);
3173 ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen, true);
3175 return ptr;
3178 /* Unmaps a memory region previously mapped by address_space_map().
3179 * Will also mark the memory as dirty if is_write is true. access_len gives
3180 * the amount of memory that was actually read or written by the caller.
3182 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3183 bool is_write, hwaddr access_len)
3185 if (buffer != bounce.buffer) {
3186 MemoryRegion *mr;
3187 ram_addr_t addr1;
3189 mr = memory_region_from_host(buffer, &addr1);
3190 assert(mr != NULL);
3191 if (is_write) {
3192 invalidate_and_set_dirty(mr, addr1, access_len);
3194 if (xen_enabled()) {
3195 xen_invalidate_map_cache_entry(buffer);
3197 memory_region_unref(mr);
3198 return;
3200 if (is_write) {
3201 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
3202 bounce.buffer, access_len);
3204 qemu_vfree(bounce.buffer);
3205 bounce.buffer = NULL;
3206 memory_region_unref(bounce.mr);
3207 qatomic_mb_set(&bounce.in_use, false);
3208 cpu_notify_map_clients();
3211 void *cpu_physical_memory_map(hwaddr addr,
3212 hwaddr *plen,
3213 bool is_write)
3215 return address_space_map(&address_space_memory, addr, plen, is_write,
3216 MEMTXATTRS_UNSPECIFIED);
3219 void cpu_physical_memory_unmap(void *buffer, hwaddr len,
3220 bool is_write, hwaddr access_len)
3222 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3225 #define ARG1_DECL AddressSpace *as
3226 #define ARG1 as
3227 #define SUFFIX
3228 #define TRANSLATE(...) address_space_translate(as, __VA_ARGS__)
3229 #define RCU_READ_LOCK(...) rcu_read_lock()
3230 #define RCU_READ_UNLOCK(...) rcu_read_unlock()
3231 #include "memory_ldst.c.inc"
3233 int64_t address_space_cache_init(MemoryRegionCache *cache,
3234 AddressSpace *as,
3235 hwaddr addr,
3236 hwaddr len,
3237 bool is_write)
3239 AddressSpaceDispatch *d;
3240 hwaddr l;
3241 MemoryRegion *mr;
3242 Int128 diff;
3244 assert(len > 0);
3246 l = len;
3247 cache->fv = address_space_get_flatview(as);
3248 d = flatview_to_dispatch(cache->fv);
3249 cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true);
3252 * cache->xlat is now relative to cache->mrs.mr, not to the section itself.
3253 * Take that into account to compute how many bytes are there between
3254 * cache->xlat and the end of the section.
3256 diff = int128_sub(cache->mrs.size,
3257 int128_make64(cache->xlat - cache->mrs.offset_within_region));
3258 l = int128_get64(int128_min(diff, int128_make64(l)));
3260 mr = cache->mrs.mr;
3261 memory_region_ref(mr);
3262 if (memory_access_is_direct(mr, is_write)) {
3263 /* We don't care about the memory attributes here as we're only
3264 * doing this if we found actual RAM, which behaves the same
3265 * regardless of attributes; so UNSPECIFIED is fine.
3267 l = flatview_extend_translation(cache->fv, addr, len, mr,
3268 cache->xlat, l, is_write,
3269 MEMTXATTRS_UNSPECIFIED);
3270 cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true);
3271 } else {
3272 cache->ptr = NULL;
3275 cache->len = l;
3276 cache->is_write = is_write;
3277 return l;
3280 void address_space_cache_invalidate(MemoryRegionCache *cache,
3281 hwaddr addr,
3282 hwaddr access_len)
3284 assert(cache->is_write);
3285 if (likely(cache->ptr)) {
3286 invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len);
3290 void address_space_cache_destroy(MemoryRegionCache *cache)
3292 if (!cache->mrs.mr) {
3293 return;
3296 if (xen_enabled()) {
3297 xen_invalidate_map_cache_entry(cache->ptr);
3299 memory_region_unref(cache->mrs.mr);
3300 flatview_unref(cache->fv);
3301 cache->mrs.mr = NULL;
3302 cache->fv = NULL;
3305 /* Called from RCU critical section. This function has the same
3306 * semantics as address_space_translate, but it only works on a
3307 * predefined range of a MemoryRegion that was mapped with
3308 * address_space_cache_init.
3310 static inline MemoryRegion *address_space_translate_cached(
3311 MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat,
3312 hwaddr *plen, bool is_write, MemTxAttrs attrs)
3314 MemoryRegionSection section;
3315 MemoryRegion *mr;
3316 IOMMUMemoryRegion *iommu_mr;
3317 AddressSpace *target_as;
3319 assert(!cache->ptr);
3320 *xlat = addr + cache->xlat;
3322 mr = cache->mrs.mr;
3323 iommu_mr = memory_region_get_iommu(mr);
3324 if (!iommu_mr) {
3325 /* MMIO region. */
3326 return mr;
3329 section = address_space_translate_iommu(iommu_mr, xlat, plen,
3330 NULL, is_write, true,
3331 &target_as, attrs);
3332 return section.mr;
3335 /* Called from RCU critical section. address_space_read_cached uses this
3336 * out of line function when the target is an MMIO or IOMMU region.
3338 MemTxResult
3339 address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3340 void *buf, hwaddr len)
3342 hwaddr addr1, l;
3343 MemoryRegion *mr;
3345 l = len;
3346 mr = address_space_translate_cached(cache, addr, &addr1, &l, false,
3347 MEMTXATTRS_UNSPECIFIED);
3348 return flatview_read_continue(cache->fv,
3349 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3350 addr1, l, mr);
3353 /* Called from RCU critical section. address_space_write_cached uses this
3354 * out of line function when the target is an MMIO or IOMMU region.
3356 MemTxResult
3357 address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3358 const void *buf, hwaddr len)
3360 hwaddr addr1, l;
3361 MemoryRegion *mr;
3363 l = len;
3364 mr = address_space_translate_cached(cache, addr, &addr1, &l, true,
3365 MEMTXATTRS_UNSPECIFIED);
3366 return flatview_write_continue(cache->fv,
3367 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3368 addr1, l, mr);
3371 #define ARG1_DECL MemoryRegionCache *cache
3372 #define ARG1 cache
3373 #define SUFFIX _cached_slow
3374 #define TRANSLATE(...) address_space_translate_cached(cache, __VA_ARGS__)
3375 #define RCU_READ_LOCK() ((void)0)
3376 #define RCU_READ_UNLOCK() ((void)0)
3377 #include "memory_ldst.c.inc"
3379 /* virtual memory access for debug (includes writing to ROM) */
3380 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
3381 void *ptr, target_ulong len, bool is_write)
3383 hwaddr phys_addr;
3384 target_ulong l, page;
3385 uint8_t *buf = ptr;
3387 cpu_synchronize_state(cpu);
3388 while (len > 0) {
3389 int asidx;
3390 MemTxAttrs attrs;
3391 MemTxResult res;
3393 page = addr & TARGET_PAGE_MASK;
3394 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3395 asidx = cpu_asidx_from_attrs(cpu, attrs);
3396 /* if no physical page mapped, return an error */
3397 if (phys_addr == -1)
3398 return -1;
3399 l = (page + TARGET_PAGE_SIZE) - addr;
3400 if (l > len)
3401 l = len;
3402 phys_addr += (addr & ~TARGET_PAGE_MASK);
3403 if (is_write) {
3404 res = address_space_write_rom(cpu->cpu_ases[asidx].as, phys_addr,
3405 attrs, buf, l);
3406 } else {
3407 res = address_space_read(cpu->cpu_ases[asidx].as, phys_addr,
3408 attrs, buf, l);
3410 if (res != MEMTX_OK) {
3411 return -1;
3413 len -= l;
3414 buf += l;
3415 addr += l;
3417 return 0;
3421 * Allows code that needs to deal with migration bitmaps etc to still be built
3422 * target independent.
3424 size_t qemu_target_page_size(void)
3426 return TARGET_PAGE_SIZE;
3429 int qemu_target_page_bits(void)
3431 return TARGET_PAGE_BITS;
3434 int qemu_target_page_bits_min(void)
3436 return TARGET_PAGE_BITS_MIN;
3439 bool cpu_physical_memory_is_io(hwaddr phys_addr)
3441 MemoryRegion*mr;
3442 hwaddr l = 1;
3443 bool res;
3445 RCU_READ_LOCK_GUARD();
3446 mr = address_space_translate(&address_space_memory,
3447 phys_addr, &phys_addr, &l, false,
3448 MEMTXATTRS_UNSPECIFIED);
3450 res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
3451 return res;
3454 int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
3456 RAMBlock *block;
3457 int ret = 0;
3459 RCU_READ_LOCK_GUARD();
3460 RAMBLOCK_FOREACH(block) {
3461 ret = func(block, opaque);
3462 if (ret) {
3463 break;
3466 return ret;
3470 * Unmap pages of memory from start to start+length such that
3471 * they a) read as 0, b) Trigger whatever fault mechanism
3472 * the OS provides for postcopy.
3473 * The pages must be unmapped by the end of the function.
3474 * Returns: 0 on success, none-0 on failure
3477 int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
3479 int ret = -1;
3481 uint8_t *host_startaddr = rb->host + start;
3483 if (!QEMU_PTR_IS_ALIGNED(host_startaddr, rb->page_size)) {
3484 error_report("ram_block_discard_range: Unaligned start address: %p",
3485 host_startaddr);
3486 goto err;
3489 if ((start + length) <= rb->used_length) {
3490 bool need_madvise, need_fallocate;
3491 if (!QEMU_IS_ALIGNED(length, rb->page_size)) {
3492 error_report("ram_block_discard_range: Unaligned length: %zx",
3493 length);
3494 goto err;
3497 errno = ENOTSUP; /* If we are missing MADVISE etc */
3499 /* The logic here is messy;
3500 * madvise DONTNEED fails for hugepages
3501 * fallocate works on hugepages and shmem
3503 need_madvise = (rb->page_size == qemu_host_page_size);
3504 need_fallocate = rb->fd != -1;
3505 if (need_fallocate) {
3506 /* For a file, this causes the area of the file to be zero'd
3507 * if read, and for hugetlbfs also causes it to be unmapped
3508 * so a userfault will trigger.
3510 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
3511 ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
3512 start, length);
3513 if (ret) {
3514 ret = -errno;
3515 error_report("ram_block_discard_range: Failed to fallocate "
3516 "%s:%" PRIx64 " +%zx (%d)",
3517 rb->idstr, start, length, ret);
3518 goto err;
3520 #else
3521 ret = -ENOSYS;
3522 error_report("ram_block_discard_range: fallocate not available/file"
3523 "%s:%" PRIx64 " +%zx (%d)",
3524 rb->idstr, start, length, ret);
3525 goto err;
3526 #endif
3528 if (need_madvise) {
3529 /* For normal RAM this causes it to be unmapped,
3530 * for shared memory it causes the local mapping to disappear
3531 * and to fall back on the file contents (which we just
3532 * fallocate'd away).
3534 #if defined(CONFIG_MADVISE)
3535 ret = madvise(host_startaddr, length, MADV_DONTNEED);
3536 if (ret) {
3537 ret = -errno;
3538 error_report("ram_block_discard_range: Failed to discard range "
3539 "%s:%" PRIx64 " +%zx (%d)",
3540 rb->idstr, start, length, ret);
3541 goto err;
3543 #else
3544 ret = -ENOSYS;
3545 error_report("ram_block_discard_range: MADVISE not available"
3546 "%s:%" PRIx64 " +%zx (%d)",
3547 rb->idstr, start, length, ret);
3548 goto err;
3549 #endif
3551 trace_ram_block_discard_range(rb->idstr, host_startaddr, length,
3552 need_madvise, need_fallocate, ret);
3553 } else {
3554 error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
3555 "/%zx/" RAM_ADDR_FMT")",
3556 rb->idstr, start, length, rb->used_length);
3559 err:
3560 return ret;
3563 bool ramblock_is_pmem(RAMBlock *rb)
3565 return rb->flags & RAM_PMEM;
3568 static void mtree_print_phys_entries(int start, int end, int skip, int ptr)
3570 if (start == end - 1) {
3571 qemu_printf("\t%3d ", start);
3572 } else {
3573 qemu_printf("\t%3d..%-3d ", start, end - 1);
3575 qemu_printf(" skip=%d ", skip);
3576 if (ptr == PHYS_MAP_NODE_NIL) {
3577 qemu_printf(" ptr=NIL");
3578 } else if (!skip) {
3579 qemu_printf(" ptr=#%d", ptr);
3580 } else {
3581 qemu_printf(" ptr=[%d]", ptr);
3583 qemu_printf("\n");
3586 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
3587 int128_sub((size), int128_one())) : 0)
3589 void mtree_print_dispatch(AddressSpaceDispatch *d, MemoryRegion *root)
3591 int i;
3593 qemu_printf(" Dispatch\n");
3594 qemu_printf(" Physical sections\n");
3596 for (i = 0; i < d->map.sections_nb; ++i) {
3597 MemoryRegionSection *s = d->map.sections + i;
3598 const char *names[] = { " [unassigned]", " [not dirty]",
3599 " [ROM]", " [watch]" };
3601 qemu_printf(" #%d @" TARGET_FMT_plx ".." TARGET_FMT_plx
3602 " %s%s%s%s%s",
3604 s->offset_within_address_space,
3605 s->offset_within_address_space + MR_SIZE(s->mr->size),
3606 s->mr->name ? s->mr->name : "(noname)",
3607 i < ARRAY_SIZE(names) ? names[i] : "",
3608 s->mr == root ? " [ROOT]" : "",
3609 s == d->mru_section ? " [MRU]" : "",
3610 s->mr->is_iommu ? " [iommu]" : "");
3612 if (s->mr->alias) {
3613 qemu_printf(" alias=%s", s->mr->alias->name ?
3614 s->mr->alias->name : "noname");
3616 qemu_printf("\n");
3619 qemu_printf(" Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
3620 P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip);
3621 for (i = 0; i < d->map.nodes_nb; ++i) {
3622 int j, jprev;
3623 PhysPageEntry prev;
3624 Node *n = d->map.nodes + i;
3626 qemu_printf(" [%d]\n", i);
3628 for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) {
3629 PhysPageEntry *pe = *n + j;
3631 if (pe->ptr == prev.ptr && pe->skip == prev.skip) {
3632 continue;
3635 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
3637 jprev = j;
3638 prev = *pe;
3641 if (jprev != ARRAY_SIZE(*n)) {
3642 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
3648 * If positive, discarding RAM is disabled. If negative, discarding RAM is
3649 * required to work and cannot be disabled.
3651 static int ram_block_discard_disabled;
3653 int ram_block_discard_disable(bool state)
3655 int old;
3657 if (!state) {
3658 qatomic_dec(&ram_block_discard_disabled);
3659 return 0;
3662 do {
3663 old = qatomic_read(&ram_block_discard_disabled);
3664 if (old < 0) {
3665 return -EBUSY;
3667 } while (qatomic_cmpxchg(&ram_block_discard_disabled,
3668 old, old + 1) != old);
3669 return 0;
3672 int ram_block_discard_require(bool state)
3674 int old;
3676 if (!state) {
3677 qatomic_inc(&ram_block_discard_disabled);
3678 return 0;
3681 do {
3682 old = qatomic_read(&ram_block_discard_disabled);
3683 if (old > 0) {
3684 return -EBUSY;
3686 } while (qatomic_cmpxchg(&ram_block_discard_disabled,
3687 old, old - 1) != old);
3688 return 0;
3691 bool ram_block_discard_is_disabled(void)
3693 return qatomic_read(&ram_block_discard_disabled) > 0;
3696 bool ram_block_discard_is_required(void)
3698 return qatomic_read(&ram_block_discard_disabled) < 0;