hw/ssi: imx_spi: Rework imx_spi_read() to handle block disabled
[qemu/kevin.git] / hw / ssi / imx_spi.c
blob21e2c9dea3e67d5dcdd709451ace487555810a0f
1 /*
2 * IMX SPI Controller
4 * Copyright (c) 2016 Jean-Christophe Dubois <jcd@tribudubois.net>
6 * This work is licensed under the terms of the GNU GPL, version 2 or later.
7 * See the COPYING file in the top-level directory.
9 */
11 #include "qemu/osdep.h"
12 #include "hw/irq.h"
13 #include "hw/ssi/imx_spi.h"
14 #include "migration/vmstate.h"
15 #include "qemu/log.h"
16 #include "qemu/module.h"
18 #ifndef DEBUG_IMX_SPI
19 #define DEBUG_IMX_SPI 0
20 #endif
22 #define DPRINTF(fmt, args...) \
23 do { \
24 if (DEBUG_IMX_SPI) { \
25 fprintf(stderr, "[%s]%s: " fmt , TYPE_IMX_SPI, \
26 __func__, ##args); \
27 } \
28 } while (0)
30 static const char *imx_spi_reg_name(uint32_t reg)
32 static char unknown[20];
34 switch (reg) {
35 case ECSPI_RXDATA:
36 return "ECSPI_RXDATA";
37 case ECSPI_TXDATA:
38 return "ECSPI_TXDATA";
39 case ECSPI_CONREG:
40 return "ECSPI_CONREG";
41 case ECSPI_CONFIGREG:
42 return "ECSPI_CONFIGREG";
43 case ECSPI_INTREG:
44 return "ECSPI_INTREG";
45 case ECSPI_DMAREG:
46 return "ECSPI_DMAREG";
47 case ECSPI_STATREG:
48 return "ECSPI_STATREG";
49 case ECSPI_PERIODREG:
50 return "ECSPI_PERIODREG";
51 case ECSPI_TESTREG:
52 return "ECSPI_TESTREG";
53 case ECSPI_MSGDATA:
54 return "ECSPI_MSGDATA";
55 default:
56 sprintf(unknown, "%u ?", reg);
57 return unknown;
61 static const VMStateDescription vmstate_imx_spi = {
62 .name = TYPE_IMX_SPI,
63 .version_id = 1,
64 .minimum_version_id = 1,
65 .fields = (VMStateField[]) {
66 VMSTATE_FIFO32(tx_fifo, IMXSPIState),
67 VMSTATE_FIFO32(rx_fifo, IMXSPIState),
68 VMSTATE_INT16(burst_length, IMXSPIState),
69 VMSTATE_UINT32_ARRAY(regs, IMXSPIState, ECSPI_MAX),
70 VMSTATE_END_OF_LIST()
74 static void imx_spi_txfifo_reset(IMXSPIState *s)
76 fifo32_reset(&s->tx_fifo);
77 s->regs[ECSPI_STATREG] |= ECSPI_STATREG_TE;
78 s->regs[ECSPI_STATREG] &= ~ECSPI_STATREG_TF;
81 static void imx_spi_rxfifo_reset(IMXSPIState *s)
83 fifo32_reset(&s->rx_fifo);
84 s->regs[ECSPI_STATREG] &= ~ECSPI_STATREG_RR;
85 s->regs[ECSPI_STATREG] &= ~ECSPI_STATREG_RF;
86 s->regs[ECSPI_STATREG] &= ~ECSPI_STATREG_RO;
89 static void imx_spi_update_irq(IMXSPIState *s)
91 int level;
93 if (fifo32_is_empty(&s->rx_fifo)) {
94 s->regs[ECSPI_STATREG] &= ~ECSPI_STATREG_RR;
95 } else {
96 s->regs[ECSPI_STATREG] |= ECSPI_STATREG_RR;
99 if (fifo32_is_full(&s->rx_fifo)) {
100 s->regs[ECSPI_STATREG] |= ECSPI_STATREG_RF;
101 } else {
102 s->regs[ECSPI_STATREG] &= ~ECSPI_STATREG_RF;
105 if (fifo32_is_empty(&s->tx_fifo)) {
106 s->regs[ECSPI_STATREG] |= ECSPI_STATREG_TE;
107 } else {
108 s->regs[ECSPI_STATREG] &= ~ECSPI_STATREG_TE;
111 if (fifo32_is_full(&s->tx_fifo)) {
112 s->regs[ECSPI_STATREG] |= ECSPI_STATREG_TF;
113 } else {
114 s->regs[ECSPI_STATREG] &= ~ECSPI_STATREG_TF;
117 level = s->regs[ECSPI_STATREG] & s->regs[ECSPI_INTREG] ? 1 : 0;
119 qemu_set_irq(s->irq, level);
121 DPRINTF("IRQ level is %d\n", level);
124 static uint8_t imx_spi_selected_channel(IMXSPIState *s)
126 return EXTRACT(s->regs[ECSPI_CONREG], ECSPI_CONREG_CHANNEL_SELECT);
129 static uint32_t imx_spi_burst_length(IMXSPIState *s)
131 return EXTRACT(s->regs[ECSPI_CONREG], ECSPI_CONREG_BURST_LENGTH) + 1;
134 static bool imx_spi_is_enabled(IMXSPIState *s)
136 return s->regs[ECSPI_CONREG] & ECSPI_CONREG_EN;
139 static bool imx_spi_channel_is_master(IMXSPIState *s)
141 uint8_t mode = EXTRACT(s->regs[ECSPI_CONREG], ECSPI_CONREG_CHANNEL_MODE);
143 return (mode & (1 << imx_spi_selected_channel(s))) ? true : false;
146 static bool imx_spi_is_multiple_master_burst(IMXSPIState *s)
148 uint8_t wave = EXTRACT(s->regs[ECSPI_CONFIGREG], ECSPI_CONFIGREG_SS_CTL);
150 return imx_spi_channel_is_master(s) &&
151 !(s->regs[ECSPI_CONREG] & ECSPI_CONREG_SMC) &&
152 ((wave & (1 << imx_spi_selected_channel(s))) ? true : false);
155 static void imx_spi_flush_txfifo(IMXSPIState *s)
157 uint32_t tx;
158 uint32_t rx;
160 DPRINTF("Begin: TX Fifo Size = %d, RX Fifo Size = %d\n",
161 fifo32_num_used(&s->tx_fifo), fifo32_num_used(&s->rx_fifo));
163 while (!fifo32_is_empty(&s->tx_fifo)) {
164 int tx_burst = 0;
165 int index = 0;
167 if (s->burst_length <= 0) {
168 s->burst_length = imx_spi_burst_length(s);
170 DPRINTF("Burst length = %d\n", s->burst_length);
172 if (imx_spi_is_multiple_master_burst(s)) {
173 s->regs[ECSPI_CONREG] |= ECSPI_CONREG_XCH;
177 tx = fifo32_pop(&s->tx_fifo);
179 DPRINTF("data tx:0x%08x\n", tx);
181 tx_burst = MIN(s->burst_length, 32);
183 rx = 0;
185 while (tx_burst > 0) {
186 uint8_t byte = tx & 0xff;
188 DPRINTF("writing 0x%02x\n", (uint32_t)byte);
190 /* We need to write one byte at a time */
191 byte = ssi_transfer(s->bus, byte);
193 DPRINTF("0x%02x read\n", (uint32_t)byte);
195 tx = tx >> 8;
196 rx |= (byte << (index * 8));
198 /* Remove 8 bits from the actual burst */
199 tx_burst -= 8;
200 s->burst_length -= 8;
201 index++;
204 DPRINTF("data rx:0x%08x\n", rx);
206 if (fifo32_is_full(&s->rx_fifo)) {
207 s->regs[ECSPI_STATREG] |= ECSPI_STATREG_RO;
208 } else {
209 fifo32_push(&s->rx_fifo, rx);
212 if (s->burst_length <= 0) {
213 if (!imx_spi_is_multiple_master_burst(s)) {
214 s->regs[ECSPI_STATREG] |= ECSPI_STATREG_TC;
215 break;
220 if (fifo32_is_empty(&s->tx_fifo)) {
221 s->regs[ECSPI_STATREG] |= ECSPI_STATREG_TC;
222 s->regs[ECSPI_CONREG] &= ~ECSPI_CONREG_XCH;
225 /* TODO: We should also use TDR and RDR bits */
227 DPRINTF("End: TX Fifo Size = %d, RX Fifo Size = %d\n",
228 fifo32_num_used(&s->tx_fifo), fifo32_num_used(&s->rx_fifo));
231 static void imx_spi_common_reset(IMXSPIState *s)
233 int i;
235 for (i = 0; i < ARRAY_SIZE(s->regs); i++) {
236 switch (i) {
237 case ECSPI_CONREG:
238 /* CONREG is not updated on soft reset */
239 break;
240 case ECSPI_STATREG:
241 s->regs[i] = 0x00000003;
242 break;
243 default:
244 s->regs[i] = 0;
245 break;
249 imx_spi_rxfifo_reset(s);
250 imx_spi_txfifo_reset(s);
252 s->burst_length = 0;
255 static void imx_spi_soft_reset(IMXSPIState *s)
257 imx_spi_common_reset(s);
259 imx_spi_update_irq(s);
262 static void imx_spi_reset(DeviceState *dev)
264 IMXSPIState *s = IMX_SPI(dev);
266 imx_spi_common_reset(s);
267 s->regs[ECSPI_CONREG] = 0;
270 static uint64_t imx_spi_read(void *opaque, hwaddr offset, unsigned size)
272 uint32_t value = 0;
273 IMXSPIState *s = opaque;
274 uint32_t index = offset >> 2;
276 if (index >= ECSPI_MAX) {
277 qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Bad register at offset 0x%"
278 HWADDR_PRIx "\n", TYPE_IMX_SPI, __func__, offset);
279 return 0;
282 value = s->regs[index];
284 if (imx_spi_is_enabled(s)) {
285 switch (index) {
286 case ECSPI_RXDATA:
287 if (fifo32_is_empty(&s->rx_fifo)) {
288 /* value is undefined */
289 value = 0xdeadbeef;
290 } else {
291 /* read from the RX FIFO */
292 value = fifo32_pop(&s->rx_fifo);
294 break;
295 case ECSPI_TXDATA:
296 qemu_log_mask(LOG_GUEST_ERROR,
297 "[%s]%s: Trying to read from TX FIFO\n",
298 TYPE_IMX_SPI, __func__);
300 /* Reading from TXDATA gives 0 */
301 break;
302 case ECSPI_MSGDATA:
303 qemu_log_mask(LOG_GUEST_ERROR,
304 "[%s]%s: Trying to read from MSG FIFO\n",
305 TYPE_IMX_SPI, __func__);
306 /* Reading from MSGDATA gives 0 */
307 break;
308 default:
309 break;
312 imx_spi_update_irq(s);
314 DPRINTF("reg[%s] => 0x%" PRIx32 "\n", imx_spi_reg_name(index), value);
316 return (uint64_t)value;
319 static void imx_spi_write(void *opaque, hwaddr offset, uint64_t value,
320 unsigned size)
322 IMXSPIState *s = opaque;
323 uint32_t index = offset >> 2;
324 uint32_t change_mask;
326 if (index >= ECSPI_MAX) {
327 qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Bad register at offset 0x%"
328 HWADDR_PRIx "\n", TYPE_IMX_SPI, __func__, offset);
329 return;
332 DPRINTF("reg[%s] <= 0x%" PRIx32 "\n", imx_spi_reg_name(index),
333 (uint32_t)value);
335 change_mask = s->regs[index] ^ value;
337 switch (index) {
338 case ECSPI_RXDATA:
339 qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Trying to write to RX FIFO\n",
340 TYPE_IMX_SPI, __func__);
341 break;
342 case ECSPI_TXDATA:
343 if (!imx_spi_is_enabled(s)) {
344 /* Ignore writes if device is disabled */
345 break;
346 } else if (fifo32_is_full(&s->tx_fifo)) {
347 /* Ignore writes if queue is full */
348 break;
351 fifo32_push(&s->tx_fifo, (uint32_t)value);
353 if (imx_spi_channel_is_master(s) &&
354 (s->regs[ECSPI_CONREG] & ECSPI_CONREG_SMC)) {
356 * Start emitting if current channel is master and SMC bit is
357 * set.
359 imx_spi_flush_txfifo(s);
362 break;
363 case ECSPI_STATREG:
364 /* the RO and TC bits are write-one-to-clear */
365 value &= ECSPI_STATREG_RO | ECSPI_STATREG_TC;
366 s->regs[ECSPI_STATREG] &= ~value;
368 break;
369 case ECSPI_CONREG:
370 s->regs[ECSPI_CONREG] = value;
372 if (!imx_spi_is_enabled(s)) {
373 /* device is disabled, so this is a soft reset */
374 imx_spi_soft_reset(s);
376 return;
379 if (imx_spi_channel_is_master(s)) {
380 int i;
382 /* We are in master mode */
384 for (i = 0; i < ECSPI_NUM_CS; i++) {
385 qemu_set_irq(s->cs_lines[i],
386 i == imx_spi_selected_channel(s) ? 0 : 1);
389 if ((value & change_mask & ECSPI_CONREG_SMC) &&
390 !fifo32_is_empty(&s->tx_fifo)) {
391 /* SMC bit is set and TX FIFO has some slots filled in */
392 imx_spi_flush_txfifo(s);
393 } else if ((value & change_mask & ECSPI_CONREG_XCH) &&
394 !(value & ECSPI_CONREG_SMC)) {
395 /* This is a request to start emitting */
396 imx_spi_flush_txfifo(s);
400 break;
401 case ECSPI_MSGDATA:
402 /* it is not clear from the spec what MSGDATA is for */
403 /* Anyway it is not used by Linux driver */
404 /* So for now we just ignore it */
405 qemu_log_mask(LOG_UNIMP,
406 "[%s]%s: Trying to write to MSGDATA, ignoring\n",
407 TYPE_IMX_SPI, __func__);
408 break;
409 default:
410 s->regs[index] = value;
412 break;
415 imx_spi_update_irq(s);
418 static const struct MemoryRegionOps imx_spi_ops = {
419 .read = imx_spi_read,
420 .write = imx_spi_write,
421 .endianness = DEVICE_NATIVE_ENDIAN,
422 .valid = {
424 * Our device would not work correctly if the guest was doing
425 * unaligned access. This might not be a limitation on the real
426 * device but in practice there is no reason for a guest to access
427 * this device unaligned.
429 .min_access_size = 4,
430 .max_access_size = 4,
431 .unaligned = false,
435 static void imx_spi_realize(DeviceState *dev, Error **errp)
437 IMXSPIState *s = IMX_SPI(dev);
438 int i;
440 s->bus = ssi_create_bus(dev, "spi");
442 memory_region_init_io(&s->iomem, OBJECT(dev), &imx_spi_ops, s,
443 TYPE_IMX_SPI, 0x1000);
444 sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->iomem);
445 sysbus_init_irq(SYS_BUS_DEVICE(dev), &s->irq);
447 for (i = 0; i < ECSPI_NUM_CS; ++i) {
448 sysbus_init_irq(SYS_BUS_DEVICE(dev), &s->cs_lines[i]);
451 fifo32_create(&s->tx_fifo, ECSPI_FIFO_SIZE);
452 fifo32_create(&s->rx_fifo, ECSPI_FIFO_SIZE);
455 static void imx_spi_class_init(ObjectClass *klass, void *data)
457 DeviceClass *dc = DEVICE_CLASS(klass);
459 dc->realize = imx_spi_realize;
460 dc->vmsd = &vmstate_imx_spi;
461 dc->reset = imx_spi_reset;
462 dc->desc = "i.MX SPI Controller";
465 static const TypeInfo imx_spi_info = {
466 .name = TYPE_IMX_SPI,
467 .parent = TYPE_SYS_BUS_DEVICE,
468 .instance_size = sizeof(IMXSPIState),
469 .class_init = imx_spi_class_init,
472 static void imx_spi_register_types(void)
474 type_register_static(&imx_spi_info);
477 type_init(imx_spi_register_types)