2 * MIPS internal definitions and helpers
4 * This work is licensed under the terms of the GNU GPL, version 2 or later.
5 * See the COPYING file in the top-level directory.
8 #ifndef MIPS_INTERNAL_H
9 #define MIPS_INTERNAL_H
11 #include "fpu/softfloat-helpers.h"
14 * MMU types, the first four entries have the same layout as the
35 int32_t CP0_Config4_rw_bitmask
;
37 int32_t CP0_Config5_rw_bitmask
;
39 int32_t CP0_Config6_rw_bitmask
;
41 int32_t CP0_Config7_rw_bitmask
;
42 target_ulong CP0_LLAddr_rw_bitmask
;
46 int32_t CP0_Status_rw_bitmask
;
47 int32_t CP0_TCStatus_rw_bitmask
;
50 int32_t CP1_fcr31_rw_bitmask
;
55 int32_t CP0_SRSConf0_rw_bitmask
;
57 int32_t CP0_SRSConf1_rw_bitmask
;
59 int32_t CP0_SRSConf2_rw_bitmask
;
61 int32_t CP0_SRSConf3_rw_bitmask
;
63 int32_t CP0_SRSConf4_rw_bitmask
;
65 int32_t CP0_PageGrain_rw_bitmask
;
66 int32_t CP0_PageGrain
;
67 target_ulong CP0_EBaseWG_rw_bitmask
;
69 enum mips_mmu_types mmu_type
;
73 extern const struct mips_def_t mips_defs
[];
74 extern const int mips_defs_number
;
76 enum CPUMIPSMSADataFormat
{
83 void mips_cpu_do_interrupt(CPUState
*cpu
);
84 bool mips_cpu_exec_interrupt(CPUState
*cpu
, int int_req
);
85 void mips_cpu_dump_state(CPUState
*cpu
, FILE *f
, int flags
);
86 hwaddr
mips_cpu_get_phys_page_debug(CPUState
*cpu
, vaddr addr
);
87 int mips_cpu_gdb_read_register(CPUState
*cpu
, GByteArray
*buf
, int reg
);
88 int mips_cpu_gdb_write_register(CPUState
*cpu
, uint8_t *buf
, int reg
);
89 void mips_cpu_do_unaligned_access(CPUState
*cpu
, vaddr addr
,
90 MMUAccessType access_type
,
91 int mmu_idx
, uintptr_t retaddr
);
93 #if !defined(CONFIG_USER_ONLY)
95 typedef struct r4k_tlb_t r4k_tlb_t
;
112 unsigned int EHINV
:1;
116 struct CPUMIPSTLBContext
{
119 int (*map_address
)(struct CPUMIPSState
*env
, hwaddr
*physical
, int *prot
,
120 target_ulong address
, int rw
, int access_type
);
121 void (*helper_tlbwi
)(struct CPUMIPSState
*env
);
122 void (*helper_tlbwr
)(struct CPUMIPSState
*env
);
123 void (*helper_tlbp
)(struct CPUMIPSState
*env
);
124 void (*helper_tlbr
)(struct CPUMIPSState
*env
);
125 void (*helper_tlbinv
)(struct CPUMIPSState
*env
);
126 void (*helper_tlbinvf
)(struct CPUMIPSState
*env
);
129 r4k_tlb_t tlb
[MIPS_TLB_MAX
];
134 int no_mmu_map_address(CPUMIPSState
*env
, hwaddr
*physical
, int *prot
,
135 target_ulong address
, int rw
, int access_type
);
136 int fixed_mmu_map_address(CPUMIPSState
*env
, hwaddr
*physical
, int *prot
,
137 target_ulong address
, int rw
, int access_type
);
138 int r4k_map_address(CPUMIPSState
*env
, hwaddr
*physical
, int *prot
,
139 target_ulong address
, int rw
, int access_type
);
140 void r4k_helper_tlbwi(CPUMIPSState
*env
);
141 void r4k_helper_tlbwr(CPUMIPSState
*env
);
142 void r4k_helper_tlbp(CPUMIPSState
*env
);
143 void r4k_helper_tlbr(CPUMIPSState
*env
);
144 void r4k_helper_tlbinv(CPUMIPSState
*env
);
145 void r4k_helper_tlbinvf(CPUMIPSState
*env
);
146 void r4k_invalidate_tlb(CPUMIPSState
*env
, int idx
, int use_extra
);
148 void mips_cpu_do_transaction_failed(CPUState
*cs
, hwaddr physaddr
,
149 vaddr addr
, unsigned size
,
150 MMUAccessType access_type
,
151 int mmu_idx
, MemTxAttrs attrs
,
152 MemTxResult response
, uintptr_t retaddr
);
153 hwaddr
cpu_mips_translate_address(CPUMIPSState
*env
, target_ulong address
,
157 #define cpu_signal_handler cpu_mips_signal_handler
159 #ifndef CONFIG_USER_ONLY
160 extern const VMStateDescription vmstate_mips_cpu
;
163 static inline bool cpu_mips_hw_interrupts_enabled(CPUMIPSState
*env
)
165 return (env
->CP0_Status
& (1 << CP0St_IE
)) &&
166 !(env
->CP0_Status
& (1 << CP0St_EXL
)) &&
167 !(env
->CP0_Status
& (1 << CP0St_ERL
)) &&
168 !(env
->hflags
& MIPS_HFLAG_DM
) &&
170 * Note that the TCStatus IXMT field is initialized to zero,
171 * and only MT capable cores can set it to one. So we don't
172 * need to check for MT capabilities here.
174 !(env
->active_tc
.CP0_TCStatus
& (1 << CP0TCSt_IXMT
));
177 /* Check if there is pending and not masked out interrupt */
178 static inline bool cpu_mips_hw_interrupts_pending(CPUMIPSState
*env
)
184 pending
= env
->CP0_Cause
& CP0Ca_IP_mask
;
185 status
= env
->CP0_Status
& CP0Ca_IP_mask
;
187 if (env
->CP0_Config3
& (1 << CP0C3_VEIC
)) {
189 * A MIPS configured with a vectorizing external interrupt controller
190 * will feed a vector into the Cause pending lines. The core treats
191 * the status lines as a vector level, not as indiviual masks.
193 r
= pending
> status
;
196 * A MIPS configured with compatibility or VInt (Vectored Interrupts)
197 * treats the pending lines as individual interrupt lines, the status
198 * lines are individual masks.
200 r
= (pending
& status
) != 0;
205 void mips_tcg_init(void);
207 /* TODO QOM'ify CPU reset and remove */
208 void cpu_state_reset(CPUMIPSState
*s
);
209 void cpu_mips_realize_env(CPUMIPSState
*env
);
212 uint32_t cpu_mips_get_random(CPUMIPSState
*env
);
213 uint32_t cpu_mips_get_count(CPUMIPSState
*env
);
214 void cpu_mips_store_count(CPUMIPSState
*env
, uint32_t value
);
215 void cpu_mips_store_compare(CPUMIPSState
*env
, uint32_t value
);
216 void cpu_mips_start_count(CPUMIPSState
*env
);
217 void cpu_mips_stop_count(CPUMIPSState
*env
);
220 bool mips_cpu_tlb_fill(CPUState
*cs
, vaddr address
, int size
,
221 MMUAccessType access_type
, int mmu_idx
,
222 bool probe
, uintptr_t retaddr
);
225 uint32_t float_class_s(uint32_t arg
, float_status
*fst
);
226 uint64_t float_class_d(uint64_t arg
, float_status
*fst
);
228 extern unsigned int ieee_rm
[];
229 void update_pagemask(CPUMIPSState
*env
, target_ulong arg1
, int32_t *pagemask
);
231 static inline void restore_rounding_mode(CPUMIPSState
*env
)
233 set_float_rounding_mode(ieee_rm
[env
->active_fpu
.fcr31
& 3],
234 &env
->active_fpu
.fp_status
);
237 static inline void restore_flush_mode(CPUMIPSState
*env
)
239 set_flush_to_zero((env
->active_fpu
.fcr31
& (1 << FCR31_FS
)) != 0,
240 &env
->active_fpu
.fp_status
);
243 static inline void restore_snan_bit_mode(CPUMIPSState
*env
)
245 set_snan_bit_is_one((env
->active_fpu
.fcr31
& (1 << FCR31_NAN2008
)) == 0,
246 &env
->active_fpu
.fp_status
);
249 static inline void restore_fp_status(CPUMIPSState
*env
)
251 restore_rounding_mode(env
);
252 restore_flush_mode(env
);
253 restore_snan_bit_mode(env
);
256 static inline void restore_msa_fp_status(CPUMIPSState
*env
)
258 float_status
*status
= &env
->active_tc
.msa_fp_status
;
259 int rounding_mode
= (env
->active_tc
.msacsr
& MSACSR_RM_MASK
) >> MSACSR_RM
;
260 bool flush_to_zero
= (env
->active_tc
.msacsr
& MSACSR_FS_MASK
) != 0;
262 set_float_rounding_mode(ieee_rm
[rounding_mode
], status
);
263 set_flush_to_zero(flush_to_zero
, status
);
264 set_flush_inputs_to_zero(flush_to_zero
, status
);
267 static inline void restore_pamask(CPUMIPSState
*env
)
269 if (env
->hflags
& MIPS_HFLAG_ELPA
) {
270 env
->PAMask
= (1ULL << env
->PABITS
) - 1;
272 env
->PAMask
= PAMASK_BASE
;
276 static inline int mips_vpe_active(CPUMIPSState
*env
)
280 /* Check that the VPE is enabled. */
281 if (!(env
->mvp
->CP0_MVPControl
& (1 << CP0MVPCo_EVP
))) {
284 /* Check that the VPE is activated. */
285 if (!(env
->CP0_VPEConf0
& (1 << CP0VPEC0_VPA
))) {
290 * Now verify that there are active thread contexts in the VPE.
292 * This assumes the CPU model will internally reschedule threads
293 * if the active one goes to sleep. If there are no threads available
294 * the active one will be in a sleeping state, and we can turn off
297 if (!(env
->active_tc
.CP0_TCStatus
& (1 << CP0TCSt_A
))) {
298 /* TC is not activated. */
301 if (env
->active_tc
.CP0_TCHalt
& 1) {
302 /* TC is in halt state. */
309 static inline int mips_vp_active(CPUMIPSState
*env
)
311 CPUState
*other_cs
= first_cpu
;
313 /* Check if the VP disabled other VPs (which means the VP is enabled) */
314 if ((env
->CP0_VPControl
>> CP0VPCtl_DIS
) & 1) {
318 /* Check if the virtual processor is disabled due to a DVP */
319 CPU_FOREACH(other_cs
) {
320 MIPSCPU
*other_cpu
= MIPS_CPU(other_cs
);
321 if ((&other_cpu
->env
!= env
) &&
322 ((other_cpu
->env
.CP0_VPControl
>> CP0VPCtl_DIS
) & 1)) {
329 static inline void compute_hflags(CPUMIPSState
*env
)
331 env
->hflags
&= ~(MIPS_HFLAG_COP1X
| MIPS_HFLAG_64
| MIPS_HFLAG_CP0
|
332 MIPS_HFLAG_F64
| MIPS_HFLAG_FPU
| MIPS_HFLAG_KSU
|
333 MIPS_HFLAG_AWRAP
| MIPS_HFLAG_DSP
| MIPS_HFLAG_DSP_R2
|
334 MIPS_HFLAG_DSP_R3
| MIPS_HFLAG_SBRI
| MIPS_HFLAG_MSA
|
335 MIPS_HFLAG_FRE
| MIPS_HFLAG_ELPA
| MIPS_HFLAG_ERL
);
336 if (env
->CP0_Status
& (1 << CP0St_ERL
)) {
337 env
->hflags
|= MIPS_HFLAG_ERL
;
339 if (!(env
->CP0_Status
& (1 << CP0St_EXL
)) &&
340 !(env
->CP0_Status
& (1 << CP0St_ERL
)) &&
341 !(env
->hflags
& MIPS_HFLAG_DM
)) {
342 env
->hflags
|= (env
->CP0_Status
>> CP0St_KSU
) &
345 #if defined(TARGET_MIPS64)
346 if ((env
->insn_flags
& ISA_MIPS3
) &&
347 (((env
->hflags
& MIPS_HFLAG_KSU
) != MIPS_HFLAG_UM
) ||
348 (env
->CP0_Status
& (1 << CP0St_PX
)) ||
349 (env
->CP0_Status
& (1 << CP0St_UX
)))) {
350 env
->hflags
|= MIPS_HFLAG_64
;
353 if (!(env
->insn_flags
& ISA_MIPS3
)) {
354 env
->hflags
|= MIPS_HFLAG_AWRAP
;
355 } else if (((env
->hflags
& MIPS_HFLAG_KSU
) == MIPS_HFLAG_UM
) &&
356 !(env
->CP0_Status
& (1 << CP0St_UX
))) {
357 env
->hflags
|= MIPS_HFLAG_AWRAP
;
358 } else if (env
->insn_flags
& ISA_MIPS64R6
) {
359 /* Address wrapping for Supervisor and Kernel is specified in R6 */
360 if ((((env
->hflags
& MIPS_HFLAG_KSU
) == MIPS_HFLAG_SM
) &&
361 !(env
->CP0_Status
& (1 << CP0St_SX
))) ||
362 (((env
->hflags
& MIPS_HFLAG_KSU
) == MIPS_HFLAG_KM
) &&
363 !(env
->CP0_Status
& (1 << CP0St_KX
)))) {
364 env
->hflags
|= MIPS_HFLAG_AWRAP
;
368 if (((env
->CP0_Status
& (1 << CP0St_CU0
)) &&
369 !(env
->insn_flags
& ISA_MIPS32R6
)) ||
370 !(env
->hflags
& MIPS_HFLAG_KSU
)) {
371 env
->hflags
|= MIPS_HFLAG_CP0
;
373 if (env
->CP0_Status
& (1 << CP0St_CU1
)) {
374 env
->hflags
|= MIPS_HFLAG_FPU
;
376 if (env
->CP0_Status
& (1 << CP0St_FR
)) {
377 env
->hflags
|= MIPS_HFLAG_F64
;
379 if (((env
->hflags
& MIPS_HFLAG_KSU
) != MIPS_HFLAG_KM
) &&
380 (env
->CP0_Config5
& (1 << CP0C5_SBRI
))) {
381 env
->hflags
|= MIPS_HFLAG_SBRI
;
383 if (env
->insn_flags
& ASE_DSP_R3
) {
385 * Our cpu supports DSP R3 ASE, so enable
386 * access to DSP R3 resources.
388 if (env
->CP0_Status
& (1 << CP0St_MX
)) {
389 env
->hflags
|= MIPS_HFLAG_DSP
| MIPS_HFLAG_DSP_R2
|
392 } else if (env
->insn_flags
& ASE_DSP_R2
) {
394 * Our cpu supports DSP R2 ASE, so enable
395 * access to DSP R2 resources.
397 if (env
->CP0_Status
& (1 << CP0St_MX
)) {
398 env
->hflags
|= MIPS_HFLAG_DSP
| MIPS_HFLAG_DSP_R2
;
401 } else if (env
->insn_flags
& ASE_DSP
) {
403 * Our cpu supports DSP ASE, so enable
404 * access to DSP resources.
406 if (env
->CP0_Status
& (1 << CP0St_MX
)) {
407 env
->hflags
|= MIPS_HFLAG_DSP
;
411 if (env
->insn_flags
& ISA_MIPS32R2
) {
412 if (env
->active_fpu
.fcr0
& (1 << FCR0_F64
)) {
413 env
->hflags
|= MIPS_HFLAG_COP1X
;
415 } else if (env
->insn_flags
& ISA_MIPS32
) {
416 if (env
->hflags
& MIPS_HFLAG_64
) {
417 env
->hflags
|= MIPS_HFLAG_COP1X
;
419 } else if (env
->insn_flags
& ISA_MIPS4
) {
421 * All supported MIPS IV CPUs use the XX (CU3) to enable
422 * and disable the MIPS IV extensions to the MIPS III ISA.
423 * Some other MIPS IV CPUs ignore the bit, so the check here
424 * would be too restrictive for them.
426 if (env
->CP0_Status
& (1U << CP0St_CU3
)) {
427 env
->hflags
|= MIPS_HFLAG_COP1X
;
430 if (env
->insn_flags
& ASE_MSA
) {
431 if (env
->CP0_Config5
& (1 << CP0C5_MSAEn
)) {
432 env
->hflags
|= MIPS_HFLAG_MSA
;
435 if (env
->active_fpu
.fcr0
& (1 << FCR0_FREP
)) {
436 if (env
->CP0_Config5
& (1 << CP0C5_FRE
)) {
437 env
->hflags
|= MIPS_HFLAG_FRE
;
440 if (env
->CP0_Config3
& (1 << CP0C3_LPA
)) {
441 if (env
->CP0_PageGrain
& (1 << CP0PG_ELPA
)) {
442 env
->hflags
|= MIPS_HFLAG_ELPA
;
447 void cpu_mips_tlb_flush(CPUMIPSState
*env
);
448 void sync_c0_status(CPUMIPSState
*env
, CPUMIPSState
*cpu
, int tc
);
449 void cpu_mips_store_status(CPUMIPSState
*env
, target_ulong val
);
450 void cpu_mips_store_cause(CPUMIPSState
*env
, target_ulong val
);
452 void QEMU_NORETURN
do_raise_exception_err(CPUMIPSState
*env
, uint32_t exception
,
453 int error_code
, uintptr_t pc
);
455 static inline void QEMU_NORETURN
do_raise_exception(CPUMIPSState
*env
,
459 do_raise_exception_err(env
, exception
, 0, pc
);