2 * Physical memory management
4 * Copyright 2011 Red Hat, Inc. and/or its affiliates
7 * Avi Kivity <avi@redhat.com>
9 * This work is licensed under the terms of the GNU GPL, version 2. See
10 * the COPYING file in the top-level directory.
12 * Contributions after 2012-01-13 are licensed under the terms of the
13 * GNU GPL, version 2 or (at your option) any later version.
16 #include "qemu/osdep.h"
17 #include "qapi/error.h"
18 #include "qemu-common.h"
20 #include "exec/memory.h"
21 #include "exec/address-spaces.h"
22 #include "exec/ioport.h"
23 #include "qapi/visitor.h"
24 #include "qemu/bitops.h"
25 #include "qemu/error-report.h"
26 #include "qom/object.h"
29 #include "exec/memory-internal.h"
30 #include "exec/ram_addr.h"
31 #include "sysemu/kvm.h"
32 #include "sysemu/sysemu.h"
34 //#define DEBUG_UNASSIGNED
36 #define RAM_ADDR_INVALID (~(ram_addr_t)0)
38 static unsigned memory_region_transaction_depth
;
39 static bool memory_region_update_pending
;
40 static bool ioeventfd_update_pending
;
41 static bool global_dirty_log
= false;
43 static QTAILQ_HEAD(memory_listeners
, MemoryListener
) memory_listeners
44 = QTAILQ_HEAD_INITIALIZER(memory_listeners
);
46 static QTAILQ_HEAD(, AddressSpace
) address_spaces
47 = QTAILQ_HEAD_INITIALIZER(address_spaces
);
49 typedef struct AddrRange AddrRange
;
52 * Note that signed integers are needed for negative offsetting in aliases
53 * (large MemoryRegion::alias_offset).
60 static AddrRange
addrrange_make(Int128 start
, Int128 size
)
62 return (AddrRange
) { start
, size
};
65 static bool addrrange_equal(AddrRange r1
, AddrRange r2
)
67 return int128_eq(r1
.start
, r2
.start
) && int128_eq(r1
.size
, r2
.size
);
70 static Int128
addrrange_end(AddrRange r
)
72 return int128_add(r
.start
, r
.size
);
75 static AddrRange
addrrange_shift(AddrRange range
, Int128 delta
)
77 int128_addto(&range
.start
, delta
);
81 static bool addrrange_contains(AddrRange range
, Int128 addr
)
83 return int128_ge(addr
, range
.start
)
84 && int128_lt(addr
, addrrange_end(range
));
87 static bool addrrange_intersects(AddrRange r1
, AddrRange r2
)
89 return addrrange_contains(r1
, r2
.start
)
90 || addrrange_contains(r2
, r1
.start
);
93 static AddrRange
addrrange_intersection(AddrRange r1
, AddrRange r2
)
95 Int128 start
= int128_max(r1
.start
, r2
.start
);
96 Int128 end
= int128_min(addrrange_end(r1
), addrrange_end(r2
));
97 return addrrange_make(start
, int128_sub(end
, start
));
100 enum ListenerDirection
{ Forward
, Reverse
};
102 static bool memory_listener_match(MemoryListener
*listener
,
103 MemoryRegionSection
*section
)
105 return !listener
->address_space_filter
106 || listener
->address_space_filter
== section
->address_space
;
109 #define MEMORY_LISTENER_CALL_GLOBAL(_callback, _direction, _args...) \
111 MemoryListener *_listener; \
113 switch (_direction) { \
115 QTAILQ_FOREACH(_listener, &memory_listeners, link) { \
116 if (_listener->_callback) { \
117 _listener->_callback(_listener, ##_args); \
122 QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners, \
123 memory_listeners, link) { \
124 if (_listener->_callback) { \
125 _listener->_callback(_listener, ##_args); \
134 #define MEMORY_LISTENER_CALL(_callback, _direction, _section, _args...) \
136 MemoryListener *_listener; \
138 switch (_direction) { \
140 QTAILQ_FOREACH(_listener, &memory_listeners, link) { \
141 if (_listener->_callback \
142 && memory_listener_match(_listener, _section)) { \
143 _listener->_callback(_listener, _section, ##_args); \
148 QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners, \
149 memory_listeners, link) { \
150 if (_listener->_callback \
151 && memory_listener_match(_listener, _section)) { \
152 _listener->_callback(_listener, _section, ##_args); \
161 /* No need to ref/unref .mr, the FlatRange keeps it alive. */
162 #define MEMORY_LISTENER_UPDATE_REGION(fr, as, dir, callback, _args...) \
163 MEMORY_LISTENER_CALL(callback, dir, (&(MemoryRegionSection) { \
165 .address_space = (as), \
166 .offset_within_region = (fr)->offset_in_region, \
167 .size = (fr)->addr.size, \
168 .offset_within_address_space = int128_get64((fr)->addr.start), \
169 .readonly = (fr)->readonly, \
172 struct CoalescedMemoryRange
{
174 QTAILQ_ENTRY(CoalescedMemoryRange
) link
;
177 struct MemoryRegionIoeventfd
{
184 static bool memory_region_ioeventfd_before(MemoryRegionIoeventfd a
,
185 MemoryRegionIoeventfd b
)
187 if (int128_lt(a
.addr
.start
, b
.addr
.start
)) {
189 } else if (int128_gt(a
.addr
.start
, b
.addr
.start
)) {
191 } else if (int128_lt(a
.addr
.size
, b
.addr
.size
)) {
193 } else if (int128_gt(a
.addr
.size
, b
.addr
.size
)) {
195 } else if (a
.match_data
< b
.match_data
) {
197 } else if (a
.match_data
> b
.match_data
) {
199 } else if (a
.match_data
) {
200 if (a
.data
< b
.data
) {
202 } else if (a
.data
> b
.data
) {
208 } else if (a
.e
> b
.e
) {
214 static bool memory_region_ioeventfd_equal(MemoryRegionIoeventfd a
,
215 MemoryRegionIoeventfd b
)
217 return !memory_region_ioeventfd_before(a
, b
)
218 && !memory_region_ioeventfd_before(b
, a
);
221 typedef struct FlatRange FlatRange
;
222 typedef struct FlatView FlatView
;
224 /* Range of memory in the global map. Addresses are absolute. */
227 hwaddr offset_in_region
;
229 uint8_t dirty_log_mask
;
234 /* Flattened global view of current active memory hierarchy. Kept in sorted
242 unsigned nr_allocated
;
245 typedef struct AddressSpaceOps AddressSpaceOps
;
247 #define FOR_EACH_FLAT_RANGE(var, view) \
248 for (var = (view)->ranges; var < (view)->ranges + (view)->nr; ++var)
250 static bool flatrange_equal(FlatRange
*a
, FlatRange
*b
)
252 return a
->mr
== b
->mr
253 && addrrange_equal(a
->addr
, b
->addr
)
254 && a
->offset_in_region
== b
->offset_in_region
255 && a
->romd_mode
== b
->romd_mode
256 && a
->readonly
== b
->readonly
;
259 static void flatview_init(FlatView
*view
)
264 view
->nr_allocated
= 0;
267 /* Insert a range into a given position. Caller is responsible for maintaining
270 static void flatview_insert(FlatView
*view
, unsigned pos
, FlatRange
*range
)
272 if (view
->nr
== view
->nr_allocated
) {
273 view
->nr_allocated
= MAX(2 * view
->nr
, 10);
274 view
->ranges
= g_realloc(view
->ranges
,
275 view
->nr_allocated
* sizeof(*view
->ranges
));
277 memmove(view
->ranges
+ pos
+ 1, view
->ranges
+ pos
,
278 (view
->nr
- pos
) * sizeof(FlatRange
));
279 view
->ranges
[pos
] = *range
;
280 memory_region_ref(range
->mr
);
284 static void flatview_destroy(FlatView
*view
)
288 for (i
= 0; i
< view
->nr
; i
++) {
289 memory_region_unref(view
->ranges
[i
].mr
);
291 g_free(view
->ranges
);
295 static void flatview_ref(FlatView
*view
)
297 atomic_inc(&view
->ref
);
300 static void flatview_unref(FlatView
*view
)
302 if (atomic_fetch_dec(&view
->ref
) == 1) {
303 flatview_destroy(view
);
307 static bool can_merge(FlatRange
*r1
, FlatRange
*r2
)
309 return int128_eq(addrrange_end(r1
->addr
), r2
->addr
.start
)
311 && int128_eq(int128_add(int128_make64(r1
->offset_in_region
),
313 int128_make64(r2
->offset_in_region
))
314 && r1
->dirty_log_mask
== r2
->dirty_log_mask
315 && r1
->romd_mode
== r2
->romd_mode
316 && r1
->readonly
== r2
->readonly
;
319 /* Attempt to simplify a view by merging adjacent ranges */
320 static void flatview_simplify(FlatView
*view
)
325 while (i
< view
->nr
) {
328 && can_merge(&view
->ranges
[j
-1], &view
->ranges
[j
])) {
329 int128_addto(&view
->ranges
[i
].addr
.size
, view
->ranges
[j
].addr
.size
);
333 memmove(&view
->ranges
[i
], &view
->ranges
[j
],
334 (view
->nr
- j
) * sizeof(view
->ranges
[j
]));
339 static bool memory_region_big_endian(MemoryRegion
*mr
)
341 #ifdef TARGET_WORDS_BIGENDIAN
342 return mr
->ops
->endianness
!= DEVICE_LITTLE_ENDIAN
;
344 return mr
->ops
->endianness
== DEVICE_BIG_ENDIAN
;
348 static bool memory_region_wrong_endianness(MemoryRegion
*mr
)
350 #ifdef TARGET_WORDS_BIGENDIAN
351 return mr
->ops
->endianness
== DEVICE_LITTLE_ENDIAN
;
353 return mr
->ops
->endianness
== DEVICE_BIG_ENDIAN
;
357 static void adjust_endianness(MemoryRegion
*mr
, uint64_t *data
, unsigned size
)
359 if (memory_region_wrong_endianness(mr
)) {
364 *data
= bswap16(*data
);
367 *data
= bswap32(*data
);
370 *data
= bswap64(*data
);
378 static hwaddr
memory_region_to_absolute_addr(MemoryRegion
*mr
, hwaddr offset
)
381 hwaddr abs_addr
= offset
;
383 abs_addr
+= mr
->addr
;
384 for (root
= mr
; root
->container
; ) {
385 root
= root
->container
;
386 abs_addr
+= root
->addr
;
392 static int get_cpu_index(void)
395 return current_cpu
->cpu_index
;
400 static MemTxResult
memory_region_oldmmio_read_accessor(MemoryRegion
*mr
,
410 tmp
= mr
->ops
->old_mmio
.read
[ctz32(size
)](mr
->opaque
, addr
);
412 trace_memory_region_subpage_read(get_cpu_index(), mr
, addr
, tmp
, size
);
413 } else if (mr
== &io_mem_notdirty
) {
414 /* Accesses to code which has previously been translated into a TB show
415 * up in the MMIO path, as accesses to the io_mem_notdirty
417 trace_memory_region_tb_read(get_cpu_index(), addr
, tmp
, size
);
418 } else if (TRACE_MEMORY_REGION_OPS_READ_ENABLED
) {
419 hwaddr abs_addr
= memory_region_to_absolute_addr(mr
, addr
);
420 trace_memory_region_ops_read(get_cpu_index(), mr
, abs_addr
, tmp
, size
);
422 *value
|= (tmp
& mask
) << shift
;
426 static MemTxResult
memory_region_read_accessor(MemoryRegion
*mr
,
436 tmp
= mr
->ops
->read(mr
->opaque
, addr
, size
);
438 trace_memory_region_subpage_read(get_cpu_index(), mr
, addr
, tmp
, size
);
439 } else if (mr
== &io_mem_notdirty
) {
440 /* Accesses to code which has previously been translated into a TB show
441 * up in the MMIO path, as accesses to the io_mem_notdirty
443 trace_memory_region_tb_read(get_cpu_index(), addr
, tmp
, size
);
444 } else if (TRACE_MEMORY_REGION_OPS_READ_ENABLED
) {
445 hwaddr abs_addr
= memory_region_to_absolute_addr(mr
, addr
);
446 trace_memory_region_ops_read(get_cpu_index(), mr
, abs_addr
, tmp
, size
);
448 *value
|= (tmp
& mask
) << shift
;
452 static MemTxResult
memory_region_read_with_attrs_accessor(MemoryRegion
*mr
,
463 r
= mr
->ops
->read_with_attrs(mr
->opaque
, addr
, &tmp
, size
, attrs
);
465 trace_memory_region_subpage_read(get_cpu_index(), mr
, addr
, tmp
, size
);
466 } else if (mr
== &io_mem_notdirty
) {
467 /* Accesses to code which has previously been translated into a TB show
468 * up in the MMIO path, as accesses to the io_mem_notdirty
470 trace_memory_region_tb_read(get_cpu_index(), addr
, tmp
, size
);
471 } else if (TRACE_MEMORY_REGION_OPS_READ_ENABLED
) {
472 hwaddr abs_addr
= memory_region_to_absolute_addr(mr
, addr
);
473 trace_memory_region_ops_read(get_cpu_index(), mr
, abs_addr
, tmp
, size
);
475 *value
|= (tmp
& mask
) << shift
;
479 static MemTxResult
memory_region_oldmmio_write_accessor(MemoryRegion
*mr
,
489 tmp
= (*value
>> shift
) & mask
;
491 trace_memory_region_subpage_write(get_cpu_index(), mr
, addr
, tmp
, size
);
492 } else if (mr
== &io_mem_notdirty
) {
493 /* Accesses to code which has previously been translated into a TB show
494 * up in the MMIO path, as accesses to the io_mem_notdirty
496 trace_memory_region_tb_write(get_cpu_index(), addr
, tmp
, size
);
497 } else if (TRACE_MEMORY_REGION_OPS_WRITE_ENABLED
) {
498 hwaddr abs_addr
= memory_region_to_absolute_addr(mr
, addr
);
499 trace_memory_region_ops_write(get_cpu_index(), mr
, abs_addr
, tmp
, size
);
501 mr
->ops
->old_mmio
.write
[ctz32(size
)](mr
->opaque
, addr
, tmp
);
505 static MemTxResult
memory_region_write_accessor(MemoryRegion
*mr
,
515 tmp
= (*value
>> shift
) & mask
;
517 trace_memory_region_subpage_write(get_cpu_index(), mr
, addr
, tmp
, size
);
518 } else if (mr
== &io_mem_notdirty
) {
519 /* Accesses to code which has previously been translated into a TB show
520 * up in the MMIO path, as accesses to the io_mem_notdirty
522 trace_memory_region_tb_write(get_cpu_index(), addr
, tmp
, size
);
523 } else if (TRACE_MEMORY_REGION_OPS_WRITE_ENABLED
) {
524 hwaddr abs_addr
= memory_region_to_absolute_addr(mr
, addr
);
525 trace_memory_region_ops_write(get_cpu_index(), mr
, abs_addr
, tmp
, size
);
527 mr
->ops
->write(mr
->opaque
, addr
, tmp
, size
);
531 static MemTxResult
memory_region_write_with_attrs_accessor(MemoryRegion
*mr
,
541 tmp
= (*value
>> shift
) & mask
;
543 trace_memory_region_subpage_write(get_cpu_index(), mr
, addr
, tmp
, size
);
544 } else if (mr
== &io_mem_notdirty
) {
545 /* Accesses to code which has previously been translated into a TB show
546 * up in the MMIO path, as accesses to the io_mem_notdirty
548 trace_memory_region_tb_write(get_cpu_index(), addr
, tmp
, size
);
549 } else if (TRACE_MEMORY_REGION_OPS_WRITE_ENABLED
) {
550 hwaddr abs_addr
= memory_region_to_absolute_addr(mr
, addr
);
551 trace_memory_region_ops_write(get_cpu_index(), mr
, abs_addr
, tmp
, size
);
553 return mr
->ops
->write_with_attrs(mr
->opaque
, addr
, tmp
, size
, attrs
);
556 static MemTxResult
access_with_adjusted_size(hwaddr addr
,
559 unsigned access_size_min
,
560 unsigned access_size_max
,
561 MemTxResult (*access
)(MemoryRegion
*mr
,
571 uint64_t access_mask
;
572 unsigned access_size
;
574 MemTxResult r
= MEMTX_OK
;
576 if (!access_size_min
) {
579 if (!access_size_max
) {
583 /* FIXME: support unaligned access? */
584 access_size
= MAX(MIN(size
, access_size_max
), access_size_min
);
585 access_mask
= -1ULL >> (64 - access_size
* 8);
586 if (memory_region_big_endian(mr
)) {
587 for (i
= 0; i
< size
; i
+= access_size
) {
588 r
|= access(mr
, addr
+ i
, value
, access_size
,
589 (size
- access_size
- i
) * 8, access_mask
, attrs
);
592 for (i
= 0; i
< size
; i
+= access_size
) {
593 r
|= access(mr
, addr
+ i
, value
, access_size
, i
* 8,
600 static AddressSpace
*memory_region_to_address_space(MemoryRegion
*mr
)
604 while (mr
->container
) {
607 QTAILQ_FOREACH(as
, &address_spaces
, address_spaces_link
) {
608 if (mr
== as
->root
) {
615 /* Render a memory region into the global view. Ranges in @view obscure
618 static void render_memory_region(FlatView
*view
,
624 MemoryRegion
*subregion
;
626 hwaddr offset_in_region
;
636 int128_addto(&base
, int128_make64(mr
->addr
));
637 readonly
|= mr
->readonly
;
639 tmp
= addrrange_make(base
, mr
->size
);
641 if (!addrrange_intersects(tmp
, clip
)) {
645 clip
= addrrange_intersection(tmp
, clip
);
648 int128_subfrom(&base
, int128_make64(mr
->alias
->addr
));
649 int128_subfrom(&base
, int128_make64(mr
->alias_offset
));
650 render_memory_region(view
, mr
->alias
, base
, clip
, readonly
);
654 /* Render subregions in priority order. */
655 QTAILQ_FOREACH(subregion
, &mr
->subregions
, subregions_link
) {
656 render_memory_region(view
, subregion
, base
, clip
, readonly
);
659 if (!mr
->terminates
) {
663 offset_in_region
= int128_get64(int128_sub(clip
.start
, base
));
668 fr
.dirty_log_mask
= memory_region_get_dirty_log_mask(mr
);
669 fr
.romd_mode
= mr
->romd_mode
;
670 fr
.readonly
= readonly
;
672 /* Render the region itself into any gaps left by the current view. */
673 for (i
= 0; i
< view
->nr
&& int128_nz(remain
); ++i
) {
674 if (int128_ge(base
, addrrange_end(view
->ranges
[i
].addr
))) {
677 if (int128_lt(base
, view
->ranges
[i
].addr
.start
)) {
678 now
= int128_min(remain
,
679 int128_sub(view
->ranges
[i
].addr
.start
, base
));
680 fr
.offset_in_region
= offset_in_region
;
681 fr
.addr
= addrrange_make(base
, now
);
682 flatview_insert(view
, i
, &fr
);
684 int128_addto(&base
, now
);
685 offset_in_region
+= int128_get64(now
);
686 int128_subfrom(&remain
, now
);
688 now
= int128_sub(int128_min(int128_add(base
, remain
),
689 addrrange_end(view
->ranges
[i
].addr
)),
691 int128_addto(&base
, now
);
692 offset_in_region
+= int128_get64(now
);
693 int128_subfrom(&remain
, now
);
695 if (int128_nz(remain
)) {
696 fr
.offset_in_region
= offset_in_region
;
697 fr
.addr
= addrrange_make(base
, remain
);
698 flatview_insert(view
, i
, &fr
);
702 /* Render a memory topology into a list of disjoint absolute ranges. */
703 static FlatView
*generate_memory_topology(MemoryRegion
*mr
)
707 view
= g_new(FlatView
, 1);
711 render_memory_region(view
, mr
, int128_zero(),
712 addrrange_make(int128_zero(), int128_2_64()), false);
714 flatview_simplify(view
);
719 static void address_space_add_del_ioeventfds(AddressSpace
*as
,
720 MemoryRegionIoeventfd
*fds_new
,
722 MemoryRegionIoeventfd
*fds_old
,
726 MemoryRegionIoeventfd
*fd
;
727 MemoryRegionSection section
;
729 /* Generate a symmetric difference of the old and new fd sets, adding
730 * and deleting as necessary.
734 while (iold
< fds_old_nb
|| inew
< fds_new_nb
) {
735 if (iold
< fds_old_nb
736 && (inew
== fds_new_nb
737 || memory_region_ioeventfd_before(fds_old
[iold
],
740 section
= (MemoryRegionSection
) {
742 .offset_within_address_space
= int128_get64(fd
->addr
.start
),
743 .size
= fd
->addr
.size
,
745 MEMORY_LISTENER_CALL(eventfd_del
, Forward
, §ion
,
746 fd
->match_data
, fd
->data
, fd
->e
);
748 } else if (inew
< fds_new_nb
749 && (iold
== fds_old_nb
750 || memory_region_ioeventfd_before(fds_new
[inew
],
753 section
= (MemoryRegionSection
) {
755 .offset_within_address_space
= int128_get64(fd
->addr
.start
),
756 .size
= fd
->addr
.size
,
758 MEMORY_LISTENER_CALL(eventfd_add
, Reverse
, §ion
,
759 fd
->match_data
, fd
->data
, fd
->e
);
768 static FlatView
*address_space_get_flatview(AddressSpace
*as
)
773 view
= atomic_rcu_read(&as
->current_map
);
779 static void address_space_update_ioeventfds(AddressSpace
*as
)
783 unsigned ioeventfd_nb
= 0;
784 MemoryRegionIoeventfd
*ioeventfds
= NULL
;
788 view
= address_space_get_flatview(as
);
789 FOR_EACH_FLAT_RANGE(fr
, view
) {
790 for (i
= 0; i
< fr
->mr
->ioeventfd_nb
; ++i
) {
791 tmp
= addrrange_shift(fr
->mr
->ioeventfds
[i
].addr
,
792 int128_sub(fr
->addr
.start
,
793 int128_make64(fr
->offset_in_region
)));
794 if (addrrange_intersects(fr
->addr
, tmp
)) {
796 ioeventfds
= g_realloc(ioeventfds
,
797 ioeventfd_nb
* sizeof(*ioeventfds
));
798 ioeventfds
[ioeventfd_nb
-1] = fr
->mr
->ioeventfds
[i
];
799 ioeventfds
[ioeventfd_nb
-1].addr
= tmp
;
804 address_space_add_del_ioeventfds(as
, ioeventfds
, ioeventfd_nb
,
805 as
->ioeventfds
, as
->ioeventfd_nb
);
807 g_free(as
->ioeventfds
);
808 as
->ioeventfds
= ioeventfds
;
809 as
->ioeventfd_nb
= ioeventfd_nb
;
810 flatview_unref(view
);
813 static void address_space_update_topology_pass(AddressSpace
*as
,
814 const FlatView
*old_view
,
815 const FlatView
*new_view
,
819 FlatRange
*frold
, *frnew
;
821 /* Generate a symmetric difference of the old and new memory maps.
822 * Kill ranges in the old map, and instantiate ranges in the new map.
825 while (iold
< old_view
->nr
|| inew
< new_view
->nr
) {
826 if (iold
< old_view
->nr
) {
827 frold
= &old_view
->ranges
[iold
];
831 if (inew
< new_view
->nr
) {
832 frnew
= &new_view
->ranges
[inew
];
839 || int128_lt(frold
->addr
.start
, frnew
->addr
.start
)
840 || (int128_eq(frold
->addr
.start
, frnew
->addr
.start
)
841 && !flatrange_equal(frold
, frnew
)))) {
842 /* In old but not in new, or in both but attributes changed. */
845 MEMORY_LISTENER_UPDATE_REGION(frold
, as
, Reverse
, region_del
);
849 } else if (frold
&& frnew
&& flatrange_equal(frold
, frnew
)) {
850 /* In both and unchanged (except logging may have changed) */
853 MEMORY_LISTENER_UPDATE_REGION(frnew
, as
, Forward
, region_nop
);
854 if (frnew
->dirty_log_mask
& ~frold
->dirty_log_mask
) {
855 MEMORY_LISTENER_UPDATE_REGION(frnew
, as
, Forward
, log_start
,
856 frold
->dirty_log_mask
,
857 frnew
->dirty_log_mask
);
859 if (frold
->dirty_log_mask
& ~frnew
->dirty_log_mask
) {
860 MEMORY_LISTENER_UPDATE_REGION(frnew
, as
, Reverse
, log_stop
,
861 frold
->dirty_log_mask
,
862 frnew
->dirty_log_mask
);
872 MEMORY_LISTENER_UPDATE_REGION(frnew
, as
, Forward
, region_add
);
881 static void address_space_update_topology(AddressSpace
*as
)
883 FlatView
*old_view
= address_space_get_flatview(as
);
884 FlatView
*new_view
= generate_memory_topology(as
->root
);
886 address_space_update_topology_pass(as
, old_view
, new_view
, false);
887 address_space_update_topology_pass(as
, old_view
, new_view
, true);
889 /* Writes are protected by the BQL. */
890 atomic_rcu_set(&as
->current_map
, new_view
);
891 call_rcu(old_view
, flatview_unref
, rcu
);
893 /* Note that all the old MemoryRegions are still alive up to this
894 * point. This relieves most MemoryListeners from the need to
895 * ref/unref the MemoryRegions they get---unless they use them
896 * outside the iothread mutex, in which case precise reference
897 * counting is necessary.
899 flatview_unref(old_view
);
901 address_space_update_ioeventfds(as
);
904 void memory_region_transaction_begin(void)
906 qemu_flush_coalesced_mmio_buffer();
907 ++memory_region_transaction_depth
;
910 static void memory_region_clear_pending(void)
912 memory_region_update_pending
= false;
913 ioeventfd_update_pending
= false;
916 void memory_region_transaction_commit(void)
920 assert(memory_region_transaction_depth
);
921 --memory_region_transaction_depth
;
922 if (!memory_region_transaction_depth
) {
923 if (memory_region_update_pending
) {
924 MEMORY_LISTENER_CALL_GLOBAL(begin
, Forward
);
926 QTAILQ_FOREACH(as
, &address_spaces
, address_spaces_link
) {
927 address_space_update_topology(as
);
930 MEMORY_LISTENER_CALL_GLOBAL(commit
, Forward
);
931 } else if (ioeventfd_update_pending
) {
932 QTAILQ_FOREACH(as
, &address_spaces
, address_spaces_link
) {
933 address_space_update_ioeventfds(as
);
936 memory_region_clear_pending();
940 static void memory_region_destructor_none(MemoryRegion
*mr
)
944 static void memory_region_destructor_ram(MemoryRegion
*mr
)
946 qemu_ram_free(mr
->ram_block
);
949 static void memory_region_destructor_rom_device(MemoryRegion
*mr
)
951 qemu_ram_free(mr
->ram_block
);
954 static bool memory_region_need_escape(char c
)
956 return c
== '/' || c
== '[' || c
== '\\' || c
== ']';
959 static char *memory_region_escape_name(const char *name
)
966 for (p
= name
; *p
; p
++) {
967 bytes
+= memory_region_need_escape(*p
) ? 4 : 1;
969 if (bytes
== p
- name
) {
970 return g_memdup(name
, bytes
+ 1);
973 escaped
= g_malloc(bytes
+ 1);
974 for (p
= name
, q
= escaped
; *p
; p
++) {
976 if (unlikely(memory_region_need_escape(c
))) {
979 *q
++ = "0123456789abcdef"[c
>> 4];
980 c
= "0123456789abcdef"[c
& 15];
988 void memory_region_init(MemoryRegion
*mr
,
993 object_initialize(mr
, sizeof(*mr
), TYPE_MEMORY_REGION
);
994 mr
->size
= int128_make64(size
);
995 if (size
== UINT64_MAX
) {
996 mr
->size
= int128_2_64();
998 mr
->name
= g_strdup(name
);
1000 mr
->ram_block
= NULL
;
1003 char *escaped_name
= memory_region_escape_name(name
);
1004 char *name_array
= g_strdup_printf("%s[*]", escaped_name
);
1007 owner
= container_get(qdev_get_machine(), "/unattached");
1010 object_property_add_child(owner
, name_array
, OBJECT(mr
), &error_abort
);
1011 object_unref(OBJECT(mr
));
1013 g_free(escaped_name
);
1017 static void memory_region_get_addr(Object
*obj
, Visitor
*v
, const char *name
,
1018 void *opaque
, Error
**errp
)
1020 MemoryRegion
*mr
= MEMORY_REGION(obj
);
1021 uint64_t value
= mr
->addr
;
1023 visit_type_uint64(v
, name
, &value
, errp
);
1026 static void memory_region_get_container(Object
*obj
, Visitor
*v
,
1027 const char *name
, void *opaque
,
1030 MemoryRegion
*mr
= MEMORY_REGION(obj
);
1031 gchar
*path
= (gchar
*)"";
1033 if (mr
->container
) {
1034 path
= object_get_canonical_path(OBJECT(mr
->container
));
1036 visit_type_str(v
, name
, &path
, errp
);
1037 if (mr
->container
) {
1042 static Object
*memory_region_resolve_container(Object
*obj
, void *opaque
,
1045 MemoryRegion
*mr
= MEMORY_REGION(obj
);
1047 return OBJECT(mr
->container
);
1050 static void memory_region_get_priority(Object
*obj
, Visitor
*v
,
1051 const char *name
, void *opaque
,
1054 MemoryRegion
*mr
= MEMORY_REGION(obj
);
1055 int32_t value
= mr
->priority
;
1057 visit_type_int32(v
, name
, &value
, errp
);
1060 static bool memory_region_get_may_overlap(Object
*obj
, Error
**errp
)
1062 MemoryRegion
*mr
= MEMORY_REGION(obj
);
1064 return mr
->may_overlap
;
1067 static void memory_region_get_size(Object
*obj
, Visitor
*v
, const char *name
,
1068 void *opaque
, Error
**errp
)
1070 MemoryRegion
*mr
= MEMORY_REGION(obj
);
1071 uint64_t value
= memory_region_size(mr
);
1073 visit_type_uint64(v
, name
, &value
, errp
);
1076 static void memory_region_initfn(Object
*obj
)
1078 MemoryRegion
*mr
= MEMORY_REGION(obj
);
1081 mr
->ops
= &unassigned_mem_ops
;
1083 mr
->romd_mode
= true;
1084 mr
->global_locking
= true;
1085 mr
->destructor
= memory_region_destructor_none
;
1086 QTAILQ_INIT(&mr
->subregions
);
1087 QTAILQ_INIT(&mr
->coalesced
);
1089 op
= object_property_add(OBJECT(mr
), "container",
1090 "link<" TYPE_MEMORY_REGION
">",
1091 memory_region_get_container
,
1092 NULL
, /* memory_region_set_container */
1093 NULL
, NULL
, &error_abort
);
1094 op
->resolve
= memory_region_resolve_container
;
1096 object_property_add(OBJECT(mr
), "addr", "uint64",
1097 memory_region_get_addr
,
1098 NULL
, /* memory_region_set_addr */
1099 NULL
, NULL
, &error_abort
);
1100 object_property_add(OBJECT(mr
), "priority", "uint32",
1101 memory_region_get_priority
,
1102 NULL
, /* memory_region_set_priority */
1103 NULL
, NULL
, &error_abort
);
1104 object_property_add_bool(OBJECT(mr
), "may-overlap",
1105 memory_region_get_may_overlap
,
1106 NULL
, /* memory_region_set_may_overlap */
1108 object_property_add(OBJECT(mr
), "size", "uint64",
1109 memory_region_get_size
,
1110 NULL
, /* memory_region_set_size, */
1111 NULL
, NULL
, &error_abort
);
1114 static uint64_t unassigned_mem_read(void *opaque
, hwaddr addr
,
1117 #ifdef DEBUG_UNASSIGNED
1118 printf("Unassigned mem read " TARGET_FMT_plx
"\n", addr
);
1120 if (current_cpu
!= NULL
) {
1121 cpu_unassigned_access(current_cpu
, addr
, false, false, 0, size
);
1126 static void unassigned_mem_write(void *opaque
, hwaddr addr
,
1127 uint64_t val
, unsigned size
)
1129 #ifdef DEBUG_UNASSIGNED
1130 printf("Unassigned mem write " TARGET_FMT_plx
" = 0x%"PRIx64
"\n", addr
, val
);
1132 if (current_cpu
!= NULL
) {
1133 cpu_unassigned_access(current_cpu
, addr
, true, false, 0, size
);
1137 static bool unassigned_mem_accepts(void *opaque
, hwaddr addr
,
1138 unsigned size
, bool is_write
)
1143 const MemoryRegionOps unassigned_mem_ops
= {
1144 .valid
.accepts
= unassigned_mem_accepts
,
1145 .endianness
= DEVICE_NATIVE_ENDIAN
,
1148 bool memory_region_access_valid(MemoryRegion
*mr
,
1153 int access_size_min
, access_size_max
;
1156 if (!mr
->ops
->valid
.unaligned
&& (addr
& (size
- 1))) {
1160 if (!mr
->ops
->valid
.accepts
) {
1164 access_size_min
= mr
->ops
->valid
.min_access_size
;
1165 if (!mr
->ops
->valid
.min_access_size
) {
1166 access_size_min
= 1;
1169 access_size_max
= mr
->ops
->valid
.max_access_size
;
1170 if (!mr
->ops
->valid
.max_access_size
) {
1171 access_size_max
= 4;
1174 access_size
= MAX(MIN(size
, access_size_max
), access_size_min
);
1175 for (i
= 0; i
< size
; i
+= access_size
) {
1176 if (!mr
->ops
->valid
.accepts(mr
->opaque
, addr
+ i
, access_size
,
1185 static MemTxResult
memory_region_dispatch_read1(MemoryRegion
*mr
,
1193 if (mr
->ops
->read
) {
1194 return access_with_adjusted_size(addr
, pval
, size
,
1195 mr
->ops
->impl
.min_access_size
,
1196 mr
->ops
->impl
.max_access_size
,
1197 memory_region_read_accessor
,
1199 } else if (mr
->ops
->read_with_attrs
) {
1200 return access_with_adjusted_size(addr
, pval
, size
,
1201 mr
->ops
->impl
.min_access_size
,
1202 mr
->ops
->impl
.max_access_size
,
1203 memory_region_read_with_attrs_accessor
,
1206 return access_with_adjusted_size(addr
, pval
, size
, 1, 4,
1207 memory_region_oldmmio_read_accessor
,
1212 MemTxResult
memory_region_dispatch_read(MemoryRegion
*mr
,
1220 if (!memory_region_access_valid(mr
, addr
, size
, false)) {
1221 *pval
= unassigned_mem_read(mr
, addr
, size
);
1222 return MEMTX_DECODE_ERROR
;
1225 r
= memory_region_dispatch_read1(mr
, addr
, pval
, size
, attrs
);
1226 adjust_endianness(mr
, pval
, size
);
1230 /* Return true if an eventfd was signalled */
1231 static bool memory_region_dispatch_write_eventfds(MemoryRegion
*mr
,
1237 MemoryRegionIoeventfd ioeventfd
= {
1238 .addr
= addrrange_make(int128_make64(addr
), int128_make64(size
)),
1243 for (i
= 0; i
< mr
->ioeventfd_nb
; i
++) {
1244 ioeventfd
.match_data
= mr
->ioeventfds
[i
].match_data
;
1245 ioeventfd
.e
= mr
->ioeventfds
[i
].e
;
1247 if (memory_region_ioeventfd_equal(ioeventfd
, mr
->ioeventfds
[i
])) {
1248 event_notifier_set(ioeventfd
.e
);
1256 MemTxResult
memory_region_dispatch_write(MemoryRegion
*mr
,
1262 if (!memory_region_access_valid(mr
, addr
, size
, true)) {
1263 unassigned_mem_write(mr
, addr
, data
, size
);
1264 return MEMTX_DECODE_ERROR
;
1267 adjust_endianness(mr
, &data
, size
);
1269 if ((!kvm_eventfds_enabled()) &&
1270 memory_region_dispatch_write_eventfds(mr
, addr
, data
, size
, attrs
)) {
1274 if (mr
->ops
->write
) {
1275 return access_with_adjusted_size(addr
, &data
, size
,
1276 mr
->ops
->impl
.min_access_size
,
1277 mr
->ops
->impl
.max_access_size
,
1278 memory_region_write_accessor
, mr
,
1280 } else if (mr
->ops
->write_with_attrs
) {
1282 access_with_adjusted_size(addr
, &data
, size
,
1283 mr
->ops
->impl
.min_access_size
,
1284 mr
->ops
->impl
.max_access_size
,
1285 memory_region_write_with_attrs_accessor
,
1288 return access_with_adjusted_size(addr
, &data
, size
, 1, 4,
1289 memory_region_oldmmio_write_accessor
,
1294 void memory_region_init_io(MemoryRegion
*mr
,
1296 const MemoryRegionOps
*ops
,
1301 memory_region_init(mr
, owner
, name
, size
);
1302 mr
->ops
= ops
? ops
: &unassigned_mem_ops
;
1303 mr
->opaque
= opaque
;
1304 mr
->terminates
= true;
1307 void memory_region_init_ram(MemoryRegion
*mr
,
1313 memory_region_init(mr
, owner
, name
, size
);
1315 mr
->terminates
= true;
1316 mr
->destructor
= memory_region_destructor_ram
;
1317 mr
->ram_block
= qemu_ram_alloc(size
, mr
, errp
);
1318 mr
->dirty_log_mask
= tcg_enabled() ? (1 << DIRTY_MEMORY_CODE
) : 0;
1321 void memory_region_init_resizeable_ram(MemoryRegion
*mr
,
1326 void (*resized
)(const char*,
1331 memory_region_init(mr
, owner
, name
, size
);
1333 mr
->terminates
= true;
1334 mr
->destructor
= memory_region_destructor_ram
;
1335 mr
->ram_block
= qemu_ram_alloc_resizeable(size
, max_size
, resized
,
1337 mr
->dirty_log_mask
= tcg_enabled() ? (1 << DIRTY_MEMORY_CODE
) : 0;
1341 void memory_region_init_ram_from_file(MemoryRegion
*mr
,
1342 struct Object
*owner
,
1349 memory_region_init(mr
, owner
, name
, size
);
1351 mr
->terminates
= true;
1352 mr
->destructor
= memory_region_destructor_ram
;
1353 mr
->ram_block
= qemu_ram_alloc_from_file(size
, mr
, share
, path
, errp
);
1354 mr
->dirty_log_mask
= tcg_enabled() ? (1 << DIRTY_MEMORY_CODE
) : 0;
1358 void memory_region_init_ram_ptr(MemoryRegion
*mr
,
1364 memory_region_init(mr
, owner
, name
, size
);
1366 mr
->terminates
= true;
1367 mr
->destructor
= memory_region_destructor_ram
;
1368 mr
->dirty_log_mask
= tcg_enabled() ? (1 << DIRTY_MEMORY_CODE
) : 0;
1370 /* qemu_ram_alloc_from_ptr cannot fail with ptr != NULL. */
1371 assert(ptr
!= NULL
);
1372 mr
->ram_block
= qemu_ram_alloc_from_ptr(size
, ptr
, mr
, &error_fatal
);
1375 void memory_region_set_skip_dump(MemoryRegion
*mr
)
1377 mr
->skip_dump
= true;
1380 void memory_region_init_alias(MemoryRegion
*mr
,
1387 memory_region_init(mr
, owner
, name
, size
);
1389 mr
->alias_offset
= offset
;
1392 void memory_region_init_rom_device(MemoryRegion
*mr
,
1394 const MemoryRegionOps
*ops
,
1400 memory_region_init(mr
, owner
, name
, size
);
1402 mr
->opaque
= opaque
;
1403 mr
->terminates
= true;
1404 mr
->rom_device
= true;
1405 mr
->destructor
= memory_region_destructor_rom_device
;
1406 mr
->ram_block
= qemu_ram_alloc(size
, mr
, errp
);
1409 void memory_region_init_iommu(MemoryRegion
*mr
,
1411 const MemoryRegionIOMMUOps
*ops
,
1415 memory_region_init(mr
, owner
, name
, size
);
1416 mr
->iommu_ops
= ops
,
1417 mr
->terminates
= true; /* then re-forwards */
1418 notifier_list_init(&mr
->iommu_notify
);
1421 static void memory_region_finalize(Object
*obj
)
1423 MemoryRegion
*mr
= MEMORY_REGION(obj
);
1425 assert(!mr
->container
);
1427 /* We know the region is not visible in any address space (it
1428 * does not have a container and cannot be a root either because
1429 * it has no references, so we can blindly clear mr->enabled.
1430 * memory_region_set_enabled instead could trigger a transaction
1431 * and cause an infinite loop.
1433 mr
->enabled
= false;
1434 memory_region_transaction_begin();
1435 while (!QTAILQ_EMPTY(&mr
->subregions
)) {
1436 MemoryRegion
*subregion
= QTAILQ_FIRST(&mr
->subregions
);
1437 memory_region_del_subregion(mr
, subregion
);
1439 memory_region_transaction_commit();
1442 memory_region_clear_coalescing(mr
);
1443 g_free((char *)mr
->name
);
1444 g_free(mr
->ioeventfds
);
1447 Object
*memory_region_owner(MemoryRegion
*mr
)
1449 Object
*obj
= OBJECT(mr
);
1453 void memory_region_ref(MemoryRegion
*mr
)
1455 /* MMIO callbacks most likely will access data that belongs
1456 * to the owner, hence the need to ref/unref the owner whenever
1457 * the memory region is in use.
1459 * The memory region is a child of its owner. As long as the
1460 * owner doesn't call unparent itself on the memory region,
1461 * ref-ing the owner will also keep the memory region alive.
1462 * Memory regions without an owner are supposed to never go away;
1463 * we do not ref/unref them because it slows down DMA sensibly.
1465 if (mr
&& mr
->owner
) {
1466 object_ref(mr
->owner
);
1470 void memory_region_unref(MemoryRegion
*mr
)
1472 if (mr
&& mr
->owner
) {
1473 object_unref(mr
->owner
);
1477 uint64_t memory_region_size(MemoryRegion
*mr
)
1479 if (int128_eq(mr
->size
, int128_2_64())) {
1482 return int128_get64(mr
->size
);
1485 const char *memory_region_name(const MemoryRegion
*mr
)
1488 ((MemoryRegion
*)mr
)->name
=
1489 object_get_canonical_path_component(OBJECT(mr
));
1494 bool memory_region_is_skip_dump(MemoryRegion
*mr
)
1496 return mr
->skip_dump
;
1499 uint8_t memory_region_get_dirty_log_mask(MemoryRegion
*mr
)
1501 uint8_t mask
= mr
->dirty_log_mask
;
1502 if (global_dirty_log
) {
1503 mask
|= (1 << DIRTY_MEMORY_MIGRATION
);
1508 bool memory_region_is_logging(MemoryRegion
*mr
, uint8_t client
)
1510 return memory_region_get_dirty_log_mask(mr
) & (1 << client
);
1513 void memory_region_register_iommu_notifier(MemoryRegion
*mr
, Notifier
*n
)
1515 notifier_list_add(&mr
->iommu_notify
, n
);
1518 void memory_region_iommu_replay(MemoryRegion
*mr
, Notifier
*n
,
1519 hwaddr granularity
, bool is_write
)
1522 IOMMUTLBEntry iotlb
;
1524 for (addr
= 0; addr
< memory_region_size(mr
); addr
+= granularity
) {
1525 iotlb
= mr
->iommu_ops
->translate(mr
, addr
, is_write
);
1526 if (iotlb
.perm
!= IOMMU_NONE
) {
1527 n
->notify(n
, &iotlb
);
1530 /* if (2^64 - MR size) < granularity, it's possible to get an
1531 * infinite loop here. This should catch such a wraparound */
1532 if ((addr
+ granularity
) < addr
) {
1538 void memory_region_unregister_iommu_notifier(Notifier
*n
)
1543 void memory_region_notify_iommu(MemoryRegion
*mr
,
1544 IOMMUTLBEntry entry
)
1546 assert(memory_region_is_iommu(mr
));
1547 notifier_list_notify(&mr
->iommu_notify
, &entry
);
1550 void memory_region_set_log(MemoryRegion
*mr
, bool log
, unsigned client
)
1552 uint8_t mask
= 1 << client
;
1553 uint8_t old_logging
;
1555 assert(client
== DIRTY_MEMORY_VGA
);
1556 old_logging
= mr
->vga_logging_count
;
1557 mr
->vga_logging_count
+= log
? 1 : -1;
1558 if (!!old_logging
== !!mr
->vga_logging_count
) {
1562 memory_region_transaction_begin();
1563 mr
->dirty_log_mask
= (mr
->dirty_log_mask
& ~mask
) | (log
* mask
);
1564 memory_region_update_pending
|= mr
->enabled
;
1565 memory_region_transaction_commit();
1568 bool memory_region_get_dirty(MemoryRegion
*mr
, hwaddr addr
,
1569 hwaddr size
, unsigned client
)
1571 assert(mr
->ram_block
);
1572 return cpu_physical_memory_get_dirty(memory_region_get_ram_addr(mr
) + addr
,
1576 void memory_region_set_dirty(MemoryRegion
*mr
, hwaddr addr
,
1579 assert(mr
->ram_block
);
1580 cpu_physical_memory_set_dirty_range(memory_region_get_ram_addr(mr
) + addr
,
1582 memory_region_get_dirty_log_mask(mr
));
1585 bool memory_region_test_and_clear_dirty(MemoryRegion
*mr
, hwaddr addr
,
1586 hwaddr size
, unsigned client
)
1588 assert(mr
->ram_block
);
1589 return cpu_physical_memory_test_and_clear_dirty(
1590 memory_region_get_ram_addr(mr
) + addr
, size
, client
);
1594 void memory_region_sync_dirty_bitmap(MemoryRegion
*mr
)
1599 QTAILQ_FOREACH(as
, &address_spaces
, address_spaces_link
) {
1600 FlatView
*view
= address_space_get_flatview(as
);
1601 FOR_EACH_FLAT_RANGE(fr
, view
) {
1603 MEMORY_LISTENER_UPDATE_REGION(fr
, as
, Forward
, log_sync
);
1606 flatview_unref(view
);
1610 void memory_region_set_readonly(MemoryRegion
*mr
, bool readonly
)
1612 if (mr
->readonly
!= readonly
) {
1613 memory_region_transaction_begin();
1614 mr
->readonly
= readonly
;
1615 memory_region_update_pending
|= mr
->enabled
;
1616 memory_region_transaction_commit();
1620 void memory_region_rom_device_set_romd(MemoryRegion
*mr
, bool romd_mode
)
1622 if (mr
->romd_mode
!= romd_mode
) {
1623 memory_region_transaction_begin();
1624 mr
->romd_mode
= romd_mode
;
1625 memory_region_update_pending
|= mr
->enabled
;
1626 memory_region_transaction_commit();
1630 void memory_region_reset_dirty(MemoryRegion
*mr
, hwaddr addr
,
1631 hwaddr size
, unsigned client
)
1633 assert(mr
->ram_block
);
1634 cpu_physical_memory_test_and_clear_dirty(
1635 memory_region_get_ram_addr(mr
) + addr
, size
, client
);
1638 int memory_region_get_fd(MemoryRegion
*mr
)
1641 return memory_region_get_fd(mr
->alias
);
1644 assert(mr
->ram_block
);
1646 return qemu_get_ram_fd(memory_region_get_ram_addr(mr
) & TARGET_PAGE_MASK
);
1649 void *memory_region_get_ram_ptr(MemoryRegion
*mr
)
1652 uint64_t offset
= 0;
1656 offset
+= mr
->alias_offset
;
1659 assert(mr
->ram_block
);
1660 ptr
= qemu_get_ram_ptr(mr
->ram_block
,
1661 memory_region_get_ram_addr(mr
) & TARGET_PAGE_MASK
);
1664 return ptr
+ offset
;
1667 ram_addr_t
memory_region_get_ram_addr(MemoryRegion
*mr
)
1669 return mr
->ram_block
? mr
->ram_block
->offset
: RAM_ADDR_INVALID
;
1672 void memory_region_ram_resize(MemoryRegion
*mr
, ram_addr_t newsize
, Error
**errp
)
1674 assert(mr
->ram_block
);
1676 qemu_ram_resize(memory_region_get_ram_addr(mr
), newsize
, errp
);
1679 static void memory_region_update_coalesced_range_as(MemoryRegion
*mr
, AddressSpace
*as
)
1683 CoalescedMemoryRange
*cmr
;
1685 MemoryRegionSection section
;
1687 view
= address_space_get_flatview(as
);
1688 FOR_EACH_FLAT_RANGE(fr
, view
) {
1690 section
= (MemoryRegionSection
) {
1691 .address_space
= as
,
1692 .offset_within_address_space
= int128_get64(fr
->addr
.start
),
1693 .size
= fr
->addr
.size
,
1696 MEMORY_LISTENER_CALL(coalesced_mmio_del
, Reverse
, §ion
,
1697 int128_get64(fr
->addr
.start
),
1698 int128_get64(fr
->addr
.size
));
1699 QTAILQ_FOREACH(cmr
, &mr
->coalesced
, link
) {
1700 tmp
= addrrange_shift(cmr
->addr
,
1701 int128_sub(fr
->addr
.start
,
1702 int128_make64(fr
->offset_in_region
)));
1703 if (!addrrange_intersects(tmp
, fr
->addr
)) {
1706 tmp
= addrrange_intersection(tmp
, fr
->addr
);
1707 MEMORY_LISTENER_CALL(coalesced_mmio_add
, Forward
, §ion
,
1708 int128_get64(tmp
.start
),
1709 int128_get64(tmp
.size
));
1713 flatview_unref(view
);
1716 static void memory_region_update_coalesced_range(MemoryRegion
*mr
)
1720 QTAILQ_FOREACH(as
, &address_spaces
, address_spaces_link
) {
1721 memory_region_update_coalesced_range_as(mr
, as
);
1725 void memory_region_set_coalescing(MemoryRegion
*mr
)
1727 memory_region_clear_coalescing(mr
);
1728 memory_region_add_coalescing(mr
, 0, int128_get64(mr
->size
));
1731 void memory_region_add_coalescing(MemoryRegion
*mr
,
1735 CoalescedMemoryRange
*cmr
= g_malloc(sizeof(*cmr
));
1737 cmr
->addr
= addrrange_make(int128_make64(offset
), int128_make64(size
));
1738 QTAILQ_INSERT_TAIL(&mr
->coalesced
, cmr
, link
);
1739 memory_region_update_coalesced_range(mr
);
1740 memory_region_set_flush_coalesced(mr
);
1743 void memory_region_clear_coalescing(MemoryRegion
*mr
)
1745 CoalescedMemoryRange
*cmr
;
1746 bool updated
= false;
1748 qemu_flush_coalesced_mmio_buffer();
1749 mr
->flush_coalesced_mmio
= false;
1751 while (!QTAILQ_EMPTY(&mr
->coalesced
)) {
1752 cmr
= QTAILQ_FIRST(&mr
->coalesced
);
1753 QTAILQ_REMOVE(&mr
->coalesced
, cmr
, link
);
1759 memory_region_update_coalesced_range(mr
);
1763 void memory_region_set_flush_coalesced(MemoryRegion
*mr
)
1765 mr
->flush_coalesced_mmio
= true;
1768 void memory_region_clear_flush_coalesced(MemoryRegion
*mr
)
1770 qemu_flush_coalesced_mmio_buffer();
1771 if (QTAILQ_EMPTY(&mr
->coalesced
)) {
1772 mr
->flush_coalesced_mmio
= false;
1776 void memory_region_set_global_locking(MemoryRegion
*mr
)
1778 mr
->global_locking
= true;
1781 void memory_region_clear_global_locking(MemoryRegion
*mr
)
1783 mr
->global_locking
= false;
1786 static bool userspace_eventfd_warning
;
1788 void memory_region_add_eventfd(MemoryRegion
*mr
,
1795 MemoryRegionIoeventfd mrfd
= {
1796 .addr
.start
= int128_make64(addr
),
1797 .addr
.size
= int128_make64(size
),
1798 .match_data
= match_data
,
1804 if (kvm_enabled() && (!(kvm_eventfds_enabled() ||
1805 userspace_eventfd_warning
))) {
1806 userspace_eventfd_warning
= true;
1807 error_report("Using eventfd without MMIO binding in KVM. "
1808 "Suboptimal performance expected");
1812 adjust_endianness(mr
, &mrfd
.data
, size
);
1814 memory_region_transaction_begin();
1815 for (i
= 0; i
< mr
->ioeventfd_nb
; ++i
) {
1816 if (memory_region_ioeventfd_before(mrfd
, mr
->ioeventfds
[i
])) {
1821 mr
->ioeventfds
= g_realloc(mr
->ioeventfds
,
1822 sizeof(*mr
->ioeventfds
) * mr
->ioeventfd_nb
);
1823 memmove(&mr
->ioeventfds
[i
+1], &mr
->ioeventfds
[i
],
1824 sizeof(*mr
->ioeventfds
) * (mr
->ioeventfd_nb
-1 - i
));
1825 mr
->ioeventfds
[i
] = mrfd
;
1826 ioeventfd_update_pending
|= mr
->enabled
;
1827 memory_region_transaction_commit();
1830 void memory_region_del_eventfd(MemoryRegion
*mr
,
1837 MemoryRegionIoeventfd mrfd
= {
1838 .addr
.start
= int128_make64(addr
),
1839 .addr
.size
= int128_make64(size
),
1840 .match_data
= match_data
,
1847 adjust_endianness(mr
, &mrfd
.data
, size
);
1849 memory_region_transaction_begin();
1850 for (i
= 0; i
< mr
->ioeventfd_nb
; ++i
) {
1851 if (memory_region_ioeventfd_equal(mrfd
, mr
->ioeventfds
[i
])) {
1855 assert(i
!= mr
->ioeventfd_nb
);
1856 memmove(&mr
->ioeventfds
[i
], &mr
->ioeventfds
[i
+1],
1857 sizeof(*mr
->ioeventfds
) * (mr
->ioeventfd_nb
- (i
+1)));
1859 mr
->ioeventfds
= g_realloc(mr
->ioeventfds
,
1860 sizeof(*mr
->ioeventfds
)*mr
->ioeventfd_nb
+ 1);
1861 ioeventfd_update_pending
|= mr
->enabled
;
1862 memory_region_transaction_commit();
1865 static void memory_region_update_container_subregions(MemoryRegion
*subregion
)
1867 hwaddr offset
= subregion
->addr
;
1868 MemoryRegion
*mr
= subregion
->container
;
1869 MemoryRegion
*other
;
1871 memory_region_transaction_begin();
1873 memory_region_ref(subregion
);
1874 QTAILQ_FOREACH(other
, &mr
->subregions
, subregions_link
) {
1875 if (subregion
->may_overlap
|| other
->may_overlap
) {
1878 if (int128_ge(int128_make64(offset
),
1879 int128_add(int128_make64(other
->addr
), other
->size
))
1880 || int128_le(int128_add(int128_make64(offset
), subregion
->size
),
1881 int128_make64(other
->addr
))) {
1885 printf("warning: subregion collision %llx/%llx (%s) "
1886 "vs %llx/%llx (%s)\n",
1887 (unsigned long long)offset
,
1888 (unsigned long long)int128_get64(subregion
->size
),
1890 (unsigned long long)other
->addr
,
1891 (unsigned long long)int128_get64(other
->size
),
1895 QTAILQ_FOREACH(other
, &mr
->subregions
, subregions_link
) {
1896 if (subregion
->priority
>= other
->priority
) {
1897 QTAILQ_INSERT_BEFORE(other
, subregion
, subregions_link
);
1901 QTAILQ_INSERT_TAIL(&mr
->subregions
, subregion
, subregions_link
);
1903 memory_region_update_pending
|= mr
->enabled
&& subregion
->enabled
;
1904 memory_region_transaction_commit();
1907 static void memory_region_add_subregion_common(MemoryRegion
*mr
,
1909 MemoryRegion
*subregion
)
1911 assert(!subregion
->container
);
1912 subregion
->container
= mr
;
1913 subregion
->addr
= offset
;
1914 memory_region_update_container_subregions(subregion
);
1917 void memory_region_add_subregion(MemoryRegion
*mr
,
1919 MemoryRegion
*subregion
)
1921 subregion
->may_overlap
= false;
1922 subregion
->priority
= 0;
1923 memory_region_add_subregion_common(mr
, offset
, subregion
);
1926 void memory_region_add_subregion_overlap(MemoryRegion
*mr
,
1928 MemoryRegion
*subregion
,
1931 subregion
->may_overlap
= true;
1932 subregion
->priority
= priority
;
1933 memory_region_add_subregion_common(mr
, offset
, subregion
);
1936 void memory_region_del_subregion(MemoryRegion
*mr
,
1937 MemoryRegion
*subregion
)
1939 memory_region_transaction_begin();
1940 assert(subregion
->container
== mr
);
1941 subregion
->container
= NULL
;
1942 QTAILQ_REMOVE(&mr
->subregions
, subregion
, subregions_link
);
1943 memory_region_unref(subregion
);
1944 memory_region_update_pending
|= mr
->enabled
&& subregion
->enabled
;
1945 memory_region_transaction_commit();
1948 void memory_region_set_enabled(MemoryRegion
*mr
, bool enabled
)
1950 if (enabled
== mr
->enabled
) {
1953 memory_region_transaction_begin();
1954 mr
->enabled
= enabled
;
1955 memory_region_update_pending
= true;
1956 memory_region_transaction_commit();
1959 void memory_region_set_size(MemoryRegion
*mr
, uint64_t size
)
1961 Int128 s
= int128_make64(size
);
1963 if (size
== UINT64_MAX
) {
1966 if (int128_eq(s
, mr
->size
)) {
1969 memory_region_transaction_begin();
1971 memory_region_update_pending
= true;
1972 memory_region_transaction_commit();
1975 static void memory_region_readd_subregion(MemoryRegion
*mr
)
1977 MemoryRegion
*container
= mr
->container
;
1980 memory_region_transaction_begin();
1981 memory_region_ref(mr
);
1982 memory_region_del_subregion(container
, mr
);
1983 mr
->container
= container
;
1984 memory_region_update_container_subregions(mr
);
1985 memory_region_unref(mr
);
1986 memory_region_transaction_commit();
1990 void memory_region_set_address(MemoryRegion
*mr
, hwaddr addr
)
1992 if (addr
!= mr
->addr
) {
1994 memory_region_readd_subregion(mr
);
1998 void memory_region_set_alias_offset(MemoryRegion
*mr
, hwaddr offset
)
2002 if (offset
== mr
->alias_offset
) {
2006 memory_region_transaction_begin();
2007 mr
->alias_offset
= offset
;
2008 memory_region_update_pending
|= mr
->enabled
;
2009 memory_region_transaction_commit();
2012 uint64_t memory_region_get_alignment(const MemoryRegion
*mr
)
2017 static int cmp_flatrange_addr(const void *addr_
, const void *fr_
)
2019 const AddrRange
*addr
= addr_
;
2020 const FlatRange
*fr
= fr_
;
2022 if (int128_le(addrrange_end(*addr
), fr
->addr
.start
)) {
2024 } else if (int128_ge(addr
->start
, addrrange_end(fr
->addr
))) {
2030 static FlatRange
*flatview_lookup(FlatView
*view
, AddrRange addr
)
2032 return bsearch(&addr
, view
->ranges
, view
->nr
,
2033 sizeof(FlatRange
), cmp_flatrange_addr
);
2036 bool memory_region_is_mapped(MemoryRegion
*mr
)
2038 return mr
->container
? true : false;
2041 /* Same as memory_region_find, but it does not add a reference to the
2042 * returned region. It must be called from an RCU critical section.
2044 static MemoryRegionSection
memory_region_find_rcu(MemoryRegion
*mr
,
2045 hwaddr addr
, uint64_t size
)
2047 MemoryRegionSection ret
= { .mr
= NULL
};
2055 for (root
= mr
; root
->container
; ) {
2056 root
= root
->container
;
2060 as
= memory_region_to_address_space(root
);
2064 range
= addrrange_make(int128_make64(addr
), int128_make64(size
));
2066 view
= atomic_rcu_read(&as
->current_map
);
2067 fr
= flatview_lookup(view
, range
);
2072 while (fr
> view
->ranges
&& addrrange_intersects(fr
[-1].addr
, range
)) {
2077 ret
.address_space
= as
;
2078 range
= addrrange_intersection(range
, fr
->addr
);
2079 ret
.offset_within_region
= fr
->offset_in_region
;
2080 ret
.offset_within_region
+= int128_get64(int128_sub(range
.start
,
2082 ret
.size
= range
.size
;
2083 ret
.offset_within_address_space
= int128_get64(range
.start
);
2084 ret
.readonly
= fr
->readonly
;
2088 MemoryRegionSection
memory_region_find(MemoryRegion
*mr
,
2089 hwaddr addr
, uint64_t size
)
2091 MemoryRegionSection ret
;
2093 ret
= memory_region_find_rcu(mr
, addr
, size
);
2095 memory_region_ref(ret
.mr
);
2101 bool memory_region_present(MemoryRegion
*container
, hwaddr addr
)
2106 mr
= memory_region_find_rcu(container
, addr
, 1).mr
;
2108 return mr
&& mr
!= container
;
2111 void address_space_sync_dirty_bitmap(AddressSpace
*as
)
2116 view
= address_space_get_flatview(as
);
2117 FOR_EACH_FLAT_RANGE(fr
, view
) {
2118 MEMORY_LISTENER_UPDATE_REGION(fr
, as
, Forward
, log_sync
);
2120 flatview_unref(view
);
2123 void memory_global_dirty_log_start(void)
2125 global_dirty_log
= true;
2127 MEMORY_LISTENER_CALL_GLOBAL(log_global_start
, Forward
);
2129 /* Refresh DIRTY_LOG_MIGRATION bit. */
2130 memory_region_transaction_begin();
2131 memory_region_update_pending
= true;
2132 memory_region_transaction_commit();
2135 void memory_global_dirty_log_stop(void)
2137 global_dirty_log
= false;
2139 /* Refresh DIRTY_LOG_MIGRATION bit. */
2140 memory_region_transaction_begin();
2141 memory_region_update_pending
= true;
2142 memory_region_transaction_commit();
2144 MEMORY_LISTENER_CALL_GLOBAL(log_global_stop
, Reverse
);
2147 static void listener_add_address_space(MemoryListener
*listener
,
2153 if (listener
->address_space_filter
2154 && listener
->address_space_filter
!= as
) {
2158 if (listener
->begin
) {
2159 listener
->begin(listener
);
2161 if (global_dirty_log
) {
2162 if (listener
->log_global_start
) {
2163 listener
->log_global_start(listener
);
2167 view
= address_space_get_flatview(as
);
2168 FOR_EACH_FLAT_RANGE(fr
, view
) {
2169 MemoryRegionSection section
= {
2171 .address_space
= as
,
2172 .offset_within_region
= fr
->offset_in_region
,
2173 .size
= fr
->addr
.size
,
2174 .offset_within_address_space
= int128_get64(fr
->addr
.start
),
2175 .readonly
= fr
->readonly
,
2177 if (fr
->dirty_log_mask
&& listener
->log_start
) {
2178 listener
->log_start(listener
, §ion
, 0, fr
->dirty_log_mask
);
2180 if (listener
->region_add
) {
2181 listener
->region_add(listener
, §ion
);
2184 if (listener
->commit
) {
2185 listener
->commit(listener
);
2187 flatview_unref(view
);
2190 void memory_listener_register(MemoryListener
*listener
, AddressSpace
*filter
)
2192 MemoryListener
*other
= NULL
;
2195 listener
->address_space_filter
= filter
;
2196 if (QTAILQ_EMPTY(&memory_listeners
)
2197 || listener
->priority
>= QTAILQ_LAST(&memory_listeners
,
2198 memory_listeners
)->priority
) {
2199 QTAILQ_INSERT_TAIL(&memory_listeners
, listener
, link
);
2201 QTAILQ_FOREACH(other
, &memory_listeners
, link
) {
2202 if (listener
->priority
< other
->priority
) {
2206 QTAILQ_INSERT_BEFORE(other
, listener
, link
);
2209 QTAILQ_FOREACH(as
, &address_spaces
, address_spaces_link
) {
2210 listener_add_address_space(listener
, as
);
2214 void memory_listener_unregister(MemoryListener
*listener
)
2216 QTAILQ_REMOVE(&memory_listeners
, listener
, link
);
2219 void address_space_init(AddressSpace
*as
, MemoryRegion
*root
, const char *name
)
2221 memory_region_ref(root
);
2222 memory_region_transaction_begin();
2225 as
->malloced
= false;
2226 as
->current_map
= g_new(FlatView
, 1);
2227 flatview_init(as
->current_map
);
2228 as
->ioeventfd_nb
= 0;
2229 as
->ioeventfds
= NULL
;
2230 QTAILQ_INSERT_TAIL(&address_spaces
, as
, address_spaces_link
);
2231 as
->name
= g_strdup(name
? name
: "anonymous");
2232 address_space_init_dispatch(as
);
2233 memory_region_update_pending
|= root
->enabled
;
2234 memory_region_transaction_commit();
2237 static void do_address_space_destroy(AddressSpace
*as
)
2239 MemoryListener
*listener
;
2240 bool do_free
= as
->malloced
;
2242 address_space_destroy_dispatch(as
);
2244 QTAILQ_FOREACH(listener
, &memory_listeners
, link
) {
2245 assert(listener
->address_space_filter
!= as
);
2248 flatview_unref(as
->current_map
);
2250 g_free(as
->ioeventfds
);
2251 memory_region_unref(as
->root
);
2257 AddressSpace
*address_space_init_shareable(MemoryRegion
*root
, const char *name
)
2261 QTAILQ_FOREACH(as
, &address_spaces
, address_spaces_link
) {
2262 if (root
== as
->root
&& as
->malloced
) {
2268 as
= g_malloc0(sizeof *as
);
2269 address_space_init(as
, root
, name
);
2270 as
->malloced
= true;
2274 void address_space_destroy(AddressSpace
*as
)
2276 MemoryRegion
*root
= as
->root
;
2279 if (as
->ref_count
) {
2282 /* Flush out anything from MemoryListeners listening in on this */
2283 memory_region_transaction_begin();
2285 memory_region_transaction_commit();
2286 QTAILQ_REMOVE(&address_spaces
, as
, address_spaces_link
);
2287 address_space_unregister(as
);
2289 /* At this point, as->dispatch and as->current_map are dummy
2290 * entries that the guest should never use. Wait for the old
2291 * values to expire before freeing the data.
2294 call_rcu(as
, do_address_space_destroy
, rcu
);
2297 typedef struct MemoryRegionList MemoryRegionList
;
2299 struct MemoryRegionList
{
2300 const MemoryRegion
*mr
;
2301 QTAILQ_ENTRY(MemoryRegionList
) queue
;
2304 typedef QTAILQ_HEAD(queue
, MemoryRegionList
) MemoryRegionListHead
;
2306 static void mtree_print_mr(fprintf_function mon_printf
, void *f
,
2307 const MemoryRegion
*mr
, unsigned int level
,
2309 MemoryRegionListHead
*alias_print_queue
)
2311 MemoryRegionList
*new_ml
, *ml
, *next_ml
;
2312 MemoryRegionListHead submr_print_queue
;
2313 const MemoryRegion
*submr
;
2320 for (i
= 0; i
< level
; i
++) {
2325 MemoryRegionList
*ml
;
2328 /* check if the alias is already in the queue */
2329 QTAILQ_FOREACH(ml
, alias_print_queue
, queue
) {
2330 if (ml
->mr
== mr
->alias
) {
2336 ml
= g_new(MemoryRegionList
, 1);
2338 QTAILQ_INSERT_TAIL(alias_print_queue
, ml
, queue
);
2340 mon_printf(f
, TARGET_FMT_plx
"-" TARGET_FMT_plx
2341 " (prio %d, %c%c): alias %s @%s " TARGET_FMT_plx
2342 "-" TARGET_FMT_plx
"%s\n",
2345 + (int128_nz(mr
->size
) ?
2346 (hwaddr
)int128_get64(int128_sub(mr
->size
,
2347 int128_one())) : 0),
2349 mr
->romd_mode
? 'R' : '-',
2350 !mr
->readonly
&& !(mr
->rom_device
&& mr
->romd_mode
) ? 'W'
2352 memory_region_name(mr
),
2353 memory_region_name(mr
->alias
),
2356 + (int128_nz(mr
->size
) ?
2357 (hwaddr
)int128_get64(int128_sub(mr
->size
,
2358 int128_one())) : 0),
2359 mr
->enabled
? "" : " [disabled]");
2362 TARGET_FMT_plx
"-" TARGET_FMT_plx
" (prio %d, %c%c): %s%s\n",
2365 + (int128_nz(mr
->size
) ?
2366 (hwaddr
)int128_get64(int128_sub(mr
->size
,
2367 int128_one())) : 0),
2369 mr
->romd_mode
? 'R' : '-',
2370 !mr
->readonly
&& !(mr
->rom_device
&& mr
->romd_mode
) ? 'W'
2372 memory_region_name(mr
),
2373 mr
->enabled
? "" : " [disabled]");
2376 QTAILQ_INIT(&submr_print_queue
);
2378 QTAILQ_FOREACH(submr
, &mr
->subregions
, subregions_link
) {
2379 new_ml
= g_new(MemoryRegionList
, 1);
2381 QTAILQ_FOREACH(ml
, &submr_print_queue
, queue
) {
2382 if (new_ml
->mr
->addr
< ml
->mr
->addr
||
2383 (new_ml
->mr
->addr
== ml
->mr
->addr
&&
2384 new_ml
->mr
->priority
> ml
->mr
->priority
)) {
2385 QTAILQ_INSERT_BEFORE(ml
, new_ml
, queue
);
2391 QTAILQ_INSERT_TAIL(&submr_print_queue
, new_ml
, queue
);
2395 QTAILQ_FOREACH(ml
, &submr_print_queue
, queue
) {
2396 mtree_print_mr(mon_printf
, f
, ml
->mr
, level
+ 1, base
+ mr
->addr
,
2400 QTAILQ_FOREACH_SAFE(ml
, &submr_print_queue
, queue
, next_ml
) {
2405 void mtree_info(fprintf_function mon_printf
, void *f
)
2407 MemoryRegionListHead ml_head
;
2408 MemoryRegionList
*ml
, *ml2
;
2411 QTAILQ_INIT(&ml_head
);
2413 QTAILQ_FOREACH(as
, &address_spaces
, address_spaces_link
) {
2414 mon_printf(f
, "address-space: %s\n", as
->name
);
2415 mtree_print_mr(mon_printf
, f
, as
->root
, 1, 0, &ml_head
);
2416 mon_printf(f
, "\n");
2419 /* print aliased regions */
2420 QTAILQ_FOREACH(ml
, &ml_head
, queue
) {
2421 mon_printf(f
, "memory-region: %s\n", memory_region_name(ml
->mr
));
2422 mtree_print_mr(mon_printf
, f
, ml
->mr
, 1, 0, &ml_head
);
2423 mon_printf(f
, "\n");
2426 QTAILQ_FOREACH_SAFE(ml
, &ml_head
, queue
, ml2
) {
2431 static const TypeInfo memory_region_info
= {
2432 .parent
= TYPE_OBJECT
,
2433 .name
= TYPE_MEMORY_REGION
,
2434 .instance_size
= sizeof(MemoryRegion
),
2435 .instance_init
= memory_region_initfn
,
2436 .instance_finalize
= memory_region_finalize
,
2439 static void memory_register_types(void)
2441 type_register_static(&memory_region_info
);
2444 type_init(memory_register_types
)