4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
8 * Anthony Liguori <aliguori@us.ibm.com>
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
15 #include "qemu/osdep.h"
16 #include "qapi/error.h"
17 #include <sys/ioctl.h>
18 #include <sys/utsname.h>
20 #include <linux/kvm.h>
21 #include <linux/kvm_para.h>
23 #include "qemu-common.h"
25 #include "sysemu/sysemu.h"
26 #include "sysemu/hw_accel.h"
27 #include "sysemu/kvm_int.h"
30 #include "hyperv-proto.h"
32 #include "exec/gdbstub.h"
33 #include "qemu/host-utils.h"
34 #include "qemu/config-file.h"
35 #include "qemu/error-report.h"
36 #include "hw/i386/pc.h"
37 #include "hw/i386/apic.h"
38 #include "hw/i386/apic_internal.h"
39 #include "hw/i386/apic-msidef.h"
40 #include "hw/i386/intel_iommu.h"
41 #include "hw/i386/x86-iommu.h"
43 #include "exec/ioport.h"
44 #include "hw/pci/pci.h"
45 #include "hw/pci/msi.h"
46 #include "hw/pci/msix.h"
47 #include "migration/blocker.h"
48 #include "exec/memattrs.h"
54 #define DPRINTF(fmt, ...) \
55 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
57 #define DPRINTF(fmt, ...) \
61 #define MSR_KVM_WALL_CLOCK 0x11
62 #define MSR_KVM_SYSTEM_TIME 0x12
64 /* A 4096-byte buffer can hold the 8-byte kvm_msrs header, plus
65 * 255 kvm_msr_entry structs */
66 #define MSR_BUF_SIZE 4096
68 const KVMCapabilityInfo kvm_arch_required_capabilities
[] = {
69 KVM_CAP_INFO(SET_TSS_ADDR
),
70 KVM_CAP_INFO(EXT_CPUID
),
71 KVM_CAP_INFO(MP_STATE
),
75 static bool has_msr_star
;
76 static bool has_msr_hsave_pa
;
77 static bool has_msr_tsc_aux
;
78 static bool has_msr_tsc_adjust
;
79 static bool has_msr_tsc_deadline
;
80 static bool has_msr_feature_control
;
81 static bool has_msr_misc_enable
;
82 static bool has_msr_smbase
;
83 static bool has_msr_bndcfgs
;
84 static int lm_capable_kernel
;
85 static bool has_msr_hv_hypercall
;
86 static bool has_msr_hv_crash
;
87 static bool has_msr_hv_reset
;
88 static bool has_msr_hv_vpindex
;
89 static bool has_msr_hv_runtime
;
90 static bool has_msr_hv_synic
;
91 static bool has_msr_hv_stimer
;
92 static bool has_msr_hv_frequencies
;
93 static bool has_msr_xss
;
94 static bool has_msr_spec_ctrl
;
95 static bool has_msr_smi_count
;
97 static uint32_t has_architectural_pmu_version
;
98 static uint32_t num_architectural_pmu_gp_counters
;
99 static uint32_t num_architectural_pmu_fixed_counters
;
101 static int has_xsave
;
103 static int has_pit_state2
;
105 static bool has_msr_mcg_ext_ctl
;
107 static struct kvm_cpuid2
*cpuid_cache
;
109 int kvm_has_pit_state2(void)
111 return has_pit_state2
;
114 bool kvm_has_smm(void)
116 return kvm_check_extension(kvm_state
, KVM_CAP_X86_SMM
);
119 bool kvm_has_adjust_clock_stable(void)
121 int ret
= kvm_check_extension(kvm_state
, KVM_CAP_ADJUST_CLOCK
);
123 return (ret
== KVM_CLOCK_TSC_STABLE
);
126 bool kvm_allows_irq0_override(void)
128 return !kvm_irqchip_in_kernel() || kvm_has_gsi_routing();
131 static bool kvm_x2apic_api_set_flags(uint64_t flags
)
133 KVMState
*s
= KVM_STATE(current_machine
->accelerator
);
135 return !kvm_vm_enable_cap(s
, KVM_CAP_X2APIC_API
, 0, flags
);
138 #define MEMORIZE(fn, _result) \
140 static bool _memorized; \
149 static bool has_x2apic_api
;
151 bool kvm_has_x2apic_api(void)
153 return has_x2apic_api
;
156 bool kvm_enable_x2apic(void)
159 kvm_x2apic_api_set_flags(KVM_X2APIC_API_USE_32BIT_IDS
|
160 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK
),
164 static int kvm_get_tsc(CPUState
*cs
)
166 X86CPU
*cpu
= X86_CPU(cs
);
167 CPUX86State
*env
= &cpu
->env
;
169 struct kvm_msrs info
;
170 struct kvm_msr_entry entries
[1];
174 if (env
->tsc_valid
) {
178 msr_data
.info
.nmsrs
= 1;
179 msr_data
.entries
[0].index
= MSR_IA32_TSC
;
180 env
->tsc_valid
= !runstate_is_running();
182 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_MSRS
, &msr_data
);
188 env
->tsc
= msr_data
.entries
[0].data
;
192 static inline void do_kvm_synchronize_tsc(CPUState
*cpu
, run_on_cpu_data arg
)
197 void kvm_synchronize_all_tsc(void)
203 run_on_cpu(cpu
, do_kvm_synchronize_tsc
, RUN_ON_CPU_NULL
);
208 static struct kvm_cpuid2
*try_get_cpuid(KVMState
*s
, int max
)
210 struct kvm_cpuid2
*cpuid
;
213 size
= sizeof(*cpuid
) + max
* sizeof(*cpuid
->entries
);
214 cpuid
= g_malloc0(size
);
216 r
= kvm_ioctl(s
, KVM_GET_SUPPORTED_CPUID
, cpuid
);
217 if (r
== 0 && cpuid
->nent
>= max
) {
225 fprintf(stderr
, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
233 /* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough
236 static struct kvm_cpuid2
*get_supported_cpuid(KVMState
*s
)
238 struct kvm_cpuid2
*cpuid
;
241 if (cpuid_cache
!= NULL
) {
244 while ((cpuid
= try_get_cpuid(s
, max
)) == NULL
) {
251 static const struct kvm_para_features
{
254 } para_features
[] = {
255 { KVM_CAP_CLOCKSOURCE
, KVM_FEATURE_CLOCKSOURCE
},
256 { KVM_CAP_NOP_IO_DELAY
, KVM_FEATURE_NOP_IO_DELAY
},
257 { KVM_CAP_PV_MMU
, KVM_FEATURE_MMU_OP
},
258 { KVM_CAP_ASYNC_PF
, KVM_FEATURE_ASYNC_PF
},
261 static int get_para_features(KVMState
*s
)
265 for (i
= 0; i
< ARRAY_SIZE(para_features
); i
++) {
266 if (kvm_check_extension(s
, para_features
[i
].cap
)) {
267 features
|= (1 << para_features
[i
].feature
);
274 static bool host_tsx_blacklisted(void)
276 int family
, model
, stepping
;\
277 char vendor
[CPUID_VENDOR_SZ
+ 1];
279 host_vendor_fms(vendor
, &family
, &model
, &stepping
);
281 /* Check if we are running on a Haswell host known to have broken TSX */
282 return !strcmp(vendor
, CPUID_VENDOR_INTEL
) &&
284 ((model
== 63 && stepping
< 4) ||
285 model
== 60 || model
== 69 || model
== 70);
288 /* Returns the value for a specific register on the cpuid entry
290 static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2
*entry
, int reg
)
310 /* Find matching entry for function/index on kvm_cpuid2 struct
312 static struct kvm_cpuid_entry2
*cpuid_find_entry(struct kvm_cpuid2
*cpuid
,
317 for (i
= 0; i
< cpuid
->nent
; ++i
) {
318 if (cpuid
->entries
[i
].function
== function
&&
319 cpuid
->entries
[i
].index
== index
) {
320 return &cpuid
->entries
[i
];
327 uint32_t kvm_arch_get_supported_cpuid(KVMState
*s
, uint32_t function
,
328 uint32_t index
, int reg
)
330 struct kvm_cpuid2
*cpuid
;
332 uint32_t cpuid_1_edx
;
335 cpuid
= get_supported_cpuid(s
);
337 struct kvm_cpuid_entry2
*entry
= cpuid_find_entry(cpuid
, function
, index
);
340 ret
= cpuid_entry_get_reg(entry
, reg
);
343 /* Fixups for the data returned by KVM, below */
345 if (function
== 1 && reg
== R_EDX
) {
346 /* KVM before 2.6.30 misreports the following features */
347 ret
|= CPUID_MTRR
| CPUID_PAT
| CPUID_MCE
| CPUID_MCA
;
348 } else if (function
== 1 && reg
== R_ECX
) {
349 /* We can set the hypervisor flag, even if KVM does not return it on
350 * GET_SUPPORTED_CPUID
352 ret
|= CPUID_EXT_HYPERVISOR
;
353 /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it
354 * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER,
355 * and the irqchip is in the kernel.
357 if (kvm_irqchip_in_kernel() &&
358 kvm_check_extension(s
, KVM_CAP_TSC_DEADLINE_TIMER
)) {
359 ret
|= CPUID_EXT_TSC_DEADLINE_TIMER
;
362 /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled
363 * without the in-kernel irqchip
365 if (!kvm_irqchip_in_kernel()) {
366 ret
&= ~CPUID_EXT_X2APIC
;
368 } else if (function
== 6 && reg
== R_EAX
) {
369 ret
|= CPUID_6_EAX_ARAT
; /* safe to allow because of emulated APIC */
370 } else if (function
== 7 && index
== 0 && reg
== R_EBX
) {
371 if (host_tsx_blacklisted()) {
372 ret
&= ~(CPUID_7_0_EBX_RTM
| CPUID_7_0_EBX_HLE
);
374 } else if (function
== 0x80000001 && reg
== R_EDX
) {
375 /* On Intel, kvm returns cpuid according to the Intel spec,
376 * so add missing bits according to the AMD spec:
378 cpuid_1_edx
= kvm_arch_get_supported_cpuid(s
, 1, 0, R_EDX
);
379 ret
|= cpuid_1_edx
& CPUID_EXT2_AMD_ALIASES
;
380 } else if (function
== KVM_CPUID_FEATURES
&& reg
== R_EAX
) {
381 /* kvm_pv_unhalt is reported by GET_SUPPORTED_CPUID, but it can't
382 * be enabled without the in-kernel irqchip
384 if (!kvm_irqchip_in_kernel()) {
385 ret
&= ~(1U << KVM_FEATURE_PV_UNHALT
);
387 } else if (function
== KVM_CPUID_FEATURES
&& reg
== R_EDX
) {
388 ret
|= KVM_HINTS_DEDICATED
;
392 /* fallback for older kernels */
393 if ((function
== KVM_CPUID_FEATURES
) && !found
) {
394 ret
= get_para_features(s
);
400 typedef struct HWPoisonPage
{
402 QLIST_ENTRY(HWPoisonPage
) list
;
405 static QLIST_HEAD(, HWPoisonPage
) hwpoison_page_list
=
406 QLIST_HEAD_INITIALIZER(hwpoison_page_list
);
408 static void kvm_unpoison_all(void *param
)
410 HWPoisonPage
*page
, *next_page
;
412 QLIST_FOREACH_SAFE(page
, &hwpoison_page_list
, list
, next_page
) {
413 QLIST_REMOVE(page
, list
);
414 qemu_ram_remap(page
->ram_addr
, TARGET_PAGE_SIZE
);
419 static void kvm_hwpoison_page_add(ram_addr_t ram_addr
)
423 QLIST_FOREACH(page
, &hwpoison_page_list
, list
) {
424 if (page
->ram_addr
== ram_addr
) {
428 page
= g_new(HWPoisonPage
, 1);
429 page
->ram_addr
= ram_addr
;
430 QLIST_INSERT_HEAD(&hwpoison_page_list
, page
, list
);
433 static int kvm_get_mce_cap_supported(KVMState
*s
, uint64_t *mce_cap
,
438 r
= kvm_check_extension(s
, KVM_CAP_MCE
);
441 return kvm_ioctl(s
, KVM_X86_GET_MCE_CAP_SUPPORTED
, mce_cap
);
446 static void kvm_mce_inject(X86CPU
*cpu
, hwaddr paddr
, int code
)
448 CPUState
*cs
= CPU(cpu
);
449 CPUX86State
*env
= &cpu
->env
;
450 uint64_t status
= MCI_STATUS_VAL
| MCI_STATUS_UC
| MCI_STATUS_EN
|
451 MCI_STATUS_MISCV
| MCI_STATUS_ADDRV
| MCI_STATUS_S
;
452 uint64_t mcg_status
= MCG_STATUS_MCIP
;
455 if (code
== BUS_MCEERR_AR
) {
456 status
|= MCI_STATUS_AR
| 0x134;
457 mcg_status
|= MCG_STATUS_EIPV
;
460 mcg_status
|= MCG_STATUS_RIPV
;
463 flags
= cpu_x86_support_mca_broadcast(env
) ? MCE_INJECT_BROADCAST
: 0;
464 /* We need to read back the value of MSR_EXT_MCG_CTL that was set by the
465 * guest kernel back into env->mcg_ext_ctl.
467 cpu_synchronize_state(cs
);
468 if (env
->mcg_ext_ctl
& MCG_EXT_CTL_LMCE_EN
) {
469 mcg_status
|= MCG_STATUS_LMCE
;
473 cpu_x86_inject_mce(NULL
, cpu
, 9, status
, mcg_status
, paddr
,
474 (MCM_ADDR_PHYS
<< 6) | 0xc, flags
);
477 static void hardware_memory_error(void)
479 fprintf(stderr
, "Hardware memory error!\n");
483 void kvm_arch_on_sigbus_vcpu(CPUState
*c
, int code
, void *addr
)
485 X86CPU
*cpu
= X86_CPU(c
);
486 CPUX86State
*env
= &cpu
->env
;
490 /* If we get an action required MCE, it has been injected by KVM
491 * while the VM was running. An action optional MCE instead should
492 * be coming from the main thread, which qemu_init_sigbus identifies
493 * as the "early kill" thread.
495 assert(code
== BUS_MCEERR_AR
|| code
== BUS_MCEERR_AO
);
497 if ((env
->mcg_cap
& MCG_SER_P
) && addr
) {
498 ram_addr
= qemu_ram_addr_from_host(addr
);
499 if (ram_addr
!= RAM_ADDR_INVALID
&&
500 kvm_physical_memory_addr_from_host(c
->kvm_state
, addr
, &paddr
)) {
501 kvm_hwpoison_page_add(ram_addr
);
502 kvm_mce_inject(cpu
, paddr
, code
);
506 fprintf(stderr
, "Hardware memory error for memory used by "
507 "QEMU itself instead of guest system!\n");
510 if (code
== BUS_MCEERR_AR
) {
511 hardware_memory_error();
514 /* Hope we are lucky for AO MCE */
517 static int kvm_inject_mce_oldstyle(X86CPU
*cpu
)
519 CPUX86State
*env
= &cpu
->env
;
521 if (!kvm_has_vcpu_events() && env
->exception_injected
== EXCP12_MCHK
) {
522 unsigned int bank
, bank_num
= env
->mcg_cap
& 0xff;
523 struct kvm_x86_mce mce
;
525 env
->exception_injected
= -1;
528 * There must be at least one bank in use if an MCE is pending.
529 * Find it and use its values for the event injection.
531 for (bank
= 0; bank
< bank_num
; bank
++) {
532 if (env
->mce_banks
[bank
* 4 + 1] & MCI_STATUS_VAL
) {
536 assert(bank
< bank_num
);
539 mce
.status
= env
->mce_banks
[bank
* 4 + 1];
540 mce
.mcg_status
= env
->mcg_status
;
541 mce
.addr
= env
->mce_banks
[bank
* 4 + 2];
542 mce
.misc
= env
->mce_banks
[bank
* 4 + 3];
544 return kvm_vcpu_ioctl(CPU(cpu
), KVM_X86_SET_MCE
, &mce
);
549 static void cpu_update_state(void *opaque
, int running
, RunState state
)
551 CPUX86State
*env
= opaque
;
554 env
->tsc_valid
= false;
558 unsigned long kvm_arch_vcpu_id(CPUState
*cs
)
560 X86CPU
*cpu
= X86_CPU(cs
);
564 #ifndef KVM_CPUID_SIGNATURE_NEXT
565 #define KVM_CPUID_SIGNATURE_NEXT 0x40000100
568 static bool hyperv_hypercall_available(X86CPU
*cpu
)
570 return cpu
->hyperv_vapic
||
571 (cpu
->hyperv_spinlock_attempts
!= HYPERV_SPINLOCK_NEVER_RETRY
);
574 static bool hyperv_enabled(X86CPU
*cpu
)
576 CPUState
*cs
= CPU(cpu
);
577 return kvm_check_extension(cs
->kvm_state
, KVM_CAP_HYPERV
) > 0 &&
578 (hyperv_hypercall_available(cpu
) ||
580 cpu
->hyperv_relaxed_timing
||
583 cpu
->hyperv_vpindex
||
584 cpu
->hyperv_runtime
||
589 static int kvm_arch_set_tsc_khz(CPUState
*cs
)
591 X86CPU
*cpu
= X86_CPU(cs
);
592 CPUX86State
*env
= &cpu
->env
;
599 r
= kvm_check_extension(cs
->kvm_state
, KVM_CAP_TSC_CONTROL
) ?
600 kvm_vcpu_ioctl(cs
, KVM_SET_TSC_KHZ
, env
->tsc_khz
) :
603 /* When KVM_SET_TSC_KHZ fails, it's an error only if the current
604 * TSC frequency doesn't match the one we want.
606 int cur_freq
= kvm_check_extension(cs
->kvm_state
, KVM_CAP_GET_TSC_KHZ
) ?
607 kvm_vcpu_ioctl(cs
, KVM_GET_TSC_KHZ
) :
609 if (cur_freq
<= 0 || cur_freq
!= env
->tsc_khz
) {
610 warn_report("TSC frequency mismatch between "
611 "VM (%" PRId64
" kHz) and host (%d kHz), "
612 "and TSC scaling unavailable",
613 env
->tsc_khz
, cur_freq
);
621 static bool tsc_is_stable_and_known(CPUX86State
*env
)
626 return (env
->features
[FEAT_8000_0007_EDX
] & CPUID_APM_INVTSC
)
627 || env
->user_tsc_khz
;
630 static int hyperv_handle_properties(CPUState
*cs
)
632 X86CPU
*cpu
= X86_CPU(cs
);
633 CPUX86State
*env
= &cpu
->env
;
635 if (cpu
->hyperv_relaxed_timing
) {
636 env
->features
[FEAT_HYPERV_EAX
] |= HV_HYPERCALL_AVAILABLE
;
638 if (cpu
->hyperv_vapic
) {
639 env
->features
[FEAT_HYPERV_EAX
] |= HV_HYPERCALL_AVAILABLE
;
640 env
->features
[FEAT_HYPERV_EAX
] |= HV_APIC_ACCESS_AVAILABLE
;
642 if (cpu
->hyperv_time
) {
643 if (kvm_check_extension(cs
->kvm_state
, KVM_CAP_HYPERV_TIME
) <= 0) {
644 fprintf(stderr
, "Hyper-V clocksources "
645 "(requested by 'hv-time' cpu flag) "
646 "are not supported by kernel\n");
649 env
->features
[FEAT_HYPERV_EAX
] |= HV_HYPERCALL_AVAILABLE
;
650 env
->features
[FEAT_HYPERV_EAX
] |= HV_TIME_REF_COUNT_AVAILABLE
;
651 env
->features
[FEAT_HYPERV_EAX
] |= HV_REFERENCE_TSC_AVAILABLE
;
653 if (cpu
->hyperv_frequencies
) {
654 if (!has_msr_hv_frequencies
) {
655 fprintf(stderr
, "Hyper-V frequency MSRs "
656 "(requested by 'hv-frequencies' cpu flag) "
657 "are not supported by kernel\n");
660 env
->features
[FEAT_HYPERV_EAX
] |= HV_ACCESS_FREQUENCY_MSRS
;
661 env
->features
[FEAT_HYPERV_EDX
] |= HV_FREQUENCY_MSRS_AVAILABLE
;
663 if (cpu
->hyperv_crash
) {
664 if (!has_msr_hv_crash
) {
665 fprintf(stderr
, "Hyper-V crash MSRs "
666 "(requested by 'hv-crash' cpu flag) "
667 "are not supported by kernel\n");
670 env
->features
[FEAT_HYPERV_EDX
] |= HV_GUEST_CRASH_MSR_AVAILABLE
;
672 env
->features
[FEAT_HYPERV_EDX
] |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE
;
673 if (cpu
->hyperv_reset
) {
674 if (!has_msr_hv_reset
) {
675 fprintf(stderr
, "Hyper-V reset MSR "
676 "(requested by 'hv-reset' cpu flag) "
677 "is not supported by kernel\n");
680 env
->features
[FEAT_HYPERV_EAX
] |= HV_RESET_AVAILABLE
;
682 if (cpu
->hyperv_vpindex
) {
683 if (!has_msr_hv_vpindex
) {
684 fprintf(stderr
, "Hyper-V VP_INDEX MSR "
685 "(requested by 'hv-vpindex' cpu flag) "
686 "is not supported by kernel\n");
689 env
->features
[FEAT_HYPERV_EAX
] |= HV_VP_INDEX_AVAILABLE
;
691 if (cpu
->hyperv_runtime
) {
692 if (!has_msr_hv_runtime
) {
693 fprintf(stderr
, "Hyper-V VP_RUNTIME MSR "
694 "(requested by 'hv-runtime' cpu flag) "
695 "is not supported by kernel\n");
698 env
->features
[FEAT_HYPERV_EAX
] |= HV_VP_RUNTIME_AVAILABLE
;
700 if (cpu
->hyperv_synic
) {
701 if (!has_msr_hv_synic
||
702 kvm_vcpu_enable_cap(cs
, KVM_CAP_HYPERV_SYNIC
, 0)) {
703 fprintf(stderr
, "Hyper-V SynIC is not supported by kernel\n");
707 env
->features
[FEAT_HYPERV_EAX
] |= HV_SYNIC_AVAILABLE
;
709 if (cpu
->hyperv_stimer
) {
710 if (!has_msr_hv_stimer
) {
711 fprintf(stderr
, "Hyper-V timers aren't supported by kernel\n");
714 env
->features
[FEAT_HYPERV_EAX
] |= HV_SYNTIMERS_AVAILABLE
;
719 static Error
*invtsc_mig_blocker
;
721 #define KVM_MAX_CPUID_ENTRIES 100
723 int kvm_arch_init_vcpu(CPUState
*cs
)
726 struct kvm_cpuid2 cpuid
;
727 struct kvm_cpuid_entry2 entries
[KVM_MAX_CPUID_ENTRIES
];
728 } QEMU_PACKED cpuid_data
;
729 X86CPU
*cpu
= X86_CPU(cs
);
730 CPUX86State
*env
= &cpu
->env
;
731 uint32_t limit
, i
, j
, cpuid_i
;
733 struct kvm_cpuid_entry2
*c
;
734 uint32_t signature
[3];
735 int kvm_base
= KVM_CPUID_SIGNATURE
;
737 Error
*local_err
= NULL
;
739 memset(&cpuid_data
, 0, sizeof(cpuid_data
));
743 r
= kvm_arch_set_tsc_khz(cs
);
748 /* vcpu's TSC frequency is either specified by user, or following
749 * the value used by KVM if the former is not present. In the
750 * latter case, we query it from KVM and record in env->tsc_khz,
751 * so that vcpu's TSC frequency can be migrated later via this field.
754 r
= kvm_check_extension(cs
->kvm_state
, KVM_CAP_GET_TSC_KHZ
) ?
755 kvm_vcpu_ioctl(cs
, KVM_GET_TSC_KHZ
) :
762 /* Paravirtualization CPUIDs */
763 if (hyperv_enabled(cpu
)) {
764 c
= &cpuid_data
.entries
[cpuid_i
++];
765 c
->function
= HV_CPUID_VENDOR_AND_MAX_FUNCTIONS
;
766 if (!cpu
->hyperv_vendor_id
) {
767 memcpy(signature
, "Microsoft Hv", 12);
769 size_t len
= strlen(cpu
->hyperv_vendor_id
);
772 error_report("hv-vendor-id truncated to 12 characters");
775 memset(signature
, 0, 12);
776 memcpy(signature
, cpu
->hyperv_vendor_id
, len
);
778 c
->eax
= HV_CPUID_MIN
;
779 c
->ebx
= signature
[0];
780 c
->ecx
= signature
[1];
781 c
->edx
= signature
[2];
783 c
= &cpuid_data
.entries
[cpuid_i
++];
784 c
->function
= HV_CPUID_INTERFACE
;
785 memcpy(signature
, "Hv#1\0\0\0\0\0\0\0\0", 12);
786 c
->eax
= signature
[0];
791 c
= &cpuid_data
.entries
[cpuid_i
++];
792 c
->function
= HV_CPUID_VERSION
;
796 c
= &cpuid_data
.entries
[cpuid_i
++];
797 c
->function
= HV_CPUID_FEATURES
;
798 r
= hyperv_handle_properties(cs
);
802 c
->eax
= env
->features
[FEAT_HYPERV_EAX
];
803 c
->ebx
= env
->features
[FEAT_HYPERV_EBX
];
804 c
->edx
= env
->features
[FEAT_HYPERV_EDX
];
806 c
= &cpuid_data
.entries
[cpuid_i
++];
807 c
->function
= HV_CPUID_ENLIGHTMENT_INFO
;
808 if (cpu
->hyperv_relaxed_timing
) {
809 c
->eax
|= HV_RELAXED_TIMING_RECOMMENDED
;
811 if (cpu
->hyperv_vapic
) {
812 c
->eax
|= HV_APIC_ACCESS_RECOMMENDED
;
814 c
->ebx
= cpu
->hyperv_spinlock_attempts
;
816 c
= &cpuid_data
.entries
[cpuid_i
++];
817 c
->function
= HV_CPUID_IMPLEMENT_LIMITS
;
819 c
->eax
= cpu
->hv_max_vps
;
822 kvm_base
= KVM_CPUID_SIGNATURE_NEXT
;
823 has_msr_hv_hypercall
= true;
826 if (cpu
->expose_kvm
) {
827 memcpy(signature
, "KVMKVMKVM\0\0\0", 12);
828 c
= &cpuid_data
.entries
[cpuid_i
++];
829 c
->function
= KVM_CPUID_SIGNATURE
| kvm_base
;
830 c
->eax
= KVM_CPUID_FEATURES
| kvm_base
;
831 c
->ebx
= signature
[0];
832 c
->ecx
= signature
[1];
833 c
->edx
= signature
[2];
835 c
= &cpuid_data
.entries
[cpuid_i
++];
836 c
->function
= KVM_CPUID_FEATURES
| kvm_base
;
837 c
->eax
= env
->features
[FEAT_KVM
];
838 c
->edx
= env
->features
[FEAT_KVM_HINTS
];
841 cpu_x86_cpuid(env
, 0, 0, &limit
, &unused
, &unused
, &unused
);
843 for (i
= 0; i
<= limit
; i
++) {
844 if (cpuid_i
== KVM_MAX_CPUID_ENTRIES
) {
845 fprintf(stderr
, "unsupported level value: 0x%x\n", limit
);
848 c
= &cpuid_data
.entries
[cpuid_i
++];
852 /* Keep reading function 2 till all the input is received */
856 c
->flags
= KVM_CPUID_FLAG_STATEFUL_FUNC
|
857 KVM_CPUID_FLAG_STATE_READ_NEXT
;
858 cpu_x86_cpuid(env
, i
, 0, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
859 times
= c
->eax
& 0xff;
861 for (j
= 1; j
< times
; ++j
) {
862 if (cpuid_i
== KVM_MAX_CPUID_ENTRIES
) {
863 fprintf(stderr
, "cpuid_data is full, no space for "
864 "cpuid(eax:2):eax & 0xf = 0x%x\n", times
);
867 c
= &cpuid_data
.entries
[cpuid_i
++];
869 c
->flags
= KVM_CPUID_FLAG_STATEFUL_FUNC
;
870 cpu_x86_cpuid(env
, i
, 0, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
878 if (i
== 0xd && j
== 64) {
882 c
->flags
= KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
884 cpu_x86_cpuid(env
, i
, j
, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
886 if (i
== 4 && c
->eax
== 0) {
889 if (i
== 0xb && !(c
->ecx
& 0xff00)) {
892 if (i
== 0xd && c
->eax
== 0) {
895 if (cpuid_i
== KVM_MAX_CPUID_ENTRIES
) {
896 fprintf(stderr
, "cpuid_data is full, no space for "
897 "cpuid(eax:0x%x,ecx:0x%x)\n", i
, j
);
900 c
= &cpuid_data
.entries
[cpuid_i
++];
908 c
->flags
= KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
909 cpu_x86_cpuid(env
, i
, 0, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
912 for (j
= 1; j
<= times
; ++j
) {
913 if (cpuid_i
== KVM_MAX_CPUID_ENTRIES
) {
914 fprintf(stderr
, "cpuid_data is full, no space for "
915 "cpuid(eax:0x14,ecx:0x%x)\n", j
);
918 c
= &cpuid_data
.entries
[cpuid_i
++];
921 c
->flags
= KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
922 cpu_x86_cpuid(env
, i
, j
, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
929 cpu_x86_cpuid(env
, i
, 0, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
937 cpu_x86_cpuid(env
, 0x0a, 0, &eax
, &unused
, &unused
, &edx
);
939 has_architectural_pmu_version
= eax
& 0xff;
940 if (has_architectural_pmu_version
> 0) {
941 num_architectural_pmu_gp_counters
= (eax
& 0xff00) >> 8;
943 /* Shouldn't be more than 32, since that's the number of bits
944 * available in EBX to tell us _which_ counters are available.
947 if (num_architectural_pmu_gp_counters
> MAX_GP_COUNTERS
) {
948 num_architectural_pmu_gp_counters
= MAX_GP_COUNTERS
;
951 if (has_architectural_pmu_version
> 1) {
952 num_architectural_pmu_fixed_counters
= edx
& 0x1f;
954 if (num_architectural_pmu_fixed_counters
> MAX_FIXED_COUNTERS
) {
955 num_architectural_pmu_fixed_counters
= MAX_FIXED_COUNTERS
;
961 cpu_x86_cpuid(env
, 0x80000000, 0, &limit
, &unused
, &unused
, &unused
);
963 for (i
= 0x80000000; i
<= limit
; i
++) {
964 if (cpuid_i
== KVM_MAX_CPUID_ENTRIES
) {
965 fprintf(stderr
, "unsupported xlevel value: 0x%x\n", limit
);
968 c
= &cpuid_data
.entries
[cpuid_i
++];
972 cpu_x86_cpuid(env
, i
, 0, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
975 /* Call Centaur's CPUID instructions they are supported. */
976 if (env
->cpuid_xlevel2
> 0) {
977 cpu_x86_cpuid(env
, 0xC0000000, 0, &limit
, &unused
, &unused
, &unused
);
979 for (i
= 0xC0000000; i
<= limit
; i
++) {
980 if (cpuid_i
== KVM_MAX_CPUID_ENTRIES
) {
981 fprintf(stderr
, "unsupported xlevel2 value: 0x%x\n", limit
);
984 c
= &cpuid_data
.entries
[cpuid_i
++];
988 cpu_x86_cpuid(env
, i
, 0, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
992 cpuid_data
.cpuid
.nent
= cpuid_i
;
994 if (((env
->cpuid_version
>> 8)&0xF) >= 6
995 && (env
->features
[FEAT_1_EDX
] & (CPUID_MCE
| CPUID_MCA
)) ==
996 (CPUID_MCE
| CPUID_MCA
)
997 && kvm_check_extension(cs
->kvm_state
, KVM_CAP_MCE
) > 0) {
998 uint64_t mcg_cap
, unsupported_caps
;
1002 ret
= kvm_get_mce_cap_supported(cs
->kvm_state
, &mcg_cap
, &banks
);
1004 fprintf(stderr
, "kvm_get_mce_cap_supported: %s", strerror(-ret
));
1008 if (banks
< (env
->mcg_cap
& MCG_CAP_BANKS_MASK
)) {
1009 error_report("kvm: Unsupported MCE bank count (QEMU = %d, KVM = %d)",
1010 (int)(env
->mcg_cap
& MCG_CAP_BANKS_MASK
), banks
);
1014 unsupported_caps
= env
->mcg_cap
& ~(mcg_cap
| MCG_CAP_BANKS_MASK
);
1015 if (unsupported_caps
) {
1016 if (unsupported_caps
& MCG_LMCE_P
) {
1017 error_report("kvm: LMCE not supported");
1020 warn_report("Unsupported MCG_CAP bits: 0x%" PRIx64
,
1024 env
->mcg_cap
&= mcg_cap
| MCG_CAP_BANKS_MASK
;
1025 ret
= kvm_vcpu_ioctl(cs
, KVM_X86_SETUP_MCE
, &env
->mcg_cap
);
1027 fprintf(stderr
, "KVM_X86_SETUP_MCE: %s", strerror(-ret
));
1032 qemu_add_vm_change_state_handler(cpu_update_state
, env
);
1034 c
= cpuid_find_entry(&cpuid_data
.cpuid
, 1, 0);
1036 has_msr_feature_control
= !!(c
->ecx
& CPUID_EXT_VMX
) ||
1037 !!(c
->ecx
& CPUID_EXT_SMX
);
1040 if (env
->mcg_cap
& MCG_LMCE_P
) {
1041 has_msr_mcg_ext_ctl
= has_msr_feature_control
= true;
1044 if (!env
->user_tsc_khz
) {
1045 if ((env
->features
[FEAT_8000_0007_EDX
] & CPUID_APM_INVTSC
) &&
1046 invtsc_mig_blocker
== NULL
) {
1048 error_setg(&invtsc_mig_blocker
,
1049 "State blocked by non-migratable CPU device"
1051 r
= migrate_add_blocker(invtsc_mig_blocker
, &local_err
);
1053 error_report_err(local_err
);
1054 error_free(invtsc_mig_blocker
);
1058 vmstate_x86_cpu
.unmigratable
= 1;
1062 if (cpu
->vmware_cpuid_freq
1063 /* Guests depend on 0x40000000 to detect this feature, so only expose
1064 * it if KVM exposes leaf 0x40000000. (Conflicts with Hyper-V) */
1066 && kvm_base
== KVM_CPUID_SIGNATURE
1067 /* TSC clock must be stable and known for this feature. */
1068 && tsc_is_stable_and_known(env
)) {
1070 c
= &cpuid_data
.entries
[cpuid_i
++];
1071 c
->function
= KVM_CPUID_SIGNATURE
| 0x10;
1072 c
->eax
= env
->tsc_khz
;
1073 /* LAPIC resolution of 1ns (freq: 1GHz) is hardcoded in KVM's
1074 * APIC_BUS_CYCLE_NS */
1076 c
->ecx
= c
->edx
= 0;
1078 c
= cpuid_find_entry(&cpuid_data
.cpuid
, kvm_base
, 0);
1079 c
->eax
= MAX(c
->eax
, KVM_CPUID_SIGNATURE
| 0x10);
1082 cpuid_data
.cpuid
.nent
= cpuid_i
;
1084 cpuid_data
.cpuid
.padding
= 0;
1085 r
= kvm_vcpu_ioctl(cs
, KVM_SET_CPUID2
, &cpuid_data
);
1091 env
->kvm_xsave_buf
= qemu_memalign(4096, sizeof(struct kvm_xsave
));
1093 cpu
->kvm_msr_buf
= g_malloc0(MSR_BUF_SIZE
);
1095 if (!(env
->features
[FEAT_8000_0001_EDX
] & CPUID_EXT2_RDTSCP
)) {
1096 has_msr_tsc_aux
= false;
1102 migrate_del_blocker(invtsc_mig_blocker
);
1106 void kvm_arch_reset_vcpu(X86CPU
*cpu
)
1108 CPUX86State
*env
= &cpu
->env
;
1111 if (kvm_irqchip_in_kernel()) {
1112 env
->mp_state
= cpu_is_bsp(cpu
) ? KVM_MP_STATE_RUNNABLE
:
1113 KVM_MP_STATE_UNINITIALIZED
;
1115 env
->mp_state
= KVM_MP_STATE_RUNNABLE
;
1118 if (cpu
->hyperv_synic
) {
1120 for (i
= 0; i
< ARRAY_SIZE(env
->msr_hv_synic_sint
); i
++) {
1121 env
->msr_hv_synic_sint
[i
] = HV_SINT_MASKED
;
1126 void kvm_arch_do_init_vcpu(X86CPU
*cpu
)
1128 CPUX86State
*env
= &cpu
->env
;
1130 /* APs get directly into wait-for-SIPI state. */
1131 if (env
->mp_state
== KVM_MP_STATE_UNINITIALIZED
) {
1132 env
->mp_state
= KVM_MP_STATE_INIT_RECEIVED
;
1136 static int kvm_get_supported_msrs(KVMState
*s
)
1138 static int kvm_supported_msrs
;
1142 if (kvm_supported_msrs
== 0) {
1143 struct kvm_msr_list msr_list
, *kvm_msr_list
;
1145 kvm_supported_msrs
= -1;
1147 /* Obtain MSR list from KVM. These are the MSRs that we must
1150 ret
= kvm_ioctl(s
, KVM_GET_MSR_INDEX_LIST
, &msr_list
);
1151 if (ret
< 0 && ret
!= -E2BIG
) {
1154 /* Old kernel modules had a bug and could write beyond the provided
1155 memory. Allocate at least a safe amount of 1K. */
1156 kvm_msr_list
= g_malloc0(MAX(1024, sizeof(msr_list
) +
1158 sizeof(msr_list
.indices
[0])));
1160 kvm_msr_list
->nmsrs
= msr_list
.nmsrs
;
1161 ret
= kvm_ioctl(s
, KVM_GET_MSR_INDEX_LIST
, kvm_msr_list
);
1165 for (i
= 0; i
< kvm_msr_list
->nmsrs
; i
++) {
1166 switch (kvm_msr_list
->indices
[i
]) {
1168 has_msr_star
= true;
1170 case MSR_VM_HSAVE_PA
:
1171 has_msr_hsave_pa
= true;
1174 has_msr_tsc_aux
= true;
1176 case MSR_TSC_ADJUST
:
1177 has_msr_tsc_adjust
= true;
1179 case MSR_IA32_TSCDEADLINE
:
1180 has_msr_tsc_deadline
= true;
1182 case MSR_IA32_SMBASE
:
1183 has_msr_smbase
= true;
1186 has_msr_smi_count
= true;
1188 case MSR_IA32_MISC_ENABLE
:
1189 has_msr_misc_enable
= true;
1191 case MSR_IA32_BNDCFGS
:
1192 has_msr_bndcfgs
= true;
1197 case HV_X64_MSR_CRASH_CTL
:
1198 has_msr_hv_crash
= true;
1200 case HV_X64_MSR_RESET
:
1201 has_msr_hv_reset
= true;
1203 case HV_X64_MSR_VP_INDEX
:
1204 has_msr_hv_vpindex
= true;
1206 case HV_X64_MSR_VP_RUNTIME
:
1207 has_msr_hv_runtime
= true;
1209 case HV_X64_MSR_SCONTROL
:
1210 has_msr_hv_synic
= true;
1212 case HV_X64_MSR_STIMER0_CONFIG
:
1213 has_msr_hv_stimer
= true;
1215 case HV_X64_MSR_TSC_FREQUENCY
:
1216 has_msr_hv_frequencies
= true;
1218 case MSR_IA32_SPEC_CTRL
:
1219 has_msr_spec_ctrl
= true;
1225 g_free(kvm_msr_list
);
1231 static Notifier smram_machine_done
;
1232 static KVMMemoryListener smram_listener
;
1233 static AddressSpace smram_address_space
;
1234 static MemoryRegion smram_as_root
;
1235 static MemoryRegion smram_as_mem
;
1237 static void register_smram_listener(Notifier
*n
, void *unused
)
1239 MemoryRegion
*smram
=
1240 (MemoryRegion
*) object_resolve_path("/machine/smram", NULL
);
1242 /* Outer container... */
1243 memory_region_init(&smram_as_root
, OBJECT(kvm_state
), "mem-container-smram", ~0ull);
1244 memory_region_set_enabled(&smram_as_root
, true);
1246 /* ... with two regions inside: normal system memory with low
1249 memory_region_init_alias(&smram_as_mem
, OBJECT(kvm_state
), "mem-smram",
1250 get_system_memory(), 0, ~0ull);
1251 memory_region_add_subregion_overlap(&smram_as_root
, 0, &smram_as_mem
, 0);
1252 memory_region_set_enabled(&smram_as_mem
, true);
1255 /* ... SMRAM with higher priority */
1256 memory_region_add_subregion_overlap(&smram_as_root
, 0, smram
, 10);
1257 memory_region_set_enabled(smram
, true);
1260 address_space_init(&smram_address_space
, &smram_as_root
, "KVM-SMRAM");
1261 kvm_memory_listener_register(kvm_state
, &smram_listener
,
1262 &smram_address_space
, 1);
1265 int kvm_arch_init(MachineState
*ms
, KVMState
*s
)
1267 uint64_t identity_base
= 0xfffbc000;
1268 uint64_t shadow_mem
;
1270 struct utsname utsname
;
1272 #ifdef KVM_CAP_XSAVE
1273 has_xsave
= kvm_check_extension(s
, KVM_CAP_XSAVE
);
1277 has_xcrs
= kvm_check_extension(s
, KVM_CAP_XCRS
);
1280 #ifdef KVM_CAP_PIT_STATE2
1281 has_pit_state2
= kvm_check_extension(s
, KVM_CAP_PIT_STATE2
);
1284 ret
= kvm_get_supported_msrs(s
);
1290 lm_capable_kernel
= strcmp(utsname
.machine
, "x86_64") == 0;
1293 * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
1294 * In order to use vm86 mode, an EPT identity map and a TSS are needed.
1295 * Since these must be part of guest physical memory, we need to allocate
1296 * them, both by setting their start addresses in the kernel and by
1297 * creating a corresponding e820 entry. We need 4 pages before the BIOS.
1299 * Older KVM versions may not support setting the identity map base. In
1300 * that case we need to stick with the default, i.e. a 256K maximum BIOS
1303 if (kvm_check_extension(s
, KVM_CAP_SET_IDENTITY_MAP_ADDR
)) {
1304 /* Allows up to 16M BIOSes. */
1305 identity_base
= 0xfeffc000;
1307 ret
= kvm_vm_ioctl(s
, KVM_SET_IDENTITY_MAP_ADDR
, &identity_base
);
1313 /* Set TSS base one page after EPT identity map. */
1314 ret
= kvm_vm_ioctl(s
, KVM_SET_TSS_ADDR
, identity_base
+ 0x1000);
1319 /* Tell fw_cfg to notify the BIOS to reserve the range. */
1320 ret
= e820_add_entry(identity_base
, 0x4000, E820_RESERVED
);
1322 fprintf(stderr
, "e820_add_entry() table is full\n");
1325 qemu_register_reset(kvm_unpoison_all
, NULL
);
1327 shadow_mem
= machine_kvm_shadow_mem(ms
);
1328 if (shadow_mem
!= -1) {
1330 ret
= kvm_vm_ioctl(s
, KVM_SET_NR_MMU_PAGES
, shadow_mem
);
1336 if (kvm_check_extension(s
, KVM_CAP_X86_SMM
) &&
1337 object_dynamic_cast(OBJECT(ms
), TYPE_PC_MACHINE
) &&
1338 pc_machine_is_smm_enabled(PC_MACHINE(ms
))) {
1339 smram_machine_done
.notify
= register_smram_listener
;
1340 qemu_add_machine_init_done_notifier(&smram_machine_done
);
1345 static void set_v8086_seg(struct kvm_segment
*lhs
, const SegmentCache
*rhs
)
1347 lhs
->selector
= rhs
->selector
;
1348 lhs
->base
= rhs
->base
;
1349 lhs
->limit
= rhs
->limit
;
1361 static void set_seg(struct kvm_segment
*lhs
, const SegmentCache
*rhs
)
1363 unsigned flags
= rhs
->flags
;
1364 lhs
->selector
= rhs
->selector
;
1365 lhs
->base
= rhs
->base
;
1366 lhs
->limit
= rhs
->limit
;
1367 lhs
->type
= (flags
>> DESC_TYPE_SHIFT
) & 15;
1368 lhs
->present
= (flags
& DESC_P_MASK
) != 0;
1369 lhs
->dpl
= (flags
>> DESC_DPL_SHIFT
) & 3;
1370 lhs
->db
= (flags
>> DESC_B_SHIFT
) & 1;
1371 lhs
->s
= (flags
& DESC_S_MASK
) != 0;
1372 lhs
->l
= (flags
>> DESC_L_SHIFT
) & 1;
1373 lhs
->g
= (flags
& DESC_G_MASK
) != 0;
1374 lhs
->avl
= (flags
& DESC_AVL_MASK
) != 0;
1375 lhs
->unusable
= !lhs
->present
;
1379 static void get_seg(SegmentCache
*lhs
, const struct kvm_segment
*rhs
)
1381 lhs
->selector
= rhs
->selector
;
1382 lhs
->base
= rhs
->base
;
1383 lhs
->limit
= rhs
->limit
;
1384 lhs
->flags
= (rhs
->type
<< DESC_TYPE_SHIFT
) |
1385 ((rhs
->present
&& !rhs
->unusable
) * DESC_P_MASK
) |
1386 (rhs
->dpl
<< DESC_DPL_SHIFT
) |
1387 (rhs
->db
<< DESC_B_SHIFT
) |
1388 (rhs
->s
* DESC_S_MASK
) |
1389 (rhs
->l
<< DESC_L_SHIFT
) |
1390 (rhs
->g
* DESC_G_MASK
) |
1391 (rhs
->avl
* DESC_AVL_MASK
);
1394 static void kvm_getput_reg(__u64
*kvm_reg
, target_ulong
*qemu_reg
, int set
)
1397 *kvm_reg
= *qemu_reg
;
1399 *qemu_reg
= *kvm_reg
;
1403 static int kvm_getput_regs(X86CPU
*cpu
, int set
)
1405 CPUX86State
*env
= &cpu
->env
;
1406 struct kvm_regs regs
;
1410 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_REGS
, ®s
);
1416 kvm_getput_reg(®s
.rax
, &env
->regs
[R_EAX
], set
);
1417 kvm_getput_reg(®s
.rbx
, &env
->regs
[R_EBX
], set
);
1418 kvm_getput_reg(®s
.rcx
, &env
->regs
[R_ECX
], set
);
1419 kvm_getput_reg(®s
.rdx
, &env
->regs
[R_EDX
], set
);
1420 kvm_getput_reg(®s
.rsi
, &env
->regs
[R_ESI
], set
);
1421 kvm_getput_reg(®s
.rdi
, &env
->regs
[R_EDI
], set
);
1422 kvm_getput_reg(®s
.rsp
, &env
->regs
[R_ESP
], set
);
1423 kvm_getput_reg(®s
.rbp
, &env
->regs
[R_EBP
], set
);
1424 #ifdef TARGET_X86_64
1425 kvm_getput_reg(®s
.r8
, &env
->regs
[8], set
);
1426 kvm_getput_reg(®s
.r9
, &env
->regs
[9], set
);
1427 kvm_getput_reg(®s
.r10
, &env
->regs
[10], set
);
1428 kvm_getput_reg(®s
.r11
, &env
->regs
[11], set
);
1429 kvm_getput_reg(®s
.r12
, &env
->regs
[12], set
);
1430 kvm_getput_reg(®s
.r13
, &env
->regs
[13], set
);
1431 kvm_getput_reg(®s
.r14
, &env
->regs
[14], set
);
1432 kvm_getput_reg(®s
.r15
, &env
->regs
[15], set
);
1435 kvm_getput_reg(®s
.rflags
, &env
->eflags
, set
);
1436 kvm_getput_reg(®s
.rip
, &env
->eip
, set
);
1439 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_REGS
, ®s
);
1445 static int kvm_put_fpu(X86CPU
*cpu
)
1447 CPUX86State
*env
= &cpu
->env
;
1451 memset(&fpu
, 0, sizeof fpu
);
1452 fpu
.fsw
= env
->fpus
& ~(7 << 11);
1453 fpu
.fsw
|= (env
->fpstt
& 7) << 11;
1454 fpu
.fcw
= env
->fpuc
;
1455 fpu
.last_opcode
= env
->fpop
;
1456 fpu
.last_ip
= env
->fpip
;
1457 fpu
.last_dp
= env
->fpdp
;
1458 for (i
= 0; i
< 8; ++i
) {
1459 fpu
.ftwx
|= (!env
->fptags
[i
]) << i
;
1461 memcpy(fpu
.fpr
, env
->fpregs
, sizeof env
->fpregs
);
1462 for (i
= 0; i
< CPU_NB_REGS
; i
++) {
1463 stq_p(&fpu
.xmm
[i
][0], env
->xmm_regs
[i
].ZMM_Q(0));
1464 stq_p(&fpu
.xmm
[i
][8], env
->xmm_regs
[i
].ZMM_Q(1));
1466 fpu
.mxcsr
= env
->mxcsr
;
1468 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_FPU
, &fpu
);
1471 #define XSAVE_FCW_FSW 0
1472 #define XSAVE_FTW_FOP 1
1473 #define XSAVE_CWD_RIP 2
1474 #define XSAVE_CWD_RDP 4
1475 #define XSAVE_MXCSR 6
1476 #define XSAVE_ST_SPACE 8
1477 #define XSAVE_XMM_SPACE 40
1478 #define XSAVE_XSTATE_BV 128
1479 #define XSAVE_YMMH_SPACE 144
1480 #define XSAVE_BNDREGS 240
1481 #define XSAVE_BNDCSR 256
1482 #define XSAVE_OPMASK 272
1483 #define XSAVE_ZMM_Hi256 288
1484 #define XSAVE_Hi16_ZMM 416
1485 #define XSAVE_PKRU 672
1487 #define XSAVE_BYTE_OFFSET(word_offset) \
1488 ((word_offset) * sizeof(((struct kvm_xsave *)0)->region[0]))
1490 #define ASSERT_OFFSET(word_offset, field) \
1491 QEMU_BUILD_BUG_ON(XSAVE_BYTE_OFFSET(word_offset) != \
1492 offsetof(X86XSaveArea, field))
1494 ASSERT_OFFSET(XSAVE_FCW_FSW
, legacy
.fcw
);
1495 ASSERT_OFFSET(XSAVE_FTW_FOP
, legacy
.ftw
);
1496 ASSERT_OFFSET(XSAVE_CWD_RIP
, legacy
.fpip
);
1497 ASSERT_OFFSET(XSAVE_CWD_RDP
, legacy
.fpdp
);
1498 ASSERT_OFFSET(XSAVE_MXCSR
, legacy
.mxcsr
);
1499 ASSERT_OFFSET(XSAVE_ST_SPACE
, legacy
.fpregs
);
1500 ASSERT_OFFSET(XSAVE_XMM_SPACE
, legacy
.xmm_regs
);
1501 ASSERT_OFFSET(XSAVE_XSTATE_BV
, header
.xstate_bv
);
1502 ASSERT_OFFSET(XSAVE_YMMH_SPACE
, avx_state
);
1503 ASSERT_OFFSET(XSAVE_BNDREGS
, bndreg_state
);
1504 ASSERT_OFFSET(XSAVE_BNDCSR
, bndcsr_state
);
1505 ASSERT_OFFSET(XSAVE_OPMASK
, opmask_state
);
1506 ASSERT_OFFSET(XSAVE_ZMM_Hi256
, zmm_hi256_state
);
1507 ASSERT_OFFSET(XSAVE_Hi16_ZMM
, hi16_zmm_state
);
1508 ASSERT_OFFSET(XSAVE_PKRU
, pkru_state
);
1510 static int kvm_put_xsave(X86CPU
*cpu
)
1512 CPUX86State
*env
= &cpu
->env
;
1513 X86XSaveArea
*xsave
= env
->kvm_xsave_buf
;
1516 return kvm_put_fpu(cpu
);
1518 x86_cpu_xsave_all_areas(cpu
, xsave
);
1520 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_XSAVE
, xsave
);
1523 static int kvm_put_xcrs(X86CPU
*cpu
)
1525 CPUX86State
*env
= &cpu
->env
;
1526 struct kvm_xcrs xcrs
= {};
1534 xcrs
.xcrs
[0].xcr
= 0;
1535 xcrs
.xcrs
[0].value
= env
->xcr0
;
1536 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_XCRS
, &xcrs
);
1539 static int kvm_put_sregs(X86CPU
*cpu
)
1541 CPUX86State
*env
= &cpu
->env
;
1542 struct kvm_sregs sregs
;
1544 memset(sregs
.interrupt_bitmap
, 0, sizeof(sregs
.interrupt_bitmap
));
1545 if (env
->interrupt_injected
>= 0) {
1546 sregs
.interrupt_bitmap
[env
->interrupt_injected
/ 64] |=
1547 (uint64_t)1 << (env
->interrupt_injected
% 64);
1550 if ((env
->eflags
& VM_MASK
)) {
1551 set_v8086_seg(&sregs
.cs
, &env
->segs
[R_CS
]);
1552 set_v8086_seg(&sregs
.ds
, &env
->segs
[R_DS
]);
1553 set_v8086_seg(&sregs
.es
, &env
->segs
[R_ES
]);
1554 set_v8086_seg(&sregs
.fs
, &env
->segs
[R_FS
]);
1555 set_v8086_seg(&sregs
.gs
, &env
->segs
[R_GS
]);
1556 set_v8086_seg(&sregs
.ss
, &env
->segs
[R_SS
]);
1558 set_seg(&sregs
.cs
, &env
->segs
[R_CS
]);
1559 set_seg(&sregs
.ds
, &env
->segs
[R_DS
]);
1560 set_seg(&sregs
.es
, &env
->segs
[R_ES
]);
1561 set_seg(&sregs
.fs
, &env
->segs
[R_FS
]);
1562 set_seg(&sregs
.gs
, &env
->segs
[R_GS
]);
1563 set_seg(&sregs
.ss
, &env
->segs
[R_SS
]);
1566 set_seg(&sregs
.tr
, &env
->tr
);
1567 set_seg(&sregs
.ldt
, &env
->ldt
);
1569 sregs
.idt
.limit
= env
->idt
.limit
;
1570 sregs
.idt
.base
= env
->idt
.base
;
1571 memset(sregs
.idt
.padding
, 0, sizeof sregs
.idt
.padding
);
1572 sregs
.gdt
.limit
= env
->gdt
.limit
;
1573 sregs
.gdt
.base
= env
->gdt
.base
;
1574 memset(sregs
.gdt
.padding
, 0, sizeof sregs
.gdt
.padding
);
1576 sregs
.cr0
= env
->cr
[0];
1577 sregs
.cr2
= env
->cr
[2];
1578 sregs
.cr3
= env
->cr
[3];
1579 sregs
.cr4
= env
->cr
[4];
1581 sregs
.cr8
= cpu_get_apic_tpr(cpu
->apic_state
);
1582 sregs
.apic_base
= cpu_get_apic_base(cpu
->apic_state
);
1584 sregs
.efer
= env
->efer
;
1586 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_SREGS
, &sregs
);
1589 static void kvm_msr_buf_reset(X86CPU
*cpu
)
1591 memset(cpu
->kvm_msr_buf
, 0, MSR_BUF_SIZE
);
1594 static void kvm_msr_entry_add(X86CPU
*cpu
, uint32_t index
, uint64_t value
)
1596 struct kvm_msrs
*msrs
= cpu
->kvm_msr_buf
;
1597 void *limit
= ((void *)msrs
) + MSR_BUF_SIZE
;
1598 struct kvm_msr_entry
*entry
= &msrs
->entries
[msrs
->nmsrs
];
1600 assert((void *)(entry
+ 1) <= limit
);
1602 entry
->index
= index
;
1603 entry
->reserved
= 0;
1604 entry
->data
= value
;
1608 static int kvm_put_one_msr(X86CPU
*cpu
, int index
, uint64_t value
)
1610 kvm_msr_buf_reset(cpu
);
1611 kvm_msr_entry_add(cpu
, index
, value
);
1613 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_MSRS
, cpu
->kvm_msr_buf
);
1616 void kvm_put_apicbase(X86CPU
*cpu
, uint64_t value
)
1620 ret
= kvm_put_one_msr(cpu
, MSR_IA32_APICBASE
, value
);
1624 static int kvm_put_tscdeadline_msr(X86CPU
*cpu
)
1626 CPUX86State
*env
= &cpu
->env
;
1629 if (!has_msr_tsc_deadline
) {
1633 ret
= kvm_put_one_msr(cpu
, MSR_IA32_TSCDEADLINE
, env
->tsc_deadline
);
1643 * Provide a separate write service for the feature control MSR in order to
1644 * kick the VCPU out of VMXON or even guest mode on reset. This has to be done
1645 * before writing any other state because forcibly leaving nested mode
1646 * invalidates the VCPU state.
1648 static int kvm_put_msr_feature_control(X86CPU
*cpu
)
1652 if (!has_msr_feature_control
) {
1656 ret
= kvm_put_one_msr(cpu
, MSR_IA32_FEATURE_CONTROL
,
1657 cpu
->env
.msr_ia32_feature_control
);
1666 static int kvm_put_msrs(X86CPU
*cpu
, int level
)
1668 CPUX86State
*env
= &cpu
->env
;
1672 kvm_msr_buf_reset(cpu
);
1674 kvm_msr_entry_add(cpu
, MSR_IA32_SYSENTER_CS
, env
->sysenter_cs
);
1675 kvm_msr_entry_add(cpu
, MSR_IA32_SYSENTER_ESP
, env
->sysenter_esp
);
1676 kvm_msr_entry_add(cpu
, MSR_IA32_SYSENTER_EIP
, env
->sysenter_eip
);
1677 kvm_msr_entry_add(cpu
, MSR_PAT
, env
->pat
);
1679 kvm_msr_entry_add(cpu
, MSR_STAR
, env
->star
);
1681 if (has_msr_hsave_pa
) {
1682 kvm_msr_entry_add(cpu
, MSR_VM_HSAVE_PA
, env
->vm_hsave
);
1684 if (has_msr_tsc_aux
) {
1685 kvm_msr_entry_add(cpu
, MSR_TSC_AUX
, env
->tsc_aux
);
1687 if (has_msr_tsc_adjust
) {
1688 kvm_msr_entry_add(cpu
, MSR_TSC_ADJUST
, env
->tsc_adjust
);
1690 if (has_msr_misc_enable
) {
1691 kvm_msr_entry_add(cpu
, MSR_IA32_MISC_ENABLE
,
1692 env
->msr_ia32_misc_enable
);
1694 if (has_msr_smbase
) {
1695 kvm_msr_entry_add(cpu
, MSR_IA32_SMBASE
, env
->smbase
);
1697 if (has_msr_smi_count
) {
1698 kvm_msr_entry_add(cpu
, MSR_SMI_COUNT
, env
->msr_smi_count
);
1700 if (has_msr_bndcfgs
) {
1701 kvm_msr_entry_add(cpu
, MSR_IA32_BNDCFGS
, env
->msr_bndcfgs
);
1704 kvm_msr_entry_add(cpu
, MSR_IA32_XSS
, env
->xss
);
1706 if (has_msr_spec_ctrl
) {
1707 kvm_msr_entry_add(cpu
, MSR_IA32_SPEC_CTRL
, env
->spec_ctrl
);
1709 #ifdef TARGET_X86_64
1710 if (lm_capable_kernel
) {
1711 kvm_msr_entry_add(cpu
, MSR_CSTAR
, env
->cstar
);
1712 kvm_msr_entry_add(cpu
, MSR_KERNELGSBASE
, env
->kernelgsbase
);
1713 kvm_msr_entry_add(cpu
, MSR_FMASK
, env
->fmask
);
1714 kvm_msr_entry_add(cpu
, MSR_LSTAR
, env
->lstar
);
1719 * The following MSRs have side effects on the guest or are too heavy
1720 * for normal writeback. Limit them to reset or full state updates.
1722 if (level
>= KVM_PUT_RESET_STATE
) {
1723 kvm_msr_entry_add(cpu
, MSR_IA32_TSC
, env
->tsc
);
1724 kvm_msr_entry_add(cpu
, MSR_KVM_SYSTEM_TIME
, env
->system_time_msr
);
1725 kvm_msr_entry_add(cpu
, MSR_KVM_WALL_CLOCK
, env
->wall_clock_msr
);
1726 if (env
->features
[FEAT_KVM
] & (1 << KVM_FEATURE_ASYNC_PF
)) {
1727 kvm_msr_entry_add(cpu
, MSR_KVM_ASYNC_PF_EN
, env
->async_pf_en_msr
);
1729 if (env
->features
[FEAT_KVM
] & (1 << KVM_FEATURE_PV_EOI
)) {
1730 kvm_msr_entry_add(cpu
, MSR_KVM_PV_EOI_EN
, env
->pv_eoi_en_msr
);
1732 if (env
->features
[FEAT_KVM
] & (1 << KVM_FEATURE_STEAL_TIME
)) {
1733 kvm_msr_entry_add(cpu
, MSR_KVM_STEAL_TIME
, env
->steal_time_msr
);
1735 if (has_architectural_pmu_version
> 0) {
1736 if (has_architectural_pmu_version
> 1) {
1737 /* Stop the counter. */
1738 kvm_msr_entry_add(cpu
, MSR_CORE_PERF_FIXED_CTR_CTRL
, 0);
1739 kvm_msr_entry_add(cpu
, MSR_CORE_PERF_GLOBAL_CTRL
, 0);
1742 /* Set the counter values. */
1743 for (i
= 0; i
< num_architectural_pmu_fixed_counters
; i
++) {
1744 kvm_msr_entry_add(cpu
, MSR_CORE_PERF_FIXED_CTR0
+ i
,
1745 env
->msr_fixed_counters
[i
]);
1747 for (i
= 0; i
< num_architectural_pmu_gp_counters
; i
++) {
1748 kvm_msr_entry_add(cpu
, MSR_P6_PERFCTR0
+ i
,
1749 env
->msr_gp_counters
[i
]);
1750 kvm_msr_entry_add(cpu
, MSR_P6_EVNTSEL0
+ i
,
1751 env
->msr_gp_evtsel
[i
]);
1753 if (has_architectural_pmu_version
> 1) {
1754 kvm_msr_entry_add(cpu
, MSR_CORE_PERF_GLOBAL_STATUS
,
1755 env
->msr_global_status
);
1756 kvm_msr_entry_add(cpu
, MSR_CORE_PERF_GLOBAL_OVF_CTRL
,
1757 env
->msr_global_ovf_ctrl
);
1759 /* Now start the PMU. */
1760 kvm_msr_entry_add(cpu
, MSR_CORE_PERF_FIXED_CTR_CTRL
,
1761 env
->msr_fixed_ctr_ctrl
);
1762 kvm_msr_entry_add(cpu
, MSR_CORE_PERF_GLOBAL_CTRL
,
1763 env
->msr_global_ctrl
);
1767 * Hyper-V partition-wide MSRs: to avoid clearing them on cpu hot-add,
1768 * only sync them to KVM on the first cpu
1770 if (current_cpu
== first_cpu
) {
1771 if (has_msr_hv_hypercall
) {
1772 kvm_msr_entry_add(cpu
, HV_X64_MSR_GUEST_OS_ID
,
1773 env
->msr_hv_guest_os_id
);
1774 kvm_msr_entry_add(cpu
, HV_X64_MSR_HYPERCALL
,
1775 env
->msr_hv_hypercall
);
1777 if (cpu
->hyperv_time
) {
1778 kvm_msr_entry_add(cpu
, HV_X64_MSR_REFERENCE_TSC
,
1782 if (cpu
->hyperv_vapic
) {
1783 kvm_msr_entry_add(cpu
, HV_X64_MSR_APIC_ASSIST_PAGE
,
1786 if (has_msr_hv_crash
) {
1789 for (j
= 0; j
< HV_CRASH_PARAMS
; j
++)
1790 kvm_msr_entry_add(cpu
, HV_X64_MSR_CRASH_P0
+ j
,
1791 env
->msr_hv_crash_params
[j
]);
1793 kvm_msr_entry_add(cpu
, HV_X64_MSR_CRASH_CTL
, HV_CRASH_CTL_NOTIFY
);
1795 if (has_msr_hv_runtime
) {
1796 kvm_msr_entry_add(cpu
, HV_X64_MSR_VP_RUNTIME
, env
->msr_hv_runtime
);
1798 if (cpu
->hyperv_synic
) {
1801 kvm_msr_entry_add(cpu
, HV_X64_MSR_SVERSION
, HV_SYNIC_VERSION
);
1803 kvm_msr_entry_add(cpu
, HV_X64_MSR_SCONTROL
,
1804 env
->msr_hv_synic_control
);
1805 kvm_msr_entry_add(cpu
, HV_X64_MSR_SIEFP
,
1806 env
->msr_hv_synic_evt_page
);
1807 kvm_msr_entry_add(cpu
, HV_X64_MSR_SIMP
,
1808 env
->msr_hv_synic_msg_page
);
1810 for (j
= 0; j
< ARRAY_SIZE(env
->msr_hv_synic_sint
); j
++) {
1811 kvm_msr_entry_add(cpu
, HV_X64_MSR_SINT0
+ j
,
1812 env
->msr_hv_synic_sint
[j
]);
1815 if (has_msr_hv_stimer
) {
1818 for (j
= 0; j
< ARRAY_SIZE(env
->msr_hv_stimer_config
); j
++) {
1819 kvm_msr_entry_add(cpu
, HV_X64_MSR_STIMER0_CONFIG
+ j
* 2,
1820 env
->msr_hv_stimer_config
[j
]);
1823 for (j
= 0; j
< ARRAY_SIZE(env
->msr_hv_stimer_count
); j
++) {
1824 kvm_msr_entry_add(cpu
, HV_X64_MSR_STIMER0_COUNT
+ j
* 2,
1825 env
->msr_hv_stimer_count
[j
]);
1828 if (env
->features
[FEAT_1_EDX
] & CPUID_MTRR
) {
1829 uint64_t phys_mask
= MAKE_64BIT_MASK(0, cpu
->phys_bits
);
1831 kvm_msr_entry_add(cpu
, MSR_MTRRdefType
, env
->mtrr_deftype
);
1832 kvm_msr_entry_add(cpu
, MSR_MTRRfix64K_00000
, env
->mtrr_fixed
[0]);
1833 kvm_msr_entry_add(cpu
, MSR_MTRRfix16K_80000
, env
->mtrr_fixed
[1]);
1834 kvm_msr_entry_add(cpu
, MSR_MTRRfix16K_A0000
, env
->mtrr_fixed
[2]);
1835 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_C0000
, env
->mtrr_fixed
[3]);
1836 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_C8000
, env
->mtrr_fixed
[4]);
1837 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_D0000
, env
->mtrr_fixed
[5]);
1838 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_D8000
, env
->mtrr_fixed
[6]);
1839 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_E0000
, env
->mtrr_fixed
[7]);
1840 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_E8000
, env
->mtrr_fixed
[8]);
1841 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_F0000
, env
->mtrr_fixed
[9]);
1842 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_F8000
, env
->mtrr_fixed
[10]);
1843 for (i
= 0; i
< MSR_MTRRcap_VCNT
; i
++) {
1844 /* The CPU GPs if we write to a bit above the physical limit of
1845 * the host CPU (and KVM emulates that)
1847 uint64_t mask
= env
->mtrr_var
[i
].mask
;
1850 kvm_msr_entry_add(cpu
, MSR_MTRRphysBase(i
),
1851 env
->mtrr_var
[i
].base
);
1852 kvm_msr_entry_add(cpu
, MSR_MTRRphysMask(i
), mask
);
1855 if (env
->features
[FEAT_7_0_EBX
] & CPUID_7_0_EBX_INTEL_PT
) {
1856 int addr_num
= kvm_arch_get_supported_cpuid(kvm_state
,
1857 0x14, 1, R_EAX
) & 0x7;
1859 kvm_msr_entry_add(cpu
, MSR_IA32_RTIT_CTL
,
1860 env
->msr_rtit_ctrl
);
1861 kvm_msr_entry_add(cpu
, MSR_IA32_RTIT_STATUS
,
1862 env
->msr_rtit_status
);
1863 kvm_msr_entry_add(cpu
, MSR_IA32_RTIT_OUTPUT_BASE
,
1864 env
->msr_rtit_output_base
);
1865 kvm_msr_entry_add(cpu
, MSR_IA32_RTIT_OUTPUT_MASK
,
1866 env
->msr_rtit_output_mask
);
1867 kvm_msr_entry_add(cpu
, MSR_IA32_RTIT_CR3_MATCH
,
1868 env
->msr_rtit_cr3_match
);
1869 for (i
= 0; i
< addr_num
; i
++) {
1870 kvm_msr_entry_add(cpu
, MSR_IA32_RTIT_ADDR0_A
+ i
,
1871 env
->msr_rtit_addrs
[i
]);
1875 /* Note: MSR_IA32_FEATURE_CONTROL is written separately, see
1876 * kvm_put_msr_feature_control. */
1881 kvm_msr_entry_add(cpu
, MSR_MCG_STATUS
, env
->mcg_status
);
1882 kvm_msr_entry_add(cpu
, MSR_MCG_CTL
, env
->mcg_ctl
);
1883 if (has_msr_mcg_ext_ctl
) {
1884 kvm_msr_entry_add(cpu
, MSR_MCG_EXT_CTL
, env
->mcg_ext_ctl
);
1886 for (i
= 0; i
< (env
->mcg_cap
& 0xff) * 4; i
++) {
1887 kvm_msr_entry_add(cpu
, MSR_MC0_CTL
+ i
, env
->mce_banks
[i
]);
1891 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_MSRS
, cpu
->kvm_msr_buf
);
1896 if (ret
< cpu
->kvm_msr_buf
->nmsrs
) {
1897 struct kvm_msr_entry
*e
= &cpu
->kvm_msr_buf
->entries
[ret
];
1898 error_report("error: failed to set MSR 0x%" PRIx32
" to 0x%" PRIx64
,
1899 (uint32_t)e
->index
, (uint64_t)e
->data
);
1902 assert(ret
== cpu
->kvm_msr_buf
->nmsrs
);
1907 static int kvm_get_fpu(X86CPU
*cpu
)
1909 CPUX86State
*env
= &cpu
->env
;
1913 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_FPU
, &fpu
);
1918 env
->fpstt
= (fpu
.fsw
>> 11) & 7;
1919 env
->fpus
= fpu
.fsw
;
1920 env
->fpuc
= fpu
.fcw
;
1921 env
->fpop
= fpu
.last_opcode
;
1922 env
->fpip
= fpu
.last_ip
;
1923 env
->fpdp
= fpu
.last_dp
;
1924 for (i
= 0; i
< 8; ++i
) {
1925 env
->fptags
[i
] = !((fpu
.ftwx
>> i
) & 1);
1927 memcpy(env
->fpregs
, fpu
.fpr
, sizeof env
->fpregs
);
1928 for (i
= 0; i
< CPU_NB_REGS
; i
++) {
1929 env
->xmm_regs
[i
].ZMM_Q(0) = ldq_p(&fpu
.xmm
[i
][0]);
1930 env
->xmm_regs
[i
].ZMM_Q(1) = ldq_p(&fpu
.xmm
[i
][8]);
1932 env
->mxcsr
= fpu
.mxcsr
;
1937 static int kvm_get_xsave(X86CPU
*cpu
)
1939 CPUX86State
*env
= &cpu
->env
;
1940 X86XSaveArea
*xsave
= env
->kvm_xsave_buf
;
1944 return kvm_get_fpu(cpu
);
1947 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_XSAVE
, xsave
);
1951 x86_cpu_xrstor_all_areas(cpu
, xsave
);
1956 static int kvm_get_xcrs(X86CPU
*cpu
)
1958 CPUX86State
*env
= &cpu
->env
;
1960 struct kvm_xcrs xcrs
;
1966 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_XCRS
, &xcrs
);
1971 for (i
= 0; i
< xcrs
.nr_xcrs
; i
++) {
1972 /* Only support xcr0 now */
1973 if (xcrs
.xcrs
[i
].xcr
== 0) {
1974 env
->xcr0
= xcrs
.xcrs
[i
].value
;
1981 static int kvm_get_sregs(X86CPU
*cpu
)
1983 CPUX86State
*env
= &cpu
->env
;
1984 struct kvm_sregs sregs
;
1987 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_SREGS
, &sregs
);
1992 /* There can only be one pending IRQ set in the bitmap at a time, so try
1993 to find it and save its number instead (-1 for none). */
1994 env
->interrupt_injected
= -1;
1995 for (i
= 0; i
< ARRAY_SIZE(sregs
.interrupt_bitmap
); i
++) {
1996 if (sregs
.interrupt_bitmap
[i
]) {
1997 bit
= ctz64(sregs
.interrupt_bitmap
[i
]);
1998 env
->interrupt_injected
= i
* 64 + bit
;
2003 get_seg(&env
->segs
[R_CS
], &sregs
.cs
);
2004 get_seg(&env
->segs
[R_DS
], &sregs
.ds
);
2005 get_seg(&env
->segs
[R_ES
], &sregs
.es
);
2006 get_seg(&env
->segs
[R_FS
], &sregs
.fs
);
2007 get_seg(&env
->segs
[R_GS
], &sregs
.gs
);
2008 get_seg(&env
->segs
[R_SS
], &sregs
.ss
);
2010 get_seg(&env
->tr
, &sregs
.tr
);
2011 get_seg(&env
->ldt
, &sregs
.ldt
);
2013 env
->idt
.limit
= sregs
.idt
.limit
;
2014 env
->idt
.base
= sregs
.idt
.base
;
2015 env
->gdt
.limit
= sregs
.gdt
.limit
;
2016 env
->gdt
.base
= sregs
.gdt
.base
;
2018 env
->cr
[0] = sregs
.cr0
;
2019 env
->cr
[2] = sregs
.cr2
;
2020 env
->cr
[3] = sregs
.cr3
;
2021 env
->cr
[4] = sregs
.cr4
;
2023 env
->efer
= sregs
.efer
;
2025 /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
2026 x86_update_hflags(env
);
2031 static int kvm_get_msrs(X86CPU
*cpu
)
2033 CPUX86State
*env
= &cpu
->env
;
2034 struct kvm_msr_entry
*msrs
= cpu
->kvm_msr_buf
->entries
;
2036 uint64_t mtrr_top_bits
;
2038 kvm_msr_buf_reset(cpu
);
2040 kvm_msr_entry_add(cpu
, MSR_IA32_SYSENTER_CS
, 0);
2041 kvm_msr_entry_add(cpu
, MSR_IA32_SYSENTER_ESP
, 0);
2042 kvm_msr_entry_add(cpu
, MSR_IA32_SYSENTER_EIP
, 0);
2043 kvm_msr_entry_add(cpu
, MSR_PAT
, 0);
2045 kvm_msr_entry_add(cpu
, MSR_STAR
, 0);
2047 if (has_msr_hsave_pa
) {
2048 kvm_msr_entry_add(cpu
, MSR_VM_HSAVE_PA
, 0);
2050 if (has_msr_tsc_aux
) {
2051 kvm_msr_entry_add(cpu
, MSR_TSC_AUX
, 0);
2053 if (has_msr_tsc_adjust
) {
2054 kvm_msr_entry_add(cpu
, MSR_TSC_ADJUST
, 0);
2056 if (has_msr_tsc_deadline
) {
2057 kvm_msr_entry_add(cpu
, MSR_IA32_TSCDEADLINE
, 0);
2059 if (has_msr_misc_enable
) {
2060 kvm_msr_entry_add(cpu
, MSR_IA32_MISC_ENABLE
, 0);
2062 if (has_msr_smbase
) {
2063 kvm_msr_entry_add(cpu
, MSR_IA32_SMBASE
, 0);
2065 if (has_msr_smi_count
) {
2066 kvm_msr_entry_add(cpu
, MSR_SMI_COUNT
, 0);
2068 if (has_msr_feature_control
) {
2069 kvm_msr_entry_add(cpu
, MSR_IA32_FEATURE_CONTROL
, 0);
2071 if (has_msr_bndcfgs
) {
2072 kvm_msr_entry_add(cpu
, MSR_IA32_BNDCFGS
, 0);
2075 kvm_msr_entry_add(cpu
, MSR_IA32_XSS
, 0);
2077 if (has_msr_spec_ctrl
) {
2078 kvm_msr_entry_add(cpu
, MSR_IA32_SPEC_CTRL
, 0);
2082 if (!env
->tsc_valid
) {
2083 kvm_msr_entry_add(cpu
, MSR_IA32_TSC
, 0);
2084 env
->tsc_valid
= !runstate_is_running();
2087 #ifdef TARGET_X86_64
2088 if (lm_capable_kernel
) {
2089 kvm_msr_entry_add(cpu
, MSR_CSTAR
, 0);
2090 kvm_msr_entry_add(cpu
, MSR_KERNELGSBASE
, 0);
2091 kvm_msr_entry_add(cpu
, MSR_FMASK
, 0);
2092 kvm_msr_entry_add(cpu
, MSR_LSTAR
, 0);
2095 kvm_msr_entry_add(cpu
, MSR_KVM_SYSTEM_TIME
, 0);
2096 kvm_msr_entry_add(cpu
, MSR_KVM_WALL_CLOCK
, 0);
2097 if (env
->features
[FEAT_KVM
] & (1 << KVM_FEATURE_ASYNC_PF
)) {
2098 kvm_msr_entry_add(cpu
, MSR_KVM_ASYNC_PF_EN
, 0);
2100 if (env
->features
[FEAT_KVM
] & (1 << KVM_FEATURE_PV_EOI
)) {
2101 kvm_msr_entry_add(cpu
, MSR_KVM_PV_EOI_EN
, 0);
2103 if (env
->features
[FEAT_KVM
] & (1 << KVM_FEATURE_STEAL_TIME
)) {
2104 kvm_msr_entry_add(cpu
, MSR_KVM_STEAL_TIME
, 0);
2106 if (has_architectural_pmu_version
> 0) {
2107 if (has_architectural_pmu_version
> 1) {
2108 kvm_msr_entry_add(cpu
, MSR_CORE_PERF_FIXED_CTR_CTRL
, 0);
2109 kvm_msr_entry_add(cpu
, MSR_CORE_PERF_GLOBAL_CTRL
, 0);
2110 kvm_msr_entry_add(cpu
, MSR_CORE_PERF_GLOBAL_STATUS
, 0);
2111 kvm_msr_entry_add(cpu
, MSR_CORE_PERF_GLOBAL_OVF_CTRL
, 0);
2113 for (i
= 0; i
< num_architectural_pmu_fixed_counters
; i
++) {
2114 kvm_msr_entry_add(cpu
, MSR_CORE_PERF_FIXED_CTR0
+ i
, 0);
2116 for (i
= 0; i
< num_architectural_pmu_gp_counters
; i
++) {
2117 kvm_msr_entry_add(cpu
, MSR_P6_PERFCTR0
+ i
, 0);
2118 kvm_msr_entry_add(cpu
, MSR_P6_EVNTSEL0
+ i
, 0);
2123 kvm_msr_entry_add(cpu
, MSR_MCG_STATUS
, 0);
2124 kvm_msr_entry_add(cpu
, MSR_MCG_CTL
, 0);
2125 if (has_msr_mcg_ext_ctl
) {
2126 kvm_msr_entry_add(cpu
, MSR_MCG_EXT_CTL
, 0);
2128 for (i
= 0; i
< (env
->mcg_cap
& 0xff) * 4; i
++) {
2129 kvm_msr_entry_add(cpu
, MSR_MC0_CTL
+ i
, 0);
2133 if (has_msr_hv_hypercall
) {
2134 kvm_msr_entry_add(cpu
, HV_X64_MSR_HYPERCALL
, 0);
2135 kvm_msr_entry_add(cpu
, HV_X64_MSR_GUEST_OS_ID
, 0);
2137 if (cpu
->hyperv_vapic
) {
2138 kvm_msr_entry_add(cpu
, HV_X64_MSR_APIC_ASSIST_PAGE
, 0);
2140 if (cpu
->hyperv_time
) {
2141 kvm_msr_entry_add(cpu
, HV_X64_MSR_REFERENCE_TSC
, 0);
2143 if (has_msr_hv_crash
) {
2146 for (j
= 0; j
< HV_CRASH_PARAMS
; j
++) {
2147 kvm_msr_entry_add(cpu
, HV_X64_MSR_CRASH_P0
+ j
, 0);
2150 if (has_msr_hv_runtime
) {
2151 kvm_msr_entry_add(cpu
, HV_X64_MSR_VP_RUNTIME
, 0);
2153 if (cpu
->hyperv_synic
) {
2156 kvm_msr_entry_add(cpu
, HV_X64_MSR_SCONTROL
, 0);
2157 kvm_msr_entry_add(cpu
, HV_X64_MSR_SIEFP
, 0);
2158 kvm_msr_entry_add(cpu
, HV_X64_MSR_SIMP
, 0);
2159 for (msr
= HV_X64_MSR_SINT0
; msr
<= HV_X64_MSR_SINT15
; msr
++) {
2160 kvm_msr_entry_add(cpu
, msr
, 0);
2163 if (has_msr_hv_stimer
) {
2166 for (msr
= HV_X64_MSR_STIMER0_CONFIG
; msr
<= HV_X64_MSR_STIMER3_COUNT
;
2168 kvm_msr_entry_add(cpu
, msr
, 0);
2171 if (env
->features
[FEAT_1_EDX
] & CPUID_MTRR
) {
2172 kvm_msr_entry_add(cpu
, MSR_MTRRdefType
, 0);
2173 kvm_msr_entry_add(cpu
, MSR_MTRRfix64K_00000
, 0);
2174 kvm_msr_entry_add(cpu
, MSR_MTRRfix16K_80000
, 0);
2175 kvm_msr_entry_add(cpu
, MSR_MTRRfix16K_A0000
, 0);
2176 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_C0000
, 0);
2177 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_C8000
, 0);
2178 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_D0000
, 0);
2179 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_D8000
, 0);
2180 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_E0000
, 0);
2181 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_E8000
, 0);
2182 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_F0000
, 0);
2183 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_F8000
, 0);
2184 for (i
= 0; i
< MSR_MTRRcap_VCNT
; i
++) {
2185 kvm_msr_entry_add(cpu
, MSR_MTRRphysBase(i
), 0);
2186 kvm_msr_entry_add(cpu
, MSR_MTRRphysMask(i
), 0);
2190 if (env
->features
[FEAT_7_0_EBX
] & CPUID_7_0_EBX_INTEL_PT
) {
2192 kvm_arch_get_supported_cpuid(kvm_state
, 0x14, 1, R_EAX
) & 0x7;
2194 kvm_msr_entry_add(cpu
, MSR_IA32_RTIT_CTL
, 0);
2195 kvm_msr_entry_add(cpu
, MSR_IA32_RTIT_STATUS
, 0);
2196 kvm_msr_entry_add(cpu
, MSR_IA32_RTIT_OUTPUT_BASE
, 0);
2197 kvm_msr_entry_add(cpu
, MSR_IA32_RTIT_OUTPUT_MASK
, 0);
2198 kvm_msr_entry_add(cpu
, MSR_IA32_RTIT_CR3_MATCH
, 0);
2199 for (i
= 0; i
< addr_num
; i
++) {
2200 kvm_msr_entry_add(cpu
, MSR_IA32_RTIT_ADDR0_A
+ i
, 0);
2204 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_MSRS
, cpu
->kvm_msr_buf
);
2209 if (ret
< cpu
->kvm_msr_buf
->nmsrs
) {
2210 struct kvm_msr_entry
*e
= &cpu
->kvm_msr_buf
->entries
[ret
];
2211 error_report("error: failed to get MSR 0x%" PRIx32
,
2212 (uint32_t)e
->index
);
2215 assert(ret
== cpu
->kvm_msr_buf
->nmsrs
);
2217 * MTRR masks: Each mask consists of 5 parts
2218 * a 10..0: must be zero
2220 * c n-1.12: actual mask bits
2221 * d 51..n: reserved must be zero
2222 * e 63.52: reserved must be zero
2224 * 'n' is the number of physical bits supported by the CPU and is
2225 * apparently always <= 52. We know our 'n' but don't know what
2226 * the destinations 'n' is; it might be smaller, in which case
2227 * it masks (c) on loading. It might be larger, in which case
2228 * we fill 'd' so that d..c is consistent irrespetive of the 'n'
2229 * we're migrating to.
2232 if (cpu
->fill_mtrr_mask
) {
2233 QEMU_BUILD_BUG_ON(TARGET_PHYS_ADDR_SPACE_BITS
> 52);
2234 assert(cpu
->phys_bits
<= TARGET_PHYS_ADDR_SPACE_BITS
);
2235 mtrr_top_bits
= MAKE_64BIT_MASK(cpu
->phys_bits
, 52 - cpu
->phys_bits
);
2240 for (i
= 0; i
< ret
; i
++) {
2241 uint32_t index
= msrs
[i
].index
;
2243 case MSR_IA32_SYSENTER_CS
:
2244 env
->sysenter_cs
= msrs
[i
].data
;
2246 case MSR_IA32_SYSENTER_ESP
:
2247 env
->sysenter_esp
= msrs
[i
].data
;
2249 case MSR_IA32_SYSENTER_EIP
:
2250 env
->sysenter_eip
= msrs
[i
].data
;
2253 env
->pat
= msrs
[i
].data
;
2256 env
->star
= msrs
[i
].data
;
2258 #ifdef TARGET_X86_64
2260 env
->cstar
= msrs
[i
].data
;
2262 case MSR_KERNELGSBASE
:
2263 env
->kernelgsbase
= msrs
[i
].data
;
2266 env
->fmask
= msrs
[i
].data
;
2269 env
->lstar
= msrs
[i
].data
;
2273 env
->tsc
= msrs
[i
].data
;
2276 env
->tsc_aux
= msrs
[i
].data
;
2278 case MSR_TSC_ADJUST
:
2279 env
->tsc_adjust
= msrs
[i
].data
;
2281 case MSR_IA32_TSCDEADLINE
:
2282 env
->tsc_deadline
= msrs
[i
].data
;
2284 case MSR_VM_HSAVE_PA
:
2285 env
->vm_hsave
= msrs
[i
].data
;
2287 case MSR_KVM_SYSTEM_TIME
:
2288 env
->system_time_msr
= msrs
[i
].data
;
2290 case MSR_KVM_WALL_CLOCK
:
2291 env
->wall_clock_msr
= msrs
[i
].data
;
2293 case MSR_MCG_STATUS
:
2294 env
->mcg_status
= msrs
[i
].data
;
2297 env
->mcg_ctl
= msrs
[i
].data
;
2299 case MSR_MCG_EXT_CTL
:
2300 env
->mcg_ext_ctl
= msrs
[i
].data
;
2302 case MSR_IA32_MISC_ENABLE
:
2303 env
->msr_ia32_misc_enable
= msrs
[i
].data
;
2305 case MSR_IA32_SMBASE
:
2306 env
->smbase
= msrs
[i
].data
;
2309 env
->msr_smi_count
= msrs
[i
].data
;
2311 case MSR_IA32_FEATURE_CONTROL
:
2312 env
->msr_ia32_feature_control
= msrs
[i
].data
;
2314 case MSR_IA32_BNDCFGS
:
2315 env
->msr_bndcfgs
= msrs
[i
].data
;
2318 env
->xss
= msrs
[i
].data
;
2321 if (msrs
[i
].index
>= MSR_MC0_CTL
&&
2322 msrs
[i
].index
< MSR_MC0_CTL
+ (env
->mcg_cap
& 0xff) * 4) {
2323 env
->mce_banks
[msrs
[i
].index
- MSR_MC0_CTL
] = msrs
[i
].data
;
2326 case MSR_KVM_ASYNC_PF_EN
:
2327 env
->async_pf_en_msr
= msrs
[i
].data
;
2329 case MSR_KVM_PV_EOI_EN
:
2330 env
->pv_eoi_en_msr
= msrs
[i
].data
;
2332 case MSR_KVM_STEAL_TIME
:
2333 env
->steal_time_msr
= msrs
[i
].data
;
2335 case MSR_CORE_PERF_FIXED_CTR_CTRL
:
2336 env
->msr_fixed_ctr_ctrl
= msrs
[i
].data
;
2338 case MSR_CORE_PERF_GLOBAL_CTRL
:
2339 env
->msr_global_ctrl
= msrs
[i
].data
;
2341 case MSR_CORE_PERF_GLOBAL_STATUS
:
2342 env
->msr_global_status
= msrs
[i
].data
;
2344 case MSR_CORE_PERF_GLOBAL_OVF_CTRL
:
2345 env
->msr_global_ovf_ctrl
= msrs
[i
].data
;
2347 case MSR_CORE_PERF_FIXED_CTR0
... MSR_CORE_PERF_FIXED_CTR0
+ MAX_FIXED_COUNTERS
- 1:
2348 env
->msr_fixed_counters
[index
- MSR_CORE_PERF_FIXED_CTR0
] = msrs
[i
].data
;
2350 case MSR_P6_PERFCTR0
... MSR_P6_PERFCTR0
+ MAX_GP_COUNTERS
- 1:
2351 env
->msr_gp_counters
[index
- MSR_P6_PERFCTR0
] = msrs
[i
].data
;
2353 case MSR_P6_EVNTSEL0
... MSR_P6_EVNTSEL0
+ MAX_GP_COUNTERS
- 1:
2354 env
->msr_gp_evtsel
[index
- MSR_P6_EVNTSEL0
] = msrs
[i
].data
;
2356 case HV_X64_MSR_HYPERCALL
:
2357 env
->msr_hv_hypercall
= msrs
[i
].data
;
2359 case HV_X64_MSR_GUEST_OS_ID
:
2360 env
->msr_hv_guest_os_id
= msrs
[i
].data
;
2362 case HV_X64_MSR_APIC_ASSIST_PAGE
:
2363 env
->msr_hv_vapic
= msrs
[i
].data
;
2365 case HV_X64_MSR_REFERENCE_TSC
:
2366 env
->msr_hv_tsc
= msrs
[i
].data
;
2368 case HV_X64_MSR_CRASH_P0
... HV_X64_MSR_CRASH_P4
:
2369 env
->msr_hv_crash_params
[index
- HV_X64_MSR_CRASH_P0
] = msrs
[i
].data
;
2371 case HV_X64_MSR_VP_RUNTIME
:
2372 env
->msr_hv_runtime
= msrs
[i
].data
;
2374 case HV_X64_MSR_SCONTROL
:
2375 env
->msr_hv_synic_control
= msrs
[i
].data
;
2377 case HV_X64_MSR_SIEFP
:
2378 env
->msr_hv_synic_evt_page
= msrs
[i
].data
;
2380 case HV_X64_MSR_SIMP
:
2381 env
->msr_hv_synic_msg_page
= msrs
[i
].data
;
2383 case HV_X64_MSR_SINT0
... HV_X64_MSR_SINT15
:
2384 env
->msr_hv_synic_sint
[index
- HV_X64_MSR_SINT0
] = msrs
[i
].data
;
2386 case HV_X64_MSR_STIMER0_CONFIG
:
2387 case HV_X64_MSR_STIMER1_CONFIG
:
2388 case HV_X64_MSR_STIMER2_CONFIG
:
2389 case HV_X64_MSR_STIMER3_CONFIG
:
2390 env
->msr_hv_stimer_config
[(index
- HV_X64_MSR_STIMER0_CONFIG
)/2] =
2393 case HV_X64_MSR_STIMER0_COUNT
:
2394 case HV_X64_MSR_STIMER1_COUNT
:
2395 case HV_X64_MSR_STIMER2_COUNT
:
2396 case HV_X64_MSR_STIMER3_COUNT
:
2397 env
->msr_hv_stimer_count
[(index
- HV_X64_MSR_STIMER0_COUNT
)/2] =
2400 case MSR_MTRRdefType
:
2401 env
->mtrr_deftype
= msrs
[i
].data
;
2403 case MSR_MTRRfix64K_00000
:
2404 env
->mtrr_fixed
[0] = msrs
[i
].data
;
2406 case MSR_MTRRfix16K_80000
:
2407 env
->mtrr_fixed
[1] = msrs
[i
].data
;
2409 case MSR_MTRRfix16K_A0000
:
2410 env
->mtrr_fixed
[2] = msrs
[i
].data
;
2412 case MSR_MTRRfix4K_C0000
:
2413 env
->mtrr_fixed
[3] = msrs
[i
].data
;
2415 case MSR_MTRRfix4K_C8000
:
2416 env
->mtrr_fixed
[4] = msrs
[i
].data
;
2418 case MSR_MTRRfix4K_D0000
:
2419 env
->mtrr_fixed
[5] = msrs
[i
].data
;
2421 case MSR_MTRRfix4K_D8000
:
2422 env
->mtrr_fixed
[6] = msrs
[i
].data
;
2424 case MSR_MTRRfix4K_E0000
:
2425 env
->mtrr_fixed
[7] = msrs
[i
].data
;
2427 case MSR_MTRRfix4K_E8000
:
2428 env
->mtrr_fixed
[8] = msrs
[i
].data
;
2430 case MSR_MTRRfix4K_F0000
:
2431 env
->mtrr_fixed
[9] = msrs
[i
].data
;
2433 case MSR_MTRRfix4K_F8000
:
2434 env
->mtrr_fixed
[10] = msrs
[i
].data
;
2436 case MSR_MTRRphysBase(0) ... MSR_MTRRphysMask(MSR_MTRRcap_VCNT
- 1):
2438 env
->mtrr_var
[MSR_MTRRphysIndex(index
)].mask
= msrs
[i
].data
|
2441 env
->mtrr_var
[MSR_MTRRphysIndex(index
)].base
= msrs
[i
].data
;
2444 case MSR_IA32_SPEC_CTRL
:
2445 env
->spec_ctrl
= msrs
[i
].data
;
2447 case MSR_IA32_RTIT_CTL
:
2448 env
->msr_rtit_ctrl
= msrs
[i
].data
;
2450 case MSR_IA32_RTIT_STATUS
:
2451 env
->msr_rtit_status
= msrs
[i
].data
;
2453 case MSR_IA32_RTIT_OUTPUT_BASE
:
2454 env
->msr_rtit_output_base
= msrs
[i
].data
;
2456 case MSR_IA32_RTIT_OUTPUT_MASK
:
2457 env
->msr_rtit_output_mask
= msrs
[i
].data
;
2459 case MSR_IA32_RTIT_CR3_MATCH
:
2460 env
->msr_rtit_cr3_match
= msrs
[i
].data
;
2462 case MSR_IA32_RTIT_ADDR0_A
... MSR_IA32_RTIT_ADDR3_B
:
2463 env
->msr_rtit_addrs
[index
- MSR_IA32_RTIT_ADDR0_A
] = msrs
[i
].data
;
2471 static int kvm_put_mp_state(X86CPU
*cpu
)
2473 struct kvm_mp_state mp_state
= { .mp_state
= cpu
->env
.mp_state
};
2475 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_MP_STATE
, &mp_state
);
2478 static int kvm_get_mp_state(X86CPU
*cpu
)
2480 CPUState
*cs
= CPU(cpu
);
2481 CPUX86State
*env
= &cpu
->env
;
2482 struct kvm_mp_state mp_state
;
2485 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_MP_STATE
, &mp_state
);
2489 env
->mp_state
= mp_state
.mp_state
;
2490 if (kvm_irqchip_in_kernel()) {
2491 cs
->halted
= (mp_state
.mp_state
== KVM_MP_STATE_HALTED
);
2496 static int kvm_get_apic(X86CPU
*cpu
)
2498 DeviceState
*apic
= cpu
->apic_state
;
2499 struct kvm_lapic_state kapic
;
2502 if (apic
&& kvm_irqchip_in_kernel()) {
2503 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_LAPIC
, &kapic
);
2508 kvm_get_apic_state(apic
, &kapic
);
2513 static int kvm_put_vcpu_events(X86CPU
*cpu
, int level
)
2515 CPUState
*cs
= CPU(cpu
);
2516 CPUX86State
*env
= &cpu
->env
;
2517 struct kvm_vcpu_events events
= {};
2519 if (!kvm_has_vcpu_events()) {
2523 events
.exception
.injected
= (env
->exception_injected
>= 0);
2524 events
.exception
.nr
= env
->exception_injected
;
2525 events
.exception
.has_error_code
= env
->has_error_code
;
2526 events
.exception
.error_code
= env
->error_code
;
2527 events
.exception
.pad
= 0;
2529 events
.interrupt
.injected
= (env
->interrupt_injected
>= 0);
2530 events
.interrupt
.nr
= env
->interrupt_injected
;
2531 events
.interrupt
.soft
= env
->soft_interrupt
;
2533 events
.nmi
.injected
= env
->nmi_injected
;
2534 events
.nmi
.pending
= env
->nmi_pending
;
2535 events
.nmi
.masked
= !!(env
->hflags2
& HF2_NMI_MASK
);
2538 events
.sipi_vector
= env
->sipi_vector
;
2541 if (has_msr_smbase
) {
2542 events
.smi
.smm
= !!(env
->hflags
& HF_SMM_MASK
);
2543 events
.smi
.smm_inside_nmi
= !!(env
->hflags2
& HF2_SMM_INSIDE_NMI_MASK
);
2544 if (kvm_irqchip_in_kernel()) {
2545 /* As soon as these are moved to the kernel, remove them
2546 * from cs->interrupt_request.
2548 events
.smi
.pending
= cs
->interrupt_request
& CPU_INTERRUPT_SMI
;
2549 events
.smi
.latched_init
= cs
->interrupt_request
& CPU_INTERRUPT_INIT
;
2550 cs
->interrupt_request
&= ~(CPU_INTERRUPT_INIT
| CPU_INTERRUPT_SMI
);
2552 /* Keep these in cs->interrupt_request. */
2553 events
.smi
.pending
= 0;
2554 events
.smi
.latched_init
= 0;
2556 /* Stop SMI delivery on old machine types to avoid a reboot
2557 * on an inward migration of an old VM.
2559 if (!cpu
->kvm_no_smi_migration
) {
2560 events
.flags
|= KVM_VCPUEVENT_VALID_SMM
;
2564 if (level
>= KVM_PUT_RESET_STATE
) {
2565 events
.flags
|= KVM_VCPUEVENT_VALID_NMI_PENDING
;
2566 if (env
->mp_state
== KVM_MP_STATE_SIPI_RECEIVED
) {
2567 events
.flags
|= KVM_VCPUEVENT_VALID_SIPI_VECTOR
;
2571 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_VCPU_EVENTS
, &events
);
2574 static int kvm_get_vcpu_events(X86CPU
*cpu
)
2576 CPUX86State
*env
= &cpu
->env
;
2577 struct kvm_vcpu_events events
;
2580 if (!kvm_has_vcpu_events()) {
2584 memset(&events
, 0, sizeof(events
));
2585 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_VCPU_EVENTS
, &events
);
2589 env
->exception_injected
=
2590 events
.exception
.injected
? events
.exception
.nr
: -1;
2591 env
->has_error_code
= events
.exception
.has_error_code
;
2592 env
->error_code
= events
.exception
.error_code
;
2594 env
->interrupt_injected
=
2595 events
.interrupt
.injected
? events
.interrupt
.nr
: -1;
2596 env
->soft_interrupt
= events
.interrupt
.soft
;
2598 env
->nmi_injected
= events
.nmi
.injected
;
2599 env
->nmi_pending
= events
.nmi
.pending
;
2600 if (events
.nmi
.masked
) {
2601 env
->hflags2
|= HF2_NMI_MASK
;
2603 env
->hflags2
&= ~HF2_NMI_MASK
;
2606 if (events
.flags
& KVM_VCPUEVENT_VALID_SMM
) {
2607 if (events
.smi
.smm
) {
2608 env
->hflags
|= HF_SMM_MASK
;
2610 env
->hflags
&= ~HF_SMM_MASK
;
2612 if (events
.smi
.pending
) {
2613 cpu_interrupt(CPU(cpu
), CPU_INTERRUPT_SMI
);
2615 cpu_reset_interrupt(CPU(cpu
), CPU_INTERRUPT_SMI
);
2617 if (events
.smi
.smm_inside_nmi
) {
2618 env
->hflags2
|= HF2_SMM_INSIDE_NMI_MASK
;
2620 env
->hflags2
&= ~HF2_SMM_INSIDE_NMI_MASK
;
2622 if (events
.smi
.latched_init
) {
2623 cpu_interrupt(CPU(cpu
), CPU_INTERRUPT_INIT
);
2625 cpu_reset_interrupt(CPU(cpu
), CPU_INTERRUPT_INIT
);
2629 env
->sipi_vector
= events
.sipi_vector
;
2634 static int kvm_guest_debug_workarounds(X86CPU
*cpu
)
2636 CPUState
*cs
= CPU(cpu
);
2637 CPUX86State
*env
= &cpu
->env
;
2639 unsigned long reinject_trap
= 0;
2641 if (!kvm_has_vcpu_events()) {
2642 if (env
->exception_injected
== 1) {
2643 reinject_trap
= KVM_GUESTDBG_INJECT_DB
;
2644 } else if (env
->exception_injected
== 3) {
2645 reinject_trap
= KVM_GUESTDBG_INJECT_BP
;
2647 env
->exception_injected
= -1;
2651 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
2652 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
2653 * by updating the debug state once again if single-stepping is on.
2654 * Another reason to call kvm_update_guest_debug here is a pending debug
2655 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
2656 * reinject them via SET_GUEST_DEBUG.
2658 if (reinject_trap
||
2659 (!kvm_has_robust_singlestep() && cs
->singlestep_enabled
)) {
2660 ret
= kvm_update_guest_debug(cs
, reinject_trap
);
2665 static int kvm_put_debugregs(X86CPU
*cpu
)
2667 CPUX86State
*env
= &cpu
->env
;
2668 struct kvm_debugregs dbgregs
;
2671 if (!kvm_has_debugregs()) {
2675 for (i
= 0; i
< 4; i
++) {
2676 dbgregs
.db
[i
] = env
->dr
[i
];
2678 dbgregs
.dr6
= env
->dr
[6];
2679 dbgregs
.dr7
= env
->dr
[7];
2682 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_DEBUGREGS
, &dbgregs
);
2685 static int kvm_get_debugregs(X86CPU
*cpu
)
2687 CPUX86State
*env
= &cpu
->env
;
2688 struct kvm_debugregs dbgregs
;
2691 if (!kvm_has_debugregs()) {
2695 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_DEBUGREGS
, &dbgregs
);
2699 for (i
= 0; i
< 4; i
++) {
2700 env
->dr
[i
] = dbgregs
.db
[i
];
2702 env
->dr
[4] = env
->dr
[6] = dbgregs
.dr6
;
2703 env
->dr
[5] = env
->dr
[7] = dbgregs
.dr7
;
2708 int kvm_arch_put_registers(CPUState
*cpu
, int level
)
2710 X86CPU
*x86_cpu
= X86_CPU(cpu
);
2713 assert(cpu_is_stopped(cpu
) || qemu_cpu_is_self(cpu
));
2715 if (level
>= KVM_PUT_RESET_STATE
) {
2716 ret
= kvm_put_msr_feature_control(x86_cpu
);
2722 if (level
== KVM_PUT_FULL_STATE
) {
2723 /* We don't check for kvm_arch_set_tsc_khz() errors here,
2724 * because TSC frequency mismatch shouldn't abort migration,
2725 * unless the user explicitly asked for a more strict TSC
2726 * setting (e.g. using an explicit "tsc-freq" option).
2728 kvm_arch_set_tsc_khz(cpu
);
2731 ret
= kvm_getput_regs(x86_cpu
, 1);
2735 ret
= kvm_put_xsave(x86_cpu
);
2739 ret
= kvm_put_xcrs(x86_cpu
);
2743 ret
= kvm_put_sregs(x86_cpu
);
2747 /* must be before kvm_put_msrs */
2748 ret
= kvm_inject_mce_oldstyle(x86_cpu
);
2752 ret
= kvm_put_msrs(x86_cpu
, level
);
2756 ret
= kvm_put_vcpu_events(x86_cpu
, level
);
2760 if (level
>= KVM_PUT_RESET_STATE
) {
2761 ret
= kvm_put_mp_state(x86_cpu
);
2767 ret
= kvm_put_tscdeadline_msr(x86_cpu
);
2771 ret
= kvm_put_debugregs(x86_cpu
);
2776 ret
= kvm_guest_debug_workarounds(x86_cpu
);
2783 int kvm_arch_get_registers(CPUState
*cs
)
2785 X86CPU
*cpu
= X86_CPU(cs
);
2788 assert(cpu_is_stopped(cs
) || qemu_cpu_is_self(cs
));
2790 ret
= kvm_get_vcpu_events(cpu
);
2795 * KVM_GET_MPSTATE can modify CS and RIP, call it before
2796 * KVM_GET_REGS and KVM_GET_SREGS.
2798 ret
= kvm_get_mp_state(cpu
);
2802 ret
= kvm_getput_regs(cpu
, 0);
2806 ret
= kvm_get_xsave(cpu
);
2810 ret
= kvm_get_xcrs(cpu
);
2814 ret
= kvm_get_sregs(cpu
);
2818 ret
= kvm_get_msrs(cpu
);
2822 ret
= kvm_get_apic(cpu
);
2826 ret
= kvm_get_debugregs(cpu
);
2832 cpu_sync_bndcs_hflags(&cpu
->env
);
2836 void kvm_arch_pre_run(CPUState
*cpu
, struct kvm_run
*run
)
2838 X86CPU
*x86_cpu
= X86_CPU(cpu
);
2839 CPUX86State
*env
= &x86_cpu
->env
;
2843 if (cpu
->interrupt_request
& (CPU_INTERRUPT_NMI
| CPU_INTERRUPT_SMI
)) {
2844 if (cpu
->interrupt_request
& CPU_INTERRUPT_NMI
) {
2845 qemu_mutex_lock_iothread();
2846 cpu
->interrupt_request
&= ~CPU_INTERRUPT_NMI
;
2847 qemu_mutex_unlock_iothread();
2848 DPRINTF("injected NMI\n");
2849 ret
= kvm_vcpu_ioctl(cpu
, KVM_NMI
);
2851 fprintf(stderr
, "KVM: injection failed, NMI lost (%s)\n",
2855 if (cpu
->interrupt_request
& CPU_INTERRUPT_SMI
) {
2856 qemu_mutex_lock_iothread();
2857 cpu
->interrupt_request
&= ~CPU_INTERRUPT_SMI
;
2858 qemu_mutex_unlock_iothread();
2859 DPRINTF("injected SMI\n");
2860 ret
= kvm_vcpu_ioctl(cpu
, KVM_SMI
);
2862 fprintf(stderr
, "KVM: injection failed, SMI lost (%s)\n",
2868 if (!kvm_pic_in_kernel()) {
2869 qemu_mutex_lock_iothread();
2872 /* Force the VCPU out of its inner loop to process any INIT requests
2873 * or (for userspace APIC, but it is cheap to combine the checks here)
2874 * pending TPR access reports.
2876 if (cpu
->interrupt_request
& (CPU_INTERRUPT_INIT
| CPU_INTERRUPT_TPR
)) {
2877 if ((cpu
->interrupt_request
& CPU_INTERRUPT_INIT
) &&
2878 !(env
->hflags
& HF_SMM_MASK
)) {
2879 cpu
->exit_request
= 1;
2881 if (cpu
->interrupt_request
& CPU_INTERRUPT_TPR
) {
2882 cpu
->exit_request
= 1;
2886 if (!kvm_pic_in_kernel()) {
2887 /* Try to inject an interrupt if the guest can accept it */
2888 if (run
->ready_for_interrupt_injection
&&
2889 (cpu
->interrupt_request
& CPU_INTERRUPT_HARD
) &&
2890 (env
->eflags
& IF_MASK
)) {
2893 cpu
->interrupt_request
&= ~CPU_INTERRUPT_HARD
;
2894 irq
= cpu_get_pic_interrupt(env
);
2896 struct kvm_interrupt intr
;
2899 DPRINTF("injected interrupt %d\n", irq
);
2900 ret
= kvm_vcpu_ioctl(cpu
, KVM_INTERRUPT
, &intr
);
2903 "KVM: injection failed, interrupt lost (%s)\n",
2909 /* If we have an interrupt but the guest is not ready to receive an
2910 * interrupt, request an interrupt window exit. This will
2911 * cause a return to userspace as soon as the guest is ready to
2912 * receive interrupts. */
2913 if ((cpu
->interrupt_request
& CPU_INTERRUPT_HARD
)) {
2914 run
->request_interrupt_window
= 1;
2916 run
->request_interrupt_window
= 0;
2919 DPRINTF("setting tpr\n");
2920 run
->cr8
= cpu_get_apic_tpr(x86_cpu
->apic_state
);
2922 qemu_mutex_unlock_iothread();
2926 MemTxAttrs
kvm_arch_post_run(CPUState
*cpu
, struct kvm_run
*run
)
2928 X86CPU
*x86_cpu
= X86_CPU(cpu
);
2929 CPUX86State
*env
= &x86_cpu
->env
;
2931 if (run
->flags
& KVM_RUN_X86_SMM
) {
2932 env
->hflags
|= HF_SMM_MASK
;
2934 env
->hflags
&= ~HF_SMM_MASK
;
2937 env
->eflags
|= IF_MASK
;
2939 env
->eflags
&= ~IF_MASK
;
2942 /* We need to protect the apic state against concurrent accesses from
2943 * different threads in case the userspace irqchip is used. */
2944 if (!kvm_irqchip_in_kernel()) {
2945 qemu_mutex_lock_iothread();
2947 cpu_set_apic_tpr(x86_cpu
->apic_state
, run
->cr8
);
2948 cpu_set_apic_base(x86_cpu
->apic_state
, run
->apic_base
);
2949 if (!kvm_irqchip_in_kernel()) {
2950 qemu_mutex_unlock_iothread();
2952 return cpu_get_mem_attrs(env
);
2955 int kvm_arch_process_async_events(CPUState
*cs
)
2957 X86CPU
*cpu
= X86_CPU(cs
);
2958 CPUX86State
*env
= &cpu
->env
;
2960 if (cs
->interrupt_request
& CPU_INTERRUPT_MCE
) {
2961 /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
2962 assert(env
->mcg_cap
);
2964 cs
->interrupt_request
&= ~CPU_INTERRUPT_MCE
;
2966 kvm_cpu_synchronize_state(cs
);
2968 if (env
->exception_injected
== EXCP08_DBLE
) {
2969 /* this means triple fault */
2970 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET
);
2971 cs
->exit_request
= 1;
2974 env
->exception_injected
= EXCP12_MCHK
;
2975 env
->has_error_code
= 0;
2978 if (kvm_irqchip_in_kernel() && env
->mp_state
== KVM_MP_STATE_HALTED
) {
2979 env
->mp_state
= KVM_MP_STATE_RUNNABLE
;
2983 if ((cs
->interrupt_request
& CPU_INTERRUPT_INIT
) &&
2984 !(env
->hflags
& HF_SMM_MASK
)) {
2985 kvm_cpu_synchronize_state(cs
);
2989 if (kvm_irqchip_in_kernel()) {
2993 if (cs
->interrupt_request
& CPU_INTERRUPT_POLL
) {
2994 cs
->interrupt_request
&= ~CPU_INTERRUPT_POLL
;
2995 apic_poll_irq(cpu
->apic_state
);
2997 if (((cs
->interrupt_request
& CPU_INTERRUPT_HARD
) &&
2998 (env
->eflags
& IF_MASK
)) ||
2999 (cs
->interrupt_request
& CPU_INTERRUPT_NMI
)) {
3002 if (cs
->interrupt_request
& CPU_INTERRUPT_SIPI
) {
3003 kvm_cpu_synchronize_state(cs
);
3006 if (cs
->interrupt_request
& CPU_INTERRUPT_TPR
) {
3007 cs
->interrupt_request
&= ~CPU_INTERRUPT_TPR
;
3008 kvm_cpu_synchronize_state(cs
);
3009 apic_handle_tpr_access_report(cpu
->apic_state
, env
->eip
,
3010 env
->tpr_access_type
);
3016 static int kvm_handle_halt(X86CPU
*cpu
)
3018 CPUState
*cs
= CPU(cpu
);
3019 CPUX86State
*env
= &cpu
->env
;
3021 if (!((cs
->interrupt_request
& CPU_INTERRUPT_HARD
) &&
3022 (env
->eflags
& IF_MASK
)) &&
3023 !(cs
->interrupt_request
& CPU_INTERRUPT_NMI
)) {
3031 static int kvm_handle_tpr_access(X86CPU
*cpu
)
3033 CPUState
*cs
= CPU(cpu
);
3034 struct kvm_run
*run
= cs
->kvm_run
;
3036 apic_handle_tpr_access_report(cpu
->apic_state
, run
->tpr_access
.rip
,
3037 run
->tpr_access
.is_write
? TPR_ACCESS_WRITE
3042 int kvm_arch_insert_sw_breakpoint(CPUState
*cs
, struct kvm_sw_breakpoint
*bp
)
3044 static const uint8_t int3
= 0xcc;
3046 if (cpu_memory_rw_debug(cs
, bp
->pc
, (uint8_t *)&bp
->saved_insn
, 1, 0) ||
3047 cpu_memory_rw_debug(cs
, bp
->pc
, (uint8_t *)&int3
, 1, 1)) {
3053 int kvm_arch_remove_sw_breakpoint(CPUState
*cs
, struct kvm_sw_breakpoint
*bp
)
3057 if (cpu_memory_rw_debug(cs
, bp
->pc
, &int3
, 1, 0) || int3
!= 0xcc ||
3058 cpu_memory_rw_debug(cs
, bp
->pc
, (uint8_t *)&bp
->saved_insn
, 1, 1)) {
3070 static int nb_hw_breakpoint
;
3072 static int find_hw_breakpoint(target_ulong addr
, int len
, int type
)
3076 for (n
= 0; n
< nb_hw_breakpoint
; n
++) {
3077 if (hw_breakpoint
[n
].addr
== addr
&& hw_breakpoint
[n
].type
== type
&&
3078 (hw_breakpoint
[n
].len
== len
|| len
== -1)) {
3085 int kvm_arch_insert_hw_breakpoint(target_ulong addr
,
3086 target_ulong len
, int type
)
3089 case GDB_BREAKPOINT_HW
:
3092 case GDB_WATCHPOINT_WRITE
:
3093 case GDB_WATCHPOINT_ACCESS
:
3100 if (addr
& (len
- 1)) {
3112 if (nb_hw_breakpoint
== 4) {
3115 if (find_hw_breakpoint(addr
, len
, type
) >= 0) {
3118 hw_breakpoint
[nb_hw_breakpoint
].addr
= addr
;
3119 hw_breakpoint
[nb_hw_breakpoint
].len
= len
;
3120 hw_breakpoint
[nb_hw_breakpoint
].type
= type
;
3126 int kvm_arch_remove_hw_breakpoint(target_ulong addr
,
3127 target_ulong len
, int type
)
3131 n
= find_hw_breakpoint(addr
, (type
== GDB_BREAKPOINT_HW
) ? 1 : len
, type
);
3136 hw_breakpoint
[n
] = hw_breakpoint
[nb_hw_breakpoint
];
3141 void kvm_arch_remove_all_hw_breakpoints(void)
3143 nb_hw_breakpoint
= 0;
3146 static CPUWatchpoint hw_watchpoint
;
3148 static int kvm_handle_debug(X86CPU
*cpu
,
3149 struct kvm_debug_exit_arch
*arch_info
)
3151 CPUState
*cs
= CPU(cpu
);
3152 CPUX86State
*env
= &cpu
->env
;
3156 if (arch_info
->exception
== 1) {
3157 if (arch_info
->dr6
& (1 << 14)) {
3158 if (cs
->singlestep_enabled
) {
3162 for (n
= 0; n
< 4; n
++) {
3163 if (arch_info
->dr6
& (1 << n
)) {
3164 switch ((arch_info
->dr7
>> (16 + n
*4)) & 0x3) {
3170 cs
->watchpoint_hit
= &hw_watchpoint
;
3171 hw_watchpoint
.vaddr
= hw_breakpoint
[n
].addr
;
3172 hw_watchpoint
.flags
= BP_MEM_WRITE
;
3176 cs
->watchpoint_hit
= &hw_watchpoint
;
3177 hw_watchpoint
.vaddr
= hw_breakpoint
[n
].addr
;
3178 hw_watchpoint
.flags
= BP_MEM_ACCESS
;
3184 } else if (kvm_find_sw_breakpoint(cs
, arch_info
->pc
)) {
3188 cpu_synchronize_state(cs
);
3189 assert(env
->exception_injected
== -1);
3192 env
->exception_injected
= arch_info
->exception
;
3193 env
->has_error_code
= 0;
3199 void kvm_arch_update_guest_debug(CPUState
*cpu
, struct kvm_guest_debug
*dbg
)
3201 const uint8_t type_code
[] = {
3202 [GDB_BREAKPOINT_HW
] = 0x0,
3203 [GDB_WATCHPOINT_WRITE
] = 0x1,
3204 [GDB_WATCHPOINT_ACCESS
] = 0x3
3206 const uint8_t len_code
[] = {
3207 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
3211 if (kvm_sw_breakpoints_active(cpu
)) {
3212 dbg
->control
|= KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_USE_SW_BP
;
3214 if (nb_hw_breakpoint
> 0) {
3215 dbg
->control
|= KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_USE_HW_BP
;
3216 dbg
->arch
.debugreg
[7] = 0x0600;
3217 for (n
= 0; n
< nb_hw_breakpoint
; n
++) {
3218 dbg
->arch
.debugreg
[n
] = hw_breakpoint
[n
].addr
;
3219 dbg
->arch
.debugreg
[7] |= (2 << (n
* 2)) |
3220 (type_code
[hw_breakpoint
[n
].type
] << (16 + n
*4)) |
3221 ((uint32_t)len_code
[hw_breakpoint
[n
].len
] << (18 + n
*4));
3226 static bool host_supports_vmx(void)
3228 uint32_t ecx
, unused
;
3230 host_cpuid(1, 0, &unused
, &unused
, &ecx
, &unused
);
3231 return ecx
& CPUID_EXT_VMX
;
3234 #define VMX_INVALID_GUEST_STATE 0x80000021
3236 int kvm_arch_handle_exit(CPUState
*cs
, struct kvm_run
*run
)
3238 X86CPU
*cpu
= X86_CPU(cs
);
3242 switch (run
->exit_reason
) {
3244 DPRINTF("handle_hlt\n");
3245 qemu_mutex_lock_iothread();
3246 ret
= kvm_handle_halt(cpu
);
3247 qemu_mutex_unlock_iothread();
3249 case KVM_EXIT_SET_TPR
:
3252 case KVM_EXIT_TPR_ACCESS
:
3253 qemu_mutex_lock_iothread();
3254 ret
= kvm_handle_tpr_access(cpu
);
3255 qemu_mutex_unlock_iothread();
3257 case KVM_EXIT_FAIL_ENTRY
:
3258 code
= run
->fail_entry
.hardware_entry_failure_reason
;
3259 fprintf(stderr
, "KVM: entry failed, hardware error 0x%" PRIx64
"\n",
3261 if (host_supports_vmx() && code
== VMX_INVALID_GUEST_STATE
) {
3263 "\nIf you're running a guest on an Intel machine without "
3264 "unrestricted mode\n"
3265 "support, the failure can be most likely due to the guest "
3266 "entering an invalid\n"
3267 "state for Intel VT. For example, the guest maybe running "
3268 "in big real mode\n"
3269 "which is not supported on less recent Intel processors."
3274 case KVM_EXIT_EXCEPTION
:
3275 fprintf(stderr
, "KVM: exception %d exit (error code 0x%x)\n",
3276 run
->ex
.exception
, run
->ex
.error_code
);
3279 case KVM_EXIT_DEBUG
:
3280 DPRINTF("kvm_exit_debug\n");
3281 qemu_mutex_lock_iothread();
3282 ret
= kvm_handle_debug(cpu
, &run
->debug
.arch
);
3283 qemu_mutex_unlock_iothread();
3285 case KVM_EXIT_HYPERV
:
3286 ret
= kvm_hv_handle_exit(cpu
, &run
->hyperv
);
3288 case KVM_EXIT_IOAPIC_EOI
:
3289 ioapic_eoi_broadcast(run
->eoi
.vector
);
3293 fprintf(stderr
, "KVM: unknown exit reason %d\n", run
->exit_reason
);
3301 bool kvm_arch_stop_on_emulation_error(CPUState
*cs
)
3303 X86CPU
*cpu
= X86_CPU(cs
);
3304 CPUX86State
*env
= &cpu
->env
;
3306 kvm_cpu_synchronize_state(cs
);
3307 return !(env
->cr
[0] & CR0_PE_MASK
) ||
3308 ((env
->segs
[R_CS
].selector
& 3) != 3);
3311 void kvm_arch_init_irq_routing(KVMState
*s
)
3313 if (!kvm_check_extension(s
, KVM_CAP_IRQ_ROUTING
)) {
3314 /* If kernel can't do irq routing, interrupt source
3315 * override 0->2 cannot be set up as required by HPET.
3316 * So we have to disable it.
3320 /* We know at this point that we're using the in-kernel
3321 * irqchip, so we can use irqfds, and on x86 we know
3322 * we can use msi via irqfd and GSI routing.
3324 kvm_msi_via_irqfd_allowed
= true;
3325 kvm_gsi_routing_allowed
= true;
3327 if (kvm_irqchip_is_split()) {
3330 /* If the ioapic is in QEMU and the lapics are in KVM, reserve
3331 MSI routes for signaling interrupts to the local apics. */
3332 for (i
= 0; i
< IOAPIC_NUM_PINS
; i
++) {
3333 if (kvm_irqchip_add_msi_route(s
, 0, NULL
) < 0) {
3334 error_report("Could not enable split IRQ mode.");
3341 int kvm_arch_irqchip_create(MachineState
*ms
, KVMState
*s
)
3344 if (machine_kernel_irqchip_split(ms
)) {
3345 ret
= kvm_vm_enable_cap(s
, KVM_CAP_SPLIT_IRQCHIP
, 0, 24);
3347 error_report("Could not enable split irqchip mode: %s",
3351 DPRINTF("Enabled KVM_CAP_SPLIT_IRQCHIP\n");
3352 kvm_split_irqchip
= true;
3360 /* Classic KVM device assignment interface. Will remain x86 only. */
3361 int kvm_device_pci_assign(KVMState
*s
, PCIHostDeviceAddress
*dev_addr
,
3362 uint32_t flags
, uint32_t *dev_id
)
3364 struct kvm_assigned_pci_dev dev_data
= {
3365 .segnr
= dev_addr
->domain
,
3366 .busnr
= dev_addr
->bus
,
3367 .devfn
= PCI_DEVFN(dev_addr
->slot
, dev_addr
->function
),
3372 dev_data
.assigned_dev_id
=
3373 (dev_addr
->domain
<< 16) | (dev_addr
->bus
<< 8) | dev_data
.devfn
;
3375 ret
= kvm_vm_ioctl(s
, KVM_ASSIGN_PCI_DEVICE
, &dev_data
);
3380 *dev_id
= dev_data
.assigned_dev_id
;
3385 int kvm_device_pci_deassign(KVMState
*s
, uint32_t dev_id
)
3387 struct kvm_assigned_pci_dev dev_data
= {
3388 .assigned_dev_id
= dev_id
,
3391 return kvm_vm_ioctl(s
, KVM_DEASSIGN_PCI_DEVICE
, &dev_data
);
3394 static int kvm_assign_irq_internal(KVMState
*s
, uint32_t dev_id
,
3395 uint32_t irq_type
, uint32_t guest_irq
)
3397 struct kvm_assigned_irq assigned_irq
= {
3398 .assigned_dev_id
= dev_id
,
3399 .guest_irq
= guest_irq
,
3403 if (kvm_check_extension(s
, KVM_CAP_ASSIGN_DEV_IRQ
)) {
3404 return kvm_vm_ioctl(s
, KVM_ASSIGN_DEV_IRQ
, &assigned_irq
);
3406 return kvm_vm_ioctl(s
, KVM_ASSIGN_IRQ
, &assigned_irq
);
3410 int kvm_device_intx_assign(KVMState
*s
, uint32_t dev_id
, bool use_host_msi
,
3413 uint32_t irq_type
= KVM_DEV_IRQ_GUEST_INTX
|
3414 (use_host_msi
? KVM_DEV_IRQ_HOST_MSI
: KVM_DEV_IRQ_HOST_INTX
);
3416 return kvm_assign_irq_internal(s
, dev_id
, irq_type
, guest_irq
);
3419 int kvm_device_intx_set_mask(KVMState
*s
, uint32_t dev_id
, bool masked
)
3421 struct kvm_assigned_pci_dev dev_data
= {
3422 .assigned_dev_id
= dev_id
,
3423 .flags
= masked
? KVM_DEV_ASSIGN_MASK_INTX
: 0,
3426 return kvm_vm_ioctl(s
, KVM_ASSIGN_SET_INTX_MASK
, &dev_data
);
3429 static int kvm_deassign_irq_internal(KVMState
*s
, uint32_t dev_id
,
3432 struct kvm_assigned_irq assigned_irq
= {
3433 .assigned_dev_id
= dev_id
,
3437 return kvm_vm_ioctl(s
, KVM_DEASSIGN_DEV_IRQ
, &assigned_irq
);
3440 int kvm_device_intx_deassign(KVMState
*s
, uint32_t dev_id
, bool use_host_msi
)
3442 return kvm_deassign_irq_internal(s
, dev_id
, KVM_DEV_IRQ_GUEST_INTX
|
3443 (use_host_msi
? KVM_DEV_IRQ_HOST_MSI
: KVM_DEV_IRQ_HOST_INTX
));
3446 int kvm_device_msi_assign(KVMState
*s
, uint32_t dev_id
, int virq
)
3448 return kvm_assign_irq_internal(s
, dev_id
, KVM_DEV_IRQ_HOST_MSI
|
3449 KVM_DEV_IRQ_GUEST_MSI
, virq
);
3452 int kvm_device_msi_deassign(KVMState
*s
, uint32_t dev_id
)
3454 return kvm_deassign_irq_internal(s
, dev_id
, KVM_DEV_IRQ_GUEST_MSI
|
3455 KVM_DEV_IRQ_HOST_MSI
);
3458 bool kvm_device_msix_supported(KVMState
*s
)
3460 /* The kernel lacks a corresponding KVM_CAP, so we probe by calling
3461 * KVM_ASSIGN_SET_MSIX_NR with an invalid parameter. */
3462 return kvm_vm_ioctl(s
, KVM_ASSIGN_SET_MSIX_NR
, NULL
) == -EFAULT
;
3465 int kvm_device_msix_init_vectors(KVMState
*s
, uint32_t dev_id
,
3466 uint32_t nr_vectors
)
3468 struct kvm_assigned_msix_nr msix_nr
= {
3469 .assigned_dev_id
= dev_id
,
3470 .entry_nr
= nr_vectors
,
3473 return kvm_vm_ioctl(s
, KVM_ASSIGN_SET_MSIX_NR
, &msix_nr
);
3476 int kvm_device_msix_set_vector(KVMState
*s
, uint32_t dev_id
, uint32_t vector
,
3479 struct kvm_assigned_msix_entry msix_entry
= {
3480 .assigned_dev_id
= dev_id
,
3485 return kvm_vm_ioctl(s
, KVM_ASSIGN_SET_MSIX_ENTRY
, &msix_entry
);
3488 int kvm_device_msix_assign(KVMState
*s
, uint32_t dev_id
)
3490 return kvm_assign_irq_internal(s
, dev_id
, KVM_DEV_IRQ_HOST_MSIX
|
3491 KVM_DEV_IRQ_GUEST_MSIX
, 0);
3494 int kvm_device_msix_deassign(KVMState
*s
, uint32_t dev_id
)
3496 return kvm_deassign_irq_internal(s
, dev_id
, KVM_DEV_IRQ_GUEST_MSIX
|
3497 KVM_DEV_IRQ_HOST_MSIX
);
3500 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry
*route
,
3501 uint64_t address
, uint32_t data
, PCIDevice
*dev
)
3503 X86IOMMUState
*iommu
= x86_iommu_get_default();
3507 MSIMessage src
, dst
;
3508 X86IOMMUClass
*class = X86_IOMMU_GET_CLASS(iommu
);
3510 src
.address
= route
->u
.msi
.address_hi
;
3511 src
.address
<<= VTD_MSI_ADDR_HI_SHIFT
;
3512 src
.address
|= route
->u
.msi
.address_lo
;
3513 src
.data
= route
->u
.msi
.data
;
3515 ret
= class->int_remap(iommu
, &src
, &dst
, dev
? \
3516 pci_requester_id(dev
) : \
3517 X86_IOMMU_SID_INVALID
);
3519 trace_kvm_x86_fixup_msi_error(route
->gsi
);
3523 route
->u
.msi
.address_hi
= dst
.address
>> VTD_MSI_ADDR_HI_SHIFT
;
3524 route
->u
.msi
.address_lo
= dst
.address
& VTD_MSI_ADDR_LO_MASK
;
3525 route
->u
.msi
.data
= dst
.data
;
3531 typedef struct MSIRouteEntry MSIRouteEntry
;
3533 struct MSIRouteEntry
{
3534 PCIDevice
*dev
; /* Device pointer */
3535 int vector
; /* MSI/MSIX vector index */
3536 int virq
; /* Virtual IRQ index */
3537 QLIST_ENTRY(MSIRouteEntry
) list
;
3540 /* List of used GSI routes */
3541 static QLIST_HEAD(, MSIRouteEntry
) msi_route_list
= \
3542 QLIST_HEAD_INITIALIZER(msi_route_list
);
3544 static void kvm_update_msi_routes_all(void *private, bool global
,
3545 uint32_t index
, uint32_t mask
)
3548 MSIRouteEntry
*entry
;
3552 /* TODO: explicit route update */
3553 QLIST_FOREACH(entry
, &msi_route_list
, list
) {
3556 if (!msix_enabled(dev
) && !msi_enabled(dev
)) {
3559 msg
= pci_get_msi_message(dev
, entry
->vector
);
3560 kvm_irqchip_update_msi_route(kvm_state
, entry
->virq
, msg
, dev
);
3562 kvm_irqchip_commit_routes(kvm_state
);
3563 trace_kvm_x86_update_msi_routes(cnt
);
3566 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry
*route
,
3567 int vector
, PCIDevice
*dev
)
3569 static bool notify_list_inited
= false;
3570 MSIRouteEntry
*entry
;
3573 /* These are (possibly) IOAPIC routes only used for split
3574 * kernel irqchip mode, while what we are housekeeping are
3575 * PCI devices only. */
3579 entry
= g_new0(MSIRouteEntry
, 1);
3581 entry
->vector
= vector
;
3582 entry
->virq
= route
->gsi
;
3583 QLIST_INSERT_HEAD(&msi_route_list
, entry
, list
);
3585 trace_kvm_x86_add_msi_route(route
->gsi
);
3587 if (!notify_list_inited
) {
3588 /* For the first time we do add route, add ourselves into
3589 * IOMMU's IEC notify list if needed. */
3590 X86IOMMUState
*iommu
= x86_iommu_get_default();
3592 x86_iommu_iec_register_notifier(iommu
,
3593 kvm_update_msi_routes_all
,
3596 notify_list_inited
= true;
3601 int kvm_arch_release_virq_post(int virq
)
3603 MSIRouteEntry
*entry
, *next
;
3604 QLIST_FOREACH_SAFE(entry
, &msi_route_list
, list
, next
) {
3605 if (entry
->virq
== virq
) {
3606 trace_kvm_x86_remove_msi_route(virq
);
3607 QLIST_REMOVE(entry
, list
);
3615 int kvm_arch_msi_data_to_gsi(uint32_t data
)