migration: stop decompression to allocate and free memory frequently
[qemu/kevin.git] / target / i386 / kvm.c
blob6c49954e68e706e3cf17877f88af51dffbc1c970
1 /*
2 * QEMU KVM support
4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
15 #include "qemu/osdep.h"
16 #include "qapi/error.h"
17 #include <sys/ioctl.h>
18 #include <sys/utsname.h>
20 #include <linux/kvm.h>
21 #include <linux/kvm_para.h>
23 #include "qemu-common.h"
24 #include "cpu.h"
25 #include "sysemu/sysemu.h"
26 #include "sysemu/hw_accel.h"
27 #include "sysemu/kvm_int.h"
28 #include "kvm_i386.h"
29 #include "hyperv.h"
30 #include "hyperv-proto.h"
32 #include "exec/gdbstub.h"
33 #include "qemu/host-utils.h"
34 #include "qemu/config-file.h"
35 #include "qemu/error-report.h"
36 #include "hw/i386/pc.h"
37 #include "hw/i386/apic.h"
38 #include "hw/i386/apic_internal.h"
39 #include "hw/i386/apic-msidef.h"
40 #include "hw/i386/intel_iommu.h"
41 #include "hw/i386/x86-iommu.h"
43 #include "exec/ioport.h"
44 #include "hw/pci/pci.h"
45 #include "hw/pci/msi.h"
46 #include "hw/pci/msix.h"
47 #include "migration/blocker.h"
48 #include "exec/memattrs.h"
49 #include "trace.h"
51 //#define DEBUG_KVM
53 #ifdef DEBUG_KVM
54 #define DPRINTF(fmt, ...) \
55 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
56 #else
57 #define DPRINTF(fmt, ...) \
58 do { } while (0)
59 #endif
61 #define MSR_KVM_WALL_CLOCK 0x11
62 #define MSR_KVM_SYSTEM_TIME 0x12
64 /* A 4096-byte buffer can hold the 8-byte kvm_msrs header, plus
65 * 255 kvm_msr_entry structs */
66 #define MSR_BUF_SIZE 4096
68 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
69 KVM_CAP_INFO(SET_TSS_ADDR),
70 KVM_CAP_INFO(EXT_CPUID),
71 KVM_CAP_INFO(MP_STATE),
72 KVM_CAP_LAST_INFO
75 static bool has_msr_star;
76 static bool has_msr_hsave_pa;
77 static bool has_msr_tsc_aux;
78 static bool has_msr_tsc_adjust;
79 static bool has_msr_tsc_deadline;
80 static bool has_msr_feature_control;
81 static bool has_msr_misc_enable;
82 static bool has_msr_smbase;
83 static bool has_msr_bndcfgs;
84 static int lm_capable_kernel;
85 static bool has_msr_hv_hypercall;
86 static bool has_msr_hv_crash;
87 static bool has_msr_hv_reset;
88 static bool has_msr_hv_vpindex;
89 static bool has_msr_hv_runtime;
90 static bool has_msr_hv_synic;
91 static bool has_msr_hv_stimer;
92 static bool has_msr_hv_frequencies;
93 static bool has_msr_xss;
94 static bool has_msr_spec_ctrl;
95 static bool has_msr_smi_count;
97 static uint32_t has_architectural_pmu_version;
98 static uint32_t num_architectural_pmu_gp_counters;
99 static uint32_t num_architectural_pmu_fixed_counters;
101 static int has_xsave;
102 static int has_xcrs;
103 static int has_pit_state2;
105 static bool has_msr_mcg_ext_ctl;
107 static struct kvm_cpuid2 *cpuid_cache;
109 int kvm_has_pit_state2(void)
111 return has_pit_state2;
114 bool kvm_has_smm(void)
116 return kvm_check_extension(kvm_state, KVM_CAP_X86_SMM);
119 bool kvm_has_adjust_clock_stable(void)
121 int ret = kvm_check_extension(kvm_state, KVM_CAP_ADJUST_CLOCK);
123 return (ret == KVM_CLOCK_TSC_STABLE);
126 bool kvm_allows_irq0_override(void)
128 return !kvm_irqchip_in_kernel() || kvm_has_gsi_routing();
131 static bool kvm_x2apic_api_set_flags(uint64_t flags)
133 KVMState *s = KVM_STATE(current_machine->accelerator);
135 return !kvm_vm_enable_cap(s, KVM_CAP_X2APIC_API, 0, flags);
138 #define MEMORIZE(fn, _result) \
139 ({ \
140 static bool _memorized; \
142 if (_memorized) { \
143 return _result; \
145 _memorized = true; \
146 _result = fn; \
149 static bool has_x2apic_api;
151 bool kvm_has_x2apic_api(void)
153 return has_x2apic_api;
156 bool kvm_enable_x2apic(void)
158 return MEMORIZE(
159 kvm_x2apic_api_set_flags(KVM_X2APIC_API_USE_32BIT_IDS |
160 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK),
161 has_x2apic_api);
164 static int kvm_get_tsc(CPUState *cs)
166 X86CPU *cpu = X86_CPU(cs);
167 CPUX86State *env = &cpu->env;
168 struct {
169 struct kvm_msrs info;
170 struct kvm_msr_entry entries[1];
171 } msr_data;
172 int ret;
174 if (env->tsc_valid) {
175 return 0;
178 msr_data.info.nmsrs = 1;
179 msr_data.entries[0].index = MSR_IA32_TSC;
180 env->tsc_valid = !runstate_is_running();
182 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, &msr_data);
183 if (ret < 0) {
184 return ret;
187 assert(ret == 1);
188 env->tsc = msr_data.entries[0].data;
189 return 0;
192 static inline void do_kvm_synchronize_tsc(CPUState *cpu, run_on_cpu_data arg)
194 kvm_get_tsc(cpu);
197 void kvm_synchronize_all_tsc(void)
199 CPUState *cpu;
201 if (kvm_enabled()) {
202 CPU_FOREACH(cpu) {
203 run_on_cpu(cpu, do_kvm_synchronize_tsc, RUN_ON_CPU_NULL);
208 static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
210 struct kvm_cpuid2 *cpuid;
211 int r, size;
213 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
214 cpuid = g_malloc0(size);
215 cpuid->nent = max;
216 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
217 if (r == 0 && cpuid->nent >= max) {
218 r = -E2BIG;
220 if (r < 0) {
221 if (r == -E2BIG) {
222 g_free(cpuid);
223 return NULL;
224 } else {
225 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
226 strerror(-r));
227 exit(1);
230 return cpuid;
233 /* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough
234 * for all entries.
236 static struct kvm_cpuid2 *get_supported_cpuid(KVMState *s)
238 struct kvm_cpuid2 *cpuid;
239 int max = 1;
241 if (cpuid_cache != NULL) {
242 return cpuid_cache;
244 while ((cpuid = try_get_cpuid(s, max)) == NULL) {
245 max *= 2;
247 cpuid_cache = cpuid;
248 return cpuid;
251 static const struct kvm_para_features {
252 int cap;
253 int feature;
254 } para_features[] = {
255 { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
256 { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
257 { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
258 { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF },
261 static int get_para_features(KVMState *s)
263 int i, features = 0;
265 for (i = 0; i < ARRAY_SIZE(para_features); i++) {
266 if (kvm_check_extension(s, para_features[i].cap)) {
267 features |= (1 << para_features[i].feature);
271 return features;
274 static bool host_tsx_blacklisted(void)
276 int family, model, stepping;\
277 char vendor[CPUID_VENDOR_SZ + 1];
279 host_vendor_fms(vendor, &family, &model, &stepping);
281 /* Check if we are running on a Haswell host known to have broken TSX */
282 return !strcmp(vendor, CPUID_VENDOR_INTEL) &&
283 (family == 6) &&
284 ((model == 63 && stepping < 4) ||
285 model == 60 || model == 69 || model == 70);
288 /* Returns the value for a specific register on the cpuid entry
290 static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, int reg)
292 uint32_t ret = 0;
293 switch (reg) {
294 case R_EAX:
295 ret = entry->eax;
296 break;
297 case R_EBX:
298 ret = entry->ebx;
299 break;
300 case R_ECX:
301 ret = entry->ecx;
302 break;
303 case R_EDX:
304 ret = entry->edx;
305 break;
307 return ret;
310 /* Find matching entry for function/index on kvm_cpuid2 struct
312 static struct kvm_cpuid_entry2 *cpuid_find_entry(struct kvm_cpuid2 *cpuid,
313 uint32_t function,
314 uint32_t index)
316 int i;
317 for (i = 0; i < cpuid->nent; ++i) {
318 if (cpuid->entries[i].function == function &&
319 cpuid->entries[i].index == index) {
320 return &cpuid->entries[i];
323 /* not found: */
324 return NULL;
327 uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function,
328 uint32_t index, int reg)
330 struct kvm_cpuid2 *cpuid;
331 uint32_t ret = 0;
332 uint32_t cpuid_1_edx;
333 bool found = false;
335 cpuid = get_supported_cpuid(s);
337 struct kvm_cpuid_entry2 *entry = cpuid_find_entry(cpuid, function, index);
338 if (entry) {
339 found = true;
340 ret = cpuid_entry_get_reg(entry, reg);
343 /* Fixups for the data returned by KVM, below */
345 if (function == 1 && reg == R_EDX) {
346 /* KVM before 2.6.30 misreports the following features */
347 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
348 } else if (function == 1 && reg == R_ECX) {
349 /* We can set the hypervisor flag, even if KVM does not return it on
350 * GET_SUPPORTED_CPUID
352 ret |= CPUID_EXT_HYPERVISOR;
353 /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it
354 * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER,
355 * and the irqchip is in the kernel.
357 if (kvm_irqchip_in_kernel() &&
358 kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) {
359 ret |= CPUID_EXT_TSC_DEADLINE_TIMER;
362 /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled
363 * without the in-kernel irqchip
365 if (!kvm_irqchip_in_kernel()) {
366 ret &= ~CPUID_EXT_X2APIC;
368 } else if (function == 6 && reg == R_EAX) {
369 ret |= CPUID_6_EAX_ARAT; /* safe to allow because of emulated APIC */
370 } else if (function == 7 && index == 0 && reg == R_EBX) {
371 if (host_tsx_blacklisted()) {
372 ret &= ~(CPUID_7_0_EBX_RTM | CPUID_7_0_EBX_HLE);
374 } else if (function == 0x80000001 && reg == R_EDX) {
375 /* On Intel, kvm returns cpuid according to the Intel spec,
376 * so add missing bits according to the AMD spec:
378 cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
379 ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES;
380 } else if (function == KVM_CPUID_FEATURES && reg == R_EAX) {
381 /* kvm_pv_unhalt is reported by GET_SUPPORTED_CPUID, but it can't
382 * be enabled without the in-kernel irqchip
384 if (!kvm_irqchip_in_kernel()) {
385 ret &= ~(1U << KVM_FEATURE_PV_UNHALT);
387 } else if (function == KVM_CPUID_FEATURES && reg == R_EDX) {
388 ret |= KVM_HINTS_DEDICATED;
389 found = 1;
392 /* fallback for older kernels */
393 if ((function == KVM_CPUID_FEATURES) && !found) {
394 ret = get_para_features(s);
397 return ret;
400 typedef struct HWPoisonPage {
401 ram_addr_t ram_addr;
402 QLIST_ENTRY(HWPoisonPage) list;
403 } HWPoisonPage;
405 static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list =
406 QLIST_HEAD_INITIALIZER(hwpoison_page_list);
408 static void kvm_unpoison_all(void *param)
410 HWPoisonPage *page, *next_page;
412 QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) {
413 QLIST_REMOVE(page, list);
414 qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE);
415 g_free(page);
419 static void kvm_hwpoison_page_add(ram_addr_t ram_addr)
421 HWPoisonPage *page;
423 QLIST_FOREACH(page, &hwpoison_page_list, list) {
424 if (page->ram_addr == ram_addr) {
425 return;
428 page = g_new(HWPoisonPage, 1);
429 page->ram_addr = ram_addr;
430 QLIST_INSERT_HEAD(&hwpoison_page_list, page, list);
433 static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
434 int *max_banks)
436 int r;
438 r = kvm_check_extension(s, KVM_CAP_MCE);
439 if (r > 0) {
440 *max_banks = r;
441 return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
443 return -ENOSYS;
446 static void kvm_mce_inject(X86CPU *cpu, hwaddr paddr, int code)
448 CPUState *cs = CPU(cpu);
449 CPUX86State *env = &cpu->env;
450 uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN |
451 MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S;
452 uint64_t mcg_status = MCG_STATUS_MCIP;
453 int flags = 0;
455 if (code == BUS_MCEERR_AR) {
456 status |= MCI_STATUS_AR | 0x134;
457 mcg_status |= MCG_STATUS_EIPV;
458 } else {
459 status |= 0xc0;
460 mcg_status |= MCG_STATUS_RIPV;
463 flags = cpu_x86_support_mca_broadcast(env) ? MCE_INJECT_BROADCAST : 0;
464 /* We need to read back the value of MSR_EXT_MCG_CTL that was set by the
465 * guest kernel back into env->mcg_ext_ctl.
467 cpu_synchronize_state(cs);
468 if (env->mcg_ext_ctl & MCG_EXT_CTL_LMCE_EN) {
469 mcg_status |= MCG_STATUS_LMCE;
470 flags = 0;
473 cpu_x86_inject_mce(NULL, cpu, 9, status, mcg_status, paddr,
474 (MCM_ADDR_PHYS << 6) | 0xc, flags);
477 static void hardware_memory_error(void)
479 fprintf(stderr, "Hardware memory error!\n");
480 exit(1);
483 void kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr)
485 X86CPU *cpu = X86_CPU(c);
486 CPUX86State *env = &cpu->env;
487 ram_addr_t ram_addr;
488 hwaddr paddr;
490 /* If we get an action required MCE, it has been injected by KVM
491 * while the VM was running. An action optional MCE instead should
492 * be coming from the main thread, which qemu_init_sigbus identifies
493 * as the "early kill" thread.
495 assert(code == BUS_MCEERR_AR || code == BUS_MCEERR_AO);
497 if ((env->mcg_cap & MCG_SER_P) && addr) {
498 ram_addr = qemu_ram_addr_from_host(addr);
499 if (ram_addr != RAM_ADDR_INVALID &&
500 kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) {
501 kvm_hwpoison_page_add(ram_addr);
502 kvm_mce_inject(cpu, paddr, code);
503 return;
506 fprintf(stderr, "Hardware memory error for memory used by "
507 "QEMU itself instead of guest system!\n");
510 if (code == BUS_MCEERR_AR) {
511 hardware_memory_error();
514 /* Hope we are lucky for AO MCE */
517 static int kvm_inject_mce_oldstyle(X86CPU *cpu)
519 CPUX86State *env = &cpu->env;
521 if (!kvm_has_vcpu_events() && env->exception_injected == EXCP12_MCHK) {
522 unsigned int bank, bank_num = env->mcg_cap & 0xff;
523 struct kvm_x86_mce mce;
525 env->exception_injected = -1;
528 * There must be at least one bank in use if an MCE is pending.
529 * Find it and use its values for the event injection.
531 for (bank = 0; bank < bank_num; bank++) {
532 if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) {
533 break;
536 assert(bank < bank_num);
538 mce.bank = bank;
539 mce.status = env->mce_banks[bank * 4 + 1];
540 mce.mcg_status = env->mcg_status;
541 mce.addr = env->mce_banks[bank * 4 + 2];
542 mce.misc = env->mce_banks[bank * 4 + 3];
544 return kvm_vcpu_ioctl(CPU(cpu), KVM_X86_SET_MCE, &mce);
546 return 0;
549 static void cpu_update_state(void *opaque, int running, RunState state)
551 CPUX86State *env = opaque;
553 if (running) {
554 env->tsc_valid = false;
558 unsigned long kvm_arch_vcpu_id(CPUState *cs)
560 X86CPU *cpu = X86_CPU(cs);
561 return cpu->apic_id;
564 #ifndef KVM_CPUID_SIGNATURE_NEXT
565 #define KVM_CPUID_SIGNATURE_NEXT 0x40000100
566 #endif
568 static bool hyperv_hypercall_available(X86CPU *cpu)
570 return cpu->hyperv_vapic ||
571 (cpu->hyperv_spinlock_attempts != HYPERV_SPINLOCK_NEVER_RETRY);
574 static bool hyperv_enabled(X86CPU *cpu)
576 CPUState *cs = CPU(cpu);
577 return kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV) > 0 &&
578 (hyperv_hypercall_available(cpu) ||
579 cpu->hyperv_time ||
580 cpu->hyperv_relaxed_timing ||
581 cpu->hyperv_crash ||
582 cpu->hyperv_reset ||
583 cpu->hyperv_vpindex ||
584 cpu->hyperv_runtime ||
585 cpu->hyperv_synic ||
586 cpu->hyperv_stimer);
589 static int kvm_arch_set_tsc_khz(CPUState *cs)
591 X86CPU *cpu = X86_CPU(cs);
592 CPUX86State *env = &cpu->env;
593 int r;
595 if (!env->tsc_khz) {
596 return 0;
599 r = kvm_check_extension(cs->kvm_state, KVM_CAP_TSC_CONTROL) ?
600 kvm_vcpu_ioctl(cs, KVM_SET_TSC_KHZ, env->tsc_khz) :
601 -ENOTSUP;
602 if (r < 0) {
603 /* When KVM_SET_TSC_KHZ fails, it's an error only if the current
604 * TSC frequency doesn't match the one we want.
606 int cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
607 kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) :
608 -ENOTSUP;
609 if (cur_freq <= 0 || cur_freq != env->tsc_khz) {
610 warn_report("TSC frequency mismatch between "
611 "VM (%" PRId64 " kHz) and host (%d kHz), "
612 "and TSC scaling unavailable",
613 env->tsc_khz, cur_freq);
614 return r;
618 return 0;
621 static bool tsc_is_stable_and_known(CPUX86State *env)
623 if (!env->tsc_khz) {
624 return false;
626 return (env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC)
627 || env->user_tsc_khz;
630 static int hyperv_handle_properties(CPUState *cs)
632 X86CPU *cpu = X86_CPU(cs);
633 CPUX86State *env = &cpu->env;
635 if (cpu->hyperv_relaxed_timing) {
636 env->features[FEAT_HYPERV_EAX] |= HV_HYPERCALL_AVAILABLE;
638 if (cpu->hyperv_vapic) {
639 env->features[FEAT_HYPERV_EAX] |= HV_HYPERCALL_AVAILABLE;
640 env->features[FEAT_HYPERV_EAX] |= HV_APIC_ACCESS_AVAILABLE;
642 if (cpu->hyperv_time) {
643 if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV_TIME) <= 0) {
644 fprintf(stderr, "Hyper-V clocksources "
645 "(requested by 'hv-time' cpu flag) "
646 "are not supported by kernel\n");
647 return -ENOSYS;
649 env->features[FEAT_HYPERV_EAX] |= HV_HYPERCALL_AVAILABLE;
650 env->features[FEAT_HYPERV_EAX] |= HV_TIME_REF_COUNT_AVAILABLE;
651 env->features[FEAT_HYPERV_EAX] |= HV_REFERENCE_TSC_AVAILABLE;
653 if (cpu->hyperv_frequencies) {
654 if (!has_msr_hv_frequencies) {
655 fprintf(stderr, "Hyper-V frequency MSRs "
656 "(requested by 'hv-frequencies' cpu flag) "
657 "are not supported by kernel\n");
658 return -ENOSYS;
660 env->features[FEAT_HYPERV_EAX] |= HV_ACCESS_FREQUENCY_MSRS;
661 env->features[FEAT_HYPERV_EDX] |= HV_FREQUENCY_MSRS_AVAILABLE;
663 if (cpu->hyperv_crash) {
664 if (!has_msr_hv_crash) {
665 fprintf(stderr, "Hyper-V crash MSRs "
666 "(requested by 'hv-crash' cpu flag) "
667 "are not supported by kernel\n");
668 return -ENOSYS;
670 env->features[FEAT_HYPERV_EDX] |= HV_GUEST_CRASH_MSR_AVAILABLE;
672 env->features[FEAT_HYPERV_EDX] |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE;
673 if (cpu->hyperv_reset) {
674 if (!has_msr_hv_reset) {
675 fprintf(stderr, "Hyper-V reset MSR "
676 "(requested by 'hv-reset' cpu flag) "
677 "is not supported by kernel\n");
678 return -ENOSYS;
680 env->features[FEAT_HYPERV_EAX] |= HV_RESET_AVAILABLE;
682 if (cpu->hyperv_vpindex) {
683 if (!has_msr_hv_vpindex) {
684 fprintf(stderr, "Hyper-V VP_INDEX MSR "
685 "(requested by 'hv-vpindex' cpu flag) "
686 "is not supported by kernel\n");
687 return -ENOSYS;
689 env->features[FEAT_HYPERV_EAX] |= HV_VP_INDEX_AVAILABLE;
691 if (cpu->hyperv_runtime) {
692 if (!has_msr_hv_runtime) {
693 fprintf(stderr, "Hyper-V VP_RUNTIME MSR "
694 "(requested by 'hv-runtime' cpu flag) "
695 "is not supported by kernel\n");
696 return -ENOSYS;
698 env->features[FEAT_HYPERV_EAX] |= HV_VP_RUNTIME_AVAILABLE;
700 if (cpu->hyperv_synic) {
701 if (!has_msr_hv_synic ||
702 kvm_vcpu_enable_cap(cs, KVM_CAP_HYPERV_SYNIC, 0)) {
703 fprintf(stderr, "Hyper-V SynIC is not supported by kernel\n");
704 return -ENOSYS;
707 env->features[FEAT_HYPERV_EAX] |= HV_SYNIC_AVAILABLE;
709 if (cpu->hyperv_stimer) {
710 if (!has_msr_hv_stimer) {
711 fprintf(stderr, "Hyper-V timers aren't supported by kernel\n");
712 return -ENOSYS;
714 env->features[FEAT_HYPERV_EAX] |= HV_SYNTIMERS_AVAILABLE;
716 return 0;
719 static Error *invtsc_mig_blocker;
721 #define KVM_MAX_CPUID_ENTRIES 100
723 int kvm_arch_init_vcpu(CPUState *cs)
725 struct {
726 struct kvm_cpuid2 cpuid;
727 struct kvm_cpuid_entry2 entries[KVM_MAX_CPUID_ENTRIES];
728 } QEMU_PACKED cpuid_data;
729 X86CPU *cpu = X86_CPU(cs);
730 CPUX86State *env = &cpu->env;
731 uint32_t limit, i, j, cpuid_i;
732 uint32_t unused;
733 struct kvm_cpuid_entry2 *c;
734 uint32_t signature[3];
735 int kvm_base = KVM_CPUID_SIGNATURE;
736 int r;
737 Error *local_err = NULL;
739 memset(&cpuid_data, 0, sizeof(cpuid_data));
741 cpuid_i = 0;
743 r = kvm_arch_set_tsc_khz(cs);
744 if (r < 0) {
745 goto fail;
748 /* vcpu's TSC frequency is either specified by user, or following
749 * the value used by KVM if the former is not present. In the
750 * latter case, we query it from KVM and record in env->tsc_khz,
751 * so that vcpu's TSC frequency can be migrated later via this field.
753 if (!env->tsc_khz) {
754 r = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
755 kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) :
756 -ENOTSUP;
757 if (r > 0) {
758 env->tsc_khz = r;
762 /* Paravirtualization CPUIDs */
763 if (hyperv_enabled(cpu)) {
764 c = &cpuid_data.entries[cpuid_i++];
765 c->function = HV_CPUID_VENDOR_AND_MAX_FUNCTIONS;
766 if (!cpu->hyperv_vendor_id) {
767 memcpy(signature, "Microsoft Hv", 12);
768 } else {
769 size_t len = strlen(cpu->hyperv_vendor_id);
771 if (len > 12) {
772 error_report("hv-vendor-id truncated to 12 characters");
773 len = 12;
775 memset(signature, 0, 12);
776 memcpy(signature, cpu->hyperv_vendor_id, len);
778 c->eax = HV_CPUID_MIN;
779 c->ebx = signature[0];
780 c->ecx = signature[1];
781 c->edx = signature[2];
783 c = &cpuid_data.entries[cpuid_i++];
784 c->function = HV_CPUID_INTERFACE;
785 memcpy(signature, "Hv#1\0\0\0\0\0\0\0\0", 12);
786 c->eax = signature[0];
787 c->ebx = 0;
788 c->ecx = 0;
789 c->edx = 0;
791 c = &cpuid_data.entries[cpuid_i++];
792 c->function = HV_CPUID_VERSION;
793 c->eax = 0x00001bbc;
794 c->ebx = 0x00060001;
796 c = &cpuid_data.entries[cpuid_i++];
797 c->function = HV_CPUID_FEATURES;
798 r = hyperv_handle_properties(cs);
799 if (r) {
800 return r;
802 c->eax = env->features[FEAT_HYPERV_EAX];
803 c->ebx = env->features[FEAT_HYPERV_EBX];
804 c->edx = env->features[FEAT_HYPERV_EDX];
806 c = &cpuid_data.entries[cpuid_i++];
807 c->function = HV_CPUID_ENLIGHTMENT_INFO;
808 if (cpu->hyperv_relaxed_timing) {
809 c->eax |= HV_RELAXED_TIMING_RECOMMENDED;
811 if (cpu->hyperv_vapic) {
812 c->eax |= HV_APIC_ACCESS_RECOMMENDED;
814 c->ebx = cpu->hyperv_spinlock_attempts;
816 c = &cpuid_data.entries[cpuid_i++];
817 c->function = HV_CPUID_IMPLEMENT_LIMITS;
819 c->eax = cpu->hv_max_vps;
820 c->ebx = 0x40;
822 kvm_base = KVM_CPUID_SIGNATURE_NEXT;
823 has_msr_hv_hypercall = true;
826 if (cpu->expose_kvm) {
827 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
828 c = &cpuid_data.entries[cpuid_i++];
829 c->function = KVM_CPUID_SIGNATURE | kvm_base;
830 c->eax = KVM_CPUID_FEATURES | kvm_base;
831 c->ebx = signature[0];
832 c->ecx = signature[1];
833 c->edx = signature[2];
835 c = &cpuid_data.entries[cpuid_i++];
836 c->function = KVM_CPUID_FEATURES | kvm_base;
837 c->eax = env->features[FEAT_KVM];
838 c->edx = env->features[FEAT_KVM_HINTS];
841 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
843 for (i = 0; i <= limit; i++) {
844 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
845 fprintf(stderr, "unsupported level value: 0x%x\n", limit);
846 abort();
848 c = &cpuid_data.entries[cpuid_i++];
850 switch (i) {
851 case 2: {
852 /* Keep reading function 2 till all the input is received */
853 int times;
855 c->function = i;
856 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
857 KVM_CPUID_FLAG_STATE_READ_NEXT;
858 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
859 times = c->eax & 0xff;
861 for (j = 1; j < times; ++j) {
862 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
863 fprintf(stderr, "cpuid_data is full, no space for "
864 "cpuid(eax:2):eax & 0xf = 0x%x\n", times);
865 abort();
867 c = &cpuid_data.entries[cpuid_i++];
868 c->function = i;
869 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
870 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
872 break;
874 case 4:
875 case 0xb:
876 case 0xd:
877 for (j = 0; ; j++) {
878 if (i == 0xd && j == 64) {
879 break;
881 c->function = i;
882 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
883 c->index = j;
884 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
886 if (i == 4 && c->eax == 0) {
887 break;
889 if (i == 0xb && !(c->ecx & 0xff00)) {
890 break;
892 if (i == 0xd && c->eax == 0) {
893 continue;
895 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
896 fprintf(stderr, "cpuid_data is full, no space for "
897 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
898 abort();
900 c = &cpuid_data.entries[cpuid_i++];
902 break;
903 case 0x14: {
904 uint32_t times;
906 c->function = i;
907 c->index = 0;
908 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
909 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
910 times = c->eax;
912 for (j = 1; j <= times; ++j) {
913 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
914 fprintf(stderr, "cpuid_data is full, no space for "
915 "cpuid(eax:0x14,ecx:0x%x)\n", j);
916 abort();
918 c = &cpuid_data.entries[cpuid_i++];
919 c->function = i;
920 c->index = j;
921 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
922 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
924 break;
926 default:
927 c->function = i;
928 c->flags = 0;
929 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
930 break;
934 if (limit >= 0x0a) {
935 uint32_t eax, edx;
937 cpu_x86_cpuid(env, 0x0a, 0, &eax, &unused, &unused, &edx);
939 has_architectural_pmu_version = eax & 0xff;
940 if (has_architectural_pmu_version > 0) {
941 num_architectural_pmu_gp_counters = (eax & 0xff00) >> 8;
943 /* Shouldn't be more than 32, since that's the number of bits
944 * available in EBX to tell us _which_ counters are available.
945 * Play it safe.
947 if (num_architectural_pmu_gp_counters > MAX_GP_COUNTERS) {
948 num_architectural_pmu_gp_counters = MAX_GP_COUNTERS;
951 if (has_architectural_pmu_version > 1) {
952 num_architectural_pmu_fixed_counters = edx & 0x1f;
954 if (num_architectural_pmu_fixed_counters > MAX_FIXED_COUNTERS) {
955 num_architectural_pmu_fixed_counters = MAX_FIXED_COUNTERS;
961 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
963 for (i = 0x80000000; i <= limit; i++) {
964 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
965 fprintf(stderr, "unsupported xlevel value: 0x%x\n", limit);
966 abort();
968 c = &cpuid_data.entries[cpuid_i++];
970 c->function = i;
971 c->flags = 0;
972 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
975 /* Call Centaur's CPUID instructions they are supported. */
976 if (env->cpuid_xlevel2 > 0) {
977 cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused);
979 for (i = 0xC0000000; i <= limit; i++) {
980 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
981 fprintf(stderr, "unsupported xlevel2 value: 0x%x\n", limit);
982 abort();
984 c = &cpuid_data.entries[cpuid_i++];
986 c->function = i;
987 c->flags = 0;
988 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
992 cpuid_data.cpuid.nent = cpuid_i;
994 if (((env->cpuid_version >> 8)&0xF) >= 6
995 && (env->features[FEAT_1_EDX] & (CPUID_MCE | CPUID_MCA)) ==
996 (CPUID_MCE | CPUID_MCA)
997 && kvm_check_extension(cs->kvm_state, KVM_CAP_MCE) > 0) {
998 uint64_t mcg_cap, unsupported_caps;
999 int banks;
1000 int ret;
1002 ret = kvm_get_mce_cap_supported(cs->kvm_state, &mcg_cap, &banks);
1003 if (ret < 0) {
1004 fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret));
1005 return ret;
1008 if (banks < (env->mcg_cap & MCG_CAP_BANKS_MASK)) {
1009 error_report("kvm: Unsupported MCE bank count (QEMU = %d, KVM = %d)",
1010 (int)(env->mcg_cap & MCG_CAP_BANKS_MASK), banks);
1011 return -ENOTSUP;
1014 unsupported_caps = env->mcg_cap & ~(mcg_cap | MCG_CAP_BANKS_MASK);
1015 if (unsupported_caps) {
1016 if (unsupported_caps & MCG_LMCE_P) {
1017 error_report("kvm: LMCE not supported");
1018 return -ENOTSUP;
1020 warn_report("Unsupported MCG_CAP bits: 0x%" PRIx64,
1021 unsupported_caps);
1024 env->mcg_cap &= mcg_cap | MCG_CAP_BANKS_MASK;
1025 ret = kvm_vcpu_ioctl(cs, KVM_X86_SETUP_MCE, &env->mcg_cap);
1026 if (ret < 0) {
1027 fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret));
1028 return ret;
1032 qemu_add_vm_change_state_handler(cpu_update_state, env);
1034 c = cpuid_find_entry(&cpuid_data.cpuid, 1, 0);
1035 if (c) {
1036 has_msr_feature_control = !!(c->ecx & CPUID_EXT_VMX) ||
1037 !!(c->ecx & CPUID_EXT_SMX);
1040 if (env->mcg_cap & MCG_LMCE_P) {
1041 has_msr_mcg_ext_ctl = has_msr_feature_control = true;
1044 if (!env->user_tsc_khz) {
1045 if ((env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC) &&
1046 invtsc_mig_blocker == NULL) {
1047 /* for migration */
1048 error_setg(&invtsc_mig_blocker,
1049 "State blocked by non-migratable CPU device"
1050 " (invtsc flag)");
1051 r = migrate_add_blocker(invtsc_mig_blocker, &local_err);
1052 if (local_err) {
1053 error_report_err(local_err);
1054 error_free(invtsc_mig_blocker);
1055 goto fail;
1057 /* for savevm */
1058 vmstate_x86_cpu.unmigratable = 1;
1062 if (cpu->vmware_cpuid_freq
1063 /* Guests depend on 0x40000000 to detect this feature, so only expose
1064 * it if KVM exposes leaf 0x40000000. (Conflicts with Hyper-V) */
1065 && cpu->expose_kvm
1066 && kvm_base == KVM_CPUID_SIGNATURE
1067 /* TSC clock must be stable and known for this feature. */
1068 && tsc_is_stable_and_known(env)) {
1070 c = &cpuid_data.entries[cpuid_i++];
1071 c->function = KVM_CPUID_SIGNATURE | 0x10;
1072 c->eax = env->tsc_khz;
1073 /* LAPIC resolution of 1ns (freq: 1GHz) is hardcoded in KVM's
1074 * APIC_BUS_CYCLE_NS */
1075 c->ebx = 1000000;
1076 c->ecx = c->edx = 0;
1078 c = cpuid_find_entry(&cpuid_data.cpuid, kvm_base, 0);
1079 c->eax = MAX(c->eax, KVM_CPUID_SIGNATURE | 0x10);
1082 cpuid_data.cpuid.nent = cpuid_i;
1084 cpuid_data.cpuid.padding = 0;
1085 r = kvm_vcpu_ioctl(cs, KVM_SET_CPUID2, &cpuid_data);
1086 if (r) {
1087 goto fail;
1090 if (has_xsave) {
1091 env->kvm_xsave_buf = qemu_memalign(4096, sizeof(struct kvm_xsave));
1093 cpu->kvm_msr_buf = g_malloc0(MSR_BUF_SIZE);
1095 if (!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_RDTSCP)) {
1096 has_msr_tsc_aux = false;
1099 return 0;
1101 fail:
1102 migrate_del_blocker(invtsc_mig_blocker);
1103 return r;
1106 void kvm_arch_reset_vcpu(X86CPU *cpu)
1108 CPUX86State *env = &cpu->env;
1110 env->xcr0 = 1;
1111 if (kvm_irqchip_in_kernel()) {
1112 env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE :
1113 KVM_MP_STATE_UNINITIALIZED;
1114 } else {
1115 env->mp_state = KVM_MP_STATE_RUNNABLE;
1118 if (cpu->hyperv_synic) {
1119 int i;
1120 for (i = 0; i < ARRAY_SIZE(env->msr_hv_synic_sint); i++) {
1121 env->msr_hv_synic_sint[i] = HV_SINT_MASKED;
1126 void kvm_arch_do_init_vcpu(X86CPU *cpu)
1128 CPUX86State *env = &cpu->env;
1130 /* APs get directly into wait-for-SIPI state. */
1131 if (env->mp_state == KVM_MP_STATE_UNINITIALIZED) {
1132 env->mp_state = KVM_MP_STATE_INIT_RECEIVED;
1136 static int kvm_get_supported_msrs(KVMState *s)
1138 static int kvm_supported_msrs;
1139 int ret = 0;
1141 /* first time */
1142 if (kvm_supported_msrs == 0) {
1143 struct kvm_msr_list msr_list, *kvm_msr_list;
1145 kvm_supported_msrs = -1;
1147 /* Obtain MSR list from KVM. These are the MSRs that we must
1148 * save/restore */
1149 msr_list.nmsrs = 0;
1150 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
1151 if (ret < 0 && ret != -E2BIG) {
1152 return ret;
1154 /* Old kernel modules had a bug and could write beyond the provided
1155 memory. Allocate at least a safe amount of 1K. */
1156 kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) +
1157 msr_list.nmsrs *
1158 sizeof(msr_list.indices[0])));
1160 kvm_msr_list->nmsrs = msr_list.nmsrs;
1161 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
1162 if (ret >= 0) {
1163 int i;
1165 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
1166 switch (kvm_msr_list->indices[i]) {
1167 case MSR_STAR:
1168 has_msr_star = true;
1169 break;
1170 case MSR_VM_HSAVE_PA:
1171 has_msr_hsave_pa = true;
1172 break;
1173 case MSR_TSC_AUX:
1174 has_msr_tsc_aux = true;
1175 break;
1176 case MSR_TSC_ADJUST:
1177 has_msr_tsc_adjust = true;
1178 break;
1179 case MSR_IA32_TSCDEADLINE:
1180 has_msr_tsc_deadline = true;
1181 break;
1182 case MSR_IA32_SMBASE:
1183 has_msr_smbase = true;
1184 break;
1185 case MSR_SMI_COUNT:
1186 has_msr_smi_count = true;
1187 break;
1188 case MSR_IA32_MISC_ENABLE:
1189 has_msr_misc_enable = true;
1190 break;
1191 case MSR_IA32_BNDCFGS:
1192 has_msr_bndcfgs = true;
1193 break;
1194 case MSR_IA32_XSS:
1195 has_msr_xss = true;
1196 break;
1197 case HV_X64_MSR_CRASH_CTL:
1198 has_msr_hv_crash = true;
1199 break;
1200 case HV_X64_MSR_RESET:
1201 has_msr_hv_reset = true;
1202 break;
1203 case HV_X64_MSR_VP_INDEX:
1204 has_msr_hv_vpindex = true;
1205 break;
1206 case HV_X64_MSR_VP_RUNTIME:
1207 has_msr_hv_runtime = true;
1208 break;
1209 case HV_X64_MSR_SCONTROL:
1210 has_msr_hv_synic = true;
1211 break;
1212 case HV_X64_MSR_STIMER0_CONFIG:
1213 has_msr_hv_stimer = true;
1214 break;
1215 case HV_X64_MSR_TSC_FREQUENCY:
1216 has_msr_hv_frequencies = true;
1217 break;
1218 case MSR_IA32_SPEC_CTRL:
1219 has_msr_spec_ctrl = true;
1220 break;
1225 g_free(kvm_msr_list);
1228 return ret;
1231 static Notifier smram_machine_done;
1232 static KVMMemoryListener smram_listener;
1233 static AddressSpace smram_address_space;
1234 static MemoryRegion smram_as_root;
1235 static MemoryRegion smram_as_mem;
1237 static void register_smram_listener(Notifier *n, void *unused)
1239 MemoryRegion *smram =
1240 (MemoryRegion *) object_resolve_path("/machine/smram", NULL);
1242 /* Outer container... */
1243 memory_region_init(&smram_as_root, OBJECT(kvm_state), "mem-container-smram", ~0ull);
1244 memory_region_set_enabled(&smram_as_root, true);
1246 /* ... with two regions inside: normal system memory with low
1247 * priority, and...
1249 memory_region_init_alias(&smram_as_mem, OBJECT(kvm_state), "mem-smram",
1250 get_system_memory(), 0, ~0ull);
1251 memory_region_add_subregion_overlap(&smram_as_root, 0, &smram_as_mem, 0);
1252 memory_region_set_enabled(&smram_as_mem, true);
1254 if (smram) {
1255 /* ... SMRAM with higher priority */
1256 memory_region_add_subregion_overlap(&smram_as_root, 0, smram, 10);
1257 memory_region_set_enabled(smram, true);
1260 address_space_init(&smram_address_space, &smram_as_root, "KVM-SMRAM");
1261 kvm_memory_listener_register(kvm_state, &smram_listener,
1262 &smram_address_space, 1);
1265 int kvm_arch_init(MachineState *ms, KVMState *s)
1267 uint64_t identity_base = 0xfffbc000;
1268 uint64_t shadow_mem;
1269 int ret;
1270 struct utsname utsname;
1272 #ifdef KVM_CAP_XSAVE
1273 has_xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
1274 #endif
1276 #ifdef KVM_CAP_XCRS
1277 has_xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
1278 #endif
1280 #ifdef KVM_CAP_PIT_STATE2
1281 has_pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2);
1282 #endif
1284 ret = kvm_get_supported_msrs(s);
1285 if (ret < 0) {
1286 return ret;
1289 uname(&utsname);
1290 lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
1293 * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
1294 * In order to use vm86 mode, an EPT identity map and a TSS are needed.
1295 * Since these must be part of guest physical memory, we need to allocate
1296 * them, both by setting their start addresses in the kernel and by
1297 * creating a corresponding e820 entry. We need 4 pages before the BIOS.
1299 * Older KVM versions may not support setting the identity map base. In
1300 * that case we need to stick with the default, i.e. a 256K maximum BIOS
1301 * size.
1303 if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
1304 /* Allows up to 16M BIOSes. */
1305 identity_base = 0xfeffc000;
1307 ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
1308 if (ret < 0) {
1309 return ret;
1313 /* Set TSS base one page after EPT identity map. */
1314 ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000);
1315 if (ret < 0) {
1316 return ret;
1319 /* Tell fw_cfg to notify the BIOS to reserve the range. */
1320 ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED);
1321 if (ret < 0) {
1322 fprintf(stderr, "e820_add_entry() table is full\n");
1323 return ret;
1325 qemu_register_reset(kvm_unpoison_all, NULL);
1327 shadow_mem = machine_kvm_shadow_mem(ms);
1328 if (shadow_mem != -1) {
1329 shadow_mem /= 4096;
1330 ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem);
1331 if (ret < 0) {
1332 return ret;
1336 if (kvm_check_extension(s, KVM_CAP_X86_SMM) &&
1337 object_dynamic_cast(OBJECT(ms), TYPE_PC_MACHINE) &&
1338 pc_machine_is_smm_enabled(PC_MACHINE(ms))) {
1339 smram_machine_done.notify = register_smram_listener;
1340 qemu_add_machine_init_done_notifier(&smram_machine_done);
1342 return 0;
1345 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
1347 lhs->selector = rhs->selector;
1348 lhs->base = rhs->base;
1349 lhs->limit = rhs->limit;
1350 lhs->type = 3;
1351 lhs->present = 1;
1352 lhs->dpl = 3;
1353 lhs->db = 0;
1354 lhs->s = 1;
1355 lhs->l = 0;
1356 lhs->g = 0;
1357 lhs->avl = 0;
1358 lhs->unusable = 0;
1361 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
1363 unsigned flags = rhs->flags;
1364 lhs->selector = rhs->selector;
1365 lhs->base = rhs->base;
1366 lhs->limit = rhs->limit;
1367 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
1368 lhs->present = (flags & DESC_P_MASK) != 0;
1369 lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
1370 lhs->db = (flags >> DESC_B_SHIFT) & 1;
1371 lhs->s = (flags & DESC_S_MASK) != 0;
1372 lhs->l = (flags >> DESC_L_SHIFT) & 1;
1373 lhs->g = (flags & DESC_G_MASK) != 0;
1374 lhs->avl = (flags & DESC_AVL_MASK) != 0;
1375 lhs->unusable = !lhs->present;
1376 lhs->padding = 0;
1379 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
1381 lhs->selector = rhs->selector;
1382 lhs->base = rhs->base;
1383 lhs->limit = rhs->limit;
1384 lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
1385 ((rhs->present && !rhs->unusable) * DESC_P_MASK) |
1386 (rhs->dpl << DESC_DPL_SHIFT) |
1387 (rhs->db << DESC_B_SHIFT) |
1388 (rhs->s * DESC_S_MASK) |
1389 (rhs->l << DESC_L_SHIFT) |
1390 (rhs->g * DESC_G_MASK) |
1391 (rhs->avl * DESC_AVL_MASK);
1394 static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
1396 if (set) {
1397 *kvm_reg = *qemu_reg;
1398 } else {
1399 *qemu_reg = *kvm_reg;
1403 static int kvm_getput_regs(X86CPU *cpu, int set)
1405 CPUX86State *env = &cpu->env;
1406 struct kvm_regs regs;
1407 int ret = 0;
1409 if (!set) {
1410 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_REGS, &regs);
1411 if (ret < 0) {
1412 return ret;
1416 kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
1417 kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
1418 kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
1419 kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
1420 kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
1421 kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
1422 kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
1423 kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
1424 #ifdef TARGET_X86_64
1425 kvm_getput_reg(&regs.r8, &env->regs[8], set);
1426 kvm_getput_reg(&regs.r9, &env->regs[9], set);
1427 kvm_getput_reg(&regs.r10, &env->regs[10], set);
1428 kvm_getput_reg(&regs.r11, &env->regs[11], set);
1429 kvm_getput_reg(&regs.r12, &env->regs[12], set);
1430 kvm_getput_reg(&regs.r13, &env->regs[13], set);
1431 kvm_getput_reg(&regs.r14, &env->regs[14], set);
1432 kvm_getput_reg(&regs.r15, &env->regs[15], set);
1433 #endif
1435 kvm_getput_reg(&regs.rflags, &env->eflags, set);
1436 kvm_getput_reg(&regs.rip, &env->eip, set);
1438 if (set) {
1439 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_REGS, &regs);
1442 return ret;
1445 static int kvm_put_fpu(X86CPU *cpu)
1447 CPUX86State *env = &cpu->env;
1448 struct kvm_fpu fpu;
1449 int i;
1451 memset(&fpu, 0, sizeof fpu);
1452 fpu.fsw = env->fpus & ~(7 << 11);
1453 fpu.fsw |= (env->fpstt & 7) << 11;
1454 fpu.fcw = env->fpuc;
1455 fpu.last_opcode = env->fpop;
1456 fpu.last_ip = env->fpip;
1457 fpu.last_dp = env->fpdp;
1458 for (i = 0; i < 8; ++i) {
1459 fpu.ftwx |= (!env->fptags[i]) << i;
1461 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
1462 for (i = 0; i < CPU_NB_REGS; i++) {
1463 stq_p(&fpu.xmm[i][0], env->xmm_regs[i].ZMM_Q(0));
1464 stq_p(&fpu.xmm[i][8], env->xmm_regs[i].ZMM_Q(1));
1466 fpu.mxcsr = env->mxcsr;
1468 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_FPU, &fpu);
1471 #define XSAVE_FCW_FSW 0
1472 #define XSAVE_FTW_FOP 1
1473 #define XSAVE_CWD_RIP 2
1474 #define XSAVE_CWD_RDP 4
1475 #define XSAVE_MXCSR 6
1476 #define XSAVE_ST_SPACE 8
1477 #define XSAVE_XMM_SPACE 40
1478 #define XSAVE_XSTATE_BV 128
1479 #define XSAVE_YMMH_SPACE 144
1480 #define XSAVE_BNDREGS 240
1481 #define XSAVE_BNDCSR 256
1482 #define XSAVE_OPMASK 272
1483 #define XSAVE_ZMM_Hi256 288
1484 #define XSAVE_Hi16_ZMM 416
1485 #define XSAVE_PKRU 672
1487 #define XSAVE_BYTE_OFFSET(word_offset) \
1488 ((word_offset) * sizeof(((struct kvm_xsave *)0)->region[0]))
1490 #define ASSERT_OFFSET(word_offset, field) \
1491 QEMU_BUILD_BUG_ON(XSAVE_BYTE_OFFSET(word_offset) != \
1492 offsetof(X86XSaveArea, field))
1494 ASSERT_OFFSET(XSAVE_FCW_FSW, legacy.fcw);
1495 ASSERT_OFFSET(XSAVE_FTW_FOP, legacy.ftw);
1496 ASSERT_OFFSET(XSAVE_CWD_RIP, legacy.fpip);
1497 ASSERT_OFFSET(XSAVE_CWD_RDP, legacy.fpdp);
1498 ASSERT_OFFSET(XSAVE_MXCSR, legacy.mxcsr);
1499 ASSERT_OFFSET(XSAVE_ST_SPACE, legacy.fpregs);
1500 ASSERT_OFFSET(XSAVE_XMM_SPACE, legacy.xmm_regs);
1501 ASSERT_OFFSET(XSAVE_XSTATE_BV, header.xstate_bv);
1502 ASSERT_OFFSET(XSAVE_YMMH_SPACE, avx_state);
1503 ASSERT_OFFSET(XSAVE_BNDREGS, bndreg_state);
1504 ASSERT_OFFSET(XSAVE_BNDCSR, bndcsr_state);
1505 ASSERT_OFFSET(XSAVE_OPMASK, opmask_state);
1506 ASSERT_OFFSET(XSAVE_ZMM_Hi256, zmm_hi256_state);
1507 ASSERT_OFFSET(XSAVE_Hi16_ZMM, hi16_zmm_state);
1508 ASSERT_OFFSET(XSAVE_PKRU, pkru_state);
1510 static int kvm_put_xsave(X86CPU *cpu)
1512 CPUX86State *env = &cpu->env;
1513 X86XSaveArea *xsave = env->kvm_xsave_buf;
1515 if (!has_xsave) {
1516 return kvm_put_fpu(cpu);
1518 x86_cpu_xsave_all_areas(cpu, xsave);
1520 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XSAVE, xsave);
1523 static int kvm_put_xcrs(X86CPU *cpu)
1525 CPUX86State *env = &cpu->env;
1526 struct kvm_xcrs xcrs = {};
1528 if (!has_xcrs) {
1529 return 0;
1532 xcrs.nr_xcrs = 1;
1533 xcrs.flags = 0;
1534 xcrs.xcrs[0].xcr = 0;
1535 xcrs.xcrs[0].value = env->xcr0;
1536 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XCRS, &xcrs);
1539 static int kvm_put_sregs(X86CPU *cpu)
1541 CPUX86State *env = &cpu->env;
1542 struct kvm_sregs sregs;
1544 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
1545 if (env->interrupt_injected >= 0) {
1546 sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
1547 (uint64_t)1 << (env->interrupt_injected % 64);
1550 if ((env->eflags & VM_MASK)) {
1551 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
1552 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
1553 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
1554 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
1555 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
1556 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
1557 } else {
1558 set_seg(&sregs.cs, &env->segs[R_CS]);
1559 set_seg(&sregs.ds, &env->segs[R_DS]);
1560 set_seg(&sregs.es, &env->segs[R_ES]);
1561 set_seg(&sregs.fs, &env->segs[R_FS]);
1562 set_seg(&sregs.gs, &env->segs[R_GS]);
1563 set_seg(&sregs.ss, &env->segs[R_SS]);
1566 set_seg(&sregs.tr, &env->tr);
1567 set_seg(&sregs.ldt, &env->ldt);
1569 sregs.idt.limit = env->idt.limit;
1570 sregs.idt.base = env->idt.base;
1571 memset(sregs.idt.padding, 0, sizeof sregs.idt.padding);
1572 sregs.gdt.limit = env->gdt.limit;
1573 sregs.gdt.base = env->gdt.base;
1574 memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding);
1576 sregs.cr0 = env->cr[0];
1577 sregs.cr2 = env->cr[2];
1578 sregs.cr3 = env->cr[3];
1579 sregs.cr4 = env->cr[4];
1581 sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state);
1582 sregs.apic_base = cpu_get_apic_base(cpu->apic_state);
1584 sregs.efer = env->efer;
1586 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs);
1589 static void kvm_msr_buf_reset(X86CPU *cpu)
1591 memset(cpu->kvm_msr_buf, 0, MSR_BUF_SIZE);
1594 static void kvm_msr_entry_add(X86CPU *cpu, uint32_t index, uint64_t value)
1596 struct kvm_msrs *msrs = cpu->kvm_msr_buf;
1597 void *limit = ((void *)msrs) + MSR_BUF_SIZE;
1598 struct kvm_msr_entry *entry = &msrs->entries[msrs->nmsrs];
1600 assert((void *)(entry + 1) <= limit);
1602 entry->index = index;
1603 entry->reserved = 0;
1604 entry->data = value;
1605 msrs->nmsrs++;
1608 static int kvm_put_one_msr(X86CPU *cpu, int index, uint64_t value)
1610 kvm_msr_buf_reset(cpu);
1611 kvm_msr_entry_add(cpu, index, value);
1613 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf);
1616 void kvm_put_apicbase(X86CPU *cpu, uint64_t value)
1618 int ret;
1620 ret = kvm_put_one_msr(cpu, MSR_IA32_APICBASE, value);
1621 assert(ret == 1);
1624 static int kvm_put_tscdeadline_msr(X86CPU *cpu)
1626 CPUX86State *env = &cpu->env;
1627 int ret;
1629 if (!has_msr_tsc_deadline) {
1630 return 0;
1633 ret = kvm_put_one_msr(cpu, MSR_IA32_TSCDEADLINE, env->tsc_deadline);
1634 if (ret < 0) {
1635 return ret;
1638 assert(ret == 1);
1639 return 0;
1643 * Provide a separate write service for the feature control MSR in order to
1644 * kick the VCPU out of VMXON or even guest mode on reset. This has to be done
1645 * before writing any other state because forcibly leaving nested mode
1646 * invalidates the VCPU state.
1648 static int kvm_put_msr_feature_control(X86CPU *cpu)
1650 int ret;
1652 if (!has_msr_feature_control) {
1653 return 0;
1656 ret = kvm_put_one_msr(cpu, MSR_IA32_FEATURE_CONTROL,
1657 cpu->env.msr_ia32_feature_control);
1658 if (ret < 0) {
1659 return ret;
1662 assert(ret == 1);
1663 return 0;
1666 static int kvm_put_msrs(X86CPU *cpu, int level)
1668 CPUX86State *env = &cpu->env;
1669 int i;
1670 int ret;
1672 kvm_msr_buf_reset(cpu);
1674 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, env->sysenter_cs);
1675 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
1676 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
1677 kvm_msr_entry_add(cpu, MSR_PAT, env->pat);
1678 if (has_msr_star) {
1679 kvm_msr_entry_add(cpu, MSR_STAR, env->star);
1681 if (has_msr_hsave_pa) {
1682 kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, env->vm_hsave);
1684 if (has_msr_tsc_aux) {
1685 kvm_msr_entry_add(cpu, MSR_TSC_AUX, env->tsc_aux);
1687 if (has_msr_tsc_adjust) {
1688 kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, env->tsc_adjust);
1690 if (has_msr_misc_enable) {
1691 kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE,
1692 env->msr_ia32_misc_enable);
1694 if (has_msr_smbase) {
1695 kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, env->smbase);
1697 if (has_msr_smi_count) {
1698 kvm_msr_entry_add(cpu, MSR_SMI_COUNT, env->msr_smi_count);
1700 if (has_msr_bndcfgs) {
1701 kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, env->msr_bndcfgs);
1703 if (has_msr_xss) {
1704 kvm_msr_entry_add(cpu, MSR_IA32_XSS, env->xss);
1706 if (has_msr_spec_ctrl) {
1707 kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, env->spec_ctrl);
1709 #ifdef TARGET_X86_64
1710 if (lm_capable_kernel) {
1711 kvm_msr_entry_add(cpu, MSR_CSTAR, env->cstar);
1712 kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, env->kernelgsbase);
1713 kvm_msr_entry_add(cpu, MSR_FMASK, env->fmask);
1714 kvm_msr_entry_add(cpu, MSR_LSTAR, env->lstar);
1716 #endif
1719 * The following MSRs have side effects on the guest or are too heavy
1720 * for normal writeback. Limit them to reset or full state updates.
1722 if (level >= KVM_PUT_RESET_STATE) {
1723 kvm_msr_entry_add(cpu, MSR_IA32_TSC, env->tsc);
1724 kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, env->system_time_msr);
1725 kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
1726 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) {
1727 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, env->async_pf_en_msr);
1729 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) {
1730 kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, env->pv_eoi_en_msr);
1732 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) {
1733 kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, env->steal_time_msr);
1735 if (has_architectural_pmu_version > 0) {
1736 if (has_architectural_pmu_version > 1) {
1737 /* Stop the counter. */
1738 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0);
1739 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0);
1742 /* Set the counter values. */
1743 for (i = 0; i < num_architectural_pmu_fixed_counters; i++) {
1744 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i,
1745 env->msr_fixed_counters[i]);
1747 for (i = 0; i < num_architectural_pmu_gp_counters; i++) {
1748 kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i,
1749 env->msr_gp_counters[i]);
1750 kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i,
1751 env->msr_gp_evtsel[i]);
1753 if (has_architectural_pmu_version > 1) {
1754 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS,
1755 env->msr_global_status);
1756 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1757 env->msr_global_ovf_ctrl);
1759 /* Now start the PMU. */
1760 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL,
1761 env->msr_fixed_ctr_ctrl);
1762 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL,
1763 env->msr_global_ctrl);
1767 * Hyper-V partition-wide MSRs: to avoid clearing them on cpu hot-add,
1768 * only sync them to KVM on the first cpu
1770 if (current_cpu == first_cpu) {
1771 if (has_msr_hv_hypercall) {
1772 kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID,
1773 env->msr_hv_guest_os_id);
1774 kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL,
1775 env->msr_hv_hypercall);
1777 if (cpu->hyperv_time) {
1778 kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC,
1779 env->msr_hv_tsc);
1782 if (cpu->hyperv_vapic) {
1783 kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE,
1784 env->msr_hv_vapic);
1786 if (has_msr_hv_crash) {
1787 int j;
1789 for (j = 0; j < HV_CRASH_PARAMS; j++)
1790 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j,
1791 env->msr_hv_crash_params[j]);
1793 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_CTL, HV_CRASH_CTL_NOTIFY);
1795 if (has_msr_hv_runtime) {
1796 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, env->msr_hv_runtime);
1798 if (cpu->hyperv_synic) {
1799 int j;
1801 kvm_msr_entry_add(cpu, HV_X64_MSR_SVERSION, HV_SYNIC_VERSION);
1803 kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL,
1804 env->msr_hv_synic_control);
1805 kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP,
1806 env->msr_hv_synic_evt_page);
1807 kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP,
1808 env->msr_hv_synic_msg_page);
1810 for (j = 0; j < ARRAY_SIZE(env->msr_hv_synic_sint); j++) {
1811 kvm_msr_entry_add(cpu, HV_X64_MSR_SINT0 + j,
1812 env->msr_hv_synic_sint[j]);
1815 if (has_msr_hv_stimer) {
1816 int j;
1818 for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_config); j++) {
1819 kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_CONFIG + j * 2,
1820 env->msr_hv_stimer_config[j]);
1823 for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_count); j++) {
1824 kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_COUNT + j * 2,
1825 env->msr_hv_stimer_count[j]);
1828 if (env->features[FEAT_1_EDX] & CPUID_MTRR) {
1829 uint64_t phys_mask = MAKE_64BIT_MASK(0, cpu->phys_bits);
1831 kvm_msr_entry_add(cpu, MSR_MTRRdefType, env->mtrr_deftype);
1832 kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, env->mtrr_fixed[0]);
1833 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, env->mtrr_fixed[1]);
1834 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, env->mtrr_fixed[2]);
1835 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, env->mtrr_fixed[3]);
1836 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, env->mtrr_fixed[4]);
1837 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, env->mtrr_fixed[5]);
1838 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, env->mtrr_fixed[6]);
1839 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, env->mtrr_fixed[7]);
1840 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, env->mtrr_fixed[8]);
1841 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, env->mtrr_fixed[9]);
1842 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, env->mtrr_fixed[10]);
1843 for (i = 0; i < MSR_MTRRcap_VCNT; i++) {
1844 /* The CPU GPs if we write to a bit above the physical limit of
1845 * the host CPU (and KVM emulates that)
1847 uint64_t mask = env->mtrr_var[i].mask;
1848 mask &= phys_mask;
1850 kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i),
1851 env->mtrr_var[i].base);
1852 kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), mask);
1855 if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) {
1856 int addr_num = kvm_arch_get_supported_cpuid(kvm_state,
1857 0x14, 1, R_EAX) & 0x7;
1859 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL,
1860 env->msr_rtit_ctrl);
1861 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS,
1862 env->msr_rtit_status);
1863 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE,
1864 env->msr_rtit_output_base);
1865 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK,
1866 env->msr_rtit_output_mask);
1867 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH,
1868 env->msr_rtit_cr3_match);
1869 for (i = 0; i < addr_num; i++) {
1870 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i,
1871 env->msr_rtit_addrs[i]);
1875 /* Note: MSR_IA32_FEATURE_CONTROL is written separately, see
1876 * kvm_put_msr_feature_control. */
1878 if (env->mcg_cap) {
1879 int i;
1881 kvm_msr_entry_add(cpu, MSR_MCG_STATUS, env->mcg_status);
1882 kvm_msr_entry_add(cpu, MSR_MCG_CTL, env->mcg_ctl);
1883 if (has_msr_mcg_ext_ctl) {
1884 kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, env->mcg_ext_ctl);
1886 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
1887 kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, env->mce_banks[i]);
1891 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf);
1892 if (ret < 0) {
1893 return ret;
1896 if (ret < cpu->kvm_msr_buf->nmsrs) {
1897 struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret];
1898 error_report("error: failed to set MSR 0x%" PRIx32 " to 0x%" PRIx64,
1899 (uint32_t)e->index, (uint64_t)e->data);
1902 assert(ret == cpu->kvm_msr_buf->nmsrs);
1903 return 0;
1907 static int kvm_get_fpu(X86CPU *cpu)
1909 CPUX86State *env = &cpu->env;
1910 struct kvm_fpu fpu;
1911 int i, ret;
1913 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_FPU, &fpu);
1914 if (ret < 0) {
1915 return ret;
1918 env->fpstt = (fpu.fsw >> 11) & 7;
1919 env->fpus = fpu.fsw;
1920 env->fpuc = fpu.fcw;
1921 env->fpop = fpu.last_opcode;
1922 env->fpip = fpu.last_ip;
1923 env->fpdp = fpu.last_dp;
1924 for (i = 0; i < 8; ++i) {
1925 env->fptags[i] = !((fpu.ftwx >> i) & 1);
1927 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
1928 for (i = 0; i < CPU_NB_REGS; i++) {
1929 env->xmm_regs[i].ZMM_Q(0) = ldq_p(&fpu.xmm[i][0]);
1930 env->xmm_regs[i].ZMM_Q(1) = ldq_p(&fpu.xmm[i][8]);
1932 env->mxcsr = fpu.mxcsr;
1934 return 0;
1937 static int kvm_get_xsave(X86CPU *cpu)
1939 CPUX86State *env = &cpu->env;
1940 X86XSaveArea *xsave = env->kvm_xsave_buf;
1941 int ret;
1943 if (!has_xsave) {
1944 return kvm_get_fpu(cpu);
1947 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XSAVE, xsave);
1948 if (ret < 0) {
1949 return ret;
1951 x86_cpu_xrstor_all_areas(cpu, xsave);
1953 return 0;
1956 static int kvm_get_xcrs(X86CPU *cpu)
1958 CPUX86State *env = &cpu->env;
1959 int i, ret;
1960 struct kvm_xcrs xcrs;
1962 if (!has_xcrs) {
1963 return 0;
1966 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XCRS, &xcrs);
1967 if (ret < 0) {
1968 return ret;
1971 for (i = 0; i < xcrs.nr_xcrs; i++) {
1972 /* Only support xcr0 now */
1973 if (xcrs.xcrs[i].xcr == 0) {
1974 env->xcr0 = xcrs.xcrs[i].value;
1975 break;
1978 return 0;
1981 static int kvm_get_sregs(X86CPU *cpu)
1983 CPUX86State *env = &cpu->env;
1984 struct kvm_sregs sregs;
1985 int bit, i, ret;
1987 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
1988 if (ret < 0) {
1989 return ret;
1992 /* There can only be one pending IRQ set in the bitmap at a time, so try
1993 to find it and save its number instead (-1 for none). */
1994 env->interrupt_injected = -1;
1995 for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
1996 if (sregs.interrupt_bitmap[i]) {
1997 bit = ctz64(sregs.interrupt_bitmap[i]);
1998 env->interrupt_injected = i * 64 + bit;
1999 break;
2003 get_seg(&env->segs[R_CS], &sregs.cs);
2004 get_seg(&env->segs[R_DS], &sregs.ds);
2005 get_seg(&env->segs[R_ES], &sregs.es);
2006 get_seg(&env->segs[R_FS], &sregs.fs);
2007 get_seg(&env->segs[R_GS], &sregs.gs);
2008 get_seg(&env->segs[R_SS], &sregs.ss);
2010 get_seg(&env->tr, &sregs.tr);
2011 get_seg(&env->ldt, &sregs.ldt);
2013 env->idt.limit = sregs.idt.limit;
2014 env->idt.base = sregs.idt.base;
2015 env->gdt.limit = sregs.gdt.limit;
2016 env->gdt.base = sregs.gdt.base;
2018 env->cr[0] = sregs.cr0;
2019 env->cr[2] = sregs.cr2;
2020 env->cr[3] = sregs.cr3;
2021 env->cr[4] = sregs.cr4;
2023 env->efer = sregs.efer;
2025 /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
2026 x86_update_hflags(env);
2028 return 0;
2031 static int kvm_get_msrs(X86CPU *cpu)
2033 CPUX86State *env = &cpu->env;
2034 struct kvm_msr_entry *msrs = cpu->kvm_msr_buf->entries;
2035 int ret, i;
2036 uint64_t mtrr_top_bits;
2038 kvm_msr_buf_reset(cpu);
2040 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, 0);
2041 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, 0);
2042 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, 0);
2043 kvm_msr_entry_add(cpu, MSR_PAT, 0);
2044 if (has_msr_star) {
2045 kvm_msr_entry_add(cpu, MSR_STAR, 0);
2047 if (has_msr_hsave_pa) {
2048 kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, 0);
2050 if (has_msr_tsc_aux) {
2051 kvm_msr_entry_add(cpu, MSR_TSC_AUX, 0);
2053 if (has_msr_tsc_adjust) {
2054 kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, 0);
2056 if (has_msr_tsc_deadline) {
2057 kvm_msr_entry_add(cpu, MSR_IA32_TSCDEADLINE, 0);
2059 if (has_msr_misc_enable) {
2060 kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE, 0);
2062 if (has_msr_smbase) {
2063 kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, 0);
2065 if (has_msr_smi_count) {
2066 kvm_msr_entry_add(cpu, MSR_SMI_COUNT, 0);
2068 if (has_msr_feature_control) {
2069 kvm_msr_entry_add(cpu, MSR_IA32_FEATURE_CONTROL, 0);
2071 if (has_msr_bndcfgs) {
2072 kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, 0);
2074 if (has_msr_xss) {
2075 kvm_msr_entry_add(cpu, MSR_IA32_XSS, 0);
2077 if (has_msr_spec_ctrl) {
2078 kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, 0);
2082 if (!env->tsc_valid) {
2083 kvm_msr_entry_add(cpu, MSR_IA32_TSC, 0);
2084 env->tsc_valid = !runstate_is_running();
2087 #ifdef TARGET_X86_64
2088 if (lm_capable_kernel) {
2089 kvm_msr_entry_add(cpu, MSR_CSTAR, 0);
2090 kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, 0);
2091 kvm_msr_entry_add(cpu, MSR_FMASK, 0);
2092 kvm_msr_entry_add(cpu, MSR_LSTAR, 0);
2094 #endif
2095 kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, 0);
2096 kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, 0);
2097 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) {
2098 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, 0);
2100 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) {
2101 kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, 0);
2103 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) {
2104 kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, 0);
2106 if (has_architectural_pmu_version > 0) {
2107 if (has_architectural_pmu_version > 1) {
2108 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0);
2109 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0);
2110 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS, 0);
2111 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 0);
2113 for (i = 0; i < num_architectural_pmu_fixed_counters; i++) {
2114 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i, 0);
2116 for (i = 0; i < num_architectural_pmu_gp_counters; i++) {
2117 kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i, 0);
2118 kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i, 0);
2122 if (env->mcg_cap) {
2123 kvm_msr_entry_add(cpu, MSR_MCG_STATUS, 0);
2124 kvm_msr_entry_add(cpu, MSR_MCG_CTL, 0);
2125 if (has_msr_mcg_ext_ctl) {
2126 kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, 0);
2128 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
2129 kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, 0);
2133 if (has_msr_hv_hypercall) {
2134 kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL, 0);
2135 kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID, 0);
2137 if (cpu->hyperv_vapic) {
2138 kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE, 0);
2140 if (cpu->hyperv_time) {
2141 kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC, 0);
2143 if (has_msr_hv_crash) {
2144 int j;
2146 for (j = 0; j < HV_CRASH_PARAMS; j++) {
2147 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j, 0);
2150 if (has_msr_hv_runtime) {
2151 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, 0);
2153 if (cpu->hyperv_synic) {
2154 uint32_t msr;
2156 kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL, 0);
2157 kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP, 0);
2158 kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP, 0);
2159 for (msr = HV_X64_MSR_SINT0; msr <= HV_X64_MSR_SINT15; msr++) {
2160 kvm_msr_entry_add(cpu, msr, 0);
2163 if (has_msr_hv_stimer) {
2164 uint32_t msr;
2166 for (msr = HV_X64_MSR_STIMER0_CONFIG; msr <= HV_X64_MSR_STIMER3_COUNT;
2167 msr++) {
2168 kvm_msr_entry_add(cpu, msr, 0);
2171 if (env->features[FEAT_1_EDX] & CPUID_MTRR) {
2172 kvm_msr_entry_add(cpu, MSR_MTRRdefType, 0);
2173 kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, 0);
2174 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, 0);
2175 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, 0);
2176 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, 0);
2177 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, 0);
2178 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, 0);
2179 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, 0);
2180 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, 0);
2181 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, 0);
2182 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, 0);
2183 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, 0);
2184 for (i = 0; i < MSR_MTRRcap_VCNT; i++) {
2185 kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i), 0);
2186 kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), 0);
2190 if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) {
2191 int addr_num =
2192 kvm_arch_get_supported_cpuid(kvm_state, 0x14, 1, R_EAX) & 0x7;
2194 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL, 0);
2195 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS, 0);
2196 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE, 0);
2197 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK, 0);
2198 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH, 0);
2199 for (i = 0; i < addr_num; i++) {
2200 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i, 0);
2204 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, cpu->kvm_msr_buf);
2205 if (ret < 0) {
2206 return ret;
2209 if (ret < cpu->kvm_msr_buf->nmsrs) {
2210 struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret];
2211 error_report("error: failed to get MSR 0x%" PRIx32,
2212 (uint32_t)e->index);
2215 assert(ret == cpu->kvm_msr_buf->nmsrs);
2217 * MTRR masks: Each mask consists of 5 parts
2218 * a 10..0: must be zero
2219 * b 11 : valid bit
2220 * c n-1.12: actual mask bits
2221 * d 51..n: reserved must be zero
2222 * e 63.52: reserved must be zero
2224 * 'n' is the number of physical bits supported by the CPU and is
2225 * apparently always <= 52. We know our 'n' but don't know what
2226 * the destinations 'n' is; it might be smaller, in which case
2227 * it masks (c) on loading. It might be larger, in which case
2228 * we fill 'd' so that d..c is consistent irrespetive of the 'n'
2229 * we're migrating to.
2232 if (cpu->fill_mtrr_mask) {
2233 QEMU_BUILD_BUG_ON(TARGET_PHYS_ADDR_SPACE_BITS > 52);
2234 assert(cpu->phys_bits <= TARGET_PHYS_ADDR_SPACE_BITS);
2235 mtrr_top_bits = MAKE_64BIT_MASK(cpu->phys_bits, 52 - cpu->phys_bits);
2236 } else {
2237 mtrr_top_bits = 0;
2240 for (i = 0; i < ret; i++) {
2241 uint32_t index = msrs[i].index;
2242 switch (index) {
2243 case MSR_IA32_SYSENTER_CS:
2244 env->sysenter_cs = msrs[i].data;
2245 break;
2246 case MSR_IA32_SYSENTER_ESP:
2247 env->sysenter_esp = msrs[i].data;
2248 break;
2249 case MSR_IA32_SYSENTER_EIP:
2250 env->sysenter_eip = msrs[i].data;
2251 break;
2252 case MSR_PAT:
2253 env->pat = msrs[i].data;
2254 break;
2255 case MSR_STAR:
2256 env->star = msrs[i].data;
2257 break;
2258 #ifdef TARGET_X86_64
2259 case MSR_CSTAR:
2260 env->cstar = msrs[i].data;
2261 break;
2262 case MSR_KERNELGSBASE:
2263 env->kernelgsbase = msrs[i].data;
2264 break;
2265 case MSR_FMASK:
2266 env->fmask = msrs[i].data;
2267 break;
2268 case MSR_LSTAR:
2269 env->lstar = msrs[i].data;
2270 break;
2271 #endif
2272 case MSR_IA32_TSC:
2273 env->tsc = msrs[i].data;
2274 break;
2275 case MSR_TSC_AUX:
2276 env->tsc_aux = msrs[i].data;
2277 break;
2278 case MSR_TSC_ADJUST:
2279 env->tsc_adjust = msrs[i].data;
2280 break;
2281 case MSR_IA32_TSCDEADLINE:
2282 env->tsc_deadline = msrs[i].data;
2283 break;
2284 case MSR_VM_HSAVE_PA:
2285 env->vm_hsave = msrs[i].data;
2286 break;
2287 case MSR_KVM_SYSTEM_TIME:
2288 env->system_time_msr = msrs[i].data;
2289 break;
2290 case MSR_KVM_WALL_CLOCK:
2291 env->wall_clock_msr = msrs[i].data;
2292 break;
2293 case MSR_MCG_STATUS:
2294 env->mcg_status = msrs[i].data;
2295 break;
2296 case MSR_MCG_CTL:
2297 env->mcg_ctl = msrs[i].data;
2298 break;
2299 case MSR_MCG_EXT_CTL:
2300 env->mcg_ext_ctl = msrs[i].data;
2301 break;
2302 case MSR_IA32_MISC_ENABLE:
2303 env->msr_ia32_misc_enable = msrs[i].data;
2304 break;
2305 case MSR_IA32_SMBASE:
2306 env->smbase = msrs[i].data;
2307 break;
2308 case MSR_SMI_COUNT:
2309 env->msr_smi_count = msrs[i].data;
2310 break;
2311 case MSR_IA32_FEATURE_CONTROL:
2312 env->msr_ia32_feature_control = msrs[i].data;
2313 break;
2314 case MSR_IA32_BNDCFGS:
2315 env->msr_bndcfgs = msrs[i].data;
2316 break;
2317 case MSR_IA32_XSS:
2318 env->xss = msrs[i].data;
2319 break;
2320 default:
2321 if (msrs[i].index >= MSR_MC0_CTL &&
2322 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
2323 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
2325 break;
2326 case MSR_KVM_ASYNC_PF_EN:
2327 env->async_pf_en_msr = msrs[i].data;
2328 break;
2329 case MSR_KVM_PV_EOI_EN:
2330 env->pv_eoi_en_msr = msrs[i].data;
2331 break;
2332 case MSR_KVM_STEAL_TIME:
2333 env->steal_time_msr = msrs[i].data;
2334 break;
2335 case MSR_CORE_PERF_FIXED_CTR_CTRL:
2336 env->msr_fixed_ctr_ctrl = msrs[i].data;
2337 break;
2338 case MSR_CORE_PERF_GLOBAL_CTRL:
2339 env->msr_global_ctrl = msrs[i].data;
2340 break;
2341 case MSR_CORE_PERF_GLOBAL_STATUS:
2342 env->msr_global_status = msrs[i].data;
2343 break;
2344 case MSR_CORE_PERF_GLOBAL_OVF_CTRL:
2345 env->msr_global_ovf_ctrl = msrs[i].data;
2346 break;
2347 case MSR_CORE_PERF_FIXED_CTR0 ... MSR_CORE_PERF_FIXED_CTR0 + MAX_FIXED_COUNTERS - 1:
2348 env->msr_fixed_counters[index - MSR_CORE_PERF_FIXED_CTR0] = msrs[i].data;
2349 break;
2350 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR0 + MAX_GP_COUNTERS - 1:
2351 env->msr_gp_counters[index - MSR_P6_PERFCTR0] = msrs[i].data;
2352 break;
2353 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL0 + MAX_GP_COUNTERS - 1:
2354 env->msr_gp_evtsel[index - MSR_P6_EVNTSEL0] = msrs[i].data;
2355 break;
2356 case HV_X64_MSR_HYPERCALL:
2357 env->msr_hv_hypercall = msrs[i].data;
2358 break;
2359 case HV_X64_MSR_GUEST_OS_ID:
2360 env->msr_hv_guest_os_id = msrs[i].data;
2361 break;
2362 case HV_X64_MSR_APIC_ASSIST_PAGE:
2363 env->msr_hv_vapic = msrs[i].data;
2364 break;
2365 case HV_X64_MSR_REFERENCE_TSC:
2366 env->msr_hv_tsc = msrs[i].data;
2367 break;
2368 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2369 env->msr_hv_crash_params[index - HV_X64_MSR_CRASH_P0] = msrs[i].data;
2370 break;
2371 case HV_X64_MSR_VP_RUNTIME:
2372 env->msr_hv_runtime = msrs[i].data;
2373 break;
2374 case HV_X64_MSR_SCONTROL:
2375 env->msr_hv_synic_control = msrs[i].data;
2376 break;
2377 case HV_X64_MSR_SIEFP:
2378 env->msr_hv_synic_evt_page = msrs[i].data;
2379 break;
2380 case HV_X64_MSR_SIMP:
2381 env->msr_hv_synic_msg_page = msrs[i].data;
2382 break;
2383 case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
2384 env->msr_hv_synic_sint[index - HV_X64_MSR_SINT0] = msrs[i].data;
2385 break;
2386 case HV_X64_MSR_STIMER0_CONFIG:
2387 case HV_X64_MSR_STIMER1_CONFIG:
2388 case HV_X64_MSR_STIMER2_CONFIG:
2389 case HV_X64_MSR_STIMER3_CONFIG:
2390 env->msr_hv_stimer_config[(index - HV_X64_MSR_STIMER0_CONFIG)/2] =
2391 msrs[i].data;
2392 break;
2393 case HV_X64_MSR_STIMER0_COUNT:
2394 case HV_X64_MSR_STIMER1_COUNT:
2395 case HV_X64_MSR_STIMER2_COUNT:
2396 case HV_X64_MSR_STIMER3_COUNT:
2397 env->msr_hv_stimer_count[(index - HV_X64_MSR_STIMER0_COUNT)/2] =
2398 msrs[i].data;
2399 break;
2400 case MSR_MTRRdefType:
2401 env->mtrr_deftype = msrs[i].data;
2402 break;
2403 case MSR_MTRRfix64K_00000:
2404 env->mtrr_fixed[0] = msrs[i].data;
2405 break;
2406 case MSR_MTRRfix16K_80000:
2407 env->mtrr_fixed[1] = msrs[i].data;
2408 break;
2409 case MSR_MTRRfix16K_A0000:
2410 env->mtrr_fixed[2] = msrs[i].data;
2411 break;
2412 case MSR_MTRRfix4K_C0000:
2413 env->mtrr_fixed[3] = msrs[i].data;
2414 break;
2415 case MSR_MTRRfix4K_C8000:
2416 env->mtrr_fixed[4] = msrs[i].data;
2417 break;
2418 case MSR_MTRRfix4K_D0000:
2419 env->mtrr_fixed[5] = msrs[i].data;
2420 break;
2421 case MSR_MTRRfix4K_D8000:
2422 env->mtrr_fixed[6] = msrs[i].data;
2423 break;
2424 case MSR_MTRRfix4K_E0000:
2425 env->mtrr_fixed[7] = msrs[i].data;
2426 break;
2427 case MSR_MTRRfix4K_E8000:
2428 env->mtrr_fixed[8] = msrs[i].data;
2429 break;
2430 case MSR_MTRRfix4K_F0000:
2431 env->mtrr_fixed[9] = msrs[i].data;
2432 break;
2433 case MSR_MTRRfix4K_F8000:
2434 env->mtrr_fixed[10] = msrs[i].data;
2435 break;
2436 case MSR_MTRRphysBase(0) ... MSR_MTRRphysMask(MSR_MTRRcap_VCNT - 1):
2437 if (index & 1) {
2438 env->mtrr_var[MSR_MTRRphysIndex(index)].mask = msrs[i].data |
2439 mtrr_top_bits;
2440 } else {
2441 env->mtrr_var[MSR_MTRRphysIndex(index)].base = msrs[i].data;
2443 break;
2444 case MSR_IA32_SPEC_CTRL:
2445 env->spec_ctrl = msrs[i].data;
2446 break;
2447 case MSR_IA32_RTIT_CTL:
2448 env->msr_rtit_ctrl = msrs[i].data;
2449 break;
2450 case MSR_IA32_RTIT_STATUS:
2451 env->msr_rtit_status = msrs[i].data;
2452 break;
2453 case MSR_IA32_RTIT_OUTPUT_BASE:
2454 env->msr_rtit_output_base = msrs[i].data;
2455 break;
2456 case MSR_IA32_RTIT_OUTPUT_MASK:
2457 env->msr_rtit_output_mask = msrs[i].data;
2458 break;
2459 case MSR_IA32_RTIT_CR3_MATCH:
2460 env->msr_rtit_cr3_match = msrs[i].data;
2461 break;
2462 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2463 env->msr_rtit_addrs[index - MSR_IA32_RTIT_ADDR0_A] = msrs[i].data;
2464 break;
2468 return 0;
2471 static int kvm_put_mp_state(X86CPU *cpu)
2473 struct kvm_mp_state mp_state = { .mp_state = cpu->env.mp_state };
2475 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
2478 static int kvm_get_mp_state(X86CPU *cpu)
2480 CPUState *cs = CPU(cpu);
2481 CPUX86State *env = &cpu->env;
2482 struct kvm_mp_state mp_state;
2483 int ret;
2485 ret = kvm_vcpu_ioctl(cs, KVM_GET_MP_STATE, &mp_state);
2486 if (ret < 0) {
2487 return ret;
2489 env->mp_state = mp_state.mp_state;
2490 if (kvm_irqchip_in_kernel()) {
2491 cs->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
2493 return 0;
2496 static int kvm_get_apic(X86CPU *cpu)
2498 DeviceState *apic = cpu->apic_state;
2499 struct kvm_lapic_state kapic;
2500 int ret;
2502 if (apic && kvm_irqchip_in_kernel()) {
2503 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_LAPIC, &kapic);
2504 if (ret < 0) {
2505 return ret;
2508 kvm_get_apic_state(apic, &kapic);
2510 return 0;
2513 static int kvm_put_vcpu_events(X86CPU *cpu, int level)
2515 CPUState *cs = CPU(cpu);
2516 CPUX86State *env = &cpu->env;
2517 struct kvm_vcpu_events events = {};
2519 if (!kvm_has_vcpu_events()) {
2520 return 0;
2523 events.exception.injected = (env->exception_injected >= 0);
2524 events.exception.nr = env->exception_injected;
2525 events.exception.has_error_code = env->has_error_code;
2526 events.exception.error_code = env->error_code;
2527 events.exception.pad = 0;
2529 events.interrupt.injected = (env->interrupt_injected >= 0);
2530 events.interrupt.nr = env->interrupt_injected;
2531 events.interrupt.soft = env->soft_interrupt;
2533 events.nmi.injected = env->nmi_injected;
2534 events.nmi.pending = env->nmi_pending;
2535 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
2536 events.nmi.pad = 0;
2538 events.sipi_vector = env->sipi_vector;
2539 events.flags = 0;
2541 if (has_msr_smbase) {
2542 events.smi.smm = !!(env->hflags & HF_SMM_MASK);
2543 events.smi.smm_inside_nmi = !!(env->hflags2 & HF2_SMM_INSIDE_NMI_MASK);
2544 if (kvm_irqchip_in_kernel()) {
2545 /* As soon as these are moved to the kernel, remove them
2546 * from cs->interrupt_request.
2548 events.smi.pending = cs->interrupt_request & CPU_INTERRUPT_SMI;
2549 events.smi.latched_init = cs->interrupt_request & CPU_INTERRUPT_INIT;
2550 cs->interrupt_request &= ~(CPU_INTERRUPT_INIT | CPU_INTERRUPT_SMI);
2551 } else {
2552 /* Keep these in cs->interrupt_request. */
2553 events.smi.pending = 0;
2554 events.smi.latched_init = 0;
2556 /* Stop SMI delivery on old machine types to avoid a reboot
2557 * on an inward migration of an old VM.
2559 if (!cpu->kvm_no_smi_migration) {
2560 events.flags |= KVM_VCPUEVENT_VALID_SMM;
2564 if (level >= KVM_PUT_RESET_STATE) {
2565 events.flags |= KVM_VCPUEVENT_VALID_NMI_PENDING;
2566 if (env->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
2567 events.flags |= KVM_VCPUEVENT_VALID_SIPI_VECTOR;
2571 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events);
2574 static int kvm_get_vcpu_events(X86CPU *cpu)
2576 CPUX86State *env = &cpu->env;
2577 struct kvm_vcpu_events events;
2578 int ret;
2580 if (!kvm_has_vcpu_events()) {
2581 return 0;
2584 memset(&events, 0, sizeof(events));
2585 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events);
2586 if (ret < 0) {
2587 return ret;
2589 env->exception_injected =
2590 events.exception.injected ? events.exception.nr : -1;
2591 env->has_error_code = events.exception.has_error_code;
2592 env->error_code = events.exception.error_code;
2594 env->interrupt_injected =
2595 events.interrupt.injected ? events.interrupt.nr : -1;
2596 env->soft_interrupt = events.interrupt.soft;
2598 env->nmi_injected = events.nmi.injected;
2599 env->nmi_pending = events.nmi.pending;
2600 if (events.nmi.masked) {
2601 env->hflags2 |= HF2_NMI_MASK;
2602 } else {
2603 env->hflags2 &= ~HF2_NMI_MASK;
2606 if (events.flags & KVM_VCPUEVENT_VALID_SMM) {
2607 if (events.smi.smm) {
2608 env->hflags |= HF_SMM_MASK;
2609 } else {
2610 env->hflags &= ~HF_SMM_MASK;
2612 if (events.smi.pending) {
2613 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
2614 } else {
2615 cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
2617 if (events.smi.smm_inside_nmi) {
2618 env->hflags2 |= HF2_SMM_INSIDE_NMI_MASK;
2619 } else {
2620 env->hflags2 &= ~HF2_SMM_INSIDE_NMI_MASK;
2622 if (events.smi.latched_init) {
2623 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_INIT);
2624 } else {
2625 cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_INIT);
2629 env->sipi_vector = events.sipi_vector;
2631 return 0;
2634 static int kvm_guest_debug_workarounds(X86CPU *cpu)
2636 CPUState *cs = CPU(cpu);
2637 CPUX86State *env = &cpu->env;
2638 int ret = 0;
2639 unsigned long reinject_trap = 0;
2641 if (!kvm_has_vcpu_events()) {
2642 if (env->exception_injected == 1) {
2643 reinject_trap = KVM_GUESTDBG_INJECT_DB;
2644 } else if (env->exception_injected == 3) {
2645 reinject_trap = KVM_GUESTDBG_INJECT_BP;
2647 env->exception_injected = -1;
2651 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
2652 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
2653 * by updating the debug state once again if single-stepping is on.
2654 * Another reason to call kvm_update_guest_debug here is a pending debug
2655 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
2656 * reinject them via SET_GUEST_DEBUG.
2658 if (reinject_trap ||
2659 (!kvm_has_robust_singlestep() && cs->singlestep_enabled)) {
2660 ret = kvm_update_guest_debug(cs, reinject_trap);
2662 return ret;
2665 static int kvm_put_debugregs(X86CPU *cpu)
2667 CPUX86State *env = &cpu->env;
2668 struct kvm_debugregs dbgregs;
2669 int i;
2671 if (!kvm_has_debugregs()) {
2672 return 0;
2675 for (i = 0; i < 4; i++) {
2676 dbgregs.db[i] = env->dr[i];
2678 dbgregs.dr6 = env->dr[6];
2679 dbgregs.dr7 = env->dr[7];
2680 dbgregs.flags = 0;
2682 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEBUGREGS, &dbgregs);
2685 static int kvm_get_debugregs(X86CPU *cpu)
2687 CPUX86State *env = &cpu->env;
2688 struct kvm_debugregs dbgregs;
2689 int i, ret;
2691 if (!kvm_has_debugregs()) {
2692 return 0;
2695 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_DEBUGREGS, &dbgregs);
2696 if (ret < 0) {
2697 return ret;
2699 for (i = 0; i < 4; i++) {
2700 env->dr[i] = dbgregs.db[i];
2702 env->dr[4] = env->dr[6] = dbgregs.dr6;
2703 env->dr[5] = env->dr[7] = dbgregs.dr7;
2705 return 0;
2708 int kvm_arch_put_registers(CPUState *cpu, int level)
2710 X86CPU *x86_cpu = X86_CPU(cpu);
2711 int ret;
2713 assert(cpu_is_stopped(cpu) || qemu_cpu_is_self(cpu));
2715 if (level >= KVM_PUT_RESET_STATE) {
2716 ret = kvm_put_msr_feature_control(x86_cpu);
2717 if (ret < 0) {
2718 return ret;
2722 if (level == KVM_PUT_FULL_STATE) {
2723 /* We don't check for kvm_arch_set_tsc_khz() errors here,
2724 * because TSC frequency mismatch shouldn't abort migration,
2725 * unless the user explicitly asked for a more strict TSC
2726 * setting (e.g. using an explicit "tsc-freq" option).
2728 kvm_arch_set_tsc_khz(cpu);
2731 ret = kvm_getput_regs(x86_cpu, 1);
2732 if (ret < 0) {
2733 return ret;
2735 ret = kvm_put_xsave(x86_cpu);
2736 if (ret < 0) {
2737 return ret;
2739 ret = kvm_put_xcrs(x86_cpu);
2740 if (ret < 0) {
2741 return ret;
2743 ret = kvm_put_sregs(x86_cpu);
2744 if (ret < 0) {
2745 return ret;
2747 /* must be before kvm_put_msrs */
2748 ret = kvm_inject_mce_oldstyle(x86_cpu);
2749 if (ret < 0) {
2750 return ret;
2752 ret = kvm_put_msrs(x86_cpu, level);
2753 if (ret < 0) {
2754 return ret;
2756 ret = kvm_put_vcpu_events(x86_cpu, level);
2757 if (ret < 0) {
2758 return ret;
2760 if (level >= KVM_PUT_RESET_STATE) {
2761 ret = kvm_put_mp_state(x86_cpu);
2762 if (ret < 0) {
2763 return ret;
2767 ret = kvm_put_tscdeadline_msr(x86_cpu);
2768 if (ret < 0) {
2769 return ret;
2771 ret = kvm_put_debugregs(x86_cpu);
2772 if (ret < 0) {
2773 return ret;
2775 /* must be last */
2776 ret = kvm_guest_debug_workarounds(x86_cpu);
2777 if (ret < 0) {
2778 return ret;
2780 return 0;
2783 int kvm_arch_get_registers(CPUState *cs)
2785 X86CPU *cpu = X86_CPU(cs);
2786 int ret;
2788 assert(cpu_is_stopped(cs) || qemu_cpu_is_self(cs));
2790 ret = kvm_get_vcpu_events(cpu);
2791 if (ret < 0) {
2792 goto out;
2795 * KVM_GET_MPSTATE can modify CS and RIP, call it before
2796 * KVM_GET_REGS and KVM_GET_SREGS.
2798 ret = kvm_get_mp_state(cpu);
2799 if (ret < 0) {
2800 goto out;
2802 ret = kvm_getput_regs(cpu, 0);
2803 if (ret < 0) {
2804 goto out;
2806 ret = kvm_get_xsave(cpu);
2807 if (ret < 0) {
2808 goto out;
2810 ret = kvm_get_xcrs(cpu);
2811 if (ret < 0) {
2812 goto out;
2814 ret = kvm_get_sregs(cpu);
2815 if (ret < 0) {
2816 goto out;
2818 ret = kvm_get_msrs(cpu);
2819 if (ret < 0) {
2820 goto out;
2822 ret = kvm_get_apic(cpu);
2823 if (ret < 0) {
2824 goto out;
2826 ret = kvm_get_debugregs(cpu);
2827 if (ret < 0) {
2828 goto out;
2830 ret = 0;
2831 out:
2832 cpu_sync_bndcs_hflags(&cpu->env);
2833 return ret;
2836 void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run)
2838 X86CPU *x86_cpu = X86_CPU(cpu);
2839 CPUX86State *env = &x86_cpu->env;
2840 int ret;
2842 /* Inject NMI */
2843 if (cpu->interrupt_request & (CPU_INTERRUPT_NMI | CPU_INTERRUPT_SMI)) {
2844 if (cpu->interrupt_request & CPU_INTERRUPT_NMI) {
2845 qemu_mutex_lock_iothread();
2846 cpu->interrupt_request &= ~CPU_INTERRUPT_NMI;
2847 qemu_mutex_unlock_iothread();
2848 DPRINTF("injected NMI\n");
2849 ret = kvm_vcpu_ioctl(cpu, KVM_NMI);
2850 if (ret < 0) {
2851 fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n",
2852 strerror(-ret));
2855 if (cpu->interrupt_request & CPU_INTERRUPT_SMI) {
2856 qemu_mutex_lock_iothread();
2857 cpu->interrupt_request &= ~CPU_INTERRUPT_SMI;
2858 qemu_mutex_unlock_iothread();
2859 DPRINTF("injected SMI\n");
2860 ret = kvm_vcpu_ioctl(cpu, KVM_SMI);
2861 if (ret < 0) {
2862 fprintf(stderr, "KVM: injection failed, SMI lost (%s)\n",
2863 strerror(-ret));
2868 if (!kvm_pic_in_kernel()) {
2869 qemu_mutex_lock_iothread();
2872 /* Force the VCPU out of its inner loop to process any INIT requests
2873 * or (for userspace APIC, but it is cheap to combine the checks here)
2874 * pending TPR access reports.
2876 if (cpu->interrupt_request & (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) {
2877 if ((cpu->interrupt_request & CPU_INTERRUPT_INIT) &&
2878 !(env->hflags & HF_SMM_MASK)) {
2879 cpu->exit_request = 1;
2881 if (cpu->interrupt_request & CPU_INTERRUPT_TPR) {
2882 cpu->exit_request = 1;
2886 if (!kvm_pic_in_kernel()) {
2887 /* Try to inject an interrupt if the guest can accept it */
2888 if (run->ready_for_interrupt_injection &&
2889 (cpu->interrupt_request & CPU_INTERRUPT_HARD) &&
2890 (env->eflags & IF_MASK)) {
2891 int irq;
2893 cpu->interrupt_request &= ~CPU_INTERRUPT_HARD;
2894 irq = cpu_get_pic_interrupt(env);
2895 if (irq >= 0) {
2896 struct kvm_interrupt intr;
2898 intr.irq = irq;
2899 DPRINTF("injected interrupt %d\n", irq);
2900 ret = kvm_vcpu_ioctl(cpu, KVM_INTERRUPT, &intr);
2901 if (ret < 0) {
2902 fprintf(stderr,
2903 "KVM: injection failed, interrupt lost (%s)\n",
2904 strerror(-ret));
2909 /* If we have an interrupt but the guest is not ready to receive an
2910 * interrupt, request an interrupt window exit. This will
2911 * cause a return to userspace as soon as the guest is ready to
2912 * receive interrupts. */
2913 if ((cpu->interrupt_request & CPU_INTERRUPT_HARD)) {
2914 run->request_interrupt_window = 1;
2915 } else {
2916 run->request_interrupt_window = 0;
2919 DPRINTF("setting tpr\n");
2920 run->cr8 = cpu_get_apic_tpr(x86_cpu->apic_state);
2922 qemu_mutex_unlock_iothread();
2926 MemTxAttrs kvm_arch_post_run(CPUState *cpu, struct kvm_run *run)
2928 X86CPU *x86_cpu = X86_CPU(cpu);
2929 CPUX86State *env = &x86_cpu->env;
2931 if (run->flags & KVM_RUN_X86_SMM) {
2932 env->hflags |= HF_SMM_MASK;
2933 } else {
2934 env->hflags &= ~HF_SMM_MASK;
2936 if (run->if_flag) {
2937 env->eflags |= IF_MASK;
2938 } else {
2939 env->eflags &= ~IF_MASK;
2942 /* We need to protect the apic state against concurrent accesses from
2943 * different threads in case the userspace irqchip is used. */
2944 if (!kvm_irqchip_in_kernel()) {
2945 qemu_mutex_lock_iothread();
2947 cpu_set_apic_tpr(x86_cpu->apic_state, run->cr8);
2948 cpu_set_apic_base(x86_cpu->apic_state, run->apic_base);
2949 if (!kvm_irqchip_in_kernel()) {
2950 qemu_mutex_unlock_iothread();
2952 return cpu_get_mem_attrs(env);
2955 int kvm_arch_process_async_events(CPUState *cs)
2957 X86CPU *cpu = X86_CPU(cs);
2958 CPUX86State *env = &cpu->env;
2960 if (cs->interrupt_request & CPU_INTERRUPT_MCE) {
2961 /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
2962 assert(env->mcg_cap);
2964 cs->interrupt_request &= ~CPU_INTERRUPT_MCE;
2966 kvm_cpu_synchronize_state(cs);
2968 if (env->exception_injected == EXCP08_DBLE) {
2969 /* this means triple fault */
2970 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
2971 cs->exit_request = 1;
2972 return 0;
2974 env->exception_injected = EXCP12_MCHK;
2975 env->has_error_code = 0;
2977 cs->halted = 0;
2978 if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) {
2979 env->mp_state = KVM_MP_STATE_RUNNABLE;
2983 if ((cs->interrupt_request & CPU_INTERRUPT_INIT) &&
2984 !(env->hflags & HF_SMM_MASK)) {
2985 kvm_cpu_synchronize_state(cs);
2986 do_cpu_init(cpu);
2989 if (kvm_irqchip_in_kernel()) {
2990 return 0;
2993 if (cs->interrupt_request & CPU_INTERRUPT_POLL) {
2994 cs->interrupt_request &= ~CPU_INTERRUPT_POLL;
2995 apic_poll_irq(cpu->apic_state);
2997 if (((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
2998 (env->eflags & IF_MASK)) ||
2999 (cs->interrupt_request & CPU_INTERRUPT_NMI)) {
3000 cs->halted = 0;
3002 if (cs->interrupt_request & CPU_INTERRUPT_SIPI) {
3003 kvm_cpu_synchronize_state(cs);
3004 do_cpu_sipi(cpu);
3006 if (cs->interrupt_request & CPU_INTERRUPT_TPR) {
3007 cs->interrupt_request &= ~CPU_INTERRUPT_TPR;
3008 kvm_cpu_synchronize_state(cs);
3009 apic_handle_tpr_access_report(cpu->apic_state, env->eip,
3010 env->tpr_access_type);
3013 return cs->halted;
3016 static int kvm_handle_halt(X86CPU *cpu)
3018 CPUState *cs = CPU(cpu);
3019 CPUX86State *env = &cpu->env;
3021 if (!((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
3022 (env->eflags & IF_MASK)) &&
3023 !(cs->interrupt_request & CPU_INTERRUPT_NMI)) {
3024 cs->halted = 1;
3025 return EXCP_HLT;
3028 return 0;
3031 static int kvm_handle_tpr_access(X86CPU *cpu)
3033 CPUState *cs = CPU(cpu);
3034 struct kvm_run *run = cs->kvm_run;
3036 apic_handle_tpr_access_report(cpu->apic_state, run->tpr_access.rip,
3037 run->tpr_access.is_write ? TPR_ACCESS_WRITE
3038 : TPR_ACCESS_READ);
3039 return 1;
3042 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
3044 static const uint8_t int3 = 0xcc;
3046 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
3047 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&int3, 1, 1)) {
3048 return -EINVAL;
3050 return 0;
3053 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
3055 uint8_t int3;
3057 if (cpu_memory_rw_debug(cs, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
3058 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
3059 return -EINVAL;
3061 return 0;
3064 static struct {
3065 target_ulong addr;
3066 int len;
3067 int type;
3068 } hw_breakpoint[4];
3070 static int nb_hw_breakpoint;
3072 static int find_hw_breakpoint(target_ulong addr, int len, int type)
3074 int n;
3076 for (n = 0; n < nb_hw_breakpoint; n++) {
3077 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
3078 (hw_breakpoint[n].len == len || len == -1)) {
3079 return n;
3082 return -1;
3085 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
3086 target_ulong len, int type)
3088 switch (type) {
3089 case GDB_BREAKPOINT_HW:
3090 len = 1;
3091 break;
3092 case GDB_WATCHPOINT_WRITE:
3093 case GDB_WATCHPOINT_ACCESS:
3094 switch (len) {
3095 case 1:
3096 break;
3097 case 2:
3098 case 4:
3099 case 8:
3100 if (addr & (len - 1)) {
3101 return -EINVAL;
3103 break;
3104 default:
3105 return -EINVAL;
3107 break;
3108 default:
3109 return -ENOSYS;
3112 if (nb_hw_breakpoint == 4) {
3113 return -ENOBUFS;
3115 if (find_hw_breakpoint(addr, len, type) >= 0) {
3116 return -EEXIST;
3118 hw_breakpoint[nb_hw_breakpoint].addr = addr;
3119 hw_breakpoint[nb_hw_breakpoint].len = len;
3120 hw_breakpoint[nb_hw_breakpoint].type = type;
3121 nb_hw_breakpoint++;
3123 return 0;
3126 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
3127 target_ulong len, int type)
3129 int n;
3131 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
3132 if (n < 0) {
3133 return -ENOENT;
3135 nb_hw_breakpoint--;
3136 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
3138 return 0;
3141 void kvm_arch_remove_all_hw_breakpoints(void)
3143 nb_hw_breakpoint = 0;
3146 static CPUWatchpoint hw_watchpoint;
3148 static int kvm_handle_debug(X86CPU *cpu,
3149 struct kvm_debug_exit_arch *arch_info)
3151 CPUState *cs = CPU(cpu);
3152 CPUX86State *env = &cpu->env;
3153 int ret = 0;
3154 int n;
3156 if (arch_info->exception == 1) {
3157 if (arch_info->dr6 & (1 << 14)) {
3158 if (cs->singlestep_enabled) {
3159 ret = EXCP_DEBUG;
3161 } else {
3162 for (n = 0; n < 4; n++) {
3163 if (arch_info->dr6 & (1 << n)) {
3164 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
3165 case 0x0:
3166 ret = EXCP_DEBUG;
3167 break;
3168 case 0x1:
3169 ret = EXCP_DEBUG;
3170 cs->watchpoint_hit = &hw_watchpoint;
3171 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
3172 hw_watchpoint.flags = BP_MEM_WRITE;
3173 break;
3174 case 0x3:
3175 ret = EXCP_DEBUG;
3176 cs->watchpoint_hit = &hw_watchpoint;
3177 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
3178 hw_watchpoint.flags = BP_MEM_ACCESS;
3179 break;
3184 } else if (kvm_find_sw_breakpoint(cs, arch_info->pc)) {
3185 ret = EXCP_DEBUG;
3187 if (ret == 0) {
3188 cpu_synchronize_state(cs);
3189 assert(env->exception_injected == -1);
3191 /* pass to guest */
3192 env->exception_injected = arch_info->exception;
3193 env->has_error_code = 0;
3196 return ret;
3199 void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg)
3201 const uint8_t type_code[] = {
3202 [GDB_BREAKPOINT_HW] = 0x0,
3203 [GDB_WATCHPOINT_WRITE] = 0x1,
3204 [GDB_WATCHPOINT_ACCESS] = 0x3
3206 const uint8_t len_code[] = {
3207 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
3209 int n;
3211 if (kvm_sw_breakpoints_active(cpu)) {
3212 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
3214 if (nb_hw_breakpoint > 0) {
3215 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
3216 dbg->arch.debugreg[7] = 0x0600;
3217 for (n = 0; n < nb_hw_breakpoint; n++) {
3218 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
3219 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
3220 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
3221 ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
3226 static bool host_supports_vmx(void)
3228 uint32_t ecx, unused;
3230 host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
3231 return ecx & CPUID_EXT_VMX;
3234 #define VMX_INVALID_GUEST_STATE 0x80000021
3236 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
3238 X86CPU *cpu = X86_CPU(cs);
3239 uint64_t code;
3240 int ret;
3242 switch (run->exit_reason) {
3243 case KVM_EXIT_HLT:
3244 DPRINTF("handle_hlt\n");
3245 qemu_mutex_lock_iothread();
3246 ret = kvm_handle_halt(cpu);
3247 qemu_mutex_unlock_iothread();
3248 break;
3249 case KVM_EXIT_SET_TPR:
3250 ret = 0;
3251 break;
3252 case KVM_EXIT_TPR_ACCESS:
3253 qemu_mutex_lock_iothread();
3254 ret = kvm_handle_tpr_access(cpu);
3255 qemu_mutex_unlock_iothread();
3256 break;
3257 case KVM_EXIT_FAIL_ENTRY:
3258 code = run->fail_entry.hardware_entry_failure_reason;
3259 fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
3260 code);
3261 if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
3262 fprintf(stderr,
3263 "\nIf you're running a guest on an Intel machine without "
3264 "unrestricted mode\n"
3265 "support, the failure can be most likely due to the guest "
3266 "entering an invalid\n"
3267 "state for Intel VT. For example, the guest maybe running "
3268 "in big real mode\n"
3269 "which is not supported on less recent Intel processors."
3270 "\n\n");
3272 ret = -1;
3273 break;
3274 case KVM_EXIT_EXCEPTION:
3275 fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
3276 run->ex.exception, run->ex.error_code);
3277 ret = -1;
3278 break;
3279 case KVM_EXIT_DEBUG:
3280 DPRINTF("kvm_exit_debug\n");
3281 qemu_mutex_lock_iothread();
3282 ret = kvm_handle_debug(cpu, &run->debug.arch);
3283 qemu_mutex_unlock_iothread();
3284 break;
3285 case KVM_EXIT_HYPERV:
3286 ret = kvm_hv_handle_exit(cpu, &run->hyperv);
3287 break;
3288 case KVM_EXIT_IOAPIC_EOI:
3289 ioapic_eoi_broadcast(run->eoi.vector);
3290 ret = 0;
3291 break;
3292 default:
3293 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
3294 ret = -1;
3295 break;
3298 return ret;
3301 bool kvm_arch_stop_on_emulation_error(CPUState *cs)
3303 X86CPU *cpu = X86_CPU(cs);
3304 CPUX86State *env = &cpu->env;
3306 kvm_cpu_synchronize_state(cs);
3307 return !(env->cr[0] & CR0_PE_MASK) ||
3308 ((env->segs[R_CS].selector & 3) != 3);
3311 void kvm_arch_init_irq_routing(KVMState *s)
3313 if (!kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) {
3314 /* If kernel can't do irq routing, interrupt source
3315 * override 0->2 cannot be set up as required by HPET.
3316 * So we have to disable it.
3318 no_hpet = 1;
3320 /* We know at this point that we're using the in-kernel
3321 * irqchip, so we can use irqfds, and on x86 we know
3322 * we can use msi via irqfd and GSI routing.
3324 kvm_msi_via_irqfd_allowed = true;
3325 kvm_gsi_routing_allowed = true;
3327 if (kvm_irqchip_is_split()) {
3328 int i;
3330 /* If the ioapic is in QEMU and the lapics are in KVM, reserve
3331 MSI routes for signaling interrupts to the local apics. */
3332 for (i = 0; i < IOAPIC_NUM_PINS; i++) {
3333 if (kvm_irqchip_add_msi_route(s, 0, NULL) < 0) {
3334 error_report("Could not enable split IRQ mode.");
3335 exit(1);
3341 int kvm_arch_irqchip_create(MachineState *ms, KVMState *s)
3343 int ret;
3344 if (machine_kernel_irqchip_split(ms)) {
3345 ret = kvm_vm_enable_cap(s, KVM_CAP_SPLIT_IRQCHIP, 0, 24);
3346 if (ret) {
3347 error_report("Could not enable split irqchip mode: %s",
3348 strerror(-ret));
3349 exit(1);
3350 } else {
3351 DPRINTF("Enabled KVM_CAP_SPLIT_IRQCHIP\n");
3352 kvm_split_irqchip = true;
3353 return 1;
3355 } else {
3356 return 0;
3360 /* Classic KVM device assignment interface. Will remain x86 only. */
3361 int kvm_device_pci_assign(KVMState *s, PCIHostDeviceAddress *dev_addr,
3362 uint32_t flags, uint32_t *dev_id)
3364 struct kvm_assigned_pci_dev dev_data = {
3365 .segnr = dev_addr->domain,
3366 .busnr = dev_addr->bus,
3367 .devfn = PCI_DEVFN(dev_addr->slot, dev_addr->function),
3368 .flags = flags,
3370 int ret;
3372 dev_data.assigned_dev_id =
3373 (dev_addr->domain << 16) | (dev_addr->bus << 8) | dev_data.devfn;
3375 ret = kvm_vm_ioctl(s, KVM_ASSIGN_PCI_DEVICE, &dev_data);
3376 if (ret < 0) {
3377 return ret;
3380 *dev_id = dev_data.assigned_dev_id;
3382 return 0;
3385 int kvm_device_pci_deassign(KVMState *s, uint32_t dev_id)
3387 struct kvm_assigned_pci_dev dev_data = {
3388 .assigned_dev_id = dev_id,
3391 return kvm_vm_ioctl(s, KVM_DEASSIGN_PCI_DEVICE, &dev_data);
3394 static int kvm_assign_irq_internal(KVMState *s, uint32_t dev_id,
3395 uint32_t irq_type, uint32_t guest_irq)
3397 struct kvm_assigned_irq assigned_irq = {
3398 .assigned_dev_id = dev_id,
3399 .guest_irq = guest_irq,
3400 .flags = irq_type,
3403 if (kvm_check_extension(s, KVM_CAP_ASSIGN_DEV_IRQ)) {
3404 return kvm_vm_ioctl(s, KVM_ASSIGN_DEV_IRQ, &assigned_irq);
3405 } else {
3406 return kvm_vm_ioctl(s, KVM_ASSIGN_IRQ, &assigned_irq);
3410 int kvm_device_intx_assign(KVMState *s, uint32_t dev_id, bool use_host_msi,
3411 uint32_t guest_irq)
3413 uint32_t irq_type = KVM_DEV_IRQ_GUEST_INTX |
3414 (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX);
3416 return kvm_assign_irq_internal(s, dev_id, irq_type, guest_irq);
3419 int kvm_device_intx_set_mask(KVMState *s, uint32_t dev_id, bool masked)
3421 struct kvm_assigned_pci_dev dev_data = {
3422 .assigned_dev_id = dev_id,
3423 .flags = masked ? KVM_DEV_ASSIGN_MASK_INTX : 0,
3426 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_INTX_MASK, &dev_data);
3429 static int kvm_deassign_irq_internal(KVMState *s, uint32_t dev_id,
3430 uint32_t type)
3432 struct kvm_assigned_irq assigned_irq = {
3433 .assigned_dev_id = dev_id,
3434 .flags = type,
3437 return kvm_vm_ioctl(s, KVM_DEASSIGN_DEV_IRQ, &assigned_irq);
3440 int kvm_device_intx_deassign(KVMState *s, uint32_t dev_id, bool use_host_msi)
3442 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_INTX |
3443 (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX));
3446 int kvm_device_msi_assign(KVMState *s, uint32_t dev_id, int virq)
3448 return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSI |
3449 KVM_DEV_IRQ_GUEST_MSI, virq);
3452 int kvm_device_msi_deassign(KVMState *s, uint32_t dev_id)
3454 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSI |
3455 KVM_DEV_IRQ_HOST_MSI);
3458 bool kvm_device_msix_supported(KVMState *s)
3460 /* The kernel lacks a corresponding KVM_CAP, so we probe by calling
3461 * KVM_ASSIGN_SET_MSIX_NR with an invalid parameter. */
3462 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, NULL) == -EFAULT;
3465 int kvm_device_msix_init_vectors(KVMState *s, uint32_t dev_id,
3466 uint32_t nr_vectors)
3468 struct kvm_assigned_msix_nr msix_nr = {
3469 .assigned_dev_id = dev_id,
3470 .entry_nr = nr_vectors,
3473 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, &msix_nr);
3476 int kvm_device_msix_set_vector(KVMState *s, uint32_t dev_id, uint32_t vector,
3477 int virq)
3479 struct kvm_assigned_msix_entry msix_entry = {
3480 .assigned_dev_id = dev_id,
3481 .gsi = virq,
3482 .entry = vector,
3485 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_ENTRY, &msix_entry);
3488 int kvm_device_msix_assign(KVMState *s, uint32_t dev_id)
3490 return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSIX |
3491 KVM_DEV_IRQ_GUEST_MSIX, 0);
3494 int kvm_device_msix_deassign(KVMState *s, uint32_t dev_id)
3496 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSIX |
3497 KVM_DEV_IRQ_HOST_MSIX);
3500 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
3501 uint64_t address, uint32_t data, PCIDevice *dev)
3503 X86IOMMUState *iommu = x86_iommu_get_default();
3505 if (iommu) {
3506 int ret;
3507 MSIMessage src, dst;
3508 X86IOMMUClass *class = X86_IOMMU_GET_CLASS(iommu);
3510 src.address = route->u.msi.address_hi;
3511 src.address <<= VTD_MSI_ADDR_HI_SHIFT;
3512 src.address |= route->u.msi.address_lo;
3513 src.data = route->u.msi.data;
3515 ret = class->int_remap(iommu, &src, &dst, dev ? \
3516 pci_requester_id(dev) : \
3517 X86_IOMMU_SID_INVALID);
3518 if (ret) {
3519 trace_kvm_x86_fixup_msi_error(route->gsi);
3520 return 1;
3523 route->u.msi.address_hi = dst.address >> VTD_MSI_ADDR_HI_SHIFT;
3524 route->u.msi.address_lo = dst.address & VTD_MSI_ADDR_LO_MASK;
3525 route->u.msi.data = dst.data;
3528 return 0;
3531 typedef struct MSIRouteEntry MSIRouteEntry;
3533 struct MSIRouteEntry {
3534 PCIDevice *dev; /* Device pointer */
3535 int vector; /* MSI/MSIX vector index */
3536 int virq; /* Virtual IRQ index */
3537 QLIST_ENTRY(MSIRouteEntry) list;
3540 /* List of used GSI routes */
3541 static QLIST_HEAD(, MSIRouteEntry) msi_route_list = \
3542 QLIST_HEAD_INITIALIZER(msi_route_list);
3544 static void kvm_update_msi_routes_all(void *private, bool global,
3545 uint32_t index, uint32_t mask)
3547 int cnt = 0;
3548 MSIRouteEntry *entry;
3549 MSIMessage msg;
3550 PCIDevice *dev;
3552 /* TODO: explicit route update */
3553 QLIST_FOREACH(entry, &msi_route_list, list) {
3554 cnt++;
3555 dev = entry->dev;
3556 if (!msix_enabled(dev) && !msi_enabled(dev)) {
3557 continue;
3559 msg = pci_get_msi_message(dev, entry->vector);
3560 kvm_irqchip_update_msi_route(kvm_state, entry->virq, msg, dev);
3562 kvm_irqchip_commit_routes(kvm_state);
3563 trace_kvm_x86_update_msi_routes(cnt);
3566 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
3567 int vector, PCIDevice *dev)
3569 static bool notify_list_inited = false;
3570 MSIRouteEntry *entry;
3572 if (!dev) {
3573 /* These are (possibly) IOAPIC routes only used for split
3574 * kernel irqchip mode, while what we are housekeeping are
3575 * PCI devices only. */
3576 return 0;
3579 entry = g_new0(MSIRouteEntry, 1);
3580 entry->dev = dev;
3581 entry->vector = vector;
3582 entry->virq = route->gsi;
3583 QLIST_INSERT_HEAD(&msi_route_list, entry, list);
3585 trace_kvm_x86_add_msi_route(route->gsi);
3587 if (!notify_list_inited) {
3588 /* For the first time we do add route, add ourselves into
3589 * IOMMU's IEC notify list if needed. */
3590 X86IOMMUState *iommu = x86_iommu_get_default();
3591 if (iommu) {
3592 x86_iommu_iec_register_notifier(iommu,
3593 kvm_update_msi_routes_all,
3594 NULL);
3596 notify_list_inited = true;
3598 return 0;
3601 int kvm_arch_release_virq_post(int virq)
3603 MSIRouteEntry *entry, *next;
3604 QLIST_FOREACH_SAFE(entry, &msi_route_list, list, next) {
3605 if (entry->virq == virq) {
3606 trace_kvm_x86_remove_msi_route(virq);
3607 QLIST_REMOVE(entry, list);
3608 g_free(entry);
3609 break;
3612 return 0;
3615 int kvm_arch_msi_data_to_gsi(uint32_t data)
3617 abort();