2 * ARM implementation of KVM hooks, 64 bit specific code
4 * Copyright Mian-M. Hamayun 2013, Virtual Open Systems
5 * Copyright Alex Bennée 2014, Linaro
7 * This work is licensed under the terms of the GNU GPL, version 2 or later.
8 * See the COPYING file in the top-level directory.
12 #include "qemu/osdep.h"
13 #include <sys/ioctl.h>
14 #include <sys/ptrace.h>
16 #include <linux/elf.h>
17 #include <linux/kvm.h>
19 #include "qapi/error.h"
21 #include "qemu/timer.h"
22 #include "qemu/error-report.h"
23 #include "qemu/host-utils.h"
24 #include "qemu/main-loop.h"
25 #include "exec/gdbstub.h"
26 #include "sysemu/runstate.h"
27 #include "sysemu/kvm.h"
28 #include "sysemu/kvm_int.h"
30 #include "internals.h"
31 #include "hw/acpi/acpi.h"
32 #include "hw/acpi/ghes.h"
33 #include "hw/arm/virt.h"
35 static bool have_guest_debug
;
38 * Although the ARM implementation of hardware assisted debugging
39 * allows for different breakpoints per-core, the current GDB
40 * interface treats them as a global pool of registers (which seems to
41 * be the case for x86, ppc and s390). As a result we store one copy
42 * of registers which is used for all active cores.
44 * Write access is serialised by virtue of the GDB protocol which
45 * updates things. Read access (i.e. when the values are copied to the
46 * vCPU) is also gated by GDB's run control.
48 * This is not unreasonable as most of the time debugging kernels you
49 * never know which core will eventually execute your function.
57 /* The watchpoint registers can cover more area than the requested
58 * watchpoint so we need to store the additional information
59 * somewhere. We also need to supply a CPUWatchpoint to the GDB stub
60 * when the watchpoint is hit.
65 CPUWatchpoint details
;
68 /* Maximum and current break/watch point counts */
69 int max_hw_bps
, max_hw_wps
;
70 GArray
*hw_breakpoints
, *hw_watchpoints
;
72 #define cur_hw_wps (hw_watchpoints->len)
73 #define cur_hw_bps (hw_breakpoints->len)
74 #define get_hw_bp(i) (&g_array_index(hw_breakpoints, HWBreakpoint, i))
75 #define get_hw_wp(i) (&g_array_index(hw_watchpoints, HWWatchpoint, i))
77 void kvm_arm_init_debug(KVMState
*s
)
79 have_guest_debug
= kvm_check_extension(s
,
80 KVM_CAP_SET_GUEST_DEBUG
);
82 max_hw_wps
= kvm_check_extension(s
, KVM_CAP_GUEST_DEBUG_HW_WPS
);
83 hw_watchpoints
= g_array_sized_new(true, true,
84 sizeof(HWWatchpoint
), max_hw_wps
);
86 max_hw_bps
= kvm_check_extension(s
, KVM_CAP_GUEST_DEBUG_HW_BPS
);
87 hw_breakpoints
= g_array_sized_new(true, true,
88 sizeof(HWBreakpoint
), max_hw_bps
);
93 * insert_hw_breakpoint()
94 * @addr: address of breakpoint
96 * See ARM ARM D2.9.1 for details but here we are only going to create
97 * simple un-linked breakpoints (i.e. we don't chain breakpoints
98 * together to match address and context or vmid). The hardware is
99 * capable of fancier matching but that will require exposing that
100 * fanciness to GDB's interface
102 * DBGBCR<n>_EL1, Debug Breakpoint Control Registers
104 * 31 24 23 20 19 16 15 14 13 12 9 8 5 4 3 2 1 0
105 * +------+------+-------+-----+----+------+-----+------+-----+---+
106 * | RES0 | BT | LBN | SSC | HMC| RES0 | BAS | RES0 | PMC | E |
107 * +------+------+-------+-----+----+------+-----+------+-----+---+
109 * BT: Breakpoint type (0 = unlinked address match)
110 * LBN: Linked BP number (0 = unused)
111 * SSC/HMC/PMC: Security, Higher and Priv access control (Table D-12)
112 * BAS: Byte Address Select (RES1 for AArch64)
115 * DBGBVR<n>_EL1, Debug Breakpoint Value Registers
117 * 63 53 52 49 48 2 1 0
118 * +------+-----------+----------+-----+
119 * | RESS | VA[52:49] | VA[48:2] | 0 0 |
120 * +------+-----------+----------+-----+
122 * Depending on the addressing mode bits the top bits of the register
123 * are a sign extension of the highest applicable VA bit. Some
124 * versions of GDB don't do it correctly so we ensure they are correct
125 * here so future PC comparisons will work properly.
128 static int insert_hw_breakpoint(target_ulong addr
)
131 .bcr
= 0x1, /* BCR E=1, enable */
132 .bvr
= sextract64(addr
, 0, 53)
135 if (cur_hw_bps
>= max_hw_bps
) {
139 brk
.bcr
= deposit32(brk
.bcr
, 1, 2, 0x3); /* PMC = 11 */
140 brk
.bcr
= deposit32(brk
.bcr
, 5, 4, 0xf); /* BAS = RES1 */
142 g_array_append_val(hw_breakpoints
, brk
);
148 * delete_hw_breakpoint()
149 * @pc: address of breakpoint
151 * Delete a breakpoint and shuffle any above down
154 static int delete_hw_breakpoint(target_ulong pc
)
157 for (i
= 0; i
< hw_breakpoints
->len
; i
++) {
158 HWBreakpoint
*brk
= get_hw_bp(i
);
159 if (brk
->bvr
== pc
) {
160 g_array_remove_index(hw_breakpoints
, i
);
168 * insert_hw_watchpoint()
169 * @addr: address of watch point
171 * @type: type of watch point
173 * See ARM ARM D2.10. As with the breakpoints we can do some advanced
174 * stuff if we want to. The watch points can be linked with the break
175 * points above to make them context aware. However for simplicity
176 * currently we only deal with simple read/write watch points.
178 * D7.3.11 DBGWCR<n>_EL1, Debug Watchpoint Control Registers
180 * 31 29 28 24 23 21 20 19 16 15 14 13 12 5 4 3 2 1 0
181 * +------+-------+------+----+-----+-----+-----+-----+-----+-----+---+
182 * | RES0 | MASK | RES0 | WT | LBN | SSC | HMC | BAS | LSC | PAC | E |
183 * +------+-------+------+----+-----+-----+-----+-----+-----+-----+---+
185 * MASK: num bits addr mask (0=none,01/10=res,11=3 bits (8 bytes))
186 * WT: 0 - unlinked, 1 - linked (not currently used)
187 * LBN: Linked BP number (not currently used)
188 * SSC/HMC/PAC: Security, Higher and Priv access control (Table D2-11)
189 * BAS: Byte Address Select
190 * LSC: Load/Store control (01: load, 10: store, 11: both)
193 * The bottom 2 bits of the value register are masked. Therefore to
194 * break on any sizes smaller than an unaligned word you need to set
195 * MASK=0, BAS=bit per byte in question. For larger regions (^2) you
196 * need to ensure you mask the address as required and set BAS=0xff
199 static int insert_hw_watchpoint(target_ulong addr
,
200 target_ulong len
, int type
)
203 .wcr
= R_DBGWCR_E_MASK
, /* E=1, enable */
204 .wvr
= addr
& (~0x7ULL
),
205 .details
= { .vaddr
= addr
, .len
= len
}
208 if (cur_hw_wps
>= max_hw_wps
) {
213 * HMC=0 SSC=0 PAC=3 will hit EL0 or EL1, any security state,
214 * valid whether EL3 is implemented or not
216 wp
.wcr
= FIELD_DP64(wp
.wcr
, DBGWCR
, PAC
, 3);
219 case GDB_WATCHPOINT_READ
:
220 wp
.wcr
= FIELD_DP64(wp
.wcr
, DBGWCR
, LSC
, 1);
221 wp
.details
.flags
= BP_MEM_READ
;
223 case GDB_WATCHPOINT_WRITE
:
224 wp
.wcr
= FIELD_DP64(wp
.wcr
, DBGWCR
, LSC
, 2);
225 wp
.details
.flags
= BP_MEM_WRITE
;
227 case GDB_WATCHPOINT_ACCESS
:
228 wp
.wcr
= FIELD_DP64(wp
.wcr
, DBGWCR
, LSC
, 3);
229 wp
.details
.flags
= BP_MEM_ACCESS
;
232 g_assert_not_reached();
236 /* we align the address and set the bits in BAS */
237 int off
= addr
& 0x7;
238 int bas
= (1 << len
) - 1;
240 wp
.wcr
= deposit32(wp
.wcr
, 5 + off
, 8 - off
, bas
);
242 /* For ranges above 8 bytes we need to be a power of 2 */
243 if (is_power_of_2(len
)) {
244 int bits
= ctz64(len
);
246 wp
.wvr
&= ~((1 << bits
) - 1);
247 wp
.wcr
= FIELD_DP64(wp
.wcr
, DBGWCR
, MASK
, bits
);
248 wp
.wcr
= FIELD_DP64(wp
.wcr
, DBGWCR
, BAS
, 0xff);
254 g_array_append_val(hw_watchpoints
, wp
);
259 static bool check_watchpoint_in_range(int i
, target_ulong addr
)
261 HWWatchpoint
*wp
= get_hw_wp(i
);
262 uint64_t addr_top
, addr_bottom
= wp
->wvr
;
263 int bas
= extract32(wp
->wcr
, 5, 8);
264 int mask
= extract32(wp
->wcr
, 24, 4);
267 addr_top
= addr_bottom
+ (1 << mask
);
269 /* BAS must be contiguous but can offset against the base
270 * address in DBGWVR */
271 addr_bottom
= addr_bottom
+ ctz32(bas
);
272 addr_top
= addr_bottom
+ clo32(bas
);
275 if (addr
>= addr_bottom
&& addr
<= addr_top
) {
283 * delete_hw_watchpoint()
284 * @addr: address of breakpoint
286 * Delete a breakpoint and shuffle any above down
289 static int delete_hw_watchpoint(target_ulong addr
,
290 target_ulong len
, int type
)
293 for (i
= 0; i
< cur_hw_wps
; i
++) {
294 if (check_watchpoint_in_range(i
, addr
)) {
295 g_array_remove_index(hw_watchpoints
, i
);
303 int kvm_arch_insert_hw_breakpoint(target_ulong addr
,
304 target_ulong len
, int type
)
307 case GDB_BREAKPOINT_HW
:
308 return insert_hw_breakpoint(addr
);
310 case GDB_WATCHPOINT_READ
:
311 case GDB_WATCHPOINT_WRITE
:
312 case GDB_WATCHPOINT_ACCESS
:
313 return insert_hw_watchpoint(addr
, len
, type
);
319 int kvm_arch_remove_hw_breakpoint(target_ulong addr
,
320 target_ulong len
, int type
)
323 case GDB_BREAKPOINT_HW
:
324 return delete_hw_breakpoint(addr
);
325 case GDB_WATCHPOINT_READ
:
326 case GDB_WATCHPOINT_WRITE
:
327 case GDB_WATCHPOINT_ACCESS
:
328 return delete_hw_watchpoint(addr
, len
, type
);
335 void kvm_arch_remove_all_hw_breakpoints(void)
337 if (cur_hw_wps
> 0) {
338 g_array_remove_range(hw_watchpoints
, 0, cur_hw_wps
);
340 if (cur_hw_bps
> 0) {
341 g_array_remove_range(hw_breakpoints
, 0, cur_hw_bps
);
345 void kvm_arm_copy_hw_debug_data(struct kvm_guest_debug_arch
*ptr
)
348 memset(ptr
, 0, sizeof(struct kvm_guest_debug_arch
));
350 for (i
= 0; i
< max_hw_wps
; i
++) {
351 HWWatchpoint
*wp
= get_hw_wp(i
);
352 ptr
->dbg_wcr
[i
] = wp
->wcr
;
353 ptr
->dbg_wvr
[i
] = wp
->wvr
;
355 for (i
= 0; i
< max_hw_bps
; i
++) {
356 HWBreakpoint
*bp
= get_hw_bp(i
);
357 ptr
->dbg_bcr
[i
] = bp
->bcr
;
358 ptr
->dbg_bvr
[i
] = bp
->bvr
;
362 bool kvm_arm_hw_debug_active(CPUState
*cs
)
364 return ((cur_hw_wps
> 0) || (cur_hw_bps
> 0));
367 static bool find_hw_breakpoint(CPUState
*cpu
, target_ulong pc
)
371 for (i
= 0; i
< cur_hw_bps
; i
++) {
372 HWBreakpoint
*bp
= get_hw_bp(i
);
380 static CPUWatchpoint
*find_hw_watchpoint(CPUState
*cpu
, target_ulong addr
)
384 for (i
= 0; i
< cur_hw_wps
; i
++) {
385 if (check_watchpoint_in_range(i
, addr
)) {
386 return &get_hw_wp(i
)->details
;
392 static bool kvm_arm_set_device_attr(CPUState
*cs
, struct kvm_device_attr
*attr
,
397 err
= kvm_vcpu_ioctl(cs
, KVM_HAS_DEVICE_ATTR
, attr
);
399 error_report("%s: KVM_HAS_DEVICE_ATTR: %s", name
, strerror(-err
));
403 err
= kvm_vcpu_ioctl(cs
, KVM_SET_DEVICE_ATTR
, attr
);
405 error_report("%s: KVM_SET_DEVICE_ATTR: %s", name
, strerror(-err
));
412 void kvm_arm_pmu_init(CPUState
*cs
)
414 struct kvm_device_attr attr
= {
415 .group
= KVM_ARM_VCPU_PMU_V3_CTRL
,
416 .attr
= KVM_ARM_VCPU_PMU_V3_INIT
,
419 if (!ARM_CPU(cs
)->has_pmu
) {
422 if (!kvm_arm_set_device_attr(cs
, &attr
, "PMU")) {
423 error_report("failed to init PMU");
428 void kvm_arm_pmu_set_irq(CPUState
*cs
, int irq
)
430 struct kvm_device_attr attr
= {
431 .group
= KVM_ARM_VCPU_PMU_V3_CTRL
,
432 .addr
= (intptr_t)&irq
,
433 .attr
= KVM_ARM_VCPU_PMU_V3_IRQ
,
436 if (!ARM_CPU(cs
)->has_pmu
) {
439 if (!kvm_arm_set_device_attr(cs
, &attr
, "PMU")) {
440 error_report("failed to set irq for PMU");
445 void kvm_arm_pvtime_init(CPUState
*cs
, uint64_t ipa
)
447 struct kvm_device_attr attr
= {
448 .group
= KVM_ARM_VCPU_PVTIME_CTRL
,
449 .attr
= KVM_ARM_VCPU_PVTIME_IPA
,
450 .addr
= (uint64_t)&ipa
,
453 if (ARM_CPU(cs
)->kvm_steal_time
== ON_OFF_AUTO_OFF
) {
456 if (!kvm_arm_set_device_attr(cs
, &attr
, "PVTIME IPA")) {
457 error_report("failed to init PVTIME IPA");
462 static int read_sys_reg32(int fd
, uint32_t *pret
, uint64_t id
)
465 struct kvm_one_reg idreg
= { .id
= id
, .addr
= (uintptr_t)&ret
};
468 assert((id
& KVM_REG_SIZE_MASK
) == KVM_REG_SIZE_U64
);
469 err
= ioctl(fd
, KVM_GET_ONE_REG
, &idreg
);
477 static int read_sys_reg64(int fd
, uint64_t *pret
, uint64_t id
)
479 struct kvm_one_reg idreg
= { .id
= id
, .addr
= (uintptr_t)pret
};
481 assert((id
& KVM_REG_SIZE_MASK
) == KVM_REG_SIZE_U64
);
482 return ioctl(fd
, KVM_GET_ONE_REG
, &idreg
);
485 static bool kvm_arm_pauth_supported(void)
487 return (kvm_check_extension(kvm_state
, KVM_CAP_ARM_PTRAUTH_ADDRESS
) &&
488 kvm_check_extension(kvm_state
, KVM_CAP_ARM_PTRAUTH_GENERIC
));
491 bool kvm_arm_get_host_cpu_features(ARMHostCPUFeatures
*ahcf
)
493 /* Identify the feature bits corresponding to the host CPU, and
494 * fill out the ARMHostCPUClass fields accordingly. To do this
495 * we have to create a scratch VM, create a single CPU inside it,
496 * and then query that CPU for the relevant ID registers.
500 bool pmu_supported
= false;
501 uint64_t features
= 0;
504 /* Old kernels may not know about the PREFERRED_TARGET ioctl: however
505 * we know these will only support creating one kind of guest CPU,
506 * which is its preferred CPU type. Fortunately these old kernels
507 * support only a very limited number of CPUs.
509 static const uint32_t cpus_to_try
[] = {
510 KVM_ARM_TARGET_AEM_V8
,
511 KVM_ARM_TARGET_FOUNDATION_V8
,
512 KVM_ARM_TARGET_CORTEX_A57
,
513 QEMU_KVM_ARM_TARGET_NONE
516 * target = -1 informs kvm_arm_create_scratch_host_vcpu()
517 * to use the preferred target
519 struct kvm_vcpu_init init
= { .target
= -1, };
522 * Ask for SVE if supported, so that we can query ID_AA64ZFR0,
523 * which is otherwise RAZ.
525 sve_supported
= kvm_arm_sve_supported();
527 init
.features
[0] |= 1 << KVM_ARM_VCPU_SVE
;
531 * Ask for Pointer Authentication if supported, so that we get
532 * the unsanitized field values for AA64ISAR1_EL1.
534 if (kvm_arm_pauth_supported()) {
535 init
.features
[0] |= (1 << KVM_ARM_VCPU_PTRAUTH_ADDRESS
|
536 1 << KVM_ARM_VCPU_PTRAUTH_GENERIC
);
539 if (kvm_arm_pmu_supported()) {
540 init
.features
[0] |= 1 << KVM_ARM_VCPU_PMU_V3
;
541 pmu_supported
= true;
544 if (!kvm_arm_create_scratch_host_vcpu(cpus_to_try
, fdarray
, &init
)) {
548 ahcf
->target
= init
.target
;
549 ahcf
->dtb_compatible
= "arm,arm-v8";
551 err
= read_sys_reg64(fdarray
[2], &ahcf
->isar
.id_aa64pfr0
,
552 ARM64_SYS_REG(3, 0, 0, 4, 0));
553 if (unlikely(err
< 0)) {
555 * Before v4.15, the kernel only exposed a limited number of system
556 * registers, not including any of the interesting AArch64 ID regs.
557 * For the most part we could leave these fields as zero with minimal
558 * effect, since this does not affect the values seen by the guest.
560 * However, it could cause problems down the line for QEMU,
561 * so provide a minimal v8.0 default.
563 * ??? Could read MIDR and use knowledge from cpu64.c.
564 * ??? Could map a page of memory into our temp guest and
565 * run the tiniest of hand-crafted kernels to extract
566 * the values seen by the guest.
567 * ??? Either of these sounds like too much effort just
568 * to work around running a modern host kernel.
570 ahcf
->isar
.id_aa64pfr0
= 0x00000011; /* EL1&0, AArch64 only */
573 err
|= read_sys_reg64(fdarray
[2], &ahcf
->isar
.id_aa64pfr1
,
574 ARM64_SYS_REG(3, 0, 0, 4, 1));
575 err
|= read_sys_reg64(fdarray
[2], &ahcf
->isar
.id_aa64smfr0
,
576 ARM64_SYS_REG(3, 0, 0, 4, 5));
577 err
|= read_sys_reg64(fdarray
[2], &ahcf
->isar
.id_aa64dfr0
,
578 ARM64_SYS_REG(3, 0, 0, 5, 0));
579 err
|= read_sys_reg64(fdarray
[2], &ahcf
->isar
.id_aa64dfr1
,
580 ARM64_SYS_REG(3, 0, 0, 5, 1));
581 err
|= read_sys_reg64(fdarray
[2], &ahcf
->isar
.id_aa64isar0
,
582 ARM64_SYS_REG(3, 0, 0, 6, 0));
583 err
|= read_sys_reg64(fdarray
[2], &ahcf
->isar
.id_aa64isar1
,
584 ARM64_SYS_REG(3, 0, 0, 6, 1));
585 err
|= read_sys_reg64(fdarray
[2], &ahcf
->isar
.id_aa64mmfr0
,
586 ARM64_SYS_REG(3, 0, 0, 7, 0));
587 err
|= read_sys_reg64(fdarray
[2], &ahcf
->isar
.id_aa64mmfr1
,
588 ARM64_SYS_REG(3, 0, 0, 7, 1));
589 err
|= read_sys_reg64(fdarray
[2], &ahcf
->isar
.id_aa64mmfr2
,
590 ARM64_SYS_REG(3, 0, 0, 7, 2));
593 * Note that if AArch32 support is not present in the host,
594 * the AArch32 sysregs are present to be read, but will
595 * return UNKNOWN values. This is neither better nor worse
596 * than skipping the reads and leaving 0, as we must avoid
597 * considering the values in every case.
599 err
|= read_sys_reg32(fdarray
[2], &ahcf
->isar
.id_pfr0
,
600 ARM64_SYS_REG(3, 0, 0, 1, 0));
601 err
|= read_sys_reg32(fdarray
[2], &ahcf
->isar
.id_pfr1
,
602 ARM64_SYS_REG(3, 0, 0, 1, 1));
603 err
|= read_sys_reg32(fdarray
[2], &ahcf
->isar
.id_dfr0
,
604 ARM64_SYS_REG(3, 0, 0, 1, 2));
605 err
|= read_sys_reg32(fdarray
[2], &ahcf
->isar
.id_mmfr0
,
606 ARM64_SYS_REG(3, 0, 0, 1, 4));
607 err
|= read_sys_reg32(fdarray
[2], &ahcf
->isar
.id_mmfr1
,
608 ARM64_SYS_REG(3, 0, 0, 1, 5));
609 err
|= read_sys_reg32(fdarray
[2], &ahcf
->isar
.id_mmfr2
,
610 ARM64_SYS_REG(3, 0, 0, 1, 6));
611 err
|= read_sys_reg32(fdarray
[2], &ahcf
->isar
.id_mmfr3
,
612 ARM64_SYS_REG(3, 0, 0, 1, 7));
613 err
|= read_sys_reg32(fdarray
[2], &ahcf
->isar
.id_isar0
,
614 ARM64_SYS_REG(3, 0, 0, 2, 0));
615 err
|= read_sys_reg32(fdarray
[2], &ahcf
->isar
.id_isar1
,
616 ARM64_SYS_REG(3, 0, 0, 2, 1));
617 err
|= read_sys_reg32(fdarray
[2], &ahcf
->isar
.id_isar2
,
618 ARM64_SYS_REG(3, 0, 0, 2, 2));
619 err
|= read_sys_reg32(fdarray
[2], &ahcf
->isar
.id_isar3
,
620 ARM64_SYS_REG(3, 0, 0, 2, 3));
621 err
|= read_sys_reg32(fdarray
[2], &ahcf
->isar
.id_isar4
,
622 ARM64_SYS_REG(3, 0, 0, 2, 4));
623 err
|= read_sys_reg32(fdarray
[2], &ahcf
->isar
.id_isar5
,
624 ARM64_SYS_REG(3, 0, 0, 2, 5));
625 err
|= read_sys_reg32(fdarray
[2], &ahcf
->isar
.id_mmfr4
,
626 ARM64_SYS_REG(3, 0, 0, 2, 6));
627 err
|= read_sys_reg32(fdarray
[2], &ahcf
->isar
.id_isar6
,
628 ARM64_SYS_REG(3, 0, 0, 2, 7));
630 err
|= read_sys_reg32(fdarray
[2], &ahcf
->isar
.mvfr0
,
631 ARM64_SYS_REG(3, 0, 0, 3, 0));
632 err
|= read_sys_reg32(fdarray
[2], &ahcf
->isar
.mvfr1
,
633 ARM64_SYS_REG(3, 0, 0, 3, 1));
634 err
|= read_sys_reg32(fdarray
[2], &ahcf
->isar
.mvfr2
,
635 ARM64_SYS_REG(3, 0, 0, 3, 2));
636 err
|= read_sys_reg32(fdarray
[2], &ahcf
->isar
.id_pfr2
,
637 ARM64_SYS_REG(3, 0, 0, 3, 4));
638 err
|= read_sys_reg32(fdarray
[2], &ahcf
->isar
.id_dfr1
,
639 ARM64_SYS_REG(3, 0, 0, 3, 5));
640 err
|= read_sys_reg32(fdarray
[2], &ahcf
->isar
.id_mmfr5
,
641 ARM64_SYS_REG(3, 0, 0, 3, 6));
644 * DBGDIDR is a bit complicated because the kernel doesn't
645 * provide an accessor for it in 64-bit mode, which is what this
646 * scratch VM is in, and there's no architected "64-bit sysreg
647 * which reads the same as the 32-bit register" the way there is
648 * for other ID registers. Instead we synthesize a value from the
649 * AArch64 ID_AA64DFR0, the same way the kernel code in
650 * arch/arm64/kvm/sys_regs.c:trap_dbgidr() does.
651 * We only do this if the CPU supports AArch32 at EL1.
653 if (FIELD_EX32(ahcf
->isar
.id_aa64pfr0
, ID_AA64PFR0
, EL1
) >= 2) {
654 int wrps
= FIELD_EX64(ahcf
->isar
.id_aa64dfr0
, ID_AA64DFR0
, WRPS
);
655 int brps
= FIELD_EX64(ahcf
->isar
.id_aa64dfr0
, ID_AA64DFR0
, BRPS
);
657 FIELD_EX64(ahcf
->isar
.id_aa64dfr0
, ID_AA64DFR0
, CTX_CMPS
);
658 int version
= 6; /* ARMv8 debug architecture */
660 !!FIELD_EX32(ahcf
->isar
.id_aa64pfr0
, ID_AA64PFR0
, EL3
);
661 uint32_t dbgdidr
= 0;
663 dbgdidr
= FIELD_DP32(dbgdidr
, DBGDIDR
, WRPS
, wrps
);
664 dbgdidr
= FIELD_DP32(dbgdidr
, DBGDIDR
, BRPS
, brps
);
665 dbgdidr
= FIELD_DP32(dbgdidr
, DBGDIDR
, CTX_CMPS
, ctx_cmps
);
666 dbgdidr
= FIELD_DP32(dbgdidr
, DBGDIDR
, VERSION
, version
);
667 dbgdidr
= FIELD_DP32(dbgdidr
, DBGDIDR
, NSUHD_IMP
, has_el3
);
668 dbgdidr
= FIELD_DP32(dbgdidr
, DBGDIDR
, SE_IMP
, has_el3
);
669 dbgdidr
|= (1 << 15); /* RES1 bit */
670 ahcf
->isar
.dbgdidr
= dbgdidr
;
674 /* PMCR_EL0 is only accessible if the vCPU has feature PMU_V3 */
675 err
|= read_sys_reg64(fdarray
[2], &ahcf
->isar
.reset_pmcr_el0
,
676 ARM64_SYS_REG(3, 3, 9, 12, 0));
681 * There is a range of kernels between kernel commit 73433762fcae
682 * and f81cb2c3ad41 which have a bug where the kernel doesn't
683 * expose SYS_ID_AA64ZFR0_EL1 via the ONE_REG API unless the VM has
684 * enabled SVE support, which resulted in an error rather than RAZ.
685 * So only read the register if we set KVM_ARM_VCPU_SVE above.
687 err
|= read_sys_reg64(fdarray
[2], &ahcf
->isar
.id_aa64zfr0
,
688 ARM64_SYS_REG(3, 0, 0, 4, 4));
692 kvm_arm_destroy_scratch_host_vcpu(fdarray
);
699 * We can assume any KVM supporting CPU is at least a v8
700 * with VFPv4+Neon; this in turn implies most of the other
703 features
|= 1ULL << ARM_FEATURE_V8
;
704 features
|= 1ULL << ARM_FEATURE_NEON
;
705 features
|= 1ULL << ARM_FEATURE_AARCH64
;
706 features
|= 1ULL << ARM_FEATURE_PMU
;
707 features
|= 1ULL << ARM_FEATURE_GENERIC_TIMER
;
709 ahcf
->features
= features
;
714 void kvm_arm_steal_time_finalize(ARMCPU
*cpu
, Error
**errp
)
716 bool has_steal_time
= kvm_arm_steal_time_supported();
718 if (cpu
->kvm_steal_time
== ON_OFF_AUTO_AUTO
) {
719 if (!has_steal_time
|| !arm_feature(&cpu
->env
, ARM_FEATURE_AARCH64
)) {
720 cpu
->kvm_steal_time
= ON_OFF_AUTO_OFF
;
722 cpu
->kvm_steal_time
= ON_OFF_AUTO_ON
;
724 } else if (cpu
->kvm_steal_time
== ON_OFF_AUTO_ON
) {
725 if (!has_steal_time
) {
726 error_setg(errp
, "'kvm-steal-time' cannot be enabled "
729 } else if (!arm_feature(&cpu
->env
, ARM_FEATURE_AARCH64
)) {
731 * DEN0057A chapter 2 says "This specification only covers
732 * systems in which the Execution state of the hypervisor
733 * as well as EL1 of virtual machines is AArch64.". And,
734 * to ensure that, the smc/hvc calls are only specified as
737 error_setg(errp
, "'kvm-steal-time' cannot be enabled "
738 "for AArch32 guests");
744 bool kvm_arm_aarch32_supported(void)
746 return kvm_check_extension(kvm_state
, KVM_CAP_ARM_EL1_32BIT
);
749 bool kvm_arm_sve_supported(void)
751 return kvm_check_extension(kvm_state
, KVM_CAP_ARM_SVE
);
754 bool kvm_arm_steal_time_supported(void)
756 return kvm_check_extension(kvm_state
, KVM_CAP_STEAL_TIME
);
759 QEMU_BUILD_BUG_ON(KVM_ARM64_SVE_VQ_MIN
!= 1);
761 uint32_t kvm_arm_sve_get_vls(CPUState
*cs
)
763 /* Only call this function if kvm_arm_sve_supported() returns true. */
764 static uint64_t vls
[KVM_ARM64_SVE_VLS_WORDS
];
770 * KVM ensures all host CPUs support the same set of vector lengths.
771 * So we only need to create the scratch VCPUs once and then cache
775 struct kvm_vcpu_init init
= {
777 .features
[0] = (1 << KVM_ARM_VCPU_SVE
),
779 struct kvm_one_reg reg
= {
780 .id
= KVM_REG_ARM64_SVE_VLS
,
781 .addr
= (uint64_t)&vls
[0],
787 if (!kvm_arm_create_scratch_host_vcpu(NULL
, fdarray
, &init
)) {
788 error_report("failed to create scratch VCPU with SVE enabled");
791 ret
= ioctl(fdarray
[2], KVM_GET_ONE_REG
, ®
);
792 kvm_arm_destroy_scratch_host_vcpu(fdarray
);
794 error_report("failed to get KVM_REG_ARM64_SVE_VLS: %s",
799 for (i
= KVM_ARM64_SVE_VLS_WORDS
- 1; i
>= 0; --i
) {
801 vq
= 64 - clz64(vls
[i
]) + i
* 64;
805 if (vq
> ARM_MAX_VQ
) {
806 warn_report("KVM supports vector lengths larger than "
808 vls
[0] &= MAKE_64BIT_MASK(0, ARM_MAX_VQ
);
815 static int kvm_arm_sve_set_vls(CPUState
*cs
)
817 ARMCPU
*cpu
= ARM_CPU(cs
);
818 uint64_t vls
[KVM_ARM64_SVE_VLS_WORDS
] = { cpu
->sve_vq
.map
};
819 struct kvm_one_reg reg
= {
820 .id
= KVM_REG_ARM64_SVE_VLS
,
821 .addr
= (uint64_t)&vls
[0],
824 assert(cpu
->sve_max_vq
<= KVM_ARM64_SVE_VQ_MAX
);
826 return kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, ®
);
829 #define ARM_CPU_ID_MPIDR 3, 0, 0, 0, 5
831 int kvm_arch_init_vcpu(CPUState
*cs
)
835 ARMCPU
*cpu
= ARM_CPU(cs
);
836 CPUARMState
*env
= &cpu
->env
;
839 if (cpu
->kvm_target
== QEMU_KVM_ARM_TARGET_NONE
||
840 !object_dynamic_cast(OBJECT(cpu
), TYPE_AARCH64_CPU
)) {
841 error_report("KVM is not supported for this guest CPU type");
845 qemu_add_vm_change_state_handler(kvm_arm_vm_state_change
, cs
);
847 /* Determine init features for this CPU */
848 memset(cpu
->kvm_init_features
, 0, sizeof(cpu
->kvm_init_features
));
849 if (cs
->start_powered_off
) {
850 cpu
->kvm_init_features
[0] |= 1 << KVM_ARM_VCPU_POWER_OFF
;
852 if (kvm_check_extension(cs
->kvm_state
, KVM_CAP_ARM_PSCI_0_2
)) {
853 cpu
->psci_version
= QEMU_PSCI_VERSION_0_2
;
854 cpu
->kvm_init_features
[0] |= 1 << KVM_ARM_VCPU_PSCI_0_2
;
856 if (!arm_feature(&cpu
->env
, ARM_FEATURE_AARCH64
)) {
857 cpu
->kvm_init_features
[0] |= 1 << KVM_ARM_VCPU_EL1_32BIT
;
859 if (!kvm_check_extension(cs
->kvm_state
, KVM_CAP_ARM_PMU_V3
)) {
860 cpu
->has_pmu
= false;
863 cpu
->kvm_init_features
[0] |= 1 << KVM_ARM_VCPU_PMU_V3
;
865 env
->features
&= ~(1ULL << ARM_FEATURE_PMU
);
867 if (cpu_isar_feature(aa64_sve
, cpu
)) {
868 assert(kvm_arm_sve_supported());
869 cpu
->kvm_init_features
[0] |= 1 << KVM_ARM_VCPU_SVE
;
871 if (cpu_isar_feature(aa64_pauth
, cpu
)) {
872 cpu
->kvm_init_features
[0] |= (1 << KVM_ARM_VCPU_PTRAUTH_ADDRESS
|
873 1 << KVM_ARM_VCPU_PTRAUTH_GENERIC
);
876 /* Do KVM_ARM_VCPU_INIT ioctl */
877 ret
= kvm_arm_vcpu_init(cs
);
882 if (cpu_isar_feature(aa64_sve
, cpu
)) {
883 ret
= kvm_arm_sve_set_vls(cs
);
887 ret
= kvm_arm_vcpu_finalize(cs
, KVM_ARM_VCPU_SVE
);
894 * KVM reports the exact PSCI version it is implementing via a
895 * special sysreg. If it is present, use its contents to determine
896 * what to report to the guest in the dtb (it is the PSCI version,
897 * in the same 15-bits major 16-bits minor format that PSCI_VERSION
900 if (!kvm_get_one_reg(cs
, KVM_REG_ARM_PSCI_VERSION
, &psciver
)) {
901 cpu
->psci_version
= psciver
;
905 * When KVM is in use, PSCI is emulated in-kernel and not by qemu.
906 * Currently KVM has its own idea about MPIDR assignment, so we
907 * override our defaults with what we get from KVM.
909 ret
= kvm_get_one_reg(cs
, ARM64_SYS_REG(ARM_CPU_ID_MPIDR
), &mpidr
);
913 cpu
->mp_affinity
= mpidr
& ARM64_AFFINITY_MASK
;
915 /* Check whether user space can specify guest syndrome value */
916 kvm_arm_init_serror_injection(cs
);
918 return kvm_arm_init_cpreg_list(cpu
);
921 int kvm_arch_destroy_vcpu(CPUState
*cs
)
926 bool kvm_arm_reg_syncs_via_cpreg_list(uint64_t regidx
)
928 /* Return true if the regidx is a register we should synchronize
929 * via the cpreg_tuples array (ie is not a core or sve reg that
930 * we sync by hand in kvm_arch_get/put_registers())
932 switch (regidx
& KVM_REG_ARM_COPROC_MASK
) {
933 case KVM_REG_ARM_CORE
:
934 case KVM_REG_ARM64_SVE
:
941 typedef struct CPRegStateLevel
{
946 /* All system registers not listed in the following table are assumed to be
947 * of the level KVM_PUT_RUNTIME_STATE. If a register should be written less
948 * often, you must add it to this table with a state of either
949 * KVM_PUT_RESET_STATE or KVM_PUT_FULL_STATE.
951 static const CPRegStateLevel non_runtime_cpregs
[] = {
952 { KVM_REG_ARM_TIMER_CNT
, KVM_PUT_FULL_STATE
},
955 int kvm_arm_cpreg_level(uint64_t regidx
)
959 for (i
= 0; i
< ARRAY_SIZE(non_runtime_cpregs
); i
++) {
960 const CPRegStateLevel
*l
= &non_runtime_cpregs
[i
];
961 if (l
->regidx
== regidx
) {
966 return KVM_PUT_RUNTIME_STATE
;
969 /* Callers must hold the iothread mutex lock */
970 static void kvm_inject_arm_sea(CPUState
*c
)
972 ARMCPU
*cpu
= ARM_CPU(c
);
973 CPUARMState
*env
= &cpu
->env
;
977 c
->exception_index
= EXCP_DATA_ABORT
;
978 env
->exception
.target_el
= 1;
981 * Set the DFSC to synchronous external abort and set FnV to not valid,
982 * this will tell guest the FAR_ELx is UNKNOWN for this abort.
984 same_el
= arm_current_el(env
) == env
->exception
.target_el
;
985 esr
= syn_data_abort_no_iss(same_el
, 1, 0, 0, 0, 0, 0x10);
987 env
->exception
.syndrome
= esr
;
989 arm_cpu_do_interrupt(c
);
992 #define AARCH64_CORE_REG(x) (KVM_REG_ARM64 | KVM_REG_SIZE_U64 | \
993 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
995 #define AARCH64_SIMD_CORE_REG(x) (KVM_REG_ARM64 | KVM_REG_SIZE_U128 | \
996 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
998 #define AARCH64_SIMD_CTRL_REG(x) (KVM_REG_ARM64 | KVM_REG_SIZE_U32 | \
999 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
1001 static int kvm_arch_put_fpsimd(CPUState
*cs
)
1003 CPUARMState
*env
= &ARM_CPU(cs
)->env
;
1004 struct kvm_one_reg reg
;
1007 for (i
= 0; i
< 32; i
++) {
1008 uint64_t *q
= aa64_vfp_qreg(env
, i
);
1010 uint64_t fp_val
[2] = { q
[1], q
[0] };
1011 reg
.addr
= (uintptr_t)fp_val
;
1013 reg
.addr
= (uintptr_t)q
;
1015 reg
.id
= AARCH64_SIMD_CORE_REG(fp_regs
.vregs
[i
]);
1016 ret
= kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, ®
);
1026 * KVM SVE registers come in slices where ZREGs have a slice size of 2048 bits
1027 * and PREGS and the FFR have a slice size of 256 bits. However we simply hard
1028 * code the slice index to zero for now as it's unlikely we'll need more than
1029 * one slice for quite some time.
1031 static int kvm_arch_put_sve(CPUState
*cs
)
1033 ARMCPU
*cpu
= ARM_CPU(cs
);
1034 CPUARMState
*env
= &cpu
->env
;
1035 uint64_t tmp
[ARM_MAX_VQ
* 2];
1037 struct kvm_one_reg reg
;
1040 for (n
= 0; n
< KVM_ARM64_SVE_NUM_ZREGS
; ++n
) {
1041 r
= sve_bswap64(tmp
, &env
->vfp
.zregs
[n
].d
[0], cpu
->sve_max_vq
* 2);
1042 reg
.addr
= (uintptr_t)r
;
1043 reg
.id
= KVM_REG_ARM64_SVE_ZREG(n
, 0);
1044 ret
= kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, ®
);
1050 for (n
= 0; n
< KVM_ARM64_SVE_NUM_PREGS
; ++n
) {
1051 r
= sve_bswap64(tmp
, r
= &env
->vfp
.pregs
[n
].p
[0],
1052 DIV_ROUND_UP(cpu
->sve_max_vq
* 2, 8));
1053 reg
.addr
= (uintptr_t)r
;
1054 reg
.id
= KVM_REG_ARM64_SVE_PREG(n
, 0);
1055 ret
= kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, ®
);
1061 r
= sve_bswap64(tmp
, &env
->vfp
.pregs
[FFR_PRED_NUM
].p
[0],
1062 DIV_ROUND_UP(cpu
->sve_max_vq
* 2, 8));
1063 reg
.addr
= (uintptr_t)r
;
1064 reg
.id
= KVM_REG_ARM64_SVE_FFR(0);
1065 ret
= kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, ®
);
1073 int kvm_arch_put_registers(CPUState
*cs
, int level
)
1075 struct kvm_one_reg reg
;
1081 ARMCPU
*cpu
= ARM_CPU(cs
);
1082 CPUARMState
*env
= &cpu
->env
;
1084 /* If we are in AArch32 mode then we need to copy the AArch32 regs to the
1085 * AArch64 registers before pushing them out to 64-bit KVM.
1088 aarch64_sync_32_to_64(env
);
1091 for (i
= 0; i
< 31; i
++) {
1092 reg
.id
= AARCH64_CORE_REG(regs
.regs
[i
]);
1093 reg
.addr
= (uintptr_t) &env
->xregs
[i
];
1094 ret
= kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, ®
);
1100 /* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the
1101 * QEMU side we keep the current SP in xregs[31] as well.
1103 aarch64_save_sp(env
, 1);
1105 reg
.id
= AARCH64_CORE_REG(regs
.sp
);
1106 reg
.addr
= (uintptr_t) &env
->sp_el
[0];
1107 ret
= kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, ®
);
1112 reg
.id
= AARCH64_CORE_REG(sp_el1
);
1113 reg
.addr
= (uintptr_t) &env
->sp_el
[1];
1114 ret
= kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, ®
);
1119 /* Note that KVM thinks pstate is 64 bit but we use a uint32_t */
1121 val
= pstate_read(env
);
1123 val
= cpsr_read(env
);
1125 reg
.id
= AARCH64_CORE_REG(regs
.pstate
);
1126 reg
.addr
= (uintptr_t) &val
;
1127 ret
= kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, ®
);
1132 reg
.id
= AARCH64_CORE_REG(regs
.pc
);
1133 reg
.addr
= (uintptr_t) &env
->pc
;
1134 ret
= kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, ®
);
1139 reg
.id
= AARCH64_CORE_REG(elr_el1
);
1140 reg
.addr
= (uintptr_t) &env
->elr_el
[1];
1141 ret
= kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, ®
);
1146 /* Saved Program State Registers
1148 * Before we restore from the banked_spsr[] array we need to
1149 * ensure that any modifications to env->spsr are correctly
1150 * reflected in the banks.
1152 el
= arm_current_el(env
);
1153 if (el
> 0 && !is_a64(env
)) {
1154 i
= bank_number(env
->uncached_cpsr
& CPSR_M
);
1155 env
->banked_spsr
[i
] = env
->spsr
;
1158 /* KVM 0-4 map to QEMU banks 1-5 */
1159 for (i
= 0; i
< KVM_NR_SPSR
; i
++) {
1160 reg
.id
= AARCH64_CORE_REG(spsr
[i
]);
1161 reg
.addr
= (uintptr_t) &env
->banked_spsr
[i
+ 1];
1162 ret
= kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, ®
);
1168 if (cpu_isar_feature(aa64_sve
, cpu
)) {
1169 ret
= kvm_arch_put_sve(cs
);
1171 ret
= kvm_arch_put_fpsimd(cs
);
1177 reg
.addr
= (uintptr_t)(&fpr
);
1178 fpr
= vfp_get_fpsr(env
);
1179 reg
.id
= AARCH64_SIMD_CTRL_REG(fp_regs
.fpsr
);
1180 ret
= kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, ®
);
1185 reg
.addr
= (uintptr_t)(&fpr
);
1186 fpr
= vfp_get_fpcr(env
);
1187 reg
.id
= AARCH64_SIMD_CTRL_REG(fp_regs
.fpcr
);
1188 ret
= kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, ®
);
1193 write_cpustate_to_list(cpu
, true);
1195 if (!write_list_to_kvmstate(cpu
, level
)) {
1200 * Setting VCPU events should be triggered after syncing the registers
1201 * to avoid overwriting potential changes made by KVM upon calling
1202 * KVM_SET_VCPU_EVENTS ioctl
1204 ret
= kvm_put_vcpu_events(cpu
);
1209 kvm_arm_sync_mpstate_to_kvm(cpu
);
1214 static int kvm_arch_get_fpsimd(CPUState
*cs
)
1216 CPUARMState
*env
= &ARM_CPU(cs
)->env
;
1217 struct kvm_one_reg reg
;
1220 for (i
= 0; i
< 32; i
++) {
1221 uint64_t *q
= aa64_vfp_qreg(env
, i
);
1222 reg
.id
= AARCH64_SIMD_CORE_REG(fp_regs
.vregs
[i
]);
1223 reg
.addr
= (uintptr_t)q
;
1224 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, ®
);
1230 t
= q
[0], q
[0] = q
[1], q
[1] = t
;
1239 * KVM SVE registers come in slices where ZREGs have a slice size of 2048 bits
1240 * and PREGS and the FFR have a slice size of 256 bits. However we simply hard
1241 * code the slice index to zero for now as it's unlikely we'll need more than
1242 * one slice for quite some time.
1244 static int kvm_arch_get_sve(CPUState
*cs
)
1246 ARMCPU
*cpu
= ARM_CPU(cs
);
1247 CPUARMState
*env
= &cpu
->env
;
1248 struct kvm_one_reg reg
;
1252 for (n
= 0; n
< KVM_ARM64_SVE_NUM_ZREGS
; ++n
) {
1253 r
= &env
->vfp
.zregs
[n
].d
[0];
1254 reg
.addr
= (uintptr_t)r
;
1255 reg
.id
= KVM_REG_ARM64_SVE_ZREG(n
, 0);
1256 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, ®
);
1260 sve_bswap64(r
, r
, cpu
->sve_max_vq
* 2);
1263 for (n
= 0; n
< KVM_ARM64_SVE_NUM_PREGS
; ++n
) {
1264 r
= &env
->vfp
.pregs
[n
].p
[0];
1265 reg
.addr
= (uintptr_t)r
;
1266 reg
.id
= KVM_REG_ARM64_SVE_PREG(n
, 0);
1267 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, ®
);
1271 sve_bswap64(r
, r
, DIV_ROUND_UP(cpu
->sve_max_vq
* 2, 8));
1274 r
= &env
->vfp
.pregs
[FFR_PRED_NUM
].p
[0];
1275 reg
.addr
= (uintptr_t)r
;
1276 reg
.id
= KVM_REG_ARM64_SVE_FFR(0);
1277 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, ®
);
1281 sve_bswap64(r
, r
, DIV_ROUND_UP(cpu
->sve_max_vq
* 2, 8));
1286 int kvm_arch_get_registers(CPUState
*cs
)
1288 struct kvm_one_reg reg
;
1294 ARMCPU
*cpu
= ARM_CPU(cs
);
1295 CPUARMState
*env
= &cpu
->env
;
1297 for (i
= 0; i
< 31; i
++) {
1298 reg
.id
= AARCH64_CORE_REG(regs
.regs
[i
]);
1299 reg
.addr
= (uintptr_t) &env
->xregs
[i
];
1300 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, ®
);
1306 reg
.id
= AARCH64_CORE_REG(regs
.sp
);
1307 reg
.addr
= (uintptr_t) &env
->sp_el
[0];
1308 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, ®
);
1313 reg
.id
= AARCH64_CORE_REG(sp_el1
);
1314 reg
.addr
= (uintptr_t) &env
->sp_el
[1];
1315 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, ®
);
1320 reg
.id
= AARCH64_CORE_REG(regs
.pstate
);
1321 reg
.addr
= (uintptr_t) &val
;
1322 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, ®
);
1327 env
->aarch64
= ((val
& PSTATE_nRW
) == 0);
1329 pstate_write(env
, val
);
1331 cpsr_write(env
, val
, 0xffffffff, CPSRWriteRaw
);
1334 /* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the
1335 * QEMU side we keep the current SP in xregs[31] as well.
1337 aarch64_restore_sp(env
, 1);
1339 reg
.id
= AARCH64_CORE_REG(regs
.pc
);
1340 reg
.addr
= (uintptr_t) &env
->pc
;
1341 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, ®
);
1346 /* If we are in AArch32 mode then we need to sync the AArch32 regs with the
1347 * incoming AArch64 regs received from 64-bit KVM.
1348 * We must perform this after all of the registers have been acquired from
1352 aarch64_sync_64_to_32(env
);
1355 reg
.id
= AARCH64_CORE_REG(elr_el1
);
1356 reg
.addr
= (uintptr_t) &env
->elr_el
[1];
1357 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, ®
);
1362 /* Fetch the SPSR registers
1364 * KVM SPSRs 0-4 map to QEMU banks 1-5
1366 for (i
= 0; i
< KVM_NR_SPSR
; i
++) {
1367 reg
.id
= AARCH64_CORE_REG(spsr
[i
]);
1368 reg
.addr
= (uintptr_t) &env
->banked_spsr
[i
+ 1];
1369 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, ®
);
1375 el
= arm_current_el(env
);
1376 if (el
> 0 && !is_a64(env
)) {
1377 i
= bank_number(env
->uncached_cpsr
& CPSR_M
);
1378 env
->spsr
= env
->banked_spsr
[i
];
1381 if (cpu_isar_feature(aa64_sve
, cpu
)) {
1382 ret
= kvm_arch_get_sve(cs
);
1384 ret
= kvm_arch_get_fpsimd(cs
);
1390 reg
.addr
= (uintptr_t)(&fpr
);
1391 reg
.id
= AARCH64_SIMD_CTRL_REG(fp_regs
.fpsr
);
1392 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, ®
);
1396 vfp_set_fpsr(env
, fpr
);
1398 reg
.addr
= (uintptr_t)(&fpr
);
1399 reg
.id
= AARCH64_SIMD_CTRL_REG(fp_regs
.fpcr
);
1400 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, ®
);
1404 vfp_set_fpcr(env
, fpr
);
1406 ret
= kvm_get_vcpu_events(cpu
);
1411 if (!write_kvmstate_to_list(cpu
)) {
1414 /* Note that it's OK to have registers which aren't in CPUState,
1415 * so we can ignore a failure return here.
1417 write_list_to_cpustate(cpu
);
1419 kvm_arm_sync_mpstate_to_qemu(cpu
);
1421 /* TODO: other registers */
1425 void kvm_arch_on_sigbus_vcpu(CPUState
*c
, int code
, void *addr
)
1427 ram_addr_t ram_addr
;
1430 assert(code
== BUS_MCEERR_AR
|| code
== BUS_MCEERR_AO
);
1432 if (acpi_ghes_present() && addr
) {
1433 ram_addr
= qemu_ram_addr_from_host(addr
);
1434 if (ram_addr
!= RAM_ADDR_INVALID
&&
1435 kvm_physical_memory_addr_from_host(c
->kvm_state
, addr
, &paddr
)) {
1436 kvm_hwpoison_page_add(ram_addr
);
1438 * If this is a BUS_MCEERR_AR, we know we have been called
1439 * synchronously from the vCPU thread, so we can easily
1440 * synchronize the state and inject an error.
1442 * TODO: we currently don't tell the guest at all about
1443 * BUS_MCEERR_AO. In that case we might either be being
1444 * called synchronously from the vCPU thread, or a bit
1445 * later from the main thread, so doing the injection of
1446 * the error would be more complicated.
1448 if (code
== BUS_MCEERR_AR
) {
1449 kvm_cpu_synchronize_state(c
);
1450 if (!acpi_ghes_record_errors(ACPI_HEST_SRC_ID_SEA
, paddr
)) {
1451 kvm_inject_arm_sea(c
);
1453 error_report("failed to record the error");
1459 if (code
== BUS_MCEERR_AO
) {
1460 error_report("Hardware memory error at addr %p for memory used by "
1461 "QEMU itself instead of guest system!", addr
);
1465 if (code
== BUS_MCEERR_AR
) {
1466 error_report("Hardware memory error!");
1471 /* C6.6.29 BRK instruction */
1472 static const uint32_t brk_insn
= 0xd4200000;
1474 int kvm_arch_insert_sw_breakpoint(CPUState
*cs
, struct kvm_sw_breakpoint
*bp
)
1476 if (have_guest_debug
) {
1477 if (cpu_memory_rw_debug(cs
, bp
->pc
, (uint8_t *)&bp
->saved_insn
, 4, 0) ||
1478 cpu_memory_rw_debug(cs
, bp
->pc
, (uint8_t *)&brk_insn
, 4, 1)) {
1483 error_report("guest debug not supported on this kernel");
1488 int kvm_arch_remove_sw_breakpoint(CPUState
*cs
, struct kvm_sw_breakpoint
*bp
)
1490 static uint32_t brk
;
1492 if (have_guest_debug
) {
1493 if (cpu_memory_rw_debug(cs
, bp
->pc
, (uint8_t *)&brk
, 4, 0) ||
1495 cpu_memory_rw_debug(cs
, bp
->pc
, (uint8_t *)&bp
->saved_insn
, 4, 1)) {
1500 error_report("guest debug not supported on this kernel");
1505 /* See v8 ARM ARM D7.2.27 ESR_ELx, Exception Syndrome Register
1507 * To minimise translating between kernel and user-space the kernel
1508 * ABI just provides user-space with the full exception syndrome
1509 * register value to be decoded in QEMU.
1512 bool kvm_arm_handle_debug(CPUState
*cs
, struct kvm_debug_exit_arch
*debug_exit
)
1514 int hsr_ec
= syn_get_ec(debug_exit
->hsr
);
1515 ARMCPU
*cpu
= ARM_CPU(cs
);
1516 CPUARMState
*env
= &cpu
->env
;
1518 /* Ensure PC is synchronised */
1519 kvm_cpu_synchronize_state(cs
);
1522 case EC_SOFTWARESTEP
:
1523 if (cs
->singlestep_enabled
) {
1527 * The kernel should have suppressed the guest's ability to
1528 * single step at this point so something has gone wrong.
1530 error_report("%s: guest single-step while debugging unsupported"
1531 " (%"PRIx64
", %"PRIx32
")",
1532 __func__
, env
->pc
, debug_exit
->hsr
);
1537 if (kvm_find_sw_breakpoint(cs
, env
->pc
)) {
1542 if (find_hw_breakpoint(cs
, env
->pc
)) {
1548 CPUWatchpoint
*wp
= find_hw_watchpoint(cs
, debug_exit
->far
);
1550 cs
->watchpoint_hit
= wp
;
1556 error_report("%s: unhandled debug exit (%"PRIx32
", %"PRIx64
")",
1557 __func__
, debug_exit
->hsr
, env
->pc
);
1560 /* If we are not handling the debug exception it must belong to
1561 * the guest. Let's re-use the existing TCG interrupt code to set
1562 * everything up properly.
1564 cs
->exception_index
= EXCP_BKPT
;
1565 env
->exception
.syndrome
= debug_exit
->hsr
;
1566 env
->exception
.vaddress
= debug_exit
->far
;
1567 env
->exception
.target_el
= 1;
1568 qemu_mutex_lock_iothread();
1569 arm_cpu_do_interrupt(cs
);
1570 qemu_mutex_unlock_iothread();
1575 #define ARM64_REG_ESR_EL1 ARM64_SYS_REG(3, 0, 5, 2, 0)
1576 #define ARM64_REG_TCR_EL1 ARM64_SYS_REG(3, 0, 2, 0, 2)
1581 * AARCH64: DFSC, bits [5:0]
1585 * FS[3:0] - DFSR[3:0]
1589 #define ESR_DFSC(aarch64, lpae, v) \
1590 ((aarch64 || (lpae)) ? ((v) & 0x3F) \
1591 : (((v) >> 6) | ((v) & 0x1F)))
1593 #define ESR_DFSC_EXTABT(aarch64, lpae) \
1594 ((aarch64) ? 0x10 : (lpae) ? 0x10 : 0x8)
1596 bool kvm_arm_verify_ext_dabt_pending(CPUState
*cs
)
1600 if (!kvm_get_one_reg(cs
, ARM64_REG_ESR_EL1
, &dfsr_val
)) {
1601 ARMCPU
*cpu
= ARM_CPU(cs
);
1602 CPUARMState
*env
= &cpu
->env
;
1603 int aarch64_mode
= arm_feature(env
, ARM_FEATURE_AARCH64
);
1606 if (!aarch64_mode
) {
1609 if (!kvm_get_one_reg(cs
, ARM64_REG_TCR_EL1
, &ttbcr
)) {
1610 lpae
= arm_feature(env
, ARM_FEATURE_LPAE
)
1611 && (ttbcr
& TTBCR_EAE
);
1615 * The verification here is based on the DFSC bits
1616 * of the ESR_EL1 reg only
1618 return (ESR_DFSC(aarch64_mode
, lpae
, dfsr_val
) ==
1619 ESR_DFSC_EXTABT(aarch64_mode
, lpae
));