vhost-user-blk: Add support to reconnect backend
[qemu/kevin.git] / target / arm / kvm.c
blob599563461264459d27ce630947b469b786f50d07
1 /*
2 * ARM implementation of KVM hooks
4 * Copyright Christoffer Dall 2009-2010
6 * This work is licensed under the terms of the GNU GPL, version 2 or later.
7 * See the COPYING file in the top-level directory.
9 */
11 #include "qemu/osdep.h"
12 #include <sys/ioctl.h>
14 #include <linux/kvm.h>
16 #include "qemu-common.h"
17 #include "qemu/timer.h"
18 #include "qemu/error-report.h"
19 #include "sysemu/sysemu.h"
20 #include "sysemu/kvm.h"
21 #include "sysemu/kvm_int.h"
22 #include "kvm_arm.h"
23 #include "cpu.h"
24 #include "trace.h"
25 #include "internals.h"
26 #include "hw/arm/arm.h"
27 #include "hw/pci/pci.h"
28 #include "exec/memattrs.h"
29 #include "exec/address-spaces.h"
30 #include "hw/boards.h"
31 #include "qemu/log.h"
33 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
34 KVM_CAP_LAST_INFO
37 static bool cap_has_mp_state;
38 static bool cap_has_inject_serror_esr;
40 static ARMHostCPUFeatures arm_host_cpu_features;
42 int kvm_arm_vcpu_init(CPUState *cs)
44 ARMCPU *cpu = ARM_CPU(cs);
45 struct kvm_vcpu_init init;
47 init.target = cpu->kvm_target;
48 memcpy(init.features, cpu->kvm_init_features, sizeof(init.features));
50 return kvm_vcpu_ioctl(cs, KVM_ARM_VCPU_INIT, &init);
53 void kvm_arm_init_serror_injection(CPUState *cs)
55 cap_has_inject_serror_esr = kvm_check_extension(cs->kvm_state,
56 KVM_CAP_ARM_INJECT_SERROR_ESR);
59 bool kvm_arm_create_scratch_host_vcpu(const uint32_t *cpus_to_try,
60 int *fdarray,
61 struct kvm_vcpu_init *init)
63 int ret, kvmfd = -1, vmfd = -1, cpufd = -1;
65 kvmfd = qemu_open("/dev/kvm", O_RDWR);
66 if (kvmfd < 0) {
67 goto err;
69 vmfd = ioctl(kvmfd, KVM_CREATE_VM, 0);
70 if (vmfd < 0) {
71 goto err;
73 cpufd = ioctl(vmfd, KVM_CREATE_VCPU, 0);
74 if (cpufd < 0) {
75 goto err;
78 if (!init) {
79 /* Caller doesn't want the VCPU to be initialized, so skip it */
80 goto finish;
83 ret = ioctl(vmfd, KVM_ARM_PREFERRED_TARGET, init);
84 if (ret >= 0) {
85 ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, init);
86 if (ret < 0) {
87 goto err;
89 } else if (cpus_to_try) {
90 /* Old kernel which doesn't know about the
91 * PREFERRED_TARGET ioctl: we know it will only support
92 * creating one kind of guest CPU which is its preferred
93 * CPU type.
95 while (*cpus_to_try != QEMU_KVM_ARM_TARGET_NONE) {
96 init->target = *cpus_to_try++;
97 memset(init->features, 0, sizeof(init->features));
98 ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, init);
99 if (ret >= 0) {
100 break;
103 if (ret < 0) {
104 goto err;
106 } else {
107 /* Treat a NULL cpus_to_try argument the same as an empty
108 * list, which means we will fail the call since this must
109 * be an old kernel which doesn't support PREFERRED_TARGET.
111 goto err;
114 finish:
115 fdarray[0] = kvmfd;
116 fdarray[1] = vmfd;
117 fdarray[2] = cpufd;
119 return true;
121 err:
122 if (cpufd >= 0) {
123 close(cpufd);
125 if (vmfd >= 0) {
126 close(vmfd);
128 if (kvmfd >= 0) {
129 close(kvmfd);
132 return false;
135 void kvm_arm_destroy_scratch_host_vcpu(int *fdarray)
137 int i;
139 for (i = 2; i >= 0; i--) {
140 close(fdarray[i]);
144 void kvm_arm_set_cpu_features_from_host(ARMCPU *cpu)
146 CPUARMState *env = &cpu->env;
148 if (!arm_host_cpu_features.dtb_compatible) {
149 if (!kvm_enabled() ||
150 !kvm_arm_get_host_cpu_features(&arm_host_cpu_features)) {
151 /* We can't report this error yet, so flag that we need to
152 * in arm_cpu_realizefn().
154 cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
155 cpu->host_cpu_probe_failed = true;
156 return;
160 cpu->kvm_target = arm_host_cpu_features.target;
161 cpu->dtb_compatible = arm_host_cpu_features.dtb_compatible;
162 cpu->isar = arm_host_cpu_features.isar;
163 env->features = arm_host_cpu_features.features;
166 int kvm_arm_get_max_vm_ipa_size(MachineState *ms)
168 KVMState *s = KVM_STATE(ms->accelerator);
169 int ret;
171 ret = kvm_check_extension(s, KVM_CAP_ARM_VM_IPA_SIZE);
172 return ret > 0 ? ret : 40;
175 int kvm_arch_init(MachineState *ms, KVMState *s)
177 /* For ARM interrupt delivery is always asynchronous,
178 * whether we are using an in-kernel VGIC or not.
180 kvm_async_interrupts_allowed = true;
183 * PSCI wakes up secondary cores, so we always need to
184 * have vCPUs waiting in kernel space
186 kvm_halt_in_kernel_allowed = true;
188 cap_has_mp_state = kvm_check_extension(s, KVM_CAP_MP_STATE);
190 return 0;
193 unsigned long kvm_arch_vcpu_id(CPUState *cpu)
195 return cpu->cpu_index;
198 /* We track all the KVM devices which need their memory addresses
199 * passing to the kernel in a list of these structures.
200 * When board init is complete we run through the list and
201 * tell the kernel the base addresses of the memory regions.
202 * We use a MemoryListener to track mapping and unmapping of
203 * the regions during board creation, so the board models don't
204 * need to do anything special for the KVM case.
206 * Sometimes the address must be OR'ed with some other fields
207 * (for example for KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION).
208 * @kda_addr_ormask aims at storing the value of those fields.
210 typedef struct KVMDevice {
211 struct kvm_arm_device_addr kda;
212 struct kvm_device_attr kdattr;
213 uint64_t kda_addr_ormask;
214 MemoryRegion *mr;
215 QSLIST_ENTRY(KVMDevice) entries;
216 int dev_fd;
217 } KVMDevice;
219 static QSLIST_HEAD(, KVMDevice) kvm_devices_head;
221 static void kvm_arm_devlistener_add(MemoryListener *listener,
222 MemoryRegionSection *section)
224 KVMDevice *kd;
226 QSLIST_FOREACH(kd, &kvm_devices_head, entries) {
227 if (section->mr == kd->mr) {
228 kd->kda.addr = section->offset_within_address_space;
233 static void kvm_arm_devlistener_del(MemoryListener *listener,
234 MemoryRegionSection *section)
236 KVMDevice *kd;
238 QSLIST_FOREACH(kd, &kvm_devices_head, entries) {
239 if (section->mr == kd->mr) {
240 kd->kda.addr = -1;
245 static MemoryListener devlistener = {
246 .region_add = kvm_arm_devlistener_add,
247 .region_del = kvm_arm_devlistener_del,
250 static void kvm_arm_set_device_addr(KVMDevice *kd)
252 struct kvm_device_attr *attr = &kd->kdattr;
253 int ret;
255 /* If the device control API is available and we have a device fd on the
256 * KVMDevice struct, let's use the newer API
258 if (kd->dev_fd >= 0) {
259 uint64_t addr = kd->kda.addr;
261 addr |= kd->kda_addr_ormask;
262 attr->addr = (uintptr_t)&addr;
263 ret = kvm_device_ioctl(kd->dev_fd, KVM_SET_DEVICE_ATTR, attr);
264 } else {
265 ret = kvm_vm_ioctl(kvm_state, KVM_ARM_SET_DEVICE_ADDR, &kd->kda);
268 if (ret < 0) {
269 fprintf(stderr, "Failed to set device address: %s\n",
270 strerror(-ret));
271 abort();
275 static void kvm_arm_machine_init_done(Notifier *notifier, void *data)
277 KVMDevice *kd, *tkd;
279 QSLIST_FOREACH_SAFE(kd, &kvm_devices_head, entries, tkd) {
280 if (kd->kda.addr != -1) {
281 kvm_arm_set_device_addr(kd);
283 memory_region_unref(kd->mr);
284 QSLIST_REMOVE_HEAD(&kvm_devices_head, entries);
285 g_free(kd);
287 memory_listener_unregister(&devlistener);
290 static Notifier notify = {
291 .notify = kvm_arm_machine_init_done,
294 void kvm_arm_register_device(MemoryRegion *mr, uint64_t devid, uint64_t group,
295 uint64_t attr, int dev_fd, uint64_t addr_ormask)
297 KVMDevice *kd;
299 if (!kvm_irqchip_in_kernel()) {
300 return;
303 if (QSLIST_EMPTY(&kvm_devices_head)) {
304 memory_listener_register(&devlistener, &address_space_memory);
305 qemu_add_machine_init_done_notifier(&notify);
307 kd = g_new0(KVMDevice, 1);
308 kd->mr = mr;
309 kd->kda.id = devid;
310 kd->kda.addr = -1;
311 kd->kdattr.flags = 0;
312 kd->kdattr.group = group;
313 kd->kdattr.attr = attr;
314 kd->dev_fd = dev_fd;
315 kd->kda_addr_ormask = addr_ormask;
316 QSLIST_INSERT_HEAD(&kvm_devices_head, kd, entries);
317 memory_region_ref(kd->mr);
320 static int compare_u64(const void *a, const void *b)
322 if (*(uint64_t *)a > *(uint64_t *)b) {
323 return 1;
325 if (*(uint64_t *)a < *(uint64_t *)b) {
326 return -1;
328 return 0;
331 /* Initialize the ARMCPU cpreg list according to the kernel's
332 * definition of what CPU registers it knows about (and throw away
333 * the previous TCG-created cpreg list).
335 int kvm_arm_init_cpreg_list(ARMCPU *cpu)
337 struct kvm_reg_list rl;
338 struct kvm_reg_list *rlp;
339 int i, ret, arraylen;
340 CPUState *cs = CPU(cpu);
342 rl.n = 0;
343 ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, &rl);
344 if (ret != -E2BIG) {
345 return ret;
347 rlp = g_malloc(sizeof(struct kvm_reg_list) + rl.n * sizeof(uint64_t));
348 rlp->n = rl.n;
349 ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, rlp);
350 if (ret) {
351 goto out;
353 /* Sort the list we get back from the kernel, since cpreg_tuples
354 * must be in strictly ascending order.
356 qsort(&rlp->reg, rlp->n, sizeof(rlp->reg[0]), compare_u64);
358 for (i = 0, arraylen = 0; i < rlp->n; i++) {
359 if (!kvm_arm_reg_syncs_via_cpreg_list(rlp->reg[i])) {
360 continue;
362 switch (rlp->reg[i] & KVM_REG_SIZE_MASK) {
363 case KVM_REG_SIZE_U32:
364 case KVM_REG_SIZE_U64:
365 break;
366 default:
367 fprintf(stderr, "Can't handle size of register in kernel list\n");
368 ret = -EINVAL;
369 goto out;
372 arraylen++;
375 cpu->cpreg_indexes = g_renew(uint64_t, cpu->cpreg_indexes, arraylen);
376 cpu->cpreg_values = g_renew(uint64_t, cpu->cpreg_values, arraylen);
377 cpu->cpreg_vmstate_indexes = g_renew(uint64_t, cpu->cpreg_vmstate_indexes,
378 arraylen);
379 cpu->cpreg_vmstate_values = g_renew(uint64_t, cpu->cpreg_vmstate_values,
380 arraylen);
381 cpu->cpreg_array_len = arraylen;
382 cpu->cpreg_vmstate_array_len = arraylen;
384 for (i = 0, arraylen = 0; i < rlp->n; i++) {
385 uint64_t regidx = rlp->reg[i];
386 if (!kvm_arm_reg_syncs_via_cpreg_list(regidx)) {
387 continue;
389 cpu->cpreg_indexes[arraylen] = regidx;
390 arraylen++;
392 assert(cpu->cpreg_array_len == arraylen);
394 if (!write_kvmstate_to_list(cpu)) {
395 /* Shouldn't happen unless kernel is inconsistent about
396 * what registers exist.
398 fprintf(stderr, "Initial read of kernel register state failed\n");
399 ret = -EINVAL;
400 goto out;
403 out:
404 g_free(rlp);
405 return ret;
408 bool write_kvmstate_to_list(ARMCPU *cpu)
410 CPUState *cs = CPU(cpu);
411 int i;
412 bool ok = true;
414 for (i = 0; i < cpu->cpreg_array_len; i++) {
415 struct kvm_one_reg r;
416 uint64_t regidx = cpu->cpreg_indexes[i];
417 uint32_t v32;
418 int ret;
420 r.id = regidx;
422 switch (regidx & KVM_REG_SIZE_MASK) {
423 case KVM_REG_SIZE_U32:
424 r.addr = (uintptr_t)&v32;
425 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
426 if (!ret) {
427 cpu->cpreg_values[i] = v32;
429 break;
430 case KVM_REG_SIZE_U64:
431 r.addr = (uintptr_t)(cpu->cpreg_values + i);
432 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
433 break;
434 default:
435 abort();
437 if (ret) {
438 ok = false;
441 return ok;
444 bool write_list_to_kvmstate(ARMCPU *cpu, int level)
446 CPUState *cs = CPU(cpu);
447 int i;
448 bool ok = true;
450 for (i = 0; i < cpu->cpreg_array_len; i++) {
451 struct kvm_one_reg r;
452 uint64_t regidx = cpu->cpreg_indexes[i];
453 uint32_t v32;
454 int ret;
456 if (kvm_arm_cpreg_level(regidx) > level) {
457 continue;
460 r.id = regidx;
461 switch (regidx & KVM_REG_SIZE_MASK) {
462 case KVM_REG_SIZE_U32:
463 v32 = cpu->cpreg_values[i];
464 r.addr = (uintptr_t)&v32;
465 break;
466 case KVM_REG_SIZE_U64:
467 r.addr = (uintptr_t)(cpu->cpreg_values + i);
468 break;
469 default:
470 abort();
472 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
473 if (ret) {
474 /* We might fail for "unknown register" and also for
475 * "you tried to set a register which is constant with
476 * a different value from what it actually contains".
478 ok = false;
481 return ok;
484 void kvm_arm_reset_vcpu(ARMCPU *cpu)
486 int ret;
488 /* Re-init VCPU so that all registers are set to
489 * their respective reset values.
491 ret = kvm_arm_vcpu_init(CPU(cpu));
492 if (ret < 0) {
493 fprintf(stderr, "kvm_arm_vcpu_init failed: %s\n", strerror(-ret));
494 abort();
496 if (!write_kvmstate_to_list(cpu)) {
497 fprintf(stderr, "write_kvmstate_to_list failed\n");
498 abort();
501 * Sync the reset values also into the CPUState. This is necessary
502 * because the next thing we do will be a kvm_arch_put_registers()
503 * which will update the list values from the CPUState before copying
504 * the list values back to KVM. It's OK to ignore failure returns here
505 * for the same reason we do so in kvm_arch_get_registers().
507 write_list_to_cpustate(cpu);
511 * Update KVM's MP_STATE based on what QEMU thinks it is
513 int kvm_arm_sync_mpstate_to_kvm(ARMCPU *cpu)
515 if (cap_has_mp_state) {
516 struct kvm_mp_state mp_state = {
517 .mp_state = (cpu->power_state == PSCI_OFF) ?
518 KVM_MP_STATE_STOPPED : KVM_MP_STATE_RUNNABLE
520 int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
521 if (ret) {
522 fprintf(stderr, "%s: failed to set MP_STATE %d/%s\n",
523 __func__, ret, strerror(-ret));
524 return -1;
528 return 0;
532 * Sync the KVM MP_STATE into QEMU
534 int kvm_arm_sync_mpstate_to_qemu(ARMCPU *cpu)
536 if (cap_has_mp_state) {
537 struct kvm_mp_state mp_state;
538 int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MP_STATE, &mp_state);
539 if (ret) {
540 fprintf(stderr, "%s: failed to get MP_STATE %d/%s\n",
541 __func__, ret, strerror(-ret));
542 abort();
544 cpu->power_state = (mp_state.mp_state == KVM_MP_STATE_STOPPED) ?
545 PSCI_OFF : PSCI_ON;
548 return 0;
551 int kvm_put_vcpu_events(ARMCPU *cpu)
553 CPUARMState *env = &cpu->env;
554 struct kvm_vcpu_events events;
555 int ret;
557 if (!kvm_has_vcpu_events()) {
558 return 0;
561 memset(&events, 0, sizeof(events));
562 events.exception.serror_pending = env->serror.pending;
564 /* Inject SError to guest with specified syndrome if host kernel
565 * supports it, otherwise inject SError without syndrome.
567 if (cap_has_inject_serror_esr) {
568 events.exception.serror_has_esr = env->serror.has_esr;
569 events.exception.serror_esr = env->serror.esr;
572 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events);
573 if (ret) {
574 error_report("failed to put vcpu events");
577 return ret;
580 int kvm_get_vcpu_events(ARMCPU *cpu)
582 CPUARMState *env = &cpu->env;
583 struct kvm_vcpu_events events;
584 int ret;
586 if (!kvm_has_vcpu_events()) {
587 return 0;
590 memset(&events, 0, sizeof(events));
591 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events);
592 if (ret) {
593 error_report("failed to get vcpu events");
594 return ret;
597 env->serror.pending = events.exception.serror_pending;
598 env->serror.has_esr = events.exception.serror_has_esr;
599 env->serror.esr = events.exception.serror_esr;
601 return 0;
604 void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run)
608 MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run)
610 ARMCPU *cpu;
611 uint32_t switched_level;
613 if (kvm_irqchip_in_kernel()) {
615 * We only need to sync timer states with user-space interrupt
616 * controllers, so return early and save cycles if we don't.
618 return MEMTXATTRS_UNSPECIFIED;
621 cpu = ARM_CPU(cs);
623 /* Synchronize our shadowed in-kernel device irq lines with the kvm ones */
624 if (run->s.regs.device_irq_level != cpu->device_irq_level) {
625 switched_level = cpu->device_irq_level ^ run->s.regs.device_irq_level;
627 qemu_mutex_lock_iothread();
629 if (switched_level & KVM_ARM_DEV_EL1_VTIMER) {
630 qemu_set_irq(cpu->gt_timer_outputs[GTIMER_VIRT],
631 !!(run->s.regs.device_irq_level &
632 KVM_ARM_DEV_EL1_VTIMER));
633 switched_level &= ~KVM_ARM_DEV_EL1_VTIMER;
636 if (switched_level & KVM_ARM_DEV_EL1_PTIMER) {
637 qemu_set_irq(cpu->gt_timer_outputs[GTIMER_PHYS],
638 !!(run->s.regs.device_irq_level &
639 KVM_ARM_DEV_EL1_PTIMER));
640 switched_level &= ~KVM_ARM_DEV_EL1_PTIMER;
643 if (switched_level & KVM_ARM_DEV_PMU) {
644 qemu_set_irq(cpu->pmu_interrupt,
645 !!(run->s.regs.device_irq_level & KVM_ARM_DEV_PMU));
646 switched_level &= ~KVM_ARM_DEV_PMU;
649 if (switched_level) {
650 qemu_log_mask(LOG_UNIMP, "%s: unhandled in-kernel device IRQ %x\n",
651 __func__, switched_level);
654 /* We also mark unknown levels as processed to not waste cycles */
655 cpu->device_irq_level = run->s.regs.device_irq_level;
656 qemu_mutex_unlock_iothread();
659 return MEMTXATTRS_UNSPECIFIED;
663 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
665 int ret = 0;
667 switch (run->exit_reason) {
668 case KVM_EXIT_DEBUG:
669 if (kvm_arm_handle_debug(cs, &run->debug.arch)) {
670 ret = EXCP_DEBUG;
671 } /* otherwise return to guest */
672 break;
673 default:
674 qemu_log_mask(LOG_UNIMP, "%s: un-handled exit reason %d\n",
675 __func__, run->exit_reason);
676 break;
678 return ret;
681 bool kvm_arch_stop_on_emulation_error(CPUState *cs)
683 return true;
686 int kvm_arch_process_async_events(CPUState *cs)
688 return 0;
691 /* The #ifdef protections are until 32bit headers are imported and can
692 * be removed once both 32 and 64 bit reach feature parity.
694 void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg)
696 #ifdef KVM_GUESTDBG_USE_SW_BP
697 if (kvm_sw_breakpoints_active(cs)) {
698 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
700 #endif
701 #ifdef KVM_GUESTDBG_USE_HW
702 if (kvm_arm_hw_debug_active(cs)) {
703 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW;
704 kvm_arm_copy_hw_debug_data(&dbg->arch);
706 #endif
709 void kvm_arch_init_irq_routing(KVMState *s)
713 int kvm_arch_irqchip_create(MachineState *ms, KVMState *s)
715 if (machine_kernel_irqchip_split(ms)) {
716 perror("-machine kernel_irqchip=split is not supported on ARM.");
717 exit(1);
720 /* If we can create the VGIC using the newer device control API, we
721 * let the device do this when it initializes itself, otherwise we
722 * fall back to the old API */
723 return kvm_check_extension(s, KVM_CAP_DEVICE_CTRL);
726 int kvm_arm_vgic_probe(void)
728 if (kvm_create_device(kvm_state,
729 KVM_DEV_TYPE_ARM_VGIC_V3, true) == 0) {
730 return 3;
731 } else if (kvm_create_device(kvm_state,
732 KVM_DEV_TYPE_ARM_VGIC_V2, true) == 0) {
733 return 2;
734 } else {
735 return 0;
739 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
740 uint64_t address, uint32_t data, PCIDevice *dev)
742 AddressSpace *as = pci_device_iommu_address_space(dev);
743 hwaddr xlat, len, doorbell_gpa;
744 MemoryRegionSection mrs;
745 MemoryRegion *mr;
746 int ret = 1;
748 if (as == &address_space_memory) {
749 return 0;
752 /* MSI doorbell address is translated by an IOMMU */
754 rcu_read_lock();
755 mr = address_space_translate(as, address, &xlat, &len, true,
756 MEMTXATTRS_UNSPECIFIED);
757 if (!mr) {
758 goto unlock;
760 mrs = memory_region_find(mr, xlat, 1);
761 if (!mrs.mr) {
762 goto unlock;
765 doorbell_gpa = mrs.offset_within_address_space;
766 memory_region_unref(mrs.mr);
768 route->u.msi.address_lo = doorbell_gpa;
769 route->u.msi.address_hi = doorbell_gpa >> 32;
771 trace_kvm_arm_fixup_msi_route(address, doorbell_gpa);
773 ret = 0;
775 unlock:
776 rcu_read_unlock();
777 return ret;
780 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
781 int vector, PCIDevice *dev)
783 return 0;
786 int kvm_arch_release_virq_post(int virq)
788 return 0;
791 int kvm_arch_msi_data_to_gsi(uint32_t data)
793 return (data - 32) & 0xffff;