pc: memhp: move nvdimm hotplug out of memory hotplug
[qemu/kevin.git] / hw / acpi / nvdimm.c
blob5156565112d550c35f0f70ba20c751ff49135bfe
1 /*
2 * NVDIMM ACPI Implementation
4 * Copyright(C) 2015 Intel Corporation.
6 * Author:
7 * Xiao Guangrong <guangrong.xiao@linux.intel.com>
9 * NFIT is defined in ACPI 6.0: 5.2.25 NVDIMM Firmware Interface Table (NFIT)
10 * and the DSM specification can be found at:
11 * http://pmem.io/documents/NVDIMM_DSM_Interface_Example.pdf
13 * Currently, it only supports PMEM Virtualization.
15 * This library is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU Lesser General Public
17 * License as published by the Free Software Foundation; either
18 * version 2 of the License, or (at your option) any later version.
20 * This library is distributed in the hope that it will be useful,
21 * but WITHOUT ANY WARRANTY; without even the implied warranty of
22 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
23 * Lesser General Public License for more details.
25 * You should have received a copy of the GNU Lesser General Public
26 * License along with this library; if not, see <http://www.gnu.org/licenses/>
29 #include "qemu/osdep.h"
30 #include "hw/acpi/acpi.h"
31 #include "hw/acpi/aml-build.h"
32 #include "hw/acpi/bios-linker-loader.h"
33 #include "hw/nvram/fw_cfg.h"
34 #include "hw/mem/nvdimm.h"
36 static int nvdimm_plugged_device_list(Object *obj, void *opaque)
38 GSList **list = opaque;
40 if (object_dynamic_cast(obj, TYPE_NVDIMM)) {
41 *list = g_slist_append(*list, DEVICE(obj));
44 object_child_foreach(obj, nvdimm_plugged_device_list, opaque);
45 return 0;
49 * inquire plugged NVDIMM devices and link them into the list which is
50 * returned to the caller.
52 * Note: it is the caller's responsibility to free the list to avoid
53 * memory leak.
55 static GSList *nvdimm_get_plugged_device_list(void)
57 GSList *list = NULL;
59 object_child_foreach(qdev_get_machine(), nvdimm_plugged_device_list,
60 &list);
61 return list;
64 #define NVDIMM_UUID_LE(a, b, c, d0, d1, d2, d3, d4, d5, d6, d7) \
65 { (a) & 0xff, ((a) >> 8) & 0xff, ((a) >> 16) & 0xff, ((a) >> 24) & 0xff, \
66 (b) & 0xff, ((b) >> 8) & 0xff, (c) & 0xff, ((c) >> 8) & 0xff, \
67 (d0), (d1), (d2), (d3), (d4), (d5), (d6), (d7) }
70 * define Byte Addressable Persistent Memory (PM) Region according to
71 * ACPI 6.0: 5.2.25.1 System Physical Address Range Structure.
73 static const uint8_t nvdimm_nfit_spa_uuid[] =
74 NVDIMM_UUID_LE(0x66f0d379, 0xb4f3, 0x4074, 0xac, 0x43, 0x0d, 0x33,
75 0x18, 0xb7, 0x8c, 0xdb);
78 * NVDIMM Firmware Interface Table
79 * @signature: "NFIT"
81 * It provides information that allows OSPM to enumerate NVDIMM present in
82 * the platform and associate system physical address ranges created by the
83 * NVDIMMs.
85 * It is defined in ACPI 6.0: 5.2.25 NVDIMM Firmware Interface Table (NFIT)
87 struct NvdimmNfitHeader {
88 ACPI_TABLE_HEADER_DEF
89 uint32_t reserved;
90 } QEMU_PACKED;
91 typedef struct NvdimmNfitHeader NvdimmNfitHeader;
94 * define NFIT structures according to ACPI 6.0: 5.2.25 NVDIMM Firmware
95 * Interface Table (NFIT).
99 * System Physical Address Range Structure
101 * It describes the system physical address ranges occupied by NVDIMMs and
102 * the types of the regions.
104 struct NvdimmNfitSpa {
105 uint16_t type;
106 uint16_t length;
107 uint16_t spa_index;
108 uint16_t flags;
109 uint32_t reserved;
110 uint32_t proximity_domain;
111 uint8_t type_guid[16];
112 uint64_t spa_base;
113 uint64_t spa_length;
114 uint64_t mem_attr;
115 } QEMU_PACKED;
116 typedef struct NvdimmNfitSpa NvdimmNfitSpa;
119 * Memory Device to System Physical Address Range Mapping Structure
121 * It enables identifying each NVDIMM region and the corresponding SPA
122 * describing the memory interleave
124 struct NvdimmNfitMemDev {
125 uint16_t type;
126 uint16_t length;
127 uint32_t nfit_handle;
128 uint16_t phys_id;
129 uint16_t region_id;
130 uint16_t spa_index;
131 uint16_t dcr_index;
132 uint64_t region_len;
133 uint64_t region_offset;
134 uint64_t region_dpa;
135 uint16_t interleave_index;
136 uint16_t interleave_ways;
137 uint16_t flags;
138 uint16_t reserved;
139 } QEMU_PACKED;
140 typedef struct NvdimmNfitMemDev NvdimmNfitMemDev;
143 * NVDIMM Control Region Structure
145 * It describes the NVDIMM and if applicable, Block Control Window.
147 struct NvdimmNfitControlRegion {
148 uint16_t type;
149 uint16_t length;
150 uint16_t dcr_index;
151 uint16_t vendor_id;
152 uint16_t device_id;
153 uint16_t revision_id;
154 uint16_t sub_vendor_id;
155 uint16_t sub_device_id;
156 uint16_t sub_revision_id;
157 uint8_t reserved[6];
158 uint32_t serial_number;
159 uint16_t fic;
160 uint16_t num_bcw;
161 uint64_t bcw_size;
162 uint64_t cmd_offset;
163 uint64_t cmd_size;
164 uint64_t status_offset;
165 uint64_t status_size;
166 uint16_t flags;
167 uint8_t reserved2[6];
168 } QEMU_PACKED;
169 typedef struct NvdimmNfitControlRegion NvdimmNfitControlRegion;
172 * Module serial number is a unique number for each device. We use the
173 * slot id of NVDIMM device to generate this number so that each device
174 * associates with a different number.
176 * 0x123456 is a magic number we arbitrarily chose.
178 static uint32_t nvdimm_slot_to_sn(int slot)
180 return 0x123456 + slot;
184 * handle is used to uniquely associate nfit_memdev structure with NVDIMM
185 * ACPI device - nfit_memdev.nfit_handle matches with the value returned
186 * by ACPI device _ADR method.
188 * We generate the handle with the slot id of NVDIMM device and reserve
189 * 0 for NVDIMM root device.
191 static uint32_t nvdimm_slot_to_handle(int slot)
193 return slot + 1;
197 * index uniquely identifies the structure, 0 is reserved which indicates
198 * that the structure is not valid or the associated structure is not
199 * present.
201 * Each NVDIMM device needs two indexes, one for nfit_spa and another for
202 * nfit_dc which are generated by the slot id of NVDIMM device.
204 static uint16_t nvdimm_slot_to_spa_index(int slot)
206 return (slot + 1) << 1;
209 /* See the comments of nvdimm_slot_to_spa_index(). */
210 static uint32_t nvdimm_slot_to_dcr_index(int slot)
212 return nvdimm_slot_to_spa_index(slot) + 1;
215 static NVDIMMDevice *nvdimm_get_device_by_handle(uint32_t handle)
217 NVDIMMDevice *nvdimm = NULL;
218 GSList *list, *device_list = nvdimm_get_plugged_device_list();
220 for (list = device_list; list; list = list->next) {
221 NVDIMMDevice *nvd = list->data;
222 int slot = object_property_get_int(OBJECT(nvd), PC_DIMM_SLOT_PROP,
223 NULL);
225 if (nvdimm_slot_to_handle(slot) == handle) {
226 nvdimm = nvd;
227 break;
231 g_slist_free(device_list);
232 return nvdimm;
235 /* ACPI 6.0: 5.2.25.1 System Physical Address Range Structure */
236 static void
237 nvdimm_build_structure_spa(GArray *structures, DeviceState *dev)
239 NvdimmNfitSpa *nfit_spa;
240 uint64_t addr = object_property_get_int(OBJECT(dev), PC_DIMM_ADDR_PROP,
241 NULL);
242 uint64_t size = object_property_get_int(OBJECT(dev), PC_DIMM_SIZE_PROP,
243 NULL);
244 uint32_t node = object_property_get_int(OBJECT(dev), PC_DIMM_NODE_PROP,
245 NULL);
246 int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP,
247 NULL);
249 nfit_spa = acpi_data_push(structures, sizeof(*nfit_spa));
251 nfit_spa->type = cpu_to_le16(0 /* System Physical Address Range
252 Structure */);
253 nfit_spa->length = cpu_to_le16(sizeof(*nfit_spa));
254 nfit_spa->spa_index = cpu_to_le16(nvdimm_slot_to_spa_index(slot));
257 * Control region is strict as all the device info, such as SN, index,
258 * is associated with slot id.
260 nfit_spa->flags = cpu_to_le16(1 /* Control region is strictly for
261 management during hot add/online
262 operation */ |
263 2 /* Data in Proximity Domain field is
264 valid*/);
266 /* NUMA node. */
267 nfit_spa->proximity_domain = cpu_to_le32(node);
268 /* the region reported as PMEM. */
269 memcpy(nfit_spa->type_guid, nvdimm_nfit_spa_uuid,
270 sizeof(nvdimm_nfit_spa_uuid));
272 nfit_spa->spa_base = cpu_to_le64(addr);
273 nfit_spa->spa_length = cpu_to_le64(size);
275 /* It is the PMEM and can be cached as writeback. */
276 nfit_spa->mem_attr = cpu_to_le64(0x8ULL /* EFI_MEMORY_WB */ |
277 0x8000ULL /* EFI_MEMORY_NV */);
281 * ACPI 6.0: 5.2.25.2 Memory Device to System Physical Address Range Mapping
282 * Structure
284 static void
285 nvdimm_build_structure_memdev(GArray *structures, DeviceState *dev)
287 NvdimmNfitMemDev *nfit_memdev;
288 uint64_t size = object_property_get_int(OBJECT(dev), PC_DIMM_SIZE_PROP,
289 NULL);
290 int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP,
291 NULL);
292 uint32_t handle = nvdimm_slot_to_handle(slot);
294 nfit_memdev = acpi_data_push(structures, sizeof(*nfit_memdev));
296 nfit_memdev->type = cpu_to_le16(1 /* Memory Device to System Address
297 Range Map Structure*/);
298 nfit_memdev->length = cpu_to_le16(sizeof(*nfit_memdev));
299 nfit_memdev->nfit_handle = cpu_to_le32(handle);
302 * associate memory device with System Physical Address Range
303 * Structure.
305 nfit_memdev->spa_index = cpu_to_le16(nvdimm_slot_to_spa_index(slot));
306 /* associate memory device with Control Region Structure. */
307 nfit_memdev->dcr_index = cpu_to_le16(nvdimm_slot_to_dcr_index(slot));
309 /* The memory region on the device. */
310 nfit_memdev->region_len = cpu_to_le64(size);
311 /* The device address starts from 0. */
312 nfit_memdev->region_dpa = cpu_to_le64(0);
314 /* Only one interleave for PMEM. */
315 nfit_memdev->interleave_ways = cpu_to_le16(1);
319 * ACPI 6.0: 5.2.25.5 NVDIMM Control Region Structure.
321 static void nvdimm_build_structure_dcr(GArray *structures, DeviceState *dev)
323 NvdimmNfitControlRegion *nfit_dcr;
324 int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP,
325 NULL);
326 uint32_t sn = nvdimm_slot_to_sn(slot);
328 nfit_dcr = acpi_data_push(structures, sizeof(*nfit_dcr));
330 nfit_dcr->type = cpu_to_le16(4 /* NVDIMM Control Region Structure */);
331 nfit_dcr->length = cpu_to_le16(sizeof(*nfit_dcr));
332 nfit_dcr->dcr_index = cpu_to_le16(nvdimm_slot_to_dcr_index(slot));
334 /* vendor: Intel. */
335 nfit_dcr->vendor_id = cpu_to_le16(0x8086);
336 nfit_dcr->device_id = cpu_to_le16(1);
338 /* The _DSM method is following Intel's DSM specification. */
339 nfit_dcr->revision_id = cpu_to_le16(1 /* Current Revision supported
340 in ACPI 6.0 is 1. */);
341 nfit_dcr->serial_number = cpu_to_le32(sn);
342 nfit_dcr->fic = cpu_to_le16(0x201 /* Format Interface Code. See Chapter
343 2: NVDIMM Device Specific Method
344 (DSM) in DSM Spec Rev1.*/);
347 static GArray *nvdimm_build_device_structure(void)
349 GSList *device_list = nvdimm_get_plugged_device_list();
350 GArray *structures = g_array_new(false, true /* clear */, 1);
352 for (; device_list; device_list = device_list->next) {
353 DeviceState *dev = device_list->data;
355 /* build System Physical Address Range Structure. */
356 nvdimm_build_structure_spa(structures, dev);
359 * build Memory Device to System Physical Address Range Mapping
360 * Structure.
362 nvdimm_build_structure_memdev(structures, dev);
364 /* build NVDIMM Control Region Structure. */
365 nvdimm_build_structure_dcr(structures, dev);
367 g_slist_free(device_list);
369 return structures;
372 static void nvdimm_init_fit_buffer(NvdimmFitBuffer *fit_buf)
374 fit_buf->fit = g_array_new(false, true /* clear */, 1);
377 static void nvdimm_build_fit_buffer(NvdimmFitBuffer *fit_buf)
379 g_array_free(fit_buf->fit, true);
380 fit_buf->fit = nvdimm_build_device_structure();
381 fit_buf->dirty = true;
384 void nvdimm_acpi_hotplug(AcpiNVDIMMState *state)
386 nvdimm_build_fit_buffer(&state->fit_buf);
389 static void nvdimm_build_nfit(AcpiNVDIMMState *state, GArray *table_offsets,
390 GArray *table_data, BIOSLinker *linker)
392 NvdimmFitBuffer *fit_buf = &state->fit_buf;
393 unsigned int header;
396 /* NVDIMM device is not plugged? */
397 if (!fit_buf->fit->len) {
398 return;
401 acpi_add_table(table_offsets, table_data);
403 /* NFIT header. */
404 header = table_data->len;
405 acpi_data_push(table_data, sizeof(NvdimmNfitHeader));
406 /* NVDIMM device structures. */
407 g_array_append_vals(table_data, fit_buf->fit->data, fit_buf->fit->len);
409 build_header(linker, table_data,
410 (void *)(table_data->data + header), "NFIT",
411 sizeof(NvdimmNfitHeader) + fit_buf->fit->len, 1, NULL, NULL);
414 struct NvdimmDsmIn {
415 uint32_t handle;
416 uint32_t revision;
417 uint32_t function;
418 /* the remaining size in the page is used by arg3. */
419 union {
420 uint8_t arg3[4084];
422 } QEMU_PACKED;
423 typedef struct NvdimmDsmIn NvdimmDsmIn;
424 QEMU_BUILD_BUG_ON(sizeof(NvdimmDsmIn) != 4096);
426 struct NvdimmDsmOut {
427 /* the size of buffer filled by QEMU. */
428 uint32_t len;
429 uint8_t data[4092];
430 } QEMU_PACKED;
431 typedef struct NvdimmDsmOut NvdimmDsmOut;
432 QEMU_BUILD_BUG_ON(sizeof(NvdimmDsmOut) != 4096);
434 struct NvdimmDsmFunc0Out {
435 /* the size of buffer filled by QEMU. */
436 uint32_t len;
437 uint32_t supported_func;
438 } QEMU_PACKED;
439 typedef struct NvdimmDsmFunc0Out NvdimmDsmFunc0Out;
441 struct NvdimmDsmFuncNoPayloadOut {
442 /* the size of buffer filled by QEMU. */
443 uint32_t len;
444 uint32_t func_ret_status;
445 } QEMU_PACKED;
446 typedef struct NvdimmDsmFuncNoPayloadOut NvdimmDsmFuncNoPayloadOut;
448 struct NvdimmFuncGetLabelSizeOut {
449 /* the size of buffer filled by QEMU. */
450 uint32_t len;
451 uint32_t func_ret_status; /* return status code. */
452 uint32_t label_size; /* the size of label data area. */
454 * Maximum size of the namespace label data length supported by
455 * the platform in Get/Set Namespace Label Data functions.
457 uint32_t max_xfer;
458 } QEMU_PACKED;
459 typedef struct NvdimmFuncGetLabelSizeOut NvdimmFuncGetLabelSizeOut;
460 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncGetLabelSizeOut) > 4096);
462 struct NvdimmFuncGetLabelDataIn {
463 uint32_t offset; /* the offset in the namespace label data area. */
464 uint32_t length; /* the size of data is to be read via the function. */
465 } QEMU_PACKED;
466 typedef struct NvdimmFuncGetLabelDataIn NvdimmFuncGetLabelDataIn;
467 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncGetLabelDataIn) +
468 offsetof(NvdimmDsmIn, arg3) > 4096);
470 struct NvdimmFuncGetLabelDataOut {
471 /* the size of buffer filled by QEMU. */
472 uint32_t len;
473 uint32_t func_ret_status; /* return status code. */
474 uint8_t out_buf[0]; /* the data got via Get Namesapce Label function. */
475 } QEMU_PACKED;
476 typedef struct NvdimmFuncGetLabelDataOut NvdimmFuncGetLabelDataOut;
477 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncGetLabelDataOut) > 4096);
479 struct NvdimmFuncSetLabelDataIn {
480 uint32_t offset; /* the offset in the namespace label data area. */
481 uint32_t length; /* the size of data is to be written via the function. */
482 uint8_t in_buf[0]; /* the data written to label data area. */
483 } QEMU_PACKED;
484 typedef struct NvdimmFuncSetLabelDataIn NvdimmFuncSetLabelDataIn;
485 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncSetLabelDataIn) +
486 offsetof(NvdimmDsmIn, arg3) > 4096);
488 struct NvdimmFuncReadFITIn {
489 uint32_t offset; /* the offset of FIT buffer. */
490 } QEMU_PACKED;
491 typedef struct NvdimmFuncReadFITIn NvdimmFuncReadFITIn;
492 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncReadFITIn) +
493 offsetof(NvdimmDsmIn, arg3) > 4096);
495 struct NvdimmFuncReadFITOut {
496 /* the size of buffer filled by QEMU. */
497 uint32_t len;
498 uint32_t func_ret_status; /* return status code. */
499 uint8_t fit[0]; /* the FIT data. */
500 } QEMU_PACKED;
501 typedef struct NvdimmFuncReadFITOut NvdimmFuncReadFITOut;
502 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncReadFITOut) > 4096);
504 static void
505 nvdimm_dsm_function0(uint32_t supported_func, hwaddr dsm_mem_addr)
507 NvdimmDsmFunc0Out func0 = {
508 .len = cpu_to_le32(sizeof(func0)),
509 .supported_func = cpu_to_le32(supported_func),
511 cpu_physical_memory_write(dsm_mem_addr, &func0, sizeof(func0));
514 static void
515 nvdimm_dsm_no_payload(uint32_t func_ret_status, hwaddr dsm_mem_addr)
517 NvdimmDsmFuncNoPayloadOut out = {
518 .len = cpu_to_le32(sizeof(out)),
519 .func_ret_status = cpu_to_le32(func_ret_status),
521 cpu_physical_memory_write(dsm_mem_addr, &out, sizeof(out));
524 #define NVDIMM_QEMU_RSVD_HANDLE_ROOT 0x10000
526 /* Read FIT data, defined in docs/specs/acpi_nvdimm.txt. */
527 static void nvdimm_dsm_func_read_fit(AcpiNVDIMMState *state, NvdimmDsmIn *in,
528 hwaddr dsm_mem_addr)
530 NvdimmFitBuffer *fit_buf = &state->fit_buf;
531 NvdimmFuncReadFITIn *read_fit;
532 NvdimmFuncReadFITOut *read_fit_out;
533 GArray *fit;
534 uint32_t read_len = 0, func_ret_status;
535 int size;
537 read_fit = (NvdimmFuncReadFITIn *)in->arg3;
538 le32_to_cpus(&read_fit->offset);
540 fit = fit_buf->fit;
542 nvdimm_debug("Read FIT: offset %#x FIT size %#x Dirty %s.\n",
543 read_fit->offset, fit->len, fit_buf->dirty ? "Yes" : "No");
545 if (read_fit->offset > fit->len) {
546 func_ret_status = 3 /* Invalid Input Parameters */;
547 goto exit;
550 /* It is the first time to read FIT. */
551 if (!read_fit->offset) {
552 fit_buf->dirty = false;
553 } else if (fit_buf->dirty) { /* FIT has been changed during RFIT. */
554 func_ret_status = 0x100 /* fit changed */;
555 goto exit;
558 func_ret_status = 0 /* Success */;
559 read_len = MIN(fit->len - read_fit->offset,
560 4096 - sizeof(NvdimmFuncReadFITOut));
562 exit:
563 size = sizeof(NvdimmFuncReadFITOut) + read_len;
564 read_fit_out = g_malloc(size);
566 read_fit_out->len = cpu_to_le32(size);
567 read_fit_out->func_ret_status = cpu_to_le32(func_ret_status);
568 memcpy(read_fit_out->fit, fit->data + read_fit->offset, read_len);
570 cpu_physical_memory_write(dsm_mem_addr, read_fit_out, size);
572 g_free(read_fit_out);
575 static void nvdimm_dsm_reserved_root(AcpiNVDIMMState *state, NvdimmDsmIn *in,
576 hwaddr dsm_mem_addr)
578 switch (in->function) {
579 case 0x0:
580 nvdimm_dsm_function0(0x1 | 1 << 1 /* Read FIT */, dsm_mem_addr);
581 return;
582 case 0x1 /*Read FIT */:
583 nvdimm_dsm_func_read_fit(state, in, dsm_mem_addr);
584 return;
587 nvdimm_dsm_no_payload(1 /* Not Supported */, dsm_mem_addr);
590 static void nvdimm_dsm_root(NvdimmDsmIn *in, hwaddr dsm_mem_addr)
593 * function 0 is called to inquire which functions are supported by
594 * OSPM
596 if (!in->function) {
597 nvdimm_dsm_function0(0 /* No function supported other than
598 function 0 */, dsm_mem_addr);
599 return;
602 /* No function except function 0 is supported yet. */
603 nvdimm_dsm_no_payload(1 /* Not Supported */, dsm_mem_addr);
607 * the max transfer size is the max size transferred by both a
608 * 'Get Namespace Label Data' function and a 'Set Namespace Label Data'
609 * function.
611 static uint32_t nvdimm_get_max_xfer_label_size(void)
613 uint32_t max_get_size, max_set_size, dsm_memory_size = 4096;
616 * the max data ACPI can read one time which is transferred by
617 * the response of 'Get Namespace Label Data' function.
619 max_get_size = dsm_memory_size - sizeof(NvdimmFuncGetLabelDataOut);
622 * the max data ACPI can write one time which is transferred by
623 * 'Set Namespace Label Data' function.
625 max_set_size = dsm_memory_size - offsetof(NvdimmDsmIn, arg3) -
626 sizeof(NvdimmFuncSetLabelDataIn);
628 return MIN(max_get_size, max_set_size);
632 * DSM Spec Rev1 4.4 Get Namespace Label Size (Function Index 4).
634 * It gets the size of Namespace Label data area and the max data size
635 * that Get/Set Namespace Label Data functions can transfer.
637 static void nvdimm_dsm_label_size(NVDIMMDevice *nvdimm, hwaddr dsm_mem_addr)
639 NvdimmFuncGetLabelSizeOut label_size_out = {
640 .len = cpu_to_le32(sizeof(label_size_out)),
642 uint32_t label_size, mxfer;
644 label_size = nvdimm->label_size;
645 mxfer = nvdimm_get_max_xfer_label_size();
647 nvdimm_debug("label_size %#x, max_xfer %#x.\n", label_size, mxfer);
649 label_size_out.func_ret_status = cpu_to_le32(0 /* Success */);
650 label_size_out.label_size = cpu_to_le32(label_size);
651 label_size_out.max_xfer = cpu_to_le32(mxfer);
653 cpu_physical_memory_write(dsm_mem_addr, &label_size_out,
654 sizeof(label_size_out));
657 static uint32_t nvdimm_rw_label_data_check(NVDIMMDevice *nvdimm,
658 uint32_t offset, uint32_t length)
660 uint32_t ret = 3 /* Invalid Input Parameters */;
662 if (offset + length < offset) {
663 nvdimm_debug("offset %#x + length %#x is overflow.\n", offset,
664 length);
665 return ret;
668 if (nvdimm->label_size < offset + length) {
669 nvdimm_debug("position %#x is beyond label data (len = %" PRIx64 ").\n",
670 offset + length, nvdimm->label_size);
671 return ret;
674 if (length > nvdimm_get_max_xfer_label_size()) {
675 nvdimm_debug("length (%#x) is larger than max_xfer (%#x).\n",
676 length, nvdimm_get_max_xfer_label_size());
677 return ret;
680 return 0 /* Success */;
684 * DSM Spec Rev1 4.5 Get Namespace Label Data (Function Index 5).
686 static void nvdimm_dsm_get_label_data(NVDIMMDevice *nvdimm, NvdimmDsmIn *in,
687 hwaddr dsm_mem_addr)
689 NVDIMMClass *nvc = NVDIMM_GET_CLASS(nvdimm);
690 NvdimmFuncGetLabelDataIn *get_label_data;
691 NvdimmFuncGetLabelDataOut *get_label_data_out;
692 uint32_t status;
693 int size;
695 get_label_data = (NvdimmFuncGetLabelDataIn *)in->arg3;
696 le32_to_cpus(&get_label_data->offset);
697 le32_to_cpus(&get_label_data->length);
699 nvdimm_debug("Read Label Data: offset %#x length %#x.\n",
700 get_label_data->offset, get_label_data->length);
702 status = nvdimm_rw_label_data_check(nvdimm, get_label_data->offset,
703 get_label_data->length);
704 if (status != 0 /* Success */) {
705 nvdimm_dsm_no_payload(status, dsm_mem_addr);
706 return;
709 size = sizeof(*get_label_data_out) + get_label_data->length;
710 assert(size <= 4096);
711 get_label_data_out = g_malloc(size);
713 get_label_data_out->len = cpu_to_le32(size);
714 get_label_data_out->func_ret_status = cpu_to_le32(0 /* Success */);
715 nvc->read_label_data(nvdimm, get_label_data_out->out_buf,
716 get_label_data->length, get_label_data->offset);
718 cpu_physical_memory_write(dsm_mem_addr, get_label_data_out, size);
719 g_free(get_label_data_out);
723 * DSM Spec Rev1 4.6 Set Namespace Label Data (Function Index 6).
725 static void nvdimm_dsm_set_label_data(NVDIMMDevice *nvdimm, NvdimmDsmIn *in,
726 hwaddr dsm_mem_addr)
728 NVDIMMClass *nvc = NVDIMM_GET_CLASS(nvdimm);
729 NvdimmFuncSetLabelDataIn *set_label_data;
730 uint32_t status;
732 set_label_data = (NvdimmFuncSetLabelDataIn *)in->arg3;
734 le32_to_cpus(&set_label_data->offset);
735 le32_to_cpus(&set_label_data->length);
737 nvdimm_debug("Write Label Data: offset %#x length %#x.\n",
738 set_label_data->offset, set_label_data->length);
740 status = nvdimm_rw_label_data_check(nvdimm, set_label_data->offset,
741 set_label_data->length);
742 if (status != 0 /* Success */) {
743 nvdimm_dsm_no_payload(status, dsm_mem_addr);
744 return;
747 assert(offsetof(NvdimmDsmIn, arg3) +
748 sizeof(*set_label_data) + set_label_data->length <= 4096);
750 nvc->write_label_data(nvdimm, set_label_data->in_buf,
751 set_label_data->length, set_label_data->offset);
752 nvdimm_dsm_no_payload(0 /* Success */, dsm_mem_addr);
755 static void nvdimm_dsm_device(NvdimmDsmIn *in, hwaddr dsm_mem_addr)
757 NVDIMMDevice *nvdimm = nvdimm_get_device_by_handle(in->handle);
759 /* See the comments in nvdimm_dsm_root(). */
760 if (!in->function) {
761 uint32_t supported_func = 0;
763 if (nvdimm && nvdimm->label_size) {
764 supported_func |= 0x1 /* Bit 0 indicates whether there is
765 support for any functions other
766 than function 0. */ |
767 1 << 4 /* Get Namespace Label Size */ |
768 1 << 5 /* Get Namespace Label Data */ |
769 1 << 6 /* Set Namespace Label Data */;
771 nvdimm_dsm_function0(supported_func, dsm_mem_addr);
772 return;
775 if (!nvdimm) {
776 nvdimm_dsm_no_payload(2 /* Non-Existing Memory Device */,
777 dsm_mem_addr);
778 return;
781 /* Encode DSM function according to DSM Spec Rev1. */
782 switch (in->function) {
783 case 4 /* Get Namespace Label Size */:
784 if (nvdimm->label_size) {
785 nvdimm_dsm_label_size(nvdimm, dsm_mem_addr);
786 return;
788 break;
789 case 5 /* Get Namespace Label Data */:
790 if (nvdimm->label_size) {
791 nvdimm_dsm_get_label_data(nvdimm, in, dsm_mem_addr);
792 return;
794 break;
795 case 0x6 /* Set Namespace Label Data */:
796 if (nvdimm->label_size) {
797 nvdimm_dsm_set_label_data(nvdimm, in, dsm_mem_addr);
798 return;
800 break;
803 nvdimm_dsm_no_payload(1 /* Not Supported */, dsm_mem_addr);
806 static uint64_t
807 nvdimm_dsm_read(void *opaque, hwaddr addr, unsigned size)
809 nvdimm_debug("BUG: we never read _DSM IO Port.\n");
810 return 0;
813 static void
814 nvdimm_dsm_write(void *opaque, hwaddr addr, uint64_t val, unsigned size)
816 AcpiNVDIMMState *state = opaque;
817 NvdimmDsmIn *in;
818 hwaddr dsm_mem_addr = val;
820 nvdimm_debug("dsm memory address %#" HWADDR_PRIx ".\n", dsm_mem_addr);
823 * The DSM memory is mapped to guest address space so an evil guest
824 * can change its content while we are doing DSM emulation. Avoid
825 * this by copying DSM memory to QEMU local memory.
827 in = g_new(NvdimmDsmIn, 1);
828 cpu_physical_memory_read(dsm_mem_addr, in, sizeof(*in));
830 le32_to_cpus(&in->revision);
831 le32_to_cpus(&in->function);
832 le32_to_cpus(&in->handle);
834 nvdimm_debug("Revision %#x Handler %#x Function %#x.\n", in->revision,
835 in->handle, in->function);
837 if (in->revision != 0x1 /* Currently we only support DSM Spec Rev1. */) {
838 nvdimm_debug("Revision %#x is not supported, expect %#x.\n",
839 in->revision, 0x1);
840 nvdimm_dsm_no_payload(1 /* Not Supported */, dsm_mem_addr);
841 goto exit;
844 if (in->handle == NVDIMM_QEMU_RSVD_HANDLE_ROOT) {
845 nvdimm_dsm_reserved_root(state, in, dsm_mem_addr);
846 goto exit;
849 /* Handle 0 is reserved for NVDIMM Root Device. */
850 if (!in->handle) {
851 nvdimm_dsm_root(in, dsm_mem_addr);
852 goto exit;
855 nvdimm_dsm_device(in, dsm_mem_addr);
857 exit:
858 g_free(in);
861 static const MemoryRegionOps nvdimm_dsm_ops = {
862 .read = nvdimm_dsm_read,
863 .write = nvdimm_dsm_write,
864 .endianness = DEVICE_LITTLE_ENDIAN,
865 .valid = {
866 .min_access_size = 4,
867 .max_access_size = 4,
871 void nvdimm_acpi_plug_cb(HotplugHandler *hotplug_dev, DeviceState *dev)
873 if (dev->hotplugged) {
874 acpi_send_event(DEVICE(hotplug_dev), ACPI_NVDIMM_HOTPLUG_STATUS);
878 void nvdimm_init_acpi_state(AcpiNVDIMMState *state, MemoryRegion *io,
879 FWCfgState *fw_cfg, Object *owner)
881 memory_region_init_io(&state->io_mr, owner, &nvdimm_dsm_ops, state,
882 "nvdimm-acpi-io", NVDIMM_ACPI_IO_LEN);
883 memory_region_add_subregion(io, NVDIMM_ACPI_IO_BASE, &state->io_mr);
885 state->dsm_mem = g_array_new(false, true /* clear */, 1);
886 acpi_data_push(state->dsm_mem, sizeof(NvdimmDsmIn));
887 fw_cfg_add_file(fw_cfg, NVDIMM_DSM_MEM_FILE, state->dsm_mem->data,
888 state->dsm_mem->len);
890 nvdimm_init_fit_buffer(&state->fit_buf);
893 #define NVDIMM_COMMON_DSM "NCAL"
894 #define NVDIMM_ACPI_MEM_ADDR "MEMA"
896 #define NVDIMM_DSM_MEMORY "NRAM"
897 #define NVDIMM_DSM_IOPORT "NPIO"
899 #define NVDIMM_DSM_NOTIFY "NTFI"
900 #define NVDIMM_DSM_HANDLE "HDLE"
901 #define NVDIMM_DSM_REVISION "REVS"
902 #define NVDIMM_DSM_FUNCTION "FUNC"
903 #define NVDIMM_DSM_ARG3 "FARG"
905 #define NVDIMM_DSM_OUT_BUF_SIZE "RLEN"
906 #define NVDIMM_DSM_OUT_BUF "ODAT"
908 #define NVDIMM_DSM_RFIT_STATUS "RSTA"
910 #define NVDIMM_QEMU_RSVD_UUID "648B9CF2-CDA1-4312-8AD9-49C4AF32BD62"
912 static void nvdimm_build_common_dsm(Aml *dev)
914 Aml *method, *ifctx, *function, *handle, *uuid, *dsm_mem, *elsectx2;
915 Aml *elsectx, *unsupport, *unpatched, *expected_uuid, *uuid_invalid;
916 Aml *pckg, *pckg_index, *pckg_buf, *field, *dsm_out_buf, *dsm_out_buf_size;
917 uint8_t byte_list[1];
919 method = aml_method(NVDIMM_COMMON_DSM, 5, AML_SERIALIZED);
920 uuid = aml_arg(0);
921 function = aml_arg(2);
922 handle = aml_arg(4);
923 dsm_mem = aml_local(6);
924 dsm_out_buf = aml_local(7);
926 aml_append(method, aml_store(aml_name(NVDIMM_ACPI_MEM_ADDR), dsm_mem));
928 /* map DSM memory and IO into ACPI namespace. */
929 aml_append(method, aml_operation_region(NVDIMM_DSM_IOPORT, AML_SYSTEM_IO,
930 aml_int(NVDIMM_ACPI_IO_BASE), NVDIMM_ACPI_IO_LEN));
931 aml_append(method, aml_operation_region(NVDIMM_DSM_MEMORY,
932 AML_SYSTEM_MEMORY, dsm_mem, sizeof(NvdimmDsmIn)));
935 * DSM notifier:
936 * NVDIMM_DSM_NOTIFY: write the address of DSM memory and notify QEMU to
937 * emulate the access.
939 * It is the IO port so that accessing them will cause VM-exit, the
940 * control will be transferred to QEMU.
942 field = aml_field(NVDIMM_DSM_IOPORT, AML_DWORD_ACC, AML_NOLOCK,
943 AML_PRESERVE);
944 aml_append(field, aml_named_field(NVDIMM_DSM_NOTIFY,
945 sizeof(uint32_t) * BITS_PER_BYTE));
946 aml_append(method, field);
949 * DSM input:
950 * NVDIMM_DSM_HANDLE: store device's handle, it's zero if the _DSM call
951 * happens on NVDIMM Root Device.
952 * NVDIMM_DSM_REVISION: store the Arg1 of _DSM call.
953 * NVDIMM_DSM_FUNCTION: store the Arg2 of _DSM call.
954 * NVDIMM_DSM_ARG3: store the Arg3 of _DSM call which is a Package
955 * containing function-specific arguments.
957 * They are RAM mapping on host so that these accesses never cause
958 * VM-EXIT.
960 field = aml_field(NVDIMM_DSM_MEMORY, AML_DWORD_ACC, AML_NOLOCK,
961 AML_PRESERVE);
962 aml_append(field, aml_named_field(NVDIMM_DSM_HANDLE,
963 sizeof(typeof_field(NvdimmDsmIn, handle)) * BITS_PER_BYTE));
964 aml_append(field, aml_named_field(NVDIMM_DSM_REVISION,
965 sizeof(typeof_field(NvdimmDsmIn, revision)) * BITS_PER_BYTE));
966 aml_append(field, aml_named_field(NVDIMM_DSM_FUNCTION,
967 sizeof(typeof_field(NvdimmDsmIn, function)) * BITS_PER_BYTE));
968 aml_append(field, aml_named_field(NVDIMM_DSM_ARG3,
969 (sizeof(NvdimmDsmIn) - offsetof(NvdimmDsmIn, arg3)) * BITS_PER_BYTE));
970 aml_append(method, field);
973 * DSM output:
974 * NVDIMM_DSM_OUT_BUF_SIZE: the size of the buffer filled by QEMU.
975 * NVDIMM_DSM_OUT_BUF: the buffer QEMU uses to store the result.
977 * Since the page is reused by both input and out, the input data
978 * will be lost after storing new result into ODAT so we should fetch
979 * all the input data before writing the result.
981 field = aml_field(NVDIMM_DSM_MEMORY, AML_DWORD_ACC, AML_NOLOCK,
982 AML_PRESERVE);
983 aml_append(field, aml_named_field(NVDIMM_DSM_OUT_BUF_SIZE,
984 sizeof(typeof_field(NvdimmDsmOut, len)) * BITS_PER_BYTE));
985 aml_append(field, aml_named_field(NVDIMM_DSM_OUT_BUF,
986 (sizeof(NvdimmDsmOut) - offsetof(NvdimmDsmOut, data)) * BITS_PER_BYTE));
987 aml_append(method, field);
990 * do not support any method if DSM memory address has not been
991 * patched.
993 unpatched = aml_equal(dsm_mem, aml_int(0x0));
995 expected_uuid = aml_local(0);
997 ifctx = aml_if(aml_equal(handle, aml_int(0x0)));
998 aml_append(ifctx, aml_store(
999 aml_touuid("2F10E7A4-9E91-11E4-89D3-123B93F75CBA")
1000 /* UUID for NVDIMM Root Device */, expected_uuid));
1001 aml_append(method, ifctx);
1002 elsectx = aml_else();
1003 ifctx = aml_if(aml_equal(handle, aml_int(NVDIMM_QEMU_RSVD_HANDLE_ROOT)));
1004 aml_append(ifctx, aml_store(aml_touuid(NVDIMM_QEMU_RSVD_UUID
1005 /* UUID for QEMU internal use */), expected_uuid));
1006 aml_append(elsectx, ifctx);
1007 elsectx2 = aml_else();
1008 aml_append(elsectx2, aml_store(
1009 aml_touuid("4309AC30-0D11-11E4-9191-0800200C9A66")
1010 /* UUID for NVDIMM Devices */, expected_uuid));
1011 aml_append(elsectx, elsectx2);
1012 aml_append(method, elsectx);
1014 uuid_invalid = aml_lnot(aml_equal(uuid, expected_uuid));
1016 unsupport = aml_if(aml_or(unpatched, uuid_invalid, NULL));
1019 * function 0 is called to inquire what functions are supported by
1020 * OSPM
1022 ifctx = aml_if(aml_equal(function, aml_int(0)));
1023 byte_list[0] = 0 /* No function Supported */;
1024 aml_append(ifctx, aml_return(aml_buffer(1, byte_list)));
1025 aml_append(unsupport, ifctx);
1027 /* No function is supported yet. */
1028 byte_list[0] = 1 /* Not Supported */;
1029 aml_append(unsupport, aml_return(aml_buffer(1, byte_list)));
1030 aml_append(method, unsupport);
1033 * The HDLE indicates the DSM function is issued from which device,
1034 * it reserves 0 for root device and is the handle for NVDIMM devices.
1035 * See the comments in nvdimm_slot_to_handle().
1037 aml_append(method, aml_store(handle, aml_name(NVDIMM_DSM_HANDLE)));
1038 aml_append(method, aml_store(aml_arg(1), aml_name(NVDIMM_DSM_REVISION)));
1039 aml_append(method, aml_store(aml_arg(2), aml_name(NVDIMM_DSM_FUNCTION)));
1042 * The fourth parameter (Arg3) of _DSM is a package which contains
1043 * a buffer, the layout of the buffer is specified by UUID (Arg0),
1044 * Revision ID (Arg1) and Function Index (Arg2) which are documented
1045 * in the DSM Spec.
1047 pckg = aml_arg(3);
1048 ifctx = aml_if(aml_and(aml_equal(aml_object_type(pckg),
1049 aml_int(4 /* Package */)) /* It is a Package? */,
1050 aml_equal(aml_sizeof(pckg), aml_int(1)) /* 1 element? */,
1051 NULL));
1053 pckg_index = aml_local(2);
1054 pckg_buf = aml_local(3);
1055 aml_append(ifctx, aml_store(aml_index(pckg, aml_int(0)), pckg_index));
1056 aml_append(ifctx, aml_store(aml_derefof(pckg_index), pckg_buf));
1057 aml_append(ifctx, aml_store(pckg_buf, aml_name(NVDIMM_DSM_ARG3)));
1058 aml_append(method, ifctx);
1061 * tell QEMU about the real address of DSM memory, then QEMU
1062 * gets the control and fills the result in DSM memory.
1064 aml_append(method, aml_store(dsm_mem, aml_name(NVDIMM_DSM_NOTIFY)));
1066 dsm_out_buf_size = aml_local(1);
1067 /* RLEN is not included in the payload returned to guest. */
1068 aml_append(method, aml_subtract(aml_name(NVDIMM_DSM_OUT_BUF_SIZE),
1069 aml_int(4), dsm_out_buf_size));
1070 aml_append(method, aml_store(aml_shiftleft(dsm_out_buf_size, aml_int(3)),
1071 dsm_out_buf_size));
1072 aml_append(method, aml_create_field(aml_name(NVDIMM_DSM_OUT_BUF),
1073 aml_int(0), dsm_out_buf_size, "OBUF"));
1074 aml_append(method, aml_concatenate(aml_buffer(0, NULL), aml_name("OBUF"),
1075 dsm_out_buf));
1076 aml_append(method, aml_return(dsm_out_buf));
1077 aml_append(dev, method);
1080 static void nvdimm_build_device_dsm(Aml *dev, uint32_t handle)
1082 Aml *method;
1084 method = aml_method("_DSM", 4, AML_NOTSERIALIZED);
1085 aml_append(method, aml_return(aml_call5(NVDIMM_COMMON_DSM, aml_arg(0),
1086 aml_arg(1), aml_arg(2), aml_arg(3),
1087 aml_int(handle))));
1088 aml_append(dev, method);
1091 static void nvdimm_build_fit(Aml *dev)
1093 Aml *method, *pkg, *buf, *buf_size, *offset, *call_result;
1094 Aml *whilectx, *ifcond, *ifctx, *elsectx, *fit;
1096 buf = aml_local(0);
1097 buf_size = aml_local(1);
1098 fit = aml_local(2);
1100 aml_append(dev, aml_create_dword_field(aml_buffer(4, NULL),
1101 aml_int(0), NVDIMM_DSM_RFIT_STATUS));
1103 /* build helper function, RFIT. */
1104 method = aml_method("RFIT", 1, AML_SERIALIZED);
1105 aml_append(method, aml_create_dword_field(aml_buffer(4, NULL),
1106 aml_int(0), "OFST"));
1108 /* prepare input package. */
1109 pkg = aml_package(1);
1110 aml_append(method, aml_store(aml_arg(0), aml_name("OFST")));
1111 aml_append(pkg, aml_name("OFST"));
1113 /* call Read_FIT function. */
1114 call_result = aml_call5(NVDIMM_COMMON_DSM,
1115 aml_touuid(NVDIMM_QEMU_RSVD_UUID),
1116 aml_int(1) /* Revision 1 */,
1117 aml_int(0x1) /* Read FIT */,
1118 pkg, aml_int(NVDIMM_QEMU_RSVD_HANDLE_ROOT));
1119 aml_append(method, aml_store(call_result, buf));
1121 /* handle _DSM result. */
1122 aml_append(method, aml_create_dword_field(buf,
1123 aml_int(0) /* offset at byte 0 */, "STAU"));
1125 aml_append(method, aml_store(aml_name("STAU"),
1126 aml_name(NVDIMM_DSM_RFIT_STATUS)));
1128 /* if something is wrong during _DSM. */
1129 ifcond = aml_equal(aml_int(0 /* Success */), aml_name("STAU"));
1130 ifctx = aml_if(aml_lnot(ifcond));
1131 aml_append(ifctx, aml_return(aml_buffer(0, NULL)));
1132 aml_append(method, ifctx);
1134 aml_append(method, aml_store(aml_sizeof(buf), buf_size));
1135 aml_append(method, aml_subtract(buf_size,
1136 aml_int(4) /* the size of "STAU" */,
1137 buf_size));
1139 /* if we read the end of fit. */
1140 ifctx = aml_if(aml_equal(buf_size, aml_int(0)));
1141 aml_append(ifctx, aml_return(aml_buffer(0, NULL)));
1142 aml_append(method, ifctx);
1144 aml_append(method, aml_store(aml_shiftleft(buf_size, aml_int(3)),
1145 buf_size));
1146 aml_append(method, aml_create_field(buf,
1147 aml_int(4 * BITS_PER_BYTE), /* offset at byte 4.*/
1148 buf_size, "BUFF"));
1149 aml_append(method, aml_return(aml_name("BUFF")));
1150 aml_append(dev, method);
1152 /* build _FIT. */
1153 method = aml_method("_FIT", 0, AML_SERIALIZED);
1154 offset = aml_local(3);
1156 aml_append(method, aml_store(aml_buffer(0, NULL), fit));
1157 aml_append(method, aml_store(aml_int(0), offset));
1159 whilectx = aml_while(aml_int(1));
1160 aml_append(whilectx, aml_store(aml_call1("RFIT", offset), buf));
1161 aml_append(whilectx, aml_store(aml_sizeof(buf), buf_size));
1164 * if fit buffer was changed during RFIT, read from the beginning
1165 * again.
1167 ifctx = aml_if(aml_equal(aml_name(NVDIMM_DSM_RFIT_STATUS),
1168 aml_int(0x100 /* fit changed */)));
1169 aml_append(ifctx, aml_store(aml_buffer(0, NULL), fit));
1170 aml_append(ifctx, aml_store(aml_int(0), offset));
1171 aml_append(whilectx, ifctx);
1173 elsectx = aml_else();
1175 /* finish fit read if no data is read out. */
1176 ifctx = aml_if(aml_equal(buf_size, aml_int(0)));
1177 aml_append(ifctx, aml_return(fit));
1178 aml_append(elsectx, ifctx);
1180 /* update the offset. */
1181 aml_append(elsectx, aml_add(offset, buf_size, offset));
1182 /* append the data we read out to the fit buffer. */
1183 aml_append(elsectx, aml_concatenate(fit, buf, fit));
1184 aml_append(whilectx, elsectx);
1185 aml_append(method, whilectx);
1187 aml_append(dev, method);
1190 static void nvdimm_build_nvdimm_devices(Aml *root_dev, uint32_t ram_slots)
1192 uint32_t slot;
1194 for (slot = 0; slot < ram_slots; slot++) {
1195 uint32_t handle = nvdimm_slot_to_handle(slot);
1196 Aml *nvdimm_dev;
1198 nvdimm_dev = aml_device("NV%02X", slot);
1201 * ACPI 6.0: 9.20 NVDIMM Devices:
1203 * _ADR object that is used to supply OSPM with unique address
1204 * of the NVDIMM device. This is done by returning the NFIT Device
1205 * handle that is used to identify the associated entries in ACPI
1206 * table NFIT or _FIT.
1208 aml_append(nvdimm_dev, aml_name_decl("_ADR", aml_int(handle)));
1210 nvdimm_build_device_dsm(nvdimm_dev, handle);
1211 aml_append(root_dev, nvdimm_dev);
1215 static void nvdimm_build_ssdt(GArray *table_offsets, GArray *table_data,
1216 BIOSLinker *linker, GArray *dsm_dma_arrea,
1217 uint32_t ram_slots)
1219 Aml *ssdt, *sb_scope, *dev;
1220 int mem_addr_offset, nvdimm_ssdt;
1222 acpi_add_table(table_offsets, table_data);
1224 ssdt = init_aml_allocator();
1225 acpi_data_push(ssdt->buf, sizeof(AcpiTableHeader));
1227 sb_scope = aml_scope("\\_SB");
1229 dev = aml_device("NVDR");
1232 * ACPI 6.0: 9.20 NVDIMM Devices:
1234 * The ACPI Name Space device uses _HID of ACPI0012 to identify the root
1235 * NVDIMM interface device. Platform firmware is required to contain one
1236 * such device in _SB scope if NVDIMMs support is exposed by platform to
1237 * OSPM.
1238 * For each NVDIMM present or intended to be supported by platform,
1239 * platform firmware also exposes an ACPI Namespace Device under the
1240 * root device.
1242 aml_append(dev, aml_name_decl("_HID", aml_string("ACPI0012")));
1244 nvdimm_build_common_dsm(dev);
1246 /* 0 is reserved for root device. */
1247 nvdimm_build_device_dsm(dev, 0);
1248 nvdimm_build_fit(dev);
1250 nvdimm_build_nvdimm_devices(dev, ram_slots);
1252 aml_append(sb_scope, dev);
1253 aml_append(ssdt, sb_scope);
1255 nvdimm_ssdt = table_data->len;
1257 /* copy AML table into ACPI tables blob and patch header there */
1258 g_array_append_vals(table_data, ssdt->buf->data, ssdt->buf->len);
1259 mem_addr_offset = build_append_named_dword(table_data,
1260 NVDIMM_ACPI_MEM_ADDR);
1262 bios_linker_loader_alloc(linker,
1263 NVDIMM_DSM_MEM_FILE, dsm_dma_arrea,
1264 sizeof(NvdimmDsmIn), false /* high memory */);
1265 bios_linker_loader_add_pointer(linker,
1266 ACPI_BUILD_TABLE_FILE, mem_addr_offset, sizeof(uint32_t),
1267 NVDIMM_DSM_MEM_FILE, 0);
1268 build_header(linker, table_data,
1269 (void *)(table_data->data + nvdimm_ssdt),
1270 "SSDT", table_data->len - nvdimm_ssdt, 1, NULL, "NVDIMM");
1271 free_aml_allocator();
1274 void nvdimm_build_acpi(GArray *table_offsets, GArray *table_data,
1275 BIOSLinker *linker, AcpiNVDIMMState *state,
1276 uint32_t ram_slots)
1278 nvdimm_build_nfit(state, table_offsets, table_data, linker);
1281 * NVDIMM device is allowed to be plugged only if there is available
1282 * slot.
1284 if (ram_slots) {
1285 nvdimm_build_ssdt(table_offsets, table_data, linker, state->dsm_mem,
1286 ram_slots);