2 * Block driver for the QCOW version 2 format
4 * Copyright (c) 2004-2006 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
25 #include "qemu/osdep.h"
28 #include "qapi/error.h"
30 #include "qemu/bswap.h"
33 int qcow2_shrink_l1_table(BlockDriverState
*bs
, uint64_t exact_size
)
35 BDRVQcow2State
*s
= bs
->opaque
;
36 int new_l1_size
, i
, ret
;
38 if (exact_size
>= s
->l1_size
) {
42 new_l1_size
= exact_size
;
45 fprintf(stderr
, "shrink l1_table from %d to %d\n", s
->l1_size
, new_l1_size
);
48 BLKDBG_EVENT(bs
->file
, BLKDBG_L1_SHRINK_WRITE_TABLE
);
49 ret
= bdrv_pwrite_zeroes(bs
->file
, s
->l1_table_offset
+
50 new_l1_size
* L1E_SIZE
,
51 (s
->l1_size
- new_l1_size
) * L1E_SIZE
, 0);
56 ret
= bdrv_flush(bs
->file
->bs
);
61 BLKDBG_EVENT(bs
->file
, BLKDBG_L1_SHRINK_FREE_L2_CLUSTERS
);
62 for (i
= s
->l1_size
- 1; i
> new_l1_size
- 1; i
--) {
63 if ((s
->l1_table
[i
] & L1E_OFFSET_MASK
) == 0) {
66 qcow2_free_clusters(bs
, s
->l1_table
[i
] & L1E_OFFSET_MASK
,
67 s
->cluster_size
, QCOW2_DISCARD_ALWAYS
);
74 * If the write in the l1_table failed the image may contain a partially
75 * overwritten l1_table. In this case it would be better to clear the
76 * l1_table in memory to avoid possible image corruption.
78 memset(s
->l1_table
+ new_l1_size
, 0,
79 (s
->l1_size
- new_l1_size
) * L1E_SIZE
);
83 int qcow2_grow_l1_table(BlockDriverState
*bs
, uint64_t min_size
,
86 BDRVQcow2State
*s
= bs
->opaque
;
87 int new_l1_size2
, ret
, i
;
88 uint64_t *new_l1_table
;
89 int64_t old_l1_table_offset
, old_l1_size
;
90 int64_t new_l1_table_offset
, new_l1_size
;
93 if (min_size
<= s
->l1_size
)
96 /* Do a sanity check on min_size before trying to calculate new_l1_size
97 * (this prevents overflows during the while loop for the calculation of
99 if (min_size
> INT_MAX
/ L1E_SIZE
) {
104 new_l1_size
= min_size
;
106 /* Bump size up to reduce the number of times we have to grow */
107 new_l1_size
= s
->l1_size
;
108 if (new_l1_size
== 0) {
111 while (min_size
> new_l1_size
) {
112 new_l1_size
= DIV_ROUND_UP(new_l1_size
* 3, 2);
116 QEMU_BUILD_BUG_ON(QCOW_MAX_L1_SIZE
> INT_MAX
);
117 if (new_l1_size
> QCOW_MAX_L1_SIZE
/ L1E_SIZE
) {
122 fprintf(stderr
, "grow l1_table from %d to %" PRId64
"\n",
123 s
->l1_size
, new_l1_size
);
126 new_l1_size2
= L1E_SIZE
* new_l1_size
;
127 new_l1_table
= qemu_try_blockalign(bs
->file
->bs
, new_l1_size2
);
128 if (new_l1_table
== NULL
) {
131 memset(new_l1_table
, 0, new_l1_size2
);
134 memcpy(new_l1_table
, s
->l1_table
, s
->l1_size
* L1E_SIZE
);
137 /* write new table (align to cluster) */
138 BLKDBG_EVENT(bs
->file
, BLKDBG_L1_GROW_ALLOC_TABLE
);
139 new_l1_table_offset
= qcow2_alloc_clusters(bs
, new_l1_size2
);
140 if (new_l1_table_offset
< 0) {
141 qemu_vfree(new_l1_table
);
142 return new_l1_table_offset
;
145 ret
= qcow2_cache_flush(bs
, s
->refcount_block_cache
);
150 /* the L1 position has not yet been updated, so these clusters must
151 * indeed be completely free */
152 ret
= qcow2_pre_write_overlap_check(bs
, 0, new_l1_table_offset
,
153 new_l1_size2
, false);
158 BLKDBG_EVENT(bs
->file
, BLKDBG_L1_GROW_WRITE_TABLE
);
159 for(i
= 0; i
< s
->l1_size
; i
++)
160 new_l1_table
[i
] = cpu_to_be64(new_l1_table
[i
]);
161 ret
= bdrv_pwrite_sync(bs
->file
, new_l1_table_offset
,
162 new_l1_table
, new_l1_size2
);
165 for(i
= 0; i
< s
->l1_size
; i
++)
166 new_l1_table
[i
] = be64_to_cpu(new_l1_table
[i
]);
169 BLKDBG_EVENT(bs
->file
, BLKDBG_L1_GROW_ACTIVATE_TABLE
);
170 stl_be_p(data
, new_l1_size
);
171 stq_be_p(data
+ 4, new_l1_table_offset
);
172 ret
= bdrv_pwrite_sync(bs
->file
, offsetof(QCowHeader
, l1_size
),
177 qemu_vfree(s
->l1_table
);
178 old_l1_table_offset
= s
->l1_table_offset
;
179 s
->l1_table_offset
= new_l1_table_offset
;
180 s
->l1_table
= new_l1_table
;
181 old_l1_size
= s
->l1_size
;
182 s
->l1_size
= new_l1_size
;
183 qcow2_free_clusters(bs
, old_l1_table_offset
, old_l1_size
* L1E_SIZE
,
184 QCOW2_DISCARD_OTHER
);
187 qemu_vfree(new_l1_table
);
188 qcow2_free_clusters(bs
, new_l1_table_offset
, new_l1_size2
,
189 QCOW2_DISCARD_OTHER
);
196 * @bs: The BlockDriverState
197 * @offset: A guest offset, used to calculate what slice of the L2
199 * @l2_offset: Offset to the L2 table in the image file.
200 * @l2_slice: Location to store the pointer to the L2 slice.
202 * Loads a L2 slice into memory (L2 slices are the parts of L2 tables
203 * that are loaded by the qcow2 cache). If the slice is in the cache,
204 * the cache is used; otherwise the L2 slice is loaded from the image
207 static int l2_load(BlockDriverState
*bs
, uint64_t offset
,
208 uint64_t l2_offset
, uint64_t **l2_slice
)
210 BDRVQcow2State
*s
= bs
->opaque
;
211 int start_of_slice
= l2_entry_size(s
) *
212 (offset_to_l2_index(s
, offset
) - offset_to_l2_slice_index(s
, offset
));
214 return qcow2_cache_get(bs
, s
->l2_table_cache
, l2_offset
+ start_of_slice
,
219 * Writes an L1 entry to disk (note that depending on the alignment
220 * requirements this function may write more that just one entry in
221 * order to prevent bdrv_pwrite from performing a read-modify-write)
223 int qcow2_write_l1_entry(BlockDriverState
*bs
, int l1_index
)
225 BDRVQcow2State
*s
= bs
->opaque
;
228 int bufsize
= MAX(L1E_SIZE
,
229 MIN(bs
->file
->bs
->bl
.request_alignment
, s
->cluster_size
));
230 int nentries
= bufsize
/ L1E_SIZE
;
231 g_autofree
uint64_t *buf
= g_try_new0(uint64_t, nentries
);
237 l1_start_index
= QEMU_ALIGN_DOWN(l1_index
, nentries
);
238 for (i
= 0; i
< MIN(nentries
, s
->l1_size
- l1_start_index
); i
++) {
239 buf
[i
] = cpu_to_be64(s
->l1_table
[l1_start_index
+ i
]);
242 ret
= qcow2_pre_write_overlap_check(bs
, QCOW2_OL_ACTIVE_L1
,
243 s
->l1_table_offset
+ L1E_SIZE
* l1_start_index
, bufsize
, false);
248 BLKDBG_EVENT(bs
->file
, BLKDBG_L1_UPDATE
);
249 ret
= bdrv_pwrite_sync(bs
->file
,
250 s
->l1_table_offset
+ L1E_SIZE
* l1_start_index
,
262 * Allocate a new l2 entry in the file. If l1_index points to an already
263 * used entry in the L2 table (i.e. we are doing a copy on write for the L2
264 * table) copy the contents of the old L2 table into the newly allocated one.
265 * Otherwise the new table is initialized with zeros.
269 static int l2_allocate(BlockDriverState
*bs
, int l1_index
)
271 BDRVQcow2State
*s
= bs
->opaque
;
272 uint64_t old_l2_offset
;
273 uint64_t *l2_slice
= NULL
;
274 unsigned slice
, slice_size2
, n_slices
;
278 old_l2_offset
= s
->l1_table
[l1_index
];
280 trace_qcow2_l2_allocate(bs
, l1_index
);
282 /* allocate a new l2 entry */
284 l2_offset
= qcow2_alloc_clusters(bs
, s
->l2_size
* l2_entry_size(s
));
290 /* The offset must fit in the offset field of the L1 table entry */
291 assert((l2_offset
& L1E_OFFSET_MASK
) == l2_offset
);
293 /* If we're allocating the table at offset 0 then something is wrong */
294 if (l2_offset
== 0) {
295 qcow2_signal_corruption(bs
, true, -1, -1, "Preventing invalid "
296 "allocation of L2 table at offset 0");
301 ret
= qcow2_cache_flush(bs
, s
->refcount_block_cache
);
306 /* allocate a new entry in the l2 cache */
308 slice_size2
= s
->l2_slice_size
* l2_entry_size(s
);
309 n_slices
= s
->cluster_size
/ slice_size2
;
311 trace_qcow2_l2_allocate_get_empty(bs
, l1_index
);
312 for (slice
= 0; slice
< n_slices
; slice
++) {
313 ret
= qcow2_cache_get_empty(bs
, s
->l2_table_cache
,
314 l2_offset
+ slice
* slice_size2
,
315 (void **) &l2_slice
);
320 if ((old_l2_offset
& L1E_OFFSET_MASK
) == 0) {
321 /* if there was no old l2 table, clear the new slice */
322 memset(l2_slice
, 0, slice_size2
);
325 uint64_t old_l2_slice_offset
=
326 (old_l2_offset
& L1E_OFFSET_MASK
) + slice
* slice_size2
;
328 /* if there was an old l2 table, read a slice from the disk */
329 BLKDBG_EVENT(bs
->file
, BLKDBG_L2_ALLOC_COW_READ
);
330 ret
= qcow2_cache_get(bs
, s
->l2_table_cache
, old_l2_slice_offset
,
331 (void **) &old_slice
);
336 memcpy(l2_slice
, old_slice
, slice_size2
);
338 qcow2_cache_put(s
->l2_table_cache
, (void **) &old_slice
);
341 /* write the l2 slice to the file */
342 BLKDBG_EVENT(bs
->file
, BLKDBG_L2_ALLOC_WRITE
);
344 trace_qcow2_l2_allocate_write_l2(bs
, l1_index
);
345 qcow2_cache_entry_mark_dirty(s
->l2_table_cache
, l2_slice
);
346 qcow2_cache_put(s
->l2_table_cache
, (void **) &l2_slice
);
349 ret
= qcow2_cache_flush(bs
, s
->l2_table_cache
);
354 /* update the L1 entry */
355 trace_qcow2_l2_allocate_write_l1(bs
, l1_index
);
356 s
->l1_table
[l1_index
] = l2_offset
| QCOW_OFLAG_COPIED
;
357 ret
= qcow2_write_l1_entry(bs
, l1_index
);
362 trace_qcow2_l2_allocate_done(bs
, l1_index
, 0);
366 trace_qcow2_l2_allocate_done(bs
, l1_index
, ret
);
367 if (l2_slice
!= NULL
) {
368 qcow2_cache_put(s
->l2_table_cache
, (void **) &l2_slice
);
370 s
->l1_table
[l1_index
] = old_l2_offset
;
372 qcow2_free_clusters(bs
, l2_offset
, s
->l2_size
* l2_entry_size(s
),
373 QCOW2_DISCARD_ALWAYS
);
379 * For a given L2 entry, count the number of contiguous subclusters of
380 * the same type starting from @sc_from. Compressed clusters are
381 * treated as if they were divided into subclusters of size
382 * s->subcluster_size.
384 * Return the number of contiguous subclusters and set @type to the
387 * If the L2 entry is invalid return -errno and set @type to
388 * QCOW2_SUBCLUSTER_INVALID.
390 static int qcow2_get_subcluster_range_type(BlockDriverState
*bs
,
394 QCow2SubclusterType
*type
)
396 BDRVQcow2State
*s
= bs
->opaque
;
399 *type
= qcow2_get_subcluster_type(bs
, l2_entry
, l2_bitmap
, sc_from
);
401 if (*type
== QCOW2_SUBCLUSTER_INVALID
) {
403 } else if (!has_subclusters(s
) || *type
== QCOW2_SUBCLUSTER_COMPRESSED
) {
404 return s
->subclusters_per_cluster
- sc_from
;
408 case QCOW2_SUBCLUSTER_NORMAL
:
409 val
= l2_bitmap
| QCOW_OFLAG_SUB_ALLOC_RANGE(0, sc_from
);
410 return cto32(val
) - sc_from
;
412 case QCOW2_SUBCLUSTER_ZERO_PLAIN
:
413 case QCOW2_SUBCLUSTER_ZERO_ALLOC
:
414 val
= (l2_bitmap
| QCOW_OFLAG_SUB_ZERO_RANGE(0, sc_from
)) >> 32;
415 return cto32(val
) - sc_from
;
417 case QCOW2_SUBCLUSTER_UNALLOCATED_PLAIN
:
418 case QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC
:
419 val
= ((l2_bitmap
>> 32) | l2_bitmap
)
420 & ~QCOW_OFLAG_SUB_ALLOC_RANGE(0, sc_from
);
421 return ctz32(val
) - sc_from
;
424 g_assert_not_reached();
429 * Return the number of contiguous subclusters of the exact same type
430 * in a given L2 slice, starting from cluster @l2_index, subcluster
431 * @sc_index. Allocated subclusters are required to be contiguous in
433 * At most @nb_clusters are checked (note that this means clusters,
435 * Compressed clusters are always processed one by one but for the
436 * purpose of this count they are treated as if they were divided into
437 * subclusters of size s->subcluster_size.
438 * On failure return -errno and update @l2_index to point to the
441 static int count_contiguous_subclusters(BlockDriverState
*bs
, int nb_clusters
,
442 unsigned sc_index
, uint64_t *l2_slice
,
445 BDRVQcow2State
*s
= bs
->opaque
;
447 bool check_offset
= false;
448 uint64_t expected_offset
= 0;
449 QCow2SubclusterType expected_type
= QCOW2_SUBCLUSTER_NORMAL
, type
;
451 assert(*l2_index
+ nb_clusters
<= s
->l2_slice_size
);
453 for (i
= 0; i
< nb_clusters
; i
++) {
454 unsigned first_sc
= (i
== 0) ? sc_index
: 0;
455 uint64_t l2_entry
= get_l2_entry(s
, l2_slice
, *l2_index
+ i
);
456 uint64_t l2_bitmap
= get_l2_bitmap(s
, l2_slice
, *l2_index
+ i
);
457 int ret
= qcow2_get_subcluster_range_type(bs
, l2_entry
, l2_bitmap
,
460 *l2_index
+= i
; /* Point to the invalid entry */
464 if (type
== QCOW2_SUBCLUSTER_COMPRESSED
) {
465 /* Compressed clusters are always processed one by one */
468 expected_type
= type
;
469 expected_offset
= l2_entry
& L2E_OFFSET_MASK
;
470 check_offset
= (type
== QCOW2_SUBCLUSTER_NORMAL
||
471 type
== QCOW2_SUBCLUSTER_ZERO_ALLOC
||
472 type
== QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC
);
473 } else if (type
!= expected_type
) {
475 } else if (check_offset
) {
476 expected_offset
+= s
->cluster_size
;
477 if (expected_offset
!= (l2_entry
& L2E_OFFSET_MASK
)) {
482 /* Stop if there are type changes before the end of the cluster */
483 if (first_sc
+ ret
< s
->subclusters_per_cluster
) {
491 static int coroutine_fn
do_perform_cow_read(BlockDriverState
*bs
,
492 uint64_t src_cluster_offset
,
493 unsigned offset_in_cluster
,
498 if (qiov
->size
== 0) {
502 BLKDBG_EVENT(bs
->file
, BLKDBG_COW_READ
);
509 * We never deal with requests that don't satisfy
510 * bdrv_check_qiov_request(), and aligning requests to clusters never
511 * breaks this condition. So, do some assertions before calling
512 * bs->drv->bdrv_co_preadv_part() which has int64_t arguments.
514 assert(src_cluster_offset
<= INT64_MAX
);
515 assert(src_cluster_offset
+ offset_in_cluster
<= INT64_MAX
);
516 assert(qiov
->size
<= INT64_MAX
);
517 bdrv_check_qiov_request(src_cluster_offset
+ offset_in_cluster
, qiov
->size
,
518 qiov
, 0, &error_abort
);
520 * Call .bdrv_co_readv() directly instead of using the public block-layer
521 * interface. This avoids double I/O throttling and request tracking,
522 * which can lead to deadlock when block layer copy-on-read is enabled.
524 ret
= bs
->drv
->bdrv_co_preadv_part(bs
,
525 src_cluster_offset
+ offset_in_cluster
,
526 qiov
->size
, qiov
, 0, 0);
534 static int coroutine_fn
do_perform_cow_write(BlockDriverState
*bs
,
535 uint64_t cluster_offset
,
536 unsigned offset_in_cluster
,
539 BDRVQcow2State
*s
= bs
->opaque
;
542 if (qiov
->size
== 0) {
546 ret
= qcow2_pre_write_overlap_check(bs
, 0,
547 cluster_offset
+ offset_in_cluster
, qiov
->size
, true);
552 BLKDBG_EVENT(bs
->file
, BLKDBG_COW_WRITE
);
553 ret
= bdrv_co_pwritev(s
->data_file
, cluster_offset
+ offset_in_cluster
,
554 qiov
->size
, qiov
, 0);
566 * For a given offset of the virtual disk find the equivalent host
567 * offset in the qcow2 file and store it in *host_offset. Neither
568 * offset needs to be aligned to a cluster boundary.
570 * If the cluster is unallocated then *host_offset will be 0.
571 * If the cluster is compressed then *host_offset will contain the l2 entry.
573 * On entry, *bytes is the maximum number of contiguous bytes starting at
574 * offset that we are interested in.
576 * On exit, *bytes is the number of bytes starting at offset that have the same
577 * subcluster type and (if applicable) are stored contiguously in the image
578 * file. The subcluster type is stored in *subcluster_type.
579 * Compressed clusters are always processed one by one.
581 * Returns 0 on success, -errno in error cases.
583 int qcow2_get_host_offset(BlockDriverState
*bs
, uint64_t offset
,
584 unsigned int *bytes
, uint64_t *host_offset
,
585 QCow2SubclusterType
*subcluster_type
)
587 BDRVQcow2State
*s
= bs
->opaque
;
588 unsigned int l2_index
, sc_index
;
589 uint64_t l1_index
, l2_offset
, *l2_slice
, l2_entry
, l2_bitmap
;
591 unsigned int offset_in_cluster
;
592 uint64_t bytes_available
, bytes_needed
, nb_clusters
;
593 QCow2SubclusterType type
;
596 offset_in_cluster
= offset_into_cluster(s
, offset
);
597 bytes_needed
= (uint64_t) *bytes
+ offset_in_cluster
;
599 /* compute how many bytes there are between the start of the cluster
600 * containing offset and the end of the l2 slice that contains
601 * the entry pointing to it */
603 ((uint64_t) (s
->l2_slice_size
- offset_to_l2_slice_index(s
, offset
)))
606 if (bytes_needed
> bytes_available
) {
607 bytes_needed
= bytes_available
;
612 /* seek to the l2 offset in the l1 table */
614 l1_index
= offset_to_l1_index(s
, offset
);
615 if (l1_index
>= s
->l1_size
) {
616 type
= QCOW2_SUBCLUSTER_UNALLOCATED_PLAIN
;
620 l2_offset
= s
->l1_table
[l1_index
] & L1E_OFFSET_MASK
;
622 type
= QCOW2_SUBCLUSTER_UNALLOCATED_PLAIN
;
626 if (offset_into_cluster(s
, l2_offset
)) {
627 qcow2_signal_corruption(bs
, true, -1, -1, "L2 table offset %#" PRIx64
628 " unaligned (L1 index: %#" PRIx64
")",
629 l2_offset
, l1_index
);
633 /* load the l2 slice in memory */
635 ret
= l2_load(bs
, offset
, l2_offset
, &l2_slice
);
640 /* find the cluster offset for the given disk offset */
642 l2_index
= offset_to_l2_slice_index(s
, offset
);
643 sc_index
= offset_to_sc_index(s
, offset
);
644 l2_entry
= get_l2_entry(s
, l2_slice
, l2_index
);
645 l2_bitmap
= get_l2_bitmap(s
, l2_slice
, l2_index
);
647 nb_clusters
= size_to_clusters(s
, bytes_needed
);
648 /* bytes_needed <= *bytes + offset_in_cluster, both of which are unsigned
649 * integers; the minimum cluster size is 512, so this assertion is always
651 assert(nb_clusters
<= INT_MAX
);
653 type
= qcow2_get_subcluster_type(bs
, l2_entry
, l2_bitmap
, sc_index
);
654 if (s
->qcow_version
< 3 && (type
== QCOW2_SUBCLUSTER_ZERO_PLAIN
||
655 type
== QCOW2_SUBCLUSTER_ZERO_ALLOC
)) {
656 qcow2_signal_corruption(bs
, true, -1, -1, "Zero cluster entry found"
657 " in pre-v3 image (L2 offset: %#" PRIx64
658 ", L2 index: %#x)", l2_offset
, l2_index
);
663 case QCOW2_SUBCLUSTER_INVALID
:
664 break; /* This is handled by count_contiguous_subclusters() below */
665 case QCOW2_SUBCLUSTER_COMPRESSED
:
666 if (has_data_file(bs
)) {
667 qcow2_signal_corruption(bs
, true, -1, -1, "Compressed cluster "
668 "entry found in image with external data "
669 "file (L2 offset: %#" PRIx64
", L2 index: "
670 "%#x)", l2_offset
, l2_index
);
674 *host_offset
= l2_entry
;
676 case QCOW2_SUBCLUSTER_ZERO_PLAIN
:
677 case QCOW2_SUBCLUSTER_UNALLOCATED_PLAIN
:
679 case QCOW2_SUBCLUSTER_ZERO_ALLOC
:
680 case QCOW2_SUBCLUSTER_NORMAL
:
681 case QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC
: {
682 uint64_t host_cluster_offset
= l2_entry
& L2E_OFFSET_MASK
;
683 *host_offset
= host_cluster_offset
+ offset_in_cluster
;
684 if (offset_into_cluster(s
, host_cluster_offset
)) {
685 qcow2_signal_corruption(bs
, true, -1, -1,
686 "Cluster allocation offset %#"
687 PRIx64
" unaligned (L2 offset: %#" PRIx64
688 ", L2 index: %#x)", host_cluster_offset
,
689 l2_offset
, l2_index
);
693 if (has_data_file(bs
) && *host_offset
!= offset
) {
694 qcow2_signal_corruption(bs
, true, -1, -1,
695 "External data file host cluster offset %#"
696 PRIx64
" does not match guest cluster "
698 ", L2 index: %#x)", host_cluster_offset
,
699 offset
- offset_in_cluster
, l2_index
);
709 sc
= count_contiguous_subclusters(bs
, nb_clusters
, sc_index
,
710 l2_slice
, &l2_index
);
712 qcow2_signal_corruption(bs
, true, -1, -1, "Invalid cluster entry found "
713 " (L2 offset: %#" PRIx64
", L2 index: %#x)",
714 l2_offset
, l2_index
);
718 qcow2_cache_put(s
->l2_table_cache
, (void **) &l2_slice
);
720 bytes_available
= ((int64_t)sc
+ sc_index
) << s
->subcluster_bits
;
723 if (bytes_available
> bytes_needed
) {
724 bytes_available
= bytes_needed
;
727 /* bytes_available <= bytes_needed <= *bytes + offset_in_cluster;
728 * subtracting offset_in_cluster will therefore definitely yield something
729 * not exceeding UINT_MAX */
730 assert(bytes_available
- offset_in_cluster
<= UINT_MAX
);
731 *bytes
= bytes_available
- offset_in_cluster
;
733 *subcluster_type
= type
;
738 qcow2_cache_put(s
->l2_table_cache
, (void **)&l2_slice
);
745 * for a given disk offset, load (and allocate if needed)
746 * the appropriate slice of its l2 table.
748 * the cluster index in the l2 slice is given to the caller.
750 * Returns 0 on success, -errno in failure case
752 static int get_cluster_table(BlockDriverState
*bs
, uint64_t offset
,
753 uint64_t **new_l2_slice
,
756 BDRVQcow2State
*s
= bs
->opaque
;
757 unsigned int l2_index
;
758 uint64_t l1_index
, l2_offset
;
759 uint64_t *l2_slice
= NULL
;
762 /* seek to the l2 offset in the l1 table */
764 l1_index
= offset_to_l1_index(s
, offset
);
765 if (l1_index
>= s
->l1_size
) {
766 ret
= qcow2_grow_l1_table(bs
, l1_index
+ 1, false);
772 assert(l1_index
< s
->l1_size
);
773 l2_offset
= s
->l1_table
[l1_index
] & L1E_OFFSET_MASK
;
774 if (offset_into_cluster(s
, l2_offset
)) {
775 qcow2_signal_corruption(bs
, true, -1, -1, "L2 table offset %#" PRIx64
776 " unaligned (L1 index: %#" PRIx64
")",
777 l2_offset
, l1_index
);
781 if (!(s
->l1_table
[l1_index
] & QCOW_OFLAG_COPIED
)) {
782 /* First allocate a new L2 table (and do COW if needed) */
783 ret
= l2_allocate(bs
, l1_index
);
788 /* Then decrease the refcount of the old table */
790 qcow2_free_clusters(bs
, l2_offset
, s
->l2_size
* l2_entry_size(s
),
791 QCOW2_DISCARD_OTHER
);
794 /* Get the offset of the newly-allocated l2 table */
795 l2_offset
= s
->l1_table
[l1_index
] & L1E_OFFSET_MASK
;
796 assert(offset_into_cluster(s
, l2_offset
) == 0);
799 /* load the l2 slice in memory */
800 ret
= l2_load(bs
, offset
, l2_offset
, &l2_slice
);
805 /* find the cluster offset for the given disk offset */
807 l2_index
= offset_to_l2_slice_index(s
, offset
);
809 *new_l2_slice
= l2_slice
;
810 *new_l2_index
= l2_index
;
816 * alloc_compressed_cluster_offset
818 * For a given offset on the virtual disk, allocate a new compressed cluster
819 * and put the host offset of the cluster into *host_offset. If a cluster is
820 * already allocated at the offset, return an error.
822 * Return 0 on success and -errno in error cases
824 int qcow2_alloc_compressed_cluster_offset(BlockDriverState
*bs
,
827 uint64_t *host_offset
)
829 BDRVQcow2State
*s
= bs
->opaque
;
832 int64_t cluster_offset
;
835 if (has_data_file(bs
)) {
839 ret
= get_cluster_table(bs
, offset
, &l2_slice
, &l2_index
);
844 /* Compression can't overwrite anything. Fail if the cluster was already
846 cluster_offset
= get_l2_entry(s
, l2_slice
, l2_index
);
847 if (cluster_offset
& L2E_OFFSET_MASK
) {
848 qcow2_cache_put(s
->l2_table_cache
, (void **) &l2_slice
);
852 cluster_offset
= qcow2_alloc_bytes(bs
, compressed_size
);
853 if (cluster_offset
< 0) {
854 qcow2_cache_put(s
->l2_table_cache
, (void **) &l2_slice
);
855 return cluster_offset
;
859 (cluster_offset
+ compressed_size
- 1) / QCOW2_COMPRESSED_SECTOR_SIZE
-
860 (cluster_offset
/ QCOW2_COMPRESSED_SECTOR_SIZE
);
862 /* The offset and size must fit in their fields of the L2 table entry */
863 assert((cluster_offset
& s
->cluster_offset_mask
) == cluster_offset
);
864 assert((nb_csectors
& s
->csize_mask
) == nb_csectors
);
866 cluster_offset
|= QCOW_OFLAG_COMPRESSED
|
867 ((uint64_t)nb_csectors
<< s
->csize_shift
);
869 /* update L2 table */
871 /* compressed clusters never have the copied flag */
873 BLKDBG_EVENT(bs
->file
, BLKDBG_L2_UPDATE_COMPRESSED
);
874 qcow2_cache_entry_mark_dirty(s
->l2_table_cache
, l2_slice
);
875 set_l2_entry(s
, l2_slice
, l2_index
, cluster_offset
);
876 if (has_subclusters(s
)) {
877 set_l2_bitmap(s
, l2_slice
, l2_index
, 0);
879 qcow2_cache_put(s
->l2_table_cache
, (void **) &l2_slice
);
881 *host_offset
= cluster_offset
& s
->cluster_offset_mask
;
885 static int perform_cow(BlockDriverState
*bs
, QCowL2Meta
*m
)
887 BDRVQcow2State
*s
= bs
->opaque
;
888 Qcow2COWRegion
*start
= &m
->cow_start
;
889 Qcow2COWRegion
*end
= &m
->cow_end
;
890 unsigned buffer_size
;
891 unsigned data_bytes
= end
->offset
- (start
->offset
+ start
->nb_bytes
);
893 uint8_t *start_buffer
, *end_buffer
;
897 assert(start
->nb_bytes
<= UINT_MAX
- end
->nb_bytes
);
898 assert(start
->nb_bytes
+ end
->nb_bytes
<= UINT_MAX
- data_bytes
);
899 assert(start
->offset
+ start
->nb_bytes
<= end
->offset
);
901 if ((start
->nb_bytes
== 0 && end
->nb_bytes
== 0) || m
->skip_cow
) {
905 /* If we have to read both the start and end COW regions and the
906 * middle region is not too large then perform just one read
908 merge_reads
= start
->nb_bytes
&& end
->nb_bytes
&& data_bytes
<= 16384;
910 buffer_size
= start
->nb_bytes
+ data_bytes
+ end
->nb_bytes
;
912 /* If we have to do two reads, add some padding in the middle
913 * if necessary to make sure that the end region is optimally
915 size_t align
= bdrv_opt_mem_align(bs
);
916 assert(align
> 0 && align
<= UINT_MAX
);
917 assert(QEMU_ALIGN_UP(start
->nb_bytes
, align
) <=
918 UINT_MAX
- end
->nb_bytes
);
919 buffer_size
= QEMU_ALIGN_UP(start
->nb_bytes
, align
) + end
->nb_bytes
;
922 /* Reserve a buffer large enough to store all the data that we're
924 start_buffer
= qemu_try_blockalign(bs
, buffer_size
);
925 if (start_buffer
== NULL
) {
928 /* The part of the buffer where the end region is located */
929 end_buffer
= start_buffer
+ buffer_size
- end
->nb_bytes
;
931 qemu_iovec_init(&qiov
, 2 + (m
->data_qiov
?
932 qemu_iovec_subvec_niov(m
->data_qiov
,
937 qemu_co_mutex_unlock(&s
->lock
);
938 /* First we read the existing data from both COW regions. We
939 * either read the whole region in one go, or the start and end
940 * regions separately. */
942 qemu_iovec_add(&qiov
, start_buffer
, buffer_size
);
943 ret
= do_perform_cow_read(bs
, m
->offset
, start
->offset
, &qiov
);
945 qemu_iovec_add(&qiov
, start_buffer
, start
->nb_bytes
);
946 ret
= do_perform_cow_read(bs
, m
->offset
, start
->offset
, &qiov
);
951 qemu_iovec_reset(&qiov
);
952 qemu_iovec_add(&qiov
, end_buffer
, end
->nb_bytes
);
953 ret
= do_perform_cow_read(bs
, m
->offset
, end
->offset
, &qiov
);
959 /* Encrypt the data if necessary before writing it */
961 ret
= qcow2_co_encrypt(bs
,
962 m
->alloc_offset
+ start
->offset
,
963 m
->offset
+ start
->offset
,
964 start_buffer
, start
->nb_bytes
);
969 ret
= qcow2_co_encrypt(bs
,
970 m
->alloc_offset
+ end
->offset
,
971 m
->offset
+ end
->offset
,
972 end_buffer
, end
->nb_bytes
);
978 /* And now we can write everything. If we have the guest data we
979 * can write everything in one single operation */
981 qemu_iovec_reset(&qiov
);
982 if (start
->nb_bytes
) {
983 qemu_iovec_add(&qiov
, start_buffer
, start
->nb_bytes
);
985 qemu_iovec_concat(&qiov
, m
->data_qiov
, m
->data_qiov_offset
, data_bytes
);
987 qemu_iovec_add(&qiov
, end_buffer
, end
->nb_bytes
);
989 /* NOTE: we have a write_aio blkdebug event here followed by
990 * a cow_write one in do_perform_cow_write(), but there's only
991 * one single I/O operation */
992 BLKDBG_EVENT(bs
->file
, BLKDBG_WRITE_AIO
);
993 ret
= do_perform_cow_write(bs
, m
->alloc_offset
, start
->offset
, &qiov
);
995 /* If there's no guest data then write both COW regions separately */
996 qemu_iovec_reset(&qiov
);
997 qemu_iovec_add(&qiov
, start_buffer
, start
->nb_bytes
);
998 ret
= do_perform_cow_write(bs
, m
->alloc_offset
, start
->offset
, &qiov
);
1003 qemu_iovec_reset(&qiov
);
1004 qemu_iovec_add(&qiov
, end_buffer
, end
->nb_bytes
);
1005 ret
= do_perform_cow_write(bs
, m
->alloc_offset
, end
->offset
, &qiov
);
1009 qemu_co_mutex_lock(&s
->lock
);
1012 * Before we update the L2 table to actually point to the new cluster, we
1013 * need to be sure that the refcounts have been increased and COW was
1017 qcow2_cache_depends_on_flush(s
->l2_table_cache
);
1020 qemu_vfree(start_buffer
);
1021 qemu_iovec_destroy(&qiov
);
1025 int qcow2_alloc_cluster_link_l2(BlockDriverState
*bs
, QCowL2Meta
*m
)
1027 BDRVQcow2State
*s
= bs
->opaque
;
1028 int i
, j
= 0, l2_index
, ret
;
1029 uint64_t *old_cluster
, *l2_slice
;
1030 uint64_t cluster_offset
= m
->alloc_offset
;
1032 trace_qcow2_cluster_link_l2(qemu_coroutine_self(), m
->nb_clusters
);
1033 assert(m
->nb_clusters
> 0);
1035 old_cluster
= g_try_new(uint64_t, m
->nb_clusters
);
1036 if (old_cluster
== NULL
) {
1041 /* copy content of unmodified sectors */
1042 ret
= perform_cow(bs
, m
);
1047 /* Update L2 table. */
1048 if (s
->use_lazy_refcounts
) {
1049 qcow2_mark_dirty(bs
);
1051 if (qcow2_need_accurate_refcounts(s
)) {
1052 qcow2_cache_set_dependency(bs
, s
->l2_table_cache
,
1053 s
->refcount_block_cache
);
1056 ret
= get_cluster_table(bs
, m
->offset
, &l2_slice
, &l2_index
);
1060 qcow2_cache_entry_mark_dirty(s
->l2_table_cache
, l2_slice
);
1062 assert(l2_index
+ m
->nb_clusters
<= s
->l2_slice_size
);
1063 assert(m
->cow_end
.offset
+ m
->cow_end
.nb_bytes
<=
1064 m
->nb_clusters
<< s
->cluster_bits
);
1065 for (i
= 0; i
< m
->nb_clusters
; i
++) {
1066 uint64_t offset
= cluster_offset
+ ((uint64_t)i
<< s
->cluster_bits
);
1067 /* if two concurrent writes happen to the same unallocated cluster
1068 * each write allocates separate cluster and writes data concurrently.
1069 * The first one to complete updates l2 table with pointer to its
1070 * cluster the second one has to do RMW (which is done above by
1071 * perform_cow()), update l2 table with its cluster pointer and free
1072 * old cluster. This is what this loop does */
1073 if (get_l2_entry(s
, l2_slice
, l2_index
+ i
) != 0) {
1074 old_cluster
[j
++] = get_l2_entry(s
, l2_slice
, l2_index
+ i
);
1077 /* The offset must fit in the offset field of the L2 table entry */
1078 assert((offset
& L2E_OFFSET_MASK
) == offset
);
1080 set_l2_entry(s
, l2_slice
, l2_index
+ i
, offset
| QCOW_OFLAG_COPIED
);
1082 /* Update bitmap with the subclusters that were just written */
1083 if (has_subclusters(s
) && !m
->prealloc
) {
1084 uint64_t l2_bitmap
= get_l2_bitmap(s
, l2_slice
, l2_index
+ i
);
1085 unsigned written_from
= m
->cow_start
.offset
;
1086 unsigned written_to
= m
->cow_end
.offset
+ m
->cow_end
.nb_bytes
;
1087 int first_sc
, last_sc
;
1088 /* Narrow written_from and written_to down to the current cluster */
1089 written_from
= MAX(written_from
, i
<< s
->cluster_bits
);
1090 written_to
= MIN(written_to
, (i
+ 1) << s
->cluster_bits
);
1091 assert(written_from
< written_to
);
1092 first_sc
= offset_to_sc_index(s
, written_from
);
1093 last_sc
= offset_to_sc_index(s
, written_to
- 1);
1094 l2_bitmap
|= QCOW_OFLAG_SUB_ALLOC_RANGE(first_sc
, last_sc
+ 1);
1095 l2_bitmap
&= ~QCOW_OFLAG_SUB_ZERO_RANGE(first_sc
, last_sc
+ 1);
1096 set_l2_bitmap(s
, l2_slice
, l2_index
+ i
, l2_bitmap
);
1101 qcow2_cache_put(s
->l2_table_cache
, (void **) &l2_slice
);
1104 * If this was a COW, we need to decrease the refcount of the old cluster.
1106 * Don't discard clusters that reach a refcount of 0 (e.g. compressed
1107 * clusters), the next write will reuse them anyway.
1109 if (!m
->keep_old_clusters
&& j
!= 0) {
1110 for (i
= 0; i
< j
; i
++) {
1111 qcow2_free_any_cluster(bs
, old_cluster
[i
], QCOW2_DISCARD_NEVER
);
1117 g_free(old_cluster
);
1122 * Frees the allocated clusters because the request failed and they won't
1123 * actually be linked.
1125 void qcow2_alloc_cluster_abort(BlockDriverState
*bs
, QCowL2Meta
*m
)
1127 BDRVQcow2State
*s
= bs
->opaque
;
1128 if (!has_data_file(bs
) && !m
->keep_old_clusters
) {
1129 qcow2_free_clusters(bs
, m
->alloc_offset
,
1130 m
->nb_clusters
<< s
->cluster_bits
,
1131 QCOW2_DISCARD_NEVER
);
1136 * For a given write request, create a new QCowL2Meta structure, add
1137 * it to @m and the BDRVQcow2State.cluster_allocs list. If the write
1138 * request does not need copy-on-write or changes to the L2 metadata
1139 * then this function does nothing.
1141 * @host_cluster_offset points to the beginning of the first cluster.
1143 * @guest_offset and @bytes indicate the offset and length of the
1146 * @l2_slice contains the L2 entries of all clusters involved in this
1149 * If @keep_old is true it means that the clusters were already
1150 * allocated and will be overwritten. If false then the clusters are
1151 * new and we have to decrease the reference count of the old ones.
1153 * Returns 0 on success, -errno on failure.
1155 static int calculate_l2_meta(BlockDriverState
*bs
, uint64_t host_cluster_offset
,
1156 uint64_t guest_offset
, unsigned bytes
,
1157 uint64_t *l2_slice
, QCowL2Meta
**m
, bool keep_old
)
1159 BDRVQcow2State
*s
= bs
->opaque
;
1160 int sc_index
, l2_index
= offset_to_l2_slice_index(s
, guest_offset
);
1161 uint64_t l2_entry
, l2_bitmap
;
1162 unsigned cow_start_from
, cow_end_to
;
1163 unsigned cow_start_to
= offset_into_cluster(s
, guest_offset
);
1164 unsigned cow_end_from
= cow_start_to
+ bytes
;
1165 unsigned nb_clusters
= size_to_clusters(s
, cow_end_from
);
1166 QCowL2Meta
*old_m
= *m
;
1167 QCow2SubclusterType type
;
1169 bool skip_cow
= keep_old
;
1171 assert(nb_clusters
<= s
->l2_slice_size
- l2_index
);
1173 /* Check the type of all affected subclusters */
1174 for (i
= 0; i
< nb_clusters
; i
++) {
1175 l2_entry
= get_l2_entry(s
, l2_slice
, l2_index
+ i
);
1176 l2_bitmap
= get_l2_bitmap(s
, l2_slice
, l2_index
+ i
);
1178 unsigned write_from
= MAX(cow_start_to
, i
<< s
->cluster_bits
);
1179 unsigned write_to
= MIN(cow_end_from
, (i
+ 1) << s
->cluster_bits
);
1180 int first_sc
= offset_to_sc_index(s
, write_from
);
1181 int last_sc
= offset_to_sc_index(s
, write_to
- 1);
1182 int cnt
= qcow2_get_subcluster_range_type(bs
, l2_entry
, l2_bitmap
,
1184 /* Is any of the subclusters of type != QCOW2_SUBCLUSTER_NORMAL ? */
1185 if (type
!= QCOW2_SUBCLUSTER_NORMAL
|| first_sc
+ cnt
<= last_sc
) {
1189 /* If we can't skip the cow we can still look for invalid entries */
1190 type
= qcow2_get_subcluster_type(bs
, l2_entry
, l2_bitmap
, 0);
1192 if (type
== QCOW2_SUBCLUSTER_INVALID
) {
1193 int l1_index
= offset_to_l1_index(s
, guest_offset
);
1194 uint64_t l2_offset
= s
->l1_table
[l1_index
] & L1E_OFFSET_MASK
;
1195 qcow2_signal_corruption(bs
, true, -1, -1, "Invalid cluster "
1196 "entry found (L2 offset: %#" PRIx64
1198 l2_offset
, l2_index
+ i
);
1207 /* Get the L2 entry of the first cluster */
1208 l2_entry
= get_l2_entry(s
, l2_slice
, l2_index
);
1209 l2_bitmap
= get_l2_bitmap(s
, l2_slice
, l2_index
);
1210 sc_index
= offset_to_sc_index(s
, guest_offset
);
1211 type
= qcow2_get_subcluster_type(bs
, l2_entry
, l2_bitmap
, sc_index
);
1215 case QCOW2_SUBCLUSTER_COMPRESSED
:
1218 case QCOW2_SUBCLUSTER_NORMAL
:
1219 case QCOW2_SUBCLUSTER_ZERO_ALLOC
:
1220 case QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC
:
1221 if (has_subclusters(s
)) {
1222 /* Skip all leading zero and unallocated subclusters */
1223 uint32_t alloc_bitmap
= l2_bitmap
& QCOW_L2_BITMAP_ALL_ALLOC
;
1225 MIN(sc_index
, ctz32(alloc_bitmap
)) << s
->subcluster_bits
;
1230 case QCOW2_SUBCLUSTER_ZERO_PLAIN
:
1231 case QCOW2_SUBCLUSTER_UNALLOCATED_PLAIN
:
1232 cow_start_from
= sc_index
<< s
->subcluster_bits
;
1235 g_assert_not_reached();
1239 case QCOW2_SUBCLUSTER_NORMAL
:
1240 cow_start_from
= cow_start_to
;
1242 case QCOW2_SUBCLUSTER_ZERO_ALLOC
:
1243 case QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC
:
1244 cow_start_from
= sc_index
<< s
->subcluster_bits
;
1247 g_assert_not_reached();
1251 /* Get the L2 entry of the last cluster */
1252 l2_index
+= nb_clusters
- 1;
1253 l2_entry
= get_l2_entry(s
, l2_slice
, l2_index
);
1254 l2_bitmap
= get_l2_bitmap(s
, l2_slice
, l2_index
);
1255 sc_index
= offset_to_sc_index(s
, guest_offset
+ bytes
- 1);
1256 type
= qcow2_get_subcluster_type(bs
, l2_entry
, l2_bitmap
, sc_index
);
1260 case QCOW2_SUBCLUSTER_COMPRESSED
:
1261 cow_end_to
= ROUND_UP(cow_end_from
, s
->cluster_size
);
1263 case QCOW2_SUBCLUSTER_NORMAL
:
1264 case QCOW2_SUBCLUSTER_ZERO_ALLOC
:
1265 case QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC
:
1266 cow_end_to
= ROUND_UP(cow_end_from
, s
->cluster_size
);
1267 if (has_subclusters(s
)) {
1268 /* Skip all trailing zero and unallocated subclusters */
1269 uint32_t alloc_bitmap
= l2_bitmap
& QCOW_L2_BITMAP_ALL_ALLOC
;
1271 MIN(s
->subclusters_per_cluster
- sc_index
- 1,
1272 clz32(alloc_bitmap
)) << s
->subcluster_bits
;
1275 case QCOW2_SUBCLUSTER_ZERO_PLAIN
:
1276 case QCOW2_SUBCLUSTER_UNALLOCATED_PLAIN
:
1277 cow_end_to
= ROUND_UP(cow_end_from
, s
->subcluster_size
);
1280 g_assert_not_reached();
1284 case QCOW2_SUBCLUSTER_NORMAL
:
1285 cow_end_to
= cow_end_from
;
1287 case QCOW2_SUBCLUSTER_ZERO_ALLOC
:
1288 case QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC
:
1289 cow_end_to
= ROUND_UP(cow_end_from
, s
->subcluster_size
);
1292 g_assert_not_reached();
1296 *m
= g_malloc0(sizeof(**m
));
1297 **m
= (QCowL2Meta
) {
1300 .alloc_offset
= host_cluster_offset
,
1301 .offset
= start_of_cluster(s
, guest_offset
),
1302 .nb_clusters
= nb_clusters
,
1304 .keep_old_clusters
= keep_old
,
1307 .offset
= cow_start_from
,
1308 .nb_bytes
= cow_start_to
- cow_start_from
,
1311 .offset
= cow_end_from
,
1312 .nb_bytes
= cow_end_to
- cow_end_from
,
1316 qemu_co_queue_init(&(*m
)->dependent_requests
);
1317 QLIST_INSERT_HEAD(&s
->cluster_allocs
, *m
, next_in_flight
);
1323 * Returns true if writing to the cluster pointed to by @l2_entry
1324 * requires a new allocation (that is, if the cluster is unallocated
1325 * or has refcount > 1 and therefore cannot be written in-place).
1327 static bool cluster_needs_new_alloc(BlockDriverState
*bs
, uint64_t l2_entry
)
1329 switch (qcow2_get_cluster_type(bs
, l2_entry
)) {
1330 case QCOW2_CLUSTER_NORMAL
:
1331 case QCOW2_CLUSTER_ZERO_ALLOC
:
1332 if (l2_entry
& QCOW_OFLAG_COPIED
) {
1336 case QCOW2_CLUSTER_UNALLOCATED
:
1337 case QCOW2_CLUSTER_COMPRESSED
:
1338 case QCOW2_CLUSTER_ZERO_PLAIN
:
1346 * Returns the number of contiguous clusters that can be written to
1347 * using one single write request, starting from @l2_index.
1348 * At most @nb_clusters are checked.
1350 * If @new_alloc is true this counts clusters that are either
1351 * unallocated, or allocated but with refcount > 1 (so they need to be
1352 * newly allocated and COWed).
1354 * If @new_alloc is false this counts clusters that are already
1355 * allocated and can be overwritten in-place (this includes clusters
1356 * of type QCOW2_CLUSTER_ZERO_ALLOC).
1358 static int count_single_write_clusters(BlockDriverState
*bs
, int nb_clusters
,
1359 uint64_t *l2_slice
, int l2_index
,
1362 BDRVQcow2State
*s
= bs
->opaque
;
1363 uint64_t l2_entry
= get_l2_entry(s
, l2_slice
, l2_index
);
1364 uint64_t expected_offset
= l2_entry
& L2E_OFFSET_MASK
;
1367 for (i
= 0; i
< nb_clusters
; i
++) {
1368 l2_entry
= get_l2_entry(s
, l2_slice
, l2_index
+ i
);
1369 if (cluster_needs_new_alloc(bs
, l2_entry
) != new_alloc
) {
1373 if (expected_offset
!= (l2_entry
& L2E_OFFSET_MASK
)) {
1376 expected_offset
+= s
->cluster_size
;
1380 assert(i
<= nb_clusters
);
1385 * Check if there already is an AIO write request in flight which allocates
1386 * the same cluster. In this case we need to wait until the previous
1387 * request has completed and updated the L2 table accordingly.
1390 * 0 if there was no dependency. *cur_bytes indicates the number of
1391 * bytes from guest_offset that can be read before the next
1392 * dependency must be processed (or the request is complete)
1394 * -EAGAIN if we had to wait for another request, previously gathered
1395 * information on cluster allocation may be invalid now. The caller
1396 * must start over anyway, so consider *cur_bytes undefined.
1398 static int handle_dependencies(BlockDriverState
*bs
, uint64_t guest_offset
,
1399 uint64_t *cur_bytes
, QCowL2Meta
**m
)
1401 BDRVQcow2State
*s
= bs
->opaque
;
1402 QCowL2Meta
*old_alloc
;
1403 uint64_t bytes
= *cur_bytes
;
1405 QLIST_FOREACH(old_alloc
, &s
->cluster_allocs
, next_in_flight
) {
1407 uint64_t start
= guest_offset
;
1408 uint64_t end
= start
+ bytes
;
1409 uint64_t old_start
= start_of_cluster(s
, l2meta_cow_start(old_alloc
));
1410 uint64_t old_end
= ROUND_UP(l2meta_cow_end(old_alloc
), s
->cluster_size
);
1412 if (end
<= old_start
|| start
>= old_end
) {
1413 /* No intersection */
1417 if (old_alloc
->keep_old_clusters
&&
1418 (end
<= l2meta_cow_start(old_alloc
) ||
1419 start
>= l2meta_cow_end(old_alloc
)))
1422 * Clusters intersect but COW areas don't. And cluster itself is
1423 * already allocated. So, there is no actual conflict.
1430 if (start
< old_start
) {
1431 /* Stop at the start of a running allocation */
1432 bytes
= old_start
- start
;
1438 * Stop if an l2meta already exists. After yielding, it wouldn't
1439 * be valid any more, so we'd have to clean up the old L2Metas
1440 * and deal with requests depending on them before starting to
1441 * gather new ones. Not worth the trouble.
1443 if (bytes
== 0 && *m
) {
1450 * Wait for the dependency to complete. We need to recheck
1451 * the free/allocated clusters when we continue.
1453 qemu_co_queue_wait(&old_alloc
->dependent_requests
, &s
->lock
);
1458 /* Make sure that existing clusters and new allocations are only used up to
1459 * the next dependency if we shortened the request above */
1466 * Checks how many already allocated clusters that don't require a new
1467 * allocation there are at the given guest_offset (up to *bytes).
1468 * If *host_offset is not INV_OFFSET, only physically contiguous clusters
1469 * beginning at this host offset are counted.
1471 * Note that guest_offset may not be cluster aligned. In this case, the
1472 * returned *host_offset points to exact byte referenced by guest_offset and
1473 * therefore isn't cluster aligned as well.
1476 * 0: if no allocated clusters are available at the given offset.
1477 * *bytes is normally unchanged. It is set to 0 if the cluster
1478 * is allocated and can be overwritten in-place but doesn't have
1479 * the right physical offset.
1481 * 1: if allocated clusters that can be overwritten in place are
1482 * available at the requested offset. *bytes may have decreased
1483 * and describes the length of the area that can be written to.
1485 * -errno: in error cases
1487 static int handle_copied(BlockDriverState
*bs
, uint64_t guest_offset
,
1488 uint64_t *host_offset
, uint64_t *bytes
, QCowL2Meta
**m
)
1490 BDRVQcow2State
*s
= bs
->opaque
;
1492 uint64_t l2_entry
, cluster_offset
;
1494 uint64_t nb_clusters
;
1495 unsigned int keep_clusters
;
1498 trace_qcow2_handle_copied(qemu_coroutine_self(), guest_offset
, *host_offset
,
1501 assert(*host_offset
== INV_OFFSET
|| offset_into_cluster(s
, guest_offset
)
1502 == offset_into_cluster(s
, *host_offset
));
1505 * Calculate the number of clusters to look for. We stop at L2 slice
1506 * boundaries to keep things simple.
1509 size_to_clusters(s
, offset_into_cluster(s
, guest_offset
) + *bytes
);
1511 l2_index
= offset_to_l2_slice_index(s
, guest_offset
);
1512 nb_clusters
= MIN(nb_clusters
, s
->l2_slice_size
- l2_index
);
1513 /* Limit total byte count to BDRV_REQUEST_MAX_BYTES */
1514 nb_clusters
= MIN(nb_clusters
, BDRV_REQUEST_MAX_BYTES
>> s
->cluster_bits
);
1516 /* Find L2 entry for the first involved cluster */
1517 ret
= get_cluster_table(bs
, guest_offset
, &l2_slice
, &l2_index
);
1522 l2_entry
= get_l2_entry(s
, l2_slice
, l2_index
);
1523 cluster_offset
= l2_entry
& L2E_OFFSET_MASK
;
1525 if (!cluster_needs_new_alloc(bs
, l2_entry
)) {
1526 if (offset_into_cluster(s
, cluster_offset
)) {
1527 qcow2_signal_corruption(bs
, true, -1, -1, "%s cluster offset "
1528 "%#" PRIx64
" unaligned (guest offset: %#"
1529 PRIx64
")", l2_entry
& QCOW_OFLAG_ZERO
?
1530 "Preallocated zero" : "Data",
1531 cluster_offset
, guest_offset
);
1536 /* If a specific host_offset is required, check it */
1537 if (*host_offset
!= INV_OFFSET
&& cluster_offset
!= *host_offset
) {
1543 /* We keep all QCOW_OFLAG_COPIED clusters */
1544 keep_clusters
= count_single_write_clusters(bs
, nb_clusters
, l2_slice
,
1546 assert(keep_clusters
<= nb_clusters
);
1548 *bytes
= MIN(*bytes
,
1549 keep_clusters
* s
->cluster_size
1550 - offset_into_cluster(s
, guest_offset
));
1551 assert(*bytes
!= 0);
1553 ret
= calculate_l2_meta(bs
, cluster_offset
, guest_offset
,
1554 *bytes
, l2_slice
, m
, true);
1566 qcow2_cache_put(s
->l2_table_cache
, (void **) &l2_slice
);
1568 /* Only return a host offset if we actually made progress. Otherwise we
1569 * would make requirements for handle_alloc() that it can't fulfill */
1571 *host_offset
= cluster_offset
+ offset_into_cluster(s
, guest_offset
);
1578 * Allocates new clusters for the given guest_offset.
1580 * At most *nb_clusters are allocated, and on return *nb_clusters is updated to
1581 * contain the number of clusters that have been allocated and are contiguous
1582 * in the image file.
1584 * If *host_offset is not INV_OFFSET, it specifies the offset in the image file
1585 * at which the new clusters must start. *nb_clusters can be 0 on return in
1586 * this case if the cluster at host_offset is already in use. If *host_offset
1587 * is INV_OFFSET, the clusters can be allocated anywhere in the image file.
1589 * *host_offset is updated to contain the offset into the image file at which
1590 * the first allocated cluster starts.
1592 * Return 0 on success and -errno in error cases. -EAGAIN means that the
1593 * function has been waiting for another request and the allocation must be
1594 * restarted, but the whole request should not be failed.
1596 static int do_alloc_cluster_offset(BlockDriverState
*bs
, uint64_t guest_offset
,
1597 uint64_t *host_offset
, uint64_t *nb_clusters
)
1599 BDRVQcow2State
*s
= bs
->opaque
;
1601 trace_qcow2_do_alloc_clusters_offset(qemu_coroutine_self(), guest_offset
,
1602 *host_offset
, *nb_clusters
);
1604 if (has_data_file(bs
)) {
1605 assert(*host_offset
== INV_OFFSET
||
1606 *host_offset
== start_of_cluster(s
, guest_offset
));
1607 *host_offset
= start_of_cluster(s
, guest_offset
);
1611 /* Allocate new clusters */
1612 trace_qcow2_cluster_alloc_phys(qemu_coroutine_self());
1613 if (*host_offset
== INV_OFFSET
) {
1614 int64_t cluster_offset
=
1615 qcow2_alloc_clusters(bs
, *nb_clusters
* s
->cluster_size
);
1616 if (cluster_offset
< 0) {
1617 return cluster_offset
;
1619 *host_offset
= cluster_offset
;
1622 int64_t ret
= qcow2_alloc_clusters_at(bs
, *host_offset
, *nb_clusters
);
1632 * Allocates new clusters for an area that is either still unallocated or
1633 * cannot be overwritten in-place. If *host_offset is not INV_OFFSET,
1634 * clusters are only allocated if the new allocation can match the specified
1637 * Note that guest_offset may not be cluster aligned. In this case, the
1638 * returned *host_offset points to exact byte referenced by guest_offset and
1639 * therefore isn't cluster aligned as well.
1642 * 0: if no clusters could be allocated. *bytes is set to 0,
1643 * *host_offset is left unchanged.
1645 * 1: if new clusters were allocated. *bytes may be decreased if the
1646 * new allocation doesn't cover all of the requested area.
1647 * *host_offset is updated to contain the host offset of the first
1648 * newly allocated cluster.
1650 * -errno: in error cases
1652 static int handle_alloc(BlockDriverState
*bs
, uint64_t guest_offset
,
1653 uint64_t *host_offset
, uint64_t *bytes
, QCowL2Meta
**m
)
1655 BDRVQcow2State
*s
= bs
->opaque
;
1658 uint64_t nb_clusters
;
1661 uint64_t alloc_cluster_offset
;
1663 trace_qcow2_handle_alloc(qemu_coroutine_self(), guest_offset
, *host_offset
,
1668 * Calculate the number of clusters to look for. We stop at L2 slice
1669 * boundaries to keep things simple.
1672 size_to_clusters(s
, offset_into_cluster(s
, guest_offset
) + *bytes
);
1674 l2_index
= offset_to_l2_slice_index(s
, guest_offset
);
1675 nb_clusters
= MIN(nb_clusters
, s
->l2_slice_size
- l2_index
);
1676 /* Limit total allocation byte count to BDRV_REQUEST_MAX_BYTES */
1677 nb_clusters
= MIN(nb_clusters
, BDRV_REQUEST_MAX_BYTES
>> s
->cluster_bits
);
1679 /* Find L2 entry for the first involved cluster */
1680 ret
= get_cluster_table(bs
, guest_offset
, &l2_slice
, &l2_index
);
1685 nb_clusters
= count_single_write_clusters(bs
, nb_clusters
,
1686 l2_slice
, l2_index
, true);
1688 /* This function is only called when there were no non-COW clusters, so if
1689 * we can't find any unallocated or COW clusters either, something is
1690 * wrong with our code. */
1691 assert(nb_clusters
> 0);
1693 /* Allocate at a given offset in the image file */
1694 alloc_cluster_offset
= *host_offset
== INV_OFFSET
? INV_OFFSET
:
1695 start_of_cluster(s
, *host_offset
);
1696 ret
= do_alloc_cluster_offset(bs
, guest_offset
, &alloc_cluster_offset
,
1702 /* Can't extend contiguous allocation */
1703 if (nb_clusters
== 0) {
1709 assert(alloc_cluster_offset
!= INV_OFFSET
);
1712 * Save info needed for meta data update.
1714 * requested_bytes: Number of bytes from the start of the first
1715 * newly allocated cluster to the end of the (possibly shortened
1716 * before) write request.
1718 * avail_bytes: Number of bytes from the start of the first
1719 * newly allocated to the end of the last newly allocated cluster.
1721 * nb_bytes: The number of bytes from the start of the first
1722 * newly allocated cluster to the end of the area that the write
1723 * request actually writes to (excluding COW at the end)
1725 uint64_t requested_bytes
= *bytes
+ offset_into_cluster(s
, guest_offset
);
1726 int avail_bytes
= nb_clusters
<< s
->cluster_bits
;
1727 int nb_bytes
= MIN(requested_bytes
, avail_bytes
);
1729 *host_offset
= alloc_cluster_offset
+ offset_into_cluster(s
, guest_offset
);
1730 *bytes
= MIN(*bytes
, nb_bytes
- offset_into_cluster(s
, guest_offset
));
1731 assert(*bytes
!= 0);
1733 ret
= calculate_l2_meta(bs
, alloc_cluster_offset
, guest_offset
, *bytes
,
1734 l2_slice
, m
, false);
1742 qcow2_cache_put(s
->l2_table_cache
, (void **) &l2_slice
);
1747 * For a given area on the virtual disk defined by @offset and @bytes,
1748 * find the corresponding area on the qcow2 image, allocating new
1749 * clusters (or subclusters) if necessary. The result can span a
1750 * combination of allocated and previously unallocated clusters.
1752 * Note that offset may not be cluster aligned. In this case, the returned
1753 * *host_offset points to exact byte referenced by offset and therefore
1754 * isn't cluster aligned as well.
1756 * On return, @host_offset is set to the beginning of the requested
1757 * area. This area is guaranteed to be contiguous on the qcow2 file
1758 * but it can be smaller than initially requested. In this case @bytes
1759 * is updated with the actual size.
1761 * If any clusters or subclusters were allocated then @m contains a
1762 * list with the information of all the affected regions. Note that
1763 * this can happen regardless of whether this function succeeds or
1764 * not. The caller is responsible for updating the L2 metadata of the
1765 * allocated clusters (on success) or freeing them (on failure), and
1766 * for clearing the contents of @m afterwards in both cases.
1768 * If the request conflicts with another write request in flight, the coroutine
1769 * is queued and will be reentered when the dependency has completed.
1771 * Return 0 on success and -errno in error cases
1773 int qcow2_alloc_host_offset(BlockDriverState
*bs
, uint64_t offset
,
1774 unsigned int *bytes
, uint64_t *host_offset
,
1777 BDRVQcow2State
*s
= bs
->opaque
;
1778 uint64_t start
, remaining
;
1779 uint64_t cluster_offset
;
1783 trace_qcow2_alloc_clusters_offset(qemu_coroutine_self(), offset
, *bytes
);
1788 cluster_offset
= INV_OFFSET
;
1789 *host_offset
= INV_OFFSET
;
1795 if (*host_offset
== INV_OFFSET
&& cluster_offset
!= INV_OFFSET
) {
1796 *host_offset
= cluster_offset
;
1799 assert(remaining
>= cur_bytes
);
1802 remaining
-= cur_bytes
;
1804 if (cluster_offset
!= INV_OFFSET
) {
1805 cluster_offset
+= cur_bytes
;
1808 if (remaining
== 0) {
1812 cur_bytes
= remaining
;
1815 * Now start gathering as many contiguous clusters as possible:
1817 * 1. Check for overlaps with in-flight allocations
1819 * a) Overlap not in the first cluster -> shorten this request and
1820 * let the caller handle the rest in its next loop iteration.
1822 * b) Real overlaps of two requests. Yield and restart the search
1823 * for contiguous clusters (the situation could have changed
1824 * while we were sleeping)
1826 * c) TODO: Request starts in the same cluster as the in-flight
1827 * allocation ends. Shorten the COW of the in-fight allocation,
1828 * set cluster_offset to write to the same cluster and set up
1829 * the right synchronisation between the in-flight request and
1832 ret
= handle_dependencies(bs
, start
, &cur_bytes
, m
);
1833 if (ret
== -EAGAIN
) {
1834 /* Currently handle_dependencies() doesn't yield if we already had
1835 * an allocation. If it did, we would have to clean up the L2Meta
1836 * structs before starting over. */
1839 } else if (ret
< 0) {
1841 } else if (cur_bytes
== 0) {
1844 /* handle_dependencies() may have decreased cur_bytes (shortened
1845 * the allocations below) so that the next dependency is processed
1846 * correctly during the next loop iteration. */
1850 * 2. Count contiguous COPIED clusters.
1852 ret
= handle_copied(bs
, start
, &cluster_offset
, &cur_bytes
, m
);
1857 } else if (cur_bytes
== 0) {
1862 * 3. If the request still hasn't completed, allocate new clusters,
1863 * considering any cluster_offset of steps 1c or 2.
1865 ret
= handle_alloc(bs
, start
, &cluster_offset
, &cur_bytes
, m
);
1871 assert(cur_bytes
== 0);
1876 *bytes
-= remaining
;
1878 assert(*host_offset
!= INV_OFFSET
);
1879 assert(offset_into_cluster(s
, *host_offset
) ==
1880 offset_into_cluster(s
, offset
));
1886 * This discards as many clusters of nb_clusters as possible at once (i.e.
1887 * all clusters in the same L2 slice) and returns the number of discarded
1890 static int discard_in_l2_slice(BlockDriverState
*bs
, uint64_t offset
,
1891 uint64_t nb_clusters
,
1892 enum qcow2_discard_type type
, bool full_discard
)
1894 BDRVQcow2State
*s
= bs
->opaque
;
1900 ret
= get_cluster_table(bs
, offset
, &l2_slice
, &l2_index
);
1905 /* Limit nb_clusters to one L2 slice */
1906 nb_clusters
= MIN(nb_clusters
, s
->l2_slice_size
- l2_index
);
1907 assert(nb_clusters
<= INT_MAX
);
1909 for (i
= 0; i
< nb_clusters
; i
++) {
1910 uint64_t old_l2_entry
= get_l2_entry(s
, l2_slice
, l2_index
+ i
);
1911 uint64_t old_l2_bitmap
= get_l2_bitmap(s
, l2_slice
, l2_index
+ i
);
1912 uint64_t new_l2_entry
= old_l2_entry
;
1913 uint64_t new_l2_bitmap
= old_l2_bitmap
;
1914 QCow2ClusterType cluster_type
=
1915 qcow2_get_cluster_type(bs
, old_l2_entry
);
1918 * If full_discard is true, the cluster should not read back as zeroes,
1919 * but rather fall through to the backing file.
1921 * If full_discard is false, make sure that a discarded area reads back
1922 * as zeroes for v3 images (we cannot do it for v2 without actually
1923 * writing a zero-filled buffer). We can skip the operation if the
1924 * cluster is already marked as zero, or if it's unallocated and we
1925 * don't have a backing file.
1927 * TODO We might want to use bdrv_block_status(bs) here, but we're
1928 * holding s->lock, so that doesn't work today.
1931 new_l2_entry
= new_l2_bitmap
= 0;
1932 } else if (bs
->backing
|| qcow2_cluster_is_allocated(cluster_type
)) {
1933 if (has_subclusters(s
)) {
1935 new_l2_bitmap
= QCOW_L2_BITMAP_ALL_ZEROES
;
1937 new_l2_entry
= s
->qcow_version
>= 3 ? QCOW_OFLAG_ZERO
: 0;
1941 if (old_l2_entry
== new_l2_entry
&& old_l2_bitmap
== new_l2_bitmap
) {
1945 /* First remove L2 entries */
1946 qcow2_cache_entry_mark_dirty(s
->l2_table_cache
, l2_slice
);
1947 set_l2_entry(s
, l2_slice
, l2_index
+ i
, new_l2_entry
);
1948 if (has_subclusters(s
)) {
1949 set_l2_bitmap(s
, l2_slice
, l2_index
+ i
, new_l2_bitmap
);
1951 /* Then decrease the refcount */
1952 qcow2_free_any_cluster(bs
, old_l2_entry
, type
);
1955 qcow2_cache_put(s
->l2_table_cache
, (void **) &l2_slice
);
1960 int qcow2_cluster_discard(BlockDriverState
*bs
, uint64_t offset
,
1961 uint64_t bytes
, enum qcow2_discard_type type
,
1964 BDRVQcow2State
*s
= bs
->opaque
;
1965 uint64_t end_offset
= offset
+ bytes
;
1966 uint64_t nb_clusters
;
1970 /* Caller must pass aligned values, except at image end */
1971 assert(QEMU_IS_ALIGNED(offset
, s
->cluster_size
));
1972 assert(QEMU_IS_ALIGNED(end_offset
, s
->cluster_size
) ||
1973 end_offset
== bs
->total_sectors
<< BDRV_SECTOR_BITS
);
1975 nb_clusters
= size_to_clusters(s
, bytes
);
1977 s
->cache_discards
= true;
1979 /* Each L2 slice is handled by its own loop iteration */
1980 while (nb_clusters
> 0) {
1981 cleared
= discard_in_l2_slice(bs
, offset
, nb_clusters
, type
,
1988 nb_clusters
-= cleared
;
1989 offset
+= (cleared
* s
->cluster_size
);
1994 s
->cache_discards
= false;
1995 qcow2_process_discards(bs
, ret
);
2001 * This zeroes as many clusters of nb_clusters as possible at once (i.e.
2002 * all clusters in the same L2 slice) and returns the number of zeroed
2005 static int zero_in_l2_slice(BlockDriverState
*bs
, uint64_t offset
,
2006 uint64_t nb_clusters
, int flags
)
2008 BDRVQcow2State
*s
= bs
->opaque
;
2014 ret
= get_cluster_table(bs
, offset
, &l2_slice
, &l2_index
);
2019 /* Limit nb_clusters to one L2 slice */
2020 nb_clusters
= MIN(nb_clusters
, s
->l2_slice_size
- l2_index
);
2021 assert(nb_clusters
<= INT_MAX
);
2023 for (i
= 0; i
< nb_clusters
; i
++) {
2024 uint64_t old_l2_entry
= get_l2_entry(s
, l2_slice
, l2_index
+ i
);
2025 uint64_t old_l2_bitmap
= get_l2_bitmap(s
, l2_slice
, l2_index
+ i
);
2026 QCow2ClusterType type
= qcow2_get_cluster_type(bs
, old_l2_entry
);
2027 bool unmap
= (type
== QCOW2_CLUSTER_COMPRESSED
) ||
2028 ((flags
& BDRV_REQ_MAY_UNMAP
) && qcow2_cluster_is_allocated(type
));
2029 uint64_t new_l2_entry
= unmap
? 0 : old_l2_entry
;
2030 uint64_t new_l2_bitmap
= old_l2_bitmap
;
2032 if (has_subclusters(s
)) {
2033 new_l2_bitmap
= QCOW_L2_BITMAP_ALL_ZEROES
;
2035 new_l2_entry
|= QCOW_OFLAG_ZERO
;
2038 if (old_l2_entry
== new_l2_entry
&& old_l2_bitmap
== new_l2_bitmap
) {
2042 /* First update L2 entries */
2043 qcow2_cache_entry_mark_dirty(s
->l2_table_cache
, l2_slice
);
2044 set_l2_entry(s
, l2_slice
, l2_index
+ i
, new_l2_entry
);
2045 if (has_subclusters(s
)) {
2046 set_l2_bitmap(s
, l2_slice
, l2_index
+ i
, new_l2_bitmap
);
2049 /* Then decrease the refcount */
2051 qcow2_free_any_cluster(bs
, old_l2_entry
, QCOW2_DISCARD_REQUEST
);
2055 qcow2_cache_put(s
->l2_table_cache
, (void **) &l2_slice
);
2060 static int zero_l2_subclusters(BlockDriverState
*bs
, uint64_t offset
,
2061 unsigned nb_subclusters
)
2063 BDRVQcow2State
*s
= bs
->opaque
;
2065 uint64_t old_l2_bitmap
, l2_bitmap
;
2066 int l2_index
, ret
, sc
= offset_to_sc_index(s
, offset
);
2068 /* For full clusters use zero_in_l2_slice() instead */
2069 assert(nb_subclusters
> 0 && nb_subclusters
< s
->subclusters_per_cluster
);
2070 assert(sc
+ nb_subclusters
<= s
->subclusters_per_cluster
);
2071 assert(offset_into_subcluster(s
, offset
) == 0);
2073 ret
= get_cluster_table(bs
, offset
, &l2_slice
, &l2_index
);
2078 switch (qcow2_get_cluster_type(bs
, get_l2_entry(s
, l2_slice
, l2_index
))) {
2079 case QCOW2_CLUSTER_COMPRESSED
:
2080 ret
= -ENOTSUP
; /* We cannot partially zeroize compressed clusters */
2082 case QCOW2_CLUSTER_NORMAL
:
2083 case QCOW2_CLUSTER_UNALLOCATED
:
2086 g_assert_not_reached();
2089 old_l2_bitmap
= l2_bitmap
= get_l2_bitmap(s
, l2_slice
, l2_index
);
2091 l2_bitmap
|= QCOW_OFLAG_SUB_ZERO_RANGE(sc
, sc
+ nb_subclusters
);
2092 l2_bitmap
&= ~QCOW_OFLAG_SUB_ALLOC_RANGE(sc
, sc
+ nb_subclusters
);
2094 if (old_l2_bitmap
!= l2_bitmap
) {
2095 set_l2_bitmap(s
, l2_slice
, l2_index
, l2_bitmap
);
2096 qcow2_cache_entry_mark_dirty(s
->l2_table_cache
, l2_slice
);
2101 qcow2_cache_put(s
->l2_table_cache
, (void **) &l2_slice
);
2106 int qcow2_subcluster_zeroize(BlockDriverState
*bs
, uint64_t offset
,
2107 uint64_t bytes
, int flags
)
2109 BDRVQcow2State
*s
= bs
->opaque
;
2110 uint64_t end_offset
= offset
+ bytes
;
2111 uint64_t nb_clusters
;
2112 unsigned head
, tail
;
2116 /* If we have to stay in sync with an external data file, zero out
2117 * s->data_file first. */
2118 if (data_file_is_raw(bs
)) {
2119 assert(has_data_file(bs
));
2120 ret
= bdrv_co_pwrite_zeroes(s
->data_file
, offset
, bytes
, flags
);
2126 /* Caller must pass aligned values, except at image end */
2127 assert(offset_into_subcluster(s
, offset
) == 0);
2128 assert(offset_into_subcluster(s
, end_offset
) == 0 ||
2129 end_offset
>= bs
->total_sectors
<< BDRV_SECTOR_BITS
);
2132 * The zero flag is only supported by version 3 and newer. However, if we
2133 * have no backing file, we can resort to discard in version 2.
2135 if (s
->qcow_version
< 3) {
2137 return qcow2_cluster_discard(bs
, offset
, bytes
,
2138 QCOW2_DISCARD_REQUEST
, false);
2143 head
= MIN(end_offset
, ROUND_UP(offset
, s
->cluster_size
)) - offset
;
2146 tail
= (end_offset
>= bs
->total_sectors
<< BDRV_SECTOR_BITS
) ? 0 :
2147 end_offset
- MAX(offset
, start_of_cluster(s
, end_offset
));
2150 s
->cache_discards
= true;
2153 ret
= zero_l2_subclusters(bs
, offset
- head
,
2154 size_to_subclusters(s
, head
));
2160 /* Each L2 slice is handled by its own loop iteration */
2161 nb_clusters
= size_to_clusters(s
, end_offset
- offset
);
2163 while (nb_clusters
> 0) {
2164 cleared
= zero_in_l2_slice(bs
, offset
, nb_clusters
, flags
);
2170 nb_clusters
-= cleared
;
2171 offset
+= (cleared
* s
->cluster_size
);
2175 ret
= zero_l2_subclusters(bs
, end_offset
, size_to_subclusters(s
, tail
));
2183 s
->cache_discards
= false;
2184 qcow2_process_discards(bs
, ret
);
2190 * Expands all zero clusters in a specific L1 table (or deallocates them, for
2191 * non-backed non-pre-allocated zero clusters).
2193 * l1_entries and *visited_l1_entries are used to keep track of progress for
2194 * status_cb(). l1_entries contains the total number of L1 entries and
2195 * *visited_l1_entries counts all visited L1 entries.
2197 static int expand_zero_clusters_in_l1(BlockDriverState
*bs
, uint64_t *l1_table
,
2198 int l1_size
, int64_t *visited_l1_entries
,
2200 BlockDriverAmendStatusCB
*status_cb
,
2203 BDRVQcow2State
*s
= bs
->opaque
;
2204 bool is_active_l1
= (l1_table
== s
->l1_table
);
2205 uint64_t *l2_slice
= NULL
;
2206 unsigned slice
, slice_size2
, n_slices
;
2210 /* qcow2_downgrade() is not allowed in images with subclusters */
2211 assert(!has_subclusters(s
));
2213 slice_size2
= s
->l2_slice_size
* l2_entry_size(s
);
2214 n_slices
= s
->cluster_size
/ slice_size2
;
2216 if (!is_active_l1
) {
2217 /* inactive L2 tables require a buffer to be stored in when loading
2219 l2_slice
= qemu_try_blockalign(bs
->file
->bs
, slice_size2
);
2220 if (l2_slice
== NULL
) {
2225 for (i
= 0; i
< l1_size
; i
++) {
2226 uint64_t l2_offset
= l1_table
[i
] & L1E_OFFSET_MASK
;
2227 uint64_t l2_refcount
;
2231 (*visited_l1_entries
)++;
2233 status_cb(bs
, *visited_l1_entries
, l1_entries
, cb_opaque
);
2238 if (offset_into_cluster(s
, l2_offset
)) {
2239 qcow2_signal_corruption(bs
, true, -1, -1, "L2 table offset %#"
2240 PRIx64
" unaligned (L1 index: %#x)",
2246 ret
= qcow2_get_refcount(bs
, l2_offset
>> s
->cluster_bits
,
2252 for (slice
= 0; slice
< n_slices
; slice
++) {
2253 uint64_t slice_offset
= l2_offset
+ slice
* slice_size2
;
2254 bool l2_dirty
= false;
2256 /* get active L2 tables from cache */
2257 ret
= qcow2_cache_get(bs
, s
->l2_table_cache
, slice_offset
,
2258 (void **)&l2_slice
);
2260 /* load inactive L2 tables from disk */
2261 ret
= bdrv_pread(bs
->file
, slice_offset
, l2_slice
, slice_size2
);
2267 for (j
= 0; j
< s
->l2_slice_size
; j
++) {
2268 uint64_t l2_entry
= get_l2_entry(s
, l2_slice
, j
);
2269 int64_t offset
= l2_entry
& L2E_OFFSET_MASK
;
2270 QCow2ClusterType cluster_type
=
2271 qcow2_get_cluster_type(bs
, l2_entry
);
2273 if (cluster_type
!= QCOW2_CLUSTER_ZERO_PLAIN
&&
2274 cluster_type
!= QCOW2_CLUSTER_ZERO_ALLOC
) {
2278 if (cluster_type
== QCOW2_CLUSTER_ZERO_PLAIN
) {
2281 * not backed; therefore we can simply deallocate the
2282 * cluster. No need to call set_l2_bitmap(), this
2283 * function doesn't support images with subclusters.
2285 set_l2_entry(s
, l2_slice
, j
, 0);
2290 offset
= qcow2_alloc_clusters(bs
, s
->cluster_size
);
2296 /* The offset must fit in the offset field */
2297 assert((offset
& L2E_OFFSET_MASK
) == offset
);
2299 if (l2_refcount
> 1) {
2300 /* For shared L2 tables, set the refcount accordingly
2301 * (it is already 1 and needs to be l2_refcount) */
2302 ret
= qcow2_update_cluster_refcount(
2303 bs
, offset
>> s
->cluster_bits
,
2304 refcount_diff(1, l2_refcount
), false,
2305 QCOW2_DISCARD_OTHER
);
2307 qcow2_free_clusters(bs
, offset
, s
->cluster_size
,
2308 QCOW2_DISCARD_OTHER
);
2314 if (offset_into_cluster(s
, offset
)) {
2315 int l2_index
= slice
* s
->l2_slice_size
+ j
;
2316 qcow2_signal_corruption(
2318 "Cluster allocation offset "
2319 "%#" PRIx64
" unaligned (L2 offset: %#"
2320 PRIx64
", L2 index: %#x)", offset
,
2321 l2_offset
, l2_index
);
2322 if (cluster_type
== QCOW2_CLUSTER_ZERO_PLAIN
) {
2323 qcow2_free_clusters(bs
, offset
, s
->cluster_size
,
2324 QCOW2_DISCARD_ALWAYS
);
2330 ret
= qcow2_pre_write_overlap_check(bs
, 0, offset
,
2331 s
->cluster_size
, true);
2333 if (cluster_type
== QCOW2_CLUSTER_ZERO_PLAIN
) {
2334 qcow2_free_clusters(bs
, offset
, s
->cluster_size
,
2335 QCOW2_DISCARD_ALWAYS
);
2340 ret
= bdrv_pwrite_zeroes(s
->data_file
, offset
,
2341 s
->cluster_size
, 0);
2343 if (cluster_type
== QCOW2_CLUSTER_ZERO_PLAIN
) {
2344 qcow2_free_clusters(bs
, offset
, s
->cluster_size
,
2345 QCOW2_DISCARD_ALWAYS
);
2350 if (l2_refcount
== 1) {
2351 set_l2_entry(s
, l2_slice
, j
, offset
| QCOW_OFLAG_COPIED
);
2353 set_l2_entry(s
, l2_slice
, j
, offset
);
2356 * No need to call set_l2_bitmap() after set_l2_entry() because
2357 * this function doesn't support images with subclusters.
2364 qcow2_cache_entry_mark_dirty(s
->l2_table_cache
, l2_slice
);
2365 qcow2_cache_depends_on_flush(s
->l2_table_cache
);
2367 qcow2_cache_put(s
->l2_table_cache
, (void **) &l2_slice
);
2370 ret
= qcow2_pre_write_overlap_check(
2371 bs
, QCOW2_OL_INACTIVE_L2
| QCOW2_OL_ACTIVE_L2
,
2372 slice_offset
, slice_size2
, false);
2377 ret
= bdrv_pwrite(bs
->file
, slice_offset
,
2378 l2_slice
, slice_size2
);
2386 (*visited_l1_entries
)++;
2388 status_cb(bs
, *visited_l1_entries
, l1_entries
, cb_opaque
);
2396 if (!is_active_l1
) {
2397 qemu_vfree(l2_slice
);
2399 qcow2_cache_put(s
->l2_table_cache
, (void **) &l2_slice
);
2406 * For backed images, expands all zero clusters on the image. For non-backed
2407 * images, deallocates all non-pre-allocated zero clusters (and claims the
2408 * allocation for pre-allocated ones). This is important for downgrading to a
2409 * qcow2 version which doesn't yet support metadata zero clusters.
2411 int qcow2_expand_zero_clusters(BlockDriverState
*bs
,
2412 BlockDriverAmendStatusCB
*status_cb
,
2415 BDRVQcow2State
*s
= bs
->opaque
;
2416 uint64_t *l1_table
= NULL
;
2417 int64_t l1_entries
= 0, visited_l1_entries
= 0;
2422 l1_entries
= s
->l1_size
;
2423 for (i
= 0; i
< s
->nb_snapshots
; i
++) {
2424 l1_entries
+= s
->snapshots
[i
].l1_size
;
2428 ret
= expand_zero_clusters_in_l1(bs
, s
->l1_table
, s
->l1_size
,
2429 &visited_l1_entries
, l1_entries
,
2430 status_cb
, cb_opaque
);
2435 /* Inactive L1 tables may point to active L2 tables - therefore it is
2436 * necessary to flush the L2 table cache before trying to access the L2
2437 * tables pointed to by inactive L1 entries (else we might try to expand
2438 * zero clusters that have already been expanded); furthermore, it is also
2439 * necessary to empty the L2 table cache, since it may contain tables which
2440 * are now going to be modified directly on disk, bypassing the cache.
2441 * qcow2_cache_empty() does both for us. */
2442 ret
= qcow2_cache_empty(bs
, s
->l2_table_cache
);
2447 for (i
= 0; i
< s
->nb_snapshots
; i
++) {
2449 uint64_t *new_l1_table
;
2450 Error
*local_err
= NULL
;
2452 ret
= qcow2_validate_table(bs
, s
->snapshots
[i
].l1_table_offset
,
2453 s
->snapshots
[i
].l1_size
, L1E_SIZE
,
2454 QCOW_MAX_L1_SIZE
, "Snapshot L1 table",
2457 error_report_err(local_err
);
2461 l1_size2
= s
->snapshots
[i
].l1_size
* L1E_SIZE
;
2462 new_l1_table
= g_try_realloc(l1_table
, l1_size2
);
2464 if (!new_l1_table
) {
2469 l1_table
= new_l1_table
;
2471 ret
= bdrv_pread(bs
->file
, s
->snapshots
[i
].l1_table_offset
,
2472 l1_table
, l1_size2
);
2477 for (j
= 0; j
< s
->snapshots
[i
].l1_size
; j
++) {
2478 be64_to_cpus(&l1_table
[j
]);
2481 ret
= expand_zero_clusters_in_l1(bs
, l1_table
, s
->snapshots
[i
].l1_size
,
2482 &visited_l1_entries
, l1_entries
,
2483 status_cb
, cb_opaque
);
2496 void qcow2_parse_compressed_l2_entry(BlockDriverState
*bs
, uint64_t l2_entry
,
2497 uint64_t *coffset
, int *csize
)
2499 BDRVQcow2State
*s
= bs
->opaque
;
2502 assert(qcow2_get_cluster_type(bs
, l2_entry
) == QCOW2_CLUSTER_COMPRESSED
);
2504 *coffset
= l2_entry
& s
->cluster_offset_mask
;
2506 nb_csectors
= ((l2_entry
>> s
->csize_shift
) & s
->csize_mask
) + 1;
2507 *csize
= nb_csectors
* QCOW2_COMPRESSED_SECTOR_SIZE
-
2508 (*coffset
& (QCOW2_COMPRESSED_SECTOR_SIZE
- 1));