block: Fix AioContext locking in qmp_block_resize()
[qemu/kevin.git] / linux-user / signal.c
blobb35d1e512fbfb04773b9151d650e46def48f0af6
1 /*
2 * Emulation of Linux signals
4 * Copyright (c) 2003 Fabrice Bellard
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
20 #include "qemu/bitops.h"
21 #include "gdbstub/user.h"
22 #include "hw/core/tcg-cpu-ops.h"
24 #include <sys/ucontext.h>
25 #include <sys/resource.h>
27 #include "qemu.h"
28 #include "user-internals.h"
29 #include "strace.h"
30 #include "loader.h"
31 #include "trace.h"
32 #include "signal-common.h"
33 #include "host-signal.h"
34 #include "user/safe-syscall.h"
35 #include "tcg/tcg.h"
37 static struct target_sigaction sigact_table[TARGET_NSIG];
39 static void host_signal_handler(int host_signum, siginfo_t *info,
40 void *puc);
42 /* Fallback addresses into sigtramp page. */
43 abi_ulong default_sigreturn;
44 abi_ulong default_rt_sigreturn;
47 * System includes define _NSIG as SIGRTMAX + 1, but qemu (like the kernel)
48 * defines TARGET_NSIG as TARGET_SIGRTMAX and the first signal is 1.
49 * Signal number 0 is reserved for use as kill(pid, 0), to test whether
50 * a process exists without sending it a signal.
52 #ifdef __SIGRTMAX
53 QEMU_BUILD_BUG_ON(__SIGRTMAX + 1 != _NSIG);
54 #endif
55 static uint8_t host_to_target_signal_table[_NSIG] = {
56 #define MAKE_SIG_ENTRY(sig) [sig] = TARGET_##sig,
57 MAKE_SIGNAL_LIST
58 #undef MAKE_SIG_ENTRY
61 static uint8_t target_to_host_signal_table[TARGET_NSIG + 1];
63 /* valid sig is between 1 and _NSIG - 1 */
64 int host_to_target_signal(int sig)
66 if (sig < 1) {
67 return sig;
69 if (sig >= _NSIG) {
70 return TARGET_NSIG + 1;
72 return host_to_target_signal_table[sig];
75 /* valid sig is between 1 and TARGET_NSIG */
76 int target_to_host_signal(int sig)
78 if (sig < 1) {
79 return sig;
81 if (sig > TARGET_NSIG) {
82 return _NSIG;
84 return target_to_host_signal_table[sig];
87 static inline void target_sigaddset(target_sigset_t *set, int signum)
89 signum--;
90 abi_ulong mask = (abi_ulong)1 << (signum % TARGET_NSIG_BPW);
91 set->sig[signum / TARGET_NSIG_BPW] |= mask;
94 static inline int target_sigismember(const target_sigset_t *set, int signum)
96 signum--;
97 abi_ulong mask = (abi_ulong)1 << (signum % TARGET_NSIG_BPW);
98 return ((set->sig[signum / TARGET_NSIG_BPW] & mask) != 0);
101 void host_to_target_sigset_internal(target_sigset_t *d,
102 const sigset_t *s)
104 int host_sig, target_sig;
105 target_sigemptyset(d);
106 for (host_sig = 1; host_sig < _NSIG; host_sig++) {
107 target_sig = host_to_target_signal(host_sig);
108 if (target_sig < 1 || target_sig > TARGET_NSIG) {
109 continue;
111 if (sigismember(s, host_sig)) {
112 target_sigaddset(d, target_sig);
117 void host_to_target_sigset(target_sigset_t *d, const sigset_t *s)
119 target_sigset_t d1;
120 int i;
122 host_to_target_sigset_internal(&d1, s);
123 for(i = 0;i < TARGET_NSIG_WORDS; i++)
124 d->sig[i] = tswapal(d1.sig[i]);
127 void target_to_host_sigset_internal(sigset_t *d,
128 const target_sigset_t *s)
130 int host_sig, target_sig;
131 sigemptyset(d);
132 for (target_sig = 1; target_sig <= TARGET_NSIG; target_sig++) {
133 host_sig = target_to_host_signal(target_sig);
134 if (host_sig < 1 || host_sig >= _NSIG) {
135 continue;
137 if (target_sigismember(s, target_sig)) {
138 sigaddset(d, host_sig);
143 void target_to_host_sigset(sigset_t *d, const target_sigset_t *s)
145 target_sigset_t s1;
146 int i;
148 for(i = 0;i < TARGET_NSIG_WORDS; i++)
149 s1.sig[i] = tswapal(s->sig[i]);
150 target_to_host_sigset_internal(d, &s1);
153 void host_to_target_old_sigset(abi_ulong *old_sigset,
154 const sigset_t *sigset)
156 target_sigset_t d;
157 host_to_target_sigset(&d, sigset);
158 *old_sigset = d.sig[0];
161 void target_to_host_old_sigset(sigset_t *sigset,
162 const abi_ulong *old_sigset)
164 target_sigset_t d;
165 int i;
167 d.sig[0] = *old_sigset;
168 for(i = 1;i < TARGET_NSIG_WORDS; i++)
169 d.sig[i] = 0;
170 target_to_host_sigset(sigset, &d);
173 int block_signals(void)
175 TaskState *ts = (TaskState *)thread_cpu->opaque;
176 sigset_t set;
178 /* It's OK to block everything including SIGSEGV, because we won't
179 * run any further guest code before unblocking signals in
180 * process_pending_signals().
182 sigfillset(&set);
183 sigprocmask(SIG_SETMASK, &set, 0);
185 return qatomic_xchg(&ts->signal_pending, 1);
188 /* Wrapper for sigprocmask function
189 * Emulates a sigprocmask in a safe way for the guest. Note that set and oldset
190 * are host signal set, not guest ones. Returns -QEMU_ERESTARTSYS if
191 * a signal was already pending and the syscall must be restarted, or
192 * 0 on success.
193 * If set is NULL, this is guaranteed not to fail.
195 int do_sigprocmask(int how, const sigset_t *set, sigset_t *oldset)
197 TaskState *ts = (TaskState *)thread_cpu->opaque;
199 if (oldset) {
200 *oldset = ts->signal_mask;
203 if (set) {
204 int i;
206 if (block_signals()) {
207 return -QEMU_ERESTARTSYS;
210 switch (how) {
211 case SIG_BLOCK:
212 sigorset(&ts->signal_mask, &ts->signal_mask, set);
213 break;
214 case SIG_UNBLOCK:
215 for (i = 1; i <= NSIG; ++i) {
216 if (sigismember(set, i)) {
217 sigdelset(&ts->signal_mask, i);
220 break;
221 case SIG_SETMASK:
222 ts->signal_mask = *set;
223 break;
224 default:
225 g_assert_not_reached();
228 /* Silently ignore attempts to change blocking status of KILL or STOP */
229 sigdelset(&ts->signal_mask, SIGKILL);
230 sigdelset(&ts->signal_mask, SIGSTOP);
232 return 0;
235 /* Just set the guest's signal mask to the specified value; the
236 * caller is assumed to have called block_signals() already.
238 void set_sigmask(const sigset_t *set)
240 TaskState *ts = (TaskState *)thread_cpu->opaque;
242 ts->signal_mask = *set;
245 /* sigaltstack management */
247 int on_sig_stack(unsigned long sp)
249 TaskState *ts = (TaskState *)thread_cpu->opaque;
251 return (sp - ts->sigaltstack_used.ss_sp
252 < ts->sigaltstack_used.ss_size);
255 int sas_ss_flags(unsigned long sp)
257 TaskState *ts = (TaskState *)thread_cpu->opaque;
259 return (ts->sigaltstack_used.ss_size == 0 ? SS_DISABLE
260 : on_sig_stack(sp) ? SS_ONSTACK : 0);
263 abi_ulong target_sigsp(abi_ulong sp, struct target_sigaction *ka)
266 * This is the X/Open sanctioned signal stack switching.
268 TaskState *ts = (TaskState *)thread_cpu->opaque;
270 if ((ka->sa_flags & TARGET_SA_ONSTACK) && !sas_ss_flags(sp)) {
271 return ts->sigaltstack_used.ss_sp + ts->sigaltstack_used.ss_size;
273 return sp;
276 void target_save_altstack(target_stack_t *uss, CPUArchState *env)
278 TaskState *ts = (TaskState *)thread_cpu->opaque;
280 __put_user(ts->sigaltstack_used.ss_sp, &uss->ss_sp);
281 __put_user(sas_ss_flags(get_sp_from_cpustate(env)), &uss->ss_flags);
282 __put_user(ts->sigaltstack_used.ss_size, &uss->ss_size);
285 abi_long target_restore_altstack(target_stack_t *uss, CPUArchState *env)
287 TaskState *ts = (TaskState *)thread_cpu->opaque;
288 size_t minstacksize = TARGET_MINSIGSTKSZ;
289 target_stack_t ss;
291 #if defined(TARGET_PPC64)
292 /* ELF V2 for PPC64 has a 4K minimum stack size for signal handlers */
293 struct image_info *image = ts->info;
294 if (get_ppc64_abi(image) > 1) {
295 minstacksize = 4096;
297 #endif
299 __get_user(ss.ss_sp, &uss->ss_sp);
300 __get_user(ss.ss_size, &uss->ss_size);
301 __get_user(ss.ss_flags, &uss->ss_flags);
303 if (on_sig_stack(get_sp_from_cpustate(env))) {
304 return -TARGET_EPERM;
307 switch (ss.ss_flags) {
308 default:
309 return -TARGET_EINVAL;
311 case TARGET_SS_DISABLE:
312 ss.ss_size = 0;
313 ss.ss_sp = 0;
314 break;
316 case TARGET_SS_ONSTACK:
317 case 0:
318 if (ss.ss_size < minstacksize) {
319 return -TARGET_ENOMEM;
321 break;
324 ts->sigaltstack_used.ss_sp = ss.ss_sp;
325 ts->sigaltstack_used.ss_size = ss.ss_size;
326 return 0;
329 /* siginfo conversion */
331 static inline void host_to_target_siginfo_noswap(target_siginfo_t *tinfo,
332 const siginfo_t *info)
334 int sig = host_to_target_signal(info->si_signo);
335 int si_code = info->si_code;
336 int si_type;
337 tinfo->si_signo = sig;
338 tinfo->si_errno = 0;
339 tinfo->si_code = info->si_code;
341 /* This memset serves two purposes:
342 * (1) ensure we don't leak random junk to the guest later
343 * (2) placate false positives from gcc about fields
344 * being used uninitialized if it chooses to inline both this
345 * function and tswap_siginfo() into host_to_target_siginfo().
347 memset(tinfo->_sifields._pad, 0, sizeof(tinfo->_sifields._pad));
349 /* This is awkward, because we have to use a combination of
350 * the si_code and si_signo to figure out which of the union's
351 * members are valid. (Within the host kernel it is always possible
352 * to tell, but the kernel carefully avoids giving userspace the
353 * high 16 bits of si_code, so we don't have the information to
354 * do this the easy way...) We therefore make our best guess,
355 * bearing in mind that a guest can spoof most of the si_codes
356 * via rt_sigqueueinfo() if it likes.
358 * Once we have made our guess, we record it in the top 16 bits of
359 * the si_code, so that tswap_siginfo() later can use it.
360 * tswap_siginfo() will strip these top bits out before writing
361 * si_code to the guest (sign-extending the lower bits).
364 switch (si_code) {
365 case SI_USER:
366 case SI_TKILL:
367 case SI_KERNEL:
368 /* Sent via kill(), tkill() or tgkill(), or direct from the kernel.
369 * These are the only unspoofable si_code values.
371 tinfo->_sifields._kill._pid = info->si_pid;
372 tinfo->_sifields._kill._uid = info->si_uid;
373 si_type = QEMU_SI_KILL;
374 break;
375 default:
376 /* Everything else is spoofable. Make best guess based on signal */
377 switch (sig) {
378 case TARGET_SIGCHLD:
379 tinfo->_sifields._sigchld._pid = info->si_pid;
380 tinfo->_sifields._sigchld._uid = info->si_uid;
381 if (si_code == CLD_EXITED)
382 tinfo->_sifields._sigchld._status = info->si_status;
383 else
384 tinfo->_sifields._sigchld._status
385 = host_to_target_signal(info->si_status & 0x7f)
386 | (info->si_status & ~0x7f);
387 tinfo->_sifields._sigchld._utime = info->si_utime;
388 tinfo->_sifields._sigchld._stime = info->si_stime;
389 si_type = QEMU_SI_CHLD;
390 break;
391 case TARGET_SIGIO:
392 tinfo->_sifields._sigpoll._band = info->si_band;
393 tinfo->_sifields._sigpoll._fd = info->si_fd;
394 si_type = QEMU_SI_POLL;
395 break;
396 default:
397 /* Assume a sigqueue()/mq_notify()/rt_sigqueueinfo() source. */
398 tinfo->_sifields._rt._pid = info->si_pid;
399 tinfo->_sifields._rt._uid = info->si_uid;
400 /* XXX: potential problem if 64 bit */
401 tinfo->_sifields._rt._sigval.sival_ptr
402 = (abi_ulong)(unsigned long)info->si_value.sival_ptr;
403 si_type = QEMU_SI_RT;
404 break;
406 break;
409 tinfo->si_code = deposit32(si_code, 16, 16, si_type);
412 void tswap_siginfo(target_siginfo_t *tinfo,
413 const target_siginfo_t *info)
415 int si_type = extract32(info->si_code, 16, 16);
416 int si_code = sextract32(info->si_code, 0, 16);
418 __put_user(info->si_signo, &tinfo->si_signo);
419 __put_user(info->si_errno, &tinfo->si_errno);
420 __put_user(si_code, &tinfo->si_code);
422 /* We can use our internal marker of which fields in the structure
423 * are valid, rather than duplicating the guesswork of
424 * host_to_target_siginfo_noswap() here.
426 switch (si_type) {
427 case QEMU_SI_KILL:
428 __put_user(info->_sifields._kill._pid, &tinfo->_sifields._kill._pid);
429 __put_user(info->_sifields._kill._uid, &tinfo->_sifields._kill._uid);
430 break;
431 case QEMU_SI_TIMER:
432 __put_user(info->_sifields._timer._timer1,
433 &tinfo->_sifields._timer._timer1);
434 __put_user(info->_sifields._timer._timer2,
435 &tinfo->_sifields._timer._timer2);
436 break;
437 case QEMU_SI_POLL:
438 __put_user(info->_sifields._sigpoll._band,
439 &tinfo->_sifields._sigpoll._band);
440 __put_user(info->_sifields._sigpoll._fd,
441 &tinfo->_sifields._sigpoll._fd);
442 break;
443 case QEMU_SI_FAULT:
444 __put_user(info->_sifields._sigfault._addr,
445 &tinfo->_sifields._sigfault._addr);
446 break;
447 case QEMU_SI_CHLD:
448 __put_user(info->_sifields._sigchld._pid,
449 &tinfo->_sifields._sigchld._pid);
450 __put_user(info->_sifields._sigchld._uid,
451 &tinfo->_sifields._sigchld._uid);
452 __put_user(info->_sifields._sigchld._status,
453 &tinfo->_sifields._sigchld._status);
454 __put_user(info->_sifields._sigchld._utime,
455 &tinfo->_sifields._sigchld._utime);
456 __put_user(info->_sifields._sigchld._stime,
457 &tinfo->_sifields._sigchld._stime);
458 break;
459 case QEMU_SI_RT:
460 __put_user(info->_sifields._rt._pid, &tinfo->_sifields._rt._pid);
461 __put_user(info->_sifields._rt._uid, &tinfo->_sifields._rt._uid);
462 __put_user(info->_sifields._rt._sigval.sival_ptr,
463 &tinfo->_sifields._rt._sigval.sival_ptr);
464 break;
465 default:
466 g_assert_not_reached();
470 void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info)
472 target_siginfo_t tgt_tmp;
473 host_to_target_siginfo_noswap(&tgt_tmp, info);
474 tswap_siginfo(tinfo, &tgt_tmp);
477 /* XXX: we support only POSIX RT signals are used. */
478 /* XXX: find a solution for 64 bit (additional malloced data is needed) */
479 void target_to_host_siginfo(siginfo_t *info, const target_siginfo_t *tinfo)
481 /* This conversion is used only for the rt_sigqueueinfo syscall,
482 * and so we know that the _rt fields are the valid ones.
484 abi_ulong sival_ptr;
486 __get_user(info->si_signo, &tinfo->si_signo);
487 __get_user(info->si_errno, &tinfo->si_errno);
488 __get_user(info->si_code, &tinfo->si_code);
489 __get_user(info->si_pid, &tinfo->_sifields._rt._pid);
490 __get_user(info->si_uid, &tinfo->_sifields._rt._uid);
491 __get_user(sival_ptr, &tinfo->_sifields._rt._sigval.sival_ptr);
492 info->si_value.sival_ptr = (void *)(long)sival_ptr;
495 /* returns 1 if given signal should dump core if not handled */
496 static int core_dump_signal(int sig)
498 switch (sig) {
499 case TARGET_SIGABRT:
500 case TARGET_SIGFPE:
501 case TARGET_SIGILL:
502 case TARGET_SIGQUIT:
503 case TARGET_SIGSEGV:
504 case TARGET_SIGTRAP:
505 case TARGET_SIGBUS:
506 return (1);
507 default:
508 return (0);
512 static void signal_table_init(void)
514 int hsig, tsig, count;
517 * Signals are supported starting from TARGET_SIGRTMIN and going up
518 * until we run out of host realtime signals. Glibc uses the lower 2
519 * RT signals and (hopefully) nobody uses the upper ones.
520 * This is why SIGRTMIN (34) is generally greater than __SIGRTMIN (32).
521 * To fix this properly we would need to do manual signal delivery
522 * multiplexed over a single host signal.
523 * Attempts for configure "missing" signals via sigaction will be
524 * silently ignored.
526 * Remap the target SIGABRT, so that we can distinguish host abort
527 * from guest abort. When the guest registers a signal handler or
528 * calls raise(SIGABRT), the host will raise SIG_RTn. If the guest
529 * arrives at dump_core_and_abort(), we will map back to host SIGABRT
530 * so that the parent (native or emulated) sees the correct signal.
531 * Finally, also map host to guest SIGABRT so that the emulated
532 * parent sees the correct mapping from wait status.
535 hsig = SIGRTMIN;
536 host_to_target_signal_table[SIGABRT] = 0;
537 host_to_target_signal_table[hsig++] = TARGET_SIGABRT;
539 for (tsig = TARGET_SIGRTMIN;
540 hsig <= SIGRTMAX && tsig <= TARGET_NSIG;
541 hsig++, tsig++) {
542 host_to_target_signal_table[hsig] = tsig;
545 /* Invert the mapping that has already been assigned. */
546 for (hsig = 1; hsig < _NSIG; hsig++) {
547 tsig = host_to_target_signal_table[hsig];
548 if (tsig) {
549 assert(target_to_host_signal_table[tsig] == 0);
550 target_to_host_signal_table[tsig] = hsig;
554 host_to_target_signal_table[SIGABRT] = TARGET_SIGABRT;
556 /* Map everything else out-of-bounds. */
557 for (hsig = 1; hsig < _NSIG; hsig++) {
558 if (host_to_target_signal_table[hsig] == 0) {
559 host_to_target_signal_table[hsig] = TARGET_NSIG + 1;
562 for (count = 0, tsig = 1; tsig <= TARGET_NSIG; tsig++) {
563 if (target_to_host_signal_table[tsig] == 0) {
564 target_to_host_signal_table[tsig] = _NSIG;
565 count++;
569 trace_signal_table_init(count);
572 void signal_init(void)
574 TaskState *ts = (TaskState *)thread_cpu->opaque;
575 struct sigaction act, oact;
577 /* initialize signal conversion tables */
578 signal_table_init();
580 /* Set the signal mask from the host mask. */
581 sigprocmask(0, 0, &ts->signal_mask);
583 sigfillset(&act.sa_mask);
584 act.sa_flags = SA_SIGINFO;
585 act.sa_sigaction = host_signal_handler;
588 * A parent process may configure ignored signals, but all other
589 * signals are default. For any target signals that have no host
590 * mapping, set to ignore. For all core_dump_signal, install our
591 * host signal handler so that we may invoke dump_core_and_abort.
592 * This includes SIGSEGV and SIGBUS, which are also need our signal
593 * handler for paging and exceptions.
595 for (int tsig = 1; tsig <= TARGET_NSIG; tsig++) {
596 int hsig = target_to_host_signal(tsig);
597 abi_ptr thand = TARGET_SIG_IGN;
599 if (hsig >= _NSIG) {
600 continue;
603 /* As we force remap SIGABRT, cannot probe and install in one step. */
604 if (tsig == TARGET_SIGABRT) {
605 sigaction(SIGABRT, NULL, &oact);
606 sigaction(hsig, &act, NULL);
607 } else {
608 struct sigaction *iact = core_dump_signal(tsig) ? &act : NULL;
609 sigaction(hsig, iact, &oact);
612 if (oact.sa_sigaction != (void *)SIG_IGN) {
613 thand = TARGET_SIG_DFL;
615 sigact_table[tsig - 1]._sa_handler = thand;
619 /* Force a synchronously taken signal. The kernel force_sig() function
620 * also forces the signal to "not blocked, not ignored", but for QEMU
621 * that work is done in process_pending_signals().
623 void force_sig(int sig)
625 CPUState *cpu = thread_cpu;
626 CPUArchState *env = cpu_env(cpu);
627 target_siginfo_t info = {};
629 info.si_signo = sig;
630 info.si_errno = 0;
631 info.si_code = TARGET_SI_KERNEL;
632 info._sifields._kill._pid = 0;
633 info._sifields._kill._uid = 0;
634 queue_signal(env, info.si_signo, QEMU_SI_KILL, &info);
638 * Force a synchronously taken QEMU_SI_FAULT signal. For QEMU the
639 * 'force' part is handled in process_pending_signals().
641 void force_sig_fault(int sig, int code, abi_ulong addr)
643 CPUState *cpu = thread_cpu;
644 CPUArchState *env = cpu_env(cpu);
645 target_siginfo_t info = {};
647 info.si_signo = sig;
648 info.si_errno = 0;
649 info.si_code = code;
650 info._sifields._sigfault._addr = addr;
651 queue_signal(env, sig, QEMU_SI_FAULT, &info);
654 /* Force a SIGSEGV if we couldn't write to memory trying to set
655 * up the signal frame. oldsig is the signal we were trying to handle
656 * at the point of failure.
658 #if !defined(TARGET_RISCV)
659 void force_sigsegv(int oldsig)
661 if (oldsig == SIGSEGV) {
662 /* Make sure we don't try to deliver the signal again; this will
663 * end up with handle_pending_signal() calling dump_core_and_abort().
665 sigact_table[oldsig - 1]._sa_handler = TARGET_SIG_DFL;
667 force_sig(TARGET_SIGSEGV);
669 #endif
671 void cpu_loop_exit_sigsegv(CPUState *cpu, target_ulong addr,
672 MMUAccessType access_type, bool maperr, uintptr_t ra)
674 const struct TCGCPUOps *tcg_ops = CPU_GET_CLASS(cpu)->tcg_ops;
676 if (tcg_ops->record_sigsegv) {
677 tcg_ops->record_sigsegv(cpu, addr, access_type, maperr, ra);
680 force_sig_fault(TARGET_SIGSEGV,
681 maperr ? TARGET_SEGV_MAPERR : TARGET_SEGV_ACCERR,
682 addr);
683 cpu->exception_index = EXCP_INTERRUPT;
684 cpu_loop_exit_restore(cpu, ra);
687 void cpu_loop_exit_sigbus(CPUState *cpu, target_ulong addr,
688 MMUAccessType access_type, uintptr_t ra)
690 const struct TCGCPUOps *tcg_ops = CPU_GET_CLASS(cpu)->tcg_ops;
692 if (tcg_ops->record_sigbus) {
693 tcg_ops->record_sigbus(cpu, addr, access_type, ra);
696 force_sig_fault(TARGET_SIGBUS, TARGET_BUS_ADRALN, addr);
697 cpu->exception_index = EXCP_INTERRUPT;
698 cpu_loop_exit_restore(cpu, ra);
701 /* abort execution with signal */
702 static G_NORETURN
703 void die_with_signal(int host_sig)
705 struct sigaction act = {
706 .sa_handler = SIG_DFL,
710 * The proper exit code for dying from an uncaught signal is -<signal>.
711 * The kernel doesn't allow exit() or _exit() to pass a negative value.
712 * To get the proper exit code we need to actually die from an uncaught
713 * signal. Here the default signal handler is installed, we send
714 * the signal and we wait for it to arrive.
716 sigfillset(&act.sa_mask);
717 sigaction(host_sig, &act, NULL);
719 kill(getpid(), host_sig);
721 /* Make sure the signal isn't masked (reusing the mask inside of act). */
722 sigdelset(&act.sa_mask, host_sig);
723 sigsuspend(&act.sa_mask);
725 /* unreachable */
726 _exit(EXIT_FAILURE);
729 static G_NORETURN
730 void dump_core_and_abort(CPUArchState *env, int target_sig)
732 CPUState *cpu = env_cpu(env);
733 TaskState *ts = (TaskState *)cpu->opaque;
734 int host_sig, core_dumped = 0;
736 /* On exit, undo the remapping of SIGABRT. */
737 if (target_sig == TARGET_SIGABRT) {
738 host_sig = SIGABRT;
739 } else {
740 host_sig = target_to_host_signal(target_sig);
742 trace_user_dump_core_and_abort(env, target_sig, host_sig);
743 gdb_signalled(env, target_sig);
745 /* dump core if supported by target binary format */
746 if (core_dump_signal(target_sig) && (ts->bprm->core_dump != NULL)) {
747 stop_all_tasks();
748 core_dumped =
749 ((*ts->bprm->core_dump)(target_sig, env) == 0);
751 if (core_dumped) {
752 /* we already dumped the core of target process, we don't want
753 * a coredump of qemu itself */
754 struct rlimit nodump;
755 getrlimit(RLIMIT_CORE, &nodump);
756 nodump.rlim_cur=0;
757 setrlimit(RLIMIT_CORE, &nodump);
758 (void) fprintf(stderr, "qemu: uncaught target signal %d (%s) - %s\n",
759 target_sig, strsignal(host_sig), "core dumped" );
762 preexit_cleanup(env, 128 + target_sig);
763 die_with_signal(host_sig);
766 /* queue a signal so that it will be send to the virtual CPU as soon
767 as possible */
768 void queue_signal(CPUArchState *env, int sig, int si_type,
769 target_siginfo_t *info)
771 CPUState *cpu = env_cpu(env);
772 TaskState *ts = cpu->opaque;
774 trace_user_queue_signal(env, sig);
776 info->si_code = deposit32(info->si_code, 16, 16, si_type);
778 ts->sync_signal.info = *info;
779 ts->sync_signal.pending = sig;
780 /* signal that a new signal is pending */
781 qatomic_set(&ts->signal_pending, 1);
785 /* Adjust the signal context to rewind out of safe-syscall if we're in it */
786 static inline void rewind_if_in_safe_syscall(void *puc)
788 host_sigcontext *uc = (host_sigcontext *)puc;
789 uintptr_t pcreg = host_signal_pc(uc);
791 if (pcreg > (uintptr_t)safe_syscall_start
792 && pcreg < (uintptr_t)safe_syscall_end) {
793 host_signal_set_pc(uc, (uintptr_t)safe_syscall_start);
797 static G_NORETURN
798 void die_from_signal(siginfo_t *info)
800 char sigbuf[4], codebuf[12];
801 const char *sig, *code = NULL;
803 switch (info->si_signo) {
804 case SIGSEGV:
805 sig = "SEGV";
806 switch (info->si_code) {
807 case SEGV_MAPERR:
808 code = "MAPERR";
809 break;
810 case SEGV_ACCERR:
811 code = "ACCERR";
812 break;
814 break;
815 case SIGBUS:
816 sig = "BUS";
817 switch (info->si_code) {
818 case BUS_ADRALN:
819 code = "ADRALN";
820 break;
821 case BUS_ADRERR:
822 code = "ADRERR";
823 break;
825 break;
826 case SIGILL:
827 sig = "ILL";
828 switch (info->si_code) {
829 case ILL_ILLOPC:
830 code = "ILLOPC";
831 break;
832 case ILL_ILLOPN:
833 code = "ILLOPN";
834 break;
835 case ILL_ILLADR:
836 code = "ILLADR";
837 break;
838 case ILL_PRVOPC:
839 code = "PRVOPC";
840 break;
841 case ILL_PRVREG:
842 code = "PRVREG";
843 break;
844 case ILL_COPROC:
845 code = "COPROC";
846 break;
848 break;
849 case SIGFPE:
850 sig = "FPE";
851 switch (info->si_code) {
852 case FPE_INTDIV:
853 code = "INTDIV";
854 break;
855 case FPE_INTOVF:
856 code = "INTOVF";
857 break;
859 break;
860 case SIGTRAP:
861 sig = "TRAP";
862 break;
863 default:
864 snprintf(sigbuf, sizeof(sigbuf), "%d", info->si_signo);
865 sig = sigbuf;
866 break;
868 if (code == NULL) {
869 snprintf(codebuf, sizeof(sigbuf), "%d", info->si_code);
870 code = codebuf;
873 error_report("QEMU internal SIG%s {code=%s, addr=%p}",
874 sig, code, info->si_addr);
875 die_with_signal(info->si_signo);
878 static void host_sigsegv_handler(CPUState *cpu, siginfo_t *info,
879 host_sigcontext *uc)
881 uintptr_t host_addr = (uintptr_t)info->si_addr;
883 * Convert forcefully to guest address space: addresses outside
884 * reserved_va are still valid to report via SEGV_MAPERR.
886 bool is_valid = h2g_valid(host_addr);
887 abi_ptr guest_addr = h2g_nocheck(host_addr);
888 uintptr_t pc = host_signal_pc(uc);
889 bool is_write = host_signal_write(info, uc);
890 MMUAccessType access_type = adjust_signal_pc(&pc, is_write);
891 bool maperr;
893 /* If this was a write to a TB protected page, restart. */
894 if (is_write
895 && is_valid
896 && info->si_code == SEGV_ACCERR
897 && handle_sigsegv_accerr_write(cpu, host_signal_mask(uc),
898 pc, guest_addr)) {
899 return;
903 * If the access was not on behalf of the guest, within the executable
904 * mapping of the generated code buffer, then it is a host bug.
906 if (access_type != MMU_INST_FETCH
907 && !in_code_gen_buffer((void *)(pc - tcg_splitwx_diff))) {
908 die_from_signal(info);
911 maperr = true;
912 if (is_valid && info->si_code == SEGV_ACCERR) {
914 * With reserved_va, the whole address space is PROT_NONE,
915 * which means that we may get ACCERR when we want MAPERR.
917 if (page_get_flags(guest_addr) & PAGE_VALID) {
918 maperr = false;
919 } else {
920 info->si_code = SEGV_MAPERR;
924 sigprocmask(SIG_SETMASK, host_signal_mask(uc), NULL);
925 cpu_loop_exit_sigsegv(cpu, guest_addr, access_type, maperr, pc);
928 static void host_sigbus_handler(CPUState *cpu, siginfo_t *info,
929 host_sigcontext *uc)
931 uintptr_t pc = host_signal_pc(uc);
932 bool is_write = host_signal_write(info, uc);
933 MMUAccessType access_type = adjust_signal_pc(&pc, is_write);
936 * If the access was not on behalf of the guest, within the executable
937 * mapping of the generated code buffer, then it is a host bug.
939 if (!in_code_gen_buffer((void *)(pc - tcg_splitwx_diff))) {
940 die_from_signal(info);
943 if (info->si_code == BUS_ADRALN) {
944 uintptr_t host_addr = (uintptr_t)info->si_addr;
945 abi_ptr guest_addr = h2g_nocheck(host_addr);
947 sigprocmask(SIG_SETMASK, host_signal_mask(uc), NULL);
948 cpu_loop_exit_sigbus(cpu, guest_addr, access_type, pc);
952 static void host_signal_handler(int host_sig, siginfo_t *info, void *puc)
954 CPUState *cpu = thread_cpu;
955 CPUArchState *env = cpu_env(cpu);
956 TaskState *ts = cpu->opaque;
957 target_siginfo_t tinfo;
958 host_sigcontext *uc = puc;
959 struct emulated_sigtable *k;
960 int guest_sig;
961 uintptr_t pc = 0;
962 bool sync_sig = false;
963 void *sigmask;
966 * Non-spoofed SIGSEGV and SIGBUS are synchronous, and need special
967 * handling wrt signal blocking and unwinding. Non-spoofed SIGILL,
968 * SIGFPE, SIGTRAP are always host bugs.
970 if (info->si_code > 0) {
971 switch (host_sig) {
972 case SIGSEGV:
973 /* Only returns on handle_sigsegv_accerr_write success. */
974 host_sigsegv_handler(cpu, info, uc);
975 return;
976 case SIGBUS:
977 host_sigbus_handler(cpu, info, uc);
978 sync_sig = true;
979 break;
980 case SIGILL:
981 case SIGFPE:
982 case SIGTRAP:
983 die_from_signal(info);
987 /* get target signal number */
988 guest_sig = host_to_target_signal(host_sig);
989 if (guest_sig < 1 || guest_sig > TARGET_NSIG) {
990 return;
992 trace_user_host_signal(env, host_sig, guest_sig);
994 host_to_target_siginfo_noswap(&tinfo, info);
995 k = &ts->sigtab[guest_sig - 1];
996 k->info = tinfo;
997 k->pending = guest_sig;
998 ts->signal_pending = 1;
1001 * For synchronous signals, unwind the cpu state to the faulting
1002 * insn and then exit back to the main loop so that the signal
1003 * is delivered immediately.
1005 if (sync_sig) {
1006 cpu->exception_index = EXCP_INTERRUPT;
1007 cpu_loop_exit_restore(cpu, pc);
1010 rewind_if_in_safe_syscall(puc);
1013 * Block host signals until target signal handler entered. We
1014 * can't block SIGSEGV or SIGBUS while we're executing guest
1015 * code in case the guest code provokes one in the window between
1016 * now and it getting out to the main loop. Signals will be
1017 * unblocked again in process_pending_signals().
1019 * WARNING: we cannot use sigfillset() here because the sigmask
1020 * field is a kernel sigset_t, which is much smaller than the
1021 * libc sigset_t which sigfillset() operates on. Using sigfillset()
1022 * would write 0xff bytes off the end of the structure and trash
1023 * data on the struct.
1025 sigmask = host_signal_mask(uc);
1026 memset(sigmask, 0xff, SIGSET_T_SIZE);
1027 sigdelset(sigmask, SIGSEGV);
1028 sigdelset(sigmask, SIGBUS);
1030 /* interrupt the virtual CPU as soon as possible */
1031 cpu_exit(thread_cpu);
1034 /* do_sigaltstack() returns target values and errnos. */
1035 /* compare linux/kernel/signal.c:do_sigaltstack() */
1036 abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr,
1037 CPUArchState *env)
1039 target_stack_t oss, *uoss = NULL;
1040 abi_long ret = -TARGET_EFAULT;
1042 if (uoss_addr) {
1043 /* Verify writability now, but do not alter user memory yet. */
1044 if (!lock_user_struct(VERIFY_WRITE, uoss, uoss_addr, 0)) {
1045 goto out;
1047 target_save_altstack(&oss, env);
1050 if (uss_addr) {
1051 target_stack_t *uss;
1053 if (!lock_user_struct(VERIFY_READ, uss, uss_addr, 1)) {
1054 goto out;
1056 ret = target_restore_altstack(uss, env);
1057 if (ret) {
1058 goto out;
1062 if (uoss_addr) {
1063 memcpy(uoss, &oss, sizeof(oss));
1064 unlock_user_struct(uoss, uoss_addr, 1);
1065 uoss = NULL;
1067 ret = 0;
1069 out:
1070 if (uoss) {
1071 unlock_user_struct(uoss, uoss_addr, 0);
1073 return ret;
1076 /* do_sigaction() return target values and host errnos */
1077 int do_sigaction(int sig, const struct target_sigaction *act,
1078 struct target_sigaction *oact, abi_ulong ka_restorer)
1080 struct target_sigaction *k;
1081 int host_sig;
1082 int ret = 0;
1084 trace_signal_do_sigaction_guest(sig, TARGET_NSIG);
1086 if (sig < 1 || sig > TARGET_NSIG) {
1087 return -TARGET_EINVAL;
1090 if (act && (sig == TARGET_SIGKILL || sig == TARGET_SIGSTOP)) {
1091 return -TARGET_EINVAL;
1094 if (block_signals()) {
1095 return -QEMU_ERESTARTSYS;
1098 k = &sigact_table[sig - 1];
1099 if (oact) {
1100 __put_user(k->_sa_handler, &oact->_sa_handler);
1101 __put_user(k->sa_flags, &oact->sa_flags);
1102 #ifdef TARGET_ARCH_HAS_SA_RESTORER
1103 __put_user(k->sa_restorer, &oact->sa_restorer);
1104 #endif
1105 /* Not swapped. */
1106 oact->sa_mask = k->sa_mask;
1108 if (act) {
1109 __get_user(k->_sa_handler, &act->_sa_handler);
1110 __get_user(k->sa_flags, &act->sa_flags);
1111 #ifdef TARGET_ARCH_HAS_SA_RESTORER
1112 __get_user(k->sa_restorer, &act->sa_restorer);
1113 #endif
1114 #ifdef TARGET_ARCH_HAS_KA_RESTORER
1115 k->ka_restorer = ka_restorer;
1116 #endif
1117 /* To be swapped in target_to_host_sigset. */
1118 k->sa_mask = act->sa_mask;
1120 /* we update the host linux signal state */
1121 host_sig = target_to_host_signal(sig);
1122 trace_signal_do_sigaction_host(host_sig, TARGET_NSIG);
1123 if (host_sig > SIGRTMAX) {
1124 /* we don't have enough host signals to map all target signals */
1125 qemu_log_mask(LOG_UNIMP, "Unsupported target signal #%d, ignored\n",
1126 sig);
1128 * we don't return an error here because some programs try to
1129 * register an handler for all possible rt signals even if they
1130 * don't need it.
1131 * An error here can abort them whereas there can be no problem
1132 * to not have the signal available later.
1133 * This is the case for golang,
1134 * See https://github.com/golang/go/issues/33746
1135 * So we silently ignore the error.
1137 return 0;
1139 if (host_sig != SIGSEGV && host_sig != SIGBUS) {
1140 struct sigaction act1;
1142 sigfillset(&act1.sa_mask);
1143 act1.sa_flags = SA_SIGINFO;
1144 if (k->_sa_handler == TARGET_SIG_IGN) {
1146 * It is important to update the host kernel signal ignore
1147 * state to avoid getting unexpected interrupted syscalls.
1149 act1.sa_sigaction = (void *)SIG_IGN;
1150 } else if (k->_sa_handler == TARGET_SIG_DFL) {
1151 if (core_dump_signal(sig)) {
1152 act1.sa_sigaction = host_signal_handler;
1153 } else {
1154 act1.sa_sigaction = (void *)SIG_DFL;
1156 } else {
1157 act1.sa_sigaction = host_signal_handler;
1158 if (k->sa_flags & TARGET_SA_RESTART) {
1159 act1.sa_flags |= SA_RESTART;
1162 ret = sigaction(host_sig, &act1, NULL);
1165 return ret;
1168 static void handle_pending_signal(CPUArchState *cpu_env, int sig,
1169 struct emulated_sigtable *k)
1171 CPUState *cpu = env_cpu(cpu_env);
1172 abi_ulong handler;
1173 sigset_t set;
1174 target_sigset_t target_old_set;
1175 struct target_sigaction *sa;
1176 TaskState *ts = cpu->opaque;
1178 trace_user_handle_signal(cpu_env, sig);
1179 /* dequeue signal */
1180 k->pending = 0;
1182 sig = gdb_handlesig(cpu, sig);
1183 if (!sig) {
1184 sa = NULL;
1185 handler = TARGET_SIG_IGN;
1186 } else {
1187 sa = &sigact_table[sig - 1];
1188 handler = sa->_sa_handler;
1191 if (unlikely(qemu_loglevel_mask(LOG_STRACE))) {
1192 print_taken_signal(sig, &k->info);
1195 if (handler == TARGET_SIG_DFL) {
1196 /* default handler : ignore some signal. The other are job control or fatal */
1197 if (sig == TARGET_SIGTSTP || sig == TARGET_SIGTTIN || sig == TARGET_SIGTTOU) {
1198 kill(getpid(),SIGSTOP);
1199 } else if (sig != TARGET_SIGCHLD &&
1200 sig != TARGET_SIGURG &&
1201 sig != TARGET_SIGWINCH &&
1202 sig != TARGET_SIGCONT) {
1203 dump_core_and_abort(cpu_env, sig);
1205 } else if (handler == TARGET_SIG_IGN) {
1206 /* ignore sig */
1207 } else if (handler == TARGET_SIG_ERR) {
1208 dump_core_and_abort(cpu_env, sig);
1209 } else {
1210 /* compute the blocked signals during the handler execution */
1211 sigset_t *blocked_set;
1213 target_to_host_sigset(&set, &sa->sa_mask);
1214 /* SA_NODEFER indicates that the current signal should not be
1215 blocked during the handler */
1216 if (!(sa->sa_flags & TARGET_SA_NODEFER))
1217 sigaddset(&set, target_to_host_signal(sig));
1219 /* save the previous blocked signal state to restore it at the
1220 end of the signal execution (see do_sigreturn) */
1221 host_to_target_sigset_internal(&target_old_set, &ts->signal_mask);
1223 /* block signals in the handler */
1224 blocked_set = ts->in_sigsuspend ?
1225 &ts->sigsuspend_mask : &ts->signal_mask;
1226 sigorset(&ts->signal_mask, blocked_set, &set);
1227 ts->in_sigsuspend = 0;
1229 /* if the CPU is in VM86 mode, we restore the 32 bit values */
1230 #if defined(TARGET_I386) && !defined(TARGET_X86_64)
1232 CPUX86State *env = cpu_env;
1233 if (env->eflags & VM_MASK)
1234 save_v86_state(env);
1236 #endif
1237 /* prepare the stack frame of the virtual CPU */
1238 #if defined(TARGET_ARCH_HAS_SETUP_FRAME)
1239 if (sa->sa_flags & TARGET_SA_SIGINFO) {
1240 setup_rt_frame(sig, sa, &k->info, &target_old_set, cpu_env);
1241 } else {
1242 setup_frame(sig, sa, &target_old_set, cpu_env);
1244 #else
1245 /* These targets do not have traditional signals. */
1246 setup_rt_frame(sig, sa, &k->info, &target_old_set, cpu_env);
1247 #endif
1248 if (sa->sa_flags & TARGET_SA_RESETHAND) {
1249 sa->_sa_handler = TARGET_SIG_DFL;
1254 void process_pending_signals(CPUArchState *cpu_env)
1256 CPUState *cpu = env_cpu(cpu_env);
1257 int sig;
1258 TaskState *ts = cpu->opaque;
1259 sigset_t set;
1260 sigset_t *blocked_set;
1262 while (qatomic_read(&ts->signal_pending)) {
1263 sigfillset(&set);
1264 sigprocmask(SIG_SETMASK, &set, 0);
1266 restart_scan:
1267 sig = ts->sync_signal.pending;
1268 if (sig) {
1269 /* Synchronous signals are forced,
1270 * see force_sig_info() and callers in Linux
1271 * Note that not all of our queue_signal() calls in QEMU correspond
1272 * to force_sig_info() calls in Linux (some are send_sig_info()).
1273 * However it seems like a kernel bug to me to allow the process
1274 * to block a synchronous signal since it could then just end up
1275 * looping round and round indefinitely.
1277 if (sigismember(&ts->signal_mask, target_to_host_signal_table[sig])
1278 || sigact_table[sig - 1]._sa_handler == TARGET_SIG_IGN) {
1279 sigdelset(&ts->signal_mask, target_to_host_signal_table[sig]);
1280 sigact_table[sig - 1]._sa_handler = TARGET_SIG_DFL;
1283 handle_pending_signal(cpu_env, sig, &ts->sync_signal);
1286 for (sig = 1; sig <= TARGET_NSIG; sig++) {
1287 blocked_set = ts->in_sigsuspend ?
1288 &ts->sigsuspend_mask : &ts->signal_mask;
1290 if (ts->sigtab[sig - 1].pending &&
1291 (!sigismember(blocked_set,
1292 target_to_host_signal_table[sig]))) {
1293 handle_pending_signal(cpu_env, sig, &ts->sigtab[sig - 1]);
1294 /* Restart scan from the beginning, as handle_pending_signal
1295 * might have resulted in a new synchronous signal (eg SIGSEGV).
1297 goto restart_scan;
1301 /* if no signal is pending, unblock signals and recheck (the act
1302 * of unblocking might cause us to take another host signal which
1303 * will set signal_pending again).
1305 qatomic_set(&ts->signal_pending, 0);
1306 ts->in_sigsuspend = 0;
1307 set = ts->signal_mask;
1308 sigdelset(&set, SIGSEGV);
1309 sigdelset(&set, SIGBUS);
1310 sigprocmask(SIG_SETMASK, &set, 0);
1312 ts->in_sigsuspend = 0;
1315 int process_sigsuspend_mask(sigset_t **pset, target_ulong sigset,
1316 target_ulong sigsize)
1318 TaskState *ts = (TaskState *)thread_cpu->opaque;
1319 sigset_t *host_set = &ts->sigsuspend_mask;
1320 target_sigset_t *target_sigset;
1322 if (sigsize != sizeof(*target_sigset)) {
1323 /* Like the kernel, we enforce correct size sigsets */
1324 return -TARGET_EINVAL;
1327 target_sigset = lock_user(VERIFY_READ, sigset, sigsize, 1);
1328 if (!target_sigset) {
1329 return -TARGET_EFAULT;
1331 target_to_host_sigset(host_set, target_sigset);
1332 unlock_user(target_sigset, sigset, 0);
1334 *pset = host_set;
1335 return 0;