target-arm: Add GIC phandle to VirtBoardInfo
[qemu/kevin.git] / hw / arm / virt.c
blobe5235ef4da43be21ffe6ad34a60d5862092f4cf6
1 /*
2 * ARM mach-virt emulation
4 * Copyright (c) 2013 Linaro Limited
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2 or later, as published by the Free Software Foundation.
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
15 * You should have received a copy of the GNU General Public License along with
16 * this program. If not, see <http://www.gnu.org/licenses/>.
18 * Emulate a virtual board which works by passing Linux all the information
19 * it needs about what devices are present via the device tree.
20 * There are some restrictions about what we can do here:
21 * + we can only present devices whose Linux drivers will work based
22 * purely on the device tree with no platform data at all
23 * + we want to present a very stripped-down minimalist platform,
24 * both because this reduces the security attack surface from the guest
25 * and also because it reduces our exposure to being broken when
26 * the kernel updates its device tree bindings and requires further
27 * information in a device binding that we aren't providing.
28 * This is essentially the same approach kvmtool uses.
31 #include "hw/sysbus.h"
32 #include "hw/arm/arm.h"
33 #include "hw/arm/primecell.h"
34 #include "hw/arm/virt.h"
35 #include "hw/devices.h"
36 #include "net/net.h"
37 #include "sysemu/block-backend.h"
38 #include "sysemu/device_tree.h"
39 #include "sysemu/sysemu.h"
40 #include "sysemu/kvm.h"
41 #include "hw/boards.h"
42 #include "hw/loader.h"
43 #include "exec/address-spaces.h"
44 #include "qemu/bitops.h"
45 #include "qemu/error-report.h"
46 #include "hw/pci-host/gpex.h"
47 #include "hw/arm/virt-acpi-build.h"
49 /* Number of external interrupt lines to configure the GIC with */
50 #define NUM_IRQS 128
52 #define GIC_FDT_IRQ_TYPE_SPI 0
53 #define GIC_FDT_IRQ_TYPE_PPI 1
55 #define GIC_FDT_IRQ_FLAGS_EDGE_LO_HI 1
56 #define GIC_FDT_IRQ_FLAGS_EDGE_HI_LO 2
57 #define GIC_FDT_IRQ_FLAGS_LEVEL_HI 4
58 #define GIC_FDT_IRQ_FLAGS_LEVEL_LO 8
60 #define GIC_FDT_IRQ_PPI_CPU_START 8
61 #define GIC_FDT_IRQ_PPI_CPU_WIDTH 8
63 typedef struct VirtBoardInfo {
64 struct arm_boot_info bootinfo;
65 const char *cpu_model;
66 const MemMapEntry *memmap;
67 const int *irqmap;
68 int smp_cpus;
69 void *fdt;
70 int fdt_size;
71 uint32_t clock_phandle;
72 uint32_t gic_phandle;
73 } VirtBoardInfo;
75 typedef struct {
76 MachineClass parent;
77 VirtBoardInfo *daughterboard;
78 } VirtMachineClass;
80 typedef struct {
81 MachineState parent;
82 bool secure;
83 } VirtMachineState;
85 #define TYPE_VIRT_MACHINE "virt"
86 #define VIRT_MACHINE(obj) \
87 OBJECT_CHECK(VirtMachineState, (obj), TYPE_VIRT_MACHINE)
88 #define VIRT_MACHINE_GET_CLASS(obj) \
89 OBJECT_GET_CLASS(VirtMachineClass, obj, TYPE_VIRT_MACHINE)
90 #define VIRT_MACHINE_CLASS(klass) \
91 OBJECT_CLASS_CHECK(VirtMachineClass, klass, TYPE_VIRT_MACHINE)
93 /* Addresses and sizes of our components.
94 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
95 * 128MB..256MB is used for miscellaneous device I/O.
96 * 256MB..1GB is reserved for possible future PCI support (ie where the
97 * PCI memory window will go if we add a PCI host controller).
98 * 1GB and up is RAM (which may happily spill over into the
99 * high memory region beyond 4GB).
100 * This represents a compromise between how much RAM can be given to
101 * a 32 bit VM and leaving space for expansion and in particular for PCI.
102 * Note that devices should generally be placed at multiples of 0x10000,
103 * to accommodate guests using 64K pages.
105 static const MemMapEntry a15memmap[] = {
106 /* Space up to 0x8000000 is reserved for a boot ROM */
107 [VIRT_FLASH] = { 0, 0x08000000 },
108 [VIRT_CPUPERIPHS] = { 0x08000000, 0x00020000 },
109 /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
110 [VIRT_GIC_DIST] = { 0x08000000, 0x00010000 },
111 [VIRT_GIC_CPU] = { 0x08010000, 0x00010000 },
112 [VIRT_UART] = { 0x09000000, 0x00001000 },
113 [VIRT_RTC] = { 0x09010000, 0x00001000 },
114 [VIRT_FW_CFG] = { 0x09020000, 0x0000000a },
115 [VIRT_MMIO] = { 0x0a000000, 0x00000200 },
116 /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
117 [VIRT_PCIE_MMIO] = { 0x10000000, 0x2eff0000 },
118 [VIRT_PCIE_PIO] = { 0x3eff0000, 0x00010000 },
119 [VIRT_PCIE_ECAM] = { 0x3f000000, 0x01000000 },
120 [VIRT_MEM] = { 0x40000000, 30ULL * 1024 * 1024 * 1024 },
123 static const int a15irqmap[] = {
124 [VIRT_UART] = 1,
125 [VIRT_RTC] = 2,
126 [VIRT_PCIE] = 3, /* ... to 6 */
127 [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
130 static VirtBoardInfo machines[] = {
132 .cpu_model = "cortex-a15",
133 .memmap = a15memmap,
134 .irqmap = a15irqmap,
137 .cpu_model = "cortex-a57",
138 .memmap = a15memmap,
139 .irqmap = a15irqmap,
142 .cpu_model = "host",
143 .memmap = a15memmap,
144 .irqmap = a15irqmap,
148 static VirtBoardInfo *find_machine_info(const char *cpu)
150 int i;
152 for (i = 0; i < ARRAY_SIZE(machines); i++) {
153 if (strcmp(cpu, machines[i].cpu_model) == 0) {
154 return &machines[i];
157 return NULL;
160 static void create_fdt(VirtBoardInfo *vbi)
162 void *fdt = create_device_tree(&vbi->fdt_size);
164 if (!fdt) {
165 error_report("create_device_tree() failed");
166 exit(1);
169 vbi->fdt = fdt;
171 /* Header */
172 qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
173 qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
174 qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
177 * /chosen and /memory nodes must exist for load_dtb
178 * to fill in necessary properties later
180 qemu_fdt_add_subnode(fdt, "/chosen");
181 qemu_fdt_add_subnode(fdt, "/memory");
182 qemu_fdt_setprop_string(fdt, "/memory", "device_type", "memory");
184 /* Clock node, for the benefit of the UART. The kernel device tree
185 * binding documentation claims the PL011 node clock properties are
186 * optional but in practice if you omit them the kernel refuses to
187 * probe for the device.
189 vbi->clock_phandle = qemu_fdt_alloc_phandle(fdt);
190 qemu_fdt_add_subnode(fdt, "/apb-pclk");
191 qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
192 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
193 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
194 qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
195 "clk24mhz");
196 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vbi->clock_phandle);
200 static void fdt_add_psci_node(const VirtBoardInfo *vbi)
202 uint32_t cpu_suspend_fn;
203 uint32_t cpu_off_fn;
204 uint32_t cpu_on_fn;
205 uint32_t migrate_fn;
206 void *fdt = vbi->fdt;
207 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(0));
209 qemu_fdt_add_subnode(fdt, "/psci");
210 if (armcpu->psci_version == 2) {
211 const char comp[] = "arm,psci-0.2\0arm,psci";
212 qemu_fdt_setprop(fdt, "/psci", "compatible", comp, sizeof(comp));
214 cpu_off_fn = QEMU_PSCI_0_2_FN_CPU_OFF;
215 if (arm_feature(&armcpu->env, ARM_FEATURE_AARCH64)) {
216 cpu_suspend_fn = QEMU_PSCI_0_2_FN64_CPU_SUSPEND;
217 cpu_on_fn = QEMU_PSCI_0_2_FN64_CPU_ON;
218 migrate_fn = QEMU_PSCI_0_2_FN64_MIGRATE;
219 } else {
220 cpu_suspend_fn = QEMU_PSCI_0_2_FN_CPU_SUSPEND;
221 cpu_on_fn = QEMU_PSCI_0_2_FN_CPU_ON;
222 migrate_fn = QEMU_PSCI_0_2_FN_MIGRATE;
224 } else {
225 qemu_fdt_setprop_string(fdt, "/psci", "compatible", "arm,psci");
227 cpu_suspend_fn = QEMU_PSCI_0_1_FN_CPU_SUSPEND;
228 cpu_off_fn = QEMU_PSCI_0_1_FN_CPU_OFF;
229 cpu_on_fn = QEMU_PSCI_0_1_FN_CPU_ON;
230 migrate_fn = QEMU_PSCI_0_1_FN_MIGRATE;
233 /* We adopt the PSCI spec's nomenclature, and use 'conduit' to refer
234 * to the instruction that should be used to invoke PSCI functions.
235 * However, the device tree binding uses 'method' instead, so that is
236 * what we should use here.
238 qemu_fdt_setprop_string(fdt, "/psci", "method", "hvc");
240 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_suspend", cpu_suspend_fn);
241 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_off", cpu_off_fn);
242 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_on", cpu_on_fn);
243 qemu_fdt_setprop_cell(fdt, "/psci", "migrate", migrate_fn);
246 static void fdt_add_timer_nodes(const VirtBoardInfo *vbi)
248 /* Note that on A15 h/w these interrupts are level-triggered,
249 * but for the GIC implementation provided by both QEMU and KVM
250 * they are edge-triggered.
252 ARMCPU *armcpu;
253 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
255 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
256 GIC_FDT_IRQ_PPI_CPU_WIDTH, (1 << vbi->smp_cpus) - 1);
258 qemu_fdt_add_subnode(vbi->fdt, "/timer");
260 armcpu = ARM_CPU(qemu_get_cpu(0));
261 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
262 const char compat[] = "arm,armv8-timer\0arm,armv7-timer";
263 qemu_fdt_setprop(vbi->fdt, "/timer", "compatible",
264 compat, sizeof(compat));
265 } else {
266 qemu_fdt_setprop_string(vbi->fdt, "/timer", "compatible",
267 "arm,armv7-timer");
269 qemu_fdt_setprop_cells(vbi->fdt, "/timer", "interrupts",
270 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags,
271 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags,
272 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags,
273 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags);
276 static void fdt_add_cpu_nodes(const VirtBoardInfo *vbi)
278 int cpu;
280 qemu_fdt_add_subnode(vbi->fdt, "/cpus");
281 qemu_fdt_setprop_cell(vbi->fdt, "/cpus", "#address-cells", 0x1);
282 qemu_fdt_setprop_cell(vbi->fdt, "/cpus", "#size-cells", 0x0);
284 for (cpu = vbi->smp_cpus - 1; cpu >= 0; cpu--) {
285 char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
286 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
288 qemu_fdt_add_subnode(vbi->fdt, nodename);
289 qemu_fdt_setprop_string(vbi->fdt, nodename, "device_type", "cpu");
290 qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible",
291 armcpu->dtb_compatible);
293 if (vbi->smp_cpus > 1) {
294 qemu_fdt_setprop_string(vbi->fdt, nodename,
295 "enable-method", "psci");
298 qemu_fdt_setprop_cell(vbi->fdt, nodename, "reg", cpu);
299 g_free(nodename);
303 static void fdt_add_gic_node(VirtBoardInfo *vbi)
306 vbi->gic_phandle = qemu_fdt_alloc_phandle(vbi->fdt);
307 qemu_fdt_setprop_cell(vbi->fdt, "/", "interrupt-parent", vbi->gic_phandle);
309 qemu_fdt_add_subnode(vbi->fdt, "/intc");
310 /* 'cortex-a15-gic' means 'GIC v2' */
311 qemu_fdt_setprop_string(vbi->fdt, "/intc", "compatible",
312 "arm,cortex-a15-gic");
313 qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#interrupt-cells", 3);
314 qemu_fdt_setprop(vbi->fdt, "/intc", "interrupt-controller", NULL, 0);
315 qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc", "reg",
316 2, vbi->memmap[VIRT_GIC_DIST].base,
317 2, vbi->memmap[VIRT_GIC_DIST].size,
318 2, vbi->memmap[VIRT_GIC_CPU].base,
319 2, vbi->memmap[VIRT_GIC_CPU].size);
320 qemu_fdt_setprop_cell(vbi->fdt, "/intc", "phandle", vbi->gic_phandle);
323 static void create_gic(VirtBoardInfo *vbi, qemu_irq *pic)
325 /* We create a standalone GIC v2 */
326 DeviceState *gicdev;
327 SysBusDevice *gicbusdev;
328 const char *gictype = "arm_gic";
329 int i;
331 if (kvm_irqchip_in_kernel()) {
332 gictype = "kvm-arm-gic";
335 gicdev = qdev_create(NULL, gictype);
336 qdev_prop_set_uint32(gicdev, "revision", 2);
337 qdev_prop_set_uint32(gicdev, "num-cpu", smp_cpus);
338 /* Note that the num-irq property counts both internal and external
339 * interrupts; there are always 32 of the former (mandated by GIC spec).
341 qdev_prop_set_uint32(gicdev, "num-irq", NUM_IRQS + 32);
342 qdev_init_nofail(gicdev);
343 gicbusdev = SYS_BUS_DEVICE(gicdev);
344 sysbus_mmio_map(gicbusdev, 0, vbi->memmap[VIRT_GIC_DIST].base);
345 sysbus_mmio_map(gicbusdev, 1, vbi->memmap[VIRT_GIC_CPU].base);
347 /* Wire the outputs from each CPU's generic timer to the
348 * appropriate GIC PPI inputs, and the GIC's IRQ output to
349 * the CPU's IRQ input.
351 for (i = 0; i < smp_cpus; i++) {
352 DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
353 int ppibase = NUM_IRQS + i * 32;
354 /* physical timer; we wire it up to the non-secure timer's ID,
355 * since a real A15 always has TrustZone but QEMU doesn't.
357 qdev_connect_gpio_out(cpudev, 0,
358 qdev_get_gpio_in(gicdev, ppibase + 30));
359 /* virtual timer */
360 qdev_connect_gpio_out(cpudev, 1,
361 qdev_get_gpio_in(gicdev, ppibase + 27));
363 sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
364 sysbus_connect_irq(gicbusdev, i + smp_cpus,
365 qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
368 for (i = 0; i < NUM_IRQS; i++) {
369 pic[i] = qdev_get_gpio_in(gicdev, i);
372 fdt_add_gic_node(vbi);
375 static void create_uart(const VirtBoardInfo *vbi, qemu_irq *pic)
377 char *nodename;
378 hwaddr base = vbi->memmap[VIRT_UART].base;
379 hwaddr size = vbi->memmap[VIRT_UART].size;
380 int irq = vbi->irqmap[VIRT_UART];
381 const char compat[] = "arm,pl011\0arm,primecell";
382 const char clocknames[] = "uartclk\0apb_pclk";
384 sysbus_create_simple("pl011", base, pic[irq]);
386 nodename = g_strdup_printf("/pl011@%" PRIx64, base);
387 qemu_fdt_add_subnode(vbi->fdt, nodename);
388 /* Note that we can't use setprop_string because of the embedded NUL */
389 qemu_fdt_setprop(vbi->fdt, nodename, "compatible",
390 compat, sizeof(compat));
391 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
392 2, base, 2, size);
393 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
394 GIC_FDT_IRQ_TYPE_SPI, irq,
395 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
396 qemu_fdt_setprop_cells(vbi->fdt, nodename, "clocks",
397 vbi->clock_phandle, vbi->clock_phandle);
398 qemu_fdt_setprop(vbi->fdt, nodename, "clock-names",
399 clocknames, sizeof(clocknames));
401 qemu_fdt_setprop_string(vbi->fdt, "/chosen", "stdout-path", nodename);
402 g_free(nodename);
405 static void create_rtc(const VirtBoardInfo *vbi, qemu_irq *pic)
407 char *nodename;
408 hwaddr base = vbi->memmap[VIRT_RTC].base;
409 hwaddr size = vbi->memmap[VIRT_RTC].size;
410 int irq = vbi->irqmap[VIRT_RTC];
411 const char compat[] = "arm,pl031\0arm,primecell";
413 sysbus_create_simple("pl031", base, pic[irq]);
415 nodename = g_strdup_printf("/pl031@%" PRIx64, base);
416 qemu_fdt_add_subnode(vbi->fdt, nodename);
417 qemu_fdt_setprop(vbi->fdt, nodename, "compatible", compat, sizeof(compat));
418 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
419 2, base, 2, size);
420 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
421 GIC_FDT_IRQ_TYPE_SPI, irq,
422 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
423 qemu_fdt_setprop_cell(vbi->fdt, nodename, "clocks", vbi->clock_phandle);
424 qemu_fdt_setprop_string(vbi->fdt, nodename, "clock-names", "apb_pclk");
425 g_free(nodename);
428 static void create_virtio_devices(const VirtBoardInfo *vbi, qemu_irq *pic)
430 int i;
431 hwaddr size = vbi->memmap[VIRT_MMIO].size;
433 /* We create the transports in forwards order. Since qbus_realize()
434 * prepends (not appends) new child buses, the incrementing loop below will
435 * create a list of virtio-mmio buses with decreasing base addresses.
437 * When a -device option is processed from the command line,
438 * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
439 * order. The upshot is that -device options in increasing command line
440 * order are mapped to virtio-mmio buses with decreasing base addresses.
442 * When this code was originally written, that arrangement ensured that the
443 * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
444 * the first -device on the command line. (The end-to-end order is a
445 * function of this loop, qbus_realize(), qbus_find_recursive(), and the
446 * guest kernel's name-to-address assignment strategy.)
448 * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
449 * the message, if not necessarily the code, of commit 70161ff336.
450 * Therefore the loop now establishes the inverse of the original intent.
452 * Unfortunately, we can't counteract the kernel change by reversing the
453 * loop; it would break existing command lines.
455 * In any case, the kernel makes no guarantee about the stability of
456 * enumeration order of virtio devices (as demonstrated by it changing
457 * between kernel versions). For reliable and stable identification
458 * of disks users must use UUIDs or similar mechanisms.
460 for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
461 int irq = vbi->irqmap[VIRT_MMIO] + i;
462 hwaddr base = vbi->memmap[VIRT_MMIO].base + i * size;
464 sysbus_create_simple("virtio-mmio", base, pic[irq]);
467 /* We add dtb nodes in reverse order so that they appear in the finished
468 * device tree lowest address first.
470 * Note that this mapping is independent of the loop above. The previous
471 * loop influences virtio device to virtio transport assignment, whereas
472 * this loop controls how virtio transports are laid out in the dtb.
474 for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
475 char *nodename;
476 int irq = vbi->irqmap[VIRT_MMIO] + i;
477 hwaddr base = vbi->memmap[VIRT_MMIO].base + i * size;
479 nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
480 qemu_fdt_add_subnode(vbi->fdt, nodename);
481 qemu_fdt_setprop_string(vbi->fdt, nodename,
482 "compatible", "virtio,mmio");
483 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
484 2, base, 2, size);
485 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
486 GIC_FDT_IRQ_TYPE_SPI, irq,
487 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
488 g_free(nodename);
492 static void create_one_flash(const char *name, hwaddr flashbase,
493 hwaddr flashsize)
495 /* Create and map a single flash device. We use the same
496 * parameters as the flash devices on the Versatile Express board.
498 DriveInfo *dinfo = drive_get_next(IF_PFLASH);
499 DeviceState *dev = qdev_create(NULL, "cfi.pflash01");
500 const uint64_t sectorlength = 256 * 1024;
502 if (dinfo) {
503 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
504 &error_abort);
507 qdev_prop_set_uint32(dev, "num-blocks", flashsize / sectorlength);
508 qdev_prop_set_uint64(dev, "sector-length", sectorlength);
509 qdev_prop_set_uint8(dev, "width", 4);
510 qdev_prop_set_uint8(dev, "device-width", 2);
511 qdev_prop_set_uint8(dev, "big-endian", 0);
512 qdev_prop_set_uint16(dev, "id0", 0x89);
513 qdev_prop_set_uint16(dev, "id1", 0x18);
514 qdev_prop_set_uint16(dev, "id2", 0x00);
515 qdev_prop_set_uint16(dev, "id3", 0x00);
516 qdev_prop_set_string(dev, "name", name);
517 qdev_init_nofail(dev);
519 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, flashbase);
522 static void create_flash(const VirtBoardInfo *vbi)
524 /* Create two flash devices to fill the VIRT_FLASH space in the memmap.
525 * Any file passed via -bios goes in the first of these.
527 hwaddr flashsize = vbi->memmap[VIRT_FLASH].size / 2;
528 hwaddr flashbase = vbi->memmap[VIRT_FLASH].base;
529 char *nodename;
531 if (bios_name) {
532 char *fn;
533 int image_size;
535 if (drive_get(IF_PFLASH, 0, 0)) {
536 error_report("The contents of the first flash device may be "
537 "specified with -bios or with -drive if=pflash... "
538 "but you cannot use both options at once");
539 exit(1);
541 fn = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
542 if (!fn) {
543 error_report("Could not find ROM image '%s'", bios_name);
544 exit(1);
546 image_size = load_image_targphys(fn, flashbase, flashsize);
547 g_free(fn);
548 if (image_size < 0) {
549 error_report("Could not load ROM image '%s'", bios_name);
550 exit(1);
554 create_one_flash("virt.flash0", flashbase, flashsize);
555 create_one_flash("virt.flash1", flashbase + flashsize, flashsize);
557 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
558 qemu_fdt_add_subnode(vbi->fdt, nodename);
559 qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible", "cfi-flash");
560 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
561 2, flashbase, 2, flashsize,
562 2, flashbase + flashsize, 2, flashsize);
563 qemu_fdt_setprop_cell(vbi->fdt, nodename, "bank-width", 4);
564 g_free(nodename);
567 static void create_fw_cfg(const VirtBoardInfo *vbi)
569 hwaddr base = vbi->memmap[VIRT_FW_CFG].base;
570 hwaddr size = vbi->memmap[VIRT_FW_CFG].size;
571 char *nodename;
573 fw_cfg_init_mem_wide(base + 8, base, 8);
575 nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
576 qemu_fdt_add_subnode(vbi->fdt, nodename);
577 qemu_fdt_setprop_string(vbi->fdt, nodename,
578 "compatible", "qemu,fw-cfg-mmio");
579 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
580 2, base, 2, size);
581 g_free(nodename);
584 static void create_pcie_irq_map(const VirtBoardInfo *vbi, uint32_t gic_phandle,
585 int first_irq, const char *nodename)
587 int devfn, pin;
588 uint32_t full_irq_map[4 * 4 * 8] = { 0 };
589 uint32_t *irq_map = full_irq_map;
591 for (devfn = 0; devfn <= 0x18; devfn += 0x8) {
592 for (pin = 0; pin < 4; pin++) {
593 int irq_type = GIC_FDT_IRQ_TYPE_SPI;
594 int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS);
595 int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
596 int i;
598 uint32_t map[] = {
599 devfn << 8, 0, 0, /* devfn */
600 pin + 1, /* PCI pin */
601 gic_phandle, irq_type, irq_nr, irq_level }; /* GIC irq */
603 /* Convert map to big endian */
604 for (i = 0; i < 8; i++) {
605 irq_map[i] = cpu_to_be32(map[i]);
607 irq_map += 8;
611 qemu_fdt_setprop(vbi->fdt, nodename, "interrupt-map",
612 full_irq_map, sizeof(full_irq_map));
614 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupt-map-mask",
615 0x1800, 0, 0, /* devfn (PCI_SLOT(3)) */
616 0x7 /* PCI irq */);
619 static void create_pcie(const VirtBoardInfo *vbi, qemu_irq *pic)
621 hwaddr base_mmio = vbi->memmap[VIRT_PCIE_MMIO].base;
622 hwaddr size_mmio = vbi->memmap[VIRT_PCIE_MMIO].size;
623 hwaddr base_pio = vbi->memmap[VIRT_PCIE_PIO].base;
624 hwaddr size_pio = vbi->memmap[VIRT_PCIE_PIO].size;
625 hwaddr base_ecam = vbi->memmap[VIRT_PCIE_ECAM].base;
626 hwaddr size_ecam = vbi->memmap[VIRT_PCIE_ECAM].size;
627 hwaddr base = base_mmio;
628 int nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN;
629 int irq = vbi->irqmap[VIRT_PCIE];
630 MemoryRegion *mmio_alias;
631 MemoryRegion *mmio_reg;
632 MemoryRegion *ecam_alias;
633 MemoryRegion *ecam_reg;
634 DeviceState *dev;
635 char *nodename;
636 int i;
638 dev = qdev_create(NULL, TYPE_GPEX_HOST);
639 qdev_init_nofail(dev);
641 /* Map only the first size_ecam bytes of ECAM space */
642 ecam_alias = g_new0(MemoryRegion, 1);
643 ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
644 memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
645 ecam_reg, 0, size_ecam);
646 memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
648 /* Map the MMIO window into system address space so as to expose
649 * the section of PCI MMIO space which starts at the same base address
650 * (ie 1:1 mapping for that part of PCI MMIO space visible through
651 * the window).
653 mmio_alias = g_new0(MemoryRegion, 1);
654 mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
655 memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
656 mmio_reg, base_mmio, size_mmio);
657 memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
659 /* Map IO port space */
660 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
662 for (i = 0; i < GPEX_NUM_IRQS; i++) {
663 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
666 nodename = g_strdup_printf("/pcie@%" PRIx64, base);
667 qemu_fdt_add_subnode(vbi->fdt, nodename);
668 qemu_fdt_setprop_string(vbi->fdt, nodename,
669 "compatible", "pci-host-ecam-generic");
670 qemu_fdt_setprop_string(vbi->fdt, nodename, "device_type", "pci");
671 qemu_fdt_setprop_cell(vbi->fdt, nodename, "#address-cells", 3);
672 qemu_fdt_setprop_cell(vbi->fdt, nodename, "#size-cells", 2);
673 qemu_fdt_setprop_cells(vbi->fdt, nodename, "bus-range", 0,
674 nr_pcie_buses - 1);
676 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
677 2, base_ecam, 2, size_ecam);
678 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "ranges",
679 1, FDT_PCI_RANGE_IOPORT, 2, 0,
680 2, base_pio, 2, size_pio,
681 1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
682 2, base_mmio, 2, size_mmio);
684 qemu_fdt_setprop_cell(vbi->fdt, nodename, "#interrupt-cells", 1);
685 create_pcie_irq_map(vbi, vbi->gic_phandle, irq, nodename);
687 g_free(nodename);
690 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
692 const VirtBoardInfo *board = (const VirtBoardInfo *)binfo;
694 *fdt_size = board->fdt_size;
695 return board->fdt;
698 static
699 void virt_guest_info_machine_done(Notifier *notifier, void *data)
701 VirtGuestInfoState *guest_info_state = container_of(notifier,
702 VirtGuestInfoState, machine_done);
703 virt_acpi_setup(&guest_info_state->info);
706 static void machvirt_init(MachineState *machine)
708 VirtMachineState *vms = VIRT_MACHINE(machine);
709 qemu_irq pic[NUM_IRQS];
710 MemoryRegion *sysmem = get_system_memory();
711 int n;
712 MemoryRegion *ram = g_new(MemoryRegion, 1);
713 const char *cpu_model = machine->cpu_model;
714 VirtBoardInfo *vbi;
715 VirtGuestInfoState *guest_info_state = g_malloc0(sizeof *guest_info_state);
716 VirtGuestInfo *guest_info = &guest_info_state->info;
717 char **cpustr;
719 if (!cpu_model) {
720 cpu_model = "cortex-a15";
723 /* Separate the actual CPU model name from any appended features */
724 cpustr = g_strsplit(cpu_model, ",", 2);
726 vbi = find_machine_info(cpustr[0]);
728 if (!vbi) {
729 error_report("mach-virt: CPU %s not supported", cpustr[0]);
730 exit(1);
733 vbi->smp_cpus = smp_cpus;
735 if (machine->ram_size > vbi->memmap[VIRT_MEM].size) {
736 error_report("mach-virt: cannot model more than 30GB RAM");
737 exit(1);
740 create_fdt(vbi);
742 for (n = 0; n < smp_cpus; n++) {
743 ObjectClass *oc = cpu_class_by_name(TYPE_ARM_CPU, cpustr[0]);
744 CPUClass *cc = CPU_CLASS(oc);
745 Object *cpuobj;
746 Error *err = NULL;
747 char *cpuopts = g_strdup(cpustr[1]);
749 if (!oc) {
750 fprintf(stderr, "Unable to find CPU definition\n");
751 exit(1);
753 cpuobj = object_new(object_class_get_name(oc));
755 /* Handle any CPU options specified by the user */
756 cc->parse_features(CPU(cpuobj), cpuopts, &err);
757 g_free(cpuopts);
758 if (err) {
759 error_report_err(err);
760 exit(1);
763 if (!vms->secure) {
764 object_property_set_bool(cpuobj, false, "has_el3", NULL);
767 object_property_set_int(cpuobj, QEMU_PSCI_CONDUIT_HVC, "psci-conduit",
768 NULL);
770 /* Secondary CPUs start in PSCI powered-down state */
771 if (n > 0) {
772 object_property_set_bool(cpuobj, true, "start-powered-off", NULL);
775 if (object_property_find(cpuobj, "reset-cbar", NULL)) {
776 object_property_set_int(cpuobj, vbi->memmap[VIRT_CPUPERIPHS].base,
777 "reset-cbar", &error_abort);
780 object_property_set_bool(cpuobj, true, "realized", NULL);
782 g_strfreev(cpustr);
783 fdt_add_timer_nodes(vbi);
784 fdt_add_cpu_nodes(vbi);
785 fdt_add_psci_node(vbi);
787 memory_region_allocate_system_memory(ram, NULL, "mach-virt.ram",
788 machine->ram_size);
789 memory_region_add_subregion(sysmem, vbi->memmap[VIRT_MEM].base, ram);
791 create_flash(vbi);
793 create_gic(vbi, pic);
795 create_uart(vbi, pic);
797 create_rtc(vbi, pic);
799 create_pcie(vbi, pic);
801 /* Create mmio transports, so the user can create virtio backends
802 * (which will be automatically plugged in to the transports). If
803 * no backend is created the transport will just sit harmlessly idle.
805 create_virtio_devices(vbi, pic);
807 create_fw_cfg(vbi);
808 rom_set_fw(fw_cfg_find());
810 guest_info->smp_cpus = smp_cpus;
811 guest_info->fw_cfg = fw_cfg_find();
812 guest_info->memmap = vbi->memmap;
813 guest_info->irqmap = vbi->irqmap;
814 guest_info_state->machine_done.notify = virt_guest_info_machine_done;
815 qemu_add_machine_init_done_notifier(&guest_info_state->machine_done);
817 vbi->bootinfo.ram_size = machine->ram_size;
818 vbi->bootinfo.kernel_filename = machine->kernel_filename;
819 vbi->bootinfo.kernel_cmdline = machine->kernel_cmdline;
820 vbi->bootinfo.initrd_filename = machine->initrd_filename;
821 vbi->bootinfo.nb_cpus = smp_cpus;
822 vbi->bootinfo.board_id = -1;
823 vbi->bootinfo.loader_start = vbi->memmap[VIRT_MEM].base;
824 vbi->bootinfo.get_dtb = machvirt_dtb;
825 vbi->bootinfo.firmware_loaded = bios_name || drive_get(IF_PFLASH, 0, 0);
826 arm_load_kernel(ARM_CPU(first_cpu), &vbi->bootinfo);
829 static bool virt_get_secure(Object *obj, Error **errp)
831 VirtMachineState *vms = VIRT_MACHINE(obj);
833 return vms->secure;
836 static void virt_set_secure(Object *obj, bool value, Error **errp)
838 VirtMachineState *vms = VIRT_MACHINE(obj);
840 vms->secure = value;
843 static void virt_instance_init(Object *obj)
845 VirtMachineState *vms = VIRT_MACHINE(obj);
847 /* EL3 is enabled by default on virt */
848 vms->secure = true;
849 object_property_add_bool(obj, "secure", virt_get_secure,
850 virt_set_secure, NULL);
851 object_property_set_description(obj, "secure",
852 "Set on/off to enable/disable the ARM "
853 "Security Extensions (TrustZone)",
854 NULL);
857 static void virt_class_init(ObjectClass *oc, void *data)
859 MachineClass *mc = MACHINE_CLASS(oc);
861 mc->name = TYPE_VIRT_MACHINE;
862 mc->desc = "ARM Virtual Machine",
863 mc->init = machvirt_init;
864 mc->max_cpus = 8;
867 static const TypeInfo machvirt_info = {
868 .name = TYPE_VIRT_MACHINE,
869 .parent = TYPE_MACHINE,
870 .instance_size = sizeof(VirtMachineState),
871 .instance_init = virt_instance_init,
872 .class_size = sizeof(VirtMachineClass),
873 .class_init = virt_class_init,
876 static void machvirt_machine_init(void)
878 type_register_static(&machvirt_info);
881 machine_init(machvirt_machine_init);