2 * QEMU ACPI hotplug utilities
4 * Copyright (C) 2013 Red Hat Inc
7 * Igor Mammedov <imammedo@redhat.com>
9 * This work is licensed under the terms of the GNU GPL, version 2 or later.
10 * See the COPYING file in the top-level directory.
12 #include "qemu/osdep.h"
14 #include "hw/acpi/cpu_hotplug.h"
15 #include "qapi/error.h"
17 #include "hw/i386/pc.h"
18 #include "qemu/error-report.h"
20 #define CPU_EJECT_METHOD "CPEJ"
21 #define CPU_MAT_METHOD "CPMA"
22 #define CPU_ON_BITMAP "CPON"
23 #define CPU_STATUS_METHOD "CPST"
24 #define CPU_STATUS_MAP "PRS"
25 #define CPU_SCAN_METHOD "PRSC"
27 static uint64_t cpu_status_read(void *opaque
, hwaddr addr
, unsigned int size
)
29 AcpiCpuHotplug
*cpus
= opaque
;
30 uint64_t val
= cpus
->sts
[addr
];
35 static void cpu_status_write(void *opaque
, hwaddr addr
, uint64_t data
,
38 /* firmware never used to write in CPU present bitmap so use
39 this fact as means to switch QEMU into modern CPU hotplug
40 mode by writing 0 at the beginning of legacy CPU bitmap
42 if (addr
== 0 && data
== 0) {
43 AcpiCpuHotplug
*cpus
= opaque
;
44 object_property_set_bool(cpus
->device
, false, "cpu-hotplug-legacy",
49 static const MemoryRegionOps AcpiCpuHotplug_ops
= {
50 .read
= cpu_status_read
,
51 .write
= cpu_status_write
,
52 .endianness
= DEVICE_LITTLE_ENDIAN
,
59 static void acpi_set_cpu_present_bit(AcpiCpuHotplug
*g
, CPUState
*cpu
,
62 CPUClass
*k
= CPU_GET_CLASS(cpu
);
65 cpu_id
= k
->get_arch_id(cpu
);
66 if ((cpu_id
/ 8) >= ACPI_GPE_PROC_LEN
) {
67 object_property_set_bool(g
->device
, false, "cpu-hotplug-legacy",
72 g
->sts
[cpu_id
/ 8] |= (1 << (cpu_id
% 8));
75 void legacy_acpi_cpu_plug_cb(HotplugHandler
*hotplug_dev
,
76 AcpiCpuHotplug
*g
, DeviceState
*dev
, Error
**errp
)
78 acpi_set_cpu_present_bit(g
, CPU(dev
), errp
);
82 acpi_send_event(DEVICE(hotplug_dev
), ACPI_CPU_HOTPLUG_STATUS
);
85 void legacy_acpi_cpu_hotplug_init(MemoryRegion
*parent
, Object
*owner
,
86 AcpiCpuHotplug
*gpe_cpu
, uint16_t base
)
90 memory_region_init_io(&gpe_cpu
->io
, owner
, &AcpiCpuHotplug_ops
,
91 gpe_cpu
, "acpi-cpu-hotplug", ACPI_GPE_PROC_LEN
);
92 memory_region_add_subregion(parent
, base
, &gpe_cpu
->io
);
93 gpe_cpu
->device
= owner
;
96 acpi_set_cpu_present_bit(gpe_cpu
, cpu
, &error_abort
);
100 void acpi_switch_to_modern_cphp(AcpiCpuHotplug
*gpe_cpu
,
101 CPUHotplugState
*cpuhp_state
,
104 MemoryRegion
*parent
= pci_address_space_io(PCI_DEVICE(gpe_cpu
->device
));
106 memory_region_del_subregion(parent
, &gpe_cpu
->io
);
107 cpu_hotplug_hw_init(parent
, gpe_cpu
->device
, cpuhp_state
, io_port
);
110 void build_legacy_cpu_hotplug_aml(Aml
*ctx
, MachineState
*machine
,
121 Aml
*sb_scope
= aml_scope("_SB");
122 uint8_t madt_tmpl
[8] = {0x00, 0x08, 0x00, 0x00, 0x00, 0, 0, 0};
123 Aml
*cpu_id
= aml_arg(1);
124 Aml
*apic_id
= aml_arg(0);
125 Aml
*cpu_on
= aml_local(0);
126 Aml
*madt
= aml_local(1);
127 Aml
*cpus_map
= aml_name(CPU_ON_BITMAP
);
128 Aml
*zero
= aml_int(0);
129 Aml
*one
= aml_int(1);
130 MachineClass
*mc
= MACHINE_GET_CLASS(machine
);
131 const CPUArchIdList
*apic_ids
= mc
->possible_cpu_arch_ids(machine
);
132 PCMachineState
*pcms
= PC_MACHINE(machine
);
135 * _MAT method - creates an madt apic buffer
136 * apic_id = Arg0 = Local APIC ID
137 * cpu_id = Arg1 = Processor ID
138 * cpu_on = Local0 = CPON flag for this cpu
139 * madt = Local1 = Buffer (in madt apic form) to return
141 method
= aml_method(CPU_MAT_METHOD
, 2, AML_NOTSERIALIZED
);
143 aml_store(aml_derefof(aml_index(cpus_map
, apic_id
)), cpu_on
));
145 aml_store(aml_buffer(sizeof(madt_tmpl
), madt_tmpl
), madt
));
146 /* Update the processor id, lapic id, and enable/disable status */
147 aml_append(method
, aml_store(cpu_id
, aml_index(madt
, aml_int(2))));
148 aml_append(method
, aml_store(apic_id
, aml_index(madt
, aml_int(3))));
149 aml_append(method
, aml_store(cpu_on
, aml_index(madt
, aml_int(4))));
150 aml_append(method
, aml_return(madt
));
151 aml_append(sb_scope
, method
);
154 * _STA method - return ON status of cpu
155 * apic_id = Arg0 = Local APIC ID
156 * cpu_on = Local0 = CPON flag for this cpu
158 method
= aml_method(CPU_STATUS_METHOD
, 1, AML_NOTSERIALIZED
);
160 aml_store(aml_derefof(aml_index(cpus_map
, apic_id
)), cpu_on
));
161 if_ctx
= aml_if(cpu_on
);
163 aml_append(if_ctx
, aml_return(aml_int(0xF)));
165 aml_append(method
, if_ctx
);
166 else_ctx
= aml_else();
168 aml_append(else_ctx
, aml_return(zero
));
170 aml_append(method
, else_ctx
);
171 aml_append(sb_scope
, method
);
173 method
= aml_method(CPU_EJECT_METHOD
, 2, AML_NOTSERIALIZED
);
174 aml_append(method
, aml_sleep(200));
175 aml_append(sb_scope
, method
);
177 method
= aml_method(CPU_SCAN_METHOD
, 0, AML_NOTSERIALIZED
);
179 Aml
*while_ctx
, *if_ctx2
, *else_ctx2
;
180 Aml
*bus_check_evt
= aml_int(1);
181 Aml
*remove_evt
= aml_int(3);
182 Aml
*status_map
= aml_local(5); /* Local5 = active cpu bitmap */
183 Aml
*byte
= aml_local(2); /* Local2 = last read byte from bitmap */
184 Aml
*idx
= aml_local(0); /* Processor ID / APIC ID iterator */
185 Aml
*is_cpu_on
= aml_local(1); /* Local1 = CPON flag for cpu */
186 Aml
*status
= aml_local(3); /* Local3 = active state for cpu */
188 aml_append(method
, aml_store(aml_name(CPU_STATUS_MAP
), status_map
));
189 aml_append(method
, aml_store(zero
, byte
));
190 aml_append(method
, aml_store(zero
, idx
));
192 /* While (idx < SizeOf(CPON)) */
193 while_ctx
= aml_while(aml_lless(idx
, aml_sizeof(cpus_map
)));
194 aml_append(while_ctx
,
195 aml_store(aml_derefof(aml_index(cpus_map
, idx
)), is_cpu_on
));
197 if_ctx
= aml_if(aml_and(idx
, aml_int(0x07), NULL
));
199 /* Shift down previously read bitmap byte */
200 aml_append(if_ctx
, aml_shiftright(byte
, one
, byte
));
202 aml_append(while_ctx
, if_ctx
);
204 else_ctx
= aml_else();
206 /* Read next byte from cpu bitmap */
207 aml_append(else_ctx
, aml_store(aml_derefof(aml_index(status_map
,
208 aml_shiftright(idx
, aml_int(3), NULL
))), byte
));
210 aml_append(while_ctx
, else_ctx
);
212 aml_append(while_ctx
, aml_store(aml_and(byte
, one
, NULL
), status
));
213 if_ctx
= aml_if(aml_lnot(aml_equal(is_cpu_on
, status
)));
215 /* State change - update CPON with new state */
216 aml_append(if_ctx
, aml_store(status
, aml_index(cpus_map
, idx
)));
217 if_ctx2
= aml_if(aml_equal(status
, one
));
220 aml_call2(AML_NOTIFY_METHOD
, idx
, bus_check_evt
));
222 aml_append(if_ctx
, if_ctx2
);
223 else_ctx2
= aml_else();
225 aml_append(else_ctx2
,
226 aml_call2(AML_NOTIFY_METHOD
, idx
, remove_evt
));
229 aml_append(if_ctx
, else_ctx2
);
230 aml_append(while_ctx
, if_ctx
);
232 aml_append(while_ctx
, aml_increment(idx
)); /* go to next cpu */
233 aml_append(method
, while_ctx
);
235 aml_append(sb_scope
, method
);
237 /* The current AML generator can cover the APIC ID range [0..255],
238 * inclusive, for VCPU hotplug. */
239 QEMU_BUILD_BUG_ON(ACPI_CPU_HOTPLUG_ID_LIMIT
> 256);
240 if (pcms
->apic_id_limit
> ACPI_CPU_HOTPLUG_ID_LIMIT
) {
241 error_report("max_cpus is too large. APIC ID of last CPU is %u",
242 pcms
->apic_id_limit
- 1);
246 /* create PCI0.PRES device and its _CRS to reserve CPU hotplug MMIO */
247 dev
= aml_device("PCI0." stringify(CPU_HOTPLUG_RESOURCE_DEVICE
));
248 aml_append(dev
, aml_name_decl("_HID", aml_eisaid("PNP0A06")));
250 aml_name_decl("_UID", aml_string("CPU Hotplug resources"))
252 /* device present, functioning, decoding, not shown in UI */
253 aml_append(dev
, aml_name_decl("_STA", aml_int(0xB)));
254 crs
= aml_resource_template();
256 aml_io(AML_DECODE16
, io_base
, io_base
, 1, ACPI_GPE_PROC_LEN
)
258 aml_append(dev
, aml_name_decl("_CRS", crs
));
259 aml_append(sb_scope
, dev
);
260 /* declare CPU hotplug MMIO region and PRS field to access it */
261 aml_append(sb_scope
, aml_operation_region(
262 "PRST", AML_SYSTEM_IO
, aml_int(io_base
), ACPI_GPE_PROC_LEN
));
263 field
= aml_field("PRST", AML_BYTE_ACC
, AML_NOLOCK
, AML_PRESERVE
);
264 aml_append(field
, aml_named_field("PRS", 256));
265 aml_append(sb_scope
, field
);
267 /* build Processor object for each processor */
268 for (i
= 0; i
< apic_ids
->len
; i
++) {
269 int apic_id
= apic_ids
->cpus
[i
].arch_id
;
271 assert(apic_id
< ACPI_CPU_HOTPLUG_ID_LIMIT
);
273 dev
= aml_processor(i
, 0, 0, "CP%.02X", apic_id
);
275 method
= aml_method("_MAT", 0, AML_NOTSERIALIZED
);
277 aml_return(aml_call2(CPU_MAT_METHOD
, aml_int(apic_id
), aml_int(i
))
279 aml_append(dev
, method
);
281 method
= aml_method("_STA", 0, AML_NOTSERIALIZED
);
283 aml_return(aml_call1(CPU_STATUS_METHOD
, aml_int(apic_id
))));
284 aml_append(dev
, method
);
286 method
= aml_method("_EJ0", 1, AML_NOTSERIALIZED
);
288 aml_return(aml_call2(CPU_EJECT_METHOD
, aml_int(apic_id
),
291 aml_append(dev
, method
);
293 aml_append(sb_scope
, dev
);
297 * Method(NTFY, 2) {If (LEqual(Arg0, 0x00)) {Notify(CP00, Arg1)} ...}
300 method
= aml_method(AML_NOTIFY_METHOD
, 2, AML_NOTSERIALIZED
);
301 for (i
= 0; i
< apic_ids
->len
; i
++) {
302 int apic_id
= apic_ids
->cpus
[i
].arch_id
;
304 if_ctx
= aml_if(aml_equal(aml_arg(0), aml_int(apic_id
)));
306 aml_notify(aml_name("CP%.02X", apic_id
), aml_arg(1))
308 aml_append(method
, if_ctx
);
310 aml_append(sb_scope
, method
);
312 /* build "Name(CPON, Package() { One, One, ..., Zero, Zero, ... })"
314 * Note: The ability to create variable-sized packages was first
315 * introduced in ACPI 2.0. ACPI 1.0 only allowed fixed-size packages
316 * ith up to 255 elements. Windows guests up to win2k8 fail when
317 * VarPackageOp is used.
319 pkg
= pcms
->apic_id_limit
<= 255 ? aml_package(pcms
->apic_id_limit
) :
320 aml_varpackage(pcms
->apic_id_limit
);
322 for (i
= 0, apic_idx
= 0; i
< apic_ids
->len
; i
++) {
323 int apic_id
= apic_ids
->cpus
[i
].arch_id
;
325 for (; apic_idx
< apic_id
; apic_idx
++) {
326 aml_append(pkg
, aml_int(0));
328 aml_append(pkg
, aml_int(apic_ids
->cpus
[i
].cpu
? 1 : 0));
329 apic_idx
= apic_id
+ 1;
331 aml_append(sb_scope
, aml_name_decl(CPU_ON_BITMAP
, pkg
));
332 aml_append(ctx
, sb_scope
);
334 method
= aml_method("\\_GPE._E02", 0, AML_NOTSERIALIZED
);
335 aml_append(method
, aml_call0("\\_SB." CPU_SCAN_METHOD
));
336 aml_append(ctx
, method
);