4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
8 * Anthony Liguori <aliguori@us.ibm.com>
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
15 #include "qemu/osdep.h"
16 #include "qapi/error.h"
17 #include <sys/ioctl.h>
18 #include <sys/utsname.h>
20 #include <linux/kvm.h>
21 #include <linux/kvm_para.h>
23 #include "qemu-common.h"
25 #include "sysemu/sysemu.h"
26 #include "sysemu/kvm_int.h"
30 #include "exec/gdbstub.h"
31 #include "qemu/host-utils.h"
32 #include "qemu/config-file.h"
33 #include "qemu/error-report.h"
34 #include "hw/i386/pc.h"
35 #include "hw/i386/apic.h"
36 #include "hw/i386/apic_internal.h"
37 #include "hw/i386/apic-msidef.h"
38 #include "hw/i386/intel_iommu.h"
39 #include "hw/i386/x86-iommu.h"
41 #include "exec/ioport.h"
42 #include "standard-headers/asm-x86/hyperv.h"
43 #include "hw/pci/pci.h"
44 #include "hw/pci/msi.h"
45 #include "migration/migration.h"
46 #include "exec/memattrs.h"
52 #define DPRINTF(fmt, ...) \
53 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
55 #define DPRINTF(fmt, ...) \
59 #define MSR_KVM_WALL_CLOCK 0x11
60 #define MSR_KVM_SYSTEM_TIME 0x12
62 /* A 4096-byte buffer can hold the 8-byte kvm_msrs header, plus
63 * 255 kvm_msr_entry structs */
64 #define MSR_BUF_SIZE 4096
67 #define BUS_MCEERR_AR 4
70 #define BUS_MCEERR_AO 5
73 const KVMCapabilityInfo kvm_arch_required_capabilities
[] = {
74 KVM_CAP_INFO(SET_TSS_ADDR
),
75 KVM_CAP_INFO(EXT_CPUID
),
76 KVM_CAP_INFO(MP_STATE
),
80 static bool has_msr_star
;
81 static bool has_msr_hsave_pa
;
82 static bool has_msr_tsc_aux
;
83 static bool has_msr_tsc_adjust
;
84 static bool has_msr_tsc_deadline
;
85 static bool has_msr_feature_control
;
86 static bool has_msr_async_pf_en
;
87 static bool has_msr_pv_eoi_en
;
88 static bool has_msr_misc_enable
;
89 static bool has_msr_smbase
;
90 static bool has_msr_bndcfgs
;
91 static bool has_msr_kvm_steal_time
;
92 static int lm_capable_kernel
;
93 static bool has_msr_hv_hypercall
;
94 static bool has_msr_hv_vapic
;
95 static bool has_msr_hv_tsc
;
96 static bool has_msr_hv_crash
;
97 static bool has_msr_hv_reset
;
98 static bool has_msr_hv_vpindex
;
99 static bool has_msr_hv_runtime
;
100 static bool has_msr_hv_synic
;
101 static bool has_msr_hv_stimer
;
102 static bool has_msr_mtrr
;
103 static bool has_msr_xss
;
105 static bool has_msr_architectural_pmu
;
106 static uint32_t num_architectural_pmu_counters
;
108 static int has_xsave
;
110 static int has_pit_state2
;
112 static bool has_msr_mcg_ext_ctl
;
114 static struct kvm_cpuid2
*cpuid_cache
;
116 int kvm_has_pit_state2(void)
118 return has_pit_state2
;
121 bool kvm_has_smm(void)
123 return kvm_check_extension(kvm_state
, KVM_CAP_X86_SMM
);
126 bool kvm_allows_irq0_override(void)
128 return !kvm_irqchip_in_kernel() || kvm_has_gsi_routing();
131 static int kvm_get_tsc(CPUState
*cs
)
133 X86CPU
*cpu
= X86_CPU(cs
);
134 CPUX86State
*env
= &cpu
->env
;
136 struct kvm_msrs info
;
137 struct kvm_msr_entry entries
[1];
141 if (env
->tsc_valid
) {
145 msr_data
.info
.nmsrs
= 1;
146 msr_data
.entries
[0].index
= MSR_IA32_TSC
;
147 env
->tsc_valid
= !runstate_is_running();
149 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_MSRS
, &msr_data
);
155 env
->tsc
= msr_data
.entries
[0].data
;
159 static inline void do_kvm_synchronize_tsc(void *arg
)
166 void kvm_synchronize_all_tsc(void)
172 run_on_cpu(cpu
, do_kvm_synchronize_tsc
, cpu
);
177 static struct kvm_cpuid2
*try_get_cpuid(KVMState
*s
, int max
)
179 struct kvm_cpuid2
*cpuid
;
182 size
= sizeof(*cpuid
) + max
* sizeof(*cpuid
->entries
);
183 cpuid
= g_malloc0(size
);
185 r
= kvm_ioctl(s
, KVM_GET_SUPPORTED_CPUID
, cpuid
);
186 if (r
== 0 && cpuid
->nent
>= max
) {
194 fprintf(stderr
, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
202 /* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough
205 static struct kvm_cpuid2
*get_supported_cpuid(KVMState
*s
)
207 struct kvm_cpuid2
*cpuid
;
210 if (cpuid_cache
!= NULL
) {
213 while ((cpuid
= try_get_cpuid(s
, max
)) == NULL
) {
220 static const struct kvm_para_features
{
223 } para_features
[] = {
224 { KVM_CAP_CLOCKSOURCE
, KVM_FEATURE_CLOCKSOURCE
},
225 { KVM_CAP_NOP_IO_DELAY
, KVM_FEATURE_NOP_IO_DELAY
},
226 { KVM_CAP_PV_MMU
, KVM_FEATURE_MMU_OP
},
227 { KVM_CAP_ASYNC_PF
, KVM_FEATURE_ASYNC_PF
},
230 static int get_para_features(KVMState
*s
)
234 for (i
= 0; i
< ARRAY_SIZE(para_features
); i
++) {
235 if (kvm_check_extension(s
, para_features
[i
].cap
)) {
236 features
|= (1 << para_features
[i
].feature
);
244 /* Returns the value for a specific register on the cpuid entry
246 static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2
*entry
, int reg
)
266 /* Find matching entry for function/index on kvm_cpuid2 struct
268 static struct kvm_cpuid_entry2
*cpuid_find_entry(struct kvm_cpuid2
*cpuid
,
273 for (i
= 0; i
< cpuid
->nent
; ++i
) {
274 if (cpuid
->entries
[i
].function
== function
&&
275 cpuid
->entries
[i
].index
== index
) {
276 return &cpuid
->entries
[i
];
283 uint32_t kvm_arch_get_supported_cpuid(KVMState
*s
, uint32_t function
,
284 uint32_t index
, int reg
)
286 struct kvm_cpuid2
*cpuid
;
288 uint32_t cpuid_1_edx
;
291 cpuid
= get_supported_cpuid(s
);
293 struct kvm_cpuid_entry2
*entry
= cpuid_find_entry(cpuid
, function
, index
);
296 ret
= cpuid_entry_get_reg(entry
, reg
);
299 /* Fixups for the data returned by KVM, below */
301 if (function
== 1 && reg
== R_EDX
) {
302 /* KVM before 2.6.30 misreports the following features */
303 ret
|= CPUID_MTRR
| CPUID_PAT
| CPUID_MCE
| CPUID_MCA
;
304 } else if (function
== 1 && reg
== R_ECX
) {
305 /* We can set the hypervisor flag, even if KVM does not return it on
306 * GET_SUPPORTED_CPUID
308 ret
|= CPUID_EXT_HYPERVISOR
;
309 /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it
310 * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER,
311 * and the irqchip is in the kernel.
313 if (kvm_irqchip_in_kernel() &&
314 kvm_check_extension(s
, KVM_CAP_TSC_DEADLINE_TIMER
)) {
315 ret
|= CPUID_EXT_TSC_DEADLINE_TIMER
;
318 /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled
319 * without the in-kernel irqchip
321 if (!kvm_irqchip_in_kernel()) {
322 ret
&= ~CPUID_EXT_X2APIC
;
324 } else if (function
== 6 && reg
== R_EAX
) {
325 ret
|= CPUID_6_EAX_ARAT
; /* safe to allow because of emulated APIC */
326 } else if (function
== 0x80000001 && reg
== R_EDX
) {
327 /* On Intel, kvm returns cpuid according to the Intel spec,
328 * so add missing bits according to the AMD spec:
330 cpuid_1_edx
= kvm_arch_get_supported_cpuid(s
, 1, 0, R_EDX
);
331 ret
|= cpuid_1_edx
& CPUID_EXT2_AMD_ALIASES
;
332 } else if (function
== KVM_CPUID_FEATURES
&& reg
== R_EAX
) {
333 /* kvm_pv_unhalt is reported by GET_SUPPORTED_CPUID, but it can't
334 * be enabled without the in-kernel irqchip
336 if (!kvm_irqchip_in_kernel()) {
337 ret
&= ~(1U << KVM_FEATURE_PV_UNHALT
);
341 /* fallback for older kernels */
342 if ((function
== KVM_CPUID_FEATURES
) && !found
) {
343 ret
= get_para_features(s
);
349 typedef struct HWPoisonPage
{
351 QLIST_ENTRY(HWPoisonPage
) list
;
354 static QLIST_HEAD(, HWPoisonPage
) hwpoison_page_list
=
355 QLIST_HEAD_INITIALIZER(hwpoison_page_list
);
357 static void kvm_unpoison_all(void *param
)
359 HWPoisonPage
*page
, *next_page
;
361 QLIST_FOREACH_SAFE(page
, &hwpoison_page_list
, list
, next_page
) {
362 QLIST_REMOVE(page
, list
);
363 qemu_ram_remap(page
->ram_addr
, TARGET_PAGE_SIZE
);
368 static void kvm_hwpoison_page_add(ram_addr_t ram_addr
)
372 QLIST_FOREACH(page
, &hwpoison_page_list
, list
) {
373 if (page
->ram_addr
== ram_addr
) {
377 page
= g_new(HWPoisonPage
, 1);
378 page
->ram_addr
= ram_addr
;
379 QLIST_INSERT_HEAD(&hwpoison_page_list
, page
, list
);
382 static int kvm_get_mce_cap_supported(KVMState
*s
, uint64_t *mce_cap
,
387 r
= kvm_check_extension(s
, KVM_CAP_MCE
);
390 return kvm_ioctl(s
, KVM_X86_GET_MCE_CAP_SUPPORTED
, mce_cap
);
395 static void kvm_mce_inject(X86CPU
*cpu
, hwaddr paddr
, int code
)
397 CPUState
*cs
= CPU(cpu
);
398 CPUX86State
*env
= &cpu
->env
;
399 uint64_t status
= MCI_STATUS_VAL
| MCI_STATUS_UC
| MCI_STATUS_EN
|
400 MCI_STATUS_MISCV
| MCI_STATUS_ADDRV
| MCI_STATUS_S
;
401 uint64_t mcg_status
= MCG_STATUS_MCIP
;
404 if (code
== BUS_MCEERR_AR
) {
405 status
|= MCI_STATUS_AR
| 0x134;
406 mcg_status
|= MCG_STATUS_EIPV
;
409 mcg_status
|= MCG_STATUS_RIPV
;
412 flags
= cpu_x86_support_mca_broadcast(env
) ? MCE_INJECT_BROADCAST
: 0;
413 /* We need to read back the value of MSR_EXT_MCG_CTL that was set by the
414 * guest kernel back into env->mcg_ext_ctl.
416 cpu_synchronize_state(cs
);
417 if (env
->mcg_ext_ctl
& MCG_EXT_CTL_LMCE_EN
) {
418 mcg_status
|= MCG_STATUS_LMCE
;
422 cpu_x86_inject_mce(NULL
, cpu
, 9, status
, mcg_status
, paddr
,
423 (MCM_ADDR_PHYS
<< 6) | 0xc, flags
);
426 static void hardware_memory_error(void)
428 fprintf(stderr
, "Hardware memory error!\n");
432 int kvm_arch_on_sigbus_vcpu(CPUState
*c
, int code
, void *addr
)
434 X86CPU
*cpu
= X86_CPU(c
);
435 CPUX86State
*env
= &cpu
->env
;
439 if ((env
->mcg_cap
& MCG_SER_P
) && addr
440 && (code
== BUS_MCEERR_AR
|| code
== BUS_MCEERR_AO
)) {
441 ram_addr
= qemu_ram_addr_from_host(addr
);
442 if (ram_addr
== RAM_ADDR_INVALID
||
443 !kvm_physical_memory_addr_from_host(c
->kvm_state
, addr
, &paddr
)) {
444 fprintf(stderr
, "Hardware memory error for memory used by "
445 "QEMU itself instead of guest system!\n");
446 /* Hope we are lucky for AO MCE */
447 if (code
== BUS_MCEERR_AO
) {
450 hardware_memory_error();
453 kvm_hwpoison_page_add(ram_addr
);
454 kvm_mce_inject(cpu
, paddr
, code
);
456 if (code
== BUS_MCEERR_AO
) {
458 } else if (code
== BUS_MCEERR_AR
) {
459 hardware_memory_error();
467 int kvm_arch_on_sigbus(int code
, void *addr
)
469 X86CPU
*cpu
= X86_CPU(first_cpu
);
471 if ((cpu
->env
.mcg_cap
& MCG_SER_P
) && addr
&& code
== BUS_MCEERR_AO
) {
475 /* Hope we are lucky for AO MCE */
476 ram_addr
= qemu_ram_addr_from_host(addr
);
477 if (ram_addr
== RAM_ADDR_INVALID
||
478 !kvm_physical_memory_addr_from_host(first_cpu
->kvm_state
,
480 fprintf(stderr
, "Hardware memory error for memory used by "
481 "QEMU itself instead of guest system!: %p\n", addr
);
484 kvm_hwpoison_page_add(ram_addr
);
485 kvm_mce_inject(X86_CPU(first_cpu
), paddr
, code
);
487 if (code
== BUS_MCEERR_AO
) {
489 } else if (code
== BUS_MCEERR_AR
) {
490 hardware_memory_error();
498 static int kvm_inject_mce_oldstyle(X86CPU
*cpu
)
500 CPUX86State
*env
= &cpu
->env
;
502 if (!kvm_has_vcpu_events() && env
->exception_injected
== EXCP12_MCHK
) {
503 unsigned int bank
, bank_num
= env
->mcg_cap
& 0xff;
504 struct kvm_x86_mce mce
;
506 env
->exception_injected
= -1;
509 * There must be at least one bank in use if an MCE is pending.
510 * Find it and use its values for the event injection.
512 for (bank
= 0; bank
< bank_num
; bank
++) {
513 if (env
->mce_banks
[bank
* 4 + 1] & MCI_STATUS_VAL
) {
517 assert(bank
< bank_num
);
520 mce
.status
= env
->mce_banks
[bank
* 4 + 1];
521 mce
.mcg_status
= env
->mcg_status
;
522 mce
.addr
= env
->mce_banks
[bank
* 4 + 2];
523 mce
.misc
= env
->mce_banks
[bank
* 4 + 3];
525 return kvm_vcpu_ioctl(CPU(cpu
), KVM_X86_SET_MCE
, &mce
);
530 static void cpu_update_state(void *opaque
, int running
, RunState state
)
532 CPUX86State
*env
= opaque
;
535 env
->tsc_valid
= false;
539 unsigned long kvm_arch_vcpu_id(CPUState
*cs
)
541 X86CPU
*cpu
= X86_CPU(cs
);
545 #ifndef KVM_CPUID_SIGNATURE_NEXT
546 #define KVM_CPUID_SIGNATURE_NEXT 0x40000100
549 static bool hyperv_hypercall_available(X86CPU
*cpu
)
551 return cpu
->hyperv_vapic
||
552 (cpu
->hyperv_spinlock_attempts
!= HYPERV_SPINLOCK_NEVER_RETRY
);
555 static bool hyperv_enabled(X86CPU
*cpu
)
557 CPUState
*cs
= CPU(cpu
);
558 return kvm_check_extension(cs
->kvm_state
, KVM_CAP_HYPERV
) > 0 &&
559 (hyperv_hypercall_available(cpu
) ||
561 cpu
->hyperv_relaxed_timing
||
564 cpu
->hyperv_vpindex
||
565 cpu
->hyperv_runtime
||
570 static int kvm_arch_set_tsc_khz(CPUState
*cs
)
572 X86CPU
*cpu
= X86_CPU(cs
);
573 CPUX86State
*env
= &cpu
->env
;
580 r
= kvm_check_extension(cs
->kvm_state
, KVM_CAP_TSC_CONTROL
) ?
581 kvm_vcpu_ioctl(cs
, KVM_SET_TSC_KHZ
, env
->tsc_khz
) :
584 /* When KVM_SET_TSC_KHZ fails, it's an error only if the current
585 * TSC frequency doesn't match the one we want.
587 int cur_freq
= kvm_check_extension(cs
->kvm_state
, KVM_CAP_GET_TSC_KHZ
) ?
588 kvm_vcpu_ioctl(cs
, KVM_GET_TSC_KHZ
) :
590 if (cur_freq
<= 0 || cur_freq
!= env
->tsc_khz
) {
591 error_report("warning: TSC frequency mismatch between "
592 "VM (%" PRId64
" kHz) and host (%d kHz), "
593 "and TSC scaling unavailable",
594 env
->tsc_khz
, cur_freq
);
602 static int hyperv_handle_properties(CPUState
*cs
)
604 X86CPU
*cpu
= X86_CPU(cs
);
605 CPUX86State
*env
= &cpu
->env
;
607 if (cpu
->hyperv_relaxed_timing
) {
608 env
->features
[FEAT_HYPERV_EAX
] |= HV_X64_MSR_HYPERCALL_AVAILABLE
;
610 if (cpu
->hyperv_vapic
) {
611 env
->features
[FEAT_HYPERV_EAX
] |= HV_X64_MSR_HYPERCALL_AVAILABLE
;
612 env
->features
[FEAT_HYPERV_EAX
] |= HV_X64_MSR_APIC_ACCESS_AVAILABLE
;
613 has_msr_hv_vapic
= true;
615 if (cpu
->hyperv_time
&&
616 kvm_check_extension(cs
->kvm_state
, KVM_CAP_HYPERV_TIME
) > 0) {
617 env
->features
[FEAT_HYPERV_EAX
] |= HV_X64_MSR_HYPERCALL_AVAILABLE
;
618 env
->features
[FEAT_HYPERV_EAX
] |= HV_X64_MSR_TIME_REF_COUNT_AVAILABLE
;
619 env
->features
[FEAT_HYPERV_EAX
] |= 0x200;
620 has_msr_hv_tsc
= true;
622 if (cpu
->hyperv_crash
&& has_msr_hv_crash
) {
623 env
->features
[FEAT_HYPERV_EDX
] |= HV_X64_GUEST_CRASH_MSR_AVAILABLE
;
625 env
->features
[FEAT_HYPERV_EDX
] |= HV_X64_CPU_DYNAMIC_PARTITIONING_AVAILABLE
;
626 if (cpu
->hyperv_reset
&& has_msr_hv_reset
) {
627 env
->features
[FEAT_HYPERV_EAX
] |= HV_X64_MSR_RESET_AVAILABLE
;
629 if (cpu
->hyperv_vpindex
&& has_msr_hv_vpindex
) {
630 env
->features
[FEAT_HYPERV_EAX
] |= HV_X64_MSR_VP_INDEX_AVAILABLE
;
632 if (cpu
->hyperv_runtime
&& has_msr_hv_runtime
) {
633 env
->features
[FEAT_HYPERV_EAX
] |= HV_X64_MSR_VP_RUNTIME_AVAILABLE
;
635 if (cpu
->hyperv_synic
) {
638 if (!has_msr_hv_synic
||
639 kvm_vcpu_enable_cap(cs
, KVM_CAP_HYPERV_SYNIC
, 0)) {
640 fprintf(stderr
, "Hyper-V SynIC is not supported by kernel\n");
644 env
->features
[FEAT_HYPERV_EAX
] |= HV_X64_MSR_SYNIC_AVAILABLE
;
645 env
->msr_hv_synic_version
= HV_SYNIC_VERSION_1
;
646 for (sint
= 0; sint
< ARRAY_SIZE(env
->msr_hv_synic_sint
); sint
++) {
647 env
->msr_hv_synic_sint
[sint
] = HV_SYNIC_SINT_MASKED
;
650 if (cpu
->hyperv_stimer
) {
651 if (!has_msr_hv_stimer
) {
652 fprintf(stderr
, "Hyper-V timers aren't supported by kernel\n");
655 env
->features
[FEAT_HYPERV_EAX
] |= HV_X64_MSR_SYNTIMER_AVAILABLE
;
660 static Error
*invtsc_mig_blocker
;
662 #define KVM_MAX_CPUID_ENTRIES 100
664 int kvm_arch_init_vcpu(CPUState
*cs
)
667 struct kvm_cpuid2 cpuid
;
668 struct kvm_cpuid_entry2 entries
[KVM_MAX_CPUID_ENTRIES
];
669 } QEMU_PACKED cpuid_data
;
670 X86CPU
*cpu
= X86_CPU(cs
);
671 CPUX86State
*env
= &cpu
->env
;
672 uint32_t limit
, i
, j
, cpuid_i
;
674 struct kvm_cpuid_entry2
*c
;
675 uint32_t signature
[3];
676 int kvm_base
= KVM_CPUID_SIGNATURE
;
679 memset(&cpuid_data
, 0, sizeof(cpuid_data
));
683 /* Paravirtualization CPUIDs */
684 if (hyperv_enabled(cpu
)) {
685 c
= &cpuid_data
.entries
[cpuid_i
++];
686 c
->function
= HYPERV_CPUID_VENDOR_AND_MAX_FUNCTIONS
;
687 if (!cpu
->hyperv_vendor_id
) {
688 memcpy(signature
, "Microsoft Hv", 12);
690 size_t len
= strlen(cpu
->hyperv_vendor_id
);
693 error_report("hv-vendor-id truncated to 12 characters");
696 memset(signature
, 0, 12);
697 memcpy(signature
, cpu
->hyperv_vendor_id
, len
);
699 c
->eax
= HYPERV_CPUID_MIN
;
700 c
->ebx
= signature
[0];
701 c
->ecx
= signature
[1];
702 c
->edx
= signature
[2];
704 c
= &cpuid_data
.entries
[cpuid_i
++];
705 c
->function
= HYPERV_CPUID_INTERFACE
;
706 memcpy(signature
, "Hv#1\0\0\0\0\0\0\0\0", 12);
707 c
->eax
= signature
[0];
712 c
= &cpuid_data
.entries
[cpuid_i
++];
713 c
->function
= HYPERV_CPUID_VERSION
;
717 c
= &cpuid_data
.entries
[cpuid_i
++];
718 c
->function
= HYPERV_CPUID_FEATURES
;
719 r
= hyperv_handle_properties(cs
);
723 c
->eax
= env
->features
[FEAT_HYPERV_EAX
];
724 c
->ebx
= env
->features
[FEAT_HYPERV_EBX
];
725 c
->edx
= env
->features
[FEAT_HYPERV_EDX
];
727 c
= &cpuid_data
.entries
[cpuid_i
++];
728 c
->function
= HYPERV_CPUID_ENLIGHTMENT_INFO
;
729 if (cpu
->hyperv_relaxed_timing
) {
730 c
->eax
|= HV_X64_RELAXED_TIMING_RECOMMENDED
;
732 if (has_msr_hv_vapic
) {
733 c
->eax
|= HV_X64_APIC_ACCESS_RECOMMENDED
;
735 c
->ebx
= cpu
->hyperv_spinlock_attempts
;
737 c
= &cpuid_data
.entries
[cpuid_i
++];
738 c
->function
= HYPERV_CPUID_IMPLEMENT_LIMITS
;
742 kvm_base
= KVM_CPUID_SIGNATURE_NEXT
;
743 has_msr_hv_hypercall
= true;
746 if (cpu
->expose_kvm
) {
747 memcpy(signature
, "KVMKVMKVM\0\0\0", 12);
748 c
= &cpuid_data
.entries
[cpuid_i
++];
749 c
->function
= KVM_CPUID_SIGNATURE
| kvm_base
;
750 c
->eax
= KVM_CPUID_FEATURES
| kvm_base
;
751 c
->ebx
= signature
[0];
752 c
->ecx
= signature
[1];
753 c
->edx
= signature
[2];
755 c
= &cpuid_data
.entries
[cpuid_i
++];
756 c
->function
= KVM_CPUID_FEATURES
| kvm_base
;
757 c
->eax
= env
->features
[FEAT_KVM
];
759 has_msr_async_pf_en
= c
->eax
& (1 << KVM_FEATURE_ASYNC_PF
);
761 has_msr_pv_eoi_en
= c
->eax
& (1 << KVM_FEATURE_PV_EOI
);
763 has_msr_kvm_steal_time
= c
->eax
& (1 << KVM_FEATURE_STEAL_TIME
);
766 cpu_x86_cpuid(env
, 0, 0, &limit
, &unused
, &unused
, &unused
);
768 for (i
= 0; i
<= limit
; i
++) {
769 if (cpuid_i
== KVM_MAX_CPUID_ENTRIES
) {
770 fprintf(stderr
, "unsupported level value: 0x%x\n", limit
);
773 c
= &cpuid_data
.entries
[cpuid_i
++];
777 /* Keep reading function 2 till all the input is received */
781 c
->flags
= KVM_CPUID_FLAG_STATEFUL_FUNC
|
782 KVM_CPUID_FLAG_STATE_READ_NEXT
;
783 cpu_x86_cpuid(env
, i
, 0, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
784 times
= c
->eax
& 0xff;
786 for (j
= 1; j
< times
; ++j
) {
787 if (cpuid_i
== KVM_MAX_CPUID_ENTRIES
) {
788 fprintf(stderr
, "cpuid_data is full, no space for "
789 "cpuid(eax:2):eax & 0xf = 0x%x\n", times
);
792 c
= &cpuid_data
.entries
[cpuid_i
++];
794 c
->flags
= KVM_CPUID_FLAG_STATEFUL_FUNC
;
795 cpu_x86_cpuid(env
, i
, 0, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
803 if (i
== 0xd && j
== 64) {
807 c
->flags
= KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
809 cpu_x86_cpuid(env
, i
, j
, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
811 if (i
== 4 && c
->eax
== 0) {
814 if (i
== 0xb && !(c
->ecx
& 0xff00)) {
817 if (i
== 0xd && c
->eax
== 0) {
820 if (cpuid_i
== KVM_MAX_CPUID_ENTRIES
) {
821 fprintf(stderr
, "cpuid_data is full, no space for "
822 "cpuid(eax:0x%x,ecx:0x%x)\n", i
, j
);
825 c
= &cpuid_data
.entries
[cpuid_i
++];
831 cpu_x86_cpuid(env
, i
, 0, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
839 cpu_x86_cpuid(env
, 0x0a, 0, &ver
, &unused
, &unused
, &unused
);
840 if ((ver
& 0xff) > 0) {
841 has_msr_architectural_pmu
= true;
842 num_architectural_pmu_counters
= (ver
& 0xff00) >> 8;
844 /* Shouldn't be more than 32, since that's the number of bits
845 * available in EBX to tell us _which_ counters are available.
848 if (num_architectural_pmu_counters
> MAX_GP_COUNTERS
) {
849 num_architectural_pmu_counters
= MAX_GP_COUNTERS
;
854 cpu_x86_cpuid(env
, 0x80000000, 0, &limit
, &unused
, &unused
, &unused
);
856 for (i
= 0x80000000; i
<= limit
; i
++) {
857 if (cpuid_i
== KVM_MAX_CPUID_ENTRIES
) {
858 fprintf(stderr
, "unsupported xlevel value: 0x%x\n", limit
);
861 c
= &cpuid_data
.entries
[cpuid_i
++];
865 cpu_x86_cpuid(env
, i
, 0, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
868 /* Call Centaur's CPUID instructions they are supported. */
869 if (env
->cpuid_xlevel2
> 0) {
870 cpu_x86_cpuid(env
, 0xC0000000, 0, &limit
, &unused
, &unused
, &unused
);
872 for (i
= 0xC0000000; i
<= limit
; i
++) {
873 if (cpuid_i
== KVM_MAX_CPUID_ENTRIES
) {
874 fprintf(stderr
, "unsupported xlevel2 value: 0x%x\n", limit
);
877 c
= &cpuid_data
.entries
[cpuid_i
++];
881 cpu_x86_cpuid(env
, i
, 0, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
885 cpuid_data
.cpuid
.nent
= cpuid_i
;
887 if (((env
->cpuid_version
>> 8)&0xF) >= 6
888 && (env
->features
[FEAT_1_EDX
] & (CPUID_MCE
| CPUID_MCA
)) ==
889 (CPUID_MCE
| CPUID_MCA
)
890 && kvm_check_extension(cs
->kvm_state
, KVM_CAP_MCE
) > 0) {
891 uint64_t mcg_cap
, unsupported_caps
;
895 ret
= kvm_get_mce_cap_supported(cs
->kvm_state
, &mcg_cap
, &banks
);
897 fprintf(stderr
, "kvm_get_mce_cap_supported: %s", strerror(-ret
));
901 if (banks
< (env
->mcg_cap
& MCG_CAP_BANKS_MASK
)) {
902 error_report("kvm: Unsupported MCE bank count (QEMU = %d, KVM = %d)",
903 (int)(env
->mcg_cap
& MCG_CAP_BANKS_MASK
), banks
);
907 unsupported_caps
= env
->mcg_cap
& ~(mcg_cap
| MCG_CAP_BANKS_MASK
);
908 if (unsupported_caps
) {
909 if (unsupported_caps
& MCG_LMCE_P
) {
910 error_report("kvm: LMCE not supported");
913 error_report("warning: Unsupported MCG_CAP bits: 0x%" PRIx64
,
917 env
->mcg_cap
&= mcg_cap
| MCG_CAP_BANKS_MASK
;
918 ret
= kvm_vcpu_ioctl(cs
, KVM_X86_SETUP_MCE
, &env
->mcg_cap
);
920 fprintf(stderr
, "KVM_X86_SETUP_MCE: %s", strerror(-ret
));
925 qemu_add_vm_change_state_handler(cpu_update_state
, env
);
927 c
= cpuid_find_entry(&cpuid_data
.cpuid
, 1, 0);
929 has_msr_feature_control
= !!(c
->ecx
& CPUID_EXT_VMX
) ||
930 !!(c
->ecx
& CPUID_EXT_SMX
);
933 if (env
->mcg_cap
& MCG_LMCE_P
) {
934 has_msr_mcg_ext_ctl
= has_msr_feature_control
= true;
937 c
= cpuid_find_entry(&cpuid_data
.cpuid
, 0x80000007, 0);
938 if (c
&& (c
->edx
& 1<<8) && invtsc_mig_blocker
== NULL
) {
940 error_setg(&invtsc_mig_blocker
,
941 "State blocked by non-migratable CPU device"
943 migrate_add_blocker(invtsc_mig_blocker
);
945 vmstate_x86_cpu
.unmigratable
= 1;
948 cpuid_data
.cpuid
.padding
= 0;
949 r
= kvm_vcpu_ioctl(cs
, KVM_SET_CPUID2
, &cpuid_data
);
954 r
= kvm_arch_set_tsc_khz(cs
);
959 /* vcpu's TSC frequency is either specified by user, or following
960 * the value used by KVM if the former is not present. In the
961 * latter case, we query it from KVM and record in env->tsc_khz,
962 * so that vcpu's TSC frequency can be migrated later via this field.
965 r
= kvm_check_extension(cs
->kvm_state
, KVM_CAP_GET_TSC_KHZ
) ?
966 kvm_vcpu_ioctl(cs
, KVM_GET_TSC_KHZ
) :
974 env
->kvm_xsave_buf
= qemu_memalign(4096, sizeof(struct kvm_xsave
));
976 cpu
->kvm_msr_buf
= g_malloc0(MSR_BUF_SIZE
);
978 if (env
->features
[FEAT_1_EDX
] & CPUID_MTRR
) {
981 if (!(env
->features
[FEAT_8000_0001_EDX
] & CPUID_EXT2_RDTSCP
)) {
982 has_msr_tsc_aux
= false;
988 void kvm_arch_reset_vcpu(X86CPU
*cpu
)
990 CPUX86State
*env
= &cpu
->env
;
992 env
->exception_injected
= -1;
993 env
->interrupt_injected
= -1;
995 if (kvm_irqchip_in_kernel()) {
996 env
->mp_state
= cpu_is_bsp(cpu
) ? KVM_MP_STATE_RUNNABLE
:
997 KVM_MP_STATE_UNINITIALIZED
;
999 env
->mp_state
= KVM_MP_STATE_RUNNABLE
;
1003 void kvm_arch_do_init_vcpu(X86CPU
*cpu
)
1005 CPUX86State
*env
= &cpu
->env
;
1007 /* APs get directly into wait-for-SIPI state. */
1008 if (env
->mp_state
== KVM_MP_STATE_UNINITIALIZED
) {
1009 env
->mp_state
= KVM_MP_STATE_INIT_RECEIVED
;
1013 static int kvm_get_supported_msrs(KVMState
*s
)
1015 static int kvm_supported_msrs
;
1019 if (kvm_supported_msrs
== 0) {
1020 struct kvm_msr_list msr_list
, *kvm_msr_list
;
1022 kvm_supported_msrs
= -1;
1024 /* Obtain MSR list from KVM. These are the MSRs that we must
1027 ret
= kvm_ioctl(s
, KVM_GET_MSR_INDEX_LIST
, &msr_list
);
1028 if (ret
< 0 && ret
!= -E2BIG
) {
1031 /* Old kernel modules had a bug and could write beyond the provided
1032 memory. Allocate at least a safe amount of 1K. */
1033 kvm_msr_list
= g_malloc0(MAX(1024, sizeof(msr_list
) +
1035 sizeof(msr_list
.indices
[0])));
1037 kvm_msr_list
->nmsrs
= msr_list
.nmsrs
;
1038 ret
= kvm_ioctl(s
, KVM_GET_MSR_INDEX_LIST
, kvm_msr_list
);
1042 for (i
= 0; i
< kvm_msr_list
->nmsrs
; i
++) {
1043 if (kvm_msr_list
->indices
[i
] == MSR_STAR
) {
1044 has_msr_star
= true;
1047 if (kvm_msr_list
->indices
[i
] == MSR_VM_HSAVE_PA
) {
1048 has_msr_hsave_pa
= true;
1051 if (kvm_msr_list
->indices
[i
] == MSR_TSC_AUX
) {
1052 has_msr_tsc_aux
= true;
1055 if (kvm_msr_list
->indices
[i
] == MSR_TSC_ADJUST
) {
1056 has_msr_tsc_adjust
= true;
1059 if (kvm_msr_list
->indices
[i
] == MSR_IA32_TSCDEADLINE
) {
1060 has_msr_tsc_deadline
= true;
1063 if (kvm_msr_list
->indices
[i
] == MSR_IA32_SMBASE
) {
1064 has_msr_smbase
= true;
1067 if (kvm_msr_list
->indices
[i
] == MSR_IA32_MISC_ENABLE
) {
1068 has_msr_misc_enable
= true;
1071 if (kvm_msr_list
->indices
[i
] == MSR_IA32_BNDCFGS
) {
1072 has_msr_bndcfgs
= true;
1075 if (kvm_msr_list
->indices
[i
] == MSR_IA32_XSS
) {
1079 if (kvm_msr_list
->indices
[i
] == HV_X64_MSR_CRASH_CTL
) {
1080 has_msr_hv_crash
= true;
1083 if (kvm_msr_list
->indices
[i
] == HV_X64_MSR_RESET
) {
1084 has_msr_hv_reset
= true;
1087 if (kvm_msr_list
->indices
[i
] == HV_X64_MSR_VP_INDEX
) {
1088 has_msr_hv_vpindex
= true;
1091 if (kvm_msr_list
->indices
[i
] == HV_X64_MSR_VP_RUNTIME
) {
1092 has_msr_hv_runtime
= true;
1095 if (kvm_msr_list
->indices
[i
] == HV_X64_MSR_SCONTROL
) {
1096 has_msr_hv_synic
= true;
1099 if (kvm_msr_list
->indices
[i
] == HV_X64_MSR_STIMER0_CONFIG
) {
1100 has_msr_hv_stimer
= true;
1106 g_free(kvm_msr_list
);
1112 static Notifier smram_machine_done
;
1113 static KVMMemoryListener smram_listener
;
1114 static AddressSpace smram_address_space
;
1115 static MemoryRegion smram_as_root
;
1116 static MemoryRegion smram_as_mem
;
1118 static void register_smram_listener(Notifier
*n
, void *unused
)
1120 MemoryRegion
*smram
=
1121 (MemoryRegion
*) object_resolve_path("/machine/smram", NULL
);
1123 /* Outer container... */
1124 memory_region_init(&smram_as_root
, OBJECT(kvm_state
), "mem-container-smram", ~0ull);
1125 memory_region_set_enabled(&smram_as_root
, true);
1127 /* ... with two regions inside: normal system memory with low
1130 memory_region_init_alias(&smram_as_mem
, OBJECT(kvm_state
), "mem-smram",
1131 get_system_memory(), 0, ~0ull);
1132 memory_region_add_subregion_overlap(&smram_as_root
, 0, &smram_as_mem
, 0);
1133 memory_region_set_enabled(&smram_as_mem
, true);
1136 /* ... SMRAM with higher priority */
1137 memory_region_add_subregion_overlap(&smram_as_root
, 0, smram
, 10);
1138 memory_region_set_enabled(smram
, true);
1141 address_space_init(&smram_address_space
, &smram_as_root
, "KVM-SMRAM");
1142 kvm_memory_listener_register(kvm_state
, &smram_listener
,
1143 &smram_address_space
, 1);
1146 int kvm_arch_init(MachineState
*ms
, KVMState
*s
)
1148 uint64_t identity_base
= 0xfffbc000;
1149 uint64_t shadow_mem
;
1151 struct utsname utsname
;
1153 #ifdef KVM_CAP_XSAVE
1154 has_xsave
= kvm_check_extension(s
, KVM_CAP_XSAVE
);
1158 has_xcrs
= kvm_check_extension(s
, KVM_CAP_XCRS
);
1161 #ifdef KVM_CAP_PIT_STATE2
1162 has_pit_state2
= kvm_check_extension(s
, KVM_CAP_PIT_STATE2
);
1165 ret
= kvm_get_supported_msrs(s
);
1171 lm_capable_kernel
= strcmp(utsname
.machine
, "x86_64") == 0;
1174 * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
1175 * In order to use vm86 mode, an EPT identity map and a TSS are needed.
1176 * Since these must be part of guest physical memory, we need to allocate
1177 * them, both by setting their start addresses in the kernel and by
1178 * creating a corresponding e820 entry. We need 4 pages before the BIOS.
1180 * Older KVM versions may not support setting the identity map base. In
1181 * that case we need to stick with the default, i.e. a 256K maximum BIOS
1184 if (kvm_check_extension(s
, KVM_CAP_SET_IDENTITY_MAP_ADDR
)) {
1185 /* Allows up to 16M BIOSes. */
1186 identity_base
= 0xfeffc000;
1188 ret
= kvm_vm_ioctl(s
, KVM_SET_IDENTITY_MAP_ADDR
, &identity_base
);
1194 /* Set TSS base one page after EPT identity map. */
1195 ret
= kvm_vm_ioctl(s
, KVM_SET_TSS_ADDR
, identity_base
+ 0x1000);
1200 /* Tell fw_cfg to notify the BIOS to reserve the range. */
1201 ret
= e820_add_entry(identity_base
, 0x4000, E820_RESERVED
);
1203 fprintf(stderr
, "e820_add_entry() table is full\n");
1206 qemu_register_reset(kvm_unpoison_all
, NULL
);
1208 shadow_mem
= machine_kvm_shadow_mem(ms
);
1209 if (shadow_mem
!= -1) {
1211 ret
= kvm_vm_ioctl(s
, KVM_SET_NR_MMU_PAGES
, shadow_mem
);
1217 if (kvm_check_extension(s
, KVM_CAP_X86_SMM
)) {
1218 smram_machine_done
.notify
= register_smram_listener
;
1219 qemu_add_machine_init_done_notifier(&smram_machine_done
);
1224 static void set_v8086_seg(struct kvm_segment
*lhs
, const SegmentCache
*rhs
)
1226 lhs
->selector
= rhs
->selector
;
1227 lhs
->base
= rhs
->base
;
1228 lhs
->limit
= rhs
->limit
;
1240 static void set_seg(struct kvm_segment
*lhs
, const SegmentCache
*rhs
)
1242 unsigned flags
= rhs
->flags
;
1243 lhs
->selector
= rhs
->selector
;
1244 lhs
->base
= rhs
->base
;
1245 lhs
->limit
= rhs
->limit
;
1246 lhs
->type
= (flags
>> DESC_TYPE_SHIFT
) & 15;
1247 lhs
->present
= (flags
& DESC_P_MASK
) != 0;
1248 lhs
->dpl
= (flags
>> DESC_DPL_SHIFT
) & 3;
1249 lhs
->db
= (flags
>> DESC_B_SHIFT
) & 1;
1250 lhs
->s
= (flags
& DESC_S_MASK
) != 0;
1251 lhs
->l
= (flags
>> DESC_L_SHIFT
) & 1;
1252 lhs
->g
= (flags
& DESC_G_MASK
) != 0;
1253 lhs
->avl
= (flags
& DESC_AVL_MASK
) != 0;
1254 lhs
->unusable
= !lhs
->present
;
1258 static void get_seg(SegmentCache
*lhs
, const struct kvm_segment
*rhs
)
1260 lhs
->selector
= rhs
->selector
;
1261 lhs
->base
= rhs
->base
;
1262 lhs
->limit
= rhs
->limit
;
1263 if (rhs
->unusable
) {
1266 lhs
->flags
= (rhs
->type
<< DESC_TYPE_SHIFT
) |
1267 (rhs
->present
* DESC_P_MASK
) |
1268 (rhs
->dpl
<< DESC_DPL_SHIFT
) |
1269 (rhs
->db
<< DESC_B_SHIFT
) |
1270 (rhs
->s
* DESC_S_MASK
) |
1271 (rhs
->l
<< DESC_L_SHIFT
) |
1272 (rhs
->g
* DESC_G_MASK
) |
1273 (rhs
->avl
* DESC_AVL_MASK
);
1277 static void kvm_getput_reg(__u64
*kvm_reg
, target_ulong
*qemu_reg
, int set
)
1280 *kvm_reg
= *qemu_reg
;
1282 *qemu_reg
= *kvm_reg
;
1286 static int kvm_getput_regs(X86CPU
*cpu
, int set
)
1288 CPUX86State
*env
= &cpu
->env
;
1289 struct kvm_regs regs
;
1293 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_REGS
, ®s
);
1299 kvm_getput_reg(®s
.rax
, &env
->regs
[R_EAX
], set
);
1300 kvm_getput_reg(®s
.rbx
, &env
->regs
[R_EBX
], set
);
1301 kvm_getput_reg(®s
.rcx
, &env
->regs
[R_ECX
], set
);
1302 kvm_getput_reg(®s
.rdx
, &env
->regs
[R_EDX
], set
);
1303 kvm_getput_reg(®s
.rsi
, &env
->regs
[R_ESI
], set
);
1304 kvm_getput_reg(®s
.rdi
, &env
->regs
[R_EDI
], set
);
1305 kvm_getput_reg(®s
.rsp
, &env
->regs
[R_ESP
], set
);
1306 kvm_getput_reg(®s
.rbp
, &env
->regs
[R_EBP
], set
);
1307 #ifdef TARGET_X86_64
1308 kvm_getput_reg(®s
.r8
, &env
->regs
[8], set
);
1309 kvm_getput_reg(®s
.r9
, &env
->regs
[9], set
);
1310 kvm_getput_reg(®s
.r10
, &env
->regs
[10], set
);
1311 kvm_getput_reg(®s
.r11
, &env
->regs
[11], set
);
1312 kvm_getput_reg(®s
.r12
, &env
->regs
[12], set
);
1313 kvm_getput_reg(®s
.r13
, &env
->regs
[13], set
);
1314 kvm_getput_reg(®s
.r14
, &env
->regs
[14], set
);
1315 kvm_getput_reg(®s
.r15
, &env
->regs
[15], set
);
1318 kvm_getput_reg(®s
.rflags
, &env
->eflags
, set
);
1319 kvm_getput_reg(®s
.rip
, &env
->eip
, set
);
1322 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_REGS
, ®s
);
1328 static int kvm_put_fpu(X86CPU
*cpu
)
1330 CPUX86State
*env
= &cpu
->env
;
1334 memset(&fpu
, 0, sizeof fpu
);
1335 fpu
.fsw
= env
->fpus
& ~(7 << 11);
1336 fpu
.fsw
|= (env
->fpstt
& 7) << 11;
1337 fpu
.fcw
= env
->fpuc
;
1338 fpu
.last_opcode
= env
->fpop
;
1339 fpu
.last_ip
= env
->fpip
;
1340 fpu
.last_dp
= env
->fpdp
;
1341 for (i
= 0; i
< 8; ++i
) {
1342 fpu
.ftwx
|= (!env
->fptags
[i
]) << i
;
1344 memcpy(fpu
.fpr
, env
->fpregs
, sizeof env
->fpregs
);
1345 for (i
= 0; i
< CPU_NB_REGS
; i
++) {
1346 stq_p(&fpu
.xmm
[i
][0], env
->xmm_regs
[i
].ZMM_Q(0));
1347 stq_p(&fpu
.xmm
[i
][8], env
->xmm_regs
[i
].ZMM_Q(1));
1349 fpu
.mxcsr
= env
->mxcsr
;
1351 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_FPU
, &fpu
);
1354 #define XSAVE_FCW_FSW 0
1355 #define XSAVE_FTW_FOP 1
1356 #define XSAVE_CWD_RIP 2
1357 #define XSAVE_CWD_RDP 4
1358 #define XSAVE_MXCSR 6
1359 #define XSAVE_ST_SPACE 8
1360 #define XSAVE_XMM_SPACE 40
1361 #define XSAVE_XSTATE_BV 128
1362 #define XSAVE_YMMH_SPACE 144
1363 #define XSAVE_BNDREGS 240
1364 #define XSAVE_BNDCSR 256
1365 #define XSAVE_OPMASK 272
1366 #define XSAVE_ZMM_Hi256 288
1367 #define XSAVE_Hi16_ZMM 416
1368 #define XSAVE_PKRU 672
1370 #define XSAVE_BYTE_OFFSET(word_offset) \
1371 ((word_offset) * sizeof(((struct kvm_xsave *)0)->region[0]))
1373 #define ASSERT_OFFSET(word_offset, field) \
1374 QEMU_BUILD_BUG_ON(XSAVE_BYTE_OFFSET(word_offset) != \
1375 offsetof(X86XSaveArea, field))
1377 ASSERT_OFFSET(XSAVE_FCW_FSW
, legacy
.fcw
);
1378 ASSERT_OFFSET(XSAVE_FTW_FOP
, legacy
.ftw
);
1379 ASSERT_OFFSET(XSAVE_CWD_RIP
, legacy
.fpip
);
1380 ASSERT_OFFSET(XSAVE_CWD_RDP
, legacy
.fpdp
);
1381 ASSERT_OFFSET(XSAVE_MXCSR
, legacy
.mxcsr
);
1382 ASSERT_OFFSET(XSAVE_ST_SPACE
, legacy
.fpregs
);
1383 ASSERT_OFFSET(XSAVE_XMM_SPACE
, legacy
.xmm_regs
);
1384 ASSERT_OFFSET(XSAVE_XSTATE_BV
, header
.xstate_bv
);
1385 ASSERT_OFFSET(XSAVE_YMMH_SPACE
, avx_state
);
1386 ASSERT_OFFSET(XSAVE_BNDREGS
, bndreg_state
);
1387 ASSERT_OFFSET(XSAVE_BNDCSR
, bndcsr_state
);
1388 ASSERT_OFFSET(XSAVE_OPMASK
, opmask_state
);
1389 ASSERT_OFFSET(XSAVE_ZMM_Hi256
, zmm_hi256_state
);
1390 ASSERT_OFFSET(XSAVE_Hi16_ZMM
, hi16_zmm_state
);
1391 ASSERT_OFFSET(XSAVE_PKRU
, pkru_state
);
1393 static int kvm_put_xsave(X86CPU
*cpu
)
1395 CPUX86State
*env
= &cpu
->env
;
1396 X86XSaveArea
*xsave
= env
->kvm_xsave_buf
;
1397 uint16_t cwd
, swd
, twd
;
1401 return kvm_put_fpu(cpu
);
1404 memset(xsave
, 0, sizeof(struct kvm_xsave
));
1406 swd
= env
->fpus
& ~(7 << 11);
1407 swd
|= (env
->fpstt
& 7) << 11;
1409 for (i
= 0; i
< 8; ++i
) {
1410 twd
|= (!env
->fptags
[i
]) << i
;
1412 xsave
->legacy
.fcw
= cwd
;
1413 xsave
->legacy
.fsw
= swd
;
1414 xsave
->legacy
.ftw
= twd
;
1415 xsave
->legacy
.fpop
= env
->fpop
;
1416 xsave
->legacy
.fpip
= env
->fpip
;
1417 xsave
->legacy
.fpdp
= env
->fpdp
;
1418 memcpy(&xsave
->legacy
.fpregs
, env
->fpregs
,
1419 sizeof env
->fpregs
);
1420 xsave
->legacy
.mxcsr
= env
->mxcsr
;
1421 xsave
->header
.xstate_bv
= env
->xstate_bv
;
1422 memcpy(&xsave
->bndreg_state
.bnd_regs
, env
->bnd_regs
,
1423 sizeof env
->bnd_regs
);
1424 xsave
->bndcsr_state
.bndcsr
= env
->bndcs_regs
;
1425 memcpy(&xsave
->opmask_state
.opmask_regs
, env
->opmask_regs
,
1426 sizeof env
->opmask_regs
);
1428 for (i
= 0; i
< CPU_NB_REGS
; i
++) {
1429 uint8_t *xmm
= xsave
->legacy
.xmm_regs
[i
];
1430 uint8_t *ymmh
= xsave
->avx_state
.ymmh
[i
];
1431 uint8_t *zmmh
= xsave
->zmm_hi256_state
.zmm_hi256
[i
];
1432 stq_p(xmm
, env
->xmm_regs
[i
].ZMM_Q(0));
1433 stq_p(xmm
+8, env
->xmm_regs
[i
].ZMM_Q(1));
1434 stq_p(ymmh
, env
->xmm_regs
[i
].ZMM_Q(2));
1435 stq_p(ymmh
+8, env
->xmm_regs
[i
].ZMM_Q(3));
1436 stq_p(zmmh
, env
->xmm_regs
[i
].ZMM_Q(4));
1437 stq_p(zmmh
+8, env
->xmm_regs
[i
].ZMM_Q(5));
1438 stq_p(zmmh
+16, env
->xmm_regs
[i
].ZMM_Q(6));
1439 stq_p(zmmh
+24, env
->xmm_regs
[i
].ZMM_Q(7));
1442 #ifdef TARGET_X86_64
1443 memcpy(&xsave
->hi16_zmm_state
.hi16_zmm
, &env
->xmm_regs
[16],
1444 16 * sizeof env
->xmm_regs
[16]);
1445 memcpy(&xsave
->pkru_state
, &env
->pkru
, sizeof env
->pkru
);
1447 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_XSAVE
, xsave
);
1450 static int kvm_put_xcrs(X86CPU
*cpu
)
1452 CPUX86State
*env
= &cpu
->env
;
1453 struct kvm_xcrs xcrs
= {};
1461 xcrs
.xcrs
[0].xcr
= 0;
1462 xcrs
.xcrs
[0].value
= env
->xcr0
;
1463 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_XCRS
, &xcrs
);
1466 static int kvm_put_sregs(X86CPU
*cpu
)
1468 CPUX86State
*env
= &cpu
->env
;
1469 struct kvm_sregs sregs
;
1471 memset(sregs
.interrupt_bitmap
, 0, sizeof(sregs
.interrupt_bitmap
));
1472 if (env
->interrupt_injected
>= 0) {
1473 sregs
.interrupt_bitmap
[env
->interrupt_injected
/ 64] |=
1474 (uint64_t)1 << (env
->interrupt_injected
% 64);
1477 if ((env
->eflags
& VM_MASK
)) {
1478 set_v8086_seg(&sregs
.cs
, &env
->segs
[R_CS
]);
1479 set_v8086_seg(&sregs
.ds
, &env
->segs
[R_DS
]);
1480 set_v8086_seg(&sregs
.es
, &env
->segs
[R_ES
]);
1481 set_v8086_seg(&sregs
.fs
, &env
->segs
[R_FS
]);
1482 set_v8086_seg(&sregs
.gs
, &env
->segs
[R_GS
]);
1483 set_v8086_seg(&sregs
.ss
, &env
->segs
[R_SS
]);
1485 set_seg(&sregs
.cs
, &env
->segs
[R_CS
]);
1486 set_seg(&sregs
.ds
, &env
->segs
[R_DS
]);
1487 set_seg(&sregs
.es
, &env
->segs
[R_ES
]);
1488 set_seg(&sregs
.fs
, &env
->segs
[R_FS
]);
1489 set_seg(&sregs
.gs
, &env
->segs
[R_GS
]);
1490 set_seg(&sregs
.ss
, &env
->segs
[R_SS
]);
1493 set_seg(&sregs
.tr
, &env
->tr
);
1494 set_seg(&sregs
.ldt
, &env
->ldt
);
1496 sregs
.idt
.limit
= env
->idt
.limit
;
1497 sregs
.idt
.base
= env
->idt
.base
;
1498 memset(sregs
.idt
.padding
, 0, sizeof sregs
.idt
.padding
);
1499 sregs
.gdt
.limit
= env
->gdt
.limit
;
1500 sregs
.gdt
.base
= env
->gdt
.base
;
1501 memset(sregs
.gdt
.padding
, 0, sizeof sregs
.gdt
.padding
);
1503 sregs
.cr0
= env
->cr
[0];
1504 sregs
.cr2
= env
->cr
[2];
1505 sregs
.cr3
= env
->cr
[3];
1506 sregs
.cr4
= env
->cr
[4];
1508 sregs
.cr8
= cpu_get_apic_tpr(cpu
->apic_state
);
1509 sregs
.apic_base
= cpu_get_apic_base(cpu
->apic_state
);
1511 sregs
.efer
= env
->efer
;
1513 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_SREGS
, &sregs
);
1516 static void kvm_msr_buf_reset(X86CPU
*cpu
)
1518 memset(cpu
->kvm_msr_buf
, 0, MSR_BUF_SIZE
);
1521 static void kvm_msr_entry_add(X86CPU
*cpu
, uint32_t index
, uint64_t value
)
1523 struct kvm_msrs
*msrs
= cpu
->kvm_msr_buf
;
1524 void *limit
= ((void *)msrs
) + MSR_BUF_SIZE
;
1525 struct kvm_msr_entry
*entry
= &msrs
->entries
[msrs
->nmsrs
];
1527 assert((void *)(entry
+ 1) <= limit
);
1529 entry
->index
= index
;
1530 entry
->reserved
= 0;
1531 entry
->data
= value
;
1535 static int kvm_put_tscdeadline_msr(X86CPU
*cpu
)
1537 CPUX86State
*env
= &cpu
->env
;
1540 if (!has_msr_tsc_deadline
) {
1544 kvm_msr_buf_reset(cpu
);
1545 kvm_msr_entry_add(cpu
, MSR_IA32_TSCDEADLINE
, env
->tsc_deadline
);
1547 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_MSRS
, cpu
->kvm_msr_buf
);
1557 * Provide a separate write service for the feature control MSR in order to
1558 * kick the VCPU out of VMXON or even guest mode on reset. This has to be done
1559 * before writing any other state because forcibly leaving nested mode
1560 * invalidates the VCPU state.
1562 static int kvm_put_msr_feature_control(X86CPU
*cpu
)
1566 if (!has_msr_feature_control
) {
1570 kvm_msr_buf_reset(cpu
);
1571 kvm_msr_entry_add(cpu
, MSR_IA32_FEATURE_CONTROL
,
1572 cpu
->env
.msr_ia32_feature_control
);
1574 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_MSRS
, cpu
->kvm_msr_buf
);
1583 static int kvm_put_msrs(X86CPU
*cpu
, int level
)
1585 CPUX86State
*env
= &cpu
->env
;
1589 kvm_msr_buf_reset(cpu
);
1591 kvm_msr_entry_add(cpu
, MSR_IA32_SYSENTER_CS
, env
->sysenter_cs
);
1592 kvm_msr_entry_add(cpu
, MSR_IA32_SYSENTER_ESP
, env
->sysenter_esp
);
1593 kvm_msr_entry_add(cpu
, MSR_IA32_SYSENTER_EIP
, env
->sysenter_eip
);
1594 kvm_msr_entry_add(cpu
, MSR_PAT
, env
->pat
);
1596 kvm_msr_entry_add(cpu
, MSR_STAR
, env
->star
);
1598 if (has_msr_hsave_pa
) {
1599 kvm_msr_entry_add(cpu
, MSR_VM_HSAVE_PA
, env
->vm_hsave
);
1601 if (has_msr_tsc_aux
) {
1602 kvm_msr_entry_add(cpu
, MSR_TSC_AUX
, env
->tsc_aux
);
1604 if (has_msr_tsc_adjust
) {
1605 kvm_msr_entry_add(cpu
, MSR_TSC_ADJUST
, env
->tsc_adjust
);
1607 if (has_msr_misc_enable
) {
1608 kvm_msr_entry_add(cpu
, MSR_IA32_MISC_ENABLE
,
1609 env
->msr_ia32_misc_enable
);
1611 if (has_msr_smbase
) {
1612 kvm_msr_entry_add(cpu
, MSR_IA32_SMBASE
, env
->smbase
);
1614 if (has_msr_bndcfgs
) {
1615 kvm_msr_entry_add(cpu
, MSR_IA32_BNDCFGS
, env
->msr_bndcfgs
);
1618 kvm_msr_entry_add(cpu
, MSR_IA32_XSS
, env
->xss
);
1620 #ifdef TARGET_X86_64
1621 if (lm_capable_kernel
) {
1622 kvm_msr_entry_add(cpu
, MSR_CSTAR
, env
->cstar
);
1623 kvm_msr_entry_add(cpu
, MSR_KERNELGSBASE
, env
->kernelgsbase
);
1624 kvm_msr_entry_add(cpu
, MSR_FMASK
, env
->fmask
);
1625 kvm_msr_entry_add(cpu
, MSR_LSTAR
, env
->lstar
);
1629 * The following MSRs have side effects on the guest or are too heavy
1630 * for normal writeback. Limit them to reset or full state updates.
1632 if (level
>= KVM_PUT_RESET_STATE
) {
1633 kvm_msr_entry_add(cpu
, MSR_IA32_TSC
, env
->tsc
);
1634 kvm_msr_entry_add(cpu
, MSR_KVM_SYSTEM_TIME
, env
->system_time_msr
);
1635 kvm_msr_entry_add(cpu
, MSR_KVM_WALL_CLOCK
, env
->wall_clock_msr
);
1636 if (has_msr_async_pf_en
) {
1637 kvm_msr_entry_add(cpu
, MSR_KVM_ASYNC_PF_EN
, env
->async_pf_en_msr
);
1639 if (has_msr_pv_eoi_en
) {
1640 kvm_msr_entry_add(cpu
, MSR_KVM_PV_EOI_EN
, env
->pv_eoi_en_msr
);
1642 if (has_msr_kvm_steal_time
) {
1643 kvm_msr_entry_add(cpu
, MSR_KVM_STEAL_TIME
, env
->steal_time_msr
);
1645 if (has_msr_architectural_pmu
) {
1646 /* Stop the counter. */
1647 kvm_msr_entry_add(cpu
, MSR_CORE_PERF_FIXED_CTR_CTRL
, 0);
1648 kvm_msr_entry_add(cpu
, MSR_CORE_PERF_GLOBAL_CTRL
, 0);
1650 /* Set the counter values. */
1651 for (i
= 0; i
< MAX_FIXED_COUNTERS
; i
++) {
1652 kvm_msr_entry_add(cpu
, MSR_CORE_PERF_FIXED_CTR0
+ i
,
1653 env
->msr_fixed_counters
[i
]);
1655 for (i
= 0; i
< num_architectural_pmu_counters
; i
++) {
1656 kvm_msr_entry_add(cpu
, MSR_P6_PERFCTR0
+ i
,
1657 env
->msr_gp_counters
[i
]);
1658 kvm_msr_entry_add(cpu
, MSR_P6_EVNTSEL0
+ i
,
1659 env
->msr_gp_evtsel
[i
]);
1661 kvm_msr_entry_add(cpu
, MSR_CORE_PERF_GLOBAL_STATUS
,
1662 env
->msr_global_status
);
1663 kvm_msr_entry_add(cpu
, MSR_CORE_PERF_GLOBAL_OVF_CTRL
,
1664 env
->msr_global_ovf_ctrl
);
1666 /* Now start the PMU. */
1667 kvm_msr_entry_add(cpu
, MSR_CORE_PERF_FIXED_CTR_CTRL
,
1668 env
->msr_fixed_ctr_ctrl
);
1669 kvm_msr_entry_add(cpu
, MSR_CORE_PERF_GLOBAL_CTRL
,
1670 env
->msr_global_ctrl
);
1672 if (has_msr_hv_hypercall
) {
1673 kvm_msr_entry_add(cpu
, HV_X64_MSR_GUEST_OS_ID
,
1674 env
->msr_hv_guest_os_id
);
1675 kvm_msr_entry_add(cpu
, HV_X64_MSR_HYPERCALL
,
1676 env
->msr_hv_hypercall
);
1678 if (has_msr_hv_vapic
) {
1679 kvm_msr_entry_add(cpu
, HV_X64_MSR_APIC_ASSIST_PAGE
,
1682 if (has_msr_hv_tsc
) {
1683 kvm_msr_entry_add(cpu
, HV_X64_MSR_REFERENCE_TSC
, env
->msr_hv_tsc
);
1685 if (has_msr_hv_crash
) {
1688 for (j
= 0; j
< HV_X64_MSR_CRASH_PARAMS
; j
++)
1689 kvm_msr_entry_add(cpu
, HV_X64_MSR_CRASH_P0
+ j
,
1690 env
->msr_hv_crash_params
[j
]);
1692 kvm_msr_entry_add(cpu
, HV_X64_MSR_CRASH_CTL
,
1693 HV_X64_MSR_CRASH_CTL_NOTIFY
);
1695 if (has_msr_hv_runtime
) {
1696 kvm_msr_entry_add(cpu
, HV_X64_MSR_VP_RUNTIME
, env
->msr_hv_runtime
);
1698 if (cpu
->hyperv_synic
) {
1701 kvm_msr_entry_add(cpu
, HV_X64_MSR_SCONTROL
,
1702 env
->msr_hv_synic_control
);
1703 kvm_msr_entry_add(cpu
, HV_X64_MSR_SVERSION
,
1704 env
->msr_hv_synic_version
);
1705 kvm_msr_entry_add(cpu
, HV_X64_MSR_SIEFP
,
1706 env
->msr_hv_synic_evt_page
);
1707 kvm_msr_entry_add(cpu
, HV_X64_MSR_SIMP
,
1708 env
->msr_hv_synic_msg_page
);
1710 for (j
= 0; j
< ARRAY_SIZE(env
->msr_hv_synic_sint
); j
++) {
1711 kvm_msr_entry_add(cpu
, HV_X64_MSR_SINT0
+ j
,
1712 env
->msr_hv_synic_sint
[j
]);
1715 if (has_msr_hv_stimer
) {
1718 for (j
= 0; j
< ARRAY_SIZE(env
->msr_hv_stimer_config
); j
++) {
1719 kvm_msr_entry_add(cpu
, HV_X64_MSR_STIMER0_CONFIG
+ j
* 2,
1720 env
->msr_hv_stimer_config
[j
]);
1723 for (j
= 0; j
< ARRAY_SIZE(env
->msr_hv_stimer_count
); j
++) {
1724 kvm_msr_entry_add(cpu
, HV_X64_MSR_STIMER0_COUNT
+ j
* 2,
1725 env
->msr_hv_stimer_count
[j
]);
1729 uint64_t phys_mask
= MAKE_64BIT_MASK(0, cpu
->phys_bits
);
1731 kvm_msr_entry_add(cpu
, MSR_MTRRdefType
, env
->mtrr_deftype
);
1732 kvm_msr_entry_add(cpu
, MSR_MTRRfix64K_00000
, env
->mtrr_fixed
[0]);
1733 kvm_msr_entry_add(cpu
, MSR_MTRRfix16K_80000
, env
->mtrr_fixed
[1]);
1734 kvm_msr_entry_add(cpu
, MSR_MTRRfix16K_A0000
, env
->mtrr_fixed
[2]);
1735 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_C0000
, env
->mtrr_fixed
[3]);
1736 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_C8000
, env
->mtrr_fixed
[4]);
1737 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_D0000
, env
->mtrr_fixed
[5]);
1738 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_D8000
, env
->mtrr_fixed
[6]);
1739 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_E0000
, env
->mtrr_fixed
[7]);
1740 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_E8000
, env
->mtrr_fixed
[8]);
1741 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_F0000
, env
->mtrr_fixed
[9]);
1742 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_F8000
, env
->mtrr_fixed
[10]);
1743 for (i
= 0; i
< MSR_MTRRcap_VCNT
; i
++) {
1744 /* The CPU GPs if we write to a bit above the physical limit of
1745 * the host CPU (and KVM emulates that)
1747 uint64_t mask
= env
->mtrr_var
[i
].mask
;
1750 kvm_msr_entry_add(cpu
, MSR_MTRRphysBase(i
),
1751 env
->mtrr_var
[i
].base
);
1752 kvm_msr_entry_add(cpu
, MSR_MTRRphysMask(i
), mask
);
1756 /* Note: MSR_IA32_FEATURE_CONTROL is written separately, see
1757 * kvm_put_msr_feature_control. */
1762 kvm_msr_entry_add(cpu
, MSR_MCG_STATUS
, env
->mcg_status
);
1763 kvm_msr_entry_add(cpu
, MSR_MCG_CTL
, env
->mcg_ctl
);
1764 if (has_msr_mcg_ext_ctl
) {
1765 kvm_msr_entry_add(cpu
, MSR_MCG_EXT_CTL
, env
->mcg_ext_ctl
);
1767 for (i
= 0; i
< (env
->mcg_cap
& 0xff) * 4; i
++) {
1768 kvm_msr_entry_add(cpu
, MSR_MC0_CTL
+ i
, env
->mce_banks
[i
]);
1772 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_MSRS
, cpu
->kvm_msr_buf
);
1777 assert(ret
== cpu
->kvm_msr_buf
->nmsrs
);
1782 static int kvm_get_fpu(X86CPU
*cpu
)
1784 CPUX86State
*env
= &cpu
->env
;
1788 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_FPU
, &fpu
);
1793 env
->fpstt
= (fpu
.fsw
>> 11) & 7;
1794 env
->fpus
= fpu
.fsw
;
1795 env
->fpuc
= fpu
.fcw
;
1796 env
->fpop
= fpu
.last_opcode
;
1797 env
->fpip
= fpu
.last_ip
;
1798 env
->fpdp
= fpu
.last_dp
;
1799 for (i
= 0; i
< 8; ++i
) {
1800 env
->fptags
[i
] = !((fpu
.ftwx
>> i
) & 1);
1802 memcpy(env
->fpregs
, fpu
.fpr
, sizeof env
->fpregs
);
1803 for (i
= 0; i
< CPU_NB_REGS
; i
++) {
1804 env
->xmm_regs
[i
].ZMM_Q(0) = ldq_p(&fpu
.xmm
[i
][0]);
1805 env
->xmm_regs
[i
].ZMM_Q(1) = ldq_p(&fpu
.xmm
[i
][8]);
1807 env
->mxcsr
= fpu
.mxcsr
;
1812 static int kvm_get_xsave(X86CPU
*cpu
)
1814 CPUX86State
*env
= &cpu
->env
;
1815 X86XSaveArea
*xsave
= env
->kvm_xsave_buf
;
1817 uint16_t cwd
, swd
, twd
;
1820 return kvm_get_fpu(cpu
);
1823 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_XSAVE
, xsave
);
1828 cwd
= xsave
->legacy
.fcw
;
1829 swd
= xsave
->legacy
.fsw
;
1830 twd
= xsave
->legacy
.ftw
;
1831 env
->fpop
= xsave
->legacy
.fpop
;
1832 env
->fpstt
= (swd
>> 11) & 7;
1835 for (i
= 0; i
< 8; ++i
) {
1836 env
->fptags
[i
] = !((twd
>> i
) & 1);
1838 env
->fpip
= xsave
->legacy
.fpip
;
1839 env
->fpdp
= xsave
->legacy
.fpdp
;
1840 env
->mxcsr
= xsave
->legacy
.mxcsr
;
1841 memcpy(env
->fpregs
, &xsave
->legacy
.fpregs
,
1842 sizeof env
->fpregs
);
1843 env
->xstate_bv
= xsave
->header
.xstate_bv
;
1844 memcpy(env
->bnd_regs
, &xsave
->bndreg_state
.bnd_regs
,
1845 sizeof env
->bnd_regs
);
1846 env
->bndcs_regs
= xsave
->bndcsr_state
.bndcsr
;
1847 memcpy(env
->opmask_regs
, &xsave
->opmask_state
.opmask_regs
,
1848 sizeof env
->opmask_regs
);
1850 for (i
= 0; i
< CPU_NB_REGS
; i
++) {
1851 uint8_t *xmm
= xsave
->legacy
.xmm_regs
[i
];
1852 uint8_t *ymmh
= xsave
->avx_state
.ymmh
[i
];
1853 uint8_t *zmmh
= xsave
->zmm_hi256_state
.zmm_hi256
[i
];
1854 env
->xmm_regs
[i
].ZMM_Q(0) = ldq_p(xmm
);
1855 env
->xmm_regs
[i
].ZMM_Q(1) = ldq_p(xmm
+8);
1856 env
->xmm_regs
[i
].ZMM_Q(2) = ldq_p(ymmh
);
1857 env
->xmm_regs
[i
].ZMM_Q(3) = ldq_p(ymmh
+8);
1858 env
->xmm_regs
[i
].ZMM_Q(4) = ldq_p(zmmh
);
1859 env
->xmm_regs
[i
].ZMM_Q(5) = ldq_p(zmmh
+8);
1860 env
->xmm_regs
[i
].ZMM_Q(6) = ldq_p(zmmh
+16);
1861 env
->xmm_regs
[i
].ZMM_Q(7) = ldq_p(zmmh
+24);
1864 #ifdef TARGET_X86_64
1865 memcpy(&env
->xmm_regs
[16], &xsave
->hi16_zmm_state
.hi16_zmm
,
1866 16 * sizeof env
->xmm_regs
[16]);
1867 memcpy(&env
->pkru
, &xsave
->pkru_state
, sizeof env
->pkru
);
1872 static int kvm_get_xcrs(X86CPU
*cpu
)
1874 CPUX86State
*env
= &cpu
->env
;
1876 struct kvm_xcrs xcrs
;
1882 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_XCRS
, &xcrs
);
1887 for (i
= 0; i
< xcrs
.nr_xcrs
; i
++) {
1888 /* Only support xcr0 now */
1889 if (xcrs
.xcrs
[i
].xcr
== 0) {
1890 env
->xcr0
= xcrs
.xcrs
[i
].value
;
1897 static int kvm_get_sregs(X86CPU
*cpu
)
1899 CPUX86State
*env
= &cpu
->env
;
1900 struct kvm_sregs sregs
;
1904 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_SREGS
, &sregs
);
1909 /* There can only be one pending IRQ set in the bitmap at a time, so try
1910 to find it and save its number instead (-1 for none). */
1911 env
->interrupt_injected
= -1;
1912 for (i
= 0; i
< ARRAY_SIZE(sregs
.interrupt_bitmap
); i
++) {
1913 if (sregs
.interrupt_bitmap
[i
]) {
1914 bit
= ctz64(sregs
.interrupt_bitmap
[i
]);
1915 env
->interrupt_injected
= i
* 64 + bit
;
1920 get_seg(&env
->segs
[R_CS
], &sregs
.cs
);
1921 get_seg(&env
->segs
[R_DS
], &sregs
.ds
);
1922 get_seg(&env
->segs
[R_ES
], &sregs
.es
);
1923 get_seg(&env
->segs
[R_FS
], &sregs
.fs
);
1924 get_seg(&env
->segs
[R_GS
], &sregs
.gs
);
1925 get_seg(&env
->segs
[R_SS
], &sregs
.ss
);
1927 get_seg(&env
->tr
, &sregs
.tr
);
1928 get_seg(&env
->ldt
, &sregs
.ldt
);
1930 env
->idt
.limit
= sregs
.idt
.limit
;
1931 env
->idt
.base
= sregs
.idt
.base
;
1932 env
->gdt
.limit
= sregs
.gdt
.limit
;
1933 env
->gdt
.base
= sregs
.gdt
.base
;
1935 env
->cr
[0] = sregs
.cr0
;
1936 env
->cr
[2] = sregs
.cr2
;
1937 env
->cr
[3] = sregs
.cr3
;
1938 env
->cr
[4] = sregs
.cr4
;
1940 env
->efer
= sregs
.efer
;
1942 /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
1944 #define HFLAG_COPY_MASK \
1945 ~( HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
1946 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
1947 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
1948 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
1950 hflags
= env
->hflags
& HFLAG_COPY_MASK
;
1951 hflags
|= (env
->segs
[R_SS
].flags
>> DESC_DPL_SHIFT
) & HF_CPL_MASK
;
1952 hflags
|= (env
->cr
[0] & CR0_PE_MASK
) << (HF_PE_SHIFT
- CR0_PE_SHIFT
);
1953 hflags
|= (env
->cr
[0] << (HF_MP_SHIFT
- CR0_MP_SHIFT
)) &
1954 (HF_MP_MASK
| HF_EM_MASK
| HF_TS_MASK
);
1955 hflags
|= (env
->eflags
& (HF_TF_MASK
| HF_VM_MASK
| HF_IOPL_MASK
));
1957 if (env
->cr
[4] & CR4_OSFXSR_MASK
) {
1958 hflags
|= HF_OSFXSR_MASK
;
1961 if (env
->efer
& MSR_EFER_LMA
) {
1962 hflags
|= HF_LMA_MASK
;
1965 if ((hflags
& HF_LMA_MASK
) && (env
->segs
[R_CS
].flags
& DESC_L_MASK
)) {
1966 hflags
|= HF_CS32_MASK
| HF_SS32_MASK
| HF_CS64_MASK
;
1968 hflags
|= (env
->segs
[R_CS
].flags
& DESC_B_MASK
) >>
1969 (DESC_B_SHIFT
- HF_CS32_SHIFT
);
1970 hflags
|= (env
->segs
[R_SS
].flags
& DESC_B_MASK
) >>
1971 (DESC_B_SHIFT
- HF_SS32_SHIFT
);
1972 if (!(env
->cr
[0] & CR0_PE_MASK
) || (env
->eflags
& VM_MASK
) ||
1973 !(hflags
& HF_CS32_MASK
)) {
1974 hflags
|= HF_ADDSEG_MASK
;
1976 hflags
|= ((env
->segs
[R_DS
].base
| env
->segs
[R_ES
].base
|
1977 env
->segs
[R_SS
].base
) != 0) << HF_ADDSEG_SHIFT
;
1980 env
->hflags
= hflags
;
1985 static int kvm_get_msrs(X86CPU
*cpu
)
1987 CPUX86State
*env
= &cpu
->env
;
1988 struct kvm_msr_entry
*msrs
= cpu
->kvm_msr_buf
->entries
;
1990 uint64_t mtrr_top_bits
;
1992 kvm_msr_buf_reset(cpu
);
1994 kvm_msr_entry_add(cpu
, MSR_IA32_SYSENTER_CS
, 0);
1995 kvm_msr_entry_add(cpu
, MSR_IA32_SYSENTER_ESP
, 0);
1996 kvm_msr_entry_add(cpu
, MSR_IA32_SYSENTER_EIP
, 0);
1997 kvm_msr_entry_add(cpu
, MSR_PAT
, 0);
1999 kvm_msr_entry_add(cpu
, MSR_STAR
, 0);
2001 if (has_msr_hsave_pa
) {
2002 kvm_msr_entry_add(cpu
, MSR_VM_HSAVE_PA
, 0);
2004 if (has_msr_tsc_aux
) {
2005 kvm_msr_entry_add(cpu
, MSR_TSC_AUX
, 0);
2007 if (has_msr_tsc_adjust
) {
2008 kvm_msr_entry_add(cpu
, MSR_TSC_ADJUST
, 0);
2010 if (has_msr_tsc_deadline
) {
2011 kvm_msr_entry_add(cpu
, MSR_IA32_TSCDEADLINE
, 0);
2013 if (has_msr_misc_enable
) {
2014 kvm_msr_entry_add(cpu
, MSR_IA32_MISC_ENABLE
, 0);
2016 if (has_msr_smbase
) {
2017 kvm_msr_entry_add(cpu
, MSR_IA32_SMBASE
, 0);
2019 if (has_msr_feature_control
) {
2020 kvm_msr_entry_add(cpu
, MSR_IA32_FEATURE_CONTROL
, 0);
2022 if (has_msr_bndcfgs
) {
2023 kvm_msr_entry_add(cpu
, MSR_IA32_BNDCFGS
, 0);
2026 kvm_msr_entry_add(cpu
, MSR_IA32_XSS
, 0);
2030 if (!env
->tsc_valid
) {
2031 kvm_msr_entry_add(cpu
, MSR_IA32_TSC
, 0);
2032 env
->tsc_valid
= !runstate_is_running();
2035 #ifdef TARGET_X86_64
2036 if (lm_capable_kernel
) {
2037 kvm_msr_entry_add(cpu
, MSR_CSTAR
, 0);
2038 kvm_msr_entry_add(cpu
, MSR_KERNELGSBASE
, 0);
2039 kvm_msr_entry_add(cpu
, MSR_FMASK
, 0);
2040 kvm_msr_entry_add(cpu
, MSR_LSTAR
, 0);
2043 kvm_msr_entry_add(cpu
, MSR_KVM_SYSTEM_TIME
, 0);
2044 kvm_msr_entry_add(cpu
, MSR_KVM_WALL_CLOCK
, 0);
2045 if (has_msr_async_pf_en
) {
2046 kvm_msr_entry_add(cpu
, MSR_KVM_ASYNC_PF_EN
, 0);
2048 if (has_msr_pv_eoi_en
) {
2049 kvm_msr_entry_add(cpu
, MSR_KVM_PV_EOI_EN
, 0);
2051 if (has_msr_kvm_steal_time
) {
2052 kvm_msr_entry_add(cpu
, MSR_KVM_STEAL_TIME
, 0);
2054 if (has_msr_architectural_pmu
) {
2055 kvm_msr_entry_add(cpu
, MSR_CORE_PERF_FIXED_CTR_CTRL
, 0);
2056 kvm_msr_entry_add(cpu
, MSR_CORE_PERF_GLOBAL_CTRL
, 0);
2057 kvm_msr_entry_add(cpu
, MSR_CORE_PERF_GLOBAL_STATUS
, 0);
2058 kvm_msr_entry_add(cpu
, MSR_CORE_PERF_GLOBAL_OVF_CTRL
, 0);
2059 for (i
= 0; i
< MAX_FIXED_COUNTERS
; i
++) {
2060 kvm_msr_entry_add(cpu
, MSR_CORE_PERF_FIXED_CTR0
+ i
, 0);
2062 for (i
= 0; i
< num_architectural_pmu_counters
; i
++) {
2063 kvm_msr_entry_add(cpu
, MSR_P6_PERFCTR0
+ i
, 0);
2064 kvm_msr_entry_add(cpu
, MSR_P6_EVNTSEL0
+ i
, 0);
2069 kvm_msr_entry_add(cpu
, MSR_MCG_STATUS
, 0);
2070 kvm_msr_entry_add(cpu
, MSR_MCG_CTL
, 0);
2071 if (has_msr_mcg_ext_ctl
) {
2072 kvm_msr_entry_add(cpu
, MSR_MCG_EXT_CTL
, 0);
2074 for (i
= 0; i
< (env
->mcg_cap
& 0xff) * 4; i
++) {
2075 kvm_msr_entry_add(cpu
, MSR_MC0_CTL
+ i
, 0);
2079 if (has_msr_hv_hypercall
) {
2080 kvm_msr_entry_add(cpu
, HV_X64_MSR_HYPERCALL
, 0);
2081 kvm_msr_entry_add(cpu
, HV_X64_MSR_GUEST_OS_ID
, 0);
2083 if (has_msr_hv_vapic
) {
2084 kvm_msr_entry_add(cpu
, HV_X64_MSR_APIC_ASSIST_PAGE
, 0);
2086 if (has_msr_hv_tsc
) {
2087 kvm_msr_entry_add(cpu
, HV_X64_MSR_REFERENCE_TSC
, 0);
2089 if (has_msr_hv_crash
) {
2092 for (j
= 0; j
< HV_X64_MSR_CRASH_PARAMS
; j
++) {
2093 kvm_msr_entry_add(cpu
, HV_X64_MSR_CRASH_P0
+ j
, 0);
2096 if (has_msr_hv_runtime
) {
2097 kvm_msr_entry_add(cpu
, HV_X64_MSR_VP_RUNTIME
, 0);
2099 if (cpu
->hyperv_synic
) {
2102 kvm_msr_entry_add(cpu
, HV_X64_MSR_SCONTROL
, 0);
2103 kvm_msr_entry_add(cpu
, HV_X64_MSR_SVERSION
, 0);
2104 kvm_msr_entry_add(cpu
, HV_X64_MSR_SIEFP
, 0);
2105 kvm_msr_entry_add(cpu
, HV_X64_MSR_SIMP
, 0);
2106 for (msr
= HV_X64_MSR_SINT0
; msr
<= HV_X64_MSR_SINT15
; msr
++) {
2107 kvm_msr_entry_add(cpu
, msr
, 0);
2110 if (has_msr_hv_stimer
) {
2113 for (msr
= HV_X64_MSR_STIMER0_CONFIG
; msr
<= HV_X64_MSR_STIMER3_COUNT
;
2115 kvm_msr_entry_add(cpu
, msr
, 0);
2119 kvm_msr_entry_add(cpu
, MSR_MTRRdefType
, 0);
2120 kvm_msr_entry_add(cpu
, MSR_MTRRfix64K_00000
, 0);
2121 kvm_msr_entry_add(cpu
, MSR_MTRRfix16K_80000
, 0);
2122 kvm_msr_entry_add(cpu
, MSR_MTRRfix16K_A0000
, 0);
2123 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_C0000
, 0);
2124 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_C8000
, 0);
2125 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_D0000
, 0);
2126 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_D8000
, 0);
2127 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_E0000
, 0);
2128 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_E8000
, 0);
2129 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_F0000
, 0);
2130 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_F8000
, 0);
2131 for (i
= 0; i
< MSR_MTRRcap_VCNT
; i
++) {
2132 kvm_msr_entry_add(cpu
, MSR_MTRRphysBase(i
), 0);
2133 kvm_msr_entry_add(cpu
, MSR_MTRRphysMask(i
), 0);
2137 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_MSRS
, cpu
->kvm_msr_buf
);
2142 assert(ret
== cpu
->kvm_msr_buf
->nmsrs
);
2144 * MTRR masks: Each mask consists of 5 parts
2145 * a 10..0: must be zero
2147 * c n-1.12: actual mask bits
2148 * d 51..n: reserved must be zero
2149 * e 63.52: reserved must be zero
2151 * 'n' is the number of physical bits supported by the CPU and is
2152 * apparently always <= 52. We know our 'n' but don't know what
2153 * the destinations 'n' is; it might be smaller, in which case
2154 * it masks (c) on loading. It might be larger, in which case
2155 * we fill 'd' so that d..c is consistent irrespetive of the 'n'
2156 * we're migrating to.
2159 if (cpu
->fill_mtrr_mask
) {
2160 QEMU_BUILD_BUG_ON(TARGET_PHYS_ADDR_SPACE_BITS
> 52);
2161 assert(cpu
->phys_bits
<= TARGET_PHYS_ADDR_SPACE_BITS
);
2162 mtrr_top_bits
= MAKE_64BIT_MASK(cpu
->phys_bits
, 52 - cpu
->phys_bits
);
2167 for (i
= 0; i
< ret
; i
++) {
2168 uint32_t index
= msrs
[i
].index
;
2170 case MSR_IA32_SYSENTER_CS
:
2171 env
->sysenter_cs
= msrs
[i
].data
;
2173 case MSR_IA32_SYSENTER_ESP
:
2174 env
->sysenter_esp
= msrs
[i
].data
;
2176 case MSR_IA32_SYSENTER_EIP
:
2177 env
->sysenter_eip
= msrs
[i
].data
;
2180 env
->pat
= msrs
[i
].data
;
2183 env
->star
= msrs
[i
].data
;
2185 #ifdef TARGET_X86_64
2187 env
->cstar
= msrs
[i
].data
;
2189 case MSR_KERNELGSBASE
:
2190 env
->kernelgsbase
= msrs
[i
].data
;
2193 env
->fmask
= msrs
[i
].data
;
2196 env
->lstar
= msrs
[i
].data
;
2200 env
->tsc
= msrs
[i
].data
;
2203 env
->tsc_aux
= msrs
[i
].data
;
2205 case MSR_TSC_ADJUST
:
2206 env
->tsc_adjust
= msrs
[i
].data
;
2208 case MSR_IA32_TSCDEADLINE
:
2209 env
->tsc_deadline
= msrs
[i
].data
;
2211 case MSR_VM_HSAVE_PA
:
2212 env
->vm_hsave
= msrs
[i
].data
;
2214 case MSR_KVM_SYSTEM_TIME
:
2215 env
->system_time_msr
= msrs
[i
].data
;
2217 case MSR_KVM_WALL_CLOCK
:
2218 env
->wall_clock_msr
= msrs
[i
].data
;
2220 case MSR_MCG_STATUS
:
2221 env
->mcg_status
= msrs
[i
].data
;
2224 env
->mcg_ctl
= msrs
[i
].data
;
2226 case MSR_MCG_EXT_CTL
:
2227 env
->mcg_ext_ctl
= msrs
[i
].data
;
2229 case MSR_IA32_MISC_ENABLE
:
2230 env
->msr_ia32_misc_enable
= msrs
[i
].data
;
2232 case MSR_IA32_SMBASE
:
2233 env
->smbase
= msrs
[i
].data
;
2235 case MSR_IA32_FEATURE_CONTROL
:
2236 env
->msr_ia32_feature_control
= msrs
[i
].data
;
2238 case MSR_IA32_BNDCFGS
:
2239 env
->msr_bndcfgs
= msrs
[i
].data
;
2242 env
->xss
= msrs
[i
].data
;
2245 if (msrs
[i
].index
>= MSR_MC0_CTL
&&
2246 msrs
[i
].index
< MSR_MC0_CTL
+ (env
->mcg_cap
& 0xff) * 4) {
2247 env
->mce_banks
[msrs
[i
].index
- MSR_MC0_CTL
] = msrs
[i
].data
;
2250 case MSR_KVM_ASYNC_PF_EN
:
2251 env
->async_pf_en_msr
= msrs
[i
].data
;
2253 case MSR_KVM_PV_EOI_EN
:
2254 env
->pv_eoi_en_msr
= msrs
[i
].data
;
2256 case MSR_KVM_STEAL_TIME
:
2257 env
->steal_time_msr
= msrs
[i
].data
;
2259 case MSR_CORE_PERF_FIXED_CTR_CTRL
:
2260 env
->msr_fixed_ctr_ctrl
= msrs
[i
].data
;
2262 case MSR_CORE_PERF_GLOBAL_CTRL
:
2263 env
->msr_global_ctrl
= msrs
[i
].data
;
2265 case MSR_CORE_PERF_GLOBAL_STATUS
:
2266 env
->msr_global_status
= msrs
[i
].data
;
2268 case MSR_CORE_PERF_GLOBAL_OVF_CTRL
:
2269 env
->msr_global_ovf_ctrl
= msrs
[i
].data
;
2271 case MSR_CORE_PERF_FIXED_CTR0
... MSR_CORE_PERF_FIXED_CTR0
+ MAX_FIXED_COUNTERS
- 1:
2272 env
->msr_fixed_counters
[index
- MSR_CORE_PERF_FIXED_CTR0
] = msrs
[i
].data
;
2274 case MSR_P6_PERFCTR0
... MSR_P6_PERFCTR0
+ MAX_GP_COUNTERS
- 1:
2275 env
->msr_gp_counters
[index
- MSR_P6_PERFCTR0
] = msrs
[i
].data
;
2277 case MSR_P6_EVNTSEL0
... MSR_P6_EVNTSEL0
+ MAX_GP_COUNTERS
- 1:
2278 env
->msr_gp_evtsel
[index
- MSR_P6_EVNTSEL0
] = msrs
[i
].data
;
2280 case HV_X64_MSR_HYPERCALL
:
2281 env
->msr_hv_hypercall
= msrs
[i
].data
;
2283 case HV_X64_MSR_GUEST_OS_ID
:
2284 env
->msr_hv_guest_os_id
= msrs
[i
].data
;
2286 case HV_X64_MSR_APIC_ASSIST_PAGE
:
2287 env
->msr_hv_vapic
= msrs
[i
].data
;
2289 case HV_X64_MSR_REFERENCE_TSC
:
2290 env
->msr_hv_tsc
= msrs
[i
].data
;
2292 case HV_X64_MSR_CRASH_P0
... HV_X64_MSR_CRASH_P4
:
2293 env
->msr_hv_crash_params
[index
- HV_X64_MSR_CRASH_P0
] = msrs
[i
].data
;
2295 case HV_X64_MSR_VP_RUNTIME
:
2296 env
->msr_hv_runtime
= msrs
[i
].data
;
2298 case HV_X64_MSR_SCONTROL
:
2299 env
->msr_hv_synic_control
= msrs
[i
].data
;
2301 case HV_X64_MSR_SVERSION
:
2302 env
->msr_hv_synic_version
= msrs
[i
].data
;
2304 case HV_X64_MSR_SIEFP
:
2305 env
->msr_hv_synic_evt_page
= msrs
[i
].data
;
2307 case HV_X64_MSR_SIMP
:
2308 env
->msr_hv_synic_msg_page
= msrs
[i
].data
;
2310 case HV_X64_MSR_SINT0
... HV_X64_MSR_SINT15
:
2311 env
->msr_hv_synic_sint
[index
- HV_X64_MSR_SINT0
] = msrs
[i
].data
;
2313 case HV_X64_MSR_STIMER0_CONFIG
:
2314 case HV_X64_MSR_STIMER1_CONFIG
:
2315 case HV_X64_MSR_STIMER2_CONFIG
:
2316 case HV_X64_MSR_STIMER3_CONFIG
:
2317 env
->msr_hv_stimer_config
[(index
- HV_X64_MSR_STIMER0_CONFIG
)/2] =
2320 case HV_X64_MSR_STIMER0_COUNT
:
2321 case HV_X64_MSR_STIMER1_COUNT
:
2322 case HV_X64_MSR_STIMER2_COUNT
:
2323 case HV_X64_MSR_STIMER3_COUNT
:
2324 env
->msr_hv_stimer_count
[(index
- HV_X64_MSR_STIMER0_COUNT
)/2] =
2327 case MSR_MTRRdefType
:
2328 env
->mtrr_deftype
= msrs
[i
].data
;
2330 case MSR_MTRRfix64K_00000
:
2331 env
->mtrr_fixed
[0] = msrs
[i
].data
;
2333 case MSR_MTRRfix16K_80000
:
2334 env
->mtrr_fixed
[1] = msrs
[i
].data
;
2336 case MSR_MTRRfix16K_A0000
:
2337 env
->mtrr_fixed
[2] = msrs
[i
].data
;
2339 case MSR_MTRRfix4K_C0000
:
2340 env
->mtrr_fixed
[3] = msrs
[i
].data
;
2342 case MSR_MTRRfix4K_C8000
:
2343 env
->mtrr_fixed
[4] = msrs
[i
].data
;
2345 case MSR_MTRRfix4K_D0000
:
2346 env
->mtrr_fixed
[5] = msrs
[i
].data
;
2348 case MSR_MTRRfix4K_D8000
:
2349 env
->mtrr_fixed
[6] = msrs
[i
].data
;
2351 case MSR_MTRRfix4K_E0000
:
2352 env
->mtrr_fixed
[7] = msrs
[i
].data
;
2354 case MSR_MTRRfix4K_E8000
:
2355 env
->mtrr_fixed
[8] = msrs
[i
].data
;
2357 case MSR_MTRRfix4K_F0000
:
2358 env
->mtrr_fixed
[9] = msrs
[i
].data
;
2360 case MSR_MTRRfix4K_F8000
:
2361 env
->mtrr_fixed
[10] = msrs
[i
].data
;
2363 case MSR_MTRRphysBase(0) ... MSR_MTRRphysMask(MSR_MTRRcap_VCNT
- 1):
2365 env
->mtrr_var
[MSR_MTRRphysIndex(index
)].mask
= msrs
[i
].data
|
2368 env
->mtrr_var
[MSR_MTRRphysIndex(index
)].base
= msrs
[i
].data
;
2377 static int kvm_put_mp_state(X86CPU
*cpu
)
2379 struct kvm_mp_state mp_state
= { .mp_state
= cpu
->env
.mp_state
};
2381 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_MP_STATE
, &mp_state
);
2384 static int kvm_get_mp_state(X86CPU
*cpu
)
2386 CPUState
*cs
= CPU(cpu
);
2387 CPUX86State
*env
= &cpu
->env
;
2388 struct kvm_mp_state mp_state
;
2391 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_MP_STATE
, &mp_state
);
2395 env
->mp_state
= mp_state
.mp_state
;
2396 if (kvm_irqchip_in_kernel()) {
2397 cs
->halted
= (mp_state
.mp_state
== KVM_MP_STATE_HALTED
);
2402 static int kvm_get_apic(X86CPU
*cpu
)
2404 DeviceState
*apic
= cpu
->apic_state
;
2405 struct kvm_lapic_state kapic
;
2408 if (apic
&& kvm_irqchip_in_kernel()) {
2409 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_LAPIC
, &kapic
);
2414 kvm_get_apic_state(apic
, &kapic
);
2419 static int kvm_put_apic(X86CPU
*cpu
)
2421 DeviceState
*apic
= cpu
->apic_state
;
2422 struct kvm_lapic_state kapic
;
2424 if (apic
&& kvm_irqchip_in_kernel()) {
2425 kvm_put_apic_state(apic
, &kapic
);
2427 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_LAPIC
, &kapic
);
2432 static int kvm_put_vcpu_events(X86CPU
*cpu
, int level
)
2434 CPUState
*cs
= CPU(cpu
);
2435 CPUX86State
*env
= &cpu
->env
;
2436 struct kvm_vcpu_events events
= {};
2438 if (!kvm_has_vcpu_events()) {
2442 events
.exception
.injected
= (env
->exception_injected
>= 0);
2443 events
.exception
.nr
= env
->exception_injected
;
2444 events
.exception
.has_error_code
= env
->has_error_code
;
2445 events
.exception
.error_code
= env
->error_code
;
2446 events
.exception
.pad
= 0;
2448 events
.interrupt
.injected
= (env
->interrupt_injected
>= 0);
2449 events
.interrupt
.nr
= env
->interrupt_injected
;
2450 events
.interrupt
.soft
= env
->soft_interrupt
;
2452 events
.nmi
.injected
= env
->nmi_injected
;
2453 events
.nmi
.pending
= env
->nmi_pending
;
2454 events
.nmi
.masked
= !!(env
->hflags2
& HF2_NMI_MASK
);
2457 events
.sipi_vector
= env
->sipi_vector
;
2459 if (has_msr_smbase
) {
2460 events
.smi
.smm
= !!(env
->hflags
& HF_SMM_MASK
);
2461 events
.smi
.smm_inside_nmi
= !!(env
->hflags2
& HF2_SMM_INSIDE_NMI_MASK
);
2462 if (kvm_irqchip_in_kernel()) {
2463 /* As soon as these are moved to the kernel, remove them
2464 * from cs->interrupt_request.
2466 events
.smi
.pending
= cs
->interrupt_request
& CPU_INTERRUPT_SMI
;
2467 events
.smi
.latched_init
= cs
->interrupt_request
& CPU_INTERRUPT_INIT
;
2468 cs
->interrupt_request
&= ~(CPU_INTERRUPT_INIT
| CPU_INTERRUPT_SMI
);
2470 /* Keep these in cs->interrupt_request. */
2471 events
.smi
.pending
= 0;
2472 events
.smi
.latched_init
= 0;
2474 events
.flags
|= KVM_VCPUEVENT_VALID_SMM
;
2478 if (level
>= KVM_PUT_RESET_STATE
) {
2480 KVM_VCPUEVENT_VALID_NMI_PENDING
| KVM_VCPUEVENT_VALID_SIPI_VECTOR
;
2483 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_VCPU_EVENTS
, &events
);
2486 static int kvm_get_vcpu_events(X86CPU
*cpu
)
2488 CPUX86State
*env
= &cpu
->env
;
2489 struct kvm_vcpu_events events
;
2492 if (!kvm_has_vcpu_events()) {
2496 memset(&events
, 0, sizeof(events
));
2497 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_VCPU_EVENTS
, &events
);
2501 env
->exception_injected
=
2502 events
.exception
.injected
? events
.exception
.nr
: -1;
2503 env
->has_error_code
= events
.exception
.has_error_code
;
2504 env
->error_code
= events
.exception
.error_code
;
2506 env
->interrupt_injected
=
2507 events
.interrupt
.injected
? events
.interrupt
.nr
: -1;
2508 env
->soft_interrupt
= events
.interrupt
.soft
;
2510 env
->nmi_injected
= events
.nmi
.injected
;
2511 env
->nmi_pending
= events
.nmi
.pending
;
2512 if (events
.nmi
.masked
) {
2513 env
->hflags2
|= HF2_NMI_MASK
;
2515 env
->hflags2
&= ~HF2_NMI_MASK
;
2518 if (events
.flags
& KVM_VCPUEVENT_VALID_SMM
) {
2519 if (events
.smi
.smm
) {
2520 env
->hflags
|= HF_SMM_MASK
;
2522 env
->hflags
&= ~HF_SMM_MASK
;
2524 if (events
.smi
.pending
) {
2525 cpu_interrupt(CPU(cpu
), CPU_INTERRUPT_SMI
);
2527 cpu_reset_interrupt(CPU(cpu
), CPU_INTERRUPT_SMI
);
2529 if (events
.smi
.smm_inside_nmi
) {
2530 env
->hflags2
|= HF2_SMM_INSIDE_NMI_MASK
;
2532 env
->hflags2
&= ~HF2_SMM_INSIDE_NMI_MASK
;
2534 if (events
.smi
.latched_init
) {
2535 cpu_interrupt(CPU(cpu
), CPU_INTERRUPT_INIT
);
2537 cpu_reset_interrupt(CPU(cpu
), CPU_INTERRUPT_INIT
);
2541 env
->sipi_vector
= events
.sipi_vector
;
2546 static int kvm_guest_debug_workarounds(X86CPU
*cpu
)
2548 CPUState
*cs
= CPU(cpu
);
2549 CPUX86State
*env
= &cpu
->env
;
2551 unsigned long reinject_trap
= 0;
2553 if (!kvm_has_vcpu_events()) {
2554 if (env
->exception_injected
== 1) {
2555 reinject_trap
= KVM_GUESTDBG_INJECT_DB
;
2556 } else if (env
->exception_injected
== 3) {
2557 reinject_trap
= KVM_GUESTDBG_INJECT_BP
;
2559 env
->exception_injected
= -1;
2563 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
2564 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
2565 * by updating the debug state once again if single-stepping is on.
2566 * Another reason to call kvm_update_guest_debug here is a pending debug
2567 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
2568 * reinject them via SET_GUEST_DEBUG.
2570 if (reinject_trap
||
2571 (!kvm_has_robust_singlestep() && cs
->singlestep_enabled
)) {
2572 ret
= kvm_update_guest_debug(cs
, reinject_trap
);
2577 static int kvm_put_debugregs(X86CPU
*cpu
)
2579 CPUX86State
*env
= &cpu
->env
;
2580 struct kvm_debugregs dbgregs
;
2583 if (!kvm_has_debugregs()) {
2587 for (i
= 0; i
< 4; i
++) {
2588 dbgregs
.db
[i
] = env
->dr
[i
];
2590 dbgregs
.dr6
= env
->dr
[6];
2591 dbgregs
.dr7
= env
->dr
[7];
2594 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_DEBUGREGS
, &dbgregs
);
2597 static int kvm_get_debugregs(X86CPU
*cpu
)
2599 CPUX86State
*env
= &cpu
->env
;
2600 struct kvm_debugregs dbgregs
;
2603 if (!kvm_has_debugregs()) {
2607 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_DEBUGREGS
, &dbgregs
);
2611 for (i
= 0; i
< 4; i
++) {
2612 env
->dr
[i
] = dbgregs
.db
[i
];
2614 env
->dr
[4] = env
->dr
[6] = dbgregs
.dr6
;
2615 env
->dr
[5] = env
->dr
[7] = dbgregs
.dr7
;
2620 int kvm_arch_put_registers(CPUState
*cpu
, int level
)
2622 X86CPU
*x86_cpu
= X86_CPU(cpu
);
2625 assert(cpu_is_stopped(cpu
) || qemu_cpu_is_self(cpu
));
2627 if (level
>= KVM_PUT_RESET_STATE
) {
2628 ret
= kvm_put_msr_feature_control(x86_cpu
);
2634 if (level
== KVM_PUT_FULL_STATE
) {
2635 /* We don't check for kvm_arch_set_tsc_khz() errors here,
2636 * because TSC frequency mismatch shouldn't abort migration,
2637 * unless the user explicitly asked for a more strict TSC
2638 * setting (e.g. using an explicit "tsc-freq" option).
2640 kvm_arch_set_tsc_khz(cpu
);
2643 ret
= kvm_getput_regs(x86_cpu
, 1);
2647 ret
= kvm_put_xsave(x86_cpu
);
2651 ret
= kvm_put_xcrs(x86_cpu
);
2655 ret
= kvm_put_sregs(x86_cpu
);
2659 /* must be before kvm_put_msrs */
2660 ret
= kvm_inject_mce_oldstyle(x86_cpu
);
2664 ret
= kvm_put_msrs(x86_cpu
, level
);
2668 if (level
>= KVM_PUT_RESET_STATE
) {
2669 ret
= kvm_put_mp_state(x86_cpu
);
2673 ret
= kvm_put_apic(x86_cpu
);
2679 ret
= kvm_put_tscdeadline_msr(x86_cpu
);
2684 ret
= kvm_put_vcpu_events(x86_cpu
, level
);
2688 ret
= kvm_put_debugregs(x86_cpu
);
2693 ret
= kvm_guest_debug_workarounds(x86_cpu
);
2700 int kvm_arch_get_registers(CPUState
*cs
)
2702 X86CPU
*cpu
= X86_CPU(cs
);
2705 assert(cpu_is_stopped(cs
) || qemu_cpu_is_self(cs
));
2707 ret
= kvm_getput_regs(cpu
, 0);
2711 ret
= kvm_get_xsave(cpu
);
2715 ret
= kvm_get_xcrs(cpu
);
2719 ret
= kvm_get_sregs(cpu
);
2723 ret
= kvm_get_msrs(cpu
);
2727 ret
= kvm_get_mp_state(cpu
);
2731 ret
= kvm_get_apic(cpu
);
2735 ret
= kvm_get_vcpu_events(cpu
);
2739 ret
= kvm_get_debugregs(cpu
);
2745 cpu_sync_bndcs_hflags(&cpu
->env
);
2749 void kvm_arch_pre_run(CPUState
*cpu
, struct kvm_run
*run
)
2751 X86CPU
*x86_cpu
= X86_CPU(cpu
);
2752 CPUX86State
*env
= &x86_cpu
->env
;
2756 if (cpu
->interrupt_request
& (CPU_INTERRUPT_NMI
| CPU_INTERRUPT_SMI
)) {
2757 if (cpu
->interrupt_request
& CPU_INTERRUPT_NMI
) {
2758 qemu_mutex_lock_iothread();
2759 cpu
->interrupt_request
&= ~CPU_INTERRUPT_NMI
;
2760 qemu_mutex_unlock_iothread();
2761 DPRINTF("injected NMI\n");
2762 ret
= kvm_vcpu_ioctl(cpu
, KVM_NMI
);
2764 fprintf(stderr
, "KVM: injection failed, NMI lost (%s)\n",
2768 if (cpu
->interrupt_request
& CPU_INTERRUPT_SMI
) {
2769 qemu_mutex_lock_iothread();
2770 cpu
->interrupt_request
&= ~CPU_INTERRUPT_SMI
;
2771 qemu_mutex_unlock_iothread();
2772 DPRINTF("injected SMI\n");
2773 ret
= kvm_vcpu_ioctl(cpu
, KVM_SMI
);
2775 fprintf(stderr
, "KVM: injection failed, SMI lost (%s)\n",
2781 if (!kvm_pic_in_kernel()) {
2782 qemu_mutex_lock_iothread();
2785 /* Force the VCPU out of its inner loop to process any INIT requests
2786 * or (for userspace APIC, but it is cheap to combine the checks here)
2787 * pending TPR access reports.
2789 if (cpu
->interrupt_request
& (CPU_INTERRUPT_INIT
| CPU_INTERRUPT_TPR
)) {
2790 if ((cpu
->interrupt_request
& CPU_INTERRUPT_INIT
) &&
2791 !(env
->hflags
& HF_SMM_MASK
)) {
2792 cpu
->exit_request
= 1;
2794 if (cpu
->interrupt_request
& CPU_INTERRUPT_TPR
) {
2795 cpu
->exit_request
= 1;
2799 if (!kvm_pic_in_kernel()) {
2800 /* Try to inject an interrupt if the guest can accept it */
2801 if (run
->ready_for_interrupt_injection
&&
2802 (cpu
->interrupt_request
& CPU_INTERRUPT_HARD
) &&
2803 (env
->eflags
& IF_MASK
)) {
2806 cpu
->interrupt_request
&= ~CPU_INTERRUPT_HARD
;
2807 irq
= cpu_get_pic_interrupt(env
);
2809 struct kvm_interrupt intr
;
2812 DPRINTF("injected interrupt %d\n", irq
);
2813 ret
= kvm_vcpu_ioctl(cpu
, KVM_INTERRUPT
, &intr
);
2816 "KVM: injection failed, interrupt lost (%s)\n",
2822 /* If we have an interrupt but the guest is not ready to receive an
2823 * interrupt, request an interrupt window exit. This will
2824 * cause a return to userspace as soon as the guest is ready to
2825 * receive interrupts. */
2826 if ((cpu
->interrupt_request
& CPU_INTERRUPT_HARD
)) {
2827 run
->request_interrupt_window
= 1;
2829 run
->request_interrupt_window
= 0;
2832 DPRINTF("setting tpr\n");
2833 run
->cr8
= cpu_get_apic_tpr(x86_cpu
->apic_state
);
2835 qemu_mutex_unlock_iothread();
2839 MemTxAttrs
kvm_arch_post_run(CPUState
*cpu
, struct kvm_run
*run
)
2841 X86CPU
*x86_cpu
= X86_CPU(cpu
);
2842 CPUX86State
*env
= &x86_cpu
->env
;
2844 if (run
->flags
& KVM_RUN_X86_SMM
) {
2845 env
->hflags
|= HF_SMM_MASK
;
2847 env
->hflags
&= HF_SMM_MASK
;
2850 env
->eflags
|= IF_MASK
;
2852 env
->eflags
&= ~IF_MASK
;
2855 /* We need to protect the apic state against concurrent accesses from
2856 * different threads in case the userspace irqchip is used. */
2857 if (!kvm_irqchip_in_kernel()) {
2858 qemu_mutex_lock_iothread();
2860 cpu_set_apic_tpr(x86_cpu
->apic_state
, run
->cr8
);
2861 cpu_set_apic_base(x86_cpu
->apic_state
, run
->apic_base
);
2862 if (!kvm_irqchip_in_kernel()) {
2863 qemu_mutex_unlock_iothread();
2865 return cpu_get_mem_attrs(env
);
2868 int kvm_arch_process_async_events(CPUState
*cs
)
2870 X86CPU
*cpu
= X86_CPU(cs
);
2871 CPUX86State
*env
= &cpu
->env
;
2873 if (cs
->interrupt_request
& CPU_INTERRUPT_MCE
) {
2874 /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
2875 assert(env
->mcg_cap
);
2877 cs
->interrupt_request
&= ~CPU_INTERRUPT_MCE
;
2879 kvm_cpu_synchronize_state(cs
);
2881 if (env
->exception_injected
== EXCP08_DBLE
) {
2882 /* this means triple fault */
2883 qemu_system_reset_request();
2884 cs
->exit_request
= 1;
2887 env
->exception_injected
= EXCP12_MCHK
;
2888 env
->has_error_code
= 0;
2891 if (kvm_irqchip_in_kernel() && env
->mp_state
== KVM_MP_STATE_HALTED
) {
2892 env
->mp_state
= KVM_MP_STATE_RUNNABLE
;
2896 if ((cs
->interrupt_request
& CPU_INTERRUPT_INIT
) &&
2897 !(env
->hflags
& HF_SMM_MASK
)) {
2898 kvm_cpu_synchronize_state(cs
);
2902 if (kvm_irqchip_in_kernel()) {
2906 if (cs
->interrupt_request
& CPU_INTERRUPT_POLL
) {
2907 cs
->interrupt_request
&= ~CPU_INTERRUPT_POLL
;
2908 apic_poll_irq(cpu
->apic_state
);
2910 if (((cs
->interrupt_request
& CPU_INTERRUPT_HARD
) &&
2911 (env
->eflags
& IF_MASK
)) ||
2912 (cs
->interrupt_request
& CPU_INTERRUPT_NMI
)) {
2915 if (cs
->interrupt_request
& CPU_INTERRUPT_SIPI
) {
2916 kvm_cpu_synchronize_state(cs
);
2919 if (cs
->interrupt_request
& CPU_INTERRUPT_TPR
) {
2920 cs
->interrupt_request
&= ~CPU_INTERRUPT_TPR
;
2921 kvm_cpu_synchronize_state(cs
);
2922 apic_handle_tpr_access_report(cpu
->apic_state
, env
->eip
,
2923 env
->tpr_access_type
);
2929 static int kvm_handle_halt(X86CPU
*cpu
)
2931 CPUState
*cs
= CPU(cpu
);
2932 CPUX86State
*env
= &cpu
->env
;
2934 if (!((cs
->interrupt_request
& CPU_INTERRUPT_HARD
) &&
2935 (env
->eflags
& IF_MASK
)) &&
2936 !(cs
->interrupt_request
& CPU_INTERRUPT_NMI
)) {
2944 static int kvm_handle_tpr_access(X86CPU
*cpu
)
2946 CPUState
*cs
= CPU(cpu
);
2947 struct kvm_run
*run
= cs
->kvm_run
;
2949 apic_handle_tpr_access_report(cpu
->apic_state
, run
->tpr_access
.rip
,
2950 run
->tpr_access
.is_write
? TPR_ACCESS_WRITE
2955 int kvm_arch_insert_sw_breakpoint(CPUState
*cs
, struct kvm_sw_breakpoint
*bp
)
2957 static const uint8_t int3
= 0xcc;
2959 if (cpu_memory_rw_debug(cs
, bp
->pc
, (uint8_t *)&bp
->saved_insn
, 1, 0) ||
2960 cpu_memory_rw_debug(cs
, bp
->pc
, (uint8_t *)&int3
, 1, 1)) {
2966 int kvm_arch_remove_sw_breakpoint(CPUState
*cs
, struct kvm_sw_breakpoint
*bp
)
2970 if (cpu_memory_rw_debug(cs
, bp
->pc
, &int3
, 1, 0) || int3
!= 0xcc ||
2971 cpu_memory_rw_debug(cs
, bp
->pc
, (uint8_t *)&bp
->saved_insn
, 1, 1)) {
2983 static int nb_hw_breakpoint
;
2985 static int find_hw_breakpoint(target_ulong addr
, int len
, int type
)
2989 for (n
= 0; n
< nb_hw_breakpoint
; n
++) {
2990 if (hw_breakpoint
[n
].addr
== addr
&& hw_breakpoint
[n
].type
== type
&&
2991 (hw_breakpoint
[n
].len
== len
|| len
== -1)) {
2998 int kvm_arch_insert_hw_breakpoint(target_ulong addr
,
2999 target_ulong len
, int type
)
3002 case GDB_BREAKPOINT_HW
:
3005 case GDB_WATCHPOINT_WRITE
:
3006 case GDB_WATCHPOINT_ACCESS
:
3013 if (addr
& (len
- 1)) {
3025 if (nb_hw_breakpoint
== 4) {
3028 if (find_hw_breakpoint(addr
, len
, type
) >= 0) {
3031 hw_breakpoint
[nb_hw_breakpoint
].addr
= addr
;
3032 hw_breakpoint
[nb_hw_breakpoint
].len
= len
;
3033 hw_breakpoint
[nb_hw_breakpoint
].type
= type
;
3039 int kvm_arch_remove_hw_breakpoint(target_ulong addr
,
3040 target_ulong len
, int type
)
3044 n
= find_hw_breakpoint(addr
, (type
== GDB_BREAKPOINT_HW
) ? 1 : len
, type
);
3049 hw_breakpoint
[n
] = hw_breakpoint
[nb_hw_breakpoint
];
3054 void kvm_arch_remove_all_hw_breakpoints(void)
3056 nb_hw_breakpoint
= 0;
3059 static CPUWatchpoint hw_watchpoint
;
3061 static int kvm_handle_debug(X86CPU
*cpu
,
3062 struct kvm_debug_exit_arch
*arch_info
)
3064 CPUState
*cs
= CPU(cpu
);
3065 CPUX86State
*env
= &cpu
->env
;
3069 if (arch_info
->exception
== 1) {
3070 if (arch_info
->dr6
& (1 << 14)) {
3071 if (cs
->singlestep_enabled
) {
3075 for (n
= 0; n
< 4; n
++) {
3076 if (arch_info
->dr6
& (1 << n
)) {
3077 switch ((arch_info
->dr7
>> (16 + n
*4)) & 0x3) {
3083 cs
->watchpoint_hit
= &hw_watchpoint
;
3084 hw_watchpoint
.vaddr
= hw_breakpoint
[n
].addr
;
3085 hw_watchpoint
.flags
= BP_MEM_WRITE
;
3089 cs
->watchpoint_hit
= &hw_watchpoint
;
3090 hw_watchpoint
.vaddr
= hw_breakpoint
[n
].addr
;
3091 hw_watchpoint
.flags
= BP_MEM_ACCESS
;
3097 } else if (kvm_find_sw_breakpoint(cs
, arch_info
->pc
)) {
3101 cpu_synchronize_state(cs
);
3102 assert(env
->exception_injected
== -1);
3105 env
->exception_injected
= arch_info
->exception
;
3106 env
->has_error_code
= 0;
3112 void kvm_arch_update_guest_debug(CPUState
*cpu
, struct kvm_guest_debug
*dbg
)
3114 const uint8_t type_code
[] = {
3115 [GDB_BREAKPOINT_HW
] = 0x0,
3116 [GDB_WATCHPOINT_WRITE
] = 0x1,
3117 [GDB_WATCHPOINT_ACCESS
] = 0x3
3119 const uint8_t len_code
[] = {
3120 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
3124 if (kvm_sw_breakpoints_active(cpu
)) {
3125 dbg
->control
|= KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_USE_SW_BP
;
3127 if (nb_hw_breakpoint
> 0) {
3128 dbg
->control
|= KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_USE_HW_BP
;
3129 dbg
->arch
.debugreg
[7] = 0x0600;
3130 for (n
= 0; n
< nb_hw_breakpoint
; n
++) {
3131 dbg
->arch
.debugreg
[n
] = hw_breakpoint
[n
].addr
;
3132 dbg
->arch
.debugreg
[7] |= (2 << (n
* 2)) |
3133 (type_code
[hw_breakpoint
[n
].type
] << (16 + n
*4)) |
3134 ((uint32_t)len_code
[hw_breakpoint
[n
].len
] << (18 + n
*4));
3139 static bool host_supports_vmx(void)
3141 uint32_t ecx
, unused
;
3143 host_cpuid(1, 0, &unused
, &unused
, &ecx
, &unused
);
3144 return ecx
& CPUID_EXT_VMX
;
3147 #define VMX_INVALID_GUEST_STATE 0x80000021
3149 int kvm_arch_handle_exit(CPUState
*cs
, struct kvm_run
*run
)
3151 X86CPU
*cpu
= X86_CPU(cs
);
3155 switch (run
->exit_reason
) {
3157 DPRINTF("handle_hlt\n");
3158 qemu_mutex_lock_iothread();
3159 ret
= kvm_handle_halt(cpu
);
3160 qemu_mutex_unlock_iothread();
3162 case KVM_EXIT_SET_TPR
:
3165 case KVM_EXIT_TPR_ACCESS
:
3166 qemu_mutex_lock_iothread();
3167 ret
= kvm_handle_tpr_access(cpu
);
3168 qemu_mutex_unlock_iothread();
3170 case KVM_EXIT_FAIL_ENTRY
:
3171 code
= run
->fail_entry
.hardware_entry_failure_reason
;
3172 fprintf(stderr
, "KVM: entry failed, hardware error 0x%" PRIx64
"\n",
3174 if (host_supports_vmx() && code
== VMX_INVALID_GUEST_STATE
) {
3176 "\nIf you're running a guest on an Intel machine without "
3177 "unrestricted mode\n"
3178 "support, the failure can be most likely due to the guest "
3179 "entering an invalid\n"
3180 "state for Intel VT. For example, the guest maybe running "
3181 "in big real mode\n"
3182 "which is not supported on less recent Intel processors."
3187 case KVM_EXIT_EXCEPTION
:
3188 fprintf(stderr
, "KVM: exception %d exit (error code 0x%x)\n",
3189 run
->ex
.exception
, run
->ex
.error_code
);
3192 case KVM_EXIT_DEBUG
:
3193 DPRINTF("kvm_exit_debug\n");
3194 qemu_mutex_lock_iothread();
3195 ret
= kvm_handle_debug(cpu
, &run
->debug
.arch
);
3196 qemu_mutex_unlock_iothread();
3198 case KVM_EXIT_HYPERV
:
3199 ret
= kvm_hv_handle_exit(cpu
, &run
->hyperv
);
3201 case KVM_EXIT_IOAPIC_EOI
:
3202 ioapic_eoi_broadcast(run
->eoi
.vector
);
3206 fprintf(stderr
, "KVM: unknown exit reason %d\n", run
->exit_reason
);
3214 bool kvm_arch_stop_on_emulation_error(CPUState
*cs
)
3216 X86CPU
*cpu
= X86_CPU(cs
);
3217 CPUX86State
*env
= &cpu
->env
;
3219 kvm_cpu_synchronize_state(cs
);
3220 return !(env
->cr
[0] & CR0_PE_MASK
) ||
3221 ((env
->segs
[R_CS
].selector
& 3) != 3);
3224 void kvm_arch_init_irq_routing(KVMState
*s
)
3226 if (!kvm_check_extension(s
, KVM_CAP_IRQ_ROUTING
)) {
3227 /* If kernel can't do irq routing, interrupt source
3228 * override 0->2 cannot be set up as required by HPET.
3229 * So we have to disable it.
3233 /* We know at this point that we're using the in-kernel
3234 * irqchip, so we can use irqfds, and on x86 we know
3235 * we can use msi via irqfd and GSI routing.
3237 kvm_msi_via_irqfd_allowed
= true;
3238 kvm_gsi_routing_allowed
= true;
3240 if (kvm_irqchip_is_split()) {
3243 /* If the ioapic is in QEMU and the lapics are in KVM, reserve
3244 MSI routes for signaling interrupts to the local apics. */
3245 for (i
= 0; i
< IOAPIC_NUM_PINS
; i
++) {
3246 if (kvm_irqchip_add_msi_route(s
, 0, NULL
) < 0) {
3247 error_report("Could not enable split IRQ mode.");
3254 int kvm_arch_irqchip_create(MachineState
*ms
, KVMState
*s
)
3257 if (machine_kernel_irqchip_split(ms
)) {
3258 ret
= kvm_vm_enable_cap(s
, KVM_CAP_SPLIT_IRQCHIP
, 0, 24);
3260 error_report("Could not enable split irqchip mode: %s",
3264 DPRINTF("Enabled KVM_CAP_SPLIT_IRQCHIP\n");
3265 kvm_split_irqchip
= true;
3273 /* Classic KVM device assignment interface. Will remain x86 only. */
3274 int kvm_device_pci_assign(KVMState
*s
, PCIHostDeviceAddress
*dev_addr
,
3275 uint32_t flags
, uint32_t *dev_id
)
3277 struct kvm_assigned_pci_dev dev_data
= {
3278 .segnr
= dev_addr
->domain
,
3279 .busnr
= dev_addr
->bus
,
3280 .devfn
= PCI_DEVFN(dev_addr
->slot
, dev_addr
->function
),
3285 dev_data
.assigned_dev_id
=
3286 (dev_addr
->domain
<< 16) | (dev_addr
->bus
<< 8) | dev_data
.devfn
;
3288 ret
= kvm_vm_ioctl(s
, KVM_ASSIGN_PCI_DEVICE
, &dev_data
);
3293 *dev_id
= dev_data
.assigned_dev_id
;
3298 int kvm_device_pci_deassign(KVMState
*s
, uint32_t dev_id
)
3300 struct kvm_assigned_pci_dev dev_data
= {
3301 .assigned_dev_id
= dev_id
,
3304 return kvm_vm_ioctl(s
, KVM_DEASSIGN_PCI_DEVICE
, &dev_data
);
3307 static int kvm_assign_irq_internal(KVMState
*s
, uint32_t dev_id
,
3308 uint32_t irq_type
, uint32_t guest_irq
)
3310 struct kvm_assigned_irq assigned_irq
= {
3311 .assigned_dev_id
= dev_id
,
3312 .guest_irq
= guest_irq
,
3316 if (kvm_check_extension(s
, KVM_CAP_ASSIGN_DEV_IRQ
)) {
3317 return kvm_vm_ioctl(s
, KVM_ASSIGN_DEV_IRQ
, &assigned_irq
);
3319 return kvm_vm_ioctl(s
, KVM_ASSIGN_IRQ
, &assigned_irq
);
3323 int kvm_device_intx_assign(KVMState
*s
, uint32_t dev_id
, bool use_host_msi
,
3326 uint32_t irq_type
= KVM_DEV_IRQ_GUEST_INTX
|
3327 (use_host_msi
? KVM_DEV_IRQ_HOST_MSI
: KVM_DEV_IRQ_HOST_INTX
);
3329 return kvm_assign_irq_internal(s
, dev_id
, irq_type
, guest_irq
);
3332 int kvm_device_intx_set_mask(KVMState
*s
, uint32_t dev_id
, bool masked
)
3334 struct kvm_assigned_pci_dev dev_data
= {
3335 .assigned_dev_id
= dev_id
,
3336 .flags
= masked
? KVM_DEV_ASSIGN_MASK_INTX
: 0,
3339 return kvm_vm_ioctl(s
, KVM_ASSIGN_SET_INTX_MASK
, &dev_data
);
3342 static int kvm_deassign_irq_internal(KVMState
*s
, uint32_t dev_id
,
3345 struct kvm_assigned_irq assigned_irq
= {
3346 .assigned_dev_id
= dev_id
,
3350 return kvm_vm_ioctl(s
, KVM_DEASSIGN_DEV_IRQ
, &assigned_irq
);
3353 int kvm_device_intx_deassign(KVMState
*s
, uint32_t dev_id
, bool use_host_msi
)
3355 return kvm_deassign_irq_internal(s
, dev_id
, KVM_DEV_IRQ_GUEST_INTX
|
3356 (use_host_msi
? KVM_DEV_IRQ_HOST_MSI
: KVM_DEV_IRQ_HOST_INTX
));
3359 int kvm_device_msi_assign(KVMState
*s
, uint32_t dev_id
, int virq
)
3361 return kvm_assign_irq_internal(s
, dev_id
, KVM_DEV_IRQ_HOST_MSI
|
3362 KVM_DEV_IRQ_GUEST_MSI
, virq
);
3365 int kvm_device_msi_deassign(KVMState
*s
, uint32_t dev_id
)
3367 return kvm_deassign_irq_internal(s
, dev_id
, KVM_DEV_IRQ_GUEST_MSI
|
3368 KVM_DEV_IRQ_HOST_MSI
);
3371 bool kvm_device_msix_supported(KVMState
*s
)
3373 /* The kernel lacks a corresponding KVM_CAP, so we probe by calling
3374 * KVM_ASSIGN_SET_MSIX_NR with an invalid parameter. */
3375 return kvm_vm_ioctl(s
, KVM_ASSIGN_SET_MSIX_NR
, NULL
) == -EFAULT
;
3378 int kvm_device_msix_init_vectors(KVMState
*s
, uint32_t dev_id
,
3379 uint32_t nr_vectors
)
3381 struct kvm_assigned_msix_nr msix_nr
= {
3382 .assigned_dev_id
= dev_id
,
3383 .entry_nr
= nr_vectors
,
3386 return kvm_vm_ioctl(s
, KVM_ASSIGN_SET_MSIX_NR
, &msix_nr
);
3389 int kvm_device_msix_set_vector(KVMState
*s
, uint32_t dev_id
, uint32_t vector
,
3392 struct kvm_assigned_msix_entry msix_entry
= {
3393 .assigned_dev_id
= dev_id
,
3398 return kvm_vm_ioctl(s
, KVM_ASSIGN_SET_MSIX_ENTRY
, &msix_entry
);
3401 int kvm_device_msix_assign(KVMState
*s
, uint32_t dev_id
)
3403 return kvm_assign_irq_internal(s
, dev_id
, KVM_DEV_IRQ_HOST_MSIX
|
3404 KVM_DEV_IRQ_GUEST_MSIX
, 0);
3407 int kvm_device_msix_deassign(KVMState
*s
, uint32_t dev_id
)
3409 return kvm_deassign_irq_internal(s
, dev_id
, KVM_DEV_IRQ_GUEST_MSIX
|
3410 KVM_DEV_IRQ_HOST_MSIX
);
3413 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry
*route
,
3414 uint64_t address
, uint32_t data
, PCIDevice
*dev
)
3416 X86IOMMUState
*iommu
= x86_iommu_get_default();
3420 MSIMessage src
, dst
;
3421 X86IOMMUClass
*class = X86_IOMMU_GET_CLASS(iommu
);
3423 src
.address
= route
->u
.msi
.address_hi
;
3424 src
.address
<<= VTD_MSI_ADDR_HI_SHIFT
;
3425 src
.address
|= route
->u
.msi
.address_lo
;
3426 src
.data
= route
->u
.msi
.data
;
3428 ret
= class->int_remap(iommu
, &src
, &dst
, dev
? \
3429 pci_requester_id(dev
) : \
3430 X86_IOMMU_SID_INVALID
);
3432 trace_kvm_x86_fixup_msi_error(route
->gsi
);
3436 route
->u
.msi
.address_hi
= dst
.address
>> VTD_MSI_ADDR_HI_SHIFT
;
3437 route
->u
.msi
.address_lo
= dst
.address
& VTD_MSI_ADDR_LO_MASK
;
3438 route
->u
.msi
.data
= dst
.data
;
3444 typedef struct MSIRouteEntry MSIRouteEntry
;
3446 struct MSIRouteEntry
{
3447 PCIDevice
*dev
; /* Device pointer */
3448 int vector
; /* MSI/MSIX vector index */
3449 int virq
; /* Virtual IRQ index */
3450 QLIST_ENTRY(MSIRouteEntry
) list
;
3453 /* List of used GSI routes */
3454 static QLIST_HEAD(, MSIRouteEntry
) msi_route_list
= \
3455 QLIST_HEAD_INITIALIZER(msi_route_list
);
3457 static void kvm_update_msi_routes_all(void *private, bool global
,
3458 uint32_t index
, uint32_t mask
)
3461 MSIRouteEntry
*entry
;
3463 /* TODO: explicit route update */
3464 QLIST_FOREACH(entry
, &msi_route_list
, list
) {
3466 msg
= pci_get_msi_message(entry
->dev
, entry
->vector
);
3467 kvm_irqchip_update_msi_route(kvm_state
, entry
->virq
,
3470 kvm_irqchip_commit_routes(kvm_state
);
3471 trace_kvm_x86_update_msi_routes(cnt
);
3474 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry
*route
,
3475 int vector
, PCIDevice
*dev
)
3477 static bool notify_list_inited
= false;
3478 MSIRouteEntry
*entry
;
3481 /* These are (possibly) IOAPIC routes only used for split
3482 * kernel irqchip mode, while what we are housekeeping are
3483 * PCI devices only. */
3487 entry
= g_new0(MSIRouteEntry
, 1);
3489 entry
->vector
= vector
;
3490 entry
->virq
= route
->gsi
;
3491 QLIST_INSERT_HEAD(&msi_route_list
, entry
, list
);
3493 trace_kvm_x86_add_msi_route(route
->gsi
);
3495 if (!notify_list_inited
) {
3496 /* For the first time we do add route, add ourselves into
3497 * IOMMU's IEC notify list if needed. */
3498 X86IOMMUState
*iommu
= x86_iommu_get_default();
3500 x86_iommu_iec_register_notifier(iommu
,
3501 kvm_update_msi_routes_all
,
3504 notify_list_inited
= true;
3509 int kvm_arch_release_virq_post(int virq
)
3511 MSIRouteEntry
*entry
, *next
;
3512 QLIST_FOREACH_SAFE(entry
, &msi_route_list
, list
, next
) {
3513 if (entry
->virq
== virq
) {
3514 trace_kvm_x86_remove_msi_route(virq
);
3515 QLIST_REMOVE(entry
, list
);
3522 int kvm_arch_msi_data_to_gsi(uint32_t data
)