vfio/iommufd: Add support for iova_ranges and pgsizes
[qemu/kevin.git] / hw / riscv / microchip_pfsoc.c
blobb775aa89464b75b5afb34a652dcc7fdb77187787
1 /*
2 * QEMU RISC-V Board Compatible with Microchip PolarFire SoC Icicle Kit
4 * Copyright (c) 2020 Wind River Systems, Inc.
6 * Author:
7 * Bin Meng <bin.meng@windriver.com>
9 * Provides a board compatible with the Microchip PolarFire SoC Icicle Kit
11 * 0) CLINT (Core Level Interruptor)
12 * 1) PLIC (Platform Level Interrupt Controller)
13 * 2) eNVM (Embedded Non-Volatile Memory)
14 * 3) MMUARTs (Multi-Mode UART)
15 * 4) Cadence eMMC/SDHC controller and an SD card connected to it
16 * 5) SiFive Platform DMA (Direct Memory Access Controller)
17 * 6) GEM (Gigabit Ethernet MAC Controller)
18 * 7) DMC (DDR Memory Controller)
19 * 8) IOSCB modules
21 * This board currently generates devicetree dynamically that indicates at least
22 * two harts and up to five harts.
24 * This program is free software; you can redistribute it and/or modify it
25 * under the terms and conditions of the GNU General Public License,
26 * version 2 or later, as published by the Free Software Foundation.
28 * This program is distributed in the hope it will be useful, but WITHOUT
29 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
30 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
31 * more details.
33 * You should have received a copy of the GNU General Public License along with
34 * this program. If not, see <http://www.gnu.org/licenses/>.
37 #include "qemu/osdep.h"
38 #include "qemu/error-report.h"
39 #include "qemu/units.h"
40 #include "qemu/cutils.h"
41 #include "qapi/error.h"
42 #include "hw/boards.h"
43 #include "hw/loader.h"
44 #include "hw/sysbus.h"
45 #include "chardev/char.h"
46 #include "hw/cpu/cluster.h"
47 #include "target/riscv/cpu.h"
48 #include "hw/misc/unimp.h"
49 #include "hw/riscv/boot.h"
50 #include "hw/riscv/riscv_hart.h"
51 #include "hw/riscv/microchip_pfsoc.h"
52 #include "hw/intc/riscv_aclint.h"
53 #include "hw/intc/sifive_plic.h"
54 #include "sysemu/device_tree.h"
55 #include "sysemu/sysemu.h"
58 * The BIOS image used by this machine is called Hart Software Services (HSS).
59 * See https://github.com/polarfire-soc/hart-software-services
61 #define BIOS_FILENAME "hss.bin"
62 #define RESET_VECTOR 0x20220000
64 /* CLINT timebase frequency */
65 #define CLINT_TIMEBASE_FREQ 1000000
67 /* GEM version */
68 #define GEM_REVISION 0x0107010c
71 * The complete description of the whole PolarFire SoC memory map is scattered
72 * in different documents. There are several places to look at for memory maps:
74 * 1 Chapter 11 "MSS Memory Map", in the doc "UG0880: PolarFire SoC FPGA
75 * Microprocessor Subsystem (MSS) User Guide", which can be downloaded from
76 * https://www.microsemi.com/document-portal/doc_download/
77 * 1244570-ug0880-polarfire-soc-fpga-microprocessor-subsystem-mss-user-guide,
78 * describes the whole picture of the PolarFire SoC memory map.
80 * 2 A zip file for PolarFire soC memory map, which can be downloaded from
81 * https://www.microsemi.com/document-portal/doc_download/
82 * 1244581-polarfire-soc-register-map, contains the following 2 major parts:
83 * - Register Map/PF_SoC_RegMap_V1_1/pfsoc_regmap.htm
84 * describes the complete integrated peripherals memory map
85 * - Register Map/PF_SoC_RegMap_V1_1/MPFS250T/mpfs250t_ioscb_memmap_dri.htm
86 * describes the complete IOSCB modules memory maps
88 static const MemMapEntry microchip_pfsoc_memmap[] = {
89 [MICROCHIP_PFSOC_RSVD0] = { 0x0, 0x100 },
90 [MICROCHIP_PFSOC_DEBUG] = { 0x100, 0xf00 },
91 [MICROCHIP_PFSOC_E51_DTIM] = { 0x1000000, 0x2000 },
92 [MICROCHIP_PFSOC_BUSERR_UNIT0] = { 0x1700000, 0x1000 },
93 [MICROCHIP_PFSOC_BUSERR_UNIT1] = { 0x1701000, 0x1000 },
94 [MICROCHIP_PFSOC_BUSERR_UNIT2] = { 0x1702000, 0x1000 },
95 [MICROCHIP_PFSOC_BUSERR_UNIT3] = { 0x1703000, 0x1000 },
96 [MICROCHIP_PFSOC_BUSERR_UNIT4] = { 0x1704000, 0x1000 },
97 [MICROCHIP_PFSOC_CLINT] = { 0x2000000, 0x10000 },
98 [MICROCHIP_PFSOC_L2CC] = { 0x2010000, 0x1000 },
99 [MICROCHIP_PFSOC_DMA] = { 0x3000000, 0x100000 },
100 [MICROCHIP_PFSOC_L2LIM] = { 0x8000000, 0x2000000 },
101 [MICROCHIP_PFSOC_PLIC] = { 0xc000000, 0x4000000 },
102 [MICROCHIP_PFSOC_MMUART0] = { 0x20000000, 0x1000 },
103 [MICROCHIP_PFSOC_WDOG0] = { 0x20001000, 0x1000 },
104 [MICROCHIP_PFSOC_SYSREG] = { 0x20002000, 0x2000 },
105 [MICROCHIP_PFSOC_AXISW] = { 0x20004000, 0x1000 },
106 [MICROCHIP_PFSOC_MPUCFG] = { 0x20005000, 0x1000 },
107 [MICROCHIP_PFSOC_FMETER] = { 0x20006000, 0x1000 },
108 [MICROCHIP_PFSOC_DDR_SGMII_PHY] = { 0x20007000, 0x1000 },
109 [MICROCHIP_PFSOC_EMMC_SD] = { 0x20008000, 0x1000 },
110 [MICROCHIP_PFSOC_DDR_CFG] = { 0x20080000, 0x40000 },
111 [MICROCHIP_PFSOC_MMUART1] = { 0x20100000, 0x1000 },
112 [MICROCHIP_PFSOC_MMUART2] = { 0x20102000, 0x1000 },
113 [MICROCHIP_PFSOC_MMUART3] = { 0x20104000, 0x1000 },
114 [MICROCHIP_PFSOC_MMUART4] = { 0x20106000, 0x1000 },
115 [MICROCHIP_PFSOC_WDOG1] = { 0x20101000, 0x1000 },
116 [MICROCHIP_PFSOC_WDOG2] = { 0x20103000, 0x1000 },
117 [MICROCHIP_PFSOC_WDOG3] = { 0x20105000, 0x1000 },
118 [MICROCHIP_PFSOC_WDOG4] = { 0x20106000, 0x1000 },
119 [MICROCHIP_PFSOC_SPI0] = { 0x20108000, 0x1000 },
120 [MICROCHIP_PFSOC_SPI1] = { 0x20109000, 0x1000 },
121 [MICROCHIP_PFSOC_I2C0] = { 0x2010a000, 0x1000 },
122 [MICROCHIP_PFSOC_I2C1] = { 0x2010b000, 0x1000 },
123 [MICROCHIP_PFSOC_CAN0] = { 0x2010c000, 0x1000 },
124 [MICROCHIP_PFSOC_CAN1] = { 0x2010d000, 0x1000 },
125 [MICROCHIP_PFSOC_GEM0] = { 0x20110000, 0x2000 },
126 [MICROCHIP_PFSOC_GEM1] = { 0x20112000, 0x2000 },
127 [MICROCHIP_PFSOC_GPIO0] = { 0x20120000, 0x1000 },
128 [MICROCHIP_PFSOC_GPIO1] = { 0x20121000, 0x1000 },
129 [MICROCHIP_PFSOC_GPIO2] = { 0x20122000, 0x1000 },
130 [MICROCHIP_PFSOC_RTC] = { 0x20124000, 0x1000 },
131 [MICROCHIP_PFSOC_ENVM_CFG] = { 0x20200000, 0x1000 },
132 [MICROCHIP_PFSOC_ENVM_DATA] = { 0x20220000, 0x20000 },
133 [MICROCHIP_PFSOC_USB] = { 0x20201000, 0x1000 },
134 [MICROCHIP_PFSOC_QSPI_XIP] = { 0x21000000, 0x1000000 },
135 [MICROCHIP_PFSOC_IOSCB] = { 0x30000000, 0x10000000 },
136 [MICROCHIP_PFSOC_FABRIC_FIC0] = { 0x2000000000, 0x1000000000 },
137 [MICROCHIP_PFSOC_FABRIC_FIC1] = { 0x3000000000, 0x1000000000 },
138 [MICROCHIP_PFSOC_FABRIC_FIC3] = { 0x40000000, 0x20000000 },
139 [MICROCHIP_PFSOC_DRAM_LO] = { 0x80000000, 0x40000000 },
140 [MICROCHIP_PFSOC_DRAM_LO_ALIAS] = { 0xc0000000, 0x40000000 },
141 [MICROCHIP_PFSOC_DRAM_HI] = { 0x1000000000, 0x0 },
142 [MICROCHIP_PFSOC_DRAM_HI_ALIAS] = { 0x1400000000, 0x0 },
146 static void microchip_pfsoc_soc_instance_init(Object *obj)
148 MachineState *ms = MACHINE(qdev_get_machine());
149 MicrochipPFSoCState *s = MICROCHIP_PFSOC(obj);
151 object_initialize_child(obj, "e-cluster", &s->e_cluster, TYPE_CPU_CLUSTER);
152 qdev_prop_set_uint32(DEVICE(&s->e_cluster), "cluster-id", 0);
154 object_initialize_child(OBJECT(&s->e_cluster), "e-cpus", &s->e_cpus,
155 TYPE_RISCV_HART_ARRAY);
156 qdev_prop_set_uint32(DEVICE(&s->e_cpus), "num-harts", 1);
157 qdev_prop_set_uint32(DEVICE(&s->e_cpus), "hartid-base", 0);
158 qdev_prop_set_string(DEVICE(&s->e_cpus), "cpu-type",
159 TYPE_RISCV_CPU_SIFIVE_E51);
160 qdev_prop_set_uint64(DEVICE(&s->e_cpus), "resetvec", RESET_VECTOR);
162 object_initialize_child(obj, "u-cluster", &s->u_cluster, TYPE_CPU_CLUSTER);
163 qdev_prop_set_uint32(DEVICE(&s->u_cluster), "cluster-id", 1);
165 object_initialize_child(OBJECT(&s->u_cluster), "u-cpus", &s->u_cpus,
166 TYPE_RISCV_HART_ARRAY);
167 qdev_prop_set_uint32(DEVICE(&s->u_cpus), "num-harts", ms->smp.cpus - 1);
168 qdev_prop_set_uint32(DEVICE(&s->u_cpus), "hartid-base", 1);
169 qdev_prop_set_string(DEVICE(&s->u_cpus), "cpu-type",
170 TYPE_RISCV_CPU_SIFIVE_U54);
171 qdev_prop_set_uint64(DEVICE(&s->u_cpus), "resetvec", RESET_VECTOR);
173 object_initialize_child(obj, "dma-controller", &s->dma,
174 TYPE_SIFIVE_PDMA);
176 object_initialize_child(obj, "sysreg", &s->sysreg,
177 TYPE_MCHP_PFSOC_SYSREG);
179 object_initialize_child(obj, "ddr-sgmii-phy", &s->ddr_sgmii_phy,
180 TYPE_MCHP_PFSOC_DDR_SGMII_PHY);
181 object_initialize_child(obj, "ddr-cfg", &s->ddr_cfg,
182 TYPE_MCHP_PFSOC_DDR_CFG);
184 object_initialize_child(obj, "gem0", &s->gem0, TYPE_CADENCE_GEM);
185 object_initialize_child(obj, "gem1", &s->gem1, TYPE_CADENCE_GEM);
187 object_initialize_child(obj, "sd-controller", &s->sdhci,
188 TYPE_CADENCE_SDHCI);
190 object_initialize_child(obj, "ioscb", &s->ioscb, TYPE_MCHP_PFSOC_IOSCB);
193 static void microchip_pfsoc_soc_realize(DeviceState *dev, Error **errp)
195 MachineState *ms = MACHINE(qdev_get_machine());
196 MicrochipPFSoCState *s = MICROCHIP_PFSOC(dev);
197 const MemMapEntry *memmap = microchip_pfsoc_memmap;
198 MemoryRegion *system_memory = get_system_memory();
199 MemoryRegion *rsvd0_mem = g_new(MemoryRegion, 1);
200 MemoryRegion *e51_dtim_mem = g_new(MemoryRegion, 1);
201 MemoryRegion *l2lim_mem = g_new(MemoryRegion, 1);
202 MemoryRegion *envm_data = g_new(MemoryRegion, 1);
203 MemoryRegion *qspi_xip_mem = g_new(MemoryRegion, 1);
204 char *plic_hart_config;
205 NICInfo *nd;
206 int i;
208 sysbus_realize(SYS_BUS_DEVICE(&s->e_cpus), &error_abort);
209 sysbus_realize(SYS_BUS_DEVICE(&s->u_cpus), &error_abort);
211 * The cluster must be realized after the RISC-V hart array container,
212 * as the container's CPU object is only created on realize, and the
213 * CPU must exist and have been parented into the cluster before the
214 * cluster is realized.
216 qdev_realize(DEVICE(&s->e_cluster), NULL, &error_abort);
217 qdev_realize(DEVICE(&s->u_cluster), NULL, &error_abort);
219 /* Reserved Memory at address 0 */
220 memory_region_init_ram(rsvd0_mem, NULL, "microchip.pfsoc.rsvd0_mem",
221 memmap[MICROCHIP_PFSOC_RSVD0].size, &error_fatal);
222 memory_region_add_subregion(system_memory,
223 memmap[MICROCHIP_PFSOC_RSVD0].base,
224 rsvd0_mem);
226 /* E51 DTIM */
227 memory_region_init_ram(e51_dtim_mem, NULL, "microchip.pfsoc.e51_dtim_mem",
228 memmap[MICROCHIP_PFSOC_E51_DTIM].size, &error_fatal);
229 memory_region_add_subregion(system_memory,
230 memmap[MICROCHIP_PFSOC_E51_DTIM].base,
231 e51_dtim_mem);
233 /* Bus Error Units */
234 create_unimplemented_device("microchip.pfsoc.buserr_unit0_mem",
235 memmap[MICROCHIP_PFSOC_BUSERR_UNIT0].base,
236 memmap[MICROCHIP_PFSOC_BUSERR_UNIT0].size);
237 create_unimplemented_device("microchip.pfsoc.buserr_unit1_mem",
238 memmap[MICROCHIP_PFSOC_BUSERR_UNIT1].base,
239 memmap[MICROCHIP_PFSOC_BUSERR_UNIT1].size);
240 create_unimplemented_device("microchip.pfsoc.buserr_unit2_mem",
241 memmap[MICROCHIP_PFSOC_BUSERR_UNIT2].base,
242 memmap[MICROCHIP_PFSOC_BUSERR_UNIT2].size);
243 create_unimplemented_device("microchip.pfsoc.buserr_unit3_mem",
244 memmap[MICROCHIP_PFSOC_BUSERR_UNIT3].base,
245 memmap[MICROCHIP_PFSOC_BUSERR_UNIT3].size);
246 create_unimplemented_device("microchip.pfsoc.buserr_unit4_mem",
247 memmap[MICROCHIP_PFSOC_BUSERR_UNIT4].base,
248 memmap[MICROCHIP_PFSOC_BUSERR_UNIT4].size);
250 /* CLINT */
251 riscv_aclint_swi_create(memmap[MICROCHIP_PFSOC_CLINT].base,
252 0, ms->smp.cpus, false);
253 riscv_aclint_mtimer_create(
254 memmap[MICROCHIP_PFSOC_CLINT].base + RISCV_ACLINT_SWI_SIZE,
255 RISCV_ACLINT_DEFAULT_MTIMER_SIZE, 0, ms->smp.cpus,
256 RISCV_ACLINT_DEFAULT_MTIMECMP, RISCV_ACLINT_DEFAULT_MTIME,
257 CLINT_TIMEBASE_FREQ, false);
259 /* L2 cache controller */
260 create_unimplemented_device("microchip.pfsoc.l2cc",
261 memmap[MICROCHIP_PFSOC_L2CC].base, memmap[MICROCHIP_PFSOC_L2CC].size);
264 * Add L2-LIM at reset size.
265 * This should be reduced in size as the L2 Cache Controller WayEnable
266 * register is incremented. Unfortunately I don't see a nice (or any) way
267 * to handle reducing or blocking out the L2 LIM while still allowing it
268 * be re returned to all enabled after a reset. For the time being, just
269 * leave it enabled all the time. This won't break anything, but will be
270 * too generous to misbehaving guests.
272 memory_region_init_ram(l2lim_mem, NULL, "microchip.pfsoc.l2lim",
273 memmap[MICROCHIP_PFSOC_L2LIM].size, &error_fatal);
274 memory_region_add_subregion(system_memory,
275 memmap[MICROCHIP_PFSOC_L2LIM].base,
276 l2lim_mem);
278 /* create PLIC hart topology configuration string */
279 plic_hart_config = riscv_plic_hart_config_string(ms->smp.cpus);
281 /* PLIC */
282 s->plic = sifive_plic_create(memmap[MICROCHIP_PFSOC_PLIC].base,
283 plic_hart_config, ms->smp.cpus, 0,
284 MICROCHIP_PFSOC_PLIC_NUM_SOURCES,
285 MICROCHIP_PFSOC_PLIC_NUM_PRIORITIES,
286 MICROCHIP_PFSOC_PLIC_PRIORITY_BASE,
287 MICROCHIP_PFSOC_PLIC_PENDING_BASE,
288 MICROCHIP_PFSOC_PLIC_ENABLE_BASE,
289 MICROCHIP_PFSOC_PLIC_ENABLE_STRIDE,
290 MICROCHIP_PFSOC_PLIC_CONTEXT_BASE,
291 MICROCHIP_PFSOC_PLIC_CONTEXT_STRIDE,
292 memmap[MICROCHIP_PFSOC_PLIC].size);
293 g_free(plic_hart_config);
295 /* DMA */
296 sysbus_realize(SYS_BUS_DEVICE(&s->dma), errp);
297 sysbus_mmio_map(SYS_BUS_DEVICE(&s->dma), 0,
298 memmap[MICROCHIP_PFSOC_DMA].base);
299 for (i = 0; i < SIFIVE_PDMA_IRQS; i++) {
300 sysbus_connect_irq(SYS_BUS_DEVICE(&s->dma), i,
301 qdev_get_gpio_in(DEVICE(s->plic),
302 MICROCHIP_PFSOC_DMA_IRQ0 + i));
305 /* SYSREG */
306 sysbus_realize(SYS_BUS_DEVICE(&s->sysreg), errp);
307 sysbus_mmio_map(SYS_BUS_DEVICE(&s->sysreg), 0,
308 memmap[MICROCHIP_PFSOC_SYSREG].base);
309 sysbus_connect_irq(SYS_BUS_DEVICE(&s->sysreg), 0,
310 qdev_get_gpio_in(DEVICE(s->plic),
311 MICROCHIP_PFSOC_MAILBOX_IRQ));
313 /* AXISW */
314 create_unimplemented_device("microchip.pfsoc.axisw",
315 memmap[MICROCHIP_PFSOC_AXISW].base,
316 memmap[MICROCHIP_PFSOC_AXISW].size);
318 /* MPUCFG */
319 create_unimplemented_device("microchip.pfsoc.mpucfg",
320 memmap[MICROCHIP_PFSOC_MPUCFG].base,
321 memmap[MICROCHIP_PFSOC_MPUCFG].size);
323 /* FMETER */
324 create_unimplemented_device("microchip.pfsoc.fmeter",
325 memmap[MICROCHIP_PFSOC_FMETER].base,
326 memmap[MICROCHIP_PFSOC_FMETER].size);
328 /* DDR SGMII PHY */
329 sysbus_realize(SYS_BUS_DEVICE(&s->ddr_sgmii_phy), errp);
330 sysbus_mmio_map(SYS_BUS_DEVICE(&s->ddr_sgmii_phy), 0,
331 memmap[MICROCHIP_PFSOC_DDR_SGMII_PHY].base);
333 /* DDR CFG */
334 sysbus_realize(SYS_BUS_DEVICE(&s->ddr_cfg), errp);
335 sysbus_mmio_map(SYS_BUS_DEVICE(&s->ddr_cfg), 0,
336 memmap[MICROCHIP_PFSOC_DDR_CFG].base);
338 /* SDHCI */
339 sysbus_realize(SYS_BUS_DEVICE(&s->sdhci), errp);
340 sysbus_mmio_map(SYS_BUS_DEVICE(&s->sdhci), 0,
341 memmap[MICROCHIP_PFSOC_EMMC_SD].base);
342 sysbus_connect_irq(SYS_BUS_DEVICE(&s->sdhci), 0,
343 qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_EMMC_SD_IRQ));
345 /* MMUARTs */
346 s->serial0 = mchp_pfsoc_mmuart_create(system_memory,
347 memmap[MICROCHIP_PFSOC_MMUART0].base,
348 qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_MMUART0_IRQ),
349 serial_hd(0));
350 s->serial1 = mchp_pfsoc_mmuart_create(system_memory,
351 memmap[MICROCHIP_PFSOC_MMUART1].base,
352 qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_MMUART1_IRQ),
353 serial_hd(1));
354 s->serial2 = mchp_pfsoc_mmuart_create(system_memory,
355 memmap[MICROCHIP_PFSOC_MMUART2].base,
356 qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_MMUART2_IRQ),
357 serial_hd(2));
358 s->serial3 = mchp_pfsoc_mmuart_create(system_memory,
359 memmap[MICROCHIP_PFSOC_MMUART3].base,
360 qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_MMUART3_IRQ),
361 serial_hd(3));
362 s->serial4 = mchp_pfsoc_mmuart_create(system_memory,
363 memmap[MICROCHIP_PFSOC_MMUART4].base,
364 qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_MMUART4_IRQ),
365 serial_hd(4));
367 /* Watchdogs */
368 create_unimplemented_device("microchip.pfsoc.watchdog0",
369 memmap[MICROCHIP_PFSOC_WDOG0].base,
370 memmap[MICROCHIP_PFSOC_WDOG0].size);
371 create_unimplemented_device("microchip.pfsoc.watchdog1",
372 memmap[MICROCHIP_PFSOC_WDOG1].base,
373 memmap[MICROCHIP_PFSOC_WDOG1].size);
374 create_unimplemented_device("microchip.pfsoc.watchdog2",
375 memmap[MICROCHIP_PFSOC_WDOG2].base,
376 memmap[MICROCHIP_PFSOC_WDOG2].size);
377 create_unimplemented_device("microchip.pfsoc.watchdog3",
378 memmap[MICROCHIP_PFSOC_WDOG3].base,
379 memmap[MICROCHIP_PFSOC_WDOG3].size);
380 create_unimplemented_device("microchip.pfsoc.watchdog4",
381 memmap[MICROCHIP_PFSOC_WDOG4].base,
382 memmap[MICROCHIP_PFSOC_WDOG4].size);
384 /* SPI */
385 create_unimplemented_device("microchip.pfsoc.spi0",
386 memmap[MICROCHIP_PFSOC_SPI0].base,
387 memmap[MICROCHIP_PFSOC_SPI0].size);
388 create_unimplemented_device("microchip.pfsoc.spi1",
389 memmap[MICROCHIP_PFSOC_SPI1].base,
390 memmap[MICROCHIP_PFSOC_SPI1].size);
392 /* I2C */
393 create_unimplemented_device("microchip.pfsoc.i2c0",
394 memmap[MICROCHIP_PFSOC_I2C0].base,
395 memmap[MICROCHIP_PFSOC_I2C0].size);
396 create_unimplemented_device("microchip.pfsoc.i2c1",
397 memmap[MICROCHIP_PFSOC_I2C1].base,
398 memmap[MICROCHIP_PFSOC_I2C1].size);
400 /* CAN */
401 create_unimplemented_device("microchip.pfsoc.can0",
402 memmap[MICROCHIP_PFSOC_CAN0].base,
403 memmap[MICROCHIP_PFSOC_CAN0].size);
404 create_unimplemented_device("microchip.pfsoc.can1",
405 memmap[MICROCHIP_PFSOC_CAN1].base,
406 memmap[MICROCHIP_PFSOC_CAN1].size);
408 /* USB */
409 create_unimplemented_device("microchip.pfsoc.usb",
410 memmap[MICROCHIP_PFSOC_USB].base,
411 memmap[MICROCHIP_PFSOC_USB].size);
413 /* GEMs */
415 nd = &nd_table[0];
416 if (nd->used) {
417 qemu_check_nic_model(nd, TYPE_CADENCE_GEM);
418 qdev_set_nic_properties(DEVICE(&s->gem0), nd);
420 nd = &nd_table[1];
421 if (nd->used) {
422 qemu_check_nic_model(nd, TYPE_CADENCE_GEM);
423 qdev_set_nic_properties(DEVICE(&s->gem1), nd);
426 object_property_set_int(OBJECT(&s->gem0), "revision", GEM_REVISION, errp);
427 object_property_set_int(OBJECT(&s->gem0), "phy-addr", 8, errp);
428 sysbus_realize(SYS_BUS_DEVICE(&s->gem0), errp);
429 sysbus_mmio_map(SYS_BUS_DEVICE(&s->gem0), 0,
430 memmap[MICROCHIP_PFSOC_GEM0].base);
431 sysbus_connect_irq(SYS_BUS_DEVICE(&s->gem0), 0,
432 qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_GEM0_IRQ));
434 object_property_set_int(OBJECT(&s->gem1), "revision", GEM_REVISION, errp);
435 object_property_set_int(OBJECT(&s->gem1), "phy-addr", 9, errp);
436 sysbus_realize(SYS_BUS_DEVICE(&s->gem1), errp);
437 sysbus_mmio_map(SYS_BUS_DEVICE(&s->gem1), 0,
438 memmap[MICROCHIP_PFSOC_GEM1].base);
439 sysbus_connect_irq(SYS_BUS_DEVICE(&s->gem1), 0,
440 qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_GEM1_IRQ));
442 /* GPIOs */
443 create_unimplemented_device("microchip.pfsoc.gpio0",
444 memmap[MICROCHIP_PFSOC_GPIO0].base,
445 memmap[MICROCHIP_PFSOC_GPIO0].size);
446 create_unimplemented_device("microchip.pfsoc.gpio1",
447 memmap[MICROCHIP_PFSOC_GPIO1].base,
448 memmap[MICROCHIP_PFSOC_GPIO1].size);
449 create_unimplemented_device("microchip.pfsoc.gpio2",
450 memmap[MICROCHIP_PFSOC_GPIO2].base,
451 memmap[MICROCHIP_PFSOC_GPIO2].size);
453 /* eNVM */
454 memory_region_init_rom(envm_data, OBJECT(dev), "microchip.pfsoc.envm.data",
455 memmap[MICROCHIP_PFSOC_ENVM_DATA].size,
456 &error_fatal);
457 memory_region_add_subregion(system_memory,
458 memmap[MICROCHIP_PFSOC_ENVM_DATA].base,
459 envm_data);
461 /* IOSCB */
462 sysbus_realize(SYS_BUS_DEVICE(&s->ioscb), errp);
463 sysbus_mmio_map(SYS_BUS_DEVICE(&s->ioscb), 0,
464 memmap[MICROCHIP_PFSOC_IOSCB].base);
465 sysbus_connect_irq(SYS_BUS_DEVICE(&s->ioscb), 0,
466 qdev_get_gpio_in(DEVICE(s->plic),
467 MICROCHIP_PFSOC_MAILBOX_IRQ));
469 /* FPGA Fabric */
470 create_unimplemented_device("microchip.pfsoc.fabricfic3",
471 memmap[MICROCHIP_PFSOC_FABRIC_FIC3].base,
472 memmap[MICROCHIP_PFSOC_FABRIC_FIC3].size);
473 /* FPGA Fabric */
474 create_unimplemented_device("microchip.pfsoc.fabricfic0",
475 memmap[MICROCHIP_PFSOC_FABRIC_FIC0].base,
476 memmap[MICROCHIP_PFSOC_FABRIC_FIC0].size);
477 /* FPGA Fabric */
478 create_unimplemented_device("microchip.pfsoc.fabricfic1",
479 memmap[MICROCHIP_PFSOC_FABRIC_FIC1].base,
480 memmap[MICROCHIP_PFSOC_FABRIC_FIC1].size);
482 /* QSPI Flash */
483 memory_region_init_rom(qspi_xip_mem, OBJECT(dev),
484 "microchip.pfsoc.qspi_xip",
485 memmap[MICROCHIP_PFSOC_QSPI_XIP].size,
486 &error_fatal);
487 memory_region_add_subregion(system_memory,
488 memmap[MICROCHIP_PFSOC_QSPI_XIP].base,
489 qspi_xip_mem);
492 static void microchip_pfsoc_soc_class_init(ObjectClass *oc, void *data)
494 DeviceClass *dc = DEVICE_CLASS(oc);
496 dc->realize = microchip_pfsoc_soc_realize;
497 /* Reason: Uses serial_hds in realize function, thus can't be used twice */
498 dc->user_creatable = false;
501 static const TypeInfo microchip_pfsoc_soc_type_info = {
502 .name = TYPE_MICROCHIP_PFSOC,
503 .parent = TYPE_DEVICE,
504 .instance_size = sizeof(MicrochipPFSoCState),
505 .instance_init = microchip_pfsoc_soc_instance_init,
506 .class_init = microchip_pfsoc_soc_class_init,
509 static void microchip_pfsoc_soc_register_types(void)
511 type_register_static(&microchip_pfsoc_soc_type_info);
514 type_init(microchip_pfsoc_soc_register_types)
516 static void microchip_icicle_kit_machine_init(MachineState *machine)
518 MachineClass *mc = MACHINE_GET_CLASS(machine);
519 const MemMapEntry *memmap = microchip_pfsoc_memmap;
520 MicrochipIcicleKitState *s = MICROCHIP_ICICLE_KIT_MACHINE(machine);
521 MemoryRegion *system_memory = get_system_memory();
522 MemoryRegion *mem_low = g_new(MemoryRegion, 1);
523 MemoryRegion *mem_low_alias = g_new(MemoryRegion, 1);
524 MemoryRegion *mem_high = g_new(MemoryRegion, 1);
525 MemoryRegion *mem_high_alias = g_new(MemoryRegion, 1);
526 uint64_t mem_low_size, mem_high_size;
527 hwaddr firmware_load_addr;
528 const char *firmware_name;
529 bool kernel_as_payload = false;
530 target_ulong firmware_end_addr, kernel_start_addr;
531 uint64_t kernel_entry;
532 uint32_t fdt_load_addr;
533 DriveInfo *dinfo = drive_get(IF_SD, 0, 0);
535 /* Sanity check on RAM size */
536 if (machine->ram_size < mc->default_ram_size) {
537 char *sz = size_to_str(mc->default_ram_size);
538 error_report("Invalid RAM size, should be bigger than %s", sz);
539 g_free(sz);
540 exit(EXIT_FAILURE);
543 /* Initialize SoC */
544 object_initialize_child(OBJECT(machine), "soc", &s->soc,
545 TYPE_MICROCHIP_PFSOC);
546 qdev_realize(DEVICE(&s->soc), NULL, &error_fatal);
548 /* Split RAM into low and high regions using aliases to machine->ram */
549 mem_low_size = memmap[MICROCHIP_PFSOC_DRAM_LO].size;
550 mem_high_size = machine->ram_size - mem_low_size;
551 memory_region_init_alias(mem_low, NULL,
552 "microchip.icicle.kit.ram_low", machine->ram,
553 0, mem_low_size);
554 memory_region_init_alias(mem_high, NULL,
555 "microchip.icicle.kit.ram_high", machine->ram,
556 mem_low_size, mem_high_size);
558 /* Register RAM */
559 memory_region_add_subregion(system_memory,
560 memmap[MICROCHIP_PFSOC_DRAM_LO].base,
561 mem_low);
562 memory_region_add_subregion(system_memory,
563 memmap[MICROCHIP_PFSOC_DRAM_HI].base,
564 mem_high);
566 /* Create aliases for the low and high RAM regions */
567 memory_region_init_alias(mem_low_alias, NULL,
568 "microchip.icicle.kit.ram_low.alias",
569 mem_low, 0, mem_low_size);
570 memory_region_add_subregion(system_memory,
571 memmap[MICROCHIP_PFSOC_DRAM_LO_ALIAS].base,
572 mem_low_alias);
573 memory_region_init_alias(mem_high_alias, NULL,
574 "microchip.icicle.kit.ram_high.alias",
575 mem_high, 0, mem_high_size);
576 memory_region_add_subregion(system_memory,
577 memmap[MICROCHIP_PFSOC_DRAM_HI_ALIAS].base,
578 mem_high_alias);
580 /* Attach an SD card */
581 if (dinfo) {
582 CadenceSDHCIState *sdhci = &(s->soc.sdhci);
583 DeviceState *card = qdev_new(TYPE_SD_CARD);
585 qdev_prop_set_drive_err(card, "drive", blk_by_legacy_dinfo(dinfo),
586 &error_fatal);
587 qdev_realize_and_unref(card, sdhci->bus, &error_fatal);
591 * We follow the following table to select which payload we execute.
593 * -bios | -kernel | payload
594 * -------+------------+--------
595 * N | N | HSS
596 * Y | don't care | HSS
597 * N | Y | kernel
599 * This ensures backwards compatibility with how we used to expose -bios
600 * to users but allows them to run through direct kernel booting as well.
602 * When -kernel is used for direct boot, -dtb must be present to provide
603 * a valid device tree for the board, as we don't generate device tree.
606 if (machine->kernel_filename && machine->dtb) {
607 int fdt_size;
608 machine->fdt = load_device_tree(machine->dtb, &fdt_size);
609 if (!machine->fdt) {
610 error_report("load_device_tree() failed");
611 exit(1);
614 firmware_name = RISCV64_BIOS_BIN;
615 firmware_load_addr = memmap[MICROCHIP_PFSOC_DRAM_LO].base;
616 kernel_as_payload = true;
619 if (!kernel_as_payload) {
620 firmware_name = BIOS_FILENAME;
621 firmware_load_addr = RESET_VECTOR;
624 /* Load the firmware */
625 firmware_end_addr = riscv_find_and_load_firmware(machine, firmware_name,
626 firmware_load_addr, NULL);
628 if (kernel_as_payload) {
629 kernel_start_addr = riscv_calc_kernel_start_addr(&s->soc.u_cpus,
630 firmware_end_addr);
632 kernel_entry = riscv_load_kernel(machine, &s->soc.u_cpus,
633 kernel_start_addr, true, NULL);
635 /* Compute the fdt load address in dram */
636 fdt_load_addr = riscv_compute_fdt_addr(memmap[MICROCHIP_PFSOC_DRAM_LO].base,
637 memmap[MICROCHIP_PFSOC_DRAM_LO].size,
638 machine);
639 riscv_load_fdt(fdt_load_addr, machine->fdt);
641 /* Load the reset vector */
642 riscv_setup_rom_reset_vec(machine, &s->soc.u_cpus, firmware_load_addr,
643 memmap[MICROCHIP_PFSOC_ENVM_DATA].base,
644 memmap[MICROCHIP_PFSOC_ENVM_DATA].size,
645 kernel_entry, fdt_load_addr);
649 static void microchip_icicle_kit_machine_class_init(ObjectClass *oc, void *data)
651 MachineClass *mc = MACHINE_CLASS(oc);
653 mc->desc = "Microchip PolarFire SoC Icicle Kit";
654 mc->init = microchip_icicle_kit_machine_init;
655 mc->max_cpus = MICROCHIP_PFSOC_MANAGEMENT_CPU_COUNT +
656 MICROCHIP_PFSOC_COMPUTE_CPU_COUNT;
657 mc->min_cpus = MICROCHIP_PFSOC_MANAGEMENT_CPU_COUNT + 1;
658 mc->default_cpus = mc->min_cpus;
659 mc->default_ram_id = "microchip.icicle.kit.ram";
662 * Map 513 MiB high memory, the minimum required high memory size, because
663 * HSS will do memory test against the high memory address range regardless
664 * of physical memory installed.
666 * See memory_tests() in mss_ddr.c in the HSS source code.
668 mc->default_ram_size = 1537 * MiB;
671 static const TypeInfo microchip_icicle_kit_machine_typeinfo = {
672 .name = MACHINE_TYPE_NAME("microchip-icicle-kit"),
673 .parent = TYPE_MACHINE,
674 .class_init = microchip_icicle_kit_machine_class_init,
675 .instance_size = sizeof(MicrochipIcicleKitState),
678 static void microchip_icicle_kit_machine_init_register_types(void)
680 type_register_static(&microchip_icicle_kit_machine_typeinfo);
683 type_init(microchip_icicle_kit_machine_init_register_types)