target/arm: Unexport aarch64_add_*_properties
[qemu/kevin.git] / target / arm / cpu.h
blobd2b005f76c8f5f8b34c6aa1973dd40837613dafa
1 /*
2 * ARM virtual CPU header
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #ifndef ARM_CPU_H
21 #define ARM_CPU_H
23 #include "kvm-consts.h"
24 #include "qemu/cpu-float.h"
25 #include "hw/registerfields.h"
26 #include "cpu-qom.h"
27 #include "exec/cpu-defs.h"
28 #include "qapi/qapi-types-common.h"
30 /* ARM processors have a weak memory model */
31 #define TCG_GUEST_DEFAULT_MO (0)
33 #ifdef TARGET_AARCH64
34 #define KVM_HAVE_MCE_INJECTION 1
35 #endif
37 #define EXCP_UDEF 1 /* undefined instruction */
38 #define EXCP_SWI 2 /* software interrupt */
39 #define EXCP_PREFETCH_ABORT 3
40 #define EXCP_DATA_ABORT 4
41 #define EXCP_IRQ 5
42 #define EXCP_FIQ 6
43 #define EXCP_BKPT 7
44 #define EXCP_EXCEPTION_EXIT 8 /* Return from v7M exception. */
45 #define EXCP_KERNEL_TRAP 9 /* Jumped to kernel code page. */
46 #define EXCP_HVC 11 /* HyperVisor Call */
47 #define EXCP_HYP_TRAP 12
48 #define EXCP_SMC 13 /* Secure Monitor Call */
49 #define EXCP_VIRQ 14
50 #define EXCP_VFIQ 15
51 #define EXCP_SEMIHOST 16 /* semihosting call */
52 #define EXCP_NOCP 17 /* v7M NOCP UsageFault */
53 #define EXCP_INVSTATE 18 /* v7M INVSTATE UsageFault */
54 #define EXCP_STKOF 19 /* v8M STKOF UsageFault */
55 #define EXCP_LAZYFP 20 /* v7M fault during lazy FP stacking */
56 #define EXCP_LSERR 21 /* v8M LSERR SecureFault */
57 #define EXCP_UNALIGNED 22 /* v7M UNALIGNED UsageFault */
58 #define EXCP_DIVBYZERO 23 /* v7M DIVBYZERO UsageFault */
59 #define EXCP_VSERR 24
60 /* NB: add new EXCP_ defines to the array in arm_log_exception() too */
62 #define ARMV7M_EXCP_RESET 1
63 #define ARMV7M_EXCP_NMI 2
64 #define ARMV7M_EXCP_HARD 3
65 #define ARMV7M_EXCP_MEM 4
66 #define ARMV7M_EXCP_BUS 5
67 #define ARMV7M_EXCP_USAGE 6
68 #define ARMV7M_EXCP_SECURE 7
69 #define ARMV7M_EXCP_SVC 11
70 #define ARMV7M_EXCP_DEBUG 12
71 #define ARMV7M_EXCP_PENDSV 14
72 #define ARMV7M_EXCP_SYSTICK 15
74 /* For M profile, some registers are banked secure vs non-secure;
75 * these are represented as a 2-element array where the first element
76 * is the non-secure copy and the second is the secure copy.
77 * When the CPU does not have implement the security extension then
78 * only the first element is used.
79 * This means that the copy for the current security state can be
80 * accessed via env->registerfield[env->v7m.secure] (whether the security
81 * extension is implemented or not).
83 enum {
84 M_REG_NS = 0,
85 M_REG_S = 1,
86 M_REG_NUM_BANKS = 2,
89 /* ARM-specific interrupt pending bits. */
90 #define CPU_INTERRUPT_FIQ CPU_INTERRUPT_TGT_EXT_1
91 #define CPU_INTERRUPT_VIRQ CPU_INTERRUPT_TGT_EXT_2
92 #define CPU_INTERRUPT_VFIQ CPU_INTERRUPT_TGT_EXT_3
93 #define CPU_INTERRUPT_VSERR CPU_INTERRUPT_TGT_INT_0
95 /* The usual mapping for an AArch64 system register to its AArch32
96 * counterpart is for the 32 bit world to have access to the lower
97 * half only (with writes leaving the upper half untouched). It's
98 * therefore useful to be able to pass TCG the offset of the least
99 * significant half of a uint64_t struct member.
101 #if HOST_BIG_ENDIAN
102 #define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
103 #define offsetofhigh32(S, M) offsetof(S, M)
104 #else
105 #define offsetoflow32(S, M) offsetof(S, M)
106 #define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
107 #endif
109 /* Meanings of the ARMCPU object's four inbound GPIO lines */
110 #define ARM_CPU_IRQ 0
111 #define ARM_CPU_FIQ 1
112 #define ARM_CPU_VIRQ 2
113 #define ARM_CPU_VFIQ 3
115 /* ARM-specific extra insn start words:
116 * 1: Conditional execution bits
117 * 2: Partial exception syndrome for data aborts
119 #define TARGET_INSN_START_EXTRA_WORDS 2
121 /* The 2nd extra word holding syndrome info for data aborts does not use
122 * the upper 6 bits nor the lower 14 bits. We mask and shift it down to
123 * help the sleb128 encoder do a better job.
124 * When restoring the CPU state, we shift it back up.
126 #define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
127 #define ARM_INSN_START_WORD2_SHIFT 14
129 /* We currently assume float and double are IEEE single and double
130 precision respectively.
131 Doing runtime conversions is tricky because VFP registers may contain
132 integer values (eg. as the result of a FTOSI instruction).
133 s<2n> maps to the least significant half of d<n>
134 s<2n+1> maps to the most significant half of d<n>
138 * DynamicGDBXMLInfo:
139 * @desc: Contains the XML descriptions.
140 * @num: Number of the registers in this XML seen by GDB.
141 * @data: A union with data specific to the set of registers
142 * @cpregs_keys: Array that contains the corresponding Key of
143 * a given cpreg with the same order of the cpreg
144 * in the XML description.
146 typedef struct DynamicGDBXMLInfo {
147 char *desc;
148 int num;
149 union {
150 struct {
151 uint32_t *keys;
152 } cpregs;
153 } data;
154 } DynamicGDBXMLInfo;
156 /* CPU state for each instance of a generic timer (in cp15 c14) */
157 typedef struct ARMGenericTimer {
158 uint64_t cval; /* Timer CompareValue register */
159 uint64_t ctl; /* Timer Control register */
160 } ARMGenericTimer;
162 #define GTIMER_PHYS 0
163 #define GTIMER_VIRT 1
164 #define GTIMER_HYP 2
165 #define GTIMER_SEC 3
166 #define GTIMER_HYPVIRT 4
167 #define NUM_GTIMERS 5
169 typedef struct {
170 uint64_t raw_tcr;
171 uint32_t mask;
172 uint32_t base_mask;
173 } TCR;
175 #define VTCR_NSW (1u << 29)
176 #define VTCR_NSA (1u << 30)
177 #define VSTCR_SW VTCR_NSW
178 #define VSTCR_SA VTCR_NSA
180 /* Define a maximum sized vector register.
181 * For 32-bit, this is a 128-bit NEON/AdvSIMD register.
182 * For 64-bit, this is a 2048-bit SVE register.
184 * Note that the mapping between S, D, and Q views of the register bank
185 * differs between AArch64 and AArch32.
186 * In AArch32:
187 * Qn = regs[n].d[1]:regs[n].d[0]
188 * Dn = regs[n / 2].d[n & 1]
189 * Sn = regs[n / 4].d[n % 4 / 2],
190 * bits 31..0 for even n, and bits 63..32 for odd n
191 * (and regs[16] to regs[31] are inaccessible)
192 * In AArch64:
193 * Zn = regs[n].d[*]
194 * Qn = regs[n].d[1]:regs[n].d[0]
195 * Dn = regs[n].d[0]
196 * Sn = regs[n].d[0] bits 31..0
197 * Hn = regs[n].d[0] bits 15..0
199 * This corresponds to the architecturally defined mapping between
200 * the two execution states, and means we do not need to explicitly
201 * map these registers when changing states.
203 * Align the data for use with TCG host vector operations.
206 #ifdef TARGET_AARCH64
207 # define ARM_MAX_VQ 16
208 #else
209 # define ARM_MAX_VQ 1
210 #endif
212 typedef struct ARMVectorReg {
213 uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16);
214 } ARMVectorReg;
216 #ifdef TARGET_AARCH64
217 /* In AArch32 mode, predicate registers do not exist at all. */
218 typedef struct ARMPredicateReg {
219 uint64_t p[DIV_ROUND_UP(2 * ARM_MAX_VQ, 8)] QEMU_ALIGNED(16);
220 } ARMPredicateReg;
222 /* In AArch32 mode, PAC keys do not exist at all. */
223 typedef struct ARMPACKey {
224 uint64_t lo, hi;
225 } ARMPACKey;
226 #endif
228 /* See the commentary above the TBFLAG field definitions. */
229 typedef struct CPUARMTBFlags {
230 uint32_t flags;
231 target_ulong flags2;
232 } CPUARMTBFlags;
234 typedef struct CPUArchState {
235 /* Regs for current mode. */
236 uint32_t regs[16];
238 /* 32/64 switch only happens when taking and returning from
239 * exceptions so the overlap semantics are taken care of then
240 * instead of having a complicated union.
242 /* Regs for A64 mode. */
243 uint64_t xregs[32];
244 uint64_t pc;
245 /* PSTATE isn't an architectural register for ARMv8. However, it is
246 * convenient for us to assemble the underlying state into a 32 bit format
247 * identical to the architectural format used for the SPSR. (This is also
248 * what the Linux kernel's 'pstate' field in signal handlers and KVM's
249 * 'pstate' register are.) Of the PSTATE bits:
250 * NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
251 * semantics as for AArch32, as described in the comments on each field)
252 * nRW (also known as M[4]) is kept, inverted, in env->aarch64
253 * DAIF (exception masks) are kept in env->daif
254 * BTYPE is kept in env->btype
255 * SM and ZA are kept in env->svcr
256 * all other bits are stored in their correct places in env->pstate
258 uint32_t pstate;
259 bool aarch64; /* True if CPU is in aarch64 state; inverse of PSTATE.nRW */
260 bool thumb; /* True if CPU is in thumb mode; cpsr[5] */
262 /* Cached TBFLAGS state. See below for which bits are included. */
263 CPUARMTBFlags hflags;
265 /* Frequently accessed CPSR bits are stored separately for efficiency.
266 This contains all the other bits. Use cpsr_{read,write} to access
267 the whole CPSR. */
268 uint32_t uncached_cpsr;
269 uint32_t spsr;
271 /* Banked registers. */
272 uint64_t banked_spsr[8];
273 uint32_t banked_r13[8];
274 uint32_t banked_r14[8];
276 /* These hold r8-r12. */
277 uint32_t usr_regs[5];
278 uint32_t fiq_regs[5];
280 /* cpsr flag cache for faster execution */
281 uint32_t CF; /* 0 or 1 */
282 uint32_t VF; /* V is the bit 31. All other bits are undefined */
283 uint32_t NF; /* N is bit 31. All other bits are undefined. */
284 uint32_t ZF; /* Z set if zero. */
285 uint32_t QF; /* 0 or 1 */
286 uint32_t GE; /* cpsr[19:16] */
287 uint32_t condexec_bits; /* IT bits. cpsr[15:10,26:25]. */
288 uint32_t btype; /* BTI branch type. spsr[11:10]. */
289 uint64_t daif; /* exception masks, in the bits they are in PSTATE */
290 uint64_t svcr; /* PSTATE.{SM,ZA} in the bits they are in SVCR */
292 uint64_t elr_el[4]; /* AArch64 exception link regs */
293 uint64_t sp_el[4]; /* AArch64 banked stack pointers */
295 /* System control coprocessor (cp15) */
296 struct {
297 uint32_t c0_cpuid;
298 union { /* Cache size selection */
299 struct {
300 uint64_t _unused_csselr0;
301 uint64_t csselr_ns;
302 uint64_t _unused_csselr1;
303 uint64_t csselr_s;
305 uint64_t csselr_el[4];
307 union { /* System control register. */
308 struct {
309 uint64_t _unused_sctlr;
310 uint64_t sctlr_ns;
311 uint64_t hsctlr;
312 uint64_t sctlr_s;
314 uint64_t sctlr_el[4];
316 uint64_t cpacr_el1; /* Architectural feature access control register */
317 uint64_t cptr_el[4]; /* ARMv8 feature trap registers */
318 uint32_t c1_xscaleauxcr; /* XScale auxiliary control register. */
319 uint64_t sder; /* Secure debug enable register. */
320 uint32_t nsacr; /* Non-secure access control register. */
321 union { /* MMU translation table base 0. */
322 struct {
323 uint64_t _unused_ttbr0_0;
324 uint64_t ttbr0_ns;
325 uint64_t _unused_ttbr0_1;
326 uint64_t ttbr0_s;
328 uint64_t ttbr0_el[4];
330 union { /* MMU translation table base 1. */
331 struct {
332 uint64_t _unused_ttbr1_0;
333 uint64_t ttbr1_ns;
334 uint64_t _unused_ttbr1_1;
335 uint64_t ttbr1_s;
337 uint64_t ttbr1_el[4];
339 uint64_t vttbr_el2; /* Virtualization Translation Table Base. */
340 uint64_t vsttbr_el2; /* Secure Virtualization Translation Table. */
341 /* MMU translation table base control. */
342 TCR tcr_el[4];
343 TCR vtcr_el2; /* Virtualization Translation Control. */
344 TCR vstcr_el2; /* Secure Virtualization Translation Control. */
345 uint32_t c2_data; /* MPU data cacheable bits. */
346 uint32_t c2_insn; /* MPU instruction cacheable bits. */
347 union { /* MMU domain access control register
348 * MPU write buffer control.
350 struct {
351 uint64_t dacr_ns;
352 uint64_t dacr_s;
354 struct {
355 uint64_t dacr32_el2;
358 uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
359 uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
360 uint64_t hcr_el2; /* Hypervisor configuration register */
361 uint64_t hcrx_el2; /* Extended Hypervisor configuration register */
362 uint64_t scr_el3; /* Secure configuration register. */
363 union { /* Fault status registers. */
364 struct {
365 uint64_t ifsr_ns;
366 uint64_t ifsr_s;
368 struct {
369 uint64_t ifsr32_el2;
372 union {
373 struct {
374 uint64_t _unused_dfsr;
375 uint64_t dfsr_ns;
376 uint64_t hsr;
377 uint64_t dfsr_s;
379 uint64_t esr_el[4];
381 uint32_t c6_region[8]; /* MPU base/size registers. */
382 union { /* Fault address registers. */
383 struct {
384 uint64_t _unused_far0;
385 #if HOST_BIG_ENDIAN
386 uint32_t ifar_ns;
387 uint32_t dfar_ns;
388 uint32_t ifar_s;
389 uint32_t dfar_s;
390 #else
391 uint32_t dfar_ns;
392 uint32_t ifar_ns;
393 uint32_t dfar_s;
394 uint32_t ifar_s;
395 #endif
396 uint64_t _unused_far3;
398 uint64_t far_el[4];
400 uint64_t hpfar_el2;
401 uint64_t hstr_el2;
402 union { /* Translation result. */
403 struct {
404 uint64_t _unused_par_0;
405 uint64_t par_ns;
406 uint64_t _unused_par_1;
407 uint64_t par_s;
409 uint64_t par_el[4];
412 uint32_t c9_insn; /* Cache lockdown registers. */
413 uint32_t c9_data;
414 uint64_t c9_pmcr; /* performance monitor control register */
415 uint64_t c9_pmcnten; /* perf monitor counter enables */
416 uint64_t c9_pmovsr; /* perf monitor overflow status */
417 uint64_t c9_pmuserenr; /* perf monitor user enable */
418 uint64_t c9_pmselr; /* perf monitor counter selection register */
419 uint64_t c9_pminten; /* perf monitor interrupt enables */
420 union { /* Memory attribute redirection */
421 struct {
422 #if HOST_BIG_ENDIAN
423 uint64_t _unused_mair_0;
424 uint32_t mair1_ns;
425 uint32_t mair0_ns;
426 uint64_t _unused_mair_1;
427 uint32_t mair1_s;
428 uint32_t mair0_s;
429 #else
430 uint64_t _unused_mair_0;
431 uint32_t mair0_ns;
432 uint32_t mair1_ns;
433 uint64_t _unused_mair_1;
434 uint32_t mair0_s;
435 uint32_t mair1_s;
436 #endif
438 uint64_t mair_el[4];
440 union { /* vector base address register */
441 struct {
442 uint64_t _unused_vbar;
443 uint64_t vbar_ns;
444 uint64_t hvbar;
445 uint64_t vbar_s;
447 uint64_t vbar_el[4];
449 uint32_t mvbar; /* (monitor) vector base address register */
450 uint64_t rvbar; /* rvbar sampled from rvbar property at reset */
451 struct { /* FCSE PID. */
452 uint32_t fcseidr_ns;
453 uint32_t fcseidr_s;
455 union { /* Context ID. */
456 struct {
457 uint64_t _unused_contextidr_0;
458 uint64_t contextidr_ns;
459 uint64_t _unused_contextidr_1;
460 uint64_t contextidr_s;
462 uint64_t contextidr_el[4];
464 union { /* User RW Thread register. */
465 struct {
466 uint64_t tpidrurw_ns;
467 uint64_t tpidrprw_ns;
468 uint64_t htpidr;
469 uint64_t _tpidr_el3;
471 uint64_t tpidr_el[4];
473 uint64_t tpidr2_el0;
474 /* The secure banks of these registers don't map anywhere */
475 uint64_t tpidrurw_s;
476 uint64_t tpidrprw_s;
477 uint64_t tpidruro_s;
479 union { /* User RO Thread register. */
480 uint64_t tpidruro_ns;
481 uint64_t tpidrro_el[1];
483 uint64_t c14_cntfrq; /* Counter Frequency register */
484 uint64_t c14_cntkctl; /* Timer Control register */
485 uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */
486 uint64_t cntvoff_el2; /* Counter Virtual Offset register */
487 ARMGenericTimer c14_timer[NUM_GTIMERS];
488 uint32_t c15_cpar; /* XScale Coprocessor Access Register */
489 uint32_t c15_ticonfig; /* TI925T configuration byte. */
490 uint32_t c15_i_max; /* Maximum D-cache dirty line index. */
491 uint32_t c15_i_min; /* Minimum D-cache dirty line index. */
492 uint32_t c15_threadid; /* TI debugger thread-ID. */
493 uint32_t c15_config_base_address; /* SCU base address. */
494 uint32_t c15_diagnostic; /* diagnostic register */
495 uint32_t c15_power_diagnostic;
496 uint32_t c15_power_control; /* power control */
497 uint64_t dbgbvr[16]; /* breakpoint value registers */
498 uint64_t dbgbcr[16]; /* breakpoint control registers */
499 uint64_t dbgwvr[16]; /* watchpoint value registers */
500 uint64_t dbgwcr[16]; /* watchpoint control registers */
501 uint64_t mdscr_el1;
502 uint64_t oslsr_el1; /* OS Lock Status */
503 uint64_t mdcr_el2;
504 uint64_t mdcr_el3;
505 /* Stores the architectural value of the counter *the last time it was
506 * updated* by pmccntr_op_start. Accesses should always be surrounded
507 * by pmccntr_op_start/pmccntr_op_finish to guarantee the latest
508 * architecturally-correct value is being read/set.
510 uint64_t c15_ccnt;
511 /* Stores the delta between the architectural value and the underlying
512 * cycle count during normal operation. It is used to update c15_ccnt
513 * to be the correct architectural value before accesses. During
514 * accesses, c15_ccnt_delta contains the underlying count being used
515 * for the access, after which it reverts to the delta value in
516 * pmccntr_op_finish.
518 uint64_t c15_ccnt_delta;
519 uint64_t c14_pmevcntr[31];
520 uint64_t c14_pmevcntr_delta[31];
521 uint64_t c14_pmevtyper[31];
522 uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
523 uint64_t vpidr_el2; /* Virtualization Processor ID Register */
524 uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
525 uint64_t tfsr_el[4]; /* tfsre0_el1 is index 0. */
526 uint64_t gcr_el1;
527 uint64_t rgsr_el1;
529 /* Minimal RAS registers */
530 uint64_t disr_el1;
531 uint64_t vdisr_el2;
532 uint64_t vsesr_el2;
533 } cp15;
535 struct {
536 /* M profile has up to 4 stack pointers:
537 * a Main Stack Pointer and a Process Stack Pointer for each
538 * of the Secure and Non-Secure states. (If the CPU doesn't support
539 * the security extension then it has only two SPs.)
540 * In QEMU we always store the currently active SP in regs[13],
541 * and the non-active SP for the current security state in
542 * v7m.other_sp. The stack pointers for the inactive security state
543 * are stored in other_ss_msp and other_ss_psp.
544 * switch_v7m_security_state() is responsible for rearranging them
545 * when we change security state.
547 uint32_t other_sp;
548 uint32_t other_ss_msp;
549 uint32_t other_ss_psp;
550 uint32_t vecbase[M_REG_NUM_BANKS];
551 uint32_t basepri[M_REG_NUM_BANKS];
552 uint32_t control[M_REG_NUM_BANKS];
553 uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */
554 uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */
555 uint32_t hfsr; /* HardFault Status */
556 uint32_t dfsr; /* Debug Fault Status Register */
557 uint32_t sfsr; /* Secure Fault Status Register */
558 uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */
559 uint32_t bfar; /* BusFault Address */
560 uint32_t sfar; /* Secure Fault Address Register */
561 unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */
562 int exception;
563 uint32_t primask[M_REG_NUM_BANKS];
564 uint32_t faultmask[M_REG_NUM_BANKS];
565 uint32_t aircr; /* only holds r/w state if security extn implemented */
566 uint32_t secure; /* Is CPU in Secure state? (not guest visible) */
567 uint32_t csselr[M_REG_NUM_BANKS];
568 uint32_t scr[M_REG_NUM_BANKS];
569 uint32_t msplim[M_REG_NUM_BANKS];
570 uint32_t psplim[M_REG_NUM_BANKS];
571 uint32_t fpcar[M_REG_NUM_BANKS];
572 uint32_t fpccr[M_REG_NUM_BANKS];
573 uint32_t fpdscr[M_REG_NUM_BANKS];
574 uint32_t cpacr[M_REG_NUM_BANKS];
575 uint32_t nsacr;
576 uint32_t ltpsize;
577 uint32_t vpr;
578 } v7m;
580 /* Information associated with an exception about to be taken:
581 * code which raises an exception must set cs->exception_index and
582 * the relevant parts of this structure; the cpu_do_interrupt function
583 * will then set the guest-visible registers as part of the exception
584 * entry process.
586 struct {
587 uint32_t syndrome; /* AArch64 format syndrome register */
588 uint32_t fsr; /* AArch32 format fault status register info */
589 uint64_t vaddress; /* virtual addr associated with exception, if any */
590 uint32_t target_el; /* EL the exception should be targeted for */
591 /* If we implement EL2 we will also need to store information
592 * about the intermediate physical address for stage 2 faults.
594 } exception;
596 /* Information associated with an SError */
597 struct {
598 uint8_t pending;
599 uint8_t has_esr;
600 uint64_t esr;
601 } serror;
603 uint8_t ext_dabt_raised; /* Tracking/verifying injection of ext DABT */
605 /* State of our input IRQ/FIQ/VIRQ/VFIQ lines */
606 uint32_t irq_line_state;
608 /* Thumb-2 EE state. */
609 uint32_t teecr;
610 uint32_t teehbr;
612 /* VFP coprocessor state. */
613 struct {
614 ARMVectorReg zregs[32];
616 #ifdef TARGET_AARCH64
617 /* Store FFR as pregs[16] to make it easier to treat as any other. */
618 #define FFR_PRED_NUM 16
619 ARMPredicateReg pregs[17];
620 /* Scratch space for aa64 sve predicate temporary. */
621 ARMPredicateReg preg_tmp;
622 #endif
624 /* We store these fpcsr fields separately for convenience. */
625 uint32_t qc[4] QEMU_ALIGNED(16);
626 int vec_len;
627 int vec_stride;
629 uint32_t xregs[16];
631 /* Scratch space for aa32 neon expansion. */
632 uint32_t scratch[8];
634 /* There are a number of distinct float control structures:
636 * fp_status: is the "normal" fp status.
637 * fp_status_fp16: used for half-precision calculations
638 * standard_fp_status : the ARM "Standard FPSCR Value"
639 * standard_fp_status_fp16 : used for half-precision
640 * calculations with the ARM "Standard FPSCR Value"
642 * Half-precision operations are governed by a separate
643 * flush-to-zero control bit in FPSCR:FZ16. We pass a separate
644 * status structure to control this.
646 * The "Standard FPSCR", ie default-NaN, flush-to-zero,
647 * round-to-nearest and is used by any operations (generally
648 * Neon) which the architecture defines as controlled by the
649 * standard FPSCR value rather than the FPSCR.
651 * The "standard FPSCR but for fp16 ops" is needed because
652 * the "standard FPSCR" tracks the FPSCR.FZ16 bit rather than
653 * using a fixed value for it.
655 * To avoid having to transfer exception bits around, we simply
656 * say that the FPSCR cumulative exception flags are the logical
657 * OR of the flags in the four fp statuses. This relies on the
658 * only thing which needs to read the exception flags being
659 * an explicit FPSCR read.
661 float_status fp_status;
662 float_status fp_status_f16;
663 float_status standard_fp_status;
664 float_status standard_fp_status_f16;
666 uint64_t zcr_el[4]; /* ZCR_EL[1-3] */
667 uint64_t smcr_el[4]; /* SMCR_EL[1-3] */
668 } vfp;
669 uint64_t exclusive_addr;
670 uint64_t exclusive_val;
671 uint64_t exclusive_high;
673 /* iwMMXt coprocessor state. */
674 struct {
675 uint64_t regs[16];
676 uint64_t val;
678 uint32_t cregs[16];
679 } iwmmxt;
681 #ifdef TARGET_AARCH64
682 struct {
683 ARMPACKey apia;
684 ARMPACKey apib;
685 ARMPACKey apda;
686 ARMPACKey apdb;
687 ARMPACKey apga;
688 } keys;
690 uint64_t scxtnum_el[4];
693 * SME ZA storage -- 256 x 256 byte array, with bytes in host word order,
694 * as we do with vfp.zregs[]. This corresponds to the architectural ZA
695 * array, where ZA[N] is in the least-significant bytes of env->zarray[N].
696 * When SVL is less than the architectural maximum, the accessible
697 * storage is restricted, such that if the SVL is X bytes the guest can
698 * see only the bottom X elements of zarray[], and only the least
699 * significant X bytes of each element of the array. (In other words,
700 * the observable part is always square.)
702 * The ZA storage can also be considered as a set of square tiles of
703 * elements of different sizes. The mapping from tiles to the ZA array
704 * is architecturally defined, such that for tiles of elements of esz
705 * bytes, the Nth row (or "horizontal slice") of tile T is in
706 * ZA[T + N * esz]. Note that this means that each tile is not contiguous
707 * in the ZA storage, because its rows are striped through the ZA array.
709 * Because this is so large, keep this toward the end of the reset area,
710 * to keep the offsets into the rest of the structure smaller.
712 ARMVectorReg zarray[ARM_MAX_VQ * 16];
713 #endif
715 #if defined(CONFIG_USER_ONLY)
716 /* For usermode syscall translation. */
717 int eabi;
718 #endif
720 struct CPUBreakpoint *cpu_breakpoint[16];
721 struct CPUWatchpoint *cpu_watchpoint[16];
723 /* Fields up to this point are cleared by a CPU reset */
724 struct {} end_reset_fields;
726 /* Fields after this point are preserved across CPU reset. */
728 /* Internal CPU feature flags. */
729 uint64_t features;
731 /* PMSAv7 MPU */
732 struct {
733 uint32_t *drbar;
734 uint32_t *drsr;
735 uint32_t *dracr;
736 uint32_t rnr[M_REG_NUM_BANKS];
737 } pmsav7;
739 /* PMSAv8 MPU */
740 struct {
741 /* The PMSAv8 implementation also shares some PMSAv7 config
742 * and state:
743 * pmsav7.rnr (region number register)
744 * pmsav7_dregion (number of configured regions)
746 uint32_t *rbar[M_REG_NUM_BANKS];
747 uint32_t *rlar[M_REG_NUM_BANKS];
748 uint32_t mair0[M_REG_NUM_BANKS];
749 uint32_t mair1[M_REG_NUM_BANKS];
750 } pmsav8;
752 /* v8M SAU */
753 struct {
754 uint32_t *rbar;
755 uint32_t *rlar;
756 uint32_t rnr;
757 uint32_t ctrl;
758 } sau;
760 void *nvic;
761 const struct arm_boot_info *boot_info;
762 /* Store GICv3CPUState to access from this struct */
763 void *gicv3state;
765 #ifdef TARGET_TAGGED_ADDRESSES
766 /* Linux syscall tagged address support */
767 bool tagged_addr_enable;
768 #endif
769 } CPUARMState;
771 static inline void set_feature(CPUARMState *env, int feature)
773 env->features |= 1ULL << feature;
776 static inline void unset_feature(CPUARMState *env, int feature)
778 env->features &= ~(1ULL << feature);
782 * ARMELChangeHookFn:
783 * type of a function which can be registered via arm_register_el_change_hook()
784 * to get callbacks when the CPU changes its exception level or mode.
786 typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque);
787 typedef struct ARMELChangeHook ARMELChangeHook;
788 struct ARMELChangeHook {
789 ARMELChangeHookFn *hook;
790 void *opaque;
791 QLIST_ENTRY(ARMELChangeHook) node;
794 /* These values map onto the return values for
795 * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
796 typedef enum ARMPSCIState {
797 PSCI_ON = 0,
798 PSCI_OFF = 1,
799 PSCI_ON_PENDING = 2
800 } ARMPSCIState;
802 typedef struct ARMISARegisters ARMISARegisters;
805 * In map, each set bit is a supported vector length of (bit-number + 1) * 16
806 * bytes, i.e. each bit number + 1 is the vector length in quadwords.
808 * While processing properties during initialization, corresponding init bits
809 * are set for bits in sve_vq_map that have been set by properties.
811 * Bits set in supported represent valid vector lengths for the CPU type.
813 typedef struct {
814 uint32_t map, init, supported;
815 } ARMVQMap;
818 * ARMCPU:
819 * @env: #CPUARMState
821 * An ARM CPU core.
823 struct ArchCPU {
824 /*< private >*/
825 CPUState parent_obj;
826 /*< public >*/
828 CPUNegativeOffsetState neg;
829 CPUARMState env;
831 /* Coprocessor information */
832 GHashTable *cp_regs;
833 /* For marshalling (mostly coprocessor) register state between the
834 * kernel and QEMU (for KVM) and between two QEMUs (for migration),
835 * we use these arrays.
837 /* List of register indexes managed via these arrays; (full KVM style
838 * 64 bit indexes, not CPRegInfo 32 bit indexes)
840 uint64_t *cpreg_indexes;
841 /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
842 uint64_t *cpreg_values;
843 /* Length of the indexes, values, reset_values arrays */
844 int32_t cpreg_array_len;
845 /* These are used only for migration: incoming data arrives in
846 * these fields and is sanity checked in post_load before copying
847 * to the working data structures above.
849 uint64_t *cpreg_vmstate_indexes;
850 uint64_t *cpreg_vmstate_values;
851 int32_t cpreg_vmstate_array_len;
853 DynamicGDBXMLInfo dyn_sysreg_xml;
854 DynamicGDBXMLInfo dyn_svereg_xml;
856 /* Timers used by the generic (architected) timer */
857 QEMUTimer *gt_timer[NUM_GTIMERS];
859 * Timer used by the PMU. Its state is restored after migration by
860 * pmu_op_finish() - it does not need other handling during migration
862 QEMUTimer *pmu_timer;
863 /* GPIO outputs for generic timer */
864 qemu_irq gt_timer_outputs[NUM_GTIMERS];
865 /* GPIO output for GICv3 maintenance interrupt signal */
866 qemu_irq gicv3_maintenance_interrupt;
867 /* GPIO output for the PMU interrupt */
868 qemu_irq pmu_interrupt;
870 /* MemoryRegion to use for secure physical accesses */
871 MemoryRegion *secure_memory;
873 /* MemoryRegion to use for allocation tag accesses */
874 MemoryRegion *tag_memory;
875 MemoryRegion *secure_tag_memory;
877 /* For v8M, pointer to the IDAU interface provided by board/SoC */
878 Object *idau;
880 /* 'compatible' string for this CPU for Linux device trees */
881 const char *dtb_compatible;
883 /* PSCI version for this CPU
884 * Bits[31:16] = Major Version
885 * Bits[15:0] = Minor Version
887 uint32_t psci_version;
889 /* Current power state, access guarded by BQL */
890 ARMPSCIState power_state;
892 /* CPU has virtualization extension */
893 bool has_el2;
894 /* CPU has security extension */
895 bool has_el3;
896 /* CPU has PMU (Performance Monitor Unit) */
897 bool has_pmu;
898 /* CPU has VFP */
899 bool has_vfp;
900 /* CPU has Neon */
901 bool has_neon;
902 /* CPU has M-profile DSP extension */
903 bool has_dsp;
905 /* CPU has memory protection unit */
906 bool has_mpu;
907 /* PMSAv7 MPU number of supported regions */
908 uint32_t pmsav7_dregion;
909 /* v8M SAU number of supported regions */
910 uint32_t sau_sregion;
912 /* PSCI conduit used to invoke PSCI methods
913 * 0 - disabled, 1 - smc, 2 - hvc
915 uint32_t psci_conduit;
917 /* For v8M, initial value of the Secure VTOR */
918 uint32_t init_svtor;
919 /* For v8M, initial value of the Non-secure VTOR */
920 uint32_t init_nsvtor;
922 /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
923 * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
925 uint32_t kvm_target;
927 /* KVM init features for this CPU */
928 uint32_t kvm_init_features[7];
930 /* KVM CPU state */
932 /* KVM virtual time adjustment */
933 bool kvm_adjvtime;
934 bool kvm_vtime_dirty;
935 uint64_t kvm_vtime;
937 /* KVM steal time */
938 OnOffAuto kvm_steal_time;
940 /* Uniprocessor system with MP extensions */
941 bool mp_is_up;
943 /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init
944 * and the probe failed (so we need to report the error in realize)
946 bool host_cpu_probe_failed;
948 /* Specify the number of cores in this CPU cluster. Used for the L2CTLR
949 * register.
951 int32_t core_count;
953 /* The instance init functions for implementation-specific subclasses
954 * set these fields to specify the implementation-dependent values of
955 * various constant registers and reset values of non-constant
956 * registers.
957 * Some of these might become QOM properties eventually.
958 * Field names match the official register names as defined in the
959 * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
960 * is used for reset values of non-constant registers; no reset_
961 * prefix means a constant register.
962 * Some of these registers are split out into a substructure that
963 * is shared with the translators to control the ISA.
965 * Note that if you add an ID register to the ARMISARegisters struct
966 * you need to also update the 32-bit and 64-bit versions of the
967 * kvm_arm_get_host_cpu_features() function to correctly populate the
968 * field by reading the value from the KVM vCPU.
970 struct ARMISARegisters {
971 uint32_t id_isar0;
972 uint32_t id_isar1;
973 uint32_t id_isar2;
974 uint32_t id_isar3;
975 uint32_t id_isar4;
976 uint32_t id_isar5;
977 uint32_t id_isar6;
978 uint32_t id_mmfr0;
979 uint32_t id_mmfr1;
980 uint32_t id_mmfr2;
981 uint32_t id_mmfr3;
982 uint32_t id_mmfr4;
983 uint32_t id_pfr0;
984 uint32_t id_pfr1;
985 uint32_t id_pfr2;
986 uint32_t mvfr0;
987 uint32_t mvfr1;
988 uint32_t mvfr2;
989 uint32_t id_dfr0;
990 uint32_t dbgdidr;
991 uint64_t id_aa64isar0;
992 uint64_t id_aa64isar1;
993 uint64_t id_aa64pfr0;
994 uint64_t id_aa64pfr1;
995 uint64_t id_aa64mmfr0;
996 uint64_t id_aa64mmfr1;
997 uint64_t id_aa64mmfr2;
998 uint64_t id_aa64dfr0;
999 uint64_t id_aa64dfr1;
1000 uint64_t id_aa64zfr0;
1001 uint64_t id_aa64smfr0;
1002 uint64_t reset_pmcr_el0;
1003 } isar;
1004 uint64_t midr;
1005 uint32_t revidr;
1006 uint32_t reset_fpsid;
1007 uint64_t ctr;
1008 uint32_t reset_sctlr;
1009 uint64_t pmceid0;
1010 uint64_t pmceid1;
1011 uint32_t id_afr0;
1012 uint64_t id_aa64afr0;
1013 uint64_t id_aa64afr1;
1014 uint64_t clidr;
1015 uint64_t mp_affinity; /* MP ID without feature bits */
1016 /* The elements of this array are the CCSIDR values for each cache,
1017 * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
1019 uint64_t ccsidr[16];
1020 uint64_t reset_cbar;
1021 uint32_t reset_auxcr;
1022 bool reset_hivecs;
1025 * Intermediate values used during property parsing.
1026 * Once finalized, the values should be read from ID_AA64*.
1028 bool prop_pauth;
1029 bool prop_pauth_impdef;
1030 bool prop_lpa2;
1032 /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
1033 uint32_t dcz_blocksize;
1034 uint64_t rvbar_prop; /* Property/input signals. */
1036 /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
1037 int gic_num_lrs; /* number of list registers */
1038 int gic_vpribits; /* number of virtual priority bits */
1039 int gic_vprebits; /* number of virtual preemption bits */
1040 int gic_pribits; /* number of physical priority bits */
1042 /* Whether the cfgend input is high (i.e. this CPU should reset into
1043 * big-endian mode). This setting isn't used directly: instead it modifies
1044 * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
1045 * architecture version.
1047 bool cfgend;
1049 QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks;
1050 QLIST_HEAD(, ARMELChangeHook) el_change_hooks;
1052 int32_t node_id; /* NUMA node this CPU belongs to */
1054 /* Used to synchronize KVM and QEMU in-kernel device levels */
1055 uint8_t device_irq_level;
1057 /* Used to set the maximum vector length the cpu will support. */
1058 uint32_t sve_max_vq;
1060 #ifdef CONFIG_USER_ONLY
1061 /* Used to set the default vector length at process start. */
1062 uint32_t sve_default_vq;
1063 #endif
1065 ARMVQMap sve_vq;
1067 /* Generic timer counter frequency, in Hz */
1068 uint64_t gt_cntfrq_hz;
1071 unsigned int gt_cntfrq_period_ns(ARMCPU *cpu);
1073 void arm_cpu_post_init(Object *obj);
1075 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz);
1077 #ifndef CONFIG_USER_ONLY
1078 extern const VMStateDescription vmstate_arm_cpu;
1080 void arm_cpu_do_interrupt(CPUState *cpu);
1081 void arm_v7m_cpu_do_interrupt(CPUState *cpu);
1082 #endif /* !CONFIG_USER_ONLY */
1084 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
1085 MemTxAttrs *attrs);
1087 int arm_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
1088 int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
1091 * Helpers to dynamically generates XML descriptions of the sysregs
1092 * and SVE registers. Returns the number of registers in each set.
1094 int arm_gen_dynamic_sysreg_xml(CPUState *cpu, int base_reg);
1095 int arm_gen_dynamic_svereg_xml(CPUState *cpu, int base_reg);
1097 /* Returns the dynamically generated XML for the gdb stub.
1098 * Returns a pointer to the XML contents for the specified XML file or NULL
1099 * if the XML name doesn't match the predefined one.
1101 const char *arm_gdb_get_dynamic_xml(CPUState *cpu, const char *xmlname);
1103 int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
1104 int cpuid, void *opaque);
1105 int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
1106 int cpuid, void *opaque);
1108 #ifdef TARGET_AARCH64
1109 int aarch64_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
1110 int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
1111 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq);
1112 void aarch64_sve_change_el(CPUARMState *env, int old_el,
1113 int new_el, bool el0_a64);
1114 void arm_reset_sve_state(CPUARMState *env);
1117 * SVE registers are encoded in KVM's memory in an endianness-invariant format.
1118 * The byte at offset i from the start of the in-memory representation contains
1119 * the bits [(7 + 8 * i) : (8 * i)] of the register value. As this means the
1120 * lowest offsets are stored in the lowest memory addresses, then that nearly
1121 * matches QEMU's representation, which is to use an array of host-endian
1122 * uint64_t's, where the lower offsets are at the lower indices. To complete
1123 * the translation we just need to byte swap the uint64_t's on big-endian hosts.
1125 static inline uint64_t *sve_bswap64(uint64_t *dst, uint64_t *src, int nr)
1127 #if HOST_BIG_ENDIAN
1128 int i;
1130 for (i = 0; i < nr; ++i) {
1131 dst[i] = bswap64(src[i]);
1134 return dst;
1135 #else
1136 return src;
1137 #endif
1140 #else
1141 static inline void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) { }
1142 static inline void aarch64_sve_change_el(CPUARMState *env, int o,
1143 int n, bool a)
1145 #endif
1147 void aarch64_sync_32_to_64(CPUARMState *env);
1148 void aarch64_sync_64_to_32(CPUARMState *env);
1150 int fp_exception_el(CPUARMState *env, int cur_el);
1151 int sve_exception_el(CPUARMState *env, int cur_el);
1152 int sme_exception_el(CPUARMState *env, int cur_el);
1155 * sve_vqm1_for_el:
1156 * @env: CPUARMState
1157 * @el: exception level
1159 * Compute the current SVE vector length for @el, in units of
1160 * Quadwords Minus 1 -- the same scale used for ZCR_ELx.LEN.
1162 uint32_t sve_vqm1_for_el(CPUARMState *env, int el);
1164 static inline bool is_a64(CPUARMState *env)
1166 return env->aarch64;
1170 * pmu_op_start/finish
1171 * @env: CPUARMState
1173 * Convert all PMU counters between their delta form (the typical mode when
1174 * they are enabled) and the guest-visible values. These two calls must
1175 * surround any action which might affect the counters.
1177 void pmu_op_start(CPUARMState *env);
1178 void pmu_op_finish(CPUARMState *env);
1181 * Called when a PMU counter is due to overflow
1183 void arm_pmu_timer_cb(void *opaque);
1186 * Functions to register as EL change hooks for PMU mode filtering
1188 void pmu_pre_el_change(ARMCPU *cpu, void *ignored);
1189 void pmu_post_el_change(ARMCPU *cpu, void *ignored);
1192 * pmu_init
1193 * @cpu: ARMCPU
1195 * Initialize the CPU's PMCEID[01]_EL0 registers and associated internal state
1196 * for the current configuration
1198 void pmu_init(ARMCPU *cpu);
1200 /* SCTLR bit meanings. Several bits have been reused in newer
1201 * versions of the architecture; in that case we define constants
1202 * for both old and new bit meanings. Code which tests against those
1203 * bits should probably check or otherwise arrange that the CPU
1204 * is the architectural version it expects.
1206 #define SCTLR_M (1U << 0)
1207 #define SCTLR_A (1U << 1)
1208 #define SCTLR_C (1U << 2)
1209 #define SCTLR_W (1U << 3) /* up to v6; RAO in v7 */
1210 #define SCTLR_nTLSMD_32 (1U << 3) /* v8.2-LSMAOC, AArch32 only */
1211 #define SCTLR_SA (1U << 3) /* AArch64 only */
1212 #define SCTLR_P (1U << 4) /* up to v5; RAO in v6 and v7 */
1213 #define SCTLR_LSMAOE_32 (1U << 4) /* v8.2-LSMAOC, AArch32 only */
1214 #define SCTLR_SA0 (1U << 4) /* v8 onward, AArch64 only */
1215 #define SCTLR_D (1U << 5) /* up to v5; RAO in v6 */
1216 #define SCTLR_CP15BEN (1U << 5) /* v7 onward */
1217 #define SCTLR_L (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
1218 #define SCTLR_nAA (1U << 6) /* when v8.4-LSE is implemented */
1219 #define SCTLR_B (1U << 7) /* up to v6; RAZ in v7 */
1220 #define SCTLR_ITD (1U << 7) /* v8 onward */
1221 #define SCTLR_S (1U << 8) /* up to v6; RAZ in v7 */
1222 #define SCTLR_SED (1U << 8) /* v8 onward */
1223 #define SCTLR_R (1U << 9) /* up to v6; RAZ in v7 */
1224 #define SCTLR_UMA (1U << 9) /* v8 onward, AArch64 only */
1225 #define SCTLR_F (1U << 10) /* up to v6 */
1226 #define SCTLR_SW (1U << 10) /* v7 */
1227 #define SCTLR_EnRCTX (1U << 10) /* in v8.0-PredInv */
1228 #define SCTLR_Z (1U << 11) /* in v7, RES1 in v8 */
1229 #define SCTLR_EOS (1U << 11) /* v8.5-ExS */
1230 #define SCTLR_I (1U << 12)
1231 #define SCTLR_V (1U << 13) /* AArch32 only */
1232 #define SCTLR_EnDB (1U << 13) /* v8.3, AArch64 only */
1233 #define SCTLR_RR (1U << 14) /* up to v7 */
1234 #define SCTLR_DZE (1U << 14) /* v8 onward, AArch64 only */
1235 #define SCTLR_L4 (1U << 15) /* up to v6; RAZ in v7 */
1236 #define SCTLR_UCT (1U << 15) /* v8 onward, AArch64 only */
1237 #define SCTLR_DT (1U << 16) /* up to ??, RAO in v6 and v7 */
1238 #define SCTLR_nTWI (1U << 16) /* v8 onward */
1239 #define SCTLR_HA (1U << 17) /* up to v7, RES0 in v8 */
1240 #define SCTLR_BR (1U << 17) /* PMSA only */
1241 #define SCTLR_IT (1U << 18) /* up to ??, RAO in v6 and v7 */
1242 #define SCTLR_nTWE (1U << 18) /* v8 onward */
1243 #define SCTLR_WXN (1U << 19)
1244 #define SCTLR_ST (1U << 20) /* up to ??, RAZ in v6 */
1245 #define SCTLR_UWXN (1U << 20) /* v7 onward, AArch32 only */
1246 #define SCTLR_TSCXT (1U << 20) /* FEAT_CSV2_1p2, AArch64 only */
1247 #define SCTLR_FI (1U << 21) /* up to v7, v8 RES0 */
1248 #define SCTLR_IESB (1U << 21) /* v8.2-IESB, AArch64 only */
1249 #define SCTLR_U (1U << 22) /* up to v6, RAO in v7 */
1250 #define SCTLR_EIS (1U << 22) /* v8.5-ExS */
1251 #define SCTLR_XP (1U << 23) /* up to v6; v7 onward RAO */
1252 #define SCTLR_SPAN (1U << 23) /* v8.1-PAN */
1253 #define SCTLR_VE (1U << 24) /* up to v7 */
1254 #define SCTLR_E0E (1U << 24) /* v8 onward, AArch64 only */
1255 #define SCTLR_EE (1U << 25)
1256 #define SCTLR_L2 (1U << 26) /* up to v6, RAZ in v7 */
1257 #define SCTLR_UCI (1U << 26) /* v8 onward, AArch64 only */
1258 #define SCTLR_NMFI (1U << 27) /* up to v7, RAZ in v7VE and v8 */
1259 #define SCTLR_EnDA (1U << 27) /* v8.3, AArch64 only */
1260 #define SCTLR_TRE (1U << 28) /* AArch32 only */
1261 #define SCTLR_nTLSMD_64 (1U << 28) /* v8.2-LSMAOC, AArch64 only */
1262 #define SCTLR_AFE (1U << 29) /* AArch32 only */
1263 #define SCTLR_LSMAOE_64 (1U << 29) /* v8.2-LSMAOC, AArch64 only */
1264 #define SCTLR_TE (1U << 30) /* AArch32 only */
1265 #define SCTLR_EnIB (1U << 30) /* v8.3, AArch64 only */
1266 #define SCTLR_EnIA (1U << 31) /* v8.3, AArch64 only */
1267 #define SCTLR_DSSBS_32 (1U << 31) /* v8.5, AArch32 only */
1268 #define SCTLR_BT0 (1ULL << 35) /* v8.5-BTI */
1269 #define SCTLR_BT1 (1ULL << 36) /* v8.5-BTI */
1270 #define SCTLR_ITFSB (1ULL << 37) /* v8.5-MemTag */
1271 #define SCTLR_TCF0 (3ULL << 38) /* v8.5-MemTag */
1272 #define SCTLR_TCF (3ULL << 40) /* v8.5-MemTag */
1273 #define SCTLR_ATA0 (1ULL << 42) /* v8.5-MemTag */
1274 #define SCTLR_ATA (1ULL << 43) /* v8.5-MemTag */
1275 #define SCTLR_DSSBS_64 (1ULL << 44) /* v8.5, AArch64 only */
1276 #define SCTLR_TWEDEn (1ULL << 45) /* FEAT_TWED */
1277 #define SCTLR_TWEDEL MAKE_64_MASK(46, 4) /* FEAT_TWED */
1278 #define SCTLR_TMT0 (1ULL << 50) /* FEAT_TME */
1279 #define SCTLR_TMT (1ULL << 51) /* FEAT_TME */
1280 #define SCTLR_TME0 (1ULL << 52) /* FEAT_TME */
1281 #define SCTLR_TME (1ULL << 53) /* FEAT_TME */
1282 #define SCTLR_EnASR (1ULL << 54) /* FEAT_LS64_V */
1283 #define SCTLR_EnAS0 (1ULL << 55) /* FEAT_LS64_ACCDATA */
1284 #define SCTLR_EnALS (1ULL << 56) /* FEAT_LS64 */
1285 #define SCTLR_EPAN (1ULL << 57) /* FEAT_PAN3 */
1286 #define SCTLR_EnTP2 (1ULL << 60) /* FEAT_SME */
1287 #define SCTLR_NMI (1ULL << 61) /* FEAT_NMI */
1288 #define SCTLR_SPINTMASK (1ULL << 62) /* FEAT_NMI */
1289 #define SCTLR_TIDCP (1ULL << 63) /* FEAT_TIDCP1 */
1291 /* Bit definitions for CPACR (AArch32 only) */
1292 FIELD(CPACR, CP10, 20, 2)
1293 FIELD(CPACR, CP11, 22, 2)
1294 FIELD(CPACR, TRCDIS, 28, 1) /* matches CPACR_EL1.TTA */
1295 FIELD(CPACR, D32DIS, 30, 1) /* up to v7; RAZ in v8 */
1296 FIELD(CPACR, ASEDIS, 31, 1)
1298 /* Bit definitions for CPACR_EL1 (AArch64 only) */
1299 FIELD(CPACR_EL1, ZEN, 16, 2)
1300 FIELD(CPACR_EL1, FPEN, 20, 2)
1301 FIELD(CPACR_EL1, SMEN, 24, 2)
1302 FIELD(CPACR_EL1, TTA, 28, 1) /* matches CPACR.TRCDIS */
1304 /* Bit definitions for HCPTR (AArch32 only) */
1305 FIELD(HCPTR, TCP10, 10, 1)
1306 FIELD(HCPTR, TCP11, 11, 1)
1307 FIELD(HCPTR, TASE, 15, 1)
1308 FIELD(HCPTR, TTA, 20, 1)
1309 FIELD(HCPTR, TAM, 30, 1) /* matches CPTR_EL2.TAM */
1310 FIELD(HCPTR, TCPAC, 31, 1) /* matches CPTR_EL2.TCPAC */
1312 /* Bit definitions for CPTR_EL2 (AArch64 only) */
1313 FIELD(CPTR_EL2, TZ, 8, 1) /* !E2H */
1314 FIELD(CPTR_EL2, TFP, 10, 1) /* !E2H, matches HCPTR.TCP10 */
1315 FIELD(CPTR_EL2, TSM, 12, 1) /* !E2H */
1316 FIELD(CPTR_EL2, ZEN, 16, 2) /* E2H */
1317 FIELD(CPTR_EL2, FPEN, 20, 2) /* E2H */
1318 FIELD(CPTR_EL2, SMEN, 24, 2) /* E2H */
1319 FIELD(CPTR_EL2, TTA, 28, 1)
1320 FIELD(CPTR_EL2, TAM, 30, 1) /* matches HCPTR.TAM */
1321 FIELD(CPTR_EL2, TCPAC, 31, 1) /* matches HCPTR.TCPAC */
1323 /* Bit definitions for CPTR_EL3 (AArch64 only) */
1324 FIELD(CPTR_EL3, EZ, 8, 1)
1325 FIELD(CPTR_EL3, TFP, 10, 1)
1326 FIELD(CPTR_EL3, ESM, 12, 1)
1327 FIELD(CPTR_EL3, TTA, 20, 1)
1328 FIELD(CPTR_EL3, TAM, 30, 1)
1329 FIELD(CPTR_EL3, TCPAC, 31, 1)
1331 #define MDCR_EPMAD (1U << 21)
1332 #define MDCR_EDAD (1U << 20)
1333 #define MDCR_SPME (1U << 17) /* MDCR_EL3 */
1334 #define MDCR_HPMD (1U << 17) /* MDCR_EL2 */
1335 #define MDCR_SDD (1U << 16)
1336 #define MDCR_SPD (3U << 14)
1337 #define MDCR_TDRA (1U << 11)
1338 #define MDCR_TDOSA (1U << 10)
1339 #define MDCR_TDA (1U << 9)
1340 #define MDCR_TDE (1U << 8)
1341 #define MDCR_HPME (1U << 7)
1342 #define MDCR_TPM (1U << 6)
1343 #define MDCR_TPMCR (1U << 5)
1344 #define MDCR_HPMN (0x1fU)
1346 /* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
1347 #define SDCR_VALID_MASK (MDCR_EPMAD | MDCR_EDAD | MDCR_SPME | MDCR_SPD)
1349 #define CPSR_M (0x1fU)
1350 #define CPSR_T (1U << 5)
1351 #define CPSR_F (1U << 6)
1352 #define CPSR_I (1U << 7)
1353 #define CPSR_A (1U << 8)
1354 #define CPSR_E (1U << 9)
1355 #define CPSR_IT_2_7 (0xfc00U)
1356 #define CPSR_GE (0xfU << 16)
1357 #define CPSR_IL (1U << 20)
1358 #define CPSR_DIT (1U << 21)
1359 #define CPSR_PAN (1U << 22)
1360 #define CPSR_SSBS (1U << 23)
1361 #define CPSR_J (1U << 24)
1362 #define CPSR_IT_0_1 (3U << 25)
1363 #define CPSR_Q (1U << 27)
1364 #define CPSR_V (1U << 28)
1365 #define CPSR_C (1U << 29)
1366 #define CPSR_Z (1U << 30)
1367 #define CPSR_N (1U << 31)
1368 #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
1369 #define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
1371 #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
1372 #define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
1373 | CPSR_NZCV)
1374 /* Bits writable in user mode. */
1375 #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE | CPSR_E)
1376 /* Execution state bits. MRS read as zero, MSR writes ignored. */
1377 #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
1379 /* Bit definitions for M profile XPSR. Most are the same as CPSR. */
1380 #define XPSR_EXCP 0x1ffU
1381 #define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */
1382 #define XPSR_IT_2_7 CPSR_IT_2_7
1383 #define XPSR_GE CPSR_GE
1384 #define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */
1385 #define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */
1386 #define XPSR_IT_0_1 CPSR_IT_0_1
1387 #define XPSR_Q CPSR_Q
1388 #define XPSR_V CPSR_V
1389 #define XPSR_C CPSR_C
1390 #define XPSR_Z CPSR_Z
1391 #define XPSR_N CPSR_N
1392 #define XPSR_NZCV CPSR_NZCV
1393 #define XPSR_IT CPSR_IT
1395 #define TTBCR_N (7U << 0) /* TTBCR.EAE==0 */
1396 #define TTBCR_T0SZ (7U << 0) /* TTBCR.EAE==1 */
1397 #define TTBCR_PD0 (1U << 4)
1398 #define TTBCR_PD1 (1U << 5)
1399 #define TTBCR_EPD0 (1U << 7)
1400 #define TTBCR_IRGN0 (3U << 8)
1401 #define TTBCR_ORGN0 (3U << 10)
1402 #define TTBCR_SH0 (3U << 12)
1403 #define TTBCR_T1SZ (3U << 16)
1404 #define TTBCR_A1 (1U << 22)
1405 #define TTBCR_EPD1 (1U << 23)
1406 #define TTBCR_IRGN1 (3U << 24)
1407 #define TTBCR_ORGN1 (3U << 26)
1408 #define TTBCR_SH1 (1U << 28)
1409 #define TTBCR_EAE (1U << 31)
1411 /* Bit definitions for ARMv8 SPSR (PSTATE) format.
1412 * Only these are valid when in AArch64 mode; in
1413 * AArch32 mode SPSRs are basically CPSR-format.
1415 #define PSTATE_SP (1U)
1416 #define PSTATE_M (0xFU)
1417 #define PSTATE_nRW (1U << 4)
1418 #define PSTATE_F (1U << 6)
1419 #define PSTATE_I (1U << 7)
1420 #define PSTATE_A (1U << 8)
1421 #define PSTATE_D (1U << 9)
1422 #define PSTATE_BTYPE (3U << 10)
1423 #define PSTATE_SSBS (1U << 12)
1424 #define PSTATE_IL (1U << 20)
1425 #define PSTATE_SS (1U << 21)
1426 #define PSTATE_PAN (1U << 22)
1427 #define PSTATE_UAO (1U << 23)
1428 #define PSTATE_DIT (1U << 24)
1429 #define PSTATE_TCO (1U << 25)
1430 #define PSTATE_V (1U << 28)
1431 #define PSTATE_C (1U << 29)
1432 #define PSTATE_Z (1U << 30)
1433 #define PSTATE_N (1U << 31)
1434 #define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
1435 #define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
1436 #define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF | PSTATE_BTYPE)
1437 /* Mode values for AArch64 */
1438 #define PSTATE_MODE_EL3h 13
1439 #define PSTATE_MODE_EL3t 12
1440 #define PSTATE_MODE_EL2h 9
1441 #define PSTATE_MODE_EL2t 8
1442 #define PSTATE_MODE_EL1h 5
1443 #define PSTATE_MODE_EL1t 4
1444 #define PSTATE_MODE_EL0t 0
1446 /* PSTATE bits that are accessed via SVCR and not stored in SPSR_ELx. */
1447 FIELD(SVCR, SM, 0, 1)
1448 FIELD(SVCR, ZA, 1, 1)
1450 /* Fields for SMCR_ELx. */
1451 FIELD(SMCR, LEN, 0, 4)
1452 FIELD(SMCR, FA64, 31, 1)
1454 /* Write a new value to v7m.exception, thus transitioning into or out
1455 * of Handler mode; this may result in a change of active stack pointer.
1457 void write_v7m_exception(CPUARMState *env, uint32_t new_exc);
1459 /* Map EL and handler into a PSTATE_MODE. */
1460 static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
1462 return (el << 2) | handler;
1465 /* Return the current PSTATE value. For the moment we don't support 32<->64 bit
1466 * interprocessing, so we don't attempt to sync with the cpsr state used by
1467 * the 32 bit decoder.
1469 static inline uint32_t pstate_read(CPUARMState *env)
1471 int ZF;
1473 ZF = (env->ZF == 0);
1474 return (env->NF & 0x80000000) | (ZF << 30)
1475 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
1476 | env->pstate | env->daif | (env->btype << 10);
1479 static inline void pstate_write(CPUARMState *env, uint32_t val)
1481 env->ZF = (~val) & PSTATE_Z;
1482 env->NF = val;
1483 env->CF = (val >> 29) & 1;
1484 env->VF = (val << 3) & 0x80000000;
1485 env->daif = val & PSTATE_DAIF;
1486 env->btype = (val >> 10) & 3;
1487 env->pstate = val & ~CACHED_PSTATE_BITS;
1490 /* Return the current CPSR value. */
1491 uint32_t cpsr_read(CPUARMState *env);
1493 typedef enum CPSRWriteType {
1494 CPSRWriteByInstr = 0, /* from guest MSR or CPS */
1495 CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
1496 CPSRWriteRaw = 2,
1497 /* trust values, no reg bank switch, no hflags rebuild */
1498 CPSRWriteByGDBStub = 3, /* from the GDB stub */
1499 } CPSRWriteType;
1502 * Set the CPSR. Note that some bits of mask must be all-set or all-clear.
1503 * This will do an arm_rebuild_hflags() if any of the bits in @mask
1504 * correspond to TB flags bits cached in the hflags, unless @write_type
1505 * is CPSRWriteRaw.
1507 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
1508 CPSRWriteType write_type);
1510 /* Return the current xPSR value. */
1511 static inline uint32_t xpsr_read(CPUARMState *env)
1513 int ZF;
1514 ZF = (env->ZF == 0);
1515 return (env->NF & 0x80000000) | (ZF << 30)
1516 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1517 | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
1518 | ((env->condexec_bits & 0xfc) << 8)
1519 | (env->GE << 16)
1520 | env->v7m.exception;
1523 /* Set the xPSR. Note that some bits of mask must be all-set or all-clear. */
1524 static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1526 if (mask & XPSR_NZCV) {
1527 env->ZF = (~val) & XPSR_Z;
1528 env->NF = val;
1529 env->CF = (val >> 29) & 1;
1530 env->VF = (val << 3) & 0x80000000;
1532 if (mask & XPSR_Q) {
1533 env->QF = ((val & XPSR_Q) != 0);
1535 if (mask & XPSR_GE) {
1536 env->GE = (val & XPSR_GE) >> 16;
1538 #ifndef CONFIG_USER_ONLY
1539 if (mask & XPSR_T) {
1540 env->thumb = ((val & XPSR_T) != 0);
1542 if (mask & XPSR_IT_0_1) {
1543 env->condexec_bits &= ~3;
1544 env->condexec_bits |= (val >> 25) & 3;
1546 if (mask & XPSR_IT_2_7) {
1547 env->condexec_bits &= 3;
1548 env->condexec_bits |= (val >> 8) & 0xfc;
1550 if (mask & XPSR_EXCP) {
1551 /* Note that this only happens on exception exit */
1552 write_v7m_exception(env, val & XPSR_EXCP);
1554 #endif
1557 #define HCR_VM (1ULL << 0)
1558 #define HCR_SWIO (1ULL << 1)
1559 #define HCR_PTW (1ULL << 2)
1560 #define HCR_FMO (1ULL << 3)
1561 #define HCR_IMO (1ULL << 4)
1562 #define HCR_AMO (1ULL << 5)
1563 #define HCR_VF (1ULL << 6)
1564 #define HCR_VI (1ULL << 7)
1565 #define HCR_VSE (1ULL << 8)
1566 #define HCR_FB (1ULL << 9)
1567 #define HCR_BSU_MASK (3ULL << 10)
1568 #define HCR_DC (1ULL << 12)
1569 #define HCR_TWI (1ULL << 13)
1570 #define HCR_TWE (1ULL << 14)
1571 #define HCR_TID0 (1ULL << 15)
1572 #define HCR_TID1 (1ULL << 16)
1573 #define HCR_TID2 (1ULL << 17)
1574 #define HCR_TID3 (1ULL << 18)
1575 #define HCR_TSC (1ULL << 19)
1576 #define HCR_TIDCP (1ULL << 20)
1577 #define HCR_TACR (1ULL << 21)
1578 #define HCR_TSW (1ULL << 22)
1579 #define HCR_TPCP (1ULL << 23)
1580 #define HCR_TPU (1ULL << 24)
1581 #define HCR_TTLB (1ULL << 25)
1582 #define HCR_TVM (1ULL << 26)
1583 #define HCR_TGE (1ULL << 27)
1584 #define HCR_TDZ (1ULL << 28)
1585 #define HCR_HCD (1ULL << 29)
1586 #define HCR_TRVM (1ULL << 30)
1587 #define HCR_RW (1ULL << 31)
1588 #define HCR_CD (1ULL << 32)
1589 #define HCR_ID (1ULL << 33)
1590 #define HCR_E2H (1ULL << 34)
1591 #define HCR_TLOR (1ULL << 35)
1592 #define HCR_TERR (1ULL << 36)
1593 #define HCR_TEA (1ULL << 37)
1594 #define HCR_MIOCNCE (1ULL << 38)
1595 /* RES0 bit 39 */
1596 #define HCR_APK (1ULL << 40)
1597 #define HCR_API (1ULL << 41)
1598 #define HCR_NV (1ULL << 42)
1599 #define HCR_NV1 (1ULL << 43)
1600 #define HCR_AT (1ULL << 44)
1601 #define HCR_NV2 (1ULL << 45)
1602 #define HCR_FWB (1ULL << 46)
1603 #define HCR_FIEN (1ULL << 47)
1604 /* RES0 bit 48 */
1605 #define HCR_TID4 (1ULL << 49)
1606 #define HCR_TICAB (1ULL << 50)
1607 #define HCR_AMVOFFEN (1ULL << 51)
1608 #define HCR_TOCU (1ULL << 52)
1609 #define HCR_ENSCXT (1ULL << 53)
1610 #define HCR_TTLBIS (1ULL << 54)
1611 #define HCR_TTLBOS (1ULL << 55)
1612 #define HCR_ATA (1ULL << 56)
1613 #define HCR_DCT (1ULL << 57)
1614 #define HCR_TID5 (1ULL << 58)
1615 #define HCR_TWEDEN (1ULL << 59)
1616 #define HCR_TWEDEL MAKE_64BIT_MASK(60, 4)
1618 #define HCRX_ENAS0 (1ULL << 0)
1619 #define HCRX_ENALS (1ULL << 1)
1620 #define HCRX_ENASR (1ULL << 2)
1621 #define HCRX_FNXS (1ULL << 3)
1622 #define HCRX_FGTNXS (1ULL << 4)
1623 #define HCRX_SMPME (1ULL << 5)
1624 #define HCRX_TALLINT (1ULL << 6)
1625 #define HCRX_VINMI (1ULL << 7)
1626 #define HCRX_VFNMI (1ULL << 8)
1627 #define HCRX_CMOW (1ULL << 9)
1628 #define HCRX_MCE2 (1ULL << 10)
1629 #define HCRX_MSCEN (1ULL << 11)
1631 #define HPFAR_NS (1ULL << 63)
1633 #define SCR_NS (1U << 0)
1634 #define SCR_IRQ (1U << 1)
1635 #define SCR_FIQ (1U << 2)
1636 #define SCR_EA (1U << 3)
1637 #define SCR_FW (1U << 4)
1638 #define SCR_AW (1U << 5)
1639 #define SCR_NET (1U << 6)
1640 #define SCR_SMD (1U << 7)
1641 #define SCR_HCE (1U << 8)
1642 #define SCR_SIF (1U << 9)
1643 #define SCR_RW (1U << 10)
1644 #define SCR_ST (1U << 11)
1645 #define SCR_TWI (1U << 12)
1646 #define SCR_TWE (1U << 13)
1647 #define SCR_TLOR (1U << 14)
1648 #define SCR_TERR (1U << 15)
1649 #define SCR_APK (1U << 16)
1650 #define SCR_API (1U << 17)
1651 #define SCR_EEL2 (1U << 18)
1652 #define SCR_EASE (1U << 19)
1653 #define SCR_NMEA (1U << 20)
1654 #define SCR_FIEN (1U << 21)
1655 #define SCR_ENSCXT (1U << 25)
1656 #define SCR_ATA (1U << 26)
1657 #define SCR_FGTEN (1U << 27)
1658 #define SCR_ECVEN (1U << 28)
1659 #define SCR_TWEDEN (1U << 29)
1660 #define SCR_TWEDEL MAKE_64BIT_MASK(30, 4)
1661 #define SCR_TME (1ULL << 34)
1662 #define SCR_AMVOFFEN (1ULL << 35)
1663 #define SCR_ENAS0 (1ULL << 36)
1664 #define SCR_ADEN (1ULL << 37)
1665 #define SCR_HXEN (1ULL << 38)
1666 #define SCR_TRNDR (1ULL << 40)
1667 #define SCR_ENTP2 (1ULL << 41)
1668 #define SCR_GPF (1ULL << 48)
1670 #define HSTR_TTEE (1 << 16)
1671 #define HSTR_TJDBX (1 << 17)
1673 /* Return the current FPSCR value. */
1674 uint32_t vfp_get_fpscr(CPUARMState *env);
1675 void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1677 /* FPCR, Floating Point Control Register
1678 * FPSR, Floating Poiht Status Register
1680 * For A64 the FPSCR is split into two logically distinct registers,
1681 * FPCR and FPSR. However since they still use non-overlapping bits
1682 * we store the underlying state in fpscr and just mask on read/write.
1684 #define FPSR_MASK 0xf800009f
1685 #define FPCR_MASK 0x07ff9f00
1687 #define FPCR_IOE (1 << 8) /* Invalid Operation exception trap enable */
1688 #define FPCR_DZE (1 << 9) /* Divide by Zero exception trap enable */
1689 #define FPCR_OFE (1 << 10) /* Overflow exception trap enable */
1690 #define FPCR_UFE (1 << 11) /* Underflow exception trap enable */
1691 #define FPCR_IXE (1 << 12) /* Inexact exception trap enable */
1692 #define FPCR_IDE (1 << 15) /* Input Denormal exception trap enable */
1693 #define FPCR_FZ16 (1 << 19) /* ARMv8.2+, FP16 flush-to-zero */
1694 #define FPCR_RMODE_MASK (3 << 22) /* Rounding mode */
1695 #define FPCR_FZ (1 << 24) /* Flush-to-zero enable bit */
1696 #define FPCR_DN (1 << 25) /* Default NaN enable bit */
1697 #define FPCR_AHP (1 << 26) /* Alternative half-precision */
1698 #define FPCR_QC (1 << 27) /* Cumulative saturation bit */
1699 #define FPCR_V (1 << 28) /* FP overflow flag */
1700 #define FPCR_C (1 << 29) /* FP carry flag */
1701 #define FPCR_Z (1 << 30) /* FP zero flag */
1702 #define FPCR_N (1 << 31) /* FP negative flag */
1704 #define FPCR_LTPSIZE_SHIFT 16 /* LTPSIZE, M-profile only */
1705 #define FPCR_LTPSIZE_MASK (7 << FPCR_LTPSIZE_SHIFT)
1706 #define FPCR_LTPSIZE_LENGTH 3
1708 #define FPCR_NZCV_MASK (FPCR_N | FPCR_Z | FPCR_C | FPCR_V)
1709 #define FPCR_NZCVQC_MASK (FPCR_NZCV_MASK | FPCR_QC)
1711 static inline uint32_t vfp_get_fpsr(CPUARMState *env)
1713 return vfp_get_fpscr(env) & FPSR_MASK;
1716 static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
1718 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
1719 vfp_set_fpscr(env, new_fpscr);
1722 static inline uint32_t vfp_get_fpcr(CPUARMState *env)
1724 return vfp_get_fpscr(env) & FPCR_MASK;
1727 static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
1729 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
1730 vfp_set_fpscr(env, new_fpscr);
1733 enum arm_cpu_mode {
1734 ARM_CPU_MODE_USR = 0x10,
1735 ARM_CPU_MODE_FIQ = 0x11,
1736 ARM_CPU_MODE_IRQ = 0x12,
1737 ARM_CPU_MODE_SVC = 0x13,
1738 ARM_CPU_MODE_MON = 0x16,
1739 ARM_CPU_MODE_ABT = 0x17,
1740 ARM_CPU_MODE_HYP = 0x1a,
1741 ARM_CPU_MODE_UND = 0x1b,
1742 ARM_CPU_MODE_SYS = 0x1f
1745 /* VFP system registers. */
1746 #define ARM_VFP_FPSID 0
1747 #define ARM_VFP_FPSCR 1
1748 #define ARM_VFP_MVFR2 5
1749 #define ARM_VFP_MVFR1 6
1750 #define ARM_VFP_MVFR0 7
1751 #define ARM_VFP_FPEXC 8
1752 #define ARM_VFP_FPINST 9
1753 #define ARM_VFP_FPINST2 10
1754 /* These ones are M-profile only */
1755 #define ARM_VFP_FPSCR_NZCVQC 2
1756 #define ARM_VFP_VPR 12
1757 #define ARM_VFP_P0 13
1758 #define ARM_VFP_FPCXT_NS 14
1759 #define ARM_VFP_FPCXT_S 15
1761 /* QEMU-internal value meaning "FPSCR, but we care only about NZCV" */
1762 #define QEMU_VFP_FPSCR_NZCV 0xffff
1764 /* iwMMXt coprocessor control registers. */
1765 #define ARM_IWMMXT_wCID 0
1766 #define ARM_IWMMXT_wCon 1
1767 #define ARM_IWMMXT_wCSSF 2
1768 #define ARM_IWMMXT_wCASF 3
1769 #define ARM_IWMMXT_wCGR0 8
1770 #define ARM_IWMMXT_wCGR1 9
1771 #define ARM_IWMMXT_wCGR2 10
1772 #define ARM_IWMMXT_wCGR3 11
1774 /* V7M CCR bits */
1775 FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1776 FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1777 FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1778 FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1779 FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1780 FIELD(V7M_CCR, STKALIGN, 9, 1)
1781 FIELD(V7M_CCR, STKOFHFNMIGN, 10, 1)
1782 FIELD(V7M_CCR, DC, 16, 1)
1783 FIELD(V7M_CCR, IC, 17, 1)
1784 FIELD(V7M_CCR, BP, 18, 1)
1785 FIELD(V7M_CCR, LOB, 19, 1)
1786 FIELD(V7M_CCR, TRD, 20, 1)
1788 /* V7M SCR bits */
1789 FIELD(V7M_SCR, SLEEPONEXIT, 1, 1)
1790 FIELD(V7M_SCR, SLEEPDEEP, 2, 1)
1791 FIELD(V7M_SCR, SLEEPDEEPS, 3, 1)
1792 FIELD(V7M_SCR, SEVONPEND, 4, 1)
1794 /* V7M AIRCR bits */
1795 FIELD(V7M_AIRCR, VECTRESET, 0, 1)
1796 FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1)
1797 FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1)
1798 FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1)
1799 FIELD(V7M_AIRCR, PRIGROUP, 8, 3)
1800 FIELD(V7M_AIRCR, BFHFNMINS, 13, 1)
1801 FIELD(V7M_AIRCR, PRIS, 14, 1)
1802 FIELD(V7M_AIRCR, ENDIANNESS, 15, 1)
1803 FIELD(V7M_AIRCR, VECTKEY, 16, 16)
1805 /* V7M CFSR bits for MMFSR */
1806 FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1807 FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1808 FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1809 FIELD(V7M_CFSR, MSTKERR, 4, 1)
1810 FIELD(V7M_CFSR, MLSPERR, 5, 1)
1811 FIELD(V7M_CFSR, MMARVALID, 7, 1)
1813 /* V7M CFSR bits for BFSR */
1814 FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1815 FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1816 FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1817 FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1818 FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1819 FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1820 FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1822 /* V7M CFSR bits for UFSR */
1823 FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1824 FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1825 FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1826 FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
1827 FIELD(V7M_CFSR, STKOF, 16 + 4, 1)
1828 FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1829 FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1831 /* V7M CFSR bit masks covering all of the subregister bits */
1832 FIELD(V7M_CFSR, MMFSR, 0, 8)
1833 FIELD(V7M_CFSR, BFSR, 8, 8)
1834 FIELD(V7M_CFSR, UFSR, 16, 16)
1836 /* V7M HFSR bits */
1837 FIELD(V7M_HFSR, VECTTBL, 1, 1)
1838 FIELD(V7M_HFSR, FORCED, 30, 1)
1839 FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1841 /* V7M DFSR bits */
1842 FIELD(V7M_DFSR, HALTED, 0, 1)
1843 FIELD(V7M_DFSR, BKPT, 1, 1)
1844 FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1845 FIELD(V7M_DFSR, VCATCH, 3, 1)
1846 FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1848 /* V7M SFSR bits */
1849 FIELD(V7M_SFSR, INVEP, 0, 1)
1850 FIELD(V7M_SFSR, INVIS, 1, 1)
1851 FIELD(V7M_SFSR, INVER, 2, 1)
1852 FIELD(V7M_SFSR, AUVIOL, 3, 1)
1853 FIELD(V7M_SFSR, INVTRAN, 4, 1)
1854 FIELD(V7M_SFSR, LSPERR, 5, 1)
1855 FIELD(V7M_SFSR, SFARVALID, 6, 1)
1856 FIELD(V7M_SFSR, LSERR, 7, 1)
1858 /* v7M MPU_CTRL bits */
1859 FIELD(V7M_MPU_CTRL, ENABLE, 0, 1)
1860 FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1)
1861 FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1)
1863 /* v7M CLIDR bits */
1864 FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21)
1865 FIELD(V7M_CLIDR, LOUIS, 21, 3)
1866 FIELD(V7M_CLIDR, LOC, 24, 3)
1867 FIELD(V7M_CLIDR, LOUU, 27, 3)
1868 FIELD(V7M_CLIDR, ICB, 30, 2)
1870 FIELD(V7M_CSSELR, IND, 0, 1)
1871 FIELD(V7M_CSSELR, LEVEL, 1, 3)
1872 /* We use the combination of InD and Level to index into cpu->ccsidr[];
1873 * define a mask for this and check that it doesn't permit running off
1874 * the end of the array.
1876 FIELD(V7M_CSSELR, INDEX, 0, 4)
1878 /* v7M FPCCR bits */
1879 FIELD(V7M_FPCCR, LSPACT, 0, 1)
1880 FIELD(V7M_FPCCR, USER, 1, 1)
1881 FIELD(V7M_FPCCR, S, 2, 1)
1882 FIELD(V7M_FPCCR, THREAD, 3, 1)
1883 FIELD(V7M_FPCCR, HFRDY, 4, 1)
1884 FIELD(V7M_FPCCR, MMRDY, 5, 1)
1885 FIELD(V7M_FPCCR, BFRDY, 6, 1)
1886 FIELD(V7M_FPCCR, SFRDY, 7, 1)
1887 FIELD(V7M_FPCCR, MONRDY, 8, 1)
1888 FIELD(V7M_FPCCR, SPLIMVIOL, 9, 1)
1889 FIELD(V7M_FPCCR, UFRDY, 10, 1)
1890 FIELD(V7M_FPCCR, RES0, 11, 15)
1891 FIELD(V7M_FPCCR, TS, 26, 1)
1892 FIELD(V7M_FPCCR, CLRONRETS, 27, 1)
1893 FIELD(V7M_FPCCR, CLRONRET, 28, 1)
1894 FIELD(V7M_FPCCR, LSPENS, 29, 1)
1895 FIELD(V7M_FPCCR, LSPEN, 30, 1)
1896 FIELD(V7M_FPCCR, ASPEN, 31, 1)
1897 /* These bits are banked. Others are non-banked and live in the M_REG_S bank */
1898 #define R_V7M_FPCCR_BANKED_MASK \
1899 (R_V7M_FPCCR_LSPACT_MASK | \
1900 R_V7M_FPCCR_USER_MASK | \
1901 R_V7M_FPCCR_THREAD_MASK | \
1902 R_V7M_FPCCR_MMRDY_MASK | \
1903 R_V7M_FPCCR_SPLIMVIOL_MASK | \
1904 R_V7M_FPCCR_UFRDY_MASK | \
1905 R_V7M_FPCCR_ASPEN_MASK)
1907 /* v7M VPR bits */
1908 FIELD(V7M_VPR, P0, 0, 16)
1909 FIELD(V7M_VPR, MASK01, 16, 4)
1910 FIELD(V7M_VPR, MASK23, 20, 4)
1913 * System register ID fields.
1915 FIELD(CLIDR_EL1, CTYPE1, 0, 3)
1916 FIELD(CLIDR_EL1, CTYPE2, 3, 3)
1917 FIELD(CLIDR_EL1, CTYPE3, 6, 3)
1918 FIELD(CLIDR_EL1, CTYPE4, 9, 3)
1919 FIELD(CLIDR_EL1, CTYPE5, 12, 3)
1920 FIELD(CLIDR_EL1, CTYPE6, 15, 3)
1921 FIELD(CLIDR_EL1, CTYPE7, 18, 3)
1922 FIELD(CLIDR_EL1, LOUIS, 21, 3)
1923 FIELD(CLIDR_EL1, LOC, 24, 3)
1924 FIELD(CLIDR_EL1, LOUU, 27, 3)
1925 FIELD(CLIDR_EL1, ICB, 30, 3)
1927 /* When FEAT_CCIDX is implemented */
1928 FIELD(CCSIDR_EL1, CCIDX_LINESIZE, 0, 3)
1929 FIELD(CCSIDR_EL1, CCIDX_ASSOCIATIVITY, 3, 21)
1930 FIELD(CCSIDR_EL1, CCIDX_NUMSETS, 32, 24)
1932 /* When FEAT_CCIDX is not implemented */
1933 FIELD(CCSIDR_EL1, LINESIZE, 0, 3)
1934 FIELD(CCSIDR_EL1, ASSOCIATIVITY, 3, 10)
1935 FIELD(CCSIDR_EL1, NUMSETS, 13, 15)
1937 FIELD(CTR_EL0, IMINLINE, 0, 4)
1938 FIELD(CTR_EL0, L1IP, 14, 2)
1939 FIELD(CTR_EL0, DMINLINE, 16, 4)
1940 FIELD(CTR_EL0, ERG, 20, 4)
1941 FIELD(CTR_EL0, CWG, 24, 4)
1942 FIELD(CTR_EL0, IDC, 28, 1)
1943 FIELD(CTR_EL0, DIC, 29, 1)
1944 FIELD(CTR_EL0, TMINLINE, 32, 6)
1946 FIELD(MIDR_EL1, REVISION, 0, 4)
1947 FIELD(MIDR_EL1, PARTNUM, 4, 12)
1948 FIELD(MIDR_EL1, ARCHITECTURE, 16, 4)
1949 FIELD(MIDR_EL1, VARIANT, 20, 4)
1950 FIELD(MIDR_EL1, IMPLEMENTER, 24, 8)
1952 FIELD(ID_ISAR0, SWAP, 0, 4)
1953 FIELD(ID_ISAR0, BITCOUNT, 4, 4)
1954 FIELD(ID_ISAR0, BITFIELD, 8, 4)
1955 FIELD(ID_ISAR0, CMPBRANCH, 12, 4)
1956 FIELD(ID_ISAR0, COPROC, 16, 4)
1957 FIELD(ID_ISAR0, DEBUG, 20, 4)
1958 FIELD(ID_ISAR0, DIVIDE, 24, 4)
1960 FIELD(ID_ISAR1, ENDIAN, 0, 4)
1961 FIELD(ID_ISAR1, EXCEPT, 4, 4)
1962 FIELD(ID_ISAR1, EXCEPT_AR, 8, 4)
1963 FIELD(ID_ISAR1, EXTEND, 12, 4)
1964 FIELD(ID_ISAR1, IFTHEN, 16, 4)
1965 FIELD(ID_ISAR1, IMMEDIATE, 20, 4)
1966 FIELD(ID_ISAR1, INTERWORK, 24, 4)
1967 FIELD(ID_ISAR1, JAZELLE, 28, 4)
1969 FIELD(ID_ISAR2, LOADSTORE, 0, 4)
1970 FIELD(ID_ISAR2, MEMHINT, 4, 4)
1971 FIELD(ID_ISAR2, MULTIACCESSINT, 8, 4)
1972 FIELD(ID_ISAR2, MULT, 12, 4)
1973 FIELD(ID_ISAR2, MULTS, 16, 4)
1974 FIELD(ID_ISAR2, MULTU, 20, 4)
1975 FIELD(ID_ISAR2, PSR_AR, 24, 4)
1976 FIELD(ID_ISAR2, REVERSAL, 28, 4)
1978 FIELD(ID_ISAR3, SATURATE, 0, 4)
1979 FIELD(ID_ISAR3, SIMD, 4, 4)
1980 FIELD(ID_ISAR3, SVC, 8, 4)
1981 FIELD(ID_ISAR3, SYNCHPRIM, 12, 4)
1982 FIELD(ID_ISAR3, TABBRANCH, 16, 4)
1983 FIELD(ID_ISAR3, T32COPY, 20, 4)
1984 FIELD(ID_ISAR3, TRUENOP, 24, 4)
1985 FIELD(ID_ISAR3, T32EE, 28, 4)
1987 FIELD(ID_ISAR4, UNPRIV, 0, 4)
1988 FIELD(ID_ISAR4, WITHSHIFTS, 4, 4)
1989 FIELD(ID_ISAR4, WRITEBACK, 8, 4)
1990 FIELD(ID_ISAR4, SMC, 12, 4)
1991 FIELD(ID_ISAR4, BARRIER, 16, 4)
1992 FIELD(ID_ISAR4, SYNCHPRIM_FRAC, 20, 4)
1993 FIELD(ID_ISAR4, PSR_M, 24, 4)
1994 FIELD(ID_ISAR4, SWP_FRAC, 28, 4)
1996 FIELD(ID_ISAR5, SEVL, 0, 4)
1997 FIELD(ID_ISAR5, AES, 4, 4)
1998 FIELD(ID_ISAR5, SHA1, 8, 4)
1999 FIELD(ID_ISAR5, SHA2, 12, 4)
2000 FIELD(ID_ISAR5, CRC32, 16, 4)
2001 FIELD(ID_ISAR5, RDM, 24, 4)
2002 FIELD(ID_ISAR5, VCMA, 28, 4)
2004 FIELD(ID_ISAR6, JSCVT, 0, 4)
2005 FIELD(ID_ISAR6, DP, 4, 4)
2006 FIELD(ID_ISAR6, FHM, 8, 4)
2007 FIELD(ID_ISAR6, SB, 12, 4)
2008 FIELD(ID_ISAR6, SPECRES, 16, 4)
2009 FIELD(ID_ISAR6, BF16, 20, 4)
2010 FIELD(ID_ISAR6, I8MM, 24, 4)
2012 FIELD(ID_MMFR0, VMSA, 0, 4)
2013 FIELD(ID_MMFR0, PMSA, 4, 4)
2014 FIELD(ID_MMFR0, OUTERSHR, 8, 4)
2015 FIELD(ID_MMFR0, SHARELVL, 12, 4)
2016 FIELD(ID_MMFR0, TCM, 16, 4)
2017 FIELD(ID_MMFR0, AUXREG, 20, 4)
2018 FIELD(ID_MMFR0, FCSE, 24, 4)
2019 FIELD(ID_MMFR0, INNERSHR, 28, 4)
2021 FIELD(ID_MMFR1, L1HVDVA, 0, 4)
2022 FIELD(ID_MMFR1, L1UNIVA, 4, 4)
2023 FIELD(ID_MMFR1, L1HVDSW, 8, 4)
2024 FIELD(ID_MMFR1, L1UNISW, 12, 4)
2025 FIELD(ID_MMFR1, L1HVD, 16, 4)
2026 FIELD(ID_MMFR1, L1UNI, 20, 4)
2027 FIELD(ID_MMFR1, L1TSTCLN, 24, 4)
2028 FIELD(ID_MMFR1, BPRED, 28, 4)
2030 FIELD(ID_MMFR2, L1HVDFG, 0, 4)
2031 FIELD(ID_MMFR2, L1HVDBG, 4, 4)
2032 FIELD(ID_MMFR2, L1HVDRNG, 8, 4)
2033 FIELD(ID_MMFR2, HVDTLB, 12, 4)
2034 FIELD(ID_MMFR2, UNITLB, 16, 4)
2035 FIELD(ID_MMFR2, MEMBARR, 20, 4)
2036 FIELD(ID_MMFR2, WFISTALL, 24, 4)
2037 FIELD(ID_MMFR2, HWACCFLG, 28, 4)
2039 FIELD(ID_MMFR3, CMAINTVA, 0, 4)
2040 FIELD(ID_MMFR3, CMAINTSW, 4, 4)
2041 FIELD(ID_MMFR3, BPMAINT, 8, 4)
2042 FIELD(ID_MMFR3, MAINTBCST, 12, 4)
2043 FIELD(ID_MMFR3, PAN, 16, 4)
2044 FIELD(ID_MMFR3, COHWALK, 20, 4)
2045 FIELD(ID_MMFR3, CMEMSZ, 24, 4)
2046 FIELD(ID_MMFR3, SUPERSEC, 28, 4)
2048 FIELD(ID_MMFR4, SPECSEI, 0, 4)
2049 FIELD(ID_MMFR4, AC2, 4, 4)
2050 FIELD(ID_MMFR4, XNX, 8, 4)
2051 FIELD(ID_MMFR4, CNP, 12, 4)
2052 FIELD(ID_MMFR4, HPDS, 16, 4)
2053 FIELD(ID_MMFR4, LSM, 20, 4)
2054 FIELD(ID_MMFR4, CCIDX, 24, 4)
2055 FIELD(ID_MMFR4, EVT, 28, 4)
2057 FIELD(ID_MMFR5, ETS, 0, 4)
2058 FIELD(ID_MMFR5, NTLBPA, 4, 4)
2060 FIELD(ID_PFR0, STATE0, 0, 4)
2061 FIELD(ID_PFR0, STATE1, 4, 4)
2062 FIELD(ID_PFR0, STATE2, 8, 4)
2063 FIELD(ID_PFR0, STATE3, 12, 4)
2064 FIELD(ID_PFR0, CSV2, 16, 4)
2065 FIELD(ID_PFR0, AMU, 20, 4)
2066 FIELD(ID_PFR0, DIT, 24, 4)
2067 FIELD(ID_PFR0, RAS, 28, 4)
2069 FIELD(ID_PFR1, PROGMOD, 0, 4)
2070 FIELD(ID_PFR1, SECURITY, 4, 4)
2071 FIELD(ID_PFR1, MPROGMOD, 8, 4)
2072 FIELD(ID_PFR1, VIRTUALIZATION, 12, 4)
2073 FIELD(ID_PFR1, GENTIMER, 16, 4)
2074 FIELD(ID_PFR1, SEC_FRAC, 20, 4)
2075 FIELD(ID_PFR1, VIRT_FRAC, 24, 4)
2076 FIELD(ID_PFR1, GIC, 28, 4)
2078 FIELD(ID_PFR2, CSV3, 0, 4)
2079 FIELD(ID_PFR2, SSBS, 4, 4)
2080 FIELD(ID_PFR2, RAS_FRAC, 8, 4)
2082 FIELD(ID_AA64ISAR0, AES, 4, 4)
2083 FIELD(ID_AA64ISAR0, SHA1, 8, 4)
2084 FIELD(ID_AA64ISAR0, SHA2, 12, 4)
2085 FIELD(ID_AA64ISAR0, CRC32, 16, 4)
2086 FIELD(ID_AA64ISAR0, ATOMIC, 20, 4)
2087 FIELD(ID_AA64ISAR0, RDM, 28, 4)
2088 FIELD(ID_AA64ISAR0, SHA3, 32, 4)
2089 FIELD(ID_AA64ISAR0, SM3, 36, 4)
2090 FIELD(ID_AA64ISAR0, SM4, 40, 4)
2091 FIELD(ID_AA64ISAR0, DP, 44, 4)
2092 FIELD(ID_AA64ISAR0, FHM, 48, 4)
2093 FIELD(ID_AA64ISAR0, TS, 52, 4)
2094 FIELD(ID_AA64ISAR0, TLB, 56, 4)
2095 FIELD(ID_AA64ISAR0, RNDR, 60, 4)
2097 FIELD(ID_AA64ISAR1, DPB, 0, 4)
2098 FIELD(ID_AA64ISAR1, APA, 4, 4)
2099 FIELD(ID_AA64ISAR1, API, 8, 4)
2100 FIELD(ID_AA64ISAR1, JSCVT, 12, 4)
2101 FIELD(ID_AA64ISAR1, FCMA, 16, 4)
2102 FIELD(ID_AA64ISAR1, LRCPC, 20, 4)
2103 FIELD(ID_AA64ISAR1, GPA, 24, 4)
2104 FIELD(ID_AA64ISAR1, GPI, 28, 4)
2105 FIELD(ID_AA64ISAR1, FRINTTS, 32, 4)
2106 FIELD(ID_AA64ISAR1, SB, 36, 4)
2107 FIELD(ID_AA64ISAR1, SPECRES, 40, 4)
2108 FIELD(ID_AA64ISAR1, BF16, 44, 4)
2109 FIELD(ID_AA64ISAR1, DGH, 48, 4)
2110 FIELD(ID_AA64ISAR1, I8MM, 52, 4)
2111 FIELD(ID_AA64ISAR1, XS, 56, 4)
2112 FIELD(ID_AA64ISAR1, LS64, 60, 4)
2114 FIELD(ID_AA64ISAR2, WFXT, 0, 4)
2115 FIELD(ID_AA64ISAR2, RPRES, 4, 4)
2116 FIELD(ID_AA64ISAR2, GPA3, 8, 4)
2117 FIELD(ID_AA64ISAR2, APA3, 12, 4)
2118 FIELD(ID_AA64ISAR2, MOPS, 16, 4)
2119 FIELD(ID_AA64ISAR2, BC, 20, 4)
2120 FIELD(ID_AA64ISAR2, PAC_FRAC, 24, 4)
2122 FIELD(ID_AA64PFR0, EL0, 0, 4)
2123 FIELD(ID_AA64PFR0, EL1, 4, 4)
2124 FIELD(ID_AA64PFR0, EL2, 8, 4)
2125 FIELD(ID_AA64PFR0, EL3, 12, 4)
2126 FIELD(ID_AA64PFR0, FP, 16, 4)
2127 FIELD(ID_AA64PFR0, ADVSIMD, 20, 4)
2128 FIELD(ID_AA64PFR0, GIC, 24, 4)
2129 FIELD(ID_AA64PFR0, RAS, 28, 4)
2130 FIELD(ID_AA64PFR0, SVE, 32, 4)
2131 FIELD(ID_AA64PFR0, SEL2, 36, 4)
2132 FIELD(ID_AA64PFR0, MPAM, 40, 4)
2133 FIELD(ID_AA64PFR0, AMU, 44, 4)
2134 FIELD(ID_AA64PFR0, DIT, 48, 4)
2135 FIELD(ID_AA64PFR0, CSV2, 56, 4)
2136 FIELD(ID_AA64PFR0, CSV3, 60, 4)
2138 FIELD(ID_AA64PFR1, BT, 0, 4)
2139 FIELD(ID_AA64PFR1, SSBS, 4, 4)
2140 FIELD(ID_AA64PFR1, MTE, 8, 4)
2141 FIELD(ID_AA64PFR1, RAS_FRAC, 12, 4)
2142 FIELD(ID_AA64PFR1, MPAM_FRAC, 16, 4)
2143 FIELD(ID_AA64PFR1, SME, 24, 4)
2144 FIELD(ID_AA64PFR1, RNDR_TRAP, 28, 4)
2145 FIELD(ID_AA64PFR1, CSV2_FRAC, 32, 4)
2146 FIELD(ID_AA64PFR1, NMI, 36, 4)
2148 FIELD(ID_AA64MMFR0, PARANGE, 0, 4)
2149 FIELD(ID_AA64MMFR0, ASIDBITS, 4, 4)
2150 FIELD(ID_AA64MMFR0, BIGEND, 8, 4)
2151 FIELD(ID_AA64MMFR0, SNSMEM, 12, 4)
2152 FIELD(ID_AA64MMFR0, BIGENDEL0, 16, 4)
2153 FIELD(ID_AA64MMFR0, TGRAN16, 20, 4)
2154 FIELD(ID_AA64MMFR0, TGRAN64, 24, 4)
2155 FIELD(ID_AA64MMFR0, TGRAN4, 28, 4)
2156 FIELD(ID_AA64MMFR0, TGRAN16_2, 32, 4)
2157 FIELD(ID_AA64MMFR0, TGRAN64_2, 36, 4)
2158 FIELD(ID_AA64MMFR0, TGRAN4_2, 40, 4)
2159 FIELD(ID_AA64MMFR0, EXS, 44, 4)
2160 FIELD(ID_AA64MMFR0, FGT, 56, 4)
2161 FIELD(ID_AA64MMFR0, ECV, 60, 4)
2163 FIELD(ID_AA64MMFR1, HAFDBS, 0, 4)
2164 FIELD(ID_AA64MMFR1, VMIDBITS, 4, 4)
2165 FIELD(ID_AA64MMFR1, VH, 8, 4)
2166 FIELD(ID_AA64MMFR1, HPDS, 12, 4)
2167 FIELD(ID_AA64MMFR1, LO, 16, 4)
2168 FIELD(ID_AA64MMFR1, PAN, 20, 4)
2169 FIELD(ID_AA64MMFR1, SPECSEI, 24, 4)
2170 FIELD(ID_AA64MMFR1, XNX, 28, 4)
2171 FIELD(ID_AA64MMFR1, TWED, 32, 4)
2172 FIELD(ID_AA64MMFR1, ETS, 36, 4)
2173 FIELD(ID_AA64MMFR1, HCX, 40, 4)
2174 FIELD(ID_AA64MMFR1, AFP, 44, 4)
2175 FIELD(ID_AA64MMFR1, NTLBPA, 48, 4)
2176 FIELD(ID_AA64MMFR1, TIDCP1, 52, 4)
2177 FIELD(ID_AA64MMFR1, CMOW, 56, 4)
2179 FIELD(ID_AA64MMFR2, CNP, 0, 4)
2180 FIELD(ID_AA64MMFR2, UAO, 4, 4)
2181 FIELD(ID_AA64MMFR2, LSM, 8, 4)
2182 FIELD(ID_AA64MMFR2, IESB, 12, 4)
2183 FIELD(ID_AA64MMFR2, VARANGE, 16, 4)
2184 FIELD(ID_AA64MMFR2, CCIDX, 20, 4)
2185 FIELD(ID_AA64MMFR2, NV, 24, 4)
2186 FIELD(ID_AA64MMFR2, ST, 28, 4)
2187 FIELD(ID_AA64MMFR2, AT, 32, 4)
2188 FIELD(ID_AA64MMFR2, IDS, 36, 4)
2189 FIELD(ID_AA64MMFR2, FWB, 40, 4)
2190 FIELD(ID_AA64MMFR2, TTL, 48, 4)
2191 FIELD(ID_AA64MMFR2, BBM, 52, 4)
2192 FIELD(ID_AA64MMFR2, EVT, 56, 4)
2193 FIELD(ID_AA64MMFR2, E0PD, 60, 4)
2195 FIELD(ID_AA64DFR0, DEBUGVER, 0, 4)
2196 FIELD(ID_AA64DFR0, TRACEVER, 4, 4)
2197 FIELD(ID_AA64DFR0, PMUVER, 8, 4)
2198 FIELD(ID_AA64DFR0, BRPS, 12, 4)
2199 FIELD(ID_AA64DFR0, WRPS, 20, 4)
2200 FIELD(ID_AA64DFR0, CTX_CMPS, 28, 4)
2201 FIELD(ID_AA64DFR0, PMSVER, 32, 4)
2202 FIELD(ID_AA64DFR0, DOUBLELOCK, 36, 4)
2203 FIELD(ID_AA64DFR0, TRACEFILT, 40, 4)
2204 FIELD(ID_AA64DFR0, TRACEBUFFER, 44, 4)
2205 FIELD(ID_AA64DFR0, MTPMU, 48, 4)
2206 FIELD(ID_AA64DFR0, BRBE, 52, 4)
2207 FIELD(ID_AA64DFR0, HPMN0, 60, 4)
2209 FIELD(ID_AA64ZFR0, SVEVER, 0, 4)
2210 FIELD(ID_AA64ZFR0, AES, 4, 4)
2211 FIELD(ID_AA64ZFR0, BITPERM, 16, 4)
2212 FIELD(ID_AA64ZFR0, BFLOAT16, 20, 4)
2213 FIELD(ID_AA64ZFR0, SHA3, 32, 4)
2214 FIELD(ID_AA64ZFR0, SM4, 40, 4)
2215 FIELD(ID_AA64ZFR0, I8MM, 44, 4)
2216 FIELD(ID_AA64ZFR0, F32MM, 52, 4)
2217 FIELD(ID_AA64ZFR0, F64MM, 56, 4)
2219 FIELD(ID_AA64SMFR0, F32F32, 32, 1)
2220 FIELD(ID_AA64SMFR0, B16F32, 34, 1)
2221 FIELD(ID_AA64SMFR0, F16F32, 35, 1)
2222 FIELD(ID_AA64SMFR0, I8I32, 36, 4)
2223 FIELD(ID_AA64SMFR0, F64F64, 48, 1)
2224 FIELD(ID_AA64SMFR0, I16I64, 52, 4)
2225 FIELD(ID_AA64SMFR0, SMEVER, 56, 4)
2226 FIELD(ID_AA64SMFR0, FA64, 63, 1)
2228 FIELD(ID_DFR0, COPDBG, 0, 4)
2229 FIELD(ID_DFR0, COPSDBG, 4, 4)
2230 FIELD(ID_DFR0, MMAPDBG, 8, 4)
2231 FIELD(ID_DFR0, COPTRC, 12, 4)
2232 FIELD(ID_DFR0, MMAPTRC, 16, 4)
2233 FIELD(ID_DFR0, MPROFDBG, 20, 4)
2234 FIELD(ID_DFR0, PERFMON, 24, 4)
2235 FIELD(ID_DFR0, TRACEFILT, 28, 4)
2237 FIELD(ID_DFR1, MTPMU, 0, 4)
2238 FIELD(ID_DFR1, HPMN0, 4, 4)
2240 FIELD(DBGDIDR, SE_IMP, 12, 1)
2241 FIELD(DBGDIDR, NSUHD_IMP, 14, 1)
2242 FIELD(DBGDIDR, VERSION, 16, 4)
2243 FIELD(DBGDIDR, CTX_CMPS, 20, 4)
2244 FIELD(DBGDIDR, BRPS, 24, 4)
2245 FIELD(DBGDIDR, WRPS, 28, 4)
2247 FIELD(MVFR0, SIMDREG, 0, 4)
2248 FIELD(MVFR0, FPSP, 4, 4)
2249 FIELD(MVFR0, FPDP, 8, 4)
2250 FIELD(MVFR0, FPTRAP, 12, 4)
2251 FIELD(MVFR0, FPDIVIDE, 16, 4)
2252 FIELD(MVFR0, FPSQRT, 20, 4)
2253 FIELD(MVFR0, FPSHVEC, 24, 4)
2254 FIELD(MVFR0, FPROUND, 28, 4)
2256 FIELD(MVFR1, FPFTZ, 0, 4)
2257 FIELD(MVFR1, FPDNAN, 4, 4)
2258 FIELD(MVFR1, SIMDLS, 8, 4) /* A-profile only */
2259 FIELD(MVFR1, SIMDINT, 12, 4) /* A-profile only */
2260 FIELD(MVFR1, SIMDSP, 16, 4) /* A-profile only */
2261 FIELD(MVFR1, SIMDHP, 20, 4) /* A-profile only */
2262 FIELD(MVFR1, MVE, 8, 4) /* M-profile only */
2263 FIELD(MVFR1, FP16, 20, 4) /* M-profile only */
2264 FIELD(MVFR1, FPHP, 24, 4)
2265 FIELD(MVFR1, SIMDFMAC, 28, 4)
2267 FIELD(MVFR2, SIMDMISC, 0, 4)
2268 FIELD(MVFR2, FPMISC, 4, 4)
2270 QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK);
2272 /* If adding a feature bit which corresponds to a Linux ELF
2273 * HWCAP bit, remember to update the feature-bit-to-hwcap
2274 * mapping in linux-user/elfload.c:get_elf_hwcap().
2276 enum arm_features {
2277 ARM_FEATURE_AUXCR, /* ARM1026 Auxiliary control register. */
2278 ARM_FEATURE_XSCALE, /* Intel XScale extensions. */
2279 ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension. */
2280 ARM_FEATURE_V6,
2281 ARM_FEATURE_V6K,
2282 ARM_FEATURE_V7,
2283 ARM_FEATURE_THUMB2,
2284 ARM_FEATURE_PMSA, /* no MMU; may have Memory Protection Unit */
2285 ARM_FEATURE_NEON,
2286 ARM_FEATURE_M, /* Microcontroller profile. */
2287 ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling. */
2288 ARM_FEATURE_THUMB2EE,
2289 ARM_FEATURE_V7MP, /* v7 Multiprocessing Extensions */
2290 ARM_FEATURE_V7VE, /* v7 Virtualization Extensions (non-EL2 parts) */
2291 ARM_FEATURE_V4T,
2292 ARM_FEATURE_V5,
2293 ARM_FEATURE_STRONGARM,
2294 ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
2295 ARM_FEATURE_GENERIC_TIMER,
2296 ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
2297 ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
2298 ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
2299 ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
2300 ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
2301 ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
2302 ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
2303 ARM_FEATURE_V8,
2304 ARM_FEATURE_AARCH64, /* supports 64 bit mode */
2305 ARM_FEATURE_CBAR, /* has cp15 CBAR */
2306 ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
2307 ARM_FEATURE_EL2, /* has EL2 Virtualization support */
2308 ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
2309 ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
2310 ARM_FEATURE_PMU, /* has PMU support */
2311 ARM_FEATURE_VBAR, /* has cp15 VBAR */
2312 ARM_FEATURE_M_SECURITY, /* M profile Security Extension */
2313 ARM_FEATURE_M_MAIN, /* M profile Main Extension */
2314 ARM_FEATURE_V8_1M, /* M profile extras only in v8.1M and later */
2317 static inline int arm_feature(CPUARMState *env, int feature)
2319 return (env->features & (1ULL << feature)) != 0;
2322 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp);
2324 #if !defined(CONFIG_USER_ONLY)
2325 /* Return true if exception levels below EL3 are in secure state,
2326 * or would be following an exception return to that level.
2327 * Unlike arm_is_secure() (which is always a question about the
2328 * _current_ state of the CPU) this doesn't care about the current
2329 * EL or mode.
2331 static inline bool arm_is_secure_below_el3(CPUARMState *env)
2333 if (arm_feature(env, ARM_FEATURE_EL3)) {
2334 return !(env->cp15.scr_el3 & SCR_NS);
2335 } else {
2336 /* If EL3 is not supported then the secure state is implementation
2337 * defined, in which case QEMU defaults to non-secure.
2339 return false;
2343 /* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
2344 static inline bool arm_is_el3_or_mon(CPUARMState *env)
2346 if (arm_feature(env, ARM_FEATURE_EL3)) {
2347 if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
2348 /* CPU currently in AArch64 state and EL3 */
2349 return true;
2350 } else if (!is_a64(env) &&
2351 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
2352 /* CPU currently in AArch32 state and monitor mode */
2353 return true;
2356 return false;
2359 /* Return true if the processor is in secure state */
2360 static inline bool arm_is_secure(CPUARMState *env)
2362 if (arm_is_el3_or_mon(env)) {
2363 return true;
2365 return arm_is_secure_below_el3(env);
2369 * Return true if the current security state has AArch64 EL2 or AArch32 Hyp.
2370 * This corresponds to the pseudocode EL2Enabled()
2372 static inline bool arm_is_el2_enabled(CPUARMState *env)
2374 if (arm_feature(env, ARM_FEATURE_EL2)) {
2375 if (arm_is_secure_below_el3(env)) {
2376 return (env->cp15.scr_el3 & SCR_EEL2) != 0;
2378 return true;
2380 return false;
2383 #else
2384 static inline bool arm_is_secure_below_el3(CPUARMState *env)
2386 return false;
2389 static inline bool arm_is_secure(CPUARMState *env)
2391 return false;
2394 static inline bool arm_is_el2_enabled(CPUARMState *env)
2396 return false;
2398 #endif
2401 * arm_hcr_el2_eff(): Return the effective value of HCR_EL2.
2402 * E.g. when in secure state, fields in HCR_EL2 are suppressed,
2403 * "for all purposes other than a direct read or write access of HCR_EL2."
2404 * Not included here is HCR_RW.
2406 uint64_t arm_hcr_el2_eff(CPUARMState *env);
2407 uint64_t arm_hcrx_el2_eff(CPUARMState *env);
2409 /* Return true if the specified exception level is running in AArch64 state. */
2410 static inline bool arm_el_is_aa64(CPUARMState *env, int el)
2412 /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
2413 * and if we're not in EL0 then the state of EL0 isn't well defined.)
2415 assert(el >= 1 && el <= 3);
2416 bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
2418 /* The highest exception level is always at the maximum supported
2419 * register width, and then lower levels have a register width controlled
2420 * by bits in the SCR or HCR registers.
2422 if (el == 3) {
2423 return aa64;
2426 if (arm_feature(env, ARM_FEATURE_EL3) &&
2427 ((env->cp15.scr_el3 & SCR_NS) || !(env->cp15.scr_el3 & SCR_EEL2))) {
2428 aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
2431 if (el == 2) {
2432 return aa64;
2435 if (arm_is_el2_enabled(env)) {
2436 aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
2439 return aa64;
2442 /* Function for determing whether guest cp register reads and writes should
2443 * access the secure or non-secure bank of a cp register. When EL3 is
2444 * operating in AArch32 state, the NS-bit determines whether the secure
2445 * instance of a cp register should be used. When EL3 is AArch64 (or if
2446 * it doesn't exist at all) then there is no register banking, and all
2447 * accesses are to the non-secure version.
2449 static inline bool access_secure_reg(CPUARMState *env)
2451 bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
2452 !arm_el_is_aa64(env, 3) &&
2453 !(env->cp15.scr_el3 & SCR_NS));
2455 return ret;
2458 /* Macros for accessing a specified CP register bank */
2459 #define A32_BANKED_REG_GET(_env, _regname, _secure) \
2460 ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
2462 #define A32_BANKED_REG_SET(_env, _regname, _secure, _val) \
2463 do { \
2464 if (_secure) { \
2465 (_env)->cp15._regname##_s = (_val); \
2466 } else { \
2467 (_env)->cp15._regname##_ns = (_val); \
2469 } while (0)
2471 /* Macros for automatically accessing a specific CP register bank depending on
2472 * the current secure state of the system. These macros are not intended for
2473 * supporting instruction translation reads/writes as these are dependent
2474 * solely on the SCR.NS bit and not the mode.
2476 #define A32_BANKED_CURRENT_REG_GET(_env, _regname) \
2477 A32_BANKED_REG_GET((_env), _regname, \
2478 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
2480 #define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val) \
2481 A32_BANKED_REG_SET((_env), _regname, \
2482 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
2483 (_val))
2485 void arm_cpu_list(void);
2486 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
2487 uint32_t cur_el, bool secure);
2489 /* Interface between CPU and Interrupt controller. */
2490 #ifndef CONFIG_USER_ONLY
2491 bool armv7m_nvic_can_take_pending_exception(void *opaque);
2492 #else
2493 static inline bool armv7m_nvic_can_take_pending_exception(void *opaque)
2495 return true;
2497 #endif
2499 * armv7m_nvic_set_pending: mark the specified exception as pending
2500 * @opaque: the NVIC
2501 * @irq: the exception number to mark pending
2502 * @secure: false for non-banked exceptions or for the nonsecure
2503 * version of a banked exception, true for the secure version of a banked
2504 * exception.
2506 * Marks the specified exception as pending. Note that we will assert()
2507 * if @secure is true and @irq does not specify one of the fixed set
2508 * of architecturally banked exceptions.
2510 void armv7m_nvic_set_pending(void *opaque, int irq, bool secure);
2512 * armv7m_nvic_set_pending_derived: mark this derived exception as pending
2513 * @opaque: the NVIC
2514 * @irq: the exception number to mark pending
2515 * @secure: false for non-banked exceptions or for the nonsecure
2516 * version of a banked exception, true for the secure version of a banked
2517 * exception.
2519 * Similar to armv7m_nvic_set_pending(), but specifically for derived
2520 * exceptions (exceptions generated in the course of trying to take
2521 * a different exception).
2523 void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure);
2525 * armv7m_nvic_set_pending_lazyfp: mark this lazy FP exception as pending
2526 * @opaque: the NVIC
2527 * @irq: the exception number to mark pending
2528 * @secure: false for non-banked exceptions or for the nonsecure
2529 * version of a banked exception, true for the secure version of a banked
2530 * exception.
2532 * Similar to armv7m_nvic_set_pending(), but specifically for exceptions
2533 * generated in the course of lazy stacking of FP registers.
2535 void armv7m_nvic_set_pending_lazyfp(void *opaque, int irq, bool secure);
2537 * armv7m_nvic_get_pending_irq_info: return highest priority pending
2538 * exception, and whether it targets Secure state
2539 * @opaque: the NVIC
2540 * @pirq: set to pending exception number
2541 * @ptargets_secure: set to whether pending exception targets Secure
2543 * This function writes the number of the highest priority pending
2544 * exception (the one which would be made active by
2545 * armv7m_nvic_acknowledge_irq()) to @pirq, and sets @ptargets_secure
2546 * to true if the current highest priority pending exception should
2547 * be taken to Secure state, false for NS.
2549 void armv7m_nvic_get_pending_irq_info(void *opaque, int *pirq,
2550 bool *ptargets_secure);
2552 * armv7m_nvic_acknowledge_irq: make highest priority pending exception active
2553 * @opaque: the NVIC
2555 * Move the current highest priority pending exception from the pending
2556 * state to the active state, and update v7m.exception to indicate that
2557 * it is the exception currently being handled.
2559 void armv7m_nvic_acknowledge_irq(void *opaque);
2561 * armv7m_nvic_complete_irq: complete specified interrupt or exception
2562 * @opaque: the NVIC
2563 * @irq: the exception number to complete
2564 * @secure: true if this exception was secure
2566 * Returns: -1 if the irq was not active
2567 * 1 if completing this irq brought us back to base (no active irqs)
2568 * 0 if there is still an irq active after this one was completed
2569 * (Ignoring -1, this is the same as the RETTOBASE value before completion.)
2571 int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure);
2573 * armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure)
2574 * @opaque: the NVIC
2575 * @irq: the exception number to mark pending
2576 * @secure: false for non-banked exceptions or for the nonsecure
2577 * version of a banked exception, true for the secure version of a banked
2578 * exception.
2580 * Return whether an exception is "ready", i.e. whether the exception is
2581 * enabled and is configured at a priority which would allow it to
2582 * interrupt the current execution priority. This controls whether the
2583 * RDY bit for it in the FPCCR is set.
2585 bool armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure);
2587 * armv7m_nvic_raw_execution_priority: return the raw execution priority
2588 * @opaque: the NVIC
2590 * Returns: the raw execution priority as defined by the v8M architecture.
2591 * This is the execution priority minus the effects of AIRCR.PRIS,
2592 * and minus any PRIMASK/FAULTMASK/BASEPRI priority boosting.
2593 * (v8M ARM ARM I_PKLD.)
2595 int armv7m_nvic_raw_execution_priority(void *opaque);
2597 * armv7m_nvic_neg_prio_requested: return true if the requested execution
2598 * priority is negative for the specified security state.
2599 * @opaque: the NVIC
2600 * @secure: the security state to test
2601 * This corresponds to the pseudocode IsReqExecPriNeg().
2603 #ifndef CONFIG_USER_ONLY
2604 bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure);
2605 #else
2606 static inline bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure)
2608 return false;
2610 #endif
2612 /* Interface for defining coprocessor registers.
2613 * Registers are defined in tables of arm_cp_reginfo structs
2614 * which are passed to define_arm_cp_regs().
2617 /* When looking up a coprocessor register we look for it
2618 * via an integer which encodes all of:
2619 * coprocessor number
2620 * Crn, Crm, opc1, opc2 fields
2621 * 32 or 64 bit register (ie is it accessed via MRC/MCR
2622 * or via MRRC/MCRR?)
2623 * non-secure/secure bank (AArch32 only)
2624 * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
2625 * (In this case crn and opc2 should be zero.)
2626 * For AArch64, there is no 32/64 bit size distinction;
2627 * instead all registers have a 2 bit op0, 3 bit op1 and op2,
2628 * and 4 bit CRn and CRm. The encoding patterns are chosen
2629 * to be easy to convert to and from the KVM encodings, and also
2630 * so that the hashtable can contain both AArch32 and AArch64
2631 * registers (to allow for interprocessing where we might run
2632 * 32 bit code on a 64 bit core).
2634 /* This bit is private to our hashtable cpreg; in KVM register
2635 * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
2636 * in the upper bits of the 64 bit ID.
2638 #define CP_REG_AA64_SHIFT 28
2639 #define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
2641 /* To enable banking of coprocessor registers depending on ns-bit we
2642 * add a bit to distinguish between secure and non-secure cpregs in the
2643 * hashtable.
2645 #define CP_REG_NS_SHIFT 29
2646 #define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT)
2648 #define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2) \
2649 ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) | \
2650 ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2))
2652 #define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
2653 (CP_REG_AA64_MASK | \
2654 ((cp) << CP_REG_ARM_COPROC_SHIFT) | \
2655 ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) | \
2656 ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) | \
2657 ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) | \
2658 ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) | \
2659 ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
2661 /* Convert a full 64 bit KVM register ID to the truncated 32 bit
2662 * version used as a key for the coprocessor register hashtable
2664 static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
2666 uint32_t cpregid = kvmid;
2667 if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
2668 cpregid |= CP_REG_AA64_MASK;
2669 } else {
2670 if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
2671 cpregid |= (1 << 15);
2674 /* KVM is always non-secure so add the NS flag on AArch32 register
2675 * entries.
2677 cpregid |= 1 << CP_REG_NS_SHIFT;
2679 return cpregid;
2682 /* Convert a truncated 32 bit hashtable key into the full
2683 * 64 bit KVM register ID.
2685 static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
2687 uint64_t kvmid;
2689 if (cpregid & CP_REG_AA64_MASK) {
2690 kvmid = cpregid & ~CP_REG_AA64_MASK;
2691 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
2692 } else {
2693 kvmid = cpregid & ~(1 << 15);
2694 if (cpregid & (1 << 15)) {
2695 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
2696 } else {
2697 kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
2700 return kvmid;
2703 /* Return the highest implemented Exception Level */
2704 static inline int arm_highest_el(CPUARMState *env)
2706 if (arm_feature(env, ARM_FEATURE_EL3)) {
2707 return 3;
2709 if (arm_feature(env, ARM_FEATURE_EL2)) {
2710 return 2;
2712 return 1;
2715 /* Return true if a v7M CPU is in Handler mode */
2716 static inline bool arm_v7m_is_handler_mode(CPUARMState *env)
2718 return env->v7m.exception != 0;
2721 /* Return the current Exception Level (as per ARMv8; note that this differs
2722 * from the ARMv7 Privilege Level).
2724 static inline int arm_current_el(CPUARMState *env)
2726 if (arm_feature(env, ARM_FEATURE_M)) {
2727 return arm_v7m_is_handler_mode(env) ||
2728 !(env->v7m.control[env->v7m.secure] & 1);
2731 if (is_a64(env)) {
2732 return extract32(env->pstate, 2, 2);
2735 switch (env->uncached_cpsr & 0x1f) {
2736 case ARM_CPU_MODE_USR:
2737 return 0;
2738 case ARM_CPU_MODE_HYP:
2739 return 2;
2740 case ARM_CPU_MODE_MON:
2741 return 3;
2742 default:
2743 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
2744 /* If EL3 is 32-bit then all secure privileged modes run in
2745 * EL3
2747 return 3;
2750 return 1;
2755 * write_list_to_cpustate
2756 * @cpu: ARMCPU
2758 * For each register listed in the ARMCPU cpreg_indexes list, write
2759 * its value from the cpreg_values list into the ARMCPUState structure.
2760 * This updates TCG's working data structures from KVM data or
2761 * from incoming migration state.
2763 * Returns: true if all register values were updated correctly,
2764 * false if some register was unknown or could not be written.
2765 * Note that we do not stop early on failure -- we will attempt
2766 * writing all registers in the list.
2768 bool write_list_to_cpustate(ARMCPU *cpu);
2771 * write_cpustate_to_list:
2772 * @cpu: ARMCPU
2773 * @kvm_sync: true if this is for syncing back to KVM
2775 * For each register listed in the ARMCPU cpreg_indexes list, write
2776 * its value from the ARMCPUState structure into the cpreg_values list.
2777 * This is used to copy info from TCG's working data structures into
2778 * KVM or for outbound migration.
2780 * @kvm_sync is true if we are doing this in order to sync the
2781 * register state back to KVM. In this case we will only update
2782 * values in the list if the previous list->cpustate sync actually
2783 * successfully wrote the CPU state. Otherwise we will keep the value
2784 * that is in the list.
2786 * Returns: true if all register values were read correctly,
2787 * false if some register was unknown or could not be read.
2788 * Note that we do not stop early on failure -- we will attempt
2789 * reading all registers in the list.
2791 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync);
2793 #define ARM_CPUID_TI915T 0x54029152
2794 #define ARM_CPUID_TI925T 0x54029252
2796 #define ARM_CPU_TYPE_SUFFIX "-" TYPE_ARM_CPU
2797 #define ARM_CPU_TYPE_NAME(name) (name ARM_CPU_TYPE_SUFFIX)
2798 #define CPU_RESOLVING_TYPE TYPE_ARM_CPU
2800 #define TYPE_ARM_HOST_CPU "host-" TYPE_ARM_CPU
2802 #define cpu_list arm_cpu_list
2804 /* ARM has the following "translation regimes" (as the ARM ARM calls them):
2806 * If EL3 is 64-bit:
2807 * + NonSecure EL1 & 0 stage 1
2808 * + NonSecure EL1 & 0 stage 2
2809 * + NonSecure EL2
2810 * + NonSecure EL2 & 0 (ARMv8.1-VHE)
2811 * + Secure EL1 & 0
2812 * + Secure EL3
2813 * If EL3 is 32-bit:
2814 * + NonSecure PL1 & 0 stage 1
2815 * + NonSecure PL1 & 0 stage 2
2816 * + NonSecure PL2
2817 * + Secure PL0
2818 * + Secure PL1
2819 * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
2821 * For QEMU, an mmu_idx is not quite the same as a translation regime because:
2822 * 1. we need to split the "EL1 & 0" and "EL2 & 0" regimes into two mmu_idxes,
2823 * because they may differ in access permissions even if the VA->PA map is
2824 * the same
2825 * 2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
2826 * translation, which means that we have one mmu_idx that deals with two
2827 * concatenated translation regimes [this sort of combined s1+2 TLB is
2828 * architecturally permitted]
2829 * 3. we don't need to allocate an mmu_idx to translations that we won't be
2830 * handling via the TLB. The only way to do a stage 1 translation without
2831 * the immediate stage 2 translation is via the ATS or AT system insns,
2832 * which can be slow-pathed and always do a page table walk.
2833 * The only use of stage 2 translations is either as part of an s1+2
2834 * lookup or when loading the descriptors during a stage 1 page table walk,
2835 * and in both those cases we don't use the TLB.
2836 * 4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
2837 * translation regimes, because they map reasonably well to each other
2838 * and they can't both be active at the same time.
2839 * 5. we want to be able to use the TLB for accesses done as part of a
2840 * stage1 page table walk, rather than having to walk the stage2 page
2841 * table over and over.
2842 * 6. we need separate EL1/EL2 mmu_idx for handling the Privileged Access
2843 * Never (PAN) bit within PSTATE.
2845 * This gives us the following list of cases:
2847 * NS EL0 EL1&0 stage 1+2 (aka NS PL0)
2848 * NS EL1 EL1&0 stage 1+2 (aka NS PL1)
2849 * NS EL1 EL1&0 stage 1+2 +PAN
2850 * NS EL0 EL2&0
2851 * NS EL2 EL2&0
2852 * NS EL2 EL2&0 +PAN
2853 * NS EL2 (aka NS PL2)
2854 * S EL0 EL1&0 (aka S PL0)
2855 * S EL1 EL1&0 (not used if EL3 is 32 bit)
2856 * S EL1 EL1&0 +PAN
2857 * S EL3 (aka S PL1)
2859 * for a total of 11 different mmu_idx.
2861 * R profile CPUs have an MPU, but can use the same set of MMU indexes
2862 * as A profile. They only need to distinguish NS EL0 and NS EL1 (and
2863 * NS EL2 if we ever model a Cortex-R52).
2865 * M profile CPUs are rather different as they do not have a true MMU.
2866 * They have the following different MMU indexes:
2867 * User
2868 * Privileged
2869 * User, execution priority negative (ie the MPU HFNMIENA bit may apply)
2870 * Privileged, execution priority negative (ditto)
2871 * If the CPU supports the v8M Security Extension then there are also:
2872 * Secure User
2873 * Secure Privileged
2874 * Secure User, execution priority negative
2875 * Secure Privileged, execution priority negative
2877 * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
2878 * are not quite the same -- different CPU types (most notably M profile
2879 * vs A/R profile) would like to use MMU indexes with different semantics,
2880 * but since we don't ever need to use all of those in a single CPU we
2881 * can avoid having to set NB_MMU_MODES to "total number of A profile MMU
2882 * modes + total number of M profile MMU modes". The lower bits of
2883 * ARMMMUIdx are the core TLB mmu index, and the higher bits are always
2884 * the same for any particular CPU.
2885 * Variables of type ARMMUIdx are always full values, and the core
2886 * index values are in variables of type 'int'.
2888 * Our enumeration includes at the end some entries which are not "true"
2889 * mmu_idx values in that they don't have corresponding TLBs and are only
2890 * valid for doing slow path page table walks.
2892 * The constant names here are patterned after the general style of the names
2893 * of the AT/ATS operations.
2894 * The values used are carefully arranged to make mmu_idx => EL lookup easy.
2895 * For M profile we arrange them to have a bit for priv, a bit for negpri
2896 * and a bit for secure.
2898 #define ARM_MMU_IDX_A 0x10 /* A profile */
2899 #define ARM_MMU_IDX_NOTLB 0x20 /* does not have a TLB */
2900 #define ARM_MMU_IDX_M 0x40 /* M profile */
2902 /* Meanings of the bits for A profile mmu idx values */
2903 #define ARM_MMU_IDX_A_NS 0x8
2905 /* Meanings of the bits for M profile mmu idx values */
2906 #define ARM_MMU_IDX_M_PRIV 0x1
2907 #define ARM_MMU_IDX_M_NEGPRI 0x2
2908 #define ARM_MMU_IDX_M_S 0x4 /* Secure */
2910 #define ARM_MMU_IDX_TYPE_MASK \
2911 (ARM_MMU_IDX_A | ARM_MMU_IDX_M | ARM_MMU_IDX_NOTLB)
2912 #define ARM_MMU_IDX_COREIDX_MASK 0xf
2914 typedef enum ARMMMUIdx {
2916 * A-profile.
2918 ARMMMUIdx_SE10_0 = 0 | ARM_MMU_IDX_A,
2919 ARMMMUIdx_SE20_0 = 1 | ARM_MMU_IDX_A,
2920 ARMMMUIdx_SE10_1 = 2 | ARM_MMU_IDX_A,
2921 ARMMMUIdx_SE20_2 = 3 | ARM_MMU_IDX_A,
2922 ARMMMUIdx_SE10_1_PAN = 4 | ARM_MMU_IDX_A,
2923 ARMMMUIdx_SE20_2_PAN = 5 | ARM_MMU_IDX_A,
2924 ARMMMUIdx_SE2 = 6 | ARM_MMU_IDX_A,
2925 ARMMMUIdx_SE3 = 7 | ARM_MMU_IDX_A,
2927 ARMMMUIdx_E10_0 = ARMMMUIdx_SE10_0 | ARM_MMU_IDX_A_NS,
2928 ARMMMUIdx_E20_0 = ARMMMUIdx_SE20_0 | ARM_MMU_IDX_A_NS,
2929 ARMMMUIdx_E10_1 = ARMMMUIdx_SE10_1 | ARM_MMU_IDX_A_NS,
2930 ARMMMUIdx_E20_2 = ARMMMUIdx_SE20_2 | ARM_MMU_IDX_A_NS,
2931 ARMMMUIdx_E10_1_PAN = ARMMMUIdx_SE10_1_PAN | ARM_MMU_IDX_A_NS,
2932 ARMMMUIdx_E20_2_PAN = ARMMMUIdx_SE20_2_PAN | ARM_MMU_IDX_A_NS,
2933 ARMMMUIdx_E2 = ARMMMUIdx_SE2 | ARM_MMU_IDX_A_NS,
2936 * These are not allocated TLBs and are used only for AT system
2937 * instructions or for the first stage of an S12 page table walk.
2939 ARMMMUIdx_Stage1_E0 = 0 | ARM_MMU_IDX_NOTLB,
2940 ARMMMUIdx_Stage1_E1 = 1 | ARM_MMU_IDX_NOTLB,
2941 ARMMMUIdx_Stage1_E1_PAN = 2 | ARM_MMU_IDX_NOTLB,
2942 ARMMMUIdx_Stage1_SE0 = 3 | ARM_MMU_IDX_NOTLB,
2943 ARMMMUIdx_Stage1_SE1 = 4 | ARM_MMU_IDX_NOTLB,
2944 ARMMMUIdx_Stage1_SE1_PAN = 5 | ARM_MMU_IDX_NOTLB,
2946 * Not allocated a TLB: used only for second stage of an S12 page
2947 * table walk, or for descriptor loads during first stage of an S1
2948 * page table walk. Note that if we ever want to have a TLB for this
2949 * then various TLB flush insns which currently are no-ops or flush
2950 * only stage 1 MMU indexes will need to change to flush stage 2.
2952 ARMMMUIdx_Stage2 = 6 | ARM_MMU_IDX_NOTLB,
2953 ARMMMUIdx_Stage2_S = 7 | ARM_MMU_IDX_NOTLB,
2956 * M-profile.
2958 ARMMMUIdx_MUser = ARM_MMU_IDX_M,
2959 ARMMMUIdx_MPriv = ARM_MMU_IDX_M | ARM_MMU_IDX_M_PRIV,
2960 ARMMMUIdx_MUserNegPri = ARMMMUIdx_MUser | ARM_MMU_IDX_M_NEGPRI,
2961 ARMMMUIdx_MPrivNegPri = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_NEGPRI,
2962 ARMMMUIdx_MSUser = ARMMMUIdx_MUser | ARM_MMU_IDX_M_S,
2963 ARMMMUIdx_MSPriv = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_S,
2964 ARMMMUIdx_MSUserNegPri = ARMMMUIdx_MUserNegPri | ARM_MMU_IDX_M_S,
2965 ARMMMUIdx_MSPrivNegPri = ARMMMUIdx_MPrivNegPri | ARM_MMU_IDX_M_S,
2966 } ARMMMUIdx;
2969 * Bit macros for the core-mmu-index values for each index,
2970 * for use when calling tlb_flush_by_mmuidx() and friends.
2972 #define TO_CORE_BIT(NAME) \
2973 ARMMMUIdxBit_##NAME = 1 << (ARMMMUIdx_##NAME & ARM_MMU_IDX_COREIDX_MASK)
2975 typedef enum ARMMMUIdxBit {
2976 TO_CORE_BIT(E10_0),
2977 TO_CORE_BIT(E20_0),
2978 TO_CORE_BIT(E10_1),
2979 TO_CORE_BIT(E10_1_PAN),
2980 TO_CORE_BIT(E2),
2981 TO_CORE_BIT(E20_2),
2982 TO_CORE_BIT(E20_2_PAN),
2983 TO_CORE_BIT(SE10_0),
2984 TO_CORE_BIT(SE20_0),
2985 TO_CORE_BIT(SE10_1),
2986 TO_CORE_BIT(SE20_2),
2987 TO_CORE_BIT(SE10_1_PAN),
2988 TO_CORE_BIT(SE20_2_PAN),
2989 TO_CORE_BIT(SE2),
2990 TO_CORE_BIT(SE3),
2992 TO_CORE_BIT(MUser),
2993 TO_CORE_BIT(MPriv),
2994 TO_CORE_BIT(MUserNegPri),
2995 TO_CORE_BIT(MPrivNegPri),
2996 TO_CORE_BIT(MSUser),
2997 TO_CORE_BIT(MSPriv),
2998 TO_CORE_BIT(MSUserNegPri),
2999 TO_CORE_BIT(MSPrivNegPri),
3000 } ARMMMUIdxBit;
3002 #undef TO_CORE_BIT
3004 #define MMU_USER_IDX 0
3006 /* Indexes used when registering address spaces with cpu_address_space_init */
3007 typedef enum ARMASIdx {
3008 ARMASIdx_NS = 0,
3009 ARMASIdx_S = 1,
3010 ARMASIdx_TagNS = 2,
3011 ARMASIdx_TagS = 3,
3012 } ARMASIdx;
3014 static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu)
3016 /* If all the CLIDR.Ctypem bits are 0 there are no caches, and
3017 * CSSELR is RAZ/WI.
3019 return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0;
3022 static inline bool arm_sctlr_b(CPUARMState *env)
3024 return
3025 /* We need not implement SCTLR.ITD in user-mode emulation, so
3026 * let linux-user ignore the fact that it conflicts with SCTLR_B.
3027 * This lets people run BE32 binaries with "-cpu any".
3029 #ifndef CONFIG_USER_ONLY
3030 !arm_feature(env, ARM_FEATURE_V7) &&
3031 #endif
3032 (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
3035 uint64_t arm_sctlr(CPUARMState *env, int el);
3037 static inline bool arm_cpu_data_is_big_endian_a32(CPUARMState *env,
3038 bool sctlr_b)
3040 #ifdef CONFIG_USER_ONLY
3042 * In system mode, BE32 is modelled in line with the
3043 * architecture (as word-invariant big-endianness), where loads
3044 * and stores are done little endian but from addresses which
3045 * are adjusted by XORing with the appropriate constant. So the
3046 * endianness to use for the raw data access is not affected by
3047 * SCTLR.B.
3048 * In user mode, however, we model BE32 as byte-invariant
3049 * big-endianness (because user-only code cannot tell the
3050 * difference), and so we need to use a data access endianness
3051 * that depends on SCTLR.B.
3053 if (sctlr_b) {
3054 return true;
3056 #endif
3057 /* In 32bit endianness is determined by looking at CPSR's E bit */
3058 return env->uncached_cpsr & CPSR_E;
3061 static inline bool arm_cpu_data_is_big_endian_a64(int el, uint64_t sctlr)
3063 return sctlr & (el ? SCTLR_EE : SCTLR_E0E);
3066 /* Return true if the processor is in big-endian mode. */
3067 static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
3069 if (!is_a64(env)) {
3070 return arm_cpu_data_is_big_endian_a32(env, arm_sctlr_b(env));
3071 } else {
3072 int cur_el = arm_current_el(env);
3073 uint64_t sctlr = arm_sctlr(env, cur_el);
3074 return arm_cpu_data_is_big_endian_a64(cur_el, sctlr);
3078 #include "exec/cpu-all.h"
3081 * We have more than 32-bits worth of state per TB, so we split the data
3082 * between tb->flags and tb->cs_base, which is otherwise unused for ARM.
3083 * We collect these two parts in CPUARMTBFlags where they are named
3084 * flags and flags2 respectively.
3086 * The flags that are shared between all execution modes, TBFLAG_ANY,
3087 * are stored in flags. The flags that are specific to a given mode
3088 * are stores in flags2. Since cs_base is sized on the configured
3089 * address size, flags2 always has 64-bits for A64, and a minimum of
3090 * 32-bits for A32 and M32.
3092 * The bits for 32-bit A-profile and M-profile partially overlap:
3094 * 31 23 11 10 0
3095 * +-------------+----------+----------------+
3096 * | | | TBFLAG_A32 |
3097 * | TBFLAG_AM32 | +-----+----------+
3098 * | | |TBFLAG_M32|
3099 * +-------------+----------------+----------+
3100 * 31 23 6 5 0
3102 * Unless otherwise noted, these bits are cached in env->hflags.
3104 FIELD(TBFLAG_ANY, AARCH64_STATE, 0, 1)
3105 FIELD(TBFLAG_ANY, SS_ACTIVE, 1, 1)
3106 FIELD(TBFLAG_ANY, PSTATE__SS, 2, 1) /* Not cached. */
3107 FIELD(TBFLAG_ANY, BE_DATA, 3, 1)
3108 FIELD(TBFLAG_ANY, MMUIDX, 4, 4)
3109 /* Target EL if we take a floating-point-disabled exception */
3110 FIELD(TBFLAG_ANY, FPEXC_EL, 8, 2)
3111 /* Memory operations require alignment: SCTLR_ELx.A or CCR.UNALIGN_TRP */
3112 FIELD(TBFLAG_ANY, ALIGN_MEM, 10, 1)
3113 FIELD(TBFLAG_ANY, PSTATE__IL, 11, 1)
3116 * Bit usage when in AArch32 state, both A- and M-profile.
3118 FIELD(TBFLAG_AM32, CONDEXEC, 24, 8) /* Not cached. */
3119 FIELD(TBFLAG_AM32, THUMB, 23, 1) /* Not cached. */
3122 * Bit usage when in AArch32 state, for A-profile only.
3124 FIELD(TBFLAG_A32, VECLEN, 0, 3) /* Not cached. */
3125 FIELD(TBFLAG_A32, VECSTRIDE, 3, 2) /* Not cached. */
3127 * We store the bottom two bits of the CPAR as TB flags and handle
3128 * checks on the other bits at runtime. This shares the same bits as
3129 * VECSTRIDE, which is OK as no XScale CPU has VFP.
3130 * Not cached, because VECLEN+VECSTRIDE are not cached.
3132 FIELD(TBFLAG_A32, XSCALE_CPAR, 5, 2)
3133 FIELD(TBFLAG_A32, VFPEN, 7, 1) /* Partially cached, minus FPEXC. */
3134 FIELD(TBFLAG_A32, SCTLR__B, 8, 1) /* Cannot overlap with SCTLR_B */
3135 FIELD(TBFLAG_A32, HSTR_ACTIVE, 9, 1)
3137 * Indicates whether cp register reads and writes by guest code should access
3138 * the secure or nonsecure bank of banked registers; note that this is not
3139 * the same thing as the current security state of the processor!
3141 FIELD(TBFLAG_A32, NS, 10, 1)
3144 * Bit usage when in AArch32 state, for M-profile only.
3146 /* Handler (ie not Thread) mode */
3147 FIELD(TBFLAG_M32, HANDLER, 0, 1)
3148 /* Whether we should generate stack-limit checks */
3149 FIELD(TBFLAG_M32, STACKCHECK, 1, 1)
3150 /* Set if FPCCR.LSPACT is set */
3151 FIELD(TBFLAG_M32, LSPACT, 2, 1) /* Not cached. */
3152 /* Set if we must create a new FP context */
3153 FIELD(TBFLAG_M32, NEW_FP_CTXT_NEEDED, 3, 1) /* Not cached. */
3154 /* Set if FPCCR.S does not match current security state */
3155 FIELD(TBFLAG_M32, FPCCR_S_WRONG, 4, 1) /* Not cached. */
3156 /* Set if MVE insns are definitely not predicated by VPR or LTPSIZE */
3157 FIELD(TBFLAG_M32, MVE_NO_PRED, 5, 1) /* Not cached. */
3160 * Bit usage when in AArch64 state
3162 FIELD(TBFLAG_A64, TBII, 0, 2)
3163 FIELD(TBFLAG_A64, SVEEXC_EL, 2, 2)
3164 /* The current vector length, either NVL or SVL. */
3165 FIELD(TBFLAG_A64, VL, 4, 4)
3166 FIELD(TBFLAG_A64, PAUTH_ACTIVE, 8, 1)
3167 FIELD(TBFLAG_A64, BT, 9, 1)
3168 FIELD(TBFLAG_A64, BTYPE, 10, 2) /* Not cached. */
3169 FIELD(TBFLAG_A64, TBID, 12, 2)
3170 FIELD(TBFLAG_A64, UNPRIV, 14, 1)
3171 FIELD(TBFLAG_A64, ATA, 15, 1)
3172 FIELD(TBFLAG_A64, TCMA, 16, 2)
3173 FIELD(TBFLAG_A64, MTE_ACTIVE, 18, 1)
3174 FIELD(TBFLAG_A64, MTE0_ACTIVE, 19, 1)
3175 FIELD(TBFLAG_A64, SMEEXC_EL, 20, 2)
3176 FIELD(TBFLAG_A64, PSTATE_SM, 22, 1)
3177 FIELD(TBFLAG_A64, PSTATE_ZA, 23, 1)
3180 * Helpers for using the above.
3182 #define DP_TBFLAG_ANY(DST, WHICH, VAL) \
3183 (DST.flags = FIELD_DP32(DST.flags, TBFLAG_ANY, WHICH, VAL))
3184 #define DP_TBFLAG_A64(DST, WHICH, VAL) \
3185 (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_A64, WHICH, VAL))
3186 #define DP_TBFLAG_A32(DST, WHICH, VAL) \
3187 (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_A32, WHICH, VAL))
3188 #define DP_TBFLAG_M32(DST, WHICH, VAL) \
3189 (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_M32, WHICH, VAL))
3190 #define DP_TBFLAG_AM32(DST, WHICH, VAL) \
3191 (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_AM32, WHICH, VAL))
3193 #define EX_TBFLAG_ANY(IN, WHICH) FIELD_EX32(IN.flags, TBFLAG_ANY, WHICH)
3194 #define EX_TBFLAG_A64(IN, WHICH) FIELD_EX32(IN.flags2, TBFLAG_A64, WHICH)
3195 #define EX_TBFLAG_A32(IN, WHICH) FIELD_EX32(IN.flags2, TBFLAG_A32, WHICH)
3196 #define EX_TBFLAG_M32(IN, WHICH) FIELD_EX32(IN.flags2, TBFLAG_M32, WHICH)
3197 #define EX_TBFLAG_AM32(IN, WHICH) FIELD_EX32(IN.flags2, TBFLAG_AM32, WHICH)
3200 * cpu_mmu_index:
3201 * @env: The cpu environment
3202 * @ifetch: True for code access, false for data access.
3204 * Return the core mmu index for the current translation regime.
3205 * This function is used by generic TCG code paths.
3207 static inline int cpu_mmu_index(CPUARMState *env, bool ifetch)
3209 return EX_TBFLAG_ANY(env->hflags, MMUIDX);
3213 * sve_vq
3214 * @env: the cpu context
3216 * Return the VL cached within env->hflags, in units of quadwords.
3218 static inline int sve_vq(CPUARMState *env)
3220 return EX_TBFLAG_A64(env->hflags, VL) + 1;
3223 static inline bool bswap_code(bool sctlr_b)
3225 #ifdef CONFIG_USER_ONLY
3226 /* BE8 (SCTLR.B = 0, TARGET_BIG_ENDIAN = 1) is mixed endian.
3227 * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_BIG_ENDIAN=0
3228 * would also end up as a mixed-endian mode with BE code, LE data.
3230 return
3231 #if TARGET_BIG_ENDIAN
3233 #endif
3234 sctlr_b;
3235 #else
3236 /* All code access in ARM is little endian, and there are no loaders
3237 * doing swaps that need to be reversed
3239 return 0;
3240 #endif
3243 #ifdef CONFIG_USER_ONLY
3244 static inline bool arm_cpu_bswap_data(CPUARMState *env)
3246 return
3247 #if TARGET_BIG_ENDIAN
3249 #endif
3250 arm_cpu_data_is_big_endian(env);
3252 #endif
3254 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
3255 target_ulong *cs_base, uint32_t *flags);
3257 enum {
3258 QEMU_PSCI_CONDUIT_DISABLED = 0,
3259 QEMU_PSCI_CONDUIT_SMC = 1,
3260 QEMU_PSCI_CONDUIT_HVC = 2,
3263 #ifndef CONFIG_USER_ONLY
3264 /* Return the address space index to use for a memory access */
3265 static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
3267 return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
3270 /* Return the AddressSpace to use for a memory access
3271 * (which depends on whether the access is S or NS, and whether
3272 * the board gave us a separate AddressSpace for S accesses).
3274 static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
3276 return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
3278 #endif
3281 * arm_register_pre_el_change_hook:
3282 * Register a hook function which will be called immediately before this
3283 * CPU changes exception level or mode. The hook function will be
3284 * passed a pointer to the ARMCPU and the opaque data pointer passed
3285 * to this function when the hook was registered.
3287 * Note that if a pre-change hook is called, any registered post-change hooks
3288 * are guaranteed to subsequently be called.
3290 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
3291 void *opaque);
3293 * arm_register_el_change_hook:
3294 * Register a hook function which will be called immediately after this
3295 * CPU changes exception level or mode. The hook function will be
3296 * passed a pointer to the ARMCPU and the opaque data pointer passed
3297 * to this function when the hook was registered.
3299 * Note that any registered hooks registered here are guaranteed to be called
3300 * if pre-change hooks have been.
3302 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void
3303 *opaque);
3306 * arm_rebuild_hflags:
3307 * Rebuild the cached TBFLAGS for arbitrary changed processor state.
3309 void arm_rebuild_hflags(CPUARMState *env);
3312 * aa32_vfp_dreg:
3313 * Return a pointer to the Dn register within env in 32-bit mode.
3315 static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno)
3317 return &env->vfp.zregs[regno >> 1].d[regno & 1];
3321 * aa32_vfp_qreg:
3322 * Return a pointer to the Qn register within env in 32-bit mode.
3324 static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno)
3326 return &env->vfp.zregs[regno].d[0];
3330 * aa64_vfp_qreg:
3331 * Return a pointer to the Qn register within env in 64-bit mode.
3333 static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno)
3335 return &env->vfp.zregs[regno].d[0];
3338 /* Shared between translate-sve.c and sve_helper.c. */
3339 extern const uint64_t pred_esz_masks[4];
3341 /* Helper for the macros below, validating the argument type. */
3342 static inline MemTxAttrs *typecheck_memtxattrs(MemTxAttrs *x)
3344 return x;
3348 * Lvalue macros for ARM TLB bits that we must cache in the TCG TLB.
3349 * Using these should be a bit more self-documenting than using the
3350 * generic target bits directly.
3352 #define arm_tlb_bti_gp(x) (typecheck_memtxattrs(x)->target_tlb_bit0)
3353 #define arm_tlb_mte_tagged(x) (typecheck_memtxattrs(x)->target_tlb_bit1)
3356 * AArch64 usage of the PAGE_TARGET_* bits for linux-user.
3358 #define PAGE_BTI PAGE_TARGET_1
3359 #define PAGE_MTE PAGE_TARGET_2
3361 #ifdef TARGET_TAGGED_ADDRESSES
3363 * cpu_untagged_addr:
3364 * @cs: CPU context
3365 * @x: tagged address
3367 * Remove any address tag from @x. This is explicitly related to the
3368 * linux syscall TIF_TAGGED_ADDR setting, not TBI in general.
3370 * There should be a better place to put this, but we need this in
3371 * include/exec/cpu_ldst.h, and not some place linux-user specific.
3373 static inline target_ulong cpu_untagged_addr(CPUState *cs, target_ulong x)
3375 ARMCPU *cpu = ARM_CPU(cs);
3376 if (cpu->env.tagged_addr_enable) {
3378 * TBI is enabled for userspace but not kernelspace addresses.
3379 * Only clear the tag if bit 55 is clear.
3381 x &= sextract64(x, 0, 56);
3383 return x;
3385 #endif
3388 * Naming convention for isar_feature functions:
3389 * Functions which test 32-bit ID registers should have _aa32_ in
3390 * their name. Functions which test 64-bit ID registers should have
3391 * _aa64_ in their name. These must only be used in code where we
3392 * know for certain that the CPU has AArch32 or AArch64 respectively
3393 * or where the correct answer for a CPU which doesn't implement that
3394 * CPU state is "false" (eg when generating A32 or A64 code, if adding
3395 * system registers that are specific to that CPU state, for "should
3396 * we let this system register bit be set" tests where the 32-bit
3397 * flavour of the register doesn't have the bit, and so on).
3398 * Functions which simply ask "does this feature exist at all" have
3399 * _any_ in their name, and always return the logical OR of the _aa64_
3400 * and the _aa32_ function.
3404 * 32-bit feature tests via id registers.
3406 static inline bool isar_feature_aa32_thumb_div(const ARMISARegisters *id)
3408 return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) != 0;
3411 static inline bool isar_feature_aa32_arm_div(const ARMISARegisters *id)
3413 return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) > 1;
3416 static inline bool isar_feature_aa32_lob(const ARMISARegisters *id)
3418 /* (M-profile) low-overhead loops and branch future */
3419 return FIELD_EX32(id->id_isar0, ID_ISAR0, CMPBRANCH) >= 3;
3422 static inline bool isar_feature_aa32_jazelle(const ARMISARegisters *id)
3424 return FIELD_EX32(id->id_isar1, ID_ISAR1, JAZELLE) != 0;
3427 static inline bool isar_feature_aa32_aes(const ARMISARegisters *id)
3429 return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) != 0;
3432 static inline bool isar_feature_aa32_pmull(const ARMISARegisters *id)
3434 return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) > 1;
3437 static inline bool isar_feature_aa32_sha1(const ARMISARegisters *id)
3439 return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA1) != 0;
3442 static inline bool isar_feature_aa32_sha2(const ARMISARegisters *id)
3444 return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA2) != 0;
3447 static inline bool isar_feature_aa32_crc32(const ARMISARegisters *id)
3449 return FIELD_EX32(id->id_isar5, ID_ISAR5, CRC32) != 0;
3452 static inline bool isar_feature_aa32_rdm(const ARMISARegisters *id)
3454 return FIELD_EX32(id->id_isar5, ID_ISAR5, RDM) != 0;
3457 static inline bool isar_feature_aa32_vcma(const ARMISARegisters *id)
3459 return FIELD_EX32(id->id_isar5, ID_ISAR5, VCMA) != 0;
3462 static inline bool isar_feature_aa32_jscvt(const ARMISARegisters *id)
3464 return FIELD_EX32(id->id_isar6, ID_ISAR6, JSCVT) != 0;
3467 static inline bool isar_feature_aa32_dp(const ARMISARegisters *id)
3469 return FIELD_EX32(id->id_isar6, ID_ISAR6, DP) != 0;
3472 static inline bool isar_feature_aa32_fhm(const ARMISARegisters *id)
3474 return FIELD_EX32(id->id_isar6, ID_ISAR6, FHM) != 0;
3477 static inline bool isar_feature_aa32_sb(const ARMISARegisters *id)
3479 return FIELD_EX32(id->id_isar6, ID_ISAR6, SB) != 0;
3482 static inline bool isar_feature_aa32_predinv(const ARMISARegisters *id)
3484 return FIELD_EX32(id->id_isar6, ID_ISAR6, SPECRES) != 0;
3487 static inline bool isar_feature_aa32_bf16(const ARMISARegisters *id)
3489 return FIELD_EX32(id->id_isar6, ID_ISAR6, BF16) != 0;
3492 static inline bool isar_feature_aa32_i8mm(const ARMISARegisters *id)
3494 return FIELD_EX32(id->id_isar6, ID_ISAR6, I8MM) != 0;
3497 static inline bool isar_feature_aa32_ras(const ARMISARegisters *id)
3499 return FIELD_EX32(id->id_pfr0, ID_PFR0, RAS) != 0;
3502 static inline bool isar_feature_aa32_mprofile(const ARMISARegisters *id)
3504 return FIELD_EX32(id->id_pfr1, ID_PFR1, MPROGMOD) != 0;
3507 static inline bool isar_feature_aa32_m_sec_state(const ARMISARegisters *id)
3510 * Return true if M-profile state handling insns
3511 * (VSCCLRM, CLRM, FPCTX access insns) are implemented
3513 return FIELD_EX32(id->id_pfr1, ID_PFR1, SECURITY) >= 3;
3516 static inline bool isar_feature_aa32_fp16_arith(const ARMISARegisters *id)
3518 /* Sadly this is encoded differently for A-profile and M-profile */
3519 if (isar_feature_aa32_mprofile(id)) {
3520 return FIELD_EX32(id->mvfr1, MVFR1, FP16) > 0;
3521 } else {
3522 return FIELD_EX32(id->mvfr1, MVFR1, FPHP) >= 3;
3526 static inline bool isar_feature_aa32_mve(const ARMISARegisters *id)
3529 * Return true if MVE is supported (either integer or floating point).
3530 * We must check for M-profile as the MVFR1 field means something
3531 * else for A-profile.
3533 return isar_feature_aa32_mprofile(id) &&
3534 FIELD_EX32(id->mvfr1, MVFR1, MVE) > 0;
3537 static inline bool isar_feature_aa32_mve_fp(const ARMISARegisters *id)
3540 * Return true if MVE is supported (either integer or floating point).
3541 * We must check for M-profile as the MVFR1 field means something
3542 * else for A-profile.
3544 return isar_feature_aa32_mprofile(id) &&
3545 FIELD_EX32(id->mvfr1, MVFR1, MVE) >= 2;
3548 static inline bool isar_feature_aa32_vfp_simd(const ARMISARegisters *id)
3551 * Return true if either VFP or SIMD is implemented.
3552 * In this case, a minimum of VFP w/ D0-D15.
3554 return FIELD_EX32(id->mvfr0, MVFR0, SIMDREG) > 0;
3557 static inline bool isar_feature_aa32_simd_r32(const ARMISARegisters *id)
3559 /* Return true if D16-D31 are implemented */
3560 return FIELD_EX32(id->mvfr0, MVFR0, SIMDREG) >= 2;
3563 static inline bool isar_feature_aa32_fpshvec(const ARMISARegisters *id)
3565 return FIELD_EX32(id->mvfr0, MVFR0, FPSHVEC) > 0;
3568 static inline bool isar_feature_aa32_fpsp_v2(const ARMISARegisters *id)
3570 /* Return true if CPU supports single precision floating point, VFPv2 */
3571 return FIELD_EX32(id->mvfr0, MVFR0, FPSP) > 0;
3574 static inline bool isar_feature_aa32_fpsp_v3(const ARMISARegisters *id)
3576 /* Return true if CPU supports single precision floating point, VFPv3 */
3577 return FIELD_EX32(id->mvfr0, MVFR0, FPSP) >= 2;
3580 static inline bool isar_feature_aa32_fpdp_v2(const ARMISARegisters *id)
3582 /* Return true if CPU supports double precision floating point, VFPv2 */
3583 return FIELD_EX32(id->mvfr0, MVFR0, FPDP) > 0;
3586 static inline bool isar_feature_aa32_fpdp_v3(const ARMISARegisters *id)
3588 /* Return true if CPU supports double precision floating point, VFPv3 */
3589 return FIELD_EX32(id->mvfr0, MVFR0, FPDP) >= 2;
3592 static inline bool isar_feature_aa32_vfp(const ARMISARegisters *id)
3594 return isar_feature_aa32_fpsp_v2(id) || isar_feature_aa32_fpdp_v2(id);
3598 * We always set the FP and SIMD FP16 fields to indicate identical
3599 * levels of support (assuming SIMD is implemented at all), so
3600 * we only need one set of accessors.
3602 static inline bool isar_feature_aa32_fp16_spconv(const ARMISARegisters *id)
3604 return FIELD_EX32(id->mvfr1, MVFR1, FPHP) > 0;
3607 static inline bool isar_feature_aa32_fp16_dpconv(const ARMISARegisters *id)
3609 return FIELD_EX32(id->mvfr1, MVFR1, FPHP) > 1;
3613 * Note that this ID register field covers both VFP and Neon FMAC,
3614 * so should usually be tested in combination with some other
3615 * check that confirms the presence of whichever of VFP or Neon is
3616 * relevant, to avoid accidentally enabling a Neon feature on
3617 * a VFP-no-Neon core or vice-versa.
3619 static inline bool isar_feature_aa32_simdfmac(const ARMISARegisters *id)
3621 return FIELD_EX32(id->mvfr1, MVFR1, SIMDFMAC) != 0;
3624 static inline bool isar_feature_aa32_vsel(const ARMISARegisters *id)
3626 return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 1;
3629 static inline bool isar_feature_aa32_vcvt_dr(const ARMISARegisters *id)
3631 return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 2;
3634 static inline bool isar_feature_aa32_vrint(const ARMISARegisters *id)
3636 return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 3;
3639 static inline bool isar_feature_aa32_vminmaxnm(const ARMISARegisters *id)
3641 return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 4;
3644 static inline bool isar_feature_aa32_pxn(const ARMISARegisters *id)
3646 return FIELD_EX32(id->id_mmfr0, ID_MMFR0, VMSA) >= 4;
3649 static inline bool isar_feature_aa32_pan(const ARMISARegisters *id)
3651 return FIELD_EX32(id->id_mmfr3, ID_MMFR3, PAN) != 0;
3654 static inline bool isar_feature_aa32_ats1e1(const ARMISARegisters *id)
3656 return FIELD_EX32(id->id_mmfr3, ID_MMFR3, PAN) >= 2;
3659 static inline bool isar_feature_aa32_pmu_8_1(const ARMISARegisters *id)
3661 /* 0xf means "non-standard IMPDEF PMU" */
3662 return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 4 &&
3663 FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf;
3666 static inline bool isar_feature_aa32_pmu_8_4(const ARMISARegisters *id)
3668 /* 0xf means "non-standard IMPDEF PMU" */
3669 return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 5 &&
3670 FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf;
3673 static inline bool isar_feature_aa32_hpd(const ARMISARegisters *id)
3675 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, HPDS) != 0;
3678 static inline bool isar_feature_aa32_ac2(const ARMISARegisters *id)
3680 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, AC2) != 0;
3683 static inline bool isar_feature_aa32_ccidx(const ARMISARegisters *id)
3685 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, CCIDX) != 0;
3688 static inline bool isar_feature_aa32_tts2uxn(const ARMISARegisters *id)
3690 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, XNX) != 0;
3693 static inline bool isar_feature_aa32_dit(const ARMISARegisters *id)
3695 return FIELD_EX32(id->id_pfr0, ID_PFR0, DIT) != 0;
3698 static inline bool isar_feature_aa32_ssbs(const ARMISARegisters *id)
3700 return FIELD_EX32(id->id_pfr2, ID_PFR2, SSBS) != 0;
3703 static inline bool isar_feature_aa32_debugv8p2(const ARMISARegisters *id)
3705 return FIELD_EX32(id->id_dfr0, ID_DFR0, COPDBG) >= 8;
3709 * 64-bit feature tests via id registers.
3711 static inline bool isar_feature_aa64_aes(const ARMISARegisters *id)
3713 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) != 0;
3716 static inline bool isar_feature_aa64_pmull(const ARMISARegisters *id)
3718 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) > 1;
3721 static inline bool isar_feature_aa64_sha1(const ARMISARegisters *id)
3723 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA1) != 0;
3726 static inline bool isar_feature_aa64_sha256(const ARMISARegisters *id)
3728 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) != 0;
3731 static inline bool isar_feature_aa64_sha512(const ARMISARegisters *id)
3733 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) > 1;
3736 static inline bool isar_feature_aa64_crc32(const ARMISARegisters *id)
3738 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, CRC32) != 0;
3741 static inline bool isar_feature_aa64_atomics(const ARMISARegisters *id)
3743 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, ATOMIC) != 0;
3746 static inline bool isar_feature_aa64_rdm(const ARMISARegisters *id)
3748 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RDM) != 0;
3751 static inline bool isar_feature_aa64_sha3(const ARMISARegisters *id)
3753 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA3) != 0;
3756 static inline bool isar_feature_aa64_sm3(const ARMISARegisters *id)
3758 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM3) != 0;
3761 static inline bool isar_feature_aa64_sm4(const ARMISARegisters *id)
3763 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM4) != 0;
3766 static inline bool isar_feature_aa64_dp(const ARMISARegisters *id)
3768 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, DP) != 0;
3771 static inline bool isar_feature_aa64_fhm(const ARMISARegisters *id)
3773 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, FHM) != 0;
3776 static inline bool isar_feature_aa64_condm_4(const ARMISARegisters *id)
3778 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) != 0;
3781 static inline bool isar_feature_aa64_condm_5(const ARMISARegisters *id)
3783 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) >= 2;
3786 static inline bool isar_feature_aa64_rndr(const ARMISARegisters *id)
3788 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RNDR) != 0;
3791 static inline bool isar_feature_aa64_jscvt(const ARMISARegisters *id)
3793 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, JSCVT) != 0;
3796 static inline bool isar_feature_aa64_fcma(const ARMISARegisters *id)
3798 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FCMA) != 0;
3801 static inline bool isar_feature_aa64_pauth(const ARMISARegisters *id)
3804 * Return true if any form of pauth is enabled, as this
3805 * predicate controls migration of the 128-bit keys.
3807 return (id->id_aa64isar1 &
3808 (FIELD_DP64(0, ID_AA64ISAR1, APA, 0xf) |
3809 FIELD_DP64(0, ID_AA64ISAR1, API, 0xf) |
3810 FIELD_DP64(0, ID_AA64ISAR1, GPA, 0xf) |
3811 FIELD_DP64(0, ID_AA64ISAR1, GPI, 0xf))) != 0;
3814 static inline bool isar_feature_aa64_pauth_arch(const ARMISARegisters *id)
3817 * Return true if pauth is enabled with the architected QARMA algorithm.
3818 * QEMU will always set APA+GPA to the same value.
3820 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, APA) != 0;
3823 static inline bool isar_feature_aa64_tlbirange(const ARMISARegisters *id)
3825 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TLB) == 2;
3828 static inline bool isar_feature_aa64_tlbios(const ARMISARegisters *id)
3830 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TLB) != 0;
3833 static inline bool isar_feature_aa64_sb(const ARMISARegisters *id)
3835 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SB) != 0;
3838 static inline bool isar_feature_aa64_predinv(const ARMISARegisters *id)
3840 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SPECRES) != 0;
3843 static inline bool isar_feature_aa64_frint(const ARMISARegisters *id)
3845 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FRINTTS) != 0;
3848 static inline bool isar_feature_aa64_dcpop(const ARMISARegisters *id)
3850 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) != 0;
3853 static inline bool isar_feature_aa64_dcpodp(const ARMISARegisters *id)
3855 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) >= 2;
3858 static inline bool isar_feature_aa64_bf16(const ARMISARegisters *id)
3860 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, BF16) != 0;
3863 static inline bool isar_feature_aa64_fp_simd(const ARMISARegisters *id)
3865 /* We always set the AdvSIMD and FP fields identically. */
3866 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) != 0xf;
3869 static inline bool isar_feature_aa64_fp16(const ARMISARegisters *id)
3871 /* We always set the AdvSIMD and FP fields identically wrt FP16. */
3872 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1;
3875 static inline bool isar_feature_aa64_aa32(const ARMISARegisters *id)
3877 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL0) >= 2;
3880 static inline bool isar_feature_aa64_aa32_el1(const ARMISARegisters *id)
3882 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL1) >= 2;
3885 static inline bool isar_feature_aa64_aa32_el2(const ARMISARegisters *id)
3887 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL2) >= 2;
3890 static inline bool isar_feature_aa64_ras(const ARMISARegisters *id)
3892 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, RAS) != 0;
3895 static inline bool isar_feature_aa64_doublefault(const ARMISARegisters *id)
3897 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, RAS) >= 2;
3900 static inline bool isar_feature_aa64_sve(const ARMISARegisters *id)
3902 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SVE) != 0;
3905 static inline bool isar_feature_aa64_sel2(const ARMISARegisters *id)
3907 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SEL2) != 0;
3910 static inline bool isar_feature_aa64_vh(const ARMISARegisters *id)
3912 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, VH) != 0;
3915 static inline bool isar_feature_aa64_lor(const ARMISARegisters *id)
3917 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, LO) != 0;
3920 static inline bool isar_feature_aa64_pan(const ARMISARegisters *id)
3922 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) != 0;
3925 static inline bool isar_feature_aa64_ats1e1(const ARMISARegisters *id)
3927 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) >= 2;
3930 static inline bool isar_feature_aa64_hcx(const ARMISARegisters *id)
3932 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, HCX) != 0;
3935 static inline bool isar_feature_aa64_uao(const ARMISARegisters *id)
3937 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, UAO) != 0;
3940 static inline bool isar_feature_aa64_st(const ARMISARegisters *id)
3942 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, ST) != 0;
3945 static inline bool isar_feature_aa64_fwb(const ARMISARegisters *id)
3947 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, FWB) != 0;
3950 static inline bool isar_feature_aa64_ids(const ARMISARegisters *id)
3952 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, IDS) != 0;
3955 static inline bool isar_feature_aa64_bti(const ARMISARegisters *id)
3957 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, BT) != 0;
3960 static inline bool isar_feature_aa64_mte_insn_reg(const ARMISARegisters *id)
3962 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, MTE) != 0;
3965 static inline bool isar_feature_aa64_mte(const ARMISARegisters *id)
3967 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, MTE) >= 2;
3970 static inline bool isar_feature_aa64_sme(const ARMISARegisters *id)
3972 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, SME) != 0;
3975 static inline bool isar_feature_aa64_pmu_8_1(const ARMISARegisters *id)
3977 return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 4 &&
3978 FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf;
3981 static inline bool isar_feature_aa64_pmu_8_4(const ARMISARegisters *id)
3983 return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 5 &&
3984 FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf;
3987 static inline bool isar_feature_aa64_rcpc_8_3(const ARMISARegisters *id)
3989 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, LRCPC) != 0;
3992 static inline bool isar_feature_aa64_rcpc_8_4(const ARMISARegisters *id)
3994 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, LRCPC) >= 2;
3997 static inline bool isar_feature_aa64_i8mm(const ARMISARegisters *id)
3999 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, I8MM) != 0;
4002 static inline bool isar_feature_aa64_tgran4_lpa2(const ARMISARegisters *id)
4004 return FIELD_SEX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN4) >= 1;
4007 static inline bool isar_feature_aa64_tgran4_2_lpa2(const ARMISARegisters *id)
4009 unsigned t = FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN4_2);
4010 return t >= 3 || (t == 0 && isar_feature_aa64_tgran4_lpa2(id));
4013 static inline bool isar_feature_aa64_tgran16_lpa2(const ARMISARegisters *id)
4015 return FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN16) >= 2;
4018 static inline bool isar_feature_aa64_tgran16_2_lpa2(const ARMISARegisters *id)
4020 unsigned t = FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN16_2);
4021 return t >= 3 || (t == 0 && isar_feature_aa64_tgran16_lpa2(id));
4024 static inline bool isar_feature_aa64_ccidx(const ARMISARegisters *id)
4026 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, CCIDX) != 0;
4029 static inline bool isar_feature_aa64_lva(const ARMISARegisters *id)
4031 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, VARANGE) != 0;
4034 static inline bool isar_feature_aa64_tts2uxn(const ARMISARegisters *id)
4036 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, XNX) != 0;
4039 static inline bool isar_feature_aa64_dit(const ARMISARegisters *id)
4041 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, DIT) != 0;
4044 static inline bool isar_feature_aa64_scxtnum(const ARMISARegisters *id)
4046 int key = FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, CSV2);
4047 if (key >= 2) {
4048 return true; /* FEAT_CSV2_2 */
4050 if (key == 1) {
4051 key = FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, CSV2_FRAC);
4052 return key >= 2; /* FEAT_CSV2_1p2 */
4054 return false;
4057 static inline bool isar_feature_aa64_ssbs(const ARMISARegisters *id)
4059 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, SSBS) != 0;
4062 static inline bool isar_feature_aa64_debugv8p2(const ARMISARegisters *id)
4064 return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, DEBUGVER) >= 8;
4067 static inline bool isar_feature_aa64_sve2(const ARMISARegisters *id)
4069 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, SVEVER) != 0;
4072 static inline bool isar_feature_aa64_sve2_aes(const ARMISARegisters *id)
4074 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, AES) != 0;
4077 static inline bool isar_feature_aa64_sve2_pmull128(const ARMISARegisters *id)
4079 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, AES) >= 2;
4082 static inline bool isar_feature_aa64_sve2_bitperm(const ARMISARegisters *id)
4084 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, BITPERM) != 0;
4087 static inline bool isar_feature_aa64_sve_bf16(const ARMISARegisters *id)
4089 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, BFLOAT16) != 0;
4092 static inline bool isar_feature_aa64_sve2_sha3(const ARMISARegisters *id)
4094 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, SHA3) != 0;
4097 static inline bool isar_feature_aa64_sve2_sm4(const ARMISARegisters *id)
4099 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, SM4) != 0;
4102 static inline bool isar_feature_aa64_sve_i8mm(const ARMISARegisters *id)
4104 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, I8MM) != 0;
4107 static inline bool isar_feature_aa64_sve_f32mm(const ARMISARegisters *id)
4109 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, F32MM) != 0;
4112 static inline bool isar_feature_aa64_sve_f64mm(const ARMISARegisters *id)
4114 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, F64MM) != 0;
4117 static inline bool isar_feature_aa64_sme_f64f64(const ARMISARegisters *id)
4119 return FIELD_EX64(id->id_aa64smfr0, ID_AA64SMFR0, F64F64);
4122 static inline bool isar_feature_aa64_sme_i16i64(const ARMISARegisters *id)
4124 return FIELD_EX64(id->id_aa64smfr0, ID_AA64SMFR0, I16I64) == 0xf;
4127 static inline bool isar_feature_aa64_sme_fa64(const ARMISARegisters *id)
4129 return FIELD_EX64(id->id_aa64smfr0, ID_AA64SMFR0, FA64);
4133 * Feature tests for "does this exist in either 32-bit or 64-bit?"
4135 static inline bool isar_feature_any_fp16(const ARMISARegisters *id)
4137 return isar_feature_aa64_fp16(id) || isar_feature_aa32_fp16_arith(id);
4140 static inline bool isar_feature_any_predinv(const ARMISARegisters *id)
4142 return isar_feature_aa64_predinv(id) || isar_feature_aa32_predinv(id);
4145 static inline bool isar_feature_any_pmu_8_1(const ARMISARegisters *id)
4147 return isar_feature_aa64_pmu_8_1(id) || isar_feature_aa32_pmu_8_1(id);
4150 static inline bool isar_feature_any_pmu_8_4(const ARMISARegisters *id)
4152 return isar_feature_aa64_pmu_8_4(id) || isar_feature_aa32_pmu_8_4(id);
4155 static inline bool isar_feature_any_ccidx(const ARMISARegisters *id)
4157 return isar_feature_aa64_ccidx(id) || isar_feature_aa32_ccidx(id);
4160 static inline bool isar_feature_any_tts2uxn(const ARMISARegisters *id)
4162 return isar_feature_aa64_tts2uxn(id) || isar_feature_aa32_tts2uxn(id);
4165 static inline bool isar_feature_any_debugv8p2(const ARMISARegisters *id)
4167 return isar_feature_aa64_debugv8p2(id) || isar_feature_aa32_debugv8p2(id);
4170 static inline bool isar_feature_any_ras(const ARMISARegisters *id)
4172 return isar_feature_aa64_ras(id) || isar_feature_aa32_ras(id);
4176 * Forward to the above feature tests given an ARMCPU pointer.
4178 #define cpu_isar_feature(name, cpu) \
4179 ({ ARMCPU *cpu_ = (cpu); isar_feature_##name(&cpu_->isar); })
4181 #endif