2 * MIPS internal definitions and helpers
4 * This work is licensed under the terms of the GNU GPL, version 2 or later.
5 * See the COPYING file in the top-level directory.
8 #ifndef MIPS_INTERNAL_H
9 #define MIPS_INTERNAL_H
11 #include "exec/memattrs.h"
13 #include "tcg/tcg-internal.h"
17 * MMU types, the first four entries have the same layout as the
22 MMU_TYPE_R4000
= 1, /* Standard TLB */
23 MMU_TYPE_BAT
= 2, /* Block Address Translation */
24 MMU_TYPE_FMT
= 3, /* Fixed Mapping */
25 MMU_TYPE_DVF
= 4, /* Dual VTLB and FTLB */
39 int32_t CP0_Config4_rw_bitmask
;
41 int32_t CP0_Config5_rw_bitmask
;
43 int32_t CP0_Config6_rw_bitmask
;
45 int32_t CP0_Config7_rw_bitmask
;
46 target_ulong CP0_LLAddr_rw_bitmask
;
50 int32_t CP0_Status_rw_bitmask
;
51 int32_t CP0_TCStatus_rw_bitmask
;
54 int32_t CP1_fcr31_rw_bitmask
;
59 int32_t CP0_SRSConf0_rw_bitmask
;
61 int32_t CP0_SRSConf1_rw_bitmask
;
63 int32_t CP0_SRSConf2_rw_bitmask
;
65 int32_t CP0_SRSConf3_rw_bitmask
;
67 int32_t CP0_SRSConf4_rw_bitmask
;
69 int32_t CP0_PageGrain_rw_bitmask
;
70 int32_t CP0_PageGrain
;
71 target_ulong CP0_EBaseWG_rw_bitmask
;
73 enum mips_mmu_types mmu_type
;
77 extern const char regnames
[32][4];
78 extern const char fregnames
[32][4];
80 extern const struct mips_def_t mips_defs
[];
81 extern const int mips_defs_number
;
83 bool mips_cpu_exec_interrupt(CPUState
*cpu
, int int_req
);
84 hwaddr
mips_cpu_get_phys_page_debug(CPUState
*cpu
, vaddr addr
);
85 int mips_cpu_gdb_read_register(CPUState
*cpu
, GByteArray
*buf
, int reg
);
86 int mips_cpu_gdb_write_register(CPUState
*cpu
, uint8_t *buf
, int reg
);
87 void mips_cpu_do_unaligned_access(CPUState
*cpu
, vaddr addr
,
88 MMUAccessType access_type
,
89 int mmu_idx
, uintptr_t retaddr
);
91 #if !defined(CONFIG_USER_ONLY)
93 typedef struct r4k_tlb_t r4k_tlb_t
;
110 unsigned int EHINV
:1;
114 struct CPUMIPSTLBContext
{
117 int (*map_address
)(struct CPUMIPSState
*env
, hwaddr
*physical
, int *prot
,
118 target_ulong address
, MMUAccessType access_type
);
119 void (*helper_tlbwi
)(struct CPUMIPSState
*env
);
120 void (*helper_tlbwr
)(struct CPUMIPSState
*env
);
121 void (*helper_tlbp
)(struct CPUMIPSState
*env
);
122 void (*helper_tlbr
)(struct CPUMIPSState
*env
);
123 void (*helper_tlbinv
)(struct CPUMIPSState
*env
);
124 void (*helper_tlbinvf
)(struct CPUMIPSState
*env
);
127 r4k_tlb_t tlb
[MIPS_TLB_MAX
];
132 int no_mmu_map_address(CPUMIPSState
*env
, hwaddr
*physical
, int *prot
,
133 target_ulong address
, MMUAccessType access_type
);
134 int fixed_mmu_map_address(CPUMIPSState
*env
, hwaddr
*physical
, int *prot
,
135 target_ulong address
, MMUAccessType access_type
);
136 int r4k_map_address(CPUMIPSState
*env
, hwaddr
*physical
, int *prot
,
137 target_ulong address
, MMUAccessType access_type
);
138 void r4k_helper_tlbwi(CPUMIPSState
*env
);
139 void r4k_helper_tlbwr(CPUMIPSState
*env
);
140 void r4k_helper_tlbp(CPUMIPSState
*env
);
141 void r4k_helper_tlbr(CPUMIPSState
*env
);
142 void r4k_helper_tlbinv(CPUMIPSState
*env
);
143 void r4k_helper_tlbinvf(CPUMIPSState
*env
);
144 void r4k_invalidate_tlb(CPUMIPSState
*env
, int idx
, int use_extra
);
145 uint32_t cpu_mips_get_random(CPUMIPSState
*env
);
147 void mips_cpu_do_transaction_failed(CPUState
*cs
, hwaddr physaddr
,
148 vaddr addr
, unsigned size
,
149 MMUAccessType access_type
,
150 int mmu_idx
, MemTxAttrs attrs
,
151 MemTxResult response
, uintptr_t retaddr
);
152 hwaddr
cpu_mips_translate_address(CPUMIPSState
*env
, target_ulong address
,
153 MMUAccessType access_type
, uintptr_t retaddr
);
156 #define cpu_signal_handler cpu_mips_signal_handler
158 #ifndef CONFIG_USER_ONLY
159 extern const VMStateDescription vmstate_mips_cpu
;
162 static inline bool cpu_mips_hw_interrupts_enabled(CPUMIPSState
*env
)
164 return (env
->CP0_Status
& (1 << CP0St_IE
)) &&
165 !(env
->CP0_Status
& (1 << CP0St_EXL
)) &&
166 !(env
->CP0_Status
& (1 << CP0St_ERL
)) &&
167 !(env
->hflags
& MIPS_HFLAG_DM
) &&
169 * Note that the TCStatus IXMT field is initialized to zero,
170 * and only MT capable cores can set it to one. So we don't
171 * need to check for MT capabilities here.
173 !(env
->active_tc
.CP0_TCStatus
& (1 << CP0TCSt_IXMT
));
176 /* Check if there is pending and not masked out interrupt */
177 static inline bool cpu_mips_hw_interrupts_pending(CPUMIPSState
*env
)
183 pending
= env
->CP0_Cause
& CP0Ca_IP_mask
;
184 status
= env
->CP0_Status
& CP0Ca_IP_mask
;
186 if (env
->CP0_Config3
& (1 << CP0C3_VEIC
)) {
188 * A MIPS configured with a vectorizing external interrupt controller
189 * will feed a vector into the Cause pending lines. The core treats
190 * the status lines as a vector level, not as individual masks.
192 r
= pending
> status
;
195 * A MIPS configured with compatibility or VInt (Vectored Interrupts)
196 * treats the pending lines as individual interrupt lines, the status
197 * lines are individual masks.
199 r
= (pending
& status
) != 0;
204 void mips_tcg_init(void);
206 void msa_reset(CPUMIPSState
*env
);
209 uint32_t cpu_mips_get_count(CPUMIPSState
*env
);
210 void cpu_mips_store_count(CPUMIPSState
*env
, uint32_t value
);
211 void cpu_mips_store_compare(CPUMIPSState
*env
, uint32_t value
);
212 void cpu_mips_start_count(CPUMIPSState
*env
);
213 void cpu_mips_stop_count(CPUMIPSState
*env
);
216 void mmu_init(CPUMIPSState
*env
, const mips_def_t
*def
);
219 void update_pagemask(CPUMIPSState
*env
, target_ulong arg1
, int32_t *pagemask
);
221 static inline void mips_env_set_pc(CPUMIPSState
*env
, target_ulong value
)
223 env
->active_tc
.PC
= value
& ~(target_ulong
)1;
225 env
->hflags
|= MIPS_HFLAG_M16
;
227 env
->hflags
&= ~(MIPS_HFLAG_M16
);
231 static inline void restore_pamask(CPUMIPSState
*env
)
233 if (env
->hflags
& MIPS_HFLAG_ELPA
) {
234 env
->PAMask
= (1ULL << env
->PABITS
) - 1;
236 env
->PAMask
= PAMASK_BASE
;
240 static inline int mips_vpe_active(CPUMIPSState
*env
)
244 /* Check that the VPE is enabled. */
245 if (!(env
->mvp
->CP0_MVPControl
& (1 << CP0MVPCo_EVP
))) {
248 /* Check that the VPE is activated. */
249 if (!(env
->CP0_VPEConf0
& (1 << CP0VPEC0_VPA
))) {
254 * Now verify that there are active thread contexts in the VPE.
256 * This assumes the CPU model will internally reschedule threads
257 * if the active one goes to sleep. If there are no threads available
258 * the active one will be in a sleeping state, and we can turn off
261 if (!(env
->active_tc
.CP0_TCStatus
& (1 << CP0TCSt_A
))) {
262 /* TC is not activated. */
265 if (env
->active_tc
.CP0_TCHalt
& 1) {
266 /* TC is in halt state. */
273 static inline int mips_vp_active(CPUMIPSState
*env
)
275 CPUState
*other_cs
= first_cpu
;
277 /* Check if the VP disabled other VPs (which means the VP is enabled) */
278 if ((env
->CP0_VPControl
>> CP0VPCtl_DIS
) & 1) {
282 /* Check if the virtual processor is disabled due to a DVP */
283 CPU_FOREACH(other_cs
) {
284 MIPSCPU
*other_cpu
= MIPS_CPU(other_cs
);
285 if ((&other_cpu
->env
!= env
) &&
286 ((other_cpu
->env
.CP0_VPControl
>> CP0VPCtl_DIS
) & 1)) {
293 static inline void compute_hflags(CPUMIPSState
*env
)
295 env
->hflags
&= ~(MIPS_HFLAG_COP1X
| MIPS_HFLAG_64
| MIPS_HFLAG_CP0
|
296 MIPS_HFLAG_F64
| MIPS_HFLAG_FPU
| MIPS_HFLAG_KSU
|
297 MIPS_HFLAG_AWRAP
| MIPS_HFLAG_DSP
| MIPS_HFLAG_DSP_R2
|
298 MIPS_HFLAG_DSP_R3
| MIPS_HFLAG_SBRI
| MIPS_HFLAG_MSA
|
299 MIPS_HFLAG_FRE
| MIPS_HFLAG_ELPA
| MIPS_HFLAG_ERL
);
300 if (env
->CP0_Status
& (1 << CP0St_ERL
)) {
301 env
->hflags
|= MIPS_HFLAG_ERL
;
303 if (!(env
->CP0_Status
& (1 << CP0St_EXL
)) &&
304 !(env
->CP0_Status
& (1 << CP0St_ERL
)) &&
305 !(env
->hflags
& MIPS_HFLAG_DM
)) {
306 env
->hflags
|= (env
->CP0_Status
>> CP0St_KSU
) &
309 #if defined(TARGET_MIPS64)
310 if ((env
->insn_flags
& ISA_MIPS3
) &&
311 (((env
->hflags
& MIPS_HFLAG_KSU
) != MIPS_HFLAG_UM
) ||
312 (env
->CP0_Status
& (1 << CP0St_PX
)) ||
313 (env
->CP0_Status
& (1 << CP0St_UX
)))) {
314 env
->hflags
|= MIPS_HFLAG_64
;
317 if (!(env
->insn_flags
& ISA_MIPS3
)) {
318 env
->hflags
|= MIPS_HFLAG_AWRAP
;
319 } else if (((env
->hflags
& MIPS_HFLAG_KSU
) == MIPS_HFLAG_UM
) &&
320 !(env
->CP0_Status
& (1 << CP0St_UX
))) {
321 env
->hflags
|= MIPS_HFLAG_AWRAP
;
322 } else if (env
->insn_flags
& ISA_MIPS_R6
) {
323 /* Address wrapping for Supervisor and Kernel is specified in R6 */
324 if ((((env
->hflags
& MIPS_HFLAG_KSU
) == MIPS_HFLAG_SM
) &&
325 !(env
->CP0_Status
& (1 << CP0St_SX
))) ||
326 (((env
->hflags
& MIPS_HFLAG_KSU
) == MIPS_HFLAG_KM
) &&
327 !(env
->CP0_Status
& (1 << CP0St_KX
)))) {
328 env
->hflags
|= MIPS_HFLAG_AWRAP
;
332 if (((env
->CP0_Status
& (1 << CP0St_CU0
)) &&
333 !(env
->insn_flags
& ISA_MIPS_R6
)) ||
334 !(env
->hflags
& MIPS_HFLAG_KSU
)) {
335 env
->hflags
|= MIPS_HFLAG_CP0
;
337 if (env
->CP0_Status
& (1 << CP0St_CU1
)) {
338 env
->hflags
|= MIPS_HFLAG_FPU
;
340 if (env
->CP0_Status
& (1 << CP0St_FR
)) {
341 env
->hflags
|= MIPS_HFLAG_F64
;
343 if (((env
->hflags
& MIPS_HFLAG_KSU
) != MIPS_HFLAG_KM
) &&
344 (env
->CP0_Config5
& (1 << CP0C5_SBRI
))) {
345 env
->hflags
|= MIPS_HFLAG_SBRI
;
347 if (env
->insn_flags
& ASE_DSP_R3
) {
349 * Our cpu supports DSP R3 ASE, so enable
350 * access to DSP R3 resources.
352 if (env
->CP0_Status
& (1 << CP0St_MX
)) {
353 env
->hflags
|= MIPS_HFLAG_DSP
| MIPS_HFLAG_DSP_R2
|
356 } else if (env
->insn_flags
& ASE_DSP_R2
) {
358 * Our cpu supports DSP R2 ASE, so enable
359 * access to DSP R2 resources.
361 if (env
->CP0_Status
& (1 << CP0St_MX
)) {
362 env
->hflags
|= MIPS_HFLAG_DSP
| MIPS_HFLAG_DSP_R2
;
365 } else if (env
->insn_flags
& ASE_DSP
) {
367 * Our cpu supports DSP ASE, so enable
368 * access to DSP resources.
370 if (env
->CP0_Status
& (1 << CP0St_MX
)) {
371 env
->hflags
|= MIPS_HFLAG_DSP
;
375 if (env
->insn_flags
& ISA_MIPS_R2
) {
376 if (env
->active_fpu
.fcr0
& (1 << FCR0_F64
)) {
377 env
->hflags
|= MIPS_HFLAG_COP1X
;
379 } else if (env
->insn_flags
& ISA_MIPS_R1
) {
380 if (env
->hflags
& MIPS_HFLAG_64
) {
381 env
->hflags
|= MIPS_HFLAG_COP1X
;
383 } else if (env
->insn_flags
& ISA_MIPS4
) {
385 * All supported MIPS IV CPUs use the XX (CU3) to enable
386 * and disable the MIPS IV extensions to the MIPS III ISA.
387 * Some other MIPS IV CPUs ignore the bit, so the check here
388 * would be too restrictive for them.
390 if (env
->CP0_Status
& (1U << CP0St_CU3
)) {
391 env
->hflags
|= MIPS_HFLAG_COP1X
;
394 if (ase_msa_available(env
)) {
395 if (env
->CP0_Config5
& (1 << CP0C5_MSAEn
)) {
396 env
->hflags
|= MIPS_HFLAG_MSA
;
399 if (env
->active_fpu
.fcr0
& (1 << FCR0_FREP
)) {
400 if (env
->CP0_Config5
& (1 << CP0C5_FRE
)) {
401 env
->hflags
|= MIPS_HFLAG_FRE
;
404 if (env
->CP0_Config3
& (1 << CP0C3_LPA
)) {
405 if (env
->CP0_PageGrain
& (1 << CP0PG_ELPA
)) {
406 env
->hflags
|= MIPS_HFLAG_ELPA
;
411 void cpu_mips_tlb_flush(CPUMIPSState
*env
);
412 void sync_c0_status(CPUMIPSState
*env
, CPUMIPSState
*cpu
, int tc
);
413 void cpu_mips_store_status(CPUMIPSState
*env
, target_ulong val
);
414 void cpu_mips_store_cause(CPUMIPSState
*env
, target_ulong val
);
416 const char *mips_exception_name(int32_t exception
);
418 void QEMU_NORETURN
do_raise_exception_err(CPUMIPSState
*env
, uint32_t exception
,
419 int error_code
, uintptr_t pc
);
421 static inline void QEMU_NORETURN
do_raise_exception(CPUMIPSState
*env
,
425 do_raise_exception_err(env
, exception
, 0, pc
);