spapr: Add PEF based confidential guest support
[qemu/kevin.git] / hw / ppc / spapr.c
blob612356e9ec5f3cb1601a39161b5de0beb6c300df
1 /*
2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 * THE SOFTWARE.
27 #include "qemu/osdep.h"
28 #include "qemu-common.h"
29 #include "qemu/datadir.h"
30 #include "qapi/error.h"
31 #include "qapi/visitor.h"
32 #include "sysemu/sysemu.h"
33 #include "sysemu/hostmem.h"
34 #include "sysemu/numa.h"
35 #include "sysemu/qtest.h"
36 #include "sysemu/reset.h"
37 #include "sysemu/runstate.h"
38 #include "qemu/log.h"
39 #include "hw/fw-path-provider.h"
40 #include "elf.h"
41 #include "net/net.h"
42 #include "sysemu/device_tree.h"
43 #include "sysemu/cpus.h"
44 #include "sysemu/hw_accel.h"
45 #include "kvm_ppc.h"
46 #include "migration/misc.h"
47 #include "migration/qemu-file-types.h"
48 #include "migration/global_state.h"
49 #include "migration/register.h"
50 #include "migration/blocker.h"
51 #include "mmu-hash64.h"
52 #include "mmu-book3s-v3.h"
53 #include "cpu-models.h"
54 #include "hw/core/cpu.h"
56 #include "hw/boards.h"
57 #include "hw/ppc/ppc.h"
58 #include "hw/loader.h"
60 #include "hw/ppc/fdt.h"
61 #include "hw/ppc/spapr.h"
62 #include "hw/ppc/spapr_vio.h"
63 #include "hw/qdev-properties.h"
64 #include "hw/pci-host/spapr.h"
65 #include "hw/pci/msi.h"
67 #include "hw/pci/pci.h"
68 #include "hw/scsi/scsi.h"
69 #include "hw/virtio/virtio-scsi.h"
70 #include "hw/virtio/vhost-scsi-common.h"
72 #include "exec/address-spaces.h"
73 #include "exec/ram_addr.h"
74 #include "hw/usb.h"
75 #include "qemu/config-file.h"
76 #include "qemu/error-report.h"
77 #include "trace.h"
78 #include "hw/nmi.h"
79 #include "hw/intc/intc.h"
81 #include "hw/ppc/spapr_cpu_core.h"
82 #include "hw/mem/memory-device.h"
83 #include "hw/ppc/spapr_tpm_proxy.h"
84 #include "hw/ppc/spapr_nvdimm.h"
85 #include "hw/ppc/spapr_numa.h"
86 #include "hw/ppc/pef.h"
88 #include "monitor/monitor.h"
90 #include <libfdt.h>
92 /* SLOF memory layout:
94 * SLOF raw image loaded at 0, copies its romfs right below the flat
95 * device-tree, then position SLOF itself 31M below that
97 * So we set FW_OVERHEAD to 40MB which should account for all of that
98 * and more
100 * We load our kernel at 4M, leaving space for SLOF initial image
102 #define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */
103 #define FW_MAX_SIZE 0x400000
104 #define FW_FILE_NAME "slof.bin"
105 #define FW_OVERHEAD 0x2800000
106 #define KERNEL_LOAD_ADDR FW_MAX_SIZE
108 #define MIN_RMA_SLOF (128 * MiB)
110 #define PHANDLE_INTC 0x00001111
112 /* These two functions implement the VCPU id numbering: one to compute them
113 * all and one to identify thread 0 of a VCORE. Any change to the first one
114 * is likely to have an impact on the second one, so let's keep them close.
116 static int spapr_vcpu_id(SpaprMachineState *spapr, int cpu_index)
118 MachineState *ms = MACHINE(spapr);
119 unsigned int smp_threads = ms->smp.threads;
121 assert(spapr->vsmt);
122 return
123 (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads;
125 static bool spapr_is_thread0_in_vcore(SpaprMachineState *spapr,
126 PowerPCCPU *cpu)
128 assert(spapr->vsmt);
129 return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0;
132 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque)
134 /* Dummy entries correspond to unused ICPState objects in older QEMUs,
135 * and newer QEMUs don't even have them. In both cases, we don't want
136 * to send anything on the wire.
138 return false;
141 static const VMStateDescription pre_2_10_vmstate_dummy_icp = {
142 .name = "icp/server",
143 .version_id = 1,
144 .minimum_version_id = 1,
145 .needed = pre_2_10_vmstate_dummy_icp_needed,
146 .fields = (VMStateField[]) {
147 VMSTATE_UNUSED(4), /* uint32_t xirr */
148 VMSTATE_UNUSED(1), /* uint8_t pending_priority */
149 VMSTATE_UNUSED(1), /* uint8_t mfrr */
150 VMSTATE_END_OF_LIST()
154 static void pre_2_10_vmstate_register_dummy_icp(int i)
156 vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp,
157 (void *)(uintptr_t) i);
160 static void pre_2_10_vmstate_unregister_dummy_icp(int i)
162 vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp,
163 (void *)(uintptr_t) i);
166 int spapr_max_server_number(SpaprMachineState *spapr)
168 MachineState *ms = MACHINE(spapr);
170 assert(spapr->vsmt);
171 return DIV_ROUND_UP(ms->smp.max_cpus * spapr->vsmt, ms->smp.threads);
174 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
175 int smt_threads)
177 int i, ret = 0;
178 uint32_t servers_prop[smt_threads];
179 uint32_t gservers_prop[smt_threads * 2];
180 int index = spapr_get_vcpu_id(cpu);
182 if (cpu->compat_pvr) {
183 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
184 if (ret < 0) {
185 return ret;
189 /* Build interrupt servers and gservers properties */
190 for (i = 0; i < smt_threads; i++) {
191 servers_prop[i] = cpu_to_be32(index + i);
192 /* Hack, direct the group queues back to cpu 0 */
193 gservers_prop[i*2] = cpu_to_be32(index + i);
194 gservers_prop[i*2 + 1] = 0;
196 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
197 servers_prop, sizeof(servers_prop));
198 if (ret < 0) {
199 return ret;
201 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
202 gservers_prop, sizeof(gservers_prop));
204 return ret;
207 static void spapr_dt_pa_features(SpaprMachineState *spapr,
208 PowerPCCPU *cpu,
209 void *fdt, int offset)
211 uint8_t pa_features_206[] = { 6, 0,
212 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
213 uint8_t pa_features_207[] = { 24, 0,
214 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
215 0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
216 0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
217 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
218 uint8_t pa_features_300[] = { 66, 0,
219 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
220 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
221 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
222 /* 6: DS207 */
223 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
224 /* 16: Vector */
225 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
226 /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
227 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
228 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
229 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
230 /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
231 0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
232 /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
233 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
234 /* 42: PM, 44: PC RA, 46: SC vec'd */
235 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
236 /* 48: SIMD, 50: QP BFP, 52: String */
237 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
238 /* 54: DecFP, 56: DecI, 58: SHA */
239 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
240 /* 60: NM atomic, 62: RNG */
241 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
243 uint8_t *pa_features = NULL;
244 size_t pa_size;
246 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) {
247 pa_features = pa_features_206;
248 pa_size = sizeof(pa_features_206);
250 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) {
251 pa_features = pa_features_207;
252 pa_size = sizeof(pa_features_207);
254 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) {
255 pa_features = pa_features_300;
256 pa_size = sizeof(pa_features_300);
258 if (!pa_features) {
259 return;
262 if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
264 * Note: we keep CI large pages off by default because a 64K capable
265 * guest provisioned with large pages might otherwise try to map a qemu
266 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
267 * even if that qemu runs on a 4k host.
268 * We dd this bit back here if we are confident this is not an issue
270 pa_features[3] |= 0x20;
272 if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) {
273 pa_features[24] |= 0x80; /* Transactional memory support */
275 if (spapr->cas_pre_isa3_guest && pa_size > 40) {
276 /* Workaround for broken kernels that attempt (guest) radix
277 * mode when they can't handle it, if they see the radix bit set
278 * in pa-features. So hide it from them. */
279 pa_features[40 + 2] &= ~0x80; /* Radix MMU */
282 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
285 static hwaddr spapr_node0_size(MachineState *machine)
287 if (machine->numa_state->num_nodes) {
288 int i;
289 for (i = 0; i < machine->numa_state->num_nodes; ++i) {
290 if (machine->numa_state->nodes[i].node_mem) {
291 return MIN(pow2floor(machine->numa_state->nodes[i].node_mem),
292 machine->ram_size);
296 return machine->ram_size;
299 bool spapr_machine_using_legacy_numa(SpaprMachineState *spapr)
301 MachineState *machine = MACHINE(spapr);
302 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
304 return smc->pre_5_2_numa_associativity ||
305 machine->numa_state->num_nodes <= 1;
308 static void add_str(GString *s, const gchar *s1)
310 g_string_append_len(s, s1, strlen(s1) + 1);
313 static int spapr_dt_memory_node(SpaprMachineState *spapr, void *fdt, int nodeid,
314 hwaddr start, hwaddr size)
316 char mem_name[32];
317 uint64_t mem_reg_property[2];
318 int off;
320 mem_reg_property[0] = cpu_to_be64(start);
321 mem_reg_property[1] = cpu_to_be64(size);
323 sprintf(mem_name, "memory@%" HWADDR_PRIx, start);
324 off = fdt_add_subnode(fdt, 0, mem_name);
325 _FDT(off);
326 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
327 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
328 sizeof(mem_reg_property))));
329 spapr_numa_write_associativity_dt(spapr, fdt, off, nodeid);
330 return off;
333 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr)
335 MemoryDeviceInfoList *info;
337 for (info = list; info; info = info->next) {
338 MemoryDeviceInfo *value = info->value;
340 if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) {
341 PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data;
343 if (addr >= pcdimm_info->addr &&
344 addr < (pcdimm_info->addr + pcdimm_info->size)) {
345 return pcdimm_info->node;
350 return -1;
353 struct sPAPRDrconfCellV2 {
354 uint32_t seq_lmbs;
355 uint64_t base_addr;
356 uint32_t drc_index;
357 uint32_t aa_index;
358 uint32_t flags;
359 } QEMU_PACKED;
361 typedef struct DrconfCellQueue {
362 struct sPAPRDrconfCellV2 cell;
363 QSIMPLEQ_ENTRY(DrconfCellQueue) entry;
364 } DrconfCellQueue;
366 static DrconfCellQueue *
367 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr,
368 uint32_t drc_index, uint32_t aa_index,
369 uint32_t flags)
371 DrconfCellQueue *elem;
373 elem = g_malloc0(sizeof(*elem));
374 elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs);
375 elem->cell.base_addr = cpu_to_be64(base_addr);
376 elem->cell.drc_index = cpu_to_be32(drc_index);
377 elem->cell.aa_index = cpu_to_be32(aa_index);
378 elem->cell.flags = cpu_to_be32(flags);
380 return elem;
383 static int spapr_dt_dynamic_memory_v2(SpaprMachineState *spapr, void *fdt,
384 int offset, MemoryDeviceInfoList *dimms)
386 MachineState *machine = MACHINE(spapr);
387 uint8_t *int_buf, *cur_index;
388 int ret;
389 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
390 uint64_t addr, cur_addr, size;
391 uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size);
392 uint64_t mem_end = machine->device_memory->base +
393 memory_region_size(&machine->device_memory->mr);
394 uint32_t node, buf_len, nr_entries = 0;
395 SpaprDrc *drc;
396 DrconfCellQueue *elem, *next;
397 MemoryDeviceInfoList *info;
398 QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue
399 = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue);
401 /* Entry to cover RAM and the gap area */
402 elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1,
403 SPAPR_LMB_FLAGS_RESERVED |
404 SPAPR_LMB_FLAGS_DRC_INVALID);
405 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
406 nr_entries++;
408 cur_addr = machine->device_memory->base;
409 for (info = dimms; info; info = info->next) {
410 PCDIMMDeviceInfo *di = info->value->u.dimm.data;
412 addr = di->addr;
413 size = di->size;
414 node = di->node;
417 * The NVDIMM area is hotpluggable after the NVDIMM is unplugged. The
418 * area is marked hotpluggable in the next iteration for the bigger
419 * chunk including the NVDIMM occupied area.
421 if (info->value->type == MEMORY_DEVICE_INFO_KIND_NVDIMM)
422 continue;
424 /* Entry for hot-pluggable area */
425 if (cur_addr < addr) {
426 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
427 g_assert(drc);
428 elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size,
429 cur_addr, spapr_drc_index(drc), -1, 0);
430 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
431 nr_entries++;
434 /* Entry for DIMM */
435 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size);
436 g_assert(drc);
437 elem = spapr_get_drconf_cell(size / lmb_size, addr,
438 spapr_drc_index(drc), node,
439 (SPAPR_LMB_FLAGS_ASSIGNED |
440 SPAPR_LMB_FLAGS_HOTREMOVABLE));
441 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
442 nr_entries++;
443 cur_addr = addr + size;
446 /* Entry for remaining hotpluggable area */
447 if (cur_addr < mem_end) {
448 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
449 g_assert(drc);
450 elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size,
451 cur_addr, spapr_drc_index(drc), -1, 0);
452 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
453 nr_entries++;
456 buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t);
457 int_buf = cur_index = g_malloc0(buf_len);
458 *(uint32_t *)int_buf = cpu_to_be32(nr_entries);
459 cur_index += sizeof(nr_entries);
461 QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) {
462 memcpy(cur_index, &elem->cell, sizeof(elem->cell));
463 cur_index += sizeof(elem->cell);
464 QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry);
465 g_free(elem);
468 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len);
469 g_free(int_buf);
470 if (ret < 0) {
471 return -1;
473 return 0;
476 static int spapr_dt_dynamic_memory(SpaprMachineState *spapr, void *fdt,
477 int offset, MemoryDeviceInfoList *dimms)
479 MachineState *machine = MACHINE(spapr);
480 int i, ret;
481 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
482 uint32_t device_lmb_start = machine->device_memory->base / lmb_size;
483 uint32_t nr_lmbs = (machine->device_memory->base +
484 memory_region_size(&machine->device_memory->mr)) /
485 lmb_size;
486 uint32_t *int_buf, *cur_index, buf_len;
489 * Allocate enough buffer size to fit in ibm,dynamic-memory
491 buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t);
492 cur_index = int_buf = g_malloc0(buf_len);
493 int_buf[0] = cpu_to_be32(nr_lmbs);
494 cur_index++;
495 for (i = 0; i < nr_lmbs; i++) {
496 uint64_t addr = i * lmb_size;
497 uint32_t *dynamic_memory = cur_index;
499 if (i >= device_lmb_start) {
500 SpaprDrc *drc;
502 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
503 g_assert(drc);
505 dynamic_memory[0] = cpu_to_be32(addr >> 32);
506 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
507 dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
508 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
509 dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr));
510 if (memory_region_present(get_system_memory(), addr)) {
511 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
512 } else {
513 dynamic_memory[5] = cpu_to_be32(0);
515 } else {
517 * LMB information for RMA, boot time RAM and gap b/n RAM and
518 * device memory region -- all these are marked as reserved
519 * and as having no valid DRC.
521 dynamic_memory[0] = cpu_to_be32(addr >> 32);
522 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
523 dynamic_memory[2] = cpu_to_be32(0);
524 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
525 dynamic_memory[4] = cpu_to_be32(-1);
526 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
527 SPAPR_LMB_FLAGS_DRC_INVALID);
530 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
532 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
533 g_free(int_buf);
534 if (ret < 0) {
535 return -1;
537 return 0;
541 * Adds ibm,dynamic-reconfiguration-memory node.
542 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
543 * of this device tree node.
545 static int spapr_dt_dynamic_reconfiguration_memory(SpaprMachineState *spapr,
546 void *fdt)
548 MachineState *machine = MACHINE(spapr);
549 int ret, offset;
550 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
551 uint32_t prop_lmb_size[] = {cpu_to_be32(lmb_size >> 32),
552 cpu_to_be32(lmb_size & 0xffffffff)};
553 MemoryDeviceInfoList *dimms = NULL;
556 * Don't create the node if there is no device memory
558 if (machine->ram_size == machine->maxram_size) {
559 return 0;
562 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
564 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
565 sizeof(prop_lmb_size));
566 if (ret < 0) {
567 return ret;
570 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
571 if (ret < 0) {
572 return ret;
575 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
576 if (ret < 0) {
577 return ret;
580 /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */
581 dimms = qmp_memory_device_list();
582 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) {
583 ret = spapr_dt_dynamic_memory_v2(spapr, fdt, offset, dimms);
584 } else {
585 ret = spapr_dt_dynamic_memory(spapr, fdt, offset, dimms);
587 qapi_free_MemoryDeviceInfoList(dimms);
589 if (ret < 0) {
590 return ret;
593 ret = spapr_numa_write_assoc_lookup_arrays(spapr, fdt, offset);
595 return ret;
598 static int spapr_dt_memory(SpaprMachineState *spapr, void *fdt)
600 MachineState *machine = MACHINE(spapr);
601 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
602 hwaddr mem_start, node_size;
603 int i, nb_nodes = machine->numa_state->num_nodes;
604 NodeInfo *nodes = machine->numa_state->nodes;
606 for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
607 if (!nodes[i].node_mem) {
608 continue;
610 if (mem_start >= machine->ram_size) {
611 node_size = 0;
612 } else {
613 node_size = nodes[i].node_mem;
614 if (node_size > machine->ram_size - mem_start) {
615 node_size = machine->ram_size - mem_start;
618 if (!mem_start) {
619 /* spapr_machine_init() checks for rma_size <= node0_size
620 * already */
621 spapr_dt_memory_node(spapr, fdt, i, 0, spapr->rma_size);
622 mem_start += spapr->rma_size;
623 node_size -= spapr->rma_size;
625 for ( ; node_size; ) {
626 hwaddr sizetmp = pow2floor(node_size);
628 /* mem_start != 0 here */
629 if (ctzl(mem_start) < ctzl(sizetmp)) {
630 sizetmp = 1ULL << ctzl(mem_start);
633 spapr_dt_memory_node(spapr, fdt, i, mem_start, sizetmp);
634 node_size -= sizetmp;
635 mem_start += sizetmp;
639 /* Generate ibm,dynamic-reconfiguration-memory node if required */
640 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRCONF_MEMORY)) {
641 int ret;
643 g_assert(smc->dr_lmb_enabled);
644 ret = spapr_dt_dynamic_reconfiguration_memory(spapr, fdt);
645 if (ret) {
646 return ret;
650 return 0;
653 static void spapr_dt_cpu(CPUState *cs, void *fdt, int offset,
654 SpaprMachineState *spapr)
656 MachineState *ms = MACHINE(spapr);
657 PowerPCCPU *cpu = POWERPC_CPU(cs);
658 CPUPPCState *env = &cpu->env;
659 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
660 int index = spapr_get_vcpu_id(cpu);
661 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
662 0xffffffff, 0xffffffff};
663 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
664 : SPAPR_TIMEBASE_FREQ;
665 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
666 uint32_t page_sizes_prop[64];
667 size_t page_sizes_prop_size;
668 unsigned int smp_threads = ms->smp.threads;
669 uint32_t vcpus_per_socket = smp_threads * ms->smp.cores;
670 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
671 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
672 SpaprDrc *drc;
673 int drc_index;
674 uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
675 int i;
677 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
678 if (drc) {
679 drc_index = spapr_drc_index(drc);
680 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
683 _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
684 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
686 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
687 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
688 env->dcache_line_size)));
689 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
690 env->dcache_line_size)));
691 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
692 env->icache_line_size)));
693 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
694 env->icache_line_size)));
696 if (pcc->l1_dcache_size) {
697 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
698 pcc->l1_dcache_size)));
699 } else {
700 warn_report("Unknown L1 dcache size for cpu");
702 if (pcc->l1_icache_size) {
703 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
704 pcc->l1_icache_size)));
705 } else {
706 warn_report("Unknown L1 icache size for cpu");
709 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
710 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
711 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size)));
712 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size)));
713 _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
714 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
716 if (env->spr_cb[SPR_PURR].oea_read) {
717 _FDT((fdt_setprop_cell(fdt, offset, "ibm,purr", 1)));
719 if (env->spr_cb[SPR_SPURR].oea_read) {
720 _FDT((fdt_setprop_cell(fdt, offset, "ibm,spurr", 1)));
723 if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
724 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
725 segs, sizeof(segs))));
728 /* Advertise VSX (vector extensions) if available
729 * 1 == VMX / Altivec available
730 * 2 == VSX available
732 * Only CPUs for which we create core types in spapr_cpu_core.c
733 * are possible, and all of those have VMX */
734 if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) {
735 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2)));
736 } else {
737 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1)));
740 /* Advertise DFP (Decimal Floating Point) if available
741 * 0 / no property == no DFP
742 * 1 == DFP available */
743 if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) {
744 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
747 page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
748 sizeof(page_sizes_prop));
749 if (page_sizes_prop_size) {
750 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
751 page_sizes_prop, page_sizes_prop_size)));
754 spapr_dt_pa_features(spapr, cpu, fdt, offset);
756 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
757 cs->cpu_index / vcpus_per_socket)));
759 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
760 pft_size_prop, sizeof(pft_size_prop))));
762 if (ms->numa_state->num_nodes > 1) {
763 _FDT(spapr_numa_fixup_cpu_dt(spapr, fdt, offset, cpu));
766 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
768 if (pcc->radix_page_info) {
769 for (i = 0; i < pcc->radix_page_info->count; i++) {
770 radix_AP_encodings[i] =
771 cpu_to_be32(pcc->radix_page_info->entries[i]);
773 _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
774 radix_AP_encodings,
775 pcc->radix_page_info->count *
776 sizeof(radix_AP_encodings[0]))));
780 * We set this property to let the guest know that it can use the large
781 * decrementer and its width in bits.
783 if (spapr_get_cap(spapr, SPAPR_CAP_LARGE_DECREMENTER) != SPAPR_CAP_OFF)
784 _FDT((fdt_setprop_u32(fdt, offset, "ibm,dec-bits",
785 pcc->lrg_decr_bits)));
788 static void spapr_dt_cpus(void *fdt, SpaprMachineState *spapr)
790 CPUState **rev;
791 CPUState *cs;
792 int n_cpus;
793 int cpus_offset;
794 char *nodename;
795 int i;
797 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
798 _FDT(cpus_offset);
799 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
800 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
803 * We walk the CPUs in reverse order to ensure that CPU DT nodes
804 * created by fdt_add_subnode() end up in the right order in FDT
805 * for the guest kernel the enumerate the CPUs correctly.
807 * The CPU list cannot be traversed in reverse order, so we need
808 * to do extra work.
810 n_cpus = 0;
811 rev = NULL;
812 CPU_FOREACH(cs) {
813 rev = g_renew(CPUState *, rev, n_cpus + 1);
814 rev[n_cpus++] = cs;
817 for (i = n_cpus - 1; i >= 0; i--) {
818 CPUState *cs = rev[i];
819 PowerPCCPU *cpu = POWERPC_CPU(cs);
820 int index = spapr_get_vcpu_id(cpu);
821 DeviceClass *dc = DEVICE_GET_CLASS(cs);
822 int offset;
824 if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
825 continue;
828 nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
829 offset = fdt_add_subnode(fdt, cpus_offset, nodename);
830 g_free(nodename);
831 _FDT(offset);
832 spapr_dt_cpu(cs, fdt, offset, spapr);
835 g_free(rev);
838 static int spapr_dt_rng(void *fdt)
840 int node;
841 int ret;
843 node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities");
844 if (node <= 0) {
845 return -1;
847 ret = fdt_setprop_string(fdt, node, "device_type",
848 "ibm,platform-facilities");
849 ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1);
850 ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0);
852 node = fdt_add_subnode(fdt, node, "ibm,random-v1");
853 if (node <= 0) {
854 return -1;
856 ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random");
858 return ret ? -1 : 0;
861 static void spapr_dt_rtas(SpaprMachineState *spapr, void *fdt)
863 MachineState *ms = MACHINE(spapr);
864 int rtas;
865 GString *hypertas = g_string_sized_new(256);
866 GString *qemu_hypertas = g_string_sized_new(256);
867 uint64_t max_device_addr = MACHINE(spapr)->device_memory->base +
868 memory_region_size(&MACHINE(spapr)->device_memory->mr);
869 uint32_t lrdr_capacity[] = {
870 cpu_to_be32(max_device_addr >> 32),
871 cpu_to_be32(max_device_addr & 0xffffffff),
872 cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE >> 32),
873 cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE & 0xffffffff),
874 cpu_to_be32(ms->smp.max_cpus / ms->smp.threads),
877 _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
879 /* hypertas */
880 add_str(hypertas, "hcall-pft");
881 add_str(hypertas, "hcall-term");
882 add_str(hypertas, "hcall-dabr");
883 add_str(hypertas, "hcall-interrupt");
884 add_str(hypertas, "hcall-tce");
885 add_str(hypertas, "hcall-vio");
886 add_str(hypertas, "hcall-splpar");
887 add_str(hypertas, "hcall-join");
888 add_str(hypertas, "hcall-bulk");
889 add_str(hypertas, "hcall-set-mode");
890 add_str(hypertas, "hcall-sprg0");
891 add_str(hypertas, "hcall-copy");
892 add_str(hypertas, "hcall-debug");
893 add_str(hypertas, "hcall-vphn");
894 add_str(qemu_hypertas, "hcall-memop1");
896 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
897 add_str(hypertas, "hcall-multi-tce");
900 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
901 add_str(hypertas, "hcall-hpt-resize");
904 _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
905 hypertas->str, hypertas->len));
906 g_string_free(hypertas, TRUE);
907 _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
908 qemu_hypertas->str, qemu_hypertas->len));
909 g_string_free(qemu_hypertas, TRUE);
911 spapr_numa_write_rtas_dt(spapr, fdt, rtas);
914 * FWNMI reserves RTAS_ERROR_LOG_MAX for the machine check error log,
915 * and 16 bytes per CPU for system reset error log plus an extra 8 bytes.
917 * The system reset requirements are driven by existing Linux and PowerVM
918 * implementation which (contrary to PAPR) saves r3 in the error log
919 * structure like machine check, so Linux expects to find the saved r3
920 * value at the address in r3 upon FWNMI-enabled sreset interrupt (and
921 * does not look at the error value).
923 * System reset interrupts are not subject to interlock like machine
924 * check, so this memory area could be corrupted if the sreset is
925 * interrupted by a machine check (or vice versa) if it was shared. To
926 * prevent this, system reset uses per-CPU areas for the sreset save
927 * area. A system reset that interrupts a system reset handler could
928 * still overwrite this area, but Linux doesn't try to recover in that
929 * case anyway.
931 * The extra 8 bytes is required because Linux's FWNMI error log check
932 * is off-by-one.
934 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-size", RTAS_ERROR_LOG_MAX +
935 ms->smp.max_cpus * sizeof(uint64_t)*2 + sizeof(uint64_t)));
936 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
937 RTAS_ERROR_LOG_MAX));
938 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
939 RTAS_EVENT_SCAN_RATE));
941 g_assert(msi_nonbroken);
942 _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
945 * According to PAPR, rtas ibm,os-term does not guarantee a return
946 * back to the guest cpu.
948 * While an additional ibm,extended-os-term property indicates
949 * that rtas call return will always occur. Set this property.
951 _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
953 _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
954 lrdr_capacity, sizeof(lrdr_capacity)));
956 spapr_dt_rtas_tokens(fdt, rtas);
960 * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU
961 * and the XIVE features that the guest may request and thus the valid
962 * values for bytes 23..26 of option vector 5:
964 static void spapr_dt_ov5_platform_support(SpaprMachineState *spapr, void *fdt,
965 int chosen)
967 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
969 char val[2 * 4] = {
970 23, 0x00, /* XICS / XIVE mode */
971 24, 0x00, /* Hash/Radix, filled in below. */
972 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
973 26, 0x40, /* Radix options: GTSE == yes. */
976 if (spapr->irq->xics && spapr->irq->xive) {
977 val[1] = SPAPR_OV5_XIVE_BOTH;
978 } else if (spapr->irq->xive) {
979 val[1] = SPAPR_OV5_XIVE_EXPLOIT;
980 } else {
981 assert(spapr->irq->xics);
982 val[1] = SPAPR_OV5_XIVE_LEGACY;
985 if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
986 first_ppc_cpu->compat_pvr)) {
988 * If we're in a pre POWER9 compat mode then the guest should
989 * do hash and use the legacy interrupt mode
991 val[1] = SPAPR_OV5_XIVE_LEGACY; /* XICS */
992 val[3] = 0x00; /* Hash */
993 } else if (kvm_enabled()) {
994 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
995 val[3] = 0x80; /* OV5_MMU_BOTH */
996 } else if (kvmppc_has_cap_mmu_radix()) {
997 val[3] = 0x40; /* OV5_MMU_RADIX_300 */
998 } else {
999 val[3] = 0x00; /* Hash */
1001 } else {
1002 /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */
1003 val[3] = 0xC0;
1005 _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
1006 val, sizeof(val)));
1009 static void spapr_dt_chosen(SpaprMachineState *spapr, void *fdt, bool reset)
1011 MachineState *machine = MACHINE(spapr);
1012 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1013 int chosen;
1015 _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
1017 if (reset) {
1018 const char *boot_device = machine->boot_order;
1019 char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
1020 size_t cb = 0;
1021 char *bootlist = get_boot_devices_list(&cb);
1023 if (machine->kernel_cmdline && machine->kernel_cmdline[0]) {
1024 _FDT(fdt_setprop_string(fdt, chosen, "bootargs",
1025 machine->kernel_cmdline));
1028 if (spapr->initrd_size) {
1029 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
1030 spapr->initrd_base));
1031 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
1032 spapr->initrd_base + spapr->initrd_size));
1035 if (spapr->kernel_size) {
1036 uint64_t kprop[2] = { cpu_to_be64(spapr->kernel_addr),
1037 cpu_to_be64(spapr->kernel_size) };
1039 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
1040 &kprop, sizeof(kprop)));
1041 if (spapr->kernel_le) {
1042 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
1045 if (boot_menu) {
1046 _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu)));
1048 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
1049 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
1050 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
1052 if (cb && bootlist) {
1053 int i;
1055 for (i = 0; i < cb; i++) {
1056 if (bootlist[i] == '\n') {
1057 bootlist[i] = ' ';
1060 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
1063 if (boot_device && strlen(boot_device)) {
1064 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
1067 if (!spapr->has_graphics && stdout_path) {
1069 * "linux,stdout-path" and "stdout" properties are
1070 * deprecated by linux kernel. New platforms should only
1071 * use the "stdout-path" property. Set the new property
1072 * and continue using older property to remain compatible
1073 * with the existing firmware.
1075 _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
1076 _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path));
1080 * We can deal with BAR reallocation just fine, advertise it
1081 * to the guest
1083 if (smc->linux_pci_probe) {
1084 _FDT(fdt_setprop_cell(fdt, chosen, "linux,pci-probe-only", 0));
1087 spapr_dt_ov5_platform_support(spapr, fdt, chosen);
1089 g_free(stdout_path);
1090 g_free(bootlist);
1093 _FDT(spapr_dt_ovec(fdt, chosen, spapr->ov5_cas, "ibm,architecture-vec-5"));
1096 static void spapr_dt_hypervisor(SpaprMachineState *spapr, void *fdt)
1098 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1099 * KVM to work under pHyp with some guest co-operation */
1100 int hypervisor;
1101 uint8_t hypercall[16];
1103 _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
1104 /* indicate KVM hypercall interface */
1105 _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
1106 if (kvmppc_has_cap_fixup_hcalls()) {
1108 * Older KVM versions with older guest kernels were broken
1109 * with the magic page, don't allow the guest to map it.
1111 if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
1112 sizeof(hypercall))) {
1113 _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
1114 hypercall, sizeof(hypercall)));
1119 void *spapr_build_fdt(SpaprMachineState *spapr, bool reset, size_t space)
1121 MachineState *machine = MACHINE(spapr);
1122 MachineClass *mc = MACHINE_GET_CLASS(machine);
1123 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1124 uint32_t root_drc_type_mask = 0;
1125 int ret;
1126 void *fdt;
1127 SpaprPhbState *phb;
1128 char *buf;
1130 fdt = g_malloc0(space);
1131 _FDT((fdt_create_empty_tree(fdt, space)));
1133 /* Root node */
1134 _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
1135 _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
1136 _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
1138 /* Guest UUID & Name*/
1139 buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1140 _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1141 if (qemu_uuid_set) {
1142 _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1144 g_free(buf);
1146 if (qemu_get_vm_name()) {
1147 _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1148 qemu_get_vm_name()));
1151 /* Host Model & Serial Number */
1152 if (spapr->host_model) {
1153 _FDT(fdt_setprop_string(fdt, 0, "host-model", spapr->host_model));
1154 } else if (smc->broken_host_serial_model && kvmppc_get_host_model(&buf)) {
1155 _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
1156 g_free(buf);
1159 if (spapr->host_serial) {
1160 _FDT(fdt_setprop_string(fdt, 0, "host-serial", spapr->host_serial));
1161 } else if (smc->broken_host_serial_model && kvmppc_get_host_serial(&buf)) {
1162 _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1163 g_free(buf);
1166 _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1167 _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
1169 /* /interrupt controller */
1170 spapr_irq_dt(spapr, spapr_max_server_number(spapr), fdt, PHANDLE_INTC);
1172 ret = spapr_dt_memory(spapr, fdt);
1173 if (ret < 0) {
1174 error_report("couldn't setup memory nodes in fdt");
1175 exit(1);
1178 /* /vdevice */
1179 spapr_dt_vdevice(spapr->vio_bus, fdt);
1181 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1182 ret = spapr_dt_rng(fdt);
1183 if (ret < 0) {
1184 error_report("could not set up rng device in the fdt");
1185 exit(1);
1189 QLIST_FOREACH(phb, &spapr->phbs, list) {
1190 ret = spapr_dt_phb(spapr, phb, PHANDLE_INTC, fdt, NULL);
1191 if (ret < 0) {
1192 error_report("couldn't setup PCI devices in fdt");
1193 exit(1);
1197 spapr_dt_cpus(fdt, spapr);
1199 /* ibm,drc-indexes and friends */
1200 if (smc->dr_lmb_enabled) {
1201 root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_LMB;
1203 if (smc->dr_phb_enabled) {
1204 root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_PHB;
1206 if (mc->nvdimm_supported) {
1207 root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_PMEM;
1209 if (root_drc_type_mask) {
1210 _FDT(spapr_dt_drc(fdt, 0, NULL, root_drc_type_mask));
1213 if (mc->has_hotpluggable_cpus) {
1214 int offset = fdt_path_offset(fdt, "/cpus");
1215 ret = spapr_dt_drc(fdt, offset, NULL, SPAPR_DR_CONNECTOR_TYPE_CPU);
1216 if (ret < 0) {
1217 error_report("Couldn't set up CPU DR device tree properties");
1218 exit(1);
1222 /* /event-sources */
1223 spapr_dt_events(spapr, fdt);
1225 /* /rtas */
1226 spapr_dt_rtas(spapr, fdt);
1228 /* /chosen */
1229 spapr_dt_chosen(spapr, fdt, reset);
1231 /* /hypervisor */
1232 if (kvm_enabled()) {
1233 spapr_dt_hypervisor(spapr, fdt);
1236 /* Build memory reserve map */
1237 if (reset) {
1238 if (spapr->kernel_size) {
1239 _FDT((fdt_add_mem_rsv(fdt, spapr->kernel_addr,
1240 spapr->kernel_size)));
1242 if (spapr->initrd_size) {
1243 _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base,
1244 spapr->initrd_size)));
1248 /* NVDIMM devices */
1249 if (mc->nvdimm_supported) {
1250 spapr_dt_persistent_memory(spapr, fdt);
1253 return fdt;
1256 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1258 SpaprMachineState *spapr = opaque;
1260 return (addr & 0x0fffffff) + spapr->kernel_addr;
1263 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1264 PowerPCCPU *cpu)
1266 CPUPPCState *env = &cpu->env;
1268 /* The TCG path should also be holding the BQL at this point */
1269 g_assert(qemu_mutex_iothread_locked());
1271 if (msr_pr) {
1272 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1273 env->gpr[3] = H_PRIVILEGE;
1274 } else {
1275 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1279 struct LPCRSyncState {
1280 target_ulong value;
1281 target_ulong mask;
1284 static void do_lpcr_sync(CPUState *cs, run_on_cpu_data arg)
1286 struct LPCRSyncState *s = arg.host_ptr;
1287 PowerPCCPU *cpu = POWERPC_CPU(cs);
1288 CPUPPCState *env = &cpu->env;
1289 target_ulong lpcr;
1291 cpu_synchronize_state(cs);
1292 lpcr = env->spr[SPR_LPCR];
1293 lpcr &= ~s->mask;
1294 lpcr |= s->value;
1295 ppc_store_lpcr(cpu, lpcr);
1298 void spapr_set_all_lpcrs(target_ulong value, target_ulong mask)
1300 CPUState *cs;
1301 struct LPCRSyncState s = {
1302 .value = value,
1303 .mask = mask
1305 CPU_FOREACH(cs) {
1306 run_on_cpu(cs, do_lpcr_sync, RUN_ON_CPU_HOST_PTR(&s));
1310 static void spapr_get_pate(PPCVirtualHypervisor *vhyp, ppc_v3_pate_t *entry)
1312 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1314 /* Copy PATE1:GR into PATE0:HR */
1315 entry->dw0 = spapr->patb_entry & PATE0_HR;
1316 entry->dw1 = spapr->patb_entry;
1319 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1320 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1321 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1322 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1323 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1326 * Get the fd to access the kernel htab, re-opening it if necessary
1328 static int get_htab_fd(SpaprMachineState *spapr)
1330 Error *local_err = NULL;
1332 if (spapr->htab_fd >= 0) {
1333 return spapr->htab_fd;
1336 spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err);
1337 if (spapr->htab_fd < 0) {
1338 error_report_err(local_err);
1341 return spapr->htab_fd;
1344 void close_htab_fd(SpaprMachineState *spapr)
1346 if (spapr->htab_fd >= 0) {
1347 close(spapr->htab_fd);
1349 spapr->htab_fd = -1;
1352 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1354 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1356 return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1359 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp)
1361 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1363 assert(kvm_enabled());
1365 if (!spapr->htab) {
1366 return 0;
1369 return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18);
1372 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1373 hwaddr ptex, int n)
1375 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1376 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1378 if (!spapr->htab) {
1380 * HTAB is controlled by KVM. Fetch into temporary buffer
1382 ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1383 kvmppc_read_hptes(hptes, ptex, n);
1384 return hptes;
1388 * HTAB is controlled by QEMU. Just point to the internally
1389 * accessible PTEG.
1391 return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1394 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1395 const ppc_hash_pte64_t *hptes,
1396 hwaddr ptex, int n)
1398 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1400 if (!spapr->htab) {
1401 g_free((void *)hptes);
1404 /* Nothing to do for qemu managed HPT */
1407 void spapr_store_hpte(PowerPCCPU *cpu, hwaddr ptex,
1408 uint64_t pte0, uint64_t pte1)
1410 SpaprMachineState *spapr = SPAPR_MACHINE(cpu->vhyp);
1411 hwaddr offset = ptex * HASH_PTE_SIZE_64;
1413 if (!spapr->htab) {
1414 kvmppc_write_hpte(ptex, pte0, pte1);
1415 } else {
1416 if (pte0 & HPTE64_V_VALID) {
1417 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1419 * When setting valid, we write PTE1 first. This ensures
1420 * proper synchronization with the reading code in
1421 * ppc_hash64_pteg_search()
1423 smp_wmb();
1424 stq_p(spapr->htab + offset, pte0);
1425 } else {
1426 stq_p(spapr->htab + offset, pte0);
1428 * When clearing it we set PTE0 first. This ensures proper
1429 * synchronization with the reading code in
1430 * ppc_hash64_pteg_search()
1432 smp_wmb();
1433 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1438 static void spapr_hpte_set_c(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1439 uint64_t pte1)
1441 hwaddr offset = ptex * HASH_PTE_SIZE_64 + 15;
1442 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1444 if (!spapr->htab) {
1445 /* There should always be a hash table when this is called */
1446 error_report("spapr_hpte_set_c called with no hash table !");
1447 return;
1450 /* The HW performs a non-atomic byte update */
1451 stb_p(spapr->htab + offset, (pte1 & 0xff) | 0x80);
1454 static void spapr_hpte_set_r(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1455 uint64_t pte1)
1457 hwaddr offset = ptex * HASH_PTE_SIZE_64 + 14;
1458 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1460 if (!spapr->htab) {
1461 /* There should always be a hash table when this is called */
1462 error_report("spapr_hpte_set_r called with no hash table !");
1463 return;
1466 /* The HW performs a non-atomic byte update */
1467 stb_p(spapr->htab + offset, ((pte1 >> 8) & 0xff) | 0x01);
1470 int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1472 int shift;
1474 /* We aim for a hash table of size 1/128 the size of RAM (rounded
1475 * up). The PAPR recommendation is actually 1/64 of RAM size, but
1476 * that's much more than is needed for Linux guests */
1477 shift = ctz64(pow2ceil(ramsize)) - 7;
1478 shift = MAX(shift, 18); /* Minimum architected size */
1479 shift = MIN(shift, 46); /* Maximum architected size */
1480 return shift;
1483 void spapr_free_hpt(SpaprMachineState *spapr)
1485 g_free(spapr->htab);
1486 spapr->htab = NULL;
1487 spapr->htab_shift = 0;
1488 close_htab_fd(spapr);
1491 int spapr_reallocate_hpt(SpaprMachineState *spapr, int shift, Error **errp)
1493 ERRP_GUARD();
1494 long rc;
1496 /* Clean up any HPT info from a previous boot */
1497 spapr_free_hpt(spapr);
1499 rc = kvmppc_reset_htab(shift);
1501 if (rc == -EOPNOTSUPP) {
1502 error_setg(errp, "HPT not supported in nested guests");
1503 return -EOPNOTSUPP;
1506 if (rc < 0) {
1507 /* kernel-side HPT needed, but couldn't allocate one */
1508 error_setg_errno(errp, errno, "Failed to allocate KVM HPT of order %d",
1509 shift);
1510 error_append_hint(errp, "Try smaller maxmem?\n");
1511 return -errno;
1512 } else if (rc > 0) {
1513 /* kernel-side HPT allocated */
1514 if (rc != shift) {
1515 error_setg(errp,
1516 "Requested order %d HPT, but kernel allocated order %ld",
1517 shift, rc);
1518 error_append_hint(errp, "Try smaller maxmem?\n");
1519 return -ENOSPC;
1522 spapr->htab_shift = shift;
1523 spapr->htab = NULL;
1524 } else {
1525 /* kernel-side HPT not needed, allocate in userspace instead */
1526 size_t size = 1ULL << shift;
1527 int i;
1529 spapr->htab = qemu_memalign(size, size);
1530 memset(spapr->htab, 0, size);
1531 spapr->htab_shift = shift;
1533 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1534 DIRTY_HPTE(HPTE(spapr->htab, i));
1537 /* We're setting up a hash table, so that means we're not radix */
1538 spapr->patb_entry = 0;
1539 spapr_set_all_lpcrs(0, LPCR_HR | LPCR_UPRT);
1540 return 0;
1543 void spapr_setup_hpt(SpaprMachineState *spapr)
1545 int hpt_shift;
1547 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) {
1548 hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1549 } else {
1550 uint64_t current_ram_size;
1552 current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
1553 hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size);
1555 spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal);
1557 if (kvm_enabled()) {
1558 hwaddr vrma_limit = kvmppc_vrma_limit(spapr->htab_shift);
1560 /* Check our RMA fits in the possible VRMA */
1561 if (vrma_limit < spapr->rma_size) {
1562 error_report("Unable to create %" HWADDR_PRIu
1563 "MiB RMA (VRMA only allows %" HWADDR_PRIu "MiB",
1564 spapr->rma_size / MiB, vrma_limit / MiB);
1565 exit(EXIT_FAILURE);
1570 static void spapr_machine_reset(MachineState *machine)
1572 SpaprMachineState *spapr = SPAPR_MACHINE(machine);
1573 PowerPCCPU *first_ppc_cpu;
1574 hwaddr fdt_addr;
1575 void *fdt;
1576 int rc;
1578 pef_kvm_reset(machine->cgs, &error_fatal);
1579 spapr_caps_apply(spapr);
1581 first_ppc_cpu = POWERPC_CPU(first_cpu);
1582 if (kvm_enabled() && kvmppc_has_cap_mmu_radix() &&
1583 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
1584 spapr->max_compat_pvr)) {
1586 * If using KVM with radix mode available, VCPUs can be started
1587 * without a HPT because KVM will start them in radix mode.
1588 * Set the GR bit in PATE so that we know there is no HPT.
1590 spapr->patb_entry = PATE1_GR;
1591 spapr_set_all_lpcrs(LPCR_HR | LPCR_UPRT, LPCR_HR | LPCR_UPRT);
1592 } else {
1593 spapr_setup_hpt(spapr);
1596 qemu_devices_reset();
1598 spapr_ovec_cleanup(spapr->ov5_cas);
1599 spapr->ov5_cas = spapr_ovec_new();
1601 ppc_set_compat_all(spapr->max_compat_pvr, &error_fatal);
1604 * This is fixing some of the default configuration of the XIVE
1605 * devices. To be called after the reset of the machine devices.
1607 spapr_irq_reset(spapr, &error_fatal);
1610 * There is no CAS under qtest. Simulate one to please the code that
1611 * depends on spapr->ov5_cas. This is especially needed to test device
1612 * unplug, so we do that before resetting the DRCs.
1614 if (qtest_enabled()) {
1615 spapr_ovec_cleanup(spapr->ov5_cas);
1616 spapr->ov5_cas = spapr_ovec_clone(spapr->ov5);
1619 /* DRC reset may cause a device to be unplugged. This will cause troubles
1620 * if this device is used by another device (eg, a running vhost backend
1621 * will crash QEMU if the DIMM holding the vring goes away). To avoid such
1622 * situations, we reset DRCs after all devices have been reset.
1624 spapr_drc_reset_all(spapr);
1626 spapr_clear_pending_events(spapr);
1629 * We place the device tree and RTAS just below either the top of the RMA,
1630 * or just below 2GB, whichever is lower, so that it can be
1631 * processed with 32-bit real mode code if necessary
1633 fdt_addr = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FDT_MAX_SIZE;
1635 fdt = spapr_build_fdt(spapr, true, FDT_MAX_SIZE);
1637 rc = fdt_pack(fdt);
1639 /* Should only fail if we've built a corrupted tree */
1640 assert(rc == 0);
1642 /* Load the fdt */
1643 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1644 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1645 g_free(spapr->fdt_blob);
1646 spapr->fdt_size = fdt_totalsize(fdt);
1647 spapr->fdt_initial_size = spapr->fdt_size;
1648 spapr->fdt_blob = fdt;
1650 /* Set up the entry state */
1651 spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT, 0, fdt_addr, 0);
1652 first_ppc_cpu->env.gpr[5] = 0;
1654 spapr->fwnmi_system_reset_addr = -1;
1655 spapr->fwnmi_machine_check_addr = -1;
1656 spapr->fwnmi_machine_check_interlock = -1;
1658 /* Signal all vCPUs waiting on this condition */
1659 qemu_cond_broadcast(&spapr->fwnmi_machine_check_interlock_cond);
1661 migrate_del_blocker(spapr->fwnmi_migration_blocker);
1664 static void spapr_create_nvram(SpaprMachineState *spapr)
1666 DeviceState *dev = qdev_new("spapr-nvram");
1667 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1669 if (dinfo) {
1670 qdev_prop_set_drive_err(dev, "drive", blk_by_legacy_dinfo(dinfo),
1671 &error_fatal);
1674 qdev_realize_and_unref(dev, &spapr->vio_bus->bus, &error_fatal);
1676 spapr->nvram = (struct SpaprNvram *)dev;
1679 static void spapr_rtc_create(SpaprMachineState *spapr)
1681 object_initialize_child_with_props(OBJECT(spapr), "rtc", &spapr->rtc,
1682 sizeof(spapr->rtc), TYPE_SPAPR_RTC,
1683 &error_fatal, NULL);
1684 qdev_realize(DEVICE(&spapr->rtc), NULL, &error_fatal);
1685 object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1686 "date");
1689 /* Returns whether we want to use VGA or not */
1690 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1692 switch (vga_interface_type) {
1693 case VGA_NONE:
1694 return false;
1695 case VGA_DEVICE:
1696 return true;
1697 case VGA_STD:
1698 case VGA_VIRTIO:
1699 case VGA_CIRRUS:
1700 return pci_vga_init(pci_bus) != NULL;
1701 default:
1702 error_setg(errp,
1703 "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1704 return false;
1708 static int spapr_pre_load(void *opaque)
1710 int rc;
1712 rc = spapr_caps_pre_load(opaque);
1713 if (rc) {
1714 return rc;
1717 return 0;
1720 static int spapr_post_load(void *opaque, int version_id)
1722 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1723 int err = 0;
1725 err = spapr_caps_post_migration(spapr);
1726 if (err) {
1727 return err;
1731 * In earlier versions, there was no separate qdev for the PAPR
1732 * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1733 * So when migrating from those versions, poke the incoming offset
1734 * value into the RTC device
1736 if (version_id < 3) {
1737 err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
1738 if (err) {
1739 return err;
1743 if (kvm_enabled() && spapr->patb_entry) {
1744 PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
1745 bool radix = !!(spapr->patb_entry & PATE1_GR);
1746 bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE);
1749 * Update LPCR:HR and UPRT as they may not be set properly in
1750 * the stream
1752 spapr_set_all_lpcrs(radix ? (LPCR_HR | LPCR_UPRT) : 0,
1753 LPCR_HR | LPCR_UPRT);
1755 err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry);
1756 if (err) {
1757 error_report("Process table config unsupported by the host");
1758 return -EINVAL;
1762 err = spapr_irq_post_load(spapr, version_id);
1763 if (err) {
1764 return err;
1767 return err;
1770 static int spapr_pre_save(void *opaque)
1772 int rc;
1774 rc = spapr_caps_pre_save(opaque);
1775 if (rc) {
1776 return rc;
1779 return 0;
1782 static bool version_before_3(void *opaque, int version_id)
1784 return version_id < 3;
1787 static bool spapr_pending_events_needed(void *opaque)
1789 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1790 return !QTAILQ_EMPTY(&spapr->pending_events);
1793 static const VMStateDescription vmstate_spapr_event_entry = {
1794 .name = "spapr_event_log_entry",
1795 .version_id = 1,
1796 .minimum_version_id = 1,
1797 .fields = (VMStateField[]) {
1798 VMSTATE_UINT32(summary, SpaprEventLogEntry),
1799 VMSTATE_UINT32(extended_length, SpaprEventLogEntry),
1800 VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, SpaprEventLogEntry, 0,
1801 NULL, extended_length),
1802 VMSTATE_END_OF_LIST()
1806 static const VMStateDescription vmstate_spapr_pending_events = {
1807 .name = "spapr_pending_events",
1808 .version_id = 1,
1809 .minimum_version_id = 1,
1810 .needed = spapr_pending_events_needed,
1811 .fields = (VMStateField[]) {
1812 VMSTATE_QTAILQ_V(pending_events, SpaprMachineState, 1,
1813 vmstate_spapr_event_entry, SpaprEventLogEntry, next),
1814 VMSTATE_END_OF_LIST()
1818 static bool spapr_ov5_cas_needed(void *opaque)
1820 SpaprMachineState *spapr = opaque;
1821 SpaprOptionVector *ov5_mask = spapr_ovec_new();
1822 bool cas_needed;
1824 /* Prior to the introduction of SpaprOptionVector, we had two option
1825 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1826 * Both of these options encode machine topology into the device-tree
1827 * in such a way that the now-booted OS should still be able to interact
1828 * appropriately with QEMU regardless of what options were actually
1829 * negotiatied on the source side.
1831 * As such, we can avoid migrating the CAS-negotiated options if these
1832 * are the only options available on the current machine/platform.
1833 * Since these are the only options available for pseries-2.7 and
1834 * earlier, this allows us to maintain old->new/new->old migration
1835 * compatibility.
1837 * For QEMU 2.8+, there are additional CAS-negotiatable options available
1838 * via default pseries-2.8 machines and explicit command-line parameters.
1839 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1840 * of the actual CAS-negotiated values to continue working properly. For
1841 * example, availability of memory unplug depends on knowing whether
1842 * OV5_HP_EVT was negotiated via CAS.
1844 * Thus, for any cases where the set of available CAS-negotiatable
1845 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1846 * include the CAS-negotiated options in the migration stream, unless
1847 * if they affect boot time behaviour only.
1849 spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
1850 spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
1851 spapr_ovec_set(ov5_mask, OV5_DRMEM_V2);
1853 /* We need extra information if we have any bits outside the mask
1854 * defined above */
1855 cas_needed = !spapr_ovec_subset(spapr->ov5, ov5_mask);
1857 spapr_ovec_cleanup(ov5_mask);
1859 return cas_needed;
1862 static const VMStateDescription vmstate_spapr_ov5_cas = {
1863 .name = "spapr_option_vector_ov5_cas",
1864 .version_id = 1,
1865 .minimum_version_id = 1,
1866 .needed = spapr_ov5_cas_needed,
1867 .fields = (VMStateField[]) {
1868 VMSTATE_STRUCT_POINTER_V(ov5_cas, SpaprMachineState, 1,
1869 vmstate_spapr_ovec, SpaprOptionVector),
1870 VMSTATE_END_OF_LIST()
1874 static bool spapr_patb_entry_needed(void *opaque)
1876 SpaprMachineState *spapr = opaque;
1878 return !!spapr->patb_entry;
1881 static const VMStateDescription vmstate_spapr_patb_entry = {
1882 .name = "spapr_patb_entry",
1883 .version_id = 1,
1884 .minimum_version_id = 1,
1885 .needed = spapr_patb_entry_needed,
1886 .fields = (VMStateField[]) {
1887 VMSTATE_UINT64(patb_entry, SpaprMachineState),
1888 VMSTATE_END_OF_LIST()
1892 static bool spapr_irq_map_needed(void *opaque)
1894 SpaprMachineState *spapr = opaque;
1896 return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr);
1899 static const VMStateDescription vmstate_spapr_irq_map = {
1900 .name = "spapr_irq_map",
1901 .version_id = 1,
1902 .minimum_version_id = 1,
1903 .needed = spapr_irq_map_needed,
1904 .fields = (VMStateField[]) {
1905 VMSTATE_BITMAP(irq_map, SpaprMachineState, 0, irq_map_nr),
1906 VMSTATE_END_OF_LIST()
1910 static bool spapr_dtb_needed(void *opaque)
1912 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque);
1914 return smc->update_dt_enabled;
1917 static int spapr_dtb_pre_load(void *opaque)
1919 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1921 g_free(spapr->fdt_blob);
1922 spapr->fdt_blob = NULL;
1923 spapr->fdt_size = 0;
1925 return 0;
1928 static const VMStateDescription vmstate_spapr_dtb = {
1929 .name = "spapr_dtb",
1930 .version_id = 1,
1931 .minimum_version_id = 1,
1932 .needed = spapr_dtb_needed,
1933 .pre_load = spapr_dtb_pre_load,
1934 .fields = (VMStateField[]) {
1935 VMSTATE_UINT32(fdt_initial_size, SpaprMachineState),
1936 VMSTATE_UINT32(fdt_size, SpaprMachineState),
1937 VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, SpaprMachineState, 0, NULL,
1938 fdt_size),
1939 VMSTATE_END_OF_LIST()
1943 static bool spapr_fwnmi_needed(void *opaque)
1945 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1947 return spapr->fwnmi_machine_check_addr != -1;
1950 static int spapr_fwnmi_pre_save(void *opaque)
1952 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1955 * Check if machine check handling is in progress and print a
1956 * warning message.
1958 if (spapr->fwnmi_machine_check_interlock != -1) {
1959 warn_report("A machine check is being handled during migration. The"
1960 "handler may run and log hardware error on the destination");
1963 return 0;
1966 static const VMStateDescription vmstate_spapr_fwnmi = {
1967 .name = "spapr_fwnmi",
1968 .version_id = 1,
1969 .minimum_version_id = 1,
1970 .needed = spapr_fwnmi_needed,
1971 .pre_save = spapr_fwnmi_pre_save,
1972 .fields = (VMStateField[]) {
1973 VMSTATE_UINT64(fwnmi_system_reset_addr, SpaprMachineState),
1974 VMSTATE_UINT64(fwnmi_machine_check_addr, SpaprMachineState),
1975 VMSTATE_INT32(fwnmi_machine_check_interlock, SpaprMachineState),
1976 VMSTATE_END_OF_LIST()
1980 static const VMStateDescription vmstate_spapr = {
1981 .name = "spapr",
1982 .version_id = 3,
1983 .minimum_version_id = 1,
1984 .pre_load = spapr_pre_load,
1985 .post_load = spapr_post_load,
1986 .pre_save = spapr_pre_save,
1987 .fields = (VMStateField[]) {
1988 /* used to be @next_irq */
1989 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
1991 /* RTC offset */
1992 VMSTATE_UINT64_TEST(rtc_offset, SpaprMachineState, version_before_3),
1994 VMSTATE_PPC_TIMEBASE_V(tb, SpaprMachineState, 2),
1995 VMSTATE_END_OF_LIST()
1997 .subsections = (const VMStateDescription*[]) {
1998 &vmstate_spapr_ov5_cas,
1999 &vmstate_spapr_patb_entry,
2000 &vmstate_spapr_pending_events,
2001 &vmstate_spapr_cap_htm,
2002 &vmstate_spapr_cap_vsx,
2003 &vmstate_spapr_cap_dfp,
2004 &vmstate_spapr_cap_cfpc,
2005 &vmstate_spapr_cap_sbbc,
2006 &vmstate_spapr_cap_ibs,
2007 &vmstate_spapr_cap_hpt_maxpagesize,
2008 &vmstate_spapr_irq_map,
2009 &vmstate_spapr_cap_nested_kvm_hv,
2010 &vmstate_spapr_dtb,
2011 &vmstate_spapr_cap_large_decr,
2012 &vmstate_spapr_cap_ccf_assist,
2013 &vmstate_spapr_cap_fwnmi,
2014 &vmstate_spapr_fwnmi,
2015 NULL
2019 static int htab_save_setup(QEMUFile *f, void *opaque)
2021 SpaprMachineState *spapr = opaque;
2023 /* "Iteration" header */
2024 if (!spapr->htab_shift) {
2025 qemu_put_be32(f, -1);
2026 } else {
2027 qemu_put_be32(f, spapr->htab_shift);
2030 if (spapr->htab) {
2031 spapr->htab_save_index = 0;
2032 spapr->htab_first_pass = true;
2033 } else {
2034 if (spapr->htab_shift) {
2035 assert(kvm_enabled());
2040 return 0;
2043 static void htab_save_chunk(QEMUFile *f, SpaprMachineState *spapr,
2044 int chunkstart, int n_valid, int n_invalid)
2046 qemu_put_be32(f, chunkstart);
2047 qemu_put_be16(f, n_valid);
2048 qemu_put_be16(f, n_invalid);
2049 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
2050 HASH_PTE_SIZE_64 * n_valid);
2053 static void htab_save_end_marker(QEMUFile *f)
2055 qemu_put_be32(f, 0);
2056 qemu_put_be16(f, 0);
2057 qemu_put_be16(f, 0);
2060 static void htab_save_first_pass(QEMUFile *f, SpaprMachineState *spapr,
2061 int64_t max_ns)
2063 bool has_timeout = max_ns != -1;
2064 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2065 int index = spapr->htab_save_index;
2066 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2068 assert(spapr->htab_first_pass);
2070 do {
2071 int chunkstart;
2073 /* Consume invalid HPTEs */
2074 while ((index < htabslots)
2075 && !HPTE_VALID(HPTE(spapr->htab, index))) {
2076 CLEAN_HPTE(HPTE(spapr->htab, index));
2077 index++;
2080 /* Consume valid HPTEs */
2081 chunkstart = index;
2082 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2083 && HPTE_VALID(HPTE(spapr->htab, index))) {
2084 CLEAN_HPTE(HPTE(spapr->htab, index));
2085 index++;
2088 if (index > chunkstart) {
2089 int n_valid = index - chunkstart;
2091 htab_save_chunk(f, spapr, chunkstart, n_valid, 0);
2093 if (has_timeout &&
2094 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2095 break;
2098 } while ((index < htabslots) && !qemu_file_rate_limit(f));
2100 if (index >= htabslots) {
2101 assert(index == htabslots);
2102 index = 0;
2103 spapr->htab_first_pass = false;
2105 spapr->htab_save_index = index;
2108 static int htab_save_later_pass(QEMUFile *f, SpaprMachineState *spapr,
2109 int64_t max_ns)
2111 bool final = max_ns < 0;
2112 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2113 int examined = 0, sent = 0;
2114 int index = spapr->htab_save_index;
2115 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2117 assert(!spapr->htab_first_pass);
2119 do {
2120 int chunkstart, invalidstart;
2122 /* Consume non-dirty HPTEs */
2123 while ((index < htabslots)
2124 && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
2125 index++;
2126 examined++;
2129 chunkstart = index;
2130 /* Consume valid dirty HPTEs */
2131 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2132 && HPTE_DIRTY(HPTE(spapr->htab, index))
2133 && HPTE_VALID(HPTE(spapr->htab, index))) {
2134 CLEAN_HPTE(HPTE(spapr->htab, index));
2135 index++;
2136 examined++;
2139 invalidstart = index;
2140 /* Consume invalid dirty HPTEs */
2141 while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
2142 && HPTE_DIRTY(HPTE(spapr->htab, index))
2143 && !HPTE_VALID(HPTE(spapr->htab, index))) {
2144 CLEAN_HPTE(HPTE(spapr->htab, index));
2145 index++;
2146 examined++;
2149 if (index > chunkstart) {
2150 int n_valid = invalidstart - chunkstart;
2151 int n_invalid = index - invalidstart;
2153 htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid);
2154 sent += index - chunkstart;
2156 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2157 break;
2161 if (examined >= htabslots) {
2162 break;
2165 if (index >= htabslots) {
2166 assert(index == htabslots);
2167 index = 0;
2169 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
2171 if (index >= htabslots) {
2172 assert(index == htabslots);
2173 index = 0;
2176 spapr->htab_save_index = index;
2178 return (examined >= htabslots) && (sent == 0) ? 1 : 0;
2181 #define MAX_ITERATION_NS 5000000 /* 5 ms */
2182 #define MAX_KVM_BUF_SIZE 2048
2184 static int htab_save_iterate(QEMUFile *f, void *opaque)
2186 SpaprMachineState *spapr = opaque;
2187 int fd;
2188 int rc = 0;
2190 /* Iteration header */
2191 if (!spapr->htab_shift) {
2192 qemu_put_be32(f, -1);
2193 return 1;
2194 } else {
2195 qemu_put_be32(f, 0);
2198 if (!spapr->htab) {
2199 assert(kvm_enabled());
2201 fd = get_htab_fd(spapr);
2202 if (fd < 0) {
2203 return fd;
2206 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
2207 if (rc < 0) {
2208 return rc;
2210 } else if (spapr->htab_first_pass) {
2211 htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
2212 } else {
2213 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
2216 htab_save_end_marker(f);
2218 return rc;
2221 static int htab_save_complete(QEMUFile *f, void *opaque)
2223 SpaprMachineState *spapr = opaque;
2224 int fd;
2226 /* Iteration header */
2227 if (!spapr->htab_shift) {
2228 qemu_put_be32(f, -1);
2229 return 0;
2230 } else {
2231 qemu_put_be32(f, 0);
2234 if (!spapr->htab) {
2235 int rc;
2237 assert(kvm_enabled());
2239 fd = get_htab_fd(spapr);
2240 if (fd < 0) {
2241 return fd;
2244 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
2245 if (rc < 0) {
2246 return rc;
2248 } else {
2249 if (spapr->htab_first_pass) {
2250 htab_save_first_pass(f, spapr, -1);
2252 htab_save_later_pass(f, spapr, -1);
2255 /* End marker */
2256 htab_save_end_marker(f);
2258 return 0;
2261 static int htab_load(QEMUFile *f, void *opaque, int version_id)
2263 SpaprMachineState *spapr = opaque;
2264 uint32_t section_hdr;
2265 int fd = -1;
2266 Error *local_err = NULL;
2268 if (version_id < 1 || version_id > 1) {
2269 error_report("htab_load() bad version");
2270 return -EINVAL;
2273 section_hdr = qemu_get_be32(f);
2275 if (section_hdr == -1) {
2276 spapr_free_hpt(spapr);
2277 return 0;
2280 if (section_hdr) {
2281 int ret;
2283 /* First section gives the htab size */
2284 ret = spapr_reallocate_hpt(spapr, section_hdr, &local_err);
2285 if (ret < 0) {
2286 error_report_err(local_err);
2287 return ret;
2289 return 0;
2292 if (!spapr->htab) {
2293 assert(kvm_enabled());
2295 fd = kvmppc_get_htab_fd(true, 0, &local_err);
2296 if (fd < 0) {
2297 error_report_err(local_err);
2298 return fd;
2302 while (true) {
2303 uint32_t index;
2304 uint16_t n_valid, n_invalid;
2306 index = qemu_get_be32(f);
2307 n_valid = qemu_get_be16(f);
2308 n_invalid = qemu_get_be16(f);
2310 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
2311 /* End of Stream */
2312 break;
2315 if ((index + n_valid + n_invalid) >
2316 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
2317 /* Bad index in stream */
2318 error_report(
2319 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
2320 index, n_valid, n_invalid, spapr->htab_shift);
2321 return -EINVAL;
2324 if (spapr->htab) {
2325 if (n_valid) {
2326 qemu_get_buffer(f, HPTE(spapr->htab, index),
2327 HASH_PTE_SIZE_64 * n_valid);
2329 if (n_invalid) {
2330 memset(HPTE(spapr->htab, index + n_valid), 0,
2331 HASH_PTE_SIZE_64 * n_invalid);
2333 } else {
2334 int rc;
2336 assert(fd >= 0);
2338 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid,
2339 &local_err);
2340 if (rc < 0) {
2341 error_report_err(local_err);
2342 return rc;
2347 if (!spapr->htab) {
2348 assert(fd >= 0);
2349 close(fd);
2352 return 0;
2355 static void htab_save_cleanup(void *opaque)
2357 SpaprMachineState *spapr = opaque;
2359 close_htab_fd(spapr);
2362 static SaveVMHandlers savevm_htab_handlers = {
2363 .save_setup = htab_save_setup,
2364 .save_live_iterate = htab_save_iterate,
2365 .save_live_complete_precopy = htab_save_complete,
2366 .save_cleanup = htab_save_cleanup,
2367 .load_state = htab_load,
2370 static void spapr_boot_set(void *opaque, const char *boot_device,
2371 Error **errp)
2373 MachineState *machine = MACHINE(opaque);
2374 machine->boot_order = g_strdup(boot_device);
2377 static void spapr_create_lmb_dr_connectors(SpaprMachineState *spapr)
2379 MachineState *machine = MACHINE(spapr);
2380 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
2381 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
2382 int i;
2384 for (i = 0; i < nr_lmbs; i++) {
2385 uint64_t addr;
2387 addr = i * lmb_size + machine->device_memory->base;
2388 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
2389 addr / lmb_size);
2394 * If RAM size, maxmem size and individual node mem sizes aren't aligned
2395 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2396 * since we can't support such unaligned sizes with DRCONF_MEMORY.
2398 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
2400 int i;
2402 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2403 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
2404 " is not aligned to %" PRIu64 " MiB",
2405 machine->ram_size,
2406 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2407 return;
2410 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2411 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
2412 " is not aligned to %" PRIu64 " MiB",
2413 machine->ram_size,
2414 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2415 return;
2418 for (i = 0; i < machine->numa_state->num_nodes; i++) {
2419 if (machine->numa_state->nodes[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
2420 error_setg(errp,
2421 "Node %d memory size 0x%" PRIx64
2422 " is not aligned to %" PRIu64 " MiB",
2423 i, machine->numa_state->nodes[i].node_mem,
2424 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2425 return;
2430 /* find cpu slot in machine->possible_cpus by core_id */
2431 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2433 int index = id / ms->smp.threads;
2435 if (index >= ms->possible_cpus->len) {
2436 return NULL;
2438 if (idx) {
2439 *idx = index;
2441 return &ms->possible_cpus->cpus[index];
2444 static void spapr_set_vsmt_mode(SpaprMachineState *spapr, Error **errp)
2446 MachineState *ms = MACHINE(spapr);
2447 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
2448 Error *local_err = NULL;
2449 bool vsmt_user = !!spapr->vsmt;
2450 int kvm_smt = kvmppc_smt_threads();
2451 int ret;
2452 unsigned int smp_threads = ms->smp.threads;
2454 if (!kvm_enabled() && (smp_threads > 1)) {
2455 error_setg(errp, "TCG cannot support more than 1 thread/core "
2456 "on a pseries machine");
2457 return;
2459 if (!is_power_of_2(smp_threads)) {
2460 error_setg(errp, "Cannot support %d threads/core on a pseries "
2461 "machine because it must be a power of 2", smp_threads);
2462 return;
2465 /* Detemine the VSMT mode to use: */
2466 if (vsmt_user) {
2467 if (spapr->vsmt < smp_threads) {
2468 error_setg(errp, "Cannot support VSMT mode %d"
2469 " because it must be >= threads/core (%d)",
2470 spapr->vsmt, smp_threads);
2471 return;
2473 /* In this case, spapr->vsmt has been set by the command line */
2474 } else if (!smc->smp_threads_vsmt) {
2476 * Default VSMT value is tricky, because we need it to be as
2477 * consistent as possible (for migration), but this requires
2478 * changing it for at least some existing cases. We pick 8 as
2479 * the value that we'd get with KVM on POWER8, the
2480 * overwhelmingly common case in production systems.
2482 spapr->vsmt = MAX(8, smp_threads);
2483 } else {
2484 spapr->vsmt = smp_threads;
2487 /* KVM: If necessary, set the SMT mode: */
2488 if (kvm_enabled() && (spapr->vsmt != kvm_smt)) {
2489 ret = kvmppc_set_smt_threads(spapr->vsmt);
2490 if (ret) {
2491 /* Looks like KVM isn't able to change VSMT mode */
2492 error_setg(&local_err,
2493 "Failed to set KVM's VSMT mode to %d (errno %d)",
2494 spapr->vsmt, ret);
2495 /* We can live with that if the default one is big enough
2496 * for the number of threads, and a submultiple of the one
2497 * we want. In this case we'll waste some vcpu ids, but
2498 * behaviour will be correct */
2499 if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) {
2500 warn_report_err(local_err);
2501 } else {
2502 if (!vsmt_user) {
2503 error_append_hint(&local_err,
2504 "On PPC, a VM with %d threads/core"
2505 " on a host with %d threads/core"
2506 " requires the use of VSMT mode %d.\n",
2507 smp_threads, kvm_smt, spapr->vsmt);
2509 kvmppc_error_append_smt_possible_hint(&local_err);
2510 error_propagate(errp, local_err);
2514 /* else TCG: nothing to do currently */
2517 static void spapr_init_cpus(SpaprMachineState *spapr)
2519 MachineState *machine = MACHINE(spapr);
2520 MachineClass *mc = MACHINE_GET_CLASS(machine);
2521 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2522 const char *type = spapr_get_cpu_core_type(machine->cpu_type);
2523 const CPUArchIdList *possible_cpus;
2524 unsigned int smp_cpus = machine->smp.cpus;
2525 unsigned int smp_threads = machine->smp.threads;
2526 unsigned int max_cpus = machine->smp.max_cpus;
2527 int boot_cores_nr = smp_cpus / smp_threads;
2528 int i;
2530 possible_cpus = mc->possible_cpu_arch_ids(machine);
2531 if (mc->has_hotpluggable_cpus) {
2532 if (smp_cpus % smp_threads) {
2533 error_report("smp_cpus (%u) must be multiple of threads (%u)",
2534 smp_cpus, smp_threads);
2535 exit(1);
2537 if (max_cpus % smp_threads) {
2538 error_report("max_cpus (%u) must be multiple of threads (%u)",
2539 max_cpus, smp_threads);
2540 exit(1);
2542 } else {
2543 if (max_cpus != smp_cpus) {
2544 error_report("This machine version does not support CPU hotplug");
2545 exit(1);
2547 boot_cores_nr = possible_cpus->len;
2550 if (smc->pre_2_10_has_unused_icps) {
2551 int i;
2553 for (i = 0; i < spapr_max_server_number(spapr); i++) {
2554 /* Dummy entries get deregistered when real ICPState objects
2555 * are registered during CPU core hotplug.
2557 pre_2_10_vmstate_register_dummy_icp(i);
2561 for (i = 0; i < possible_cpus->len; i++) {
2562 int core_id = i * smp_threads;
2564 if (mc->has_hotpluggable_cpus) {
2565 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
2566 spapr_vcpu_id(spapr, core_id));
2569 if (i < boot_cores_nr) {
2570 Object *core = object_new(type);
2571 int nr_threads = smp_threads;
2573 /* Handle the partially filled core for older machine types */
2574 if ((i + 1) * smp_threads >= smp_cpus) {
2575 nr_threads = smp_cpus - i * smp_threads;
2578 object_property_set_int(core, "nr-threads", nr_threads,
2579 &error_fatal);
2580 object_property_set_int(core, CPU_CORE_PROP_CORE_ID, core_id,
2581 &error_fatal);
2582 qdev_realize(DEVICE(core), NULL, &error_fatal);
2584 object_unref(core);
2589 static PCIHostState *spapr_create_default_phb(void)
2591 DeviceState *dev;
2593 dev = qdev_new(TYPE_SPAPR_PCI_HOST_BRIDGE);
2594 qdev_prop_set_uint32(dev, "index", 0);
2595 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
2597 return PCI_HOST_BRIDGE(dev);
2600 static hwaddr spapr_rma_size(SpaprMachineState *spapr, Error **errp)
2602 MachineState *machine = MACHINE(spapr);
2603 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
2604 hwaddr rma_size = machine->ram_size;
2605 hwaddr node0_size = spapr_node0_size(machine);
2607 /* RMA has to fit in the first NUMA node */
2608 rma_size = MIN(rma_size, node0_size);
2611 * VRMA access is via a special 1TiB SLB mapping, so the RMA can
2612 * never exceed that
2614 rma_size = MIN(rma_size, 1 * TiB);
2617 * Clamp the RMA size based on machine type. This is for
2618 * migration compatibility with older qemu versions, which limited
2619 * the RMA size for complicated and mostly bad reasons.
2621 if (smc->rma_limit) {
2622 rma_size = MIN(rma_size, smc->rma_limit);
2625 if (rma_size < MIN_RMA_SLOF) {
2626 error_setg(errp,
2627 "pSeries SLOF firmware requires >= %" HWADDR_PRIx
2628 "ldMiB guest RMA (Real Mode Area memory)",
2629 MIN_RMA_SLOF / MiB);
2630 return 0;
2633 return rma_size;
2636 static void spapr_create_nvdimm_dr_connectors(SpaprMachineState *spapr)
2638 MachineState *machine = MACHINE(spapr);
2639 int i;
2641 for (i = 0; i < machine->ram_slots; i++) {
2642 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_PMEM, i);
2646 /* pSeries LPAR / sPAPR hardware init */
2647 static void spapr_machine_init(MachineState *machine)
2649 SpaprMachineState *spapr = SPAPR_MACHINE(machine);
2650 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2651 MachineClass *mc = MACHINE_GET_CLASS(machine);
2652 const char *bios_name = machine->firmware ?: FW_FILE_NAME;
2653 const char *kernel_filename = machine->kernel_filename;
2654 const char *initrd_filename = machine->initrd_filename;
2655 PCIHostState *phb;
2656 int i;
2657 MemoryRegion *sysmem = get_system_memory();
2658 long load_limit, fw_size;
2659 char *filename;
2660 Error *resize_hpt_err = NULL;
2663 * if Secure VM (PEF) support is configured, then initialize it
2665 pef_kvm_init(machine->cgs, &error_fatal);
2667 msi_nonbroken = true;
2669 QLIST_INIT(&spapr->phbs);
2670 QTAILQ_INIT(&spapr->pending_dimm_unplugs);
2672 /* Determine capabilities to run with */
2673 spapr_caps_init(spapr);
2675 kvmppc_check_papr_resize_hpt(&resize_hpt_err);
2676 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) {
2678 * If the user explicitly requested a mode we should either
2679 * supply it, or fail completely (which we do below). But if
2680 * it's not set explicitly, we reset our mode to something
2681 * that works
2683 if (resize_hpt_err) {
2684 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2685 error_free(resize_hpt_err);
2686 resize_hpt_err = NULL;
2687 } else {
2688 spapr->resize_hpt = smc->resize_hpt_default;
2692 assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT);
2694 if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) {
2696 * User requested HPT resize, but this host can't supply it. Bail out
2698 error_report_err(resize_hpt_err);
2699 exit(1);
2701 error_free(resize_hpt_err);
2703 spapr->rma_size = spapr_rma_size(spapr, &error_fatal);
2705 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2706 load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
2709 * VSMT must be set in order to be able to compute VCPU ids, ie to
2710 * call spapr_max_server_number() or spapr_vcpu_id().
2712 spapr_set_vsmt_mode(spapr, &error_fatal);
2714 /* Set up Interrupt Controller before we create the VCPUs */
2715 spapr_irq_init(spapr, &error_fatal);
2717 /* Set up containers for ibm,client-architecture-support negotiated options
2719 spapr->ov5 = spapr_ovec_new();
2720 spapr->ov5_cas = spapr_ovec_new();
2722 if (smc->dr_lmb_enabled) {
2723 spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2724 spapr_validate_node_memory(machine, &error_fatal);
2727 spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2729 /* advertise support for dedicated HP event source to guests */
2730 if (spapr->use_hotplug_event_source) {
2731 spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2734 /* advertise support for HPT resizing */
2735 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
2736 spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE);
2739 /* advertise support for ibm,dyamic-memory-v2 */
2740 spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2);
2742 /* advertise XIVE on POWER9 machines */
2743 if (spapr->irq->xive) {
2744 spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT);
2747 /* init CPUs */
2748 spapr_init_cpus(spapr);
2751 * check we don't have a memory-less/cpu-less NUMA node
2752 * Firmware relies on the existing memory/cpu topology to provide the
2753 * NUMA topology to the kernel.
2754 * And the linux kernel needs to know the NUMA topology at start
2755 * to be able to hotplug CPUs later.
2757 if (machine->numa_state->num_nodes) {
2758 for (i = 0; i < machine->numa_state->num_nodes; ++i) {
2759 /* check for memory-less node */
2760 if (machine->numa_state->nodes[i].node_mem == 0) {
2761 CPUState *cs;
2762 int found = 0;
2763 /* check for cpu-less node */
2764 CPU_FOREACH(cs) {
2765 PowerPCCPU *cpu = POWERPC_CPU(cs);
2766 if (cpu->node_id == i) {
2767 found = 1;
2768 break;
2771 /* memory-less and cpu-less node */
2772 if (!found) {
2773 error_report(
2774 "Memory-less/cpu-less nodes are not supported (node %d)",
2776 exit(1);
2784 * NVLink2-connected GPU RAM needs to be placed on a separate NUMA node.
2785 * We assign a new numa ID per GPU in spapr_pci_collect_nvgpu() which is
2786 * called from vPHB reset handler so we initialize the counter here.
2787 * If no NUMA is configured from the QEMU side, we start from 1 as GPU RAM
2788 * must be equally distant from any other node.
2789 * The final value of spapr->gpu_numa_id is going to be written to
2790 * max-associativity-domains in spapr_build_fdt().
2792 spapr->gpu_numa_id = MAX(1, machine->numa_state->num_nodes);
2794 /* Init numa_assoc_array */
2795 spapr_numa_associativity_init(spapr, machine);
2797 if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) &&
2798 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
2799 spapr->max_compat_pvr)) {
2800 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_300);
2801 /* KVM and TCG always allow GTSE with radix... */
2802 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2804 /* ... but not with hash (currently). */
2806 if (kvm_enabled()) {
2807 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2808 kvmppc_enable_logical_ci_hcalls();
2809 kvmppc_enable_set_mode_hcall();
2811 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2812 kvmppc_enable_clear_ref_mod_hcalls();
2814 /* Enable H_PAGE_INIT */
2815 kvmppc_enable_h_page_init();
2818 /* map RAM */
2819 memory_region_add_subregion(sysmem, 0, machine->ram);
2821 /* always allocate the device memory information */
2822 machine->device_memory = g_malloc0(sizeof(*machine->device_memory));
2824 /* initialize hotplug memory address space */
2825 if (machine->ram_size < machine->maxram_size) {
2826 ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
2828 * Limit the number of hotpluggable memory slots to half the number
2829 * slots that KVM supports, leaving the other half for PCI and other
2830 * devices. However ensure that number of slots doesn't drop below 32.
2832 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2833 SPAPR_MAX_RAM_SLOTS;
2835 if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2836 max_memslots = SPAPR_MAX_RAM_SLOTS;
2838 if (machine->ram_slots > max_memslots) {
2839 error_report("Specified number of memory slots %"
2840 PRIu64" exceeds max supported %d",
2841 machine->ram_slots, max_memslots);
2842 exit(1);
2845 machine->device_memory->base = ROUND_UP(machine->ram_size,
2846 SPAPR_DEVICE_MEM_ALIGN);
2847 memory_region_init(&machine->device_memory->mr, OBJECT(spapr),
2848 "device-memory", device_mem_size);
2849 memory_region_add_subregion(sysmem, machine->device_memory->base,
2850 &machine->device_memory->mr);
2853 if (smc->dr_lmb_enabled) {
2854 spapr_create_lmb_dr_connectors(spapr);
2857 if (spapr_get_cap(spapr, SPAPR_CAP_FWNMI) == SPAPR_CAP_ON) {
2858 /* Create the error string for live migration blocker */
2859 error_setg(&spapr->fwnmi_migration_blocker,
2860 "A machine check is being handled during migration. The handler"
2861 "may run and log hardware error on the destination");
2864 if (mc->nvdimm_supported) {
2865 spapr_create_nvdimm_dr_connectors(spapr);
2868 /* Set up RTAS event infrastructure */
2869 spapr_events_init(spapr);
2871 /* Set up the RTC RTAS interfaces */
2872 spapr_rtc_create(spapr);
2874 /* Set up VIO bus */
2875 spapr->vio_bus = spapr_vio_bus_init();
2877 for (i = 0; serial_hd(i); i++) {
2878 spapr_vty_create(spapr->vio_bus, serial_hd(i));
2881 /* We always have at least the nvram device on VIO */
2882 spapr_create_nvram(spapr);
2885 * Setup hotplug / dynamic-reconfiguration connectors. top-level
2886 * connectors (described in root DT node's "ibm,drc-types" property)
2887 * are pre-initialized here. additional child connectors (such as
2888 * connectors for a PHBs PCI slots) are added as needed during their
2889 * parent's realization.
2891 if (smc->dr_phb_enabled) {
2892 for (i = 0; i < SPAPR_MAX_PHBS; i++) {
2893 spapr_dr_connector_new(OBJECT(machine), TYPE_SPAPR_DRC_PHB, i);
2897 /* Set up PCI */
2898 spapr_pci_rtas_init();
2900 phb = spapr_create_default_phb();
2902 for (i = 0; i < nb_nics; i++) {
2903 NICInfo *nd = &nd_table[i];
2905 if (!nd->model) {
2906 nd->model = g_strdup("spapr-vlan");
2909 if (g_str_equal(nd->model, "spapr-vlan") ||
2910 g_str_equal(nd->model, "ibmveth")) {
2911 spapr_vlan_create(spapr->vio_bus, nd);
2912 } else {
2913 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
2917 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
2918 spapr_vscsi_create(spapr->vio_bus);
2921 /* Graphics */
2922 if (spapr_vga_init(phb->bus, &error_fatal)) {
2923 spapr->has_graphics = true;
2924 machine->usb |= defaults_enabled() && !machine->usb_disabled;
2927 if (machine->usb) {
2928 if (smc->use_ohci_by_default) {
2929 pci_create_simple(phb->bus, -1, "pci-ohci");
2930 } else {
2931 pci_create_simple(phb->bus, -1, "nec-usb-xhci");
2934 if (spapr->has_graphics) {
2935 USBBus *usb_bus = usb_bus_find(-1);
2937 usb_create_simple(usb_bus, "usb-kbd");
2938 usb_create_simple(usb_bus, "usb-mouse");
2942 if (kernel_filename) {
2943 spapr->kernel_size = load_elf(kernel_filename, NULL,
2944 translate_kernel_address, spapr,
2945 NULL, NULL, NULL, NULL, 1,
2946 PPC_ELF_MACHINE, 0, 0);
2947 if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
2948 spapr->kernel_size = load_elf(kernel_filename, NULL,
2949 translate_kernel_address, spapr,
2950 NULL, NULL, NULL, NULL, 0,
2951 PPC_ELF_MACHINE, 0, 0);
2952 spapr->kernel_le = spapr->kernel_size > 0;
2954 if (spapr->kernel_size < 0) {
2955 error_report("error loading %s: %s", kernel_filename,
2956 load_elf_strerror(spapr->kernel_size));
2957 exit(1);
2960 /* load initrd */
2961 if (initrd_filename) {
2962 /* Try to locate the initrd in the gap between the kernel
2963 * and the firmware. Add a bit of space just in case
2965 spapr->initrd_base = (spapr->kernel_addr + spapr->kernel_size
2966 + 0x1ffff) & ~0xffff;
2967 spapr->initrd_size = load_image_targphys(initrd_filename,
2968 spapr->initrd_base,
2969 load_limit
2970 - spapr->initrd_base);
2971 if (spapr->initrd_size < 0) {
2972 error_report("could not load initial ram disk '%s'",
2973 initrd_filename);
2974 exit(1);
2979 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
2980 if (!filename) {
2981 error_report("Could not find LPAR firmware '%s'", bios_name);
2982 exit(1);
2984 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
2985 if (fw_size <= 0) {
2986 error_report("Could not load LPAR firmware '%s'", filename);
2987 exit(1);
2989 g_free(filename);
2991 /* FIXME: Should register things through the MachineState's qdev
2992 * interface, this is a legacy from the sPAPREnvironment structure
2993 * which predated MachineState but had a similar function */
2994 vmstate_register(NULL, 0, &vmstate_spapr, spapr);
2995 register_savevm_live("spapr/htab", VMSTATE_INSTANCE_ID_ANY, 1,
2996 &savevm_htab_handlers, spapr);
2998 qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine));
3000 qemu_register_boot_set(spapr_boot_set, spapr);
3003 * Nothing needs to be done to resume a suspended guest because
3004 * suspending does not change the machine state, so no need for
3005 * a ->wakeup method.
3007 qemu_register_wakeup_support();
3009 if (kvm_enabled()) {
3010 /* to stop and start vmclock */
3011 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
3012 &spapr->tb);
3014 kvmppc_spapr_enable_inkernel_multitce();
3017 qemu_cond_init(&spapr->fwnmi_machine_check_interlock_cond);
3020 #define DEFAULT_KVM_TYPE "auto"
3021 static int spapr_kvm_type(MachineState *machine, const char *vm_type)
3024 * The use of g_ascii_strcasecmp() for 'hv' and 'pr' is to
3025 * accomodate the 'HV' and 'PV' formats that exists in the
3026 * wild. The 'auto' mode is being introduced already as
3027 * lower-case, thus we don't need to bother checking for
3028 * "AUTO".
3030 if (!vm_type || !strcmp(vm_type, DEFAULT_KVM_TYPE)) {
3031 return 0;
3034 if (!g_ascii_strcasecmp(vm_type, "hv")) {
3035 return 1;
3038 if (!g_ascii_strcasecmp(vm_type, "pr")) {
3039 return 2;
3042 error_report("Unknown kvm-type specified '%s'", vm_type);
3043 exit(1);
3047 * Implementation of an interface to adjust firmware path
3048 * for the bootindex property handling.
3050 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
3051 DeviceState *dev)
3053 #define CAST(type, obj, name) \
3054 ((type *)object_dynamic_cast(OBJECT(obj), (name)))
3055 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE);
3056 SpaprPhbState *phb = CAST(SpaprPhbState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
3057 VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
3059 if (d) {
3060 void *spapr = CAST(void, bus->parent, "spapr-vscsi");
3061 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
3062 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
3064 if (spapr) {
3066 * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
3067 * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form
3068 * 0x8000 | (target << 8) | (bus << 5) | lun
3069 * (see the "Logical unit addressing format" table in SAM5)
3071 unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun;
3072 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3073 (uint64_t)id << 48);
3074 } else if (virtio) {
3076 * We use SRP luns of the form 01000000 | (target << 8) | lun
3077 * in the top 32 bits of the 64-bit LUN
3078 * Note: the quote above is from SLOF and it is wrong,
3079 * the actual binding is:
3080 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
3082 unsigned id = 0x1000000 | (d->id << 16) | d->lun;
3083 if (d->lun >= 256) {
3084 /* Use the LUN "flat space addressing method" */
3085 id |= 0x4000;
3087 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3088 (uint64_t)id << 32);
3089 } else if (usb) {
3091 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
3092 * in the top 32 bits of the 64-bit LUN
3094 unsigned usb_port = atoi(usb->port->path);
3095 unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
3096 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3097 (uint64_t)id << 32);
3102 * SLOF probes the USB devices, and if it recognizes that the device is a
3103 * storage device, it changes its name to "storage" instead of "usb-host",
3104 * and additionally adds a child node for the SCSI LUN, so the correct
3105 * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
3107 if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
3108 USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
3109 if (usb_host_dev_is_scsi_storage(usbdev)) {
3110 return g_strdup_printf("storage@%s/disk", usbdev->port->path);
3114 if (phb) {
3115 /* Replace "pci" with "pci@800000020000000" */
3116 return g_strdup_printf("pci@%"PRIX64, phb->buid);
3119 if (vsc) {
3120 /* Same logic as virtio above */
3121 unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
3122 return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
3125 if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
3126 /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
3127 PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
3128 return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn));
3131 return NULL;
3134 static char *spapr_get_kvm_type(Object *obj, Error **errp)
3136 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3138 return g_strdup(spapr->kvm_type);
3141 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
3143 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3145 g_free(spapr->kvm_type);
3146 spapr->kvm_type = g_strdup(value);
3149 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
3151 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3153 return spapr->use_hotplug_event_source;
3156 static void spapr_set_modern_hotplug_events(Object *obj, bool value,
3157 Error **errp)
3159 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3161 spapr->use_hotplug_event_source = value;
3164 static bool spapr_get_msix_emulation(Object *obj, Error **errp)
3166 return true;
3169 static char *spapr_get_resize_hpt(Object *obj, Error **errp)
3171 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3173 switch (spapr->resize_hpt) {
3174 case SPAPR_RESIZE_HPT_DEFAULT:
3175 return g_strdup("default");
3176 case SPAPR_RESIZE_HPT_DISABLED:
3177 return g_strdup("disabled");
3178 case SPAPR_RESIZE_HPT_ENABLED:
3179 return g_strdup("enabled");
3180 case SPAPR_RESIZE_HPT_REQUIRED:
3181 return g_strdup("required");
3183 g_assert_not_reached();
3186 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp)
3188 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3190 if (strcmp(value, "default") == 0) {
3191 spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT;
3192 } else if (strcmp(value, "disabled") == 0) {
3193 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
3194 } else if (strcmp(value, "enabled") == 0) {
3195 spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED;
3196 } else if (strcmp(value, "required") == 0) {
3197 spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED;
3198 } else {
3199 error_setg(errp, "Bad value for \"resize-hpt\" property");
3203 static char *spapr_get_ic_mode(Object *obj, Error **errp)
3205 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3207 if (spapr->irq == &spapr_irq_xics_legacy) {
3208 return g_strdup("legacy");
3209 } else if (spapr->irq == &spapr_irq_xics) {
3210 return g_strdup("xics");
3211 } else if (spapr->irq == &spapr_irq_xive) {
3212 return g_strdup("xive");
3213 } else if (spapr->irq == &spapr_irq_dual) {
3214 return g_strdup("dual");
3216 g_assert_not_reached();
3219 static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp)
3221 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3223 if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
3224 error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode");
3225 return;
3228 /* The legacy IRQ backend can not be set */
3229 if (strcmp(value, "xics") == 0) {
3230 spapr->irq = &spapr_irq_xics;
3231 } else if (strcmp(value, "xive") == 0) {
3232 spapr->irq = &spapr_irq_xive;
3233 } else if (strcmp(value, "dual") == 0) {
3234 spapr->irq = &spapr_irq_dual;
3235 } else {
3236 error_setg(errp, "Bad value for \"ic-mode\" property");
3240 static char *spapr_get_host_model(Object *obj, Error **errp)
3242 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3244 return g_strdup(spapr->host_model);
3247 static void spapr_set_host_model(Object *obj, const char *value, Error **errp)
3249 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3251 g_free(spapr->host_model);
3252 spapr->host_model = g_strdup(value);
3255 static char *spapr_get_host_serial(Object *obj, Error **errp)
3257 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3259 return g_strdup(spapr->host_serial);
3262 static void spapr_set_host_serial(Object *obj, const char *value, Error **errp)
3264 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3266 g_free(spapr->host_serial);
3267 spapr->host_serial = g_strdup(value);
3270 static void spapr_instance_init(Object *obj)
3272 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3273 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3274 MachineState *ms = MACHINE(spapr);
3275 MachineClass *mc = MACHINE_GET_CLASS(ms);
3278 * NVDIMM support went live in 5.1 without considering that, in
3279 * other archs, the user needs to enable NVDIMM support with the
3280 * 'nvdimm' machine option and the default behavior is NVDIMM
3281 * support disabled. It is too late to roll back to the standard
3282 * behavior without breaking 5.1 guests.
3284 if (mc->nvdimm_supported) {
3285 ms->nvdimms_state->is_enabled = true;
3288 spapr->htab_fd = -1;
3289 spapr->use_hotplug_event_source = true;
3290 spapr->kvm_type = g_strdup(DEFAULT_KVM_TYPE);
3291 object_property_add_str(obj, "kvm-type",
3292 spapr_get_kvm_type, spapr_set_kvm_type);
3293 object_property_set_description(obj, "kvm-type",
3294 "Specifies the KVM virtualization mode (auto,"
3295 " hv, pr). Defaults to 'auto'. This mode will use"
3296 " any available KVM module loaded in the host,"
3297 " where kvm_hv takes precedence if both kvm_hv and"
3298 " kvm_pr are loaded.");
3299 object_property_add_bool(obj, "modern-hotplug-events",
3300 spapr_get_modern_hotplug_events,
3301 spapr_set_modern_hotplug_events);
3302 object_property_set_description(obj, "modern-hotplug-events",
3303 "Use dedicated hotplug event mechanism in"
3304 " place of standard EPOW events when possible"
3305 " (required for memory hot-unplug support)");
3306 ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr,
3307 "Maximum permitted CPU compatibility mode");
3309 object_property_add_str(obj, "resize-hpt",
3310 spapr_get_resize_hpt, spapr_set_resize_hpt);
3311 object_property_set_description(obj, "resize-hpt",
3312 "Resizing of the Hash Page Table (enabled, disabled, required)");
3313 object_property_add_uint32_ptr(obj, "vsmt",
3314 &spapr->vsmt, OBJ_PROP_FLAG_READWRITE);
3315 object_property_set_description(obj, "vsmt",
3316 "Virtual SMT: KVM behaves as if this were"
3317 " the host's SMT mode");
3319 object_property_add_bool(obj, "vfio-no-msix-emulation",
3320 spapr_get_msix_emulation, NULL);
3322 object_property_add_uint64_ptr(obj, "kernel-addr",
3323 &spapr->kernel_addr, OBJ_PROP_FLAG_READWRITE);
3324 object_property_set_description(obj, "kernel-addr",
3325 stringify(KERNEL_LOAD_ADDR)
3326 " for -kernel is the default");
3327 spapr->kernel_addr = KERNEL_LOAD_ADDR;
3328 /* The machine class defines the default interrupt controller mode */
3329 spapr->irq = smc->irq;
3330 object_property_add_str(obj, "ic-mode", spapr_get_ic_mode,
3331 spapr_set_ic_mode);
3332 object_property_set_description(obj, "ic-mode",
3333 "Specifies the interrupt controller mode (xics, xive, dual)");
3335 object_property_add_str(obj, "host-model",
3336 spapr_get_host_model, spapr_set_host_model);
3337 object_property_set_description(obj, "host-model",
3338 "Host model to advertise in guest device tree");
3339 object_property_add_str(obj, "host-serial",
3340 spapr_get_host_serial, spapr_set_host_serial);
3341 object_property_set_description(obj, "host-serial",
3342 "Host serial number to advertise in guest device tree");
3345 static void spapr_machine_finalizefn(Object *obj)
3347 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3349 g_free(spapr->kvm_type);
3352 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
3354 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
3355 PowerPCCPU *cpu = POWERPC_CPU(cs);
3356 CPUPPCState *env = &cpu->env;
3358 cpu_synchronize_state(cs);
3359 /* If FWNMI is inactive, addr will be -1, which will deliver to 0x100 */
3360 if (spapr->fwnmi_system_reset_addr != -1) {
3361 uint64_t rtas_addr, addr;
3363 /* get rtas addr from fdt */
3364 rtas_addr = spapr_get_rtas_addr();
3365 if (!rtas_addr) {
3366 qemu_system_guest_panicked(NULL);
3367 return;
3370 addr = rtas_addr + RTAS_ERROR_LOG_MAX + cs->cpu_index * sizeof(uint64_t)*2;
3371 stq_be_phys(&address_space_memory, addr, env->gpr[3]);
3372 stq_be_phys(&address_space_memory, addr + sizeof(uint64_t), 0);
3373 env->gpr[3] = addr;
3375 ppc_cpu_do_system_reset(cs);
3376 if (spapr->fwnmi_system_reset_addr != -1) {
3377 env->nip = spapr->fwnmi_system_reset_addr;
3381 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
3383 CPUState *cs;
3385 CPU_FOREACH(cs) {
3386 async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
3390 int spapr_lmb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3391 void *fdt, int *fdt_start_offset, Error **errp)
3393 uint64_t addr;
3394 uint32_t node;
3396 addr = spapr_drc_index(drc) * SPAPR_MEMORY_BLOCK_SIZE;
3397 node = object_property_get_uint(OBJECT(drc->dev), PC_DIMM_NODE_PROP,
3398 &error_abort);
3399 *fdt_start_offset = spapr_dt_memory_node(spapr, fdt, node, addr,
3400 SPAPR_MEMORY_BLOCK_SIZE);
3401 return 0;
3404 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
3405 bool dedicated_hp_event_source)
3407 SpaprDrc *drc;
3408 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
3409 int i;
3410 uint64_t addr = addr_start;
3411 bool hotplugged = spapr_drc_hotplugged(dev);
3413 for (i = 0; i < nr_lmbs; i++) {
3414 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3415 addr / SPAPR_MEMORY_BLOCK_SIZE);
3416 g_assert(drc);
3419 * memory_device_get_free_addr() provided a range of free addresses
3420 * that doesn't overlap with any existing mapping at pre-plug. The
3421 * corresponding LMB DRCs are thus assumed to be all attachable.
3423 spapr_drc_attach(drc, dev);
3424 if (!hotplugged) {
3425 spapr_drc_reset(drc);
3427 addr += SPAPR_MEMORY_BLOCK_SIZE;
3429 /* send hotplug notification to the
3430 * guest only in case of hotplugged memory
3432 if (hotplugged) {
3433 if (dedicated_hp_event_source) {
3434 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3435 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3436 g_assert(drc);
3437 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3438 nr_lmbs,
3439 spapr_drc_index(drc));
3440 } else {
3441 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
3442 nr_lmbs);
3447 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
3449 SpaprMachineState *ms = SPAPR_MACHINE(hotplug_dev);
3450 PCDIMMDevice *dimm = PC_DIMM(dev);
3451 uint64_t size, addr;
3452 int64_t slot;
3453 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
3455 size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort);
3457 pc_dimm_plug(dimm, MACHINE(ms));
3459 if (!is_nvdimm) {
3460 addr = object_property_get_uint(OBJECT(dimm),
3461 PC_DIMM_ADDR_PROP, &error_abort);
3462 spapr_add_lmbs(dev, addr, size,
3463 spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT));
3464 } else {
3465 slot = object_property_get_int(OBJECT(dimm),
3466 PC_DIMM_SLOT_PROP, &error_abort);
3467 /* We should have valid slot number at this point */
3468 g_assert(slot >= 0);
3469 spapr_add_nvdimm(dev, slot);
3473 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3474 Error **errp)
3476 const SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev);
3477 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3478 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
3479 PCDIMMDevice *dimm = PC_DIMM(dev);
3480 Error *local_err = NULL;
3481 uint64_t size;
3482 Object *memdev;
3483 hwaddr pagesize;
3485 if (!smc->dr_lmb_enabled) {
3486 error_setg(errp, "Memory hotplug not supported for this machine");
3487 return;
3490 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err);
3491 if (local_err) {
3492 error_propagate(errp, local_err);
3493 return;
3496 if (is_nvdimm) {
3497 if (!spapr_nvdimm_validate(hotplug_dev, NVDIMM(dev), size, errp)) {
3498 return;
3500 } else if (size % SPAPR_MEMORY_BLOCK_SIZE) {
3501 error_setg(errp, "Hotplugged memory size must be a multiple of "
3502 "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB);
3503 return;
3506 memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP,
3507 &error_abort);
3508 pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev));
3509 if (!spapr_check_pagesize(spapr, pagesize, errp)) {
3510 return;
3513 pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp);
3516 struct SpaprDimmState {
3517 PCDIMMDevice *dimm;
3518 uint32_t nr_lmbs;
3519 QTAILQ_ENTRY(SpaprDimmState) next;
3522 static SpaprDimmState *spapr_pending_dimm_unplugs_find(SpaprMachineState *s,
3523 PCDIMMDevice *dimm)
3525 SpaprDimmState *dimm_state = NULL;
3527 QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
3528 if (dimm_state->dimm == dimm) {
3529 break;
3532 return dimm_state;
3535 static SpaprDimmState *spapr_pending_dimm_unplugs_add(SpaprMachineState *spapr,
3536 uint32_t nr_lmbs,
3537 PCDIMMDevice *dimm)
3539 SpaprDimmState *ds = NULL;
3542 * If this request is for a DIMM whose removal had failed earlier
3543 * (due to guest's refusal to remove the LMBs), we would have this
3544 * dimm already in the pending_dimm_unplugs list. In that
3545 * case don't add again.
3547 ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3548 if (!ds) {
3549 ds = g_malloc0(sizeof(SpaprDimmState));
3550 ds->nr_lmbs = nr_lmbs;
3551 ds->dimm = dimm;
3552 QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next);
3554 return ds;
3557 static void spapr_pending_dimm_unplugs_remove(SpaprMachineState *spapr,
3558 SpaprDimmState *dimm_state)
3560 QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
3561 g_free(dimm_state);
3564 static SpaprDimmState *spapr_recover_pending_dimm_state(SpaprMachineState *ms,
3565 PCDIMMDevice *dimm)
3567 SpaprDrc *drc;
3568 uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm),
3569 &error_abort);
3570 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3571 uint32_t avail_lmbs = 0;
3572 uint64_t addr_start, addr;
3573 int i;
3575 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3576 &error_abort);
3578 addr = addr_start;
3579 for (i = 0; i < nr_lmbs; i++) {
3580 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3581 addr / SPAPR_MEMORY_BLOCK_SIZE);
3582 g_assert(drc);
3583 if (drc->dev) {
3584 avail_lmbs++;
3586 addr += SPAPR_MEMORY_BLOCK_SIZE;
3589 return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm);
3592 /* Callback to be called during DRC release. */
3593 void spapr_lmb_release(DeviceState *dev)
3595 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3596 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl);
3597 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3599 /* This information will get lost if a migration occurs
3600 * during the unplug process. In this case recover it. */
3601 if (ds == NULL) {
3602 ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
3603 g_assert(ds);
3604 /* The DRC being examined by the caller at least must be counted */
3605 g_assert(ds->nr_lmbs);
3608 if (--ds->nr_lmbs) {
3609 return;
3613 * Now that all the LMBs have been removed by the guest, call the
3614 * unplug handler chain. This can never fail.
3616 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3617 object_unparent(OBJECT(dev));
3620 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3622 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3623 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3625 pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev));
3626 qdev_unrealize(dev);
3627 spapr_pending_dimm_unplugs_remove(spapr, ds);
3630 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
3631 DeviceState *dev, Error **errp)
3633 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3634 PCDIMMDevice *dimm = PC_DIMM(dev);
3635 uint32_t nr_lmbs;
3636 uint64_t size, addr_start, addr;
3637 int i;
3638 SpaprDrc *drc;
3640 if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
3641 error_setg(errp, "nvdimm device hot unplug is not supported yet.");
3642 return;
3645 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
3646 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3648 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3649 &error_abort);
3652 * An existing pending dimm state for this DIMM means that there is an
3653 * unplug operation in progress, waiting for the spapr_lmb_release
3654 * callback to complete the job (BQL can't cover that far). In this case,
3655 * bail out to avoid detaching DRCs that were already released.
3657 if (spapr_pending_dimm_unplugs_find(spapr, dimm)) {
3658 error_setg(errp, "Memory unplug already in progress for device %s",
3659 dev->id);
3660 return;
3663 spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm);
3665 addr = addr_start;
3666 for (i = 0; i < nr_lmbs; i++) {
3667 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3668 addr / SPAPR_MEMORY_BLOCK_SIZE);
3669 g_assert(drc);
3671 spapr_drc_detach(drc);
3672 addr += SPAPR_MEMORY_BLOCK_SIZE;
3675 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3676 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3677 g_assert(drc);
3678 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3679 nr_lmbs, spapr_drc_index(drc));
3682 /* Callback to be called during DRC release. */
3683 void spapr_core_release(DeviceState *dev)
3685 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3687 /* Call the unplug handler chain. This can never fail. */
3688 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3689 object_unparent(OBJECT(dev));
3692 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3694 MachineState *ms = MACHINE(hotplug_dev);
3695 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3696 CPUCore *cc = CPU_CORE(dev);
3697 CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
3699 if (smc->pre_2_10_has_unused_icps) {
3700 SpaprCpuCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
3701 int i;
3703 for (i = 0; i < cc->nr_threads; i++) {
3704 CPUState *cs = CPU(sc->threads[i]);
3706 pre_2_10_vmstate_register_dummy_icp(cs->cpu_index);
3710 assert(core_slot);
3711 core_slot->cpu = NULL;
3712 qdev_unrealize(dev);
3715 static
3716 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
3717 Error **errp)
3719 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3720 int index;
3721 SpaprDrc *drc;
3722 CPUCore *cc = CPU_CORE(dev);
3724 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
3725 error_setg(errp, "Unable to find CPU core with core-id: %d",
3726 cc->core_id);
3727 return;
3729 if (index == 0) {
3730 error_setg(errp, "Boot CPU core may not be unplugged");
3731 return;
3734 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3735 spapr_vcpu_id(spapr, cc->core_id));
3736 g_assert(drc);
3738 if (!spapr_drc_unplug_requested(drc)) {
3739 spapr_drc_detach(drc);
3740 spapr_hotplug_req_remove_by_index(drc);
3744 int spapr_core_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3745 void *fdt, int *fdt_start_offset, Error **errp)
3747 SpaprCpuCore *core = SPAPR_CPU_CORE(drc->dev);
3748 CPUState *cs = CPU(core->threads[0]);
3749 PowerPCCPU *cpu = POWERPC_CPU(cs);
3750 DeviceClass *dc = DEVICE_GET_CLASS(cs);
3751 int id = spapr_get_vcpu_id(cpu);
3752 char *nodename;
3753 int offset;
3755 nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
3756 offset = fdt_add_subnode(fdt, 0, nodename);
3757 g_free(nodename);
3759 spapr_dt_cpu(cs, fdt, offset, spapr);
3761 *fdt_start_offset = offset;
3762 return 0;
3765 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
3767 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3768 MachineClass *mc = MACHINE_GET_CLASS(spapr);
3769 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3770 SpaprCpuCore *core = SPAPR_CPU_CORE(OBJECT(dev));
3771 CPUCore *cc = CPU_CORE(dev);
3772 CPUState *cs;
3773 SpaprDrc *drc;
3774 CPUArchId *core_slot;
3775 int index;
3776 bool hotplugged = spapr_drc_hotplugged(dev);
3777 int i;
3779 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3780 g_assert(core_slot); /* Already checked in spapr_core_pre_plug() */
3782 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3783 spapr_vcpu_id(spapr, cc->core_id));
3785 g_assert(drc || !mc->has_hotpluggable_cpus);
3787 if (drc) {
3789 * spapr_core_pre_plug() already buys us this is a brand new
3790 * core being plugged into a free slot. Nothing should already
3791 * be attached to the corresponding DRC.
3793 spapr_drc_attach(drc, dev);
3795 if (hotplugged) {
3797 * Send hotplug notification interrupt to the guest only
3798 * in case of hotplugged CPUs.
3800 spapr_hotplug_req_add_by_index(drc);
3801 } else {
3802 spapr_drc_reset(drc);
3806 core_slot->cpu = OBJECT(dev);
3809 * Set compatibility mode to match the boot CPU, which was either set
3810 * by the machine reset code or by CAS. This really shouldn't fail at
3811 * this point.
3813 if (hotplugged) {
3814 for (i = 0; i < cc->nr_threads; i++) {
3815 ppc_set_compat(core->threads[i], POWERPC_CPU(first_cpu)->compat_pvr,
3816 &error_abort);
3820 if (smc->pre_2_10_has_unused_icps) {
3821 for (i = 0; i < cc->nr_threads; i++) {
3822 cs = CPU(core->threads[i]);
3823 pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index);
3828 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3829 Error **errp)
3831 MachineState *machine = MACHINE(OBJECT(hotplug_dev));
3832 MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
3833 CPUCore *cc = CPU_CORE(dev);
3834 const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type);
3835 const char *type = object_get_typename(OBJECT(dev));
3836 CPUArchId *core_slot;
3837 int index;
3838 unsigned int smp_threads = machine->smp.threads;
3840 if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
3841 error_setg(errp, "CPU hotplug not supported for this machine");
3842 return;
3845 if (strcmp(base_core_type, type)) {
3846 error_setg(errp, "CPU core type should be %s", base_core_type);
3847 return;
3850 if (cc->core_id % smp_threads) {
3851 error_setg(errp, "invalid core id %d", cc->core_id);
3852 return;
3856 * In general we should have homogeneous threads-per-core, but old
3857 * (pre hotplug support) machine types allow the last core to have
3858 * reduced threads as a compatibility hack for when we allowed
3859 * total vcpus not a multiple of threads-per-core.
3861 if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
3862 error_setg(errp, "invalid nr-threads %d, must be %d", cc->nr_threads,
3863 smp_threads);
3864 return;
3867 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3868 if (!core_slot) {
3869 error_setg(errp, "core id %d out of range", cc->core_id);
3870 return;
3873 if (core_slot->cpu) {
3874 error_setg(errp, "core %d already populated", cc->core_id);
3875 return;
3878 numa_cpu_pre_plug(core_slot, dev, errp);
3881 int spapr_phb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3882 void *fdt, int *fdt_start_offset, Error **errp)
3884 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(drc->dev);
3885 int intc_phandle;
3887 intc_phandle = spapr_irq_get_phandle(spapr, spapr->fdt_blob, errp);
3888 if (intc_phandle <= 0) {
3889 return -1;
3892 if (spapr_dt_phb(spapr, sphb, intc_phandle, fdt, fdt_start_offset)) {
3893 error_setg(errp, "unable to create FDT node for PHB %d", sphb->index);
3894 return -1;
3897 /* generally SLOF creates these, for hotplug it's up to QEMU */
3898 _FDT(fdt_setprop_string(fdt, *fdt_start_offset, "name", "pci"));
3900 return 0;
3903 static bool spapr_phb_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3904 Error **errp)
3906 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3907 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
3908 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3909 const unsigned windows_supported = spapr_phb_windows_supported(sphb);
3910 SpaprDrc *drc;
3912 if (dev->hotplugged && !smc->dr_phb_enabled) {
3913 error_setg(errp, "PHB hotplug not supported for this machine");
3914 return false;
3917 if (sphb->index == (uint32_t)-1) {
3918 error_setg(errp, "\"index\" for PAPR PHB is mandatory");
3919 return false;
3922 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
3923 if (drc && drc->dev) {
3924 error_setg(errp, "PHB %d already attached", sphb->index);
3925 return false;
3929 * This will check that sphb->index doesn't exceed the maximum number of
3930 * PHBs for the current machine type.
3932 return
3933 smc->phb_placement(spapr, sphb->index,
3934 &sphb->buid, &sphb->io_win_addr,
3935 &sphb->mem_win_addr, &sphb->mem64_win_addr,
3936 windows_supported, sphb->dma_liobn,
3937 &sphb->nv2_gpa_win_addr, &sphb->nv2_atsd_win_addr,
3938 errp);
3941 static void spapr_phb_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
3943 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3944 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3945 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
3946 SpaprDrc *drc;
3947 bool hotplugged = spapr_drc_hotplugged(dev);
3949 if (!smc->dr_phb_enabled) {
3950 return;
3953 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
3954 /* hotplug hooks should check it's enabled before getting this far */
3955 assert(drc);
3957 /* spapr_phb_pre_plug() already checked the DRC is attachable */
3958 spapr_drc_attach(drc, dev);
3960 if (hotplugged) {
3961 spapr_hotplug_req_add_by_index(drc);
3962 } else {
3963 spapr_drc_reset(drc);
3967 void spapr_phb_release(DeviceState *dev)
3969 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3971 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3972 object_unparent(OBJECT(dev));
3975 static void spapr_phb_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3977 qdev_unrealize(dev);
3980 static void spapr_phb_unplug_request(HotplugHandler *hotplug_dev,
3981 DeviceState *dev, Error **errp)
3983 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
3984 SpaprDrc *drc;
3986 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
3987 assert(drc);
3989 if (!spapr_drc_unplug_requested(drc)) {
3990 spapr_drc_detach(drc);
3991 spapr_hotplug_req_remove_by_index(drc);
3995 static
3996 bool spapr_tpm_proxy_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3997 Error **errp)
3999 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4001 if (spapr->tpm_proxy != NULL) {
4002 error_setg(errp, "Only one TPM proxy can be specified for this machine");
4003 return false;
4006 return true;
4009 static void spapr_tpm_proxy_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
4011 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4012 SpaprTpmProxy *tpm_proxy = SPAPR_TPM_PROXY(dev);
4014 /* Already checked in spapr_tpm_proxy_pre_plug() */
4015 g_assert(spapr->tpm_proxy == NULL);
4017 spapr->tpm_proxy = tpm_proxy;
4020 static void spapr_tpm_proxy_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
4022 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4024 qdev_unrealize(dev);
4025 object_unparent(OBJECT(dev));
4026 spapr->tpm_proxy = NULL;
4029 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
4030 DeviceState *dev, Error **errp)
4032 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4033 spapr_memory_plug(hotplug_dev, dev);
4034 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4035 spapr_core_plug(hotplug_dev, dev);
4036 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4037 spapr_phb_plug(hotplug_dev, dev);
4038 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4039 spapr_tpm_proxy_plug(hotplug_dev, dev);
4043 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
4044 DeviceState *dev, Error **errp)
4046 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4047 spapr_memory_unplug(hotplug_dev, dev);
4048 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4049 spapr_core_unplug(hotplug_dev, dev);
4050 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4051 spapr_phb_unplug(hotplug_dev, dev);
4052 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4053 spapr_tpm_proxy_unplug(hotplug_dev, dev);
4057 bool spapr_memory_hot_unplug_supported(SpaprMachineState *spapr)
4059 return spapr_ovec_test(spapr->ov5_cas, OV5_HP_EVT) ||
4061 * CAS will process all pending unplug requests.
4063 * HACK: a guest could theoretically have cleared all bits in OV5,
4064 * but none of the guests we care for do.
4066 spapr_ovec_empty(spapr->ov5_cas);
4069 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
4070 DeviceState *dev, Error **errp)
4072 SpaprMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev));
4073 MachineClass *mc = MACHINE_GET_CLASS(sms);
4074 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4076 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4077 if (spapr_memory_hot_unplug_supported(sms)) {
4078 spapr_memory_unplug_request(hotplug_dev, dev, errp);
4079 } else {
4080 error_setg(errp, "Memory hot unplug not supported for this guest");
4082 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4083 if (!mc->has_hotpluggable_cpus) {
4084 error_setg(errp, "CPU hot unplug not supported on this machine");
4085 return;
4087 spapr_core_unplug_request(hotplug_dev, dev, errp);
4088 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4089 if (!smc->dr_phb_enabled) {
4090 error_setg(errp, "PHB hot unplug not supported on this machine");
4091 return;
4093 spapr_phb_unplug_request(hotplug_dev, dev, errp);
4094 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4095 spapr_tpm_proxy_unplug(hotplug_dev, dev);
4099 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
4100 DeviceState *dev, Error **errp)
4102 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4103 spapr_memory_pre_plug(hotplug_dev, dev, errp);
4104 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4105 spapr_core_pre_plug(hotplug_dev, dev, errp);
4106 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4107 spapr_phb_pre_plug(hotplug_dev, dev, errp);
4108 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4109 spapr_tpm_proxy_pre_plug(hotplug_dev, dev, errp);
4113 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
4114 DeviceState *dev)
4116 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
4117 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE) ||
4118 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE) ||
4119 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4120 return HOTPLUG_HANDLER(machine);
4122 if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) {
4123 PCIDevice *pcidev = PCI_DEVICE(dev);
4124 PCIBus *root = pci_device_root_bus(pcidev);
4125 SpaprPhbState *phb =
4126 (SpaprPhbState *)object_dynamic_cast(OBJECT(BUS(root)->parent),
4127 TYPE_SPAPR_PCI_HOST_BRIDGE);
4129 if (phb) {
4130 return HOTPLUG_HANDLER(phb);
4133 return NULL;
4136 static CpuInstanceProperties
4137 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
4139 CPUArchId *core_slot;
4140 MachineClass *mc = MACHINE_GET_CLASS(machine);
4142 /* make sure possible_cpu are intialized */
4143 mc->possible_cpu_arch_ids(machine);
4144 /* get CPU core slot containing thread that matches cpu_index */
4145 core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
4146 assert(core_slot);
4147 return core_slot->props;
4150 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx)
4152 return idx / ms->smp.cores % ms->numa_state->num_nodes;
4155 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
4157 int i;
4158 unsigned int smp_threads = machine->smp.threads;
4159 unsigned int smp_cpus = machine->smp.cpus;
4160 const char *core_type;
4161 int spapr_max_cores = machine->smp.max_cpus / smp_threads;
4162 MachineClass *mc = MACHINE_GET_CLASS(machine);
4164 if (!mc->has_hotpluggable_cpus) {
4165 spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
4167 if (machine->possible_cpus) {
4168 assert(machine->possible_cpus->len == spapr_max_cores);
4169 return machine->possible_cpus;
4172 core_type = spapr_get_cpu_core_type(machine->cpu_type);
4173 if (!core_type) {
4174 error_report("Unable to find sPAPR CPU Core definition");
4175 exit(1);
4178 machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
4179 sizeof(CPUArchId) * spapr_max_cores);
4180 machine->possible_cpus->len = spapr_max_cores;
4181 for (i = 0; i < machine->possible_cpus->len; i++) {
4182 int core_id = i * smp_threads;
4184 machine->possible_cpus->cpus[i].type = core_type;
4185 machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
4186 machine->possible_cpus->cpus[i].arch_id = core_id;
4187 machine->possible_cpus->cpus[i].props.has_core_id = true;
4188 machine->possible_cpus->cpus[i].props.core_id = core_id;
4190 return machine->possible_cpus;
4193 static bool spapr_phb_placement(SpaprMachineState *spapr, uint32_t index,
4194 uint64_t *buid, hwaddr *pio,
4195 hwaddr *mmio32, hwaddr *mmio64,
4196 unsigned n_dma, uint32_t *liobns,
4197 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4200 * New-style PHB window placement.
4202 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
4203 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
4204 * windows.
4206 * Some guest kernels can't work with MMIO windows above 1<<46
4207 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
4209 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
4210 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the
4211 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the
4212 * 1TiB 64-bit MMIO windows for each PHB.
4214 const uint64_t base_buid = 0x800000020000000ULL;
4215 int i;
4217 /* Sanity check natural alignments */
4218 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4219 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4220 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
4221 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
4222 /* Sanity check bounds */
4223 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
4224 SPAPR_PCI_MEM32_WIN_SIZE);
4225 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
4226 SPAPR_PCI_MEM64_WIN_SIZE);
4228 if (index >= SPAPR_MAX_PHBS) {
4229 error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
4230 SPAPR_MAX_PHBS - 1);
4231 return false;
4234 *buid = base_buid + index;
4235 for (i = 0; i < n_dma; ++i) {
4236 liobns[i] = SPAPR_PCI_LIOBN(index, i);
4239 *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
4240 *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
4241 *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
4243 *nv2gpa = SPAPR_PCI_NV2RAM64_WIN_BASE + index * SPAPR_PCI_NV2RAM64_WIN_SIZE;
4244 *nv2atsd = SPAPR_PCI_NV2ATSD_WIN_BASE + index * SPAPR_PCI_NV2ATSD_WIN_SIZE;
4245 return true;
4248 static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
4250 SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4252 return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
4255 static void spapr_ics_resend(XICSFabric *dev)
4257 SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4259 ics_resend(spapr->ics);
4262 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id)
4264 PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
4266 return cpu ? spapr_cpu_state(cpu)->icp : NULL;
4269 static void spapr_pic_print_info(InterruptStatsProvider *obj,
4270 Monitor *mon)
4272 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
4274 spapr_irq_print_info(spapr, mon);
4275 monitor_printf(mon, "irqchip: %s\n",
4276 kvm_irqchip_in_kernel() ? "in-kernel" : "emulated");
4280 * This is a XIVE only operation
4282 static int spapr_match_nvt(XiveFabric *xfb, uint8_t format,
4283 uint8_t nvt_blk, uint32_t nvt_idx,
4284 bool cam_ignore, uint8_t priority,
4285 uint32_t logic_serv, XiveTCTXMatch *match)
4287 SpaprMachineState *spapr = SPAPR_MACHINE(xfb);
4288 XivePresenter *xptr = XIVE_PRESENTER(spapr->active_intc);
4289 XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
4290 int count;
4292 count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
4293 priority, logic_serv, match);
4294 if (count < 0) {
4295 return count;
4299 * When we implement the save and restore of the thread interrupt
4300 * contexts in the enter/exit CPU handlers of the machine and the
4301 * escalations in QEMU, we should be able to handle non dispatched
4302 * vCPUs.
4304 * Until this is done, the sPAPR machine should find at least one
4305 * matching context always.
4307 if (count == 0) {
4308 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: NVT %x/%x is not dispatched\n",
4309 nvt_blk, nvt_idx);
4312 return count;
4315 int spapr_get_vcpu_id(PowerPCCPU *cpu)
4317 return cpu->vcpu_id;
4320 bool spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp)
4322 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
4323 MachineState *ms = MACHINE(spapr);
4324 int vcpu_id;
4326 vcpu_id = spapr_vcpu_id(spapr, cpu_index);
4328 if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) {
4329 error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id);
4330 error_append_hint(errp, "Adjust the number of cpus to %d "
4331 "or try to raise the number of threads per core\n",
4332 vcpu_id * ms->smp.threads / spapr->vsmt);
4333 return false;
4336 cpu->vcpu_id = vcpu_id;
4337 return true;
4340 PowerPCCPU *spapr_find_cpu(int vcpu_id)
4342 CPUState *cs;
4344 CPU_FOREACH(cs) {
4345 PowerPCCPU *cpu = POWERPC_CPU(cs);
4347 if (spapr_get_vcpu_id(cpu) == vcpu_id) {
4348 return cpu;
4352 return NULL;
4355 static void spapr_cpu_exec_enter(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4357 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4359 /* These are only called by TCG, KVM maintains dispatch state */
4361 spapr_cpu->prod = false;
4362 if (spapr_cpu->vpa_addr) {
4363 CPUState *cs = CPU(cpu);
4364 uint32_t dispatch;
4366 dispatch = ldl_be_phys(cs->as,
4367 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4368 dispatch++;
4369 if ((dispatch & 1) != 0) {
4370 qemu_log_mask(LOG_GUEST_ERROR,
4371 "VPA: incorrect dispatch counter value for "
4372 "dispatched partition %u, correcting.\n", dispatch);
4373 dispatch++;
4375 stl_be_phys(cs->as,
4376 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4380 static void spapr_cpu_exec_exit(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4382 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4384 if (spapr_cpu->vpa_addr) {
4385 CPUState *cs = CPU(cpu);
4386 uint32_t dispatch;
4388 dispatch = ldl_be_phys(cs->as,
4389 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4390 dispatch++;
4391 if ((dispatch & 1) != 1) {
4392 qemu_log_mask(LOG_GUEST_ERROR,
4393 "VPA: incorrect dispatch counter value for "
4394 "preempted partition %u, correcting.\n", dispatch);
4395 dispatch++;
4397 stl_be_phys(cs->as,
4398 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4402 static void spapr_machine_class_init(ObjectClass *oc, void *data)
4404 MachineClass *mc = MACHINE_CLASS(oc);
4405 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
4406 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
4407 NMIClass *nc = NMI_CLASS(oc);
4408 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
4409 PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
4410 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
4411 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
4412 XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
4414 mc->desc = "pSeries Logical Partition (PAPR compliant)";
4415 mc->ignore_boot_device_suffixes = true;
4418 * We set up the default / latest behaviour here. The class_init
4419 * functions for the specific versioned machine types can override
4420 * these details for backwards compatibility
4422 mc->init = spapr_machine_init;
4423 mc->reset = spapr_machine_reset;
4424 mc->block_default_type = IF_SCSI;
4425 mc->max_cpus = 1024;
4426 mc->no_parallel = 1;
4427 mc->default_boot_order = "";
4428 mc->default_ram_size = 512 * MiB;
4429 mc->default_ram_id = "ppc_spapr.ram";
4430 mc->default_display = "std";
4431 mc->kvm_type = spapr_kvm_type;
4432 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE);
4433 mc->pci_allow_0_address = true;
4434 assert(!mc->get_hotplug_handler);
4435 mc->get_hotplug_handler = spapr_get_hotplug_handler;
4436 hc->pre_plug = spapr_machine_device_pre_plug;
4437 hc->plug = spapr_machine_device_plug;
4438 mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
4439 mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id;
4440 mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
4441 hc->unplug_request = spapr_machine_device_unplug_request;
4442 hc->unplug = spapr_machine_device_unplug;
4444 smc->dr_lmb_enabled = true;
4445 smc->update_dt_enabled = true;
4446 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0");
4447 mc->has_hotpluggable_cpus = true;
4448 mc->nvdimm_supported = true;
4449 smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED;
4450 fwc->get_dev_path = spapr_get_fw_dev_path;
4451 nc->nmi_monitor_handler = spapr_nmi;
4452 smc->phb_placement = spapr_phb_placement;
4453 vhc->hypercall = emulate_spapr_hypercall;
4454 vhc->hpt_mask = spapr_hpt_mask;
4455 vhc->map_hptes = spapr_map_hptes;
4456 vhc->unmap_hptes = spapr_unmap_hptes;
4457 vhc->hpte_set_c = spapr_hpte_set_c;
4458 vhc->hpte_set_r = spapr_hpte_set_r;
4459 vhc->get_pate = spapr_get_pate;
4460 vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr;
4461 vhc->cpu_exec_enter = spapr_cpu_exec_enter;
4462 vhc->cpu_exec_exit = spapr_cpu_exec_exit;
4463 xic->ics_get = spapr_ics_get;
4464 xic->ics_resend = spapr_ics_resend;
4465 xic->icp_get = spapr_icp_get;
4466 ispc->print_info = spapr_pic_print_info;
4467 /* Force NUMA node memory size to be a multiple of
4468 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
4469 * in which LMBs are represented and hot-added
4471 mc->numa_mem_align_shift = 28;
4472 mc->auto_enable_numa = true;
4474 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF;
4475 smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON;
4476 smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON;
4477 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4478 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4479 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_WORKAROUND;
4480 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */
4481 smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF;
4482 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_ON;
4483 smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_ON;
4484 smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_ON;
4485 spapr_caps_add_properties(smc);
4486 smc->irq = &spapr_irq_dual;
4487 smc->dr_phb_enabled = true;
4488 smc->linux_pci_probe = true;
4489 smc->smp_threads_vsmt = true;
4490 smc->nr_xirqs = SPAPR_NR_XIRQS;
4491 xfc->match_nvt = spapr_match_nvt;
4494 static const TypeInfo spapr_machine_info = {
4495 .name = TYPE_SPAPR_MACHINE,
4496 .parent = TYPE_MACHINE,
4497 .abstract = true,
4498 .instance_size = sizeof(SpaprMachineState),
4499 .instance_init = spapr_instance_init,
4500 .instance_finalize = spapr_machine_finalizefn,
4501 .class_size = sizeof(SpaprMachineClass),
4502 .class_init = spapr_machine_class_init,
4503 .interfaces = (InterfaceInfo[]) {
4504 { TYPE_FW_PATH_PROVIDER },
4505 { TYPE_NMI },
4506 { TYPE_HOTPLUG_HANDLER },
4507 { TYPE_PPC_VIRTUAL_HYPERVISOR },
4508 { TYPE_XICS_FABRIC },
4509 { TYPE_INTERRUPT_STATS_PROVIDER },
4510 { TYPE_XIVE_FABRIC },
4515 static void spapr_machine_latest_class_options(MachineClass *mc)
4517 mc->alias = "pseries";
4518 mc->is_default = true;
4521 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \
4522 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
4523 void *data) \
4525 MachineClass *mc = MACHINE_CLASS(oc); \
4526 spapr_machine_##suffix##_class_options(mc); \
4527 if (latest) { \
4528 spapr_machine_latest_class_options(mc); \
4531 static const TypeInfo spapr_machine_##suffix##_info = { \
4532 .name = MACHINE_TYPE_NAME("pseries-" verstr), \
4533 .parent = TYPE_SPAPR_MACHINE, \
4534 .class_init = spapr_machine_##suffix##_class_init, \
4535 }; \
4536 static void spapr_machine_register_##suffix(void) \
4538 type_register(&spapr_machine_##suffix##_info); \
4540 type_init(spapr_machine_register_##suffix)
4543 * pseries-6.0
4545 static void spapr_machine_6_0_class_options(MachineClass *mc)
4547 /* Defaults for the latest behaviour inherited from the base class */
4550 DEFINE_SPAPR_MACHINE(6_0, "6.0", true);
4553 * pseries-5.2
4555 static void spapr_machine_5_2_class_options(MachineClass *mc)
4557 spapr_machine_6_0_class_options(mc);
4558 compat_props_add(mc->compat_props, hw_compat_5_2, hw_compat_5_2_len);
4561 DEFINE_SPAPR_MACHINE(5_2, "5.2", false);
4564 * pseries-5.1
4566 static void spapr_machine_5_1_class_options(MachineClass *mc)
4568 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4570 spapr_machine_5_2_class_options(mc);
4571 compat_props_add(mc->compat_props, hw_compat_5_1, hw_compat_5_1_len);
4572 smc->pre_5_2_numa_associativity = true;
4575 DEFINE_SPAPR_MACHINE(5_1, "5.1", false);
4578 * pseries-5.0
4580 static void spapr_machine_5_0_class_options(MachineClass *mc)
4582 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4583 static GlobalProperty compat[] = {
4584 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-5.1-associativity", "on" },
4587 spapr_machine_5_1_class_options(mc);
4588 compat_props_add(mc->compat_props, hw_compat_5_0, hw_compat_5_0_len);
4589 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4590 mc->numa_mem_supported = true;
4591 smc->pre_5_1_assoc_refpoints = true;
4594 DEFINE_SPAPR_MACHINE(5_0, "5.0", false);
4597 * pseries-4.2
4599 static void spapr_machine_4_2_class_options(MachineClass *mc)
4601 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4603 spapr_machine_5_0_class_options(mc);
4604 compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len);
4605 smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_OFF;
4606 smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_OFF;
4607 smc->rma_limit = 16 * GiB;
4608 mc->nvdimm_supported = false;
4611 DEFINE_SPAPR_MACHINE(4_2, "4.2", false);
4614 * pseries-4.1
4616 static void spapr_machine_4_1_class_options(MachineClass *mc)
4618 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4619 static GlobalProperty compat[] = {
4620 /* Only allow 4kiB and 64kiB IOMMU pagesizes */
4621 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pgsz", "0x11000" },
4624 spapr_machine_4_2_class_options(mc);
4625 smc->linux_pci_probe = false;
4626 smc->smp_threads_vsmt = false;
4627 compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len);
4628 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4631 DEFINE_SPAPR_MACHINE(4_1, "4.1", false);
4634 * pseries-4.0
4636 static bool phb_placement_4_0(SpaprMachineState *spapr, uint32_t index,
4637 uint64_t *buid, hwaddr *pio,
4638 hwaddr *mmio32, hwaddr *mmio64,
4639 unsigned n_dma, uint32_t *liobns,
4640 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4642 if (!spapr_phb_placement(spapr, index, buid, pio, mmio32, mmio64, n_dma,
4643 liobns, nv2gpa, nv2atsd, errp)) {
4644 return false;
4647 *nv2gpa = 0;
4648 *nv2atsd = 0;
4649 return true;
4651 static void spapr_machine_4_0_class_options(MachineClass *mc)
4653 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4655 spapr_machine_4_1_class_options(mc);
4656 compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
4657 smc->phb_placement = phb_placement_4_0;
4658 smc->irq = &spapr_irq_xics;
4659 smc->pre_4_1_migration = true;
4662 DEFINE_SPAPR_MACHINE(4_0, "4.0", false);
4665 * pseries-3.1
4667 static void spapr_machine_3_1_class_options(MachineClass *mc)
4669 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4671 spapr_machine_4_0_class_options(mc);
4672 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
4674 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
4675 smc->update_dt_enabled = false;
4676 smc->dr_phb_enabled = false;
4677 smc->broken_host_serial_model = true;
4678 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN;
4679 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN;
4680 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN;
4681 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_OFF;
4684 DEFINE_SPAPR_MACHINE(3_1, "3.1", false);
4687 * pseries-3.0
4690 static void spapr_machine_3_0_class_options(MachineClass *mc)
4692 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4694 spapr_machine_3_1_class_options(mc);
4695 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
4697 smc->legacy_irq_allocation = true;
4698 smc->nr_xirqs = 0x400;
4699 smc->irq = &spapr_irq_xics_legacy;
4702 DEFINE_SPAPR_MACHINE(3_0, "3.0", false);
4705 * pseries-2.12
4707 static void spapr_machine_2_12_class_options(MachineClass *mc)
4709 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4710 static GlobalProperty compat[] = {
4711 { TYPE_POWERPC_CPU, "pre-3.0-migration", "on" },
4712 { TYPE_SPAPR_CPU_CORE, "pre-3.0-migration", "on" },
4715 spapr_machine_3_0_class_options(mc);
4716 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
4717 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4719 /* We depend on kvm_enabled() to choose a default value for the
4720 * hpt-max-page-size capability. Of course we can't do it here
4721 * because this is too early and the HW accelerator isn't initialzed
4722 * yet. Postpone this to machine init (see default_caps_with_cpu()).
4724 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0;
4727 DEFINE_SPAPR_MACHINE(2_12, "2.12", false);
4729 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc)
4731 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4733 spapr_machine_2_12_class_options(mc);
4734 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4735 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4736 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD;
4739 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false);
4742 * pseries-2.11
4745 static void spapr_machine_2_11_class_options(MachineClass *mc)
4747 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4749 spapr_machine_2_12_class_options(mc);
4750 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON;
4751 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
4754 DEFINE_SPAPR_MACHINE(2_11, "2.11", false);
4757 * pseries-2.10
4760 static void spapr_machine_2_10_class_options(MachineClass *mc)
4762 spapr_machine_2_11_class_options(mc);
4763 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
4766 DEFINE_SPAPR_MACHINE(2_10, "2.10", false);
4769 * pseries-2.9
4772 static void spapr_machine_2_9_class_options(MachineClass *mc)
4774 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4775 static GlobalProperty compat[] = {
4776 { TYPE_POWERPC_CPU, "pre-2.10-migration", "on" },
4779 spapr_machine_2_10_class_options(mc);
4780 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
4781 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4782 smc->pre_2_10_has_unused_icps = true;
4783 smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED;
4786 DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
4789 * pseries-2.8
4792 static void spapr_machine_2_8_class_options(MachineClass *mc)
4794 static GlobalProperty compat[] = {
4795 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pcie-extended-configuration-space", "off" },
4798 spapr_machine_2_9_class_options(mc);
4799 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
4800 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4801 mc->numa_mem_align_shift = 23;
4804 DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
4807 * pseries-2.7
4810 static bool phb_placement_2_7(SpaprMachineState *spapr, uint32_t index,
4811 uint64_t *buid, hwaddr *pio,
4812 hwaddr *mmio32, hwaddr *mmio64,
4813 unsigned n_dma, uint32_t *liobns,
4814 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4816 /* Legacy PHB placement for pseries-2.7 and earlier machine types */
4817 const uint64_t base_buid = 0x800000020000000ULL;
4818 const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
4819 const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
4820 const hwaddr pio_offset = 0x80000000; /* 2 GiB */
4821 const uint32_t max_index = 255;
4822 const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
4824 uint64_t ram_top = MACHINE(spapr)->ram_size;
4825 hwaddr phb0_base, phb_base;
4826 int i;
4828 /* Do we have device memory? */
4829 if (MACHINE(spapr)->maxram_size > ram_top) {
4830 /* Can't just use maxram_size, because there may be an
4831 * alignment gap between normal and device memory regions
4833 ram_top = MACHINE(spapr)->device_memory->base +
4834 memory_region_size(&MACHINE(spapr)->device_memory->mr);
4837 phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
4839 if (index > max_index) {
4840 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
4841 max_index);
4842 return false;
4845 *buid = base_buid + index;
4846 for (i = 0; i < n_dma; ++i) {
4847 liobns[i] = SPAPR_PCI_LIOBN(index, i);
4850 phb_base = phb0_base + index * phb_spacing;
4851 *pio = phb_base + pio_offset;
4852 *mmio32 = phb_base + mmio_offset;
4854 * We don't set the 64-bit MMIO window, relying on the PHB's
4855 * fallback behaviour of automatically splitting a large "32-bit"
4856 * window into contiguous 32-bit and 64-bit windows
4859 *nv2gpa = 0;
4860 *nv2atsd = 0;
4861 return true;
4864 static void spapr_machine_2_7_class_options(MachineClass *mc)
4866 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4867 static GlobalProperty compat[] = {
4868 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0xf80000000", },
4869 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem64_win_size", "0", },
4870 { TYPE_POWERPC_CPU, "pre-2.8-migration", "on", },
4871 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-2.8-migration", "on", },
4874 spapr_machine_2_8_class_options(mc);
4875 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3");
4876 mc->default_machine_opts = "modern-hotplug-events=off";
4877 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
4878 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4879 smc->phb_placement = phb_placement_2_7;
4882 DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
4885 * pseries-2.6
4888 static void spapr_machine_2_6_class_options(MachineClass *mc)
4890 static GlobalProperty compat[] = {
4891 { TYPE_SPAPR_PCI_HOST_BRIDGE, "ddw", "off" },
4894 spapr_machine_2_7_class_options(mc);
4895 mc->has_hotpluggable_cpus = false;
4896 compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
4897 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4900 DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
4903 * pseries-2.5
4906 static void spapr_machine_2_5_class_options(MachineClass *mc)
4908 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4909 static GlobalProperty compat[] = {
4910 { "spapr-vlan", "use-rx-buffer-pools", "off" },
4913 spapr_machine_2_6_class_options(mc);
4914 smc->use_ohci_by_default = true;
4915 compat_props_add(mc->compat_props, hw_compat_2_5, hw_compat_2_5_len);
4916 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4919 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
4922 * pseries-2.4
4925 static void spapr_machine_2_4_class_options(MachineClass *mc)
4927 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4929 spapr_machine_2_5_class_options(mc);
4930 smc->dr_lmb_enabled = false;
4931 compat_props_add(mc->compat_props, hw_compat_2_4, hw_compat_2_4_len);
4934 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
4937 * pseries-2.3
4940 static void spapr_machine_2_3_class_options(MachineClass *mc)
4942 static GlobalProperty compat[] = {
4943 { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" },
4945 spapr_machine_2_4_class_options(mc);
4946 compat_props_add(mc->compat_props, hw_compat_2_3, hw_compat_2_3_len);
4947 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4949 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
4952 * pseries-2.2
4955 static void spapr_machine_2_2_class_options(MachineClass *mc)
4957 static GlobalProperty compat[] = {
4958 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0x20000000" },
4961 spapr_machine_2_3_class_options(mc);
4962 compat_props_add(mc->compat_props, hw_compat_2_2, hw_compat_2_2_len);
4963 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4964 mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on";
4966 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
4969 * pseries-2.1
4972 static void spapr_machine_2_1_class_options(MachineClass *mc)
4974 spapr_machine_2_2_class_options(mc);
4975 compat_props_add(mc->compat_props, hw_compat_2_1, hw_compat_2_1_len);
4977 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
4979 static void spapr_machine_register_types(void)
4981 type_register_static(&spapr_machine_info);
4984 type_init(spapr_machine_register_types)